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Abstract 

This research evaluates the performance of integrating XGBoost with Shapley value analysis in 

marketing channel attribution modeling. It contrasts this approach with Last Touch Attribution 

(LTA), a popular heuristic that credits conversion entirely to the last channel. Despite LTA's 

popularity, research shows that it may not be suitable for longer and more complex customer 

journeys. Such multifaceted journeys require more advanced attribution models capable of 

accurately distributing credit across the diverse channels used (Buhalis & Volchek, 2021). This, 

in turn, empowers marketers to allocate their resources strategically, which may enhance the 

efficiency of their marketing campaigns (Kannan et al., 2016). The central objective of this paper 

is to determine whether the implementation of XGBoost with Shapley values presents a viable 

solution to the attribution challenge. The Gaussian Process Boosting (GPBoost) algorithm, a 

specialized variant of XGBoost, was selected to accommodate the nature of the data used. In a 

comparative analysis against the Linear Mixed Effects Logistic Regression (LMER), the GPBoost 

model showcased exceptional performance, attaining an Area Under the ROC Curve of 0.86, 

notably surpassing the 0.70 achieved by LMER. Following a thorough evaluation of the models’ 

performances, a comprehensive examination of credit attribution results was undertaken. The 

spectrum of models employed was the following: LTA, uniform attribution, LMER, and GPBoost 

with Shapley values. The distribution of credit revealed nuances among the models, with both 

heuristic and data-driven approaches demonstrating instances of alignment. These results, as 

well as the limitations of this research, were then discussed. Finally, the contribution of this study 

to the dynamic landscape of data-driven attribution modeling was assessed.  
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1 Introduction  

In recent years, attribution modeling has indeed gained significant prominence in marketing due 

to the growing recognition of the importance of touchpoints in the customer journey. Touchpoints 

refer to the various interactions or marketing channels customers encounter while engaging with 

a business. These can include advertisements, social media engagements, website visits, and 

email campaigns, to name a few. The customer journey encompasses the complete process of 

customer interactions and touchpoints, from initial awareness to the final action taken by the 

customer. Accurate attribution of conversions to specific touchpoints provides valuable insights 

into the touchpoints that are most influential in driving customer actions. This understanding 

allows businesses to optimize their marketing strategies, allocate resources effectively, and 

enhance campaign performance to achieve a higher return on investment. 

Machine learning techniques have emerged as powerful tools for attribution (Shao & Li, 

2011; Dalessandro et al., 2012; Li & Kannan, 2014; Xu et al., 2014; Berman, 2015; Anderl et al., 

2016; Zhao et al., 2018; Mahboobi et al., 2018; Kadyrov & Ignatov, 2019; Buhalis & Volchek, 

2021). These techniques leverage data patterns to predict and analyze customer behaviors, 

providing businesses with a comprehensive understanding of the customer journey. Machine 

learning enables businesses to analyze customer behaviors and attribute conversions – the 

desired action taken by a customer, such as making a purchase – to specific touchpoints, further 

enhancing their understanding of the customer journey and its influence on conversions. 

While machine learning approaches have gained significant traction, it is essential to 

acknowledge the popularity of a widely used heuristic called last touch attribution (LTA). LTA 

attributes customer conversions solely to the last interaction before converting. Despite its 

simplicity as a heuristic, it has gained widespread adoption in the industry, mainly due to its 

integration into the Google Analytics algorithm. Google Analytics, a widely used web analytics 

service provided by Google, is employed by 84.1% of the top 10 million websites worldwide 

(W3Techs, 2023). The availability of a free version has further contributed to its prevalence, 

especially among small enterprises, as it offers easy access to valuable insights into metrics such 

as customer conversion and top-performing products/services (Google Marketing Platform, 

2023a, 2023b). 
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The traditional approach of last touch attribution (LTA) has received criticism, specifically 

when used on longer customer journeys, for oversimplifying the complex customer journey and 

neglecting the contributions of other touchpoints (Singal et al., 2022; Buhalis & Volchek, 2021). 

