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ABSTRACT 

The purpose of this study is to improve discretionary accrual models for banks by 

using random forest to predict the nondiscretionary component of loan loss 

provisions. Investigation of managerial conduct within the banking sector depends 

strongly on the accuracy and effectiveness of accrual models to proxy for earnings 

management. Existing literature favours linear regressions to model the 

nondiscretionary component of accruals. Based on nonlinearity concerns and 

overall better prediction power, we argue for random forest regressions as an 

alternative to linear models. Using United States banking data for the period 2010-

2021, we compare the results of linear and random forest models based on R2, 

mean (absolute) error, persistence of the discretionary accrual and the ability of the 

model to identify cases of artificially induced managed earnings. Random forest 

regressions outperform linear regressions in every test apart from the mean error.  

Keywords: earnings management, random forest regression, artificially induced 

earnings management  
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1 Introduction 
The objective of this research is to use machine learning to improve existing 

discretionary loan loss provision models. Quantitative models form the foundation 

of earnings management literature, with the ability to accurately distinguish 

companies’ (non)discretionary accruals at the core of researchers’ concerns and an 

extensive branch of literature dedicated to this matter alone. Current literature often 

employs two-stage linear models to first estimate the non-discretionary component 

of loan loss provisions, and then uses the residual of the first estimation as a proxy 

for earnings management. We argue that ordinary linear models are inferior to 

nonlinear models in predicting the nondiscretionary component of the accrual in the 

first stage of the model and propose the random forest regression as a nonlinear 

alternative.  

Despite arguments that they are just an accounting number, earnings are still 

an important item on any company’s income statements. Earnings are an accrual 

accounting resolution to quantify a firm’s profit or loss over a certain period of time 

and are used by both internal and external users for performance indication, 

valuation, or as a metric in debt covenants or bonus plans (Dechow, 1994). Graham, 

Harvey & Rajgopa (2005) conducts a survey among over 400 executives and finds 

that financial officers see earnings as the most relevant financial metric to outsiders, 

rather than cash flows. As so much weight is put on a number that essentially 

represents the difference between income and expenditure during a period, 

incentives may compel a firm’s management to manage earnings in their favour.  

The concept of earnings management is not limited to a single industry, 

country or method and can happen for a variety of reasons. Prior research has 

spent a vast amount of time and energy investigating whether management uses 

their discretion to manage earnings. Many studies have answered this question 

affirmatively, providing evidence that management conducts earnings management 

to affect reported earnings. Incentives to manage earnings include higher company 

valuation in case of imminent public offerings (Teoh, Welch & Wong, 1998) or stock-

for-stock mergers (Erickson & Wang, 1999), meeting analysts’ forecasts (Graham 

et al., 2005), smoothing income (Sood, 2012), debt covenants or regulation (Jones, 

1991). Alternatively, incentives can be non-financial such as an increased likelihood 

for career advancement, or personal prestige. Regardless of the underlying 

motivation, the presence of earnings management indicates a conflict of interest 

between the numerous stakeholders. Earnings management impacts all 

stakeholders, as its presence decreases the transparency of financial reports, 

hindering efficient resource allocation from the worst- to the best performing 

companies.  

This study focusses on banks for several reasons. First, the literature is not 

yet decided on a single approach to model the discretionary component of loan loss 

provisions (Beatty & Liao, 2014), meaning existing earnings management studies 

rest on a precarious foundation. Secondly, due to the way the banking sector and 

the financial system are intertwined, the safety and soundness of the banking sector 
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is of critical importance to the economy. Monitoring and detecting extreme levels of 

earnings management is one of the means regulators have to ensure proper 

reserves in the banking sector (Cornett, McNutt & Tehranian, 2009). On similar note, 

Cheng, Warfield & Ye (2011) underline the importance of monitoring the presence 

of earnings management in the banking industry, arguing that the credit crisis of 

2008 shows just how critical banks are to a properly functioning economy. Accurate 

modelling of the discretionary component of banks’ loan loss provisions is therefore 

of fundamental importance to a wide range of stakeholders, including supervisory 

boards and regulators. Lastly, we argue that the relation between nondiscretionary 

bank accruals and its explanatory economic variables is non-linear. As of yet, nearly 

all studies investigating earnings management in the banking industry utilize linear 

regressions, and not without reason. Linear regressions are a classic analytical 

method that have proven themselves over time and combine strong analytical 

power with ease of interpretations. However, such a statement only holds when 

certain conditions are met. When faced with the task of predicting values for 

nonlinear relationships or higher order interaction terms, both ease of interpretation 

and model selection suffer. Nonlinear machine learnings algorithms, such as the 

regression tree, can outperform classical approaches when the relationship 

between the independent and dependent variables is not well approximated by a 

linear model (James, Witten, Hastie & Tibshirani, 2021).  

Whereas earnings management research in sectors such as retail or industrial 

firms commonly focusses on R&D, operating expenses or revenue recognition, 

financial firms require a different approach due to large differences in balance sheet 

composition. For banks, the loan loss provision (LLP) is found to be the most 

significant accrual for earnings management due to its relatively large size and the 

high degree of discretion that can be exercised by the banks’ management. Banks 

set aside a certain part of their outstanding loans to reflect expected defaults in the 

future on current debt outstanding. As the estimation of future defaults is not an 

exact science, bank managers can exert influence over the provision.  

This paper uses five tests to examine the effectiveness of tree-based 

regression algorithms in modelling the (non)discretionary component of loan loss 

provisions and to compare its effectiveness to existing linear models. To test model 

performance, we investigate R2 values, mean (absolute) errors, the persistence of 

the discretionary component of loan loss provisions, and the ability of the model to 

recognize cases of earnings management. Due to the limited availability of data on 

actual cases of earnings management in our study, we artificially inflate the loan 

loss provision in randomly selected observations with 0-0.15% of total loans and 

assess to extent which the models are able to recognize these cases. In all cases 

with the exception of the mean error metric, the random forest model outperforms 

the classic linear models. Based on these results, we advise future research to 

consider using the random forest algorithm when estimating the nondiscretionary 

component of loan loss provisions.   
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2 Literature review 
 

2.1 Real and accrual earnings management 

Current earnings management literature can typically be divided in two categories. 

The first approach focusses on real earnings management. Through real earnings 

management, firms can manipulate earnings upwards or downwards not by 

changing their accounting policy or using judgement, but through a more tangible 

approach. This approach is common in samples excluding financial institutions (e.g. 

Bartov (1993), Roychowdhury (2006)), but rarely applied to financial institutions. 

Arguably because of banks’ limited opportunities to cut R&D costs or 

overproduction, which Roychowdhury (2006) identified as common real earnings 

management approaches. Ertan (2021) is one of few exceptions to investigate real 

earnings management in banks.  

The second and most common approach is the study of earnings management 

in financial institutions through the manipulation of accruals. Earnings as reported 

on the income statement consists of two components: cash flows and total accruals. 