This approach has resulted in decreased profits for global advertisers, in some instances, 

compared to not using any attribution at all, as emphasized by Berman (2018). However, empirical 

evidence has shown that advanced marketing attribution models, including machine learning 

models, effectively optimize marketing return on investment (de Haan, Wiesel, & Pauwels, 2016; 

Kireyev et al., 2016). In light of this, researchers have increasingly conducted studies comparing 

machine learning-based advanced attribution models with simpler models like LTA. Their 

objective is to identify a model that provides a more accurate understanding of the contribution of 

different touchpoints throughout the customer journey. By doing so, they aim to equip businesses 

with the necessary tools to effectively allocate resources and optimize their marketing strategies, 

leading to improved outcomes and return on investment (Shao & Li, 2011; Dalessandro et al., 

2012; Li & Kannan, 2014; Xu et al., 2014; Berman, 2015; Anderl et al., 2016). 

In this research, the XGBoost model is chosen as the machine learning approach. 

XGBoost is a highly effective and widely used gradient-boosting algorithm that has demonstrated 

superior performance in various prediction tasks. Its ability to handle complex relationships and 

interactions among variables, even in the case of non-linear relationships, makes it well-suited for 

modeling the complex dynamics of customer conversion (Chen & Guestrin, 2016). Furthermore, 

to assess the contribution of different touchpoints toward customer conversion, the research will 

leverage Shapley values. Shapley values are a well-established concept in cooperative game 

theory that provides a fair and interpretable measure of each touchpoint's influence on the 

outcome (Lundberg & Lee, 2017). By incorporating Shapley values into the XGBoost model, the 

research aims to provide accurate predictions and comprehensible feature importance measures 

that identify the touchpoints that have the most significant impact on conversions. 

This idea is further supported by various studies surrounding the topic of attribution 

modeling. For instance, Dalessandro et al. (2012) highlighted the ability of Shapley values to 

provide a more comprehensive and accurate approach to credit allocation in multichannel 

marketing, Li and Kannan (2014) utilized Shapley values in their nested measurement model to 

attribute credit to different channels, and Kadyrov and Ignatov (2019) found that their attribution 

model based on gradient boosting over trees outperformed bagged logistic regression and 

Markov chains in terms of the ROC AUC metric.  
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Despite the existing studies on the topic, crucial aspects still require further investigation. 

While some studies have examined touchpoint attribution, most have primarily focused on 

evaluating individual touchpoints in isolation without considering their collective impact on 

customer conversions. Additionally, limited research has been conducted on the 

comprehensibility and interpretability of feature importance measures, such as Shapley values. 

Furthermore, the untapped potential of harnessing XGBoost, a robust machine learning algorithm, 

in the attribution modeling domain remains largely unexplored. Although XGBoost has found wide 

application in various domains, its specific performance and application in attribution modeling 

have yet to receive adequate attention. Therefore, there is a compelling need to thoroughly 

investigate and compare the performance of an XGBoost model with Shapley value analysis 

against conventional last-touch attribution models in accurately assessing the contribution of 

different touchpoints to customer conversions.  

This research aims to bridge this gap by offering valuable insights into the 

comprehensibility of feature importance measures provided by XGBoost models with Shapley 

values, providing practical recommendations for businesses to enhance their conversion 

prediction and optimization strategies. The primary focus is to explore the effectiveness of 

XGBoost models in attributing the contributions of different touchpoints towards customer 

conversions and compare it with conventional last-touch attribution models, ultimately improving 

the accuracy of attribution modeling and optimizing marketing strategies. 