Total accruals consist of discretionary and non-discretionary accruals. Stubben 

(2010) suggests three features of specific accrual accounts that make them fit for 

academic research. The ideal accrual is i) common across industries, ii) leaves 

room for managements’ discretion, and iii) is economically significant. Studies 

examining non-financial samples tend to focus on aggregate accruals due to an 

unclear hierarchy in accrual importance. Banking literature on the other hand tends 

to focus on loan loss provisions whilst excluding other accruals. Using specific 

accruals rather than aggregate accruals has the added benefit of decreasing 

concerns raised at aggregate accrual models (McNichols & Stubben, 2018). The 

preference for loan loss provisions as sole accrual can be explained by strong 

explanatory power of total accruals. Beatty & Liao (2014) find that the loan loss 

provision is the largest accrual explaining 56% of the variability of total accruals, 

nearly double the impact of the second most relevant variable. Second, loan loss 

provisions are essentially managements’ best estimates of future losses, meaning 

considerable judgement can be exercised over them.  

2.2 The loan loss provision 

Arguably the most infamous accrual for earnings management in banks is the loan 

loss provision. The primary purpose of banks is to collect deposits and issue these 

deposits to individuals, firms, or other entities in return for interest. Apart from 

liquidity risks and exposure to complicated derivative structures, one of the main 

risks for banks is its borrowers defaulting on their principal and/or interest. Banks 

prepare for future expected defaults by expensing a loan loss provision in the 

income statement, adding that amount to the loan loss reserve on the balance 

sheet. The loan loss reserve, sometimes referred to as the ‘Allowance for Loan and 

Lease Losses’, is a contra asset recorded to represent an estimate of the total value 

of uncollectible loans and leases and is used to reduce the book value of 
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outstanding loans and/or leases to the amount that is expected to be collected over 

the lifetime of the loan or lease. When a loan is considered (partly) uncollectable, 

this amount is charged off against the reserve. Loan loss reserves change 

frequently, increasing with loan loss provisions and decreasing with net charge-offs. 

Similar to how retail firms adjust their allowance for doubtful accounts through bad 

debt expense, banks make adjustments to their loan-loss reserve through loan loss 

provisions (Basu, Vitanza & Wang, 2020). When loans are deemed uncollectible 

and thus charged off, the reduction in loans is charged against the loan loss 

allowance leaving net income unaffected. Effectively, assuming loan write-offs do 

not exceed the total allowance, the timing of loan losses that become uncollectible 

bears no significance from the standpoint of net income. The decisive factor lies in 

the moment at which the management decides to record the provision.  

 Management estimates the required loan loss provisions based on historical 

experiences, statistical factors and professional judgement. Bank managers can 

exercise considerable power over the latter (Ozili & Outa, 2017), creating an 

environment where opportunistic behaviour by managers could harm the primary 

goal of accruals: to convey private information based on managements’ bests 

expectations. To balance varying interests, bank regulators periodically review loan 

loss reserves. If the loan loss reserve falls short of expected losses, the bank’s 

capital ratio overstates its capacity to withstand losses, endangering the safety and 

soundness of the bank. Regulators adopt a cautious and forward-looking 

perspective towards the use of loan loss allowances, considering their objective of 

upholding the security and stability of banks (Cornett et al., 2009).  

2.3 One- and two-stage accrual models 

As the ‘true’ value of the (non)discretionary accrual is unobservable, existing 

literature models the nondiscretionary part of the loan loss provision as a linear 

combination of credit risk indicators and macroeconomic variables and uses the 

residual of the estimation as a proxy for the discretionary component. Researchers 

have adopted two methods when modelling specific accruals such as loan loss 

provisions. The first method includes the variable of interest among a list of control 

variables to assess whether the independent variable, generally an accounting 

measure, significantly affects the dependent variable. The control variables are 

meant to capture the nondiscretionary part of the accrual. Models taking this 

approach are called one-stage models and are used in Lobo & Yang (2001), Liu & 

Ryan (2006) and Alali & Jaggi (2011), among others.  

The second method is the two-stage approach, which in the first stage predicts 

the accrual based on all economic factors deemed relevant for the objective 

determination of the loan loss provision. This represents the nondiscretionary 

component of the accrual. The residual of this prediction represents the 

discretionary part of the loan loss provision and is used as the dependent variable 

in the second stage. Here, discretionary accruals are regressed on a variable of 

interest (possibly including a set of control variables) to test a hypothesis on 

earnings management. Beaver & Engel (1996), Kanagaretnam, Krishnan & Lobo 
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(2009), Cheng et al. (2011) and Grougiou, Leventis & Dedoulis (2014) among others 

take this approach to model loan loss provisions. Despite concerns raised 

throughout time regarding possible attenuation biases (see Beaver (1987), Chen, 

Hribar & Melessa (2018)), use of the two-stage accrual model is still very popular 

within the accounting and finance literature. According to Chen et al. (2018), 61 

studies published in main accounting papers1 between 2011 and 2015 employed 

this procedure, of which 24 studies were focused on separating discretionary and 

nondiscretionary accruals. The choice of research design depends on the aim of 

each study. Given the purpose of this study is to improve the predictive power of 

loan loss provision models, rather than interpret the effect of a certain variable, the 

two-stage approach will be focused on.  

2.4 Existing accrual models 

Whereas non-financial accrual studies have conveyed towards a selected few 

preferred models for two-stage accrual models, loan loss provision studies have not 

yet reached such a consensus. Beatty & Liao (2014) summarizes models from nine 

different accrual models between 1994 and 2012 and conducts a factor analysis on 

the residuals to understand the driving factors. Based on the factor analysis, four 

models are proposed that capture as much of the relevance as possible. 

Collectively, these four models, named linear model 1, 2, 3 and 4, will be used as 

the current literature’s most substantiated models.   

 

𝐿𝐿𝑃𝑡 = 𝛼0 + α1Δ𝑁𝑃𝐴𝑡+1 + α2Δ𝑁𝑃𝐴𝑡 + α3Δ𝑁𝑃𝐴𝑡−1 + α4Δ𝑁𝑃𝐴𝑡−2 + α5𝑆𝐼𝑍𝐸𝑡−1 + α6Δ𝐿𝑂𝐴𝑁𝑡 +

α7Δ𝐺𝐷𝑃𝑡 + α8𝐶𝑆𝑅𝐸𝑇𝑡 + α9Δ𝑈𝑁𝐸𝑀𝑃𝑡 + 𝜀𝑡             (1) 

  

𝐿𝐿𝑃𝑡 = 𝛼0 + α1Δ𝑁𝑃𝐴𝑡+1 + α2Δ𝑁𝑃𝐴𝑡 + α3Δ𝑁𝑃𝐴𝑡−1 + α4Δ𝑁𝑃𝐴𝑡−2 + α5𝑆𝐼𝑍𝐸𝑡−1 + α6Δ𝐿𝑂𝐴𝑁𝑡 +

α7Δ𝐺𝐷𝑃𝑡 + α8𝐶𝑆𝑅𝐸𝑇𝑡 + α9Δ𝑈𝑁𝐸𝑀𝑃𝑡 + α10𝐴𝐿𝑊𝑡−1 +  𝜀𝑡          (2) 

 

𝐿𝐿𝑃𝑡 = 𝛼0 + α1Δ𝑁𝑃𝐴𝑡+1 + α2Δ𝑁𝑃𝐴𝑡 + α3Δ𝑁𝑃𝐴𝑡−1 + α4Δ𝑁𝑃𝐴𝑡−2 + α5𝑆𝐼𝑍𝐸𝑡−1 + α6Δ𝐿𝑂𝐴𝑁𝑡 +

α7Δ𝐺𝐷𝑃𝑡 + α8𝐶𝑆𝑅𝐸𝑇𝑡 + α9Δ𝑈𝑁𝐸𝑀𝑃𝑡 +  α10𝐶𝑂𝑡 + 𝜀𝑡           (3) 