2 Literature Review 

2.1 General overview 

A recurring dilemma for marketers arises from the challenge of quantifying and comprehending 

the effectiveness of advertising campaigns. It is crucial to accurately evaluate which 

advertisements drive the most conversions as this allows marketers to optimize marketing 

strategies and allocate resources effectively (Kannan et al., 2016). Nevertheless, correctly 

attributing credit to a particular advertisement is a complex task. Advertising campaigns 

incorporate various overlapping marketing channels and customers typically interact with multiple 

channels across different devices along their journey. Each one of these marketing channels and 

touchpoints may play a role in the end decision to make a conversion or not, making it challenging 

to isolate the contributions of individual interactions. As a result, the question of how to attribute 

the influence of marketing channels accurately arises. If marketers don't properly attribute credit 

to the different channels and touchpoints, they may misallocate marketing budgets. This could 
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mean spending on channels that do not greatly enhance conversion rates while under-investing 

in channels that do. This reduces the effectiveness of the marketing strategy as a whole, resulting 

in a suboptimal return on investment and a missed opportunity to attract new profitable customers 

(De Haan, Wiesel, & Pauwels, 2016).  

While the last touch attribution model is merely a simple heuristic, it remains highly 

prevalent; this is partially due to the notoriety of Google Analytics, which utilizes such models. It 

is simple to use and highly accessible, making it an attractive option for small businesses in 

particular. Moreover, research has shown that it is effective when used on short customer 

journeys (Buhalis & Volchek, 2021). Nonetheless, heuristic models such as LTA, struggle to 

provide a unified view of the customer's journey. This leads to incomplete attribution and 

inaccurate credit allocation, specifically in longer customer journeys involving multiple touchpoints 

(Buhalis & Volchek, 2021). According to Thakurani (2022), this may arise because multiple 

touchpoints might have influenced a consumer's decision before they make a purchase. Still, the 

credit for the conversion is often assigned solely to the last touchpoint. As a result, the value of 

additional touchpoints may be overlooked or drastically undervalued.  

Cui, Ghose, Halaburda, Iyengar, Pauwels, Sriram, Tucker, and Venkataraman (2021) 

elaborate that there is a growing tendency for customers to switch between both devices and 

marketing channels throughout their customer journey, further exacerbating this dilemma. While 

this is a challenge for attribution modeling generally, conventional heuristics reliant on tracking 

touchpoint sequences across devices are especially impacted. The underlying data in such cases 

is intricate and frequently scattered, complicating the task of presenting a cohesive picture of the 

customer's interactions. Subsequently, attributing the final conversion to a single touchpoint 

becomes risky and inadequate. Since conventional first or last touch models overlook these 

intermediate touchpoints, their contribution is incompletely assessed (Cui et al., 2021). Certain 

touchpoints may serve as initial points of awareness, while others play a role in the final decision-

making process, yet only the latter would be considered in these models. Nonetheless, these 

earlier awareness-building channels crucial in generating conversions could be disregarded in the 

attribution process. Instead, channels that happened to be the final touchpoint before conversion 

will be prioritized. This ultimately could lead to inefficient allocations of marketing budgets 

(Thakurani, 2022).  

This can also be seen as a failure of these traditional models to take into account the 

sequential effects of touchpoints, where the order of interactions can influence customer behavior 

(Cui et al., 2021). The order of interactions and time lags between touchpoints can significantly 
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influence customer actions, and models that overlook these temporal dynamics may misallocate 

credit and underestimate the true impact of each touchpoint. Furthermore, traditional heuristics 

neglect the synergy effects of multiple touchpoints working together to drive conversions. By 

treating touchpoints as individual entities, these models can undervalue certain channels and 

miss out on optimization opportunities. Nonetheless, these limitations extend to more complex 

models, including traditional Shapley values, where sequential and time-related effects are 

similarly overlooked. 

Cui et al. (2021) propose remedies to overcome the aforementioned attribution challenges 

in omnichannel marketing. They first stress the importance of replacing traditional single-touch 

attribution models with more sophisticated approaches, such as multi-touch or algorithmic 

models. They also emphasize the need for improved tracking capabilities. The papers by Kannan, 

Reinartz, and Verhoef (2016) and Buhalis and Volchek (2021) likewise illustrate the consensus 

amongst the literature advocating for the creation of advanced attribution models that are capable 

of considering numerous customer touchpoints. Buhalis and Volchek (2021) argue that simple 

multi-touch attribution, also known as fractional attribution, may not fully capture realistic 

consumer behavior either. In contrast, incremental attribution methods theoretically assign value 

to each touchpoint while considering the cumulative effect between them, making them a more 

realistic approach. However, more research needs to be done on these to be able to create a 

viable and standardizable framework. 

The marketing attribution taxonomy by Buhalis and Volchek (2021) and the 

recommendations proposed by Cui et al. (2021) emphasize the importance of leveraging data-

driven approaches and advanced analytics to develop more accurate attribution models that 

consider the impacts of sequence, timing, and synergy effects among channels. According to 

Buhalis and Volchek (2021), custom attribution models, such as algorithmic and data-driven 

models like Markov Models or Shapley values, provide a more realistic view of the customer 

journey by incorporating all events and accounting for customer heterogeneity. They highlight the 

advantage of data-driven attribution in accurately determining touchpoint effectiveness, especially 

in long customer journeys, through the use of individual-level data. This supports the general 

movement and extensive research advocating for sophisticated models that incorporate vast 

customer data and leverage big data analytics. These models provide more nuanced insights into 

customer behavior, as opposed to manual rule-based attribution methods like LTA.  

In a similar vein, the model by Dalessandro et al. (2015) innovates attribution modeling in 

a data-driven manner by incorporating causal relationships between touchpoints and 
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conversions. Their causal inference framework goes beyond simple correlations and investigates 

the true cause-and-effect relationships. By employing propensity score matching, they estimate 

the causal effects of individual touchpoints on conversion probabilities more accurately. Their 

meticulous models consider customer characteristics, touchpoint sequences, and order, providing 

a thorough depiction of the attribution process. This leads to more precise touchpoint effect 

estimation, enhanced credit allocation, and the development of robust marketing strategy models. 

Anderl, Becker, von Wangenheim, and Schumann (2016) additionally make use of 

machine learning and advanced analytics by means of a Markov-based attribution model. Here, 

the customer journey is represented as a graph, in which touchpoints are nodes and the 

connections between them represent the sequence of customer interactions. This graph-based 

representation allows for a more comprehensive customer journey analysis by taking into account 

the order and relationships between touchpoints.  

Countless more sophisticated, data-driven, analytical models have been proposed in the 

field of attribution modeling, emphasizing the gravity of accurately attributing credit to marketing 

channels. These methods facilitate the exploration of data patterns and interconnections, resulting 

in an improved understanding of customer behavior. This enhances the efficacy of campaigns 

and augments insights into customer dynamics (Kannan et al., 2016). 

2.2 Shapley values 

Shapley Values are originally derived from cooperative game theory. They depict a more 

equitable manner in which one can allocate the contribution of individual players in a coalitional 

game. By assessing how each player's addition impacts various subsets of the coalition, Shapley 

Values offer a more impartial method of distributing the collective value created by the coalition. 

This is done by means of evaluating the difference each player makes when added to different 

subsets of the coalition. In the calculation of these values, all possible permutations of players are 

taken incorporated, further fostering an unbiased allocation (Shapley, 1953) 

 In the realm of marketing attribution, Shapley values can be applied to allocate credit to 

various marketing channels or touchpoints: the “reward” is represented by the customer 

conversions, whilst the “players” are the diverse marketing channels/touchpoints impacting these 

conversions. Similar to the original idea of Shapley values, in marketing attribution, the 

contributions of these channels are quantified in the different potential combinations and 

permutations. Consequently, Shapley values provide a way to assess the effectiveness of 

marketing channels in generating customer conversions. Furthermore, the versatility of Shapley 
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values allows for their application across a miscellaneous array of marketing scenarios, including 

distinct industries, campaign settings, and touchpoint configurations. Thus, they represent a 

robust framework that is adaptable to the unique attributes of every marketing campaign. As such, 

marketers can leverage Shapley values to evaluate channel effectiveness and identify under and 

over-capitalized channels. Subsequently, these insights enable informed and improved decision-

making on resource allocation and campaign optimization. 