 

𝐿𝐿𝑃𝑡 = 𝛼0 + α1Δ𝑁𝑃𝐴𝑡+1 + α2Δ𝑁𝑃𝐴𝑡 + α3Δ𝑁𝑃𝐴𝑡−1 + α4Δ𝑁𝑃𝐴𝑡−2 + α5𝑆𝐼𝑍𝐸𝑡−1 + α6Δ𝐿𝑂𝐴𝑁𝑡 +

α7Δ𝐺𝐷𝑃𝑡 + α8𝐶𝑆𝑅𝐸𝑇𝑡 + α9Δ𝑈𝑁𝐸𝑀𝑃𝑡 + α10𝐴𝐿𝑊𝑡 +  α11𝐶𝑂𝑡 +  𝜀𝑡         (4) 

  

Where LLP is the loan loss provision divided by lagged total loans, NPA is the 

change in nonperforming assets over the quarter scaled by lagged total loans, SIZE 

is the natural log of total assets and LOAN is the change in total loans over the 

quarter divided by lagged total loans. GDP, CSRET and UNEMP are the percental 

change in respectively the gross domestic product, Case Shiller Home Price Index 

and unemployment over the quarter. CO is the net charge-off divided by lagged total 

loans and ALW is the loan loss allowance divided by total loans. Nonperforming 

assets consist of loans that are no longer paying interest and loans that are at least 

                                                             
1 Contemporary Accounting Research, Journal of Accounting and Economics, Journal of 

Accounting Research, Review of Accounting Studies, and The Accounting Review 
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90 days overdue. The NPA variable is therefore an indicator of loan quality. 

Variables GDP, CSRET and UNEMP are included because these variables provide 

information about the macroeconomic environment.  

2.5 Nonlinearity concerns in banking accruals 

Economic research often uses linear regressions to approximate functions because 

their coefficients can be interpreted as marginal effects. Our study differentiates 

from existing literature by applying random forest regression instead of a linear 

regression to predict the non-discretionary part of loan loss provisions. As the 

primary goal of the first step in the two-stage approach is to predict the non-

discretionary component of loan loss provision rather than to interpret marginal 

effect, we believe a hypothesized increase in predictive power of the random forest 

regression outweighs the loss of interpretability. When prediction results are not 

significantly different, secondary properties like ease of use or interpretability of the 

models can be considered when choosing a model.  

We argue in favour of random forest regressions for several reasons. First, we 

argue that the economic factors that influence the nondiscretionary component of 

the loan loss provision might not be strictly linear. Wu (2014) finds that nonlinear 

accrual models outperform traditional models by incorporating the asymmetric 

influence of performance. Balboa, Lopez-Espinosa & Rubia (2013) investigates 

inconclusive evidence regarding income smoothing through loan loss provisions in 

the banking industry, arguing that main conclusions from previous studies are 

sensitive to the choice of sample and the model used. As the literature has not 

decided on a preferred model, differences in research designs can influence 

conclusions. They argue that the relation between loan loss provisions and earnings 

is nonlinear because incentives and ability to manipulate earnings is dependent on 

the relative size of all variables. Standard linear regressions fail to appropriately 

capture nonlinear responses of this kind, creating a bias in the estimator that could 

lead to misleading conclusions, generally underestimating earnings management in 

cases with extreme opportunities and overestimating in cases with no to moderate 

opportunities. Basu et al. (2020) finds a V-shaped relation between loan loss 

provisions and changes in non-performing loans and argues that failure to account 

for this relation can bias the conclusions of studies that assumed linearity, arguing 

that standard linear models would underpredict at the tails and over predict in the 

middle of the non-performing loan change distribution. Applying a nonlinear 

algorithm could increase prediction power by reducing the negative impact from 

nonlinearity concerns.  

3 Methodology 

3.1 Machine learning and random forest regression 

The following section will discuss the choice of machine learning algorithm. Machine 

learning algorithms are designed to improve operational performance by learning 

from experience. As such, machine learning is often seen as a subsection of 
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artificial intelligence. In order to learn from experience, the algorithm is designed to 

build models based on the data provided to it. Multiple classifications of machine 

learning algorithms exist, of which supervised and unsupervised algorithms are 

arguably the most well-known. The difference between supervised and 

unsupervised learning algorithms lies in the way the algorithm trains on the data 

provided to it. Supervised systems require labelled training data, whereas 

unsupervised methods are used when such labels are unavailable (Zhou, 2016). 

Labelling effectively means that human interaction is needed to indicate (label) the 

input and output variables. The algorithm in turn uses the provided variables to 

search for a relationship with the desired output variable. This study utilizes 

supervised systems as all data is cleaned and labelled. There are three state-of-

the-art supervised machine learning algorithms, each of them showing comparable 

accuracy (Jaiantilal, 2013). These algorithms are support vector machine, boosting 

and random forest regression. Unfortunately, there is no decisive method to 

determine which algorithm is best for which individual dataset or research question. 

Based on this assumption of comparable regression results, we focus on random 

forest regressions as it is less computationally intensive (Jaiantilal, 2013) and can 

be used to assess the relative importance of model features, both of which are 

qualities we deem desirable.  

The random forest algorithm is introduced in Breiman (2001) and is a machine 

learning algorithm that is widely used for classification and regression. The 

algorithm is an ensemble method based on the combined predictive power of many 

individual trees. Regression trees, which are a type of decision trees, are simple 

structures that split the data according to splitting rules. When graphically 

represented, trees are often drawn upside-down. The top of the tree, referred to as 

the root node, resembles all available data. The algorithm defines a cut-off point 

and splits the previous node in two new nodes until either the reduction in prediction 

error gained by splitting data, or the number of observations in sample is lower than 

a predefined threshold. The nodes that are no longer subdivided are called the 

terminal nodes (James et al., 2021).   

 Splitting rules are based on the principles of recursive partitioning which splits 

the features into groups with similar response values. For continuous variables, the 

optimal cut-off point to divide the previous node into two more nodes is selected 

based on the highest mean squared error reduction (Gomes & Jelihovschi, 2020). 

This is accomplished by a brute force procedure where the algorithm determines 

the residual of the sum of squares between the observed and mean value for each 

of the two nodes for multiple cut-off points. This process is repeated until the cut-

off point with the lowest residual sum of squares is found. When there is more than 

one feature, the feature with the highest reduction will be used in the first node.  

Singular regression trees have several disadvantages compared to other 

prediction methods. Individual trees tend to be very sensitive to small changes in 

data and are likely overtrain on the provided data, resulting in high in-sample 

prediction power but poor out-of-sample prediction power. Random forest improves 
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on individual regression trees in two different ways: through bagging and random 

selection of predictors. These two methods will be discussed individually.  

Bootstrap aggregation, also known as bagging, is a commonly used technique 

to reduce variance in learning algorithms. In bagging, the initial training set is used 

to create multiple smaller training sets with replacements. This means that an 

observation may be selected either zero or multiple times for each individual training 

set. The trees are trained on individual bootstrapped training set, and finally 

aggregated by averaging predictions from all individual regression trees. Bagging 

is especially beneficial to tree-based methods due to their inherently low bias but 

high variance. Random forest provides further improvement over the previously 

described bagged trees by decorrelating the trees. For each split in an individual 

regression tree, only a specific subset of features is considered by the algorithm, 

ignoring the others. This process might sound counterintuitive at first, however it 

offers an important benefit. It prevents the model from building many similar 

individual trees based on a small set of strong predictors. Averaging nearly identical 

trees will not decrease variance as much as averaging many uncorrelated trees. 

For an extensive description of the methodology behind the random forest I refer to 

Breiman (2001).  

 

3.2 Model assessment 

To assess if supervised machine learning models outperform traditional 

discretionary loan loss provision models, two things are needed. The first is the 

current literature’s most effective and supported loan loss prediction model. As the 

literature has not yet decided on a preferred model, we make use of the four models 

suggested in Beatty & Liao (2014). These models combine different features of nine 

models used in earlier studies. These four models are used in later studies (e.g. 

Basu et al. (2020) and Tran & Houston (2021)). The residual of the estimation is the 

proxy for discretionary loan loss provision used to represent earnings management. 

As the purpose of this study is to compare empirical results, we estimate all models 

on the same dataset. This means that all firm-specific variables are scaled by 

lagged total loans to reduce heterogeneity concerns in the linear model, even 

though random forest does not suffer from potential heterogeneity issues and could 

alternatively be used to estimate the loan loss provision directly. Effectively, loan 

loss provision is estimated as a percentage of lagged total loans.  

Secondly, a proper set of tests by which compare model performance is 

needed. To our knowledge, there is not one single test that can unambiguously 

determine the best model for all occasions. As such, model performance will be 

assessed by an array of tests. Based on the relative success for each model, we 

determine if supervised machine learning algorithms improve existing loan loss 

provision models. In line with Pae (2005), we use three evaluation metrics to test 

the accuracy of our random forest regressions. The first three metrics are the R2 

measure, absolute forecast errors and mean forecast errors. The R2 measure is a 

goodness of fit test that explains the extent to which the variance of the actual value 
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of LLP can be explained by the variance of the predicted value of LLP in the testing 

set. Absolute error is the absolute difference between predicted and actual values 

while mean error is the average of the errors. Given the notion that earnings 

management reverses over a long enough sample period, the best performing 

model should produce mean errors closest to zero. Additionally, following model 

evaluation as discussed in Dechow, Richardson & Tuna (2003), Medeiros, Dantas 

& Lustosa (2012) and Glen (2015), we perform an analysis on the persistence of 

discretionary and non-discretionary accruals. Discretionary accruals are a result of 

internal and external forces exercised on management. Though these effects may 

be connected to actual events or firm performance, discretionary accruals should, 

by their very nature, still reverse through time. More so than nondiscretionary part 

of the loan loss provision, which should change only with economic factors. When 

regressing future loan loss provisions on current discretionary and non-

discretionary accruals, we should expect larger coefficients for the nondiscretionary 

component and smaller coefficients for discretionary loan loss provisions.  

 

𝐿𝐿𝑃𝑡+1 = 𝛼0 +  𝑁𝐷𝐿𝐿𝑃𝑡 + 𝐷𝐿𝐿𝑃𝑡 + 𝜀𝑡             (5) 

 

Where LLPt+1 is the loan loss provision in the next quarter, NDLLPt is the loan loss 

provision in the current quarter as predicted by the model, and DLLPt is the 

discretionary component of loan loss provision, which is the residual of the previous 

estimation. 

Finally, model performance is assessed by the ability of the models to 

recognize cases of earnings management. Unfortunately, data on predetermined 

cases of earnings management are notoriously lacking in earnings management 

literature. Previous studies have attempted to deal with this issue by focussing 

either on financial restatements and Securities and Exchange Commission (SEC) 

intervention, or by artificially introducing earnings management into their sample. 

Dechow, Hutton, Kim & Sloan (2012), for instance, use SEC Accounting and 

Auditing Enforcement Releases (AAER) to test the power of their model by 

evaluating how well different models recognize these cases. These releases are a 

list of enforcement actions related to financial reporting and civil lawsuits and are 

published by the SEC. The advantage of using such a dataset is that no 

assumptions need to be made about the timing or the magnitude of the managed 

provision. Additionally, the SEC arguably only intervenes in the most extreme cases 

of earnings management. Should a model fall short of identifying such cases, it 

would be unlikely to perform well in samples where relatively small earnings 

management is taking place. Unlike prior research that investigated samples 

excluding financial firms, this study's sample did not encounter substantial 

intervention by the SEC throughout the sample period. According to Audit Analytics 

data, there were only three cases of restatements pertaining to fraud, irregularities 

or misrepresentation related to the balance sheet accounts for the banking sector, 

which is the category Lo, Ramos & Rogo (2017) identified as the most useful for 

studies focussing on earnings management. Given the limited number of 
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observations of SEC interventions, this study will focus on artificially inducing 

earnings management in the sample and evaluate the extent to which the models 

can identify these cases. Dechow, Sloan & Sweeney (1995), Stubben (2010) and 

Dechow et al. (2012), among others, implement this approach.  

Artificially inducing earnings management faces several challenges. Explicit 

assumptions need to be made regarding the timing of the accruals. The external 

validity of the results rest upon how representative the assumptions are. The first 

assumption is about the timing of the accruals. As discretionary accruals should 

sum to zero over the lifetime of the firm, an adjustment of similar size but different 

sign during the observed time must be made. We assume reversal will take place 

in the quarter following the managed quarter. Secondly, we need to make 

assumptions about the size of the discretionary component of loan loss provisions. 

In other words, to what extent do we expect management to have the real ability to 

manage earnings. While the literature recognizes and accepts the practice of 

earnings management via loan loss provisions, there are no clear suggestions 

regarding the size of the issue relative to the size of the company. As such, the loan 

loss provision of randomly selected quarters will be increased with 0 – 0.15% of 

outstanding loans. Thirdly, the effect of changes to other accounts needs to be 

considered. Changes in loan loss provision will affect the allowance for loan and 

lease losses. These accounts are adjusted accordingly. An increase in loan loss 

provision also decreases tier 1 capital ratios and shareholder equity. None of these 

changes however effect the variables used in our models, meaning they do not 

need to be adjusted. 

 Combining the beforementioned assumptions leads to the following steps to 

test the ability of the models to recognize cases of artificially induced earnings. 

1) We randomly select 100 observations that have at least one more 

observation to account for the reversal. 

2) The loan loss provision for these observations is increased with 0 - 0.15% of 

outstanding loans, replicating a scenario where high profits are stored for 

future periods. 

3) A new variable EM is created and set to true to indicate that the earnings of 

this observation have been managed. 

4) The loan loss provision is reduced with the exact same amount in the 

following quarter. Variable EM is also set to true. The total allowance for loan 

and loss leases is adjusted accordingly in both time periods. 

5) We repeat the linear regression and random forest regression for each model 

using all observations including the modified ones in a 75/25 split.  

6) Observations are ranked based on the estimated component of the absolute 

value of the discretionary accrual. The values are divided into deciles.  

7) Steps 1-7 are repeated ten times and the number of observations per period 

are averaged to reduce the influence of chance. 

8) A Chi-square test is used to test if the sum of managed observation per decile 

significantly differs from the distribution of non-managed earnings.   
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Given the absence of clear evidence regarding the direction and magnitude of 

actual earnings management in the sample, we cannot simply evaluate model 

performance by its ability to put a certain number of observations within a certain 

decile. Instead, we argue that the model that most accurately predicts the 

nondiscretionary component of the loan loss provision should require a smaller 

increase to the discretionary loan loss provision to start allocating more 

observations to the top deciles, without specifically stating which decile. The Chi-

square test is used to determine the increase in loan loss provision that is required 

to change the allocation of observations to deciles from random to non-random. 