Nisar and Yeung (2015) used a Shapley Value regression method to determine the exact 

contributions and statistical significance of each explanatory variable to the variance of the 

dependent variable in a regression model. The Shapley Value approach takes into account the 

potential correlation among regressors and measures the contribution of each attribute by the 

improvement in R-square. They concluded that Shapley Value-based regression provided 

insights into the complexity of attribution modeling and demonstrated its efficacy in assigning fair 

rewards to multiple advertising channels.  

Berman (2018) discusses the application of Shapley values in attribution in the context of 

online advertising. He discusses two desirable properties of Shapley values: efficiency and 

marginality. These ensure that all value generated by marketing channels is allocated and that 

the sum of allocations matches the total revenue. Notably, Shapley value treats channels equally, 

regardless of their order, considering their contributions as equal. Berman’s research reveals that 

LTA encourages excessive ad exposure, surpassing the optimal advertising level for global 

advertisers. In contrast, the Shapley value method adjusts ad exposure based on platform 

popularity, leading to increased profits. However, LTA can in certain cases enhance market 

efficiency beyond what can be achieved with complete market information or a comprehensive 

understanding of all marketing channel impacts. In these cases, the Shapley value method may 

decrease market efficiency.  

This phenomenon develops from the complex interplay between ad allocation efficiency, 

measurement accuracy, and the financial gain of advertisers and publishers. The research also 

emphasizes that attribution may not guarantee optimal profit for advertisers; without attribution, 

advertisers may face less competition for the same channels, leading to lower costs and 

potentially higher profits for the parties involved. Alternatively, attribution may enhance global 

advertisers' profits, increase market efficiency, and potentially benefit publishers. Therefore, 

attribution remains a viable alternative for advertisers to optimize their strategies in the online 

advertising market. 
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Zhao, Mahboobi, and Bagheri (2018) highlight the advantages of using Shapley values in 

attribution modeling for multichannel digital marketing campaigns. They argue that Shapley 

values provide a transparent and objective, yet computationally rigorous approach to assigning 

credit to advertising channels. It considers channels' interconnectedness while maintaining an 

unbiased evaluation process. The impartiality inherent in Shapley values enables them to 

effectively capture the marginal contribution of each channel. This empowers marketers to 

comprehend the influence of diverse channels and, in turn, make well-informed decisions 

regarding resource allocation. Shapley values are consistent and stable, ensuring coherent 

representation and consistent attribution across various channel permutations.  

This is in line with the research done by Mahboobi, Usta, and Bagheri (2018), who found 

that implementing Shapley values at a large scale using logistic regression was effective in 

attribution modeling for real online campaigns. They emphasized the benefits of Shapley values 

in understanding the contribution of different marketing inputs to conversions. Nevertheless, the 

authors of both articles also agree that calculating Shapley values is a computationally expensive 

task, especially with large datasets. To solve this issue, Zhao, Mahboobi, and Bagheri (2018) 

propose a model that calculates Shapley values more resourcefully, while Mahboobi, Usta, and 

Bagheri (2018) suggest using hierarchical modeling and probabilistic approximations to improve 

computational efficiency.  

The research by Singal, Besbes, Desir, Goyal, and Iyengar (2022) explores the application 

of Shapley Value as a metric for attribution in the context of a Markov model. They identify that 

using Shapley values for attribution modeling in their given context presents a drawback of not 

adjusting for counterfactuals; these are alternative paths or actions that could have been taken 

by customers but were not. Sharma, Li, and Jiao (2022) also mention the same drawback in their 

research paper. Therefore, both papers propose and provide theoretical and empirical evidence 

that supports a counterfactual adjusted Shapley Value metric for attribution, which aims to capture 

the contributions of past actions while incorporating counterfactual reasoning.  