Observations in which the loan loss provision is modified are labelled as earnings 

management regardless of the direction of the modification. Combined with ranking 

based on the absolute value of the discretionary accrual, this method allows for 

model assessment irrespective of the direction of management. This approach 

enables comparisons between models based not solely on their ability to recognize 

income-increasing management but also on their ability to detect either direction of 

management. In total, there are 200 modified observations of which 50 are present 

in the testing set.  
 

3.3 Hyperparameter tuning of the random forest 

The random forest algorithm has decent out of the box performance which can be 

improved further by hyperparameter tuning. The first one is the number of candidate 

variables, referred to as mtry in R, considered at each split. Higher values of mtry 

result in trees that on average better fit the data, as more variables can be 

considered at each split. Low values for mtry result in more unique and therefore 

less correlated trees, resulting in more stability when all individual trees are 

averaged (Probst, Wright & Boulesteix, 2018). The standard method for supervised 

machine learning algorithm hyperparameter tuning is by using k-fold cross 

validation. Random forest, and other algorithms that use bagging, have the 

alternative option to use out-of-bag (OOB) observations. When a model bootstraps 

with replacement, not all observations are used and other observations are used 

multiple times. Given a large enough dataset, approximately two-third of the data 

will be utilized, meaning that one-third will not be used. The observations that are 

not used to construct an individual tree are denoted as OOB observations for that 

tree. Each tree has several observations that are not used in the creation of that 

tree and can therefore be used for hyperparameter tuning. This method has 

significantly less computation time than k-fold cross validation and performs well in 

all but some specific cases (Probst et al., 2018); none of which apply here. The 

optimal number of candidate predictors is computed by a trial-and-error method with 

the objective of finding the smallest out-of-bag estimation error and will then be 

used on the testing data.  

Secondly, the number of trees used in the bagging process needs to be 

specified. Increasing the number of trees reduce the variance at marginally 

decreasing rates while increasing computation time. Probst & Boulesteix (2018) find 
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that for random forest classifiers, tuning the number of trees is not required. For 

regression purposes, they argue on a theoretical basis that the same applies, 

though further research could extend. Oshiro, Perez & Baranauskas (2012) find that 

there is no significant difference between the performance of 256, 512, 1024 or 

more trees for their dataset. Though deviating from the standard number of trees of 

500 is not necessary, we use OOB estimation errors to determine the number of 

trees that corresponds to a stable mean squared error. Finding the number of trees 

that produces a stable mean squared error balances model performance and 

computational costs.   

The nodesize parameter influences tree size by creating a lower bound for the 

number of observations required to continue growing the tree. Put differently, when 

all unsplit nodes contain fewer observations than the specified threshold, the tree 

is fully grown. Increasing this number means this threshold is met more quickly, 

resulting in smaller trees and lower computation time. Decreasing nodesize will 

increase model complexity and fit to the training data, increasing the risk of 

overfitting. The standard nodesize for random forest regression is set to 5 and is 

said to offer decent balance and performance for most scenarios. We attempt to 

improve performance by considering a nodesize of 1 to 30 for each model and 

selecting the number that minimizes the OOB error.  

As supervised machine learning algorithms are prone to overtraining, we split 

the data to ensure out-of-sample performance. As this study uses OOB 

observations for hyperparameter tuning, there is no requirement to use a separate 

validation set. The model is trained on 75 percent of the data and tested on the 

remaining 25 percent.  

  

4 Data 
 

Our sample consists of banks from the Compustat Bank Fundamentals database 

which contains financial data of the largest and most important banks in the United 

States since 1950. The Compustat Bank Fundamentals database is accessed 

through Wharton Research Data Services. Requested quarterly balance sheet and 

income statement items are based on previous literature and – among others – 

include loan loss provisions, net charge offs, and non-performing assets. The initial 

dataset includes observations from Q1 2010 until Q4 2021, totalling 30.235 firm-

quarter observation.  A total of 9,944 observations are dropped because of missing 

values. The remaining sample consists of an unbalanced panel of 20,291 

observations, representing 789 unique banks. Bank data is merged with quarterly 

Gross Domestic Product (GDP) data retrieved from the World Bank (World Bank, 

2022), unemployment data from the United States Department of Labor (U.S. 

BUREAU OF LABOR STATISTICS, 2022) and the Case Shiller Home Price Index 

data from the Federal Reserve Economic data (Federal Reserve Economic Data, 

2022). GDP growth rate is calculated relative to the GDP of Q1 2010. All bank 
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variables have been winsorized at 1% and 99% levels to reduce the effect of 

outliers.  

 A pooled dataset has several advantages over time-series and cross-

sectional oriented models. Time series models, such as the original Jones-model, 

would force the discretionary accrual to be zero for a specific firm over time. This 

approach suffers from several drawbacks. The sum of discretionary accruals over 

a given period does not have to be zero, as this is dependent on the chosen time 

period and assumes a stable discretionary accrual generating ability. The latter 

assumption is problematic, based on the findings of Dopuch, Mashruwala & 

Seethamraju (2012). Many accrual models alternatively opt for cross-sectional 

analysis. Though arguably fit for the non-banking sector, this method poses risks 

for loan loss provision models. A popular research topic on earnings management 

in the banking sector is income smoothing by increasing accruals in good times to 

create a buffer for when inevitably the bad times arrive. Done to its fullest extent, 

this means that earnings are not affected by fluctuating loan write-downs through 

varying business cycles. See Kanagaretnam, Lobo & Yang (2004). Good and bad 

times for banks are arguably influenced by global factors and in some extent 

applicable to all banks at the same time, more than for non-financial firms. Forcing 

the discretionary accrual to be zero for all bank observations in each period, as 

would be done by a cross-sectional model, would therefore be problematic. When 

incentives for earnings management are correlated with macroeconomic activities, 

the banking sector would engage in earnings management at the same time 

(Beaver & Engel, 1996). Though suffering from its own disadvantages, such as 

assuming constant coefficients across firms and across years, we argue that 

pooled data is the still best approach.   

Table 1 shows that bank data is heavily skewed to the left, showing large 

relative differences between the third quartile and the maximum value for all 

variables caused by the presence of a small number of large banks in the sample. 

During the sample period, net charge-offs slightly exceed provisions to the loan 

loss reserve. On average, the loan loss reserve is increased with 0.082% of total 

loans each quarter.  
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Table 1. Sample descriptive statistics.             

 Panel A: Means, quartiles and standard deviation of bank data       

 Variables Mean Std. Dev. Min p25 p75 Max 

 Total assets 26618 117058 177 833 6385 946959 

 Total loans 14434 60231 102 546 4319 486622 

 Net charge-offs 15 74 -2 0 2 602 

 Non-performing assets 143 509 0 7 53 3780 

 Provision for loan losses 13 61 -13 0 2 480 

 Loan loss allowance 169 662 1 7 50 5080 

        

 Panel B: Means, quartiles and standard deviation of variables used in the estimation   

 LLP 0.00082 0.00153 -0.00229 0.00008 0.00101 0.00902 

 LOAN 0.02155 0.05201 -0.07075 -0.00033 0.03230 0.31359 

 NPA -0.00085 0.00463 -0.02237 -0.00168 0.00049 0.01512 

 SIZE 7.90804 1.69738 5.17650 6.72555 8.76164 13.76101 

 CO 0.00083 0.00167 -0.00111 0.00003 0.00087 0.01001 

 ALW 0.01437 0.00823 0.00327 0.00941 0.01670 0.05151 

 CSRET 0.02692 0.03814 -0.0425 0.00345 0.04499 0.15688 

 UNEMP -0.00102 0.18316 -0.04500 -0.00400 0.00000 0.11200 

  GDP 0.01332 0.02803 -0.13572 0.00767 0.01766 0.11251 
Note. Panel A depicts statistics of quarterly bank observations from 2010 – 2021. All values are in millions of dollars. Panel B shows descriptive statistics of variables 

used for linear and random forest regression. Variable definitions: LLP is loan loss provision scaled by lagged total loans. LOAN is the change in total loans over the 

quarter divided by lagged total loans. NPA is the change in non-performing assets divided by lagged total loans. SIZE is the log of total assets. CO refers to the net 

charge off divided by lagged total loans. ALW is the loan loss allowance divided by lagged total loans. CSRET is the Case-Shiller real estate index return over the 

quarter. UNEMP is the absolute change in unemployment percentage over the quarter. GDP is the growth rate of the gross domestic product over the quarter. 

Descriptive statistics for NPA are the same as for NPAt-2, NPAt-1 and NPAt+1.  



15 

 

5 Empirical results 
 

5.1 Model tuning 

The mtry, ntree and nodesize parameters of the random forest models 1 to 4 are 

tuned using OOB estimation errors. Based on a grid search using the tuneRF 

package, setting the mtry parameter to 4 produces the lowest error across models 

1, 3 and 4. OOB estimation errors stabilize around 350 trees for all four models, 

suggesting this number of trees as an acceptable balance between predictive 

performance and computation time. Further results of the hyperparameter tuning 

are depicted in Table 2.  
 

Table 2. Random forest parameter values. 

Paramater Model 1 Model 2 Model 3 Model 4 

mtry 4 3 4 4 

ntree 350 350 350 350 

nodesize  11 9 16 15 
Note. This table depicts the parameter values that minimize out-of-bag estimation error for random forest 

models 1 to 4. Increasing ntree theoretically reduces OOB error even further, but at increasing computational 

costs. Mtry is the number of variables considered at each split of the tree, ntree determines how many 

individual regression trees make up the random forest and nodesize determines the minimal number of 

observations required to perform an additional split.  

5.2 Model estimation 

Table 3 presents the outcomes of the model estimation for linear models 1 to 4, 

which were trained on a dataset comprising of 75% of total observations. Pearson 

correlation values are included in the Appendix. All variables, apart for NPAt+1 for 

model 2 and SIZE for model 3 and 4, are significant at the conventional levels. 

Variable NPA has the expected positive coefficient in models 2, 3 and 4 but is 

unexpectedly negative in model 1. As the value of nonperforming assets divided by 

total loans is an indicator of loan quality, the negative coefficient suggests that a 

deteriorating loan portfolio results in a reduction of the loan loss provision, which is 

counterintuitive. A possible explanation for this phenomenon is that the omission of 

the CO variable from model 1 leads to a distortion of the coefficient for the NPA 

variable as these two variables exhibit a relatively strong correlation and the CO 

variable is strongly correlated with the dependent variable. The LOAN coefficient of 

0.001 suggests that for model 3 and 4, managers increase their loan loss reserves 

when total loans increase, while in model 1 the loan loss provision decreases when 

loans increase ceteris paribus. Variables GDP and CSRET both have a negative 

coefficient across all models, indicating that managers on average decrease their 

loan loss provisions when the economy is growing and home prices are increasing. 

Conform expectation, changes in the United States unemployment rate are 

positively related to loan loss provisions across all four models, indicating that 

managers increase loan loss provisions when unemployment is rising.  
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For the random forest regression, the relative importance of each of the 

predictors can be determined using the VarImp function in R. See Figure 1. Similar 

to previous research, we find that net charge offs are by far the most important 

predictor for our models.  

Figure 1. Variable importance plot for random forest regression model 4.

    

Note. This figure shows the relative importance of the variables used in model 4. CO is the net charge off over 

the last quarter scaled by lagged total loans. ALW is the change in loan loss allowance over the quarter divided 

by lagged total loans. NPA is the change in nonperforming assets over the quarter scaled by lagged total 

loans. SIZE is the log of total assets. GDP, CSRET and UNEMP are respectively the percental changes in 

GDP, the housing market and the unemployment rate over the quarter. CO is the most important variable for 

the model. IncNodePurity uses the Gini impurity index used to determine the cut-off point in trees to calculate 

relative variable importance. Variables of greater importance have a higher value.   
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Table 3. Linear regression of models 1 to 4 on scaled loan loss provision. 

 Dependent variable: 

 LLPt 

 (1) (2) (3) (4) 

LOAN -0.001*** 0.000** 0.001*** 0.001*** 

 (0.000) (0.0002) (0.0002) (0.000) 

NPAt+1 -0.022*** -0.000 0.014*** 0.013*** 
 (0.003) (0.003) (0.002) (0.002) 

NPAt -0.010*** 0.009** 0.034*** 0.033*** 
 (0.003) (0.003) (0.002) (0.002) 

NPAt-1 0.005*** 0.022*** 0.019*** 0.018*** 
 (0.002) (0.002) (0.002) (0.002) 

NPAt-2 0.017*** 0.029** 0.017*** 0.016*** 
 (0.002) (0.002) (0.002) (0.002) 

SIZE 0.000** 0.000*** -0.000 -0.000 
 (0.000) (0.000) (0.000) (0.000) 

CO   0.631*** 0.646*** 
   (0.006) (0.007) 

ALW  0.065***  0.008*** 
  (0.002)  (0.002) 

CSRET -0.006*** -0.005*** -0.001*** -0.001*** 
 (0.000) (0.000) (0.0003) (0.000) 

UNEMP 0.014*** 0.015*** 0.013*** 0.013*** 
 (0.001) (0.001) (0.001) (0.001) 

GDP -0.005*** -0.006*** -0.001*** -0.000*** 
 (0.001) (0.001) (0.000) (0.000) 

intercept 0.001*** -0.0002 0.001*** 0.001*** 
 (0.000) (0.000) (0.000) (0.000) 

Observations 15,218 15,218 15,218 15,218 

R2 0.067 0.156 0.472 0.472 

Adjusted R2 0.067 0.155 0.471 0.472 

F Statistic 
122*** (df = 9; 

15208) 
281*** (df = 10; 

15207) 
1358*** (df = 10; 

15207) 
1237*** (df = 11; 

15206) 

Note: *p<0.1;**p<0.05;p***<0.01. Model estimation of models 1 to 4 based on 75% training data.  

LLP is loan loss provision scaled by lagged total loans. NPA is the change in non-performing assets 

divided by lagged total loans. SIZE is the log of total assets. LOAN represents the change in total loans over 

the quarter divided by lagged total loans. CO refers to the net charge off divided by lagged total loans. ALW 

is the loan loss allowance divided by lagged total loans. CSRET is the Case-Shiller real estate index return 

over the quarter. UNEMP is the absolute change in unemployment percentage over the quarter. GDP is the 

growth rate of the gross domestic product over the quarter. 
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5.3 Percentage of variance explained 

In line with Dechow et al. (2003), Pae (2005) and Glen (2015) we start with a 

comparison of the R2 of the predicted accruals on actual accruals. Table 4 

summarizes the results from the regressions and shows that predictions from the 

random forest regressions outperform the traditional linear model for all tested 

variable combinations 1 to 4.    
 