In contrast, Huang and Marques-Silva (2023) highlight in their research that existing 

approaches approximating Shapley values for feature attribution in explainability potentially 

incorrectly attribute features’ importance. They demonstrate several situations in which Shapley 

values do not correlate with feature relevancy: (i) irrelevant features can display non-zero Shapley 

values, (ii) Shapley values may result in irrelevant features ending up being seen as more 

important than relevant ones, (iii) relevant features may have a Shapley value of 0, depicting no 

importance, and (iv) pairs of features can exhibit conflicting Shapley values where one relevant 
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feature is considered unimportant while an irrelevant feature is allotted some importance. As such, 

based on their research, Shapley values may potentially not reliably reflect the actual relevancy 

of features for classifiers' predictions. Subsequently, given their widespread application as 

explainability methods, they might have to be used with caution by decision-makers as they may 

mislead assessments. The authors then proceed to propose an alternative measure of feature 

importance that respects feature relevancy and may be computationally efficient in certain 

settings, such as decision trees with contrastive explanations. 

Nevertheless, the paper by Balkanski and Singer (2015) discusses the notion of fairness 

in general. The authors show that fairness can actually sometimes result in suboptimal outcomes 

when compared to unfair solutions, suggesting that achieving fairness may not always be feasible 

or optimal. The end performance of fair attribution mechanisms will depend on the specific utility 

function used. Here, the paper proposes a framework for optimization in procurement settings, 

focusing on mechanisms using Shapley values for fairness in payments. It analyzes the trade-off 

between fairness and optimal utility, acknowledging the challenges and limitations of achieving 

fairness in procurement optimization. As such, it is difficult to berate these models simply on the 

notion of their theoretical fairness, as fairness itself may not be the optimal judge for the most 

optimal model. Instead, the applicability and performance should guide the marketers on which 

models are best to use for their particular context. 

2.3 XGBoost 

Kadyrov and Ignatov (2019) explore various machine learning techniques to address the 

challenges of multichannel attribution, namely, Bagged Logistic Regression, Hidden Markov 

Chains, Shapley value Analysis, Survival Analysis, relative weights, probabilistic approaches, and 

Gradient Boosting over Trees (XGBoost). The authors specify that XGBoost is particularly well-

suited for this type of study, given the typically low conversion rate (0.5%-2%) and highly 

unbalanced classes. XGBoost is proven to handle such scenarios effectively. Logistic regression 

is chosen for its interpretability and the bagging technique aids in addressing multicollinearity 

issues among independent variables. The Markov Chain model was chosen to capture the 

relationships between channel interactions through transitional probabilities. By selectively 

removing channels from the model and observing changes in conversion probabilities, they 

estimated the contribution of each channel. They also employed a Shapley Value Approach, 

which assigns specific values to individual advertising channels based on conditional 

expectations. They combined this with traditional Shapley values from Cooperative Game Theory 

to measure the contribution and importance of each channel within the multichannel attribution 
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problem. Based on their outcomes, the XGBoost method consistently leads to higher AUC ROC 

scores compared to the other methods across all three advertising campaigns tested by the 

researchers. Kadyrov and Ignatov (2019) also tested a meta-algorithm in which they added 

additional user features in combination with the XGBoost model; this model significantly improved 

the performance of the second advertising campaign and surpassed the other techniques in terms 

of AUC ROC values. Their findings suggest that XGBoost can be a valuable method to resolve 

the touchpoint attribution dilemma in customer conversion.  

Bryan Gregory (2018) explored the effectiveness of the XGBoost algorithm in predicting 

customer churn using temporal data. The study demonstrated that XGBoost outperformed logistic 

regression and decision trees in terms of accuracy. He also conducted a feature importance 

analysis to identify the key factors contributing to the model's performance. While these findings 

do not specifically contribute to the field of attribution modeling, they display the strength of using 

XGBoost in predicting customer churn, which will be explored in this research. 

While research on XGBoost in attribution modeling, especially when combined with 

Shapley value analysis and compared to last-touch attribution (LTA), is limited, it presents an 

intriguing area for exploration. The existing literature suggests that Shapley value analysis works 

well for credit attribution, but its performance can be further enhanced when combined with a 

machine learning approach. Moreover, the research by Lundberg, Erion, and Lee (2019) 

reinforces the usage of Shapley values alongside tree ensemble methods such as XGBoost, as 

they discovered that it leads to improved and more consistent feature attributions. This, alongside 

the consensus in favor of data-driven methods over heuristic approaches, illustrates that applying 

XGBoost alongside Shapley value analysis could be a promising attribution modeling approach. 

3 Methodology 

3.1 Last-Touch Attribution Modeling 

Last touch attribution is often used as a heuristic to determine which marketing channel led a 

customer to convert. It assigns all the credit for the conversion to the last channel a customer 

utilized before they made the conversion. Therefore, it assumes that the final touchpoint most 

heavily influences the conversion decision of a customer. Since only the last touchpoint is 

considered, it is a straightforward and intuitive method, making it an easy approach to use and 

comprehend. The input of this model will simply be the last marketing channel/touchpoint used 

by a customer before converting (conversion = 1), meaning that the rows with the preceding 

marketing channels used will be disregarded. 
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3.2 XGBoost 

XGBoost, classical boosting, and random forest are all widely-used ensemble learning methods 

that use an amalgamation of models to ameliorate prediction accuracy. That being said, they 

each make use of distinct approaches and principles to reach their outcomes.  

Classical boosting algorithms, such as AdaBoost, sequentially train a series of weak learners 

– which are simple models that perform slightly better than random guessing – on the same 

dataset. These weak learners are normally decision stumps, which are basic decision trees made 

up of only one split. This simplicity allows them to capture basic patterns in the data and contribute 

to the overall ensemble model (Freund & Schapire, 1997). 

Suppose we have a training dataset X, where 𝑥𝑖  represents a training example, with 

corresponding binary labels Y, where y𝑖  takes on the values 0 or 1. The first step is to then 

initialize the example weights 𝑤𝑖 for each of the training examples, where 𝑖 ranges from 1 to n. 

These weights are originally all equal to one another, taking on a value of 1/𝑛 (n being the total 

number of observations). We then iterate over the weak learners, which are denoted by ℎ𝑡(𝑥), 

where t represents the iteration and x is the input data. During each iteration, a weak learner is 

trained on the dataset X using the example weights 𝑤𝑖. After this, the performance of each weak 

learner in capturing patterns in the data is evaluated by calculating the weighted error εt at the 

iteration t. This is done using the following formula:  

εt =  ∑ ((𝑤𝑖) × I(y𝑖 ≠ ℎ𝑡(𝑥𝑖))𝑖 )  

I(y𝑖 ≠ ℎ𝑡(𝑥𝑖)) represents an indicator function that is equal to 1 if the prediction of ℎ𝑡(𝑥𝑖) does 

not match the actual value of y𝑖, and equal to 0 if it does. Using this value, the weight 𝛼𝑡 assigned 

to  ℎ𝑡(𝑥) is calculated. 𝛼𝑡 is different from the aforementioned example weight 𝑤𝑖, as it represents 

the contribution of the weak learner to the final prediction, while 𝑤𝑖 represents the influence of the 

training example. As such, 𝛼𝑡 is obtained through the following formula: 

𝛼𝑡 =  
1

2
(𝑙𝑛(

 1−𝜀𝑡 

𝜀𝑡
)  

 One can see that a lower weighted error ultimately results in a higher weight for the weak 

learner; this subsequently means that it does a better job at classifying the samples. Upon 

acquiring this value, we can then update the original example weights 𝑤𝑖  using the following 

formula:  

(1) 

(2) 
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𝑤𝑖 =  𝑤𝑖 ×  𝑒(−𝛼𝑡×𝑦𝑖×ℎ𝑡(𝑥𝑖))  

As said, this weight update emphasizes the misclassified samples from the prior iterations 

by incrementing their respective weights. This increases the influence they have in succeeding 

iterations. This is particularly achieved through the exponential function, which amplifies the 

weight change for these misclassified samples. Subsequently, the example weights are 

normalized to guarantee that their relative proportions are maintained and that they add up to 1. 