Table 4. R2 for linear and random forest models. 

 R2 

Model Linear model Random forest regression 

1) 0.055 0.275 

2) 0.150 0.320 

3) 0.482 0.561 

4) 0.482 0.567 

Note. Variance of the observed scaled loan loss provision explained by the predicated scaled loan loss 

provision. 

Similar to Beatty & Liao (2014), we observe a significant jump in R2 when comparing 

models 1 and 2 with models 3 and 4. This jump is attributed to the inclusion of the 

net charge-off variable and occurs both for the values predicted by the linear model 

and the random forest regression, though the latter experiences a smaller jump. 

The increase in performance after the inclusion of the net charge-off variable is also 

consistent with Figure 1 and Table 3, both of which identified variable CO as the 

most impactful variable. The results from Table 4 indicate higher explanatory 

performance for estimates originating from the random forest regression.  

5.4 Mean (Absolute) Error 

The mean absolute error is the second accuracy assessment discussed in this 

paper, in line with Pae (2005). Table 5 reports the mean absolute error of all four 

linear and random forest models. The errors are lower for the random forest 

regression across all models.  
 

 

Table 5. Mean Absolute error for linear and random forest regression. 

  Mean Absolute Error 

Model Linear model Random Forest regression 

1) 88.55 74.37 

2) 83.03 70.82 

3) 62.36 56.23 

4) 62.43 55.66 

Note. Mean absolute error of the estimation of loan loss provision scaled by total loans. All values have been 

multiplied by 105 for readability. 

 

The results from Table 5 indicate that out-of-sample predictions made by the 

random forest algorithm are on average more accurate than predictions from its 
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linear counterpart. Together with the improved R2 among all models, the random 

forest algorithm makes more accurate forecasts than their linear counterparts.    

Evaluation of discretionary accrual estimation models suffers from the issue 

that actual discretionary accruals are unobservable. The reservable nature of 

accruals implies that discretionary accruals should, over a large enough sample 

period, be equal to zero. The closer the mean residual of the model estimate is to 

zero, the higher the performance. Table 6 indicates that the mean residuals of the 

linear models are smaller than the residuals of the tree-based models, implicating 

better performance. Similar to previous results, models 1 and 2 are outperformed 

by models 3 and 4. Assuming that discretionary accruals are on average equal to 

zero during the sample period, these results further suggests that all models on 

average overpredict the nondiscretionary component of the loan loss provision. The 

inferences drawn from Table 4 and Table 5 are robust to using a balanced data 

sample, whereas the results from Table 6 show better performance for the random 

forest regression when using a balanced panel.  

 
Table 6. Mean error for linear and random forest regression. 

  Mean Error 

 

Model Linear model Random Forest regression  

1) -4.651 -5.540  

2) -5.648 -5.592  

3) -2.464 -2.914  

4) -2.301 -2.931  

Note. Mean absolute error of the estimation of loan loss provision scaled by total loans. All values have been 

multiplied by 105 for readability.  

5.5 Persistence analysis 

Results from the linear regression of future loan loss provision on current proxies 

for discretionary and non-discretionary accruals are shown in Table 7. The results 

indicate that the estimated coefficient of the discretionary loan loss provision proxy 

is smaller than the coefficient of the nondiscretionary component proxy for all linear 

and tree-based models. The effects described by the discretionary component are 

on average more transitory, which is in line with expectations. An F-test shows that 

all coefficients for the discretionary and nondiscretionary component are 

significantly different from each other. Predictions made by the random forest model 

4 produce the lowest coefficient for the discretionary component, indicating that this 

model produces a proxy with the least persistence. Of all models, random forest-

based models separate total loan loss provision in discretionary and non-

discretionary components that most strongly behave as the true, unobservable, 

values ought to. Table 7 illustrates that the discretionary component has a smaller 

influence on the loan loss provision in the next quarter compared to the 

nondiscretionary component. Unpublished results using a balanced data sample 

show that linear model 3 produces a more transient proxy than random forest model 
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3, though the remaining random forest models outperform their linear counterparts 

when using balanced data.  
 

Table 7.  Persistence analysis of discretionary and non-discretionary component. 

                  

 Dependent variable: 

  LLPt+1 

 Linear model Random Forest regression 
 1) 2) 3) 4) 1) 2) 3) 4) 

NDLLPt 0.986*** 0.914*** 0.689*** 0.684*** 0.807*** 0.828*** 0.697*** 0.703*** 
 (0.043) (0.027) (0.016) (0.016) (0.020) (0.019) (0.016) (0.016) 
         

DLLPt 0.548*** 0.510*** 0.468*** 0.473*** 0.480*** 0.453*** 0.431*** 0.426*** 
 (0.012) (0.012) (0.016) (0.016) (0.013) (0.014) (0.017) (0.017) 
         

Intercept -0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

N 5073 5073 5073 5073 5073 5073 5073 5073 

R2 0.346 0.357 0.345 0.344 0.356 0.365 0.349 0.350 

Adjusted 

R2 
0.345 0.356 0.345 0.344 0.356 0.364 0.349 0.350 

F Statistic 

(df =1) 
2208*** 1751*** 883*** 898*** 1323*** 1118*** 638*** 615*** 

Note: 

*p<0.1; **p<0.05; p***<0.01. Analysis of coefficients of the discretionary and non-discretionary 

component of linear and random forest models 1 to 4. F-tests rejects the null-hypothesis that both 

coefficients are equal to each other.  

 

5.6 Artificially induced earnings management  

The final test evaluates the ability of the models to identify observations with 

abnormal loan loss provisions. The values in Table 8 are based on linear model 4 

and random forest model 4 because these models performed comparable or better 

than the other three models in the previous tests. The model that most correctly 

predicts the nondiscretionary component of the loan loss provision should have the 

highest concentration of managed earnings in its top deciles. 
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Table 8. Concentration of observations with artificially managed earnings in deciles for model 4. 

LLP 

modification 
Decile 

  

Random 

Forest 
1 2 3 4 5 6 7 8 9 10 

p-

value 

0.0000 4.7 5.2 5.2 5.9 5.1 5.1 5.7 4.0 4.3 4.8 1.000 

0.0250 6.1 4.1 5.8 7.1 7.3 6.1 4.4 3.2 2.6 3.3 0.815 

0.0375 5.4 4.8 9.4 8.8 7.2 4.1 3.6 3.7 1.8 1.2 0.133 

0.0500 6.2 8.1 12.1 9.1 4.2 3.9 1.6 2.0 2.0 0.8 0.002 

0.0750 7.1 15.9 12.2 4.9 3.2 2.2 0.8 1.6 0.9 1.2 0.000 

0.1000 11.1 23.7 7.9 1.9 1.4 0.9 1.2 0.9 0.4 0.6 0.000 

0.1500 30.1 14.9 2.4 1.8 0.1 0.1 0.2 0.3 0.1 0.0 0.000 
       

     
Linear                       

0.0000 4.8 4.2 5.5 4.7 5.6 5.4 5.4 4.1 4.9 5.4 1.000 

0.0250 4.9 4.9 7.1 6.1 5.5 3.8 4.2 3.3 5.2 5.0 0.988 

0.0375 5.8 5.1 8.9 7.3 5.5 3.7 3.8 3.7 2.6 3.6 0.654 

0.0500 5.6 7.9 9.5 6.3 4.0 5.7 2.4 3.4 2.5 2.7 0.298 

0.0750 6.7 14.6 9.1 7.3 3.2 2.5 2.3 1.0 1.8 1.5 0.000 

0.1000 9.8 20.9 9.1 3.8 2.2 1.3 1.0 0.6 0.6 0.7 0.000 

0.1500 24.6 19.4 3.0 1.3 0.6 0.3 0.1 0.1 0.6 0.0 0.000 

Note: Concentration of observations with artificially managed earnings per decile. Results depicted are the 

average number of observations per decile for ten random samples of modified observations. P-value indicates 

the significance level for rejecting the null-hypothesis of similar true and false distribution among deciles for 

variable EM based on Chi-square statistic with 9 degrees of freedom. Total number of modified earnings in 

the testing sample was 50, over 5075 observations. Deciles ranked from highest to lowest estimated absolute 

discretionary accrual. LLP modification shows the adjustment to loan loss provision as a percentage of total 

loans.   

The results indicate that both models fail to recognize artificially induced earnings 

management at 0.025% and 0.050% of total loans, finding no significant difference 

from random allocation at conventional significance levels. For earnings 

management higher than 0.0375%, the random forest regression starts to assign 

significantly more observations with managed earnings to the higher deciles at a 

significance level of 5% while the linear model does not yet reach the significance 

level of 10%. Any adjustments above this level are significant at the 1% level for 

both models. For the entire sample, the mean absolute value for the loan loss 

provision is approximately 0.11% of total loans, indicating that a material deviation 

from the average loan loss provision is necessary for both models to reliably identify 

cases of earnings management. These results are robust to using the median 

instead of the mean. P-values from the Chi-square test provide strong evidence 

against the null hypothesis that the distribution of managed earnings is the same 

across all accrual portfolios for higher levels of earnings management. Using a 

balanced data panel shows that a loan loss modification of 0.0375% is significant 

at the 10% level for the random forest model, whereas the Chi-square tests rejects 

the null hypothesis of equal distribution for a modification of 0.05% at the 5% level 

of significance for the linear model.  
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6 Conclusion 
 

This study investigates whether tree-based models can outperform traditional linear 

models in separating loan loss provisions in its discretionary and nondiscretionary 

component. Little is published on the application of machine learning algorithms in 

accounting studies in general, and even less when looking specifically at earnings 

management studies. Proper discretionary accrual models are of fundamental 

importance to academics and regulators investigating earnings management in the 

banking sector. These models serve as a fundamental tool for estimating the proxy 

for earnings management.  

This study contributes to existing literature by providing strong evidence that 

random forest regressions can outperform linear regressions when prediction of the 

nondiscretionary component of loan loss provisions is required. Common 

drawbacks of more complex machine learning algorithms are the loss of 

interpretability traded for higher predictive power. As interpretation of the first stage 

of an accrual model is often of lesser importance to the researcher, we argue that 

this is a favourable trade-off. This paper compared four well-substantiated linear 

models to their random forest counterparts and found promising results. As the 

purpose of this paper is to compare the models based on similar data input, 

variables were scaled and winsorized according to linear requirements. These 

modifications are not necessarily required for random forest are more robust to 

issues that plague linear models, such as heteroskedasticity, correlation, unscaled 

variables or the assumption of linearity.  

This study employs various tests to assess comparative performance. Three 

tests focus on the accuracy of the predictive models. First, the actual accruals were 

regressed on predicted accruals to determine the R2. The second and third test 

compared the absolute and mean errors of the linear and random forest predictions. 

The random forest regression outperformed the linear model in two out of three 

tests, achieving the highest R2 and lowest mean absolute error. The mean error of 

linear model 4 came closest to zero, which is the expected value when assuming 

full reversion of discretionary accruals within the sample period. Using a balanced 

dataset results in better performance for the random forest models in all three tests 

compared to the linear models. The final two tests focus on testing expected 

discretionary behaviour within the created proxies. The first of these tests focusses 

on the persistence of the discretionary component of the loan loss provision. Of all 

models, the proxy provided by random forest model 4 proves to be the most 

transient. Comparable results were found for the balanced dataset, with the 

exception that linear model 3 outperformed random forest model 3 in this 

subsample. The final test analyses the ability of both methods to recognize 

discretionary accruals in observations where earnings management has occurred. 

Due to limitations in the availability of real earnings management data, we artificially 

induce earnings management in the sample ranging from 0% to 0.15% of total 

loans. The random forest model assigns significantly more managed observations 

to the higher deciles when the loan loss provision is increased with 0.05% of total 
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loans, compared to 0.075% for the linear model at a significance level of 1%. Taken 

together, this study provides evidence that using random forests can improve 

discretionary accrual estimation and assist academics and regulators in the future. 

Random forest models are able to more accurately predict loan loss provision 

values and create proxies that exhibit stronger discretional behaviour than their 

linear counterparts.    

 This paper has several limitations. First of all, no distinction is made between 

different type of loans. Including different categories of loans may improve the 

predictive power of the model as asset backed loans may prove less risky and 

therefore require a lower provision. Next, this paper has made several assumptions 

regarding the timing of reversal of the discretionary component of loan loss 

provisions. These assumptions may not hold in reality, as managers may reverse 

accruals slowly over time instead of instantly reversing in the next period. 

Additionally, this paper also assumes full reversal of all discretionary accruals within 

the sample period. Future research could improve on this study by considering a 

broader range of variables, including loan type, consumer confidence or interest 

rates. Future research could also extend by focussing on different regions, testing 

different reversal periods or by using different machine learning algorithms such as 

neural networks.  
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8 Appendix 
Pearson correlation values 

Variables LOAN NPAt+1 NPA NPAt-1 NPAt-2 SIZEt-1 CO ALW CSRET UNEMP GDP 

LLP -0,024 -0,063 -0,026 0,009 0,040 0,025 0,647 0,294 -0,188 0,118 -0,072 

LOAN  0,112 0,171 0,051 0,024 0,038 -0,180 -0,195 0,000 0,201 0,067 

NPAt+1   0,092 0,152 0,103 0,079 -0,194 -0,274 0,035 0,022 -0,008 

NPA    0,088 0,148 0,075 -0,225 -0,259 0,022 0,026 0,015 

NPAt-1     0,082 0,067 -0,099 -0,227 0,018 0,012 0,016 

NPAt-2      0,056 -0,058 -0,195 0,017 0,003 0,012 

SIZEt-1       0,029 -0,079 0,095 0,012 0,034 

CO        0,563 -0,180 -0,009 -0,029 

ALW         -0,111 -0,032 0,019 

CSRET          -0,021 0,308 

UNEMP           0,390 

GDP                       
Note. Pearson correlation values between model variables. LLP is loan loss provision scaled by lagged total loans. NPA is the change in non-performing assets divided 

by lagged total loans. SIZE is the log of total assets. LOAN represents the change in total loans over the quarter divided by lagged total loans. CO refers to the net charge 

off divided by lagged total loans. ALW is the loan loss allowance divided by lagged total loans. CSRET is the Case-Shiller real estate index return over the quarter. 

UNEMP is the absolute change in unemployment percentage over the quarter. GDP is the growth rate of the gross domestic product over the quarter. 
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