This is done by simply dividing each weight by the sum of all example weights. At last, the weak 

learners’ predictions are amalgamated in order to create the strong classifier 𝐻(𝑥). This is done 

through the following computation: 

𝐻(𝑥) = {
1 𝑖𝑓 ∑ 𝛼𝑡 × ℎ𝑡(𝑥) > 0𝑡

0 𝑖𝑓 ∑ 𝛼𝑡 × ℎ𝑡(𝑥)𝑡 < 0
  

Random forest algorithms take a different approach in which an ensemble of decision 

trees is constructed independently. Using bootstrap sampling  (creating a random subset with 

replacement), each tree is trained on a different random subset of the training data; at each split, 

only a random subset of features is considered. The number of features considered at this stage 

can be tuned when constructing the random forest to optimize the performance of the model. 

Nonetheless, it is often taken to be the square root of the total number of features. The 

randomness created by bootstrapping establishes diversity between the trees created and 

reduces the risk of overfitting to the training data. To evaluate the splits at each node as well as 

the root node, a measure of impurity called the Gini Index is often utilized. This is calculated with 

the following formula:  

𝐺𝑖𝑛𝑖𝐼𝑛𝑑𝑒𝑥 = 1 − (𝑝2 + (1 − 𝑝)2)  

This measure quantifies the impurity at each node by considering the proportions of 

positive and negative examples (i.e. conversions and non-conversions, respectively). In the 

formula, 𝑝 represents the positive examples. Selecting the splits that minimize the Gini Index 

allows Random Forests to construct decision trees that aim to maximize the separation between 

the two classes. The end prediction is then performed by aggregating the predictions of all the 

trees, usually through a majority vote or by taking the average (Breiman, 2001). 

Extreme Gradient Boosting (XGBoost) combines the strengths of both classical boosting 

and random forest while introducing several improvements. It essentially is a regression and 

classification method renowned for its high accuracy, scalability, and efficiency. Initially, the 

ensemble model is empty; hence, an ensemble of decision trees is first iteratively trained, with 

(3) 

(4) 

(5) 
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each new tree attempting to fix the mistakes made by the one before it. This process begins by 

making an initial prediction 𝑝𝑖
0, which is often taken as the average of the binary labels – 0.5 in 

this case. The discrepancy between the target variable's actual and anticipated values is known 

as the residual error R. One can then quantify the performance of the prediction using a loss 

function. For classification applications in XGBoost, the loss function is the negative log-likelihood, 

depicted in the following formula:  

𝐿(𝑦𝑖 , pi) = −[𝑦𝑖(𝑙𝑜𝑔(𝑝𝑖)) + (1 − 𝑦𝑖)(𝑙𝑜𝑔(1 − 𝑝𝑖))]  

 Here, 𝑦𝑖 refers to the y-axis values for one of the observed values, which can be either 0 

or 1 (non-conversion vs. conversion, respectively) and pi is the predicted value, between and 

including 0 and 1. XGBoost uses this loss function to then build its trees by minimizing the 

following equation:  

[∑ 𝐿(𝑦𝑖 , pi)
𝑛
𝑖=1 ]  +  𝛾𝑇 +  

1

2
(𝛾 × 𝑂𝑣𝑎𝑙𝑢𝑒

2 )  

The term 𝛾𝑇 will be looked over, as it is simply an additional parameter that encourages 

pruning and does not play a role in the derivation of optimal output values or similarity scores. 

The first part of the equation consists of the aforementioned loss function and the ending part is 

the regularization term (Starmer, 2020). This is a unique feature seen in XGBoost that is not 

present in traditional gradient boosting methods: its ability to both handle missing data and 

execute LASSO and Ridge regularization. These prevent the model from becoming too complex 

and lower the risk of the model overfitting to the training data, which would make it less 

generalizable by penalizing large coefficients whilst favoring smaller counterparts (Chen & 

Guestrin, 2016).  

The objective now is to obtain an output value (𝑂𝑣𝑎𝑙𝑢𝑒) for the leaf that will minimize the 

entire equation (Starmer, 2020). Since we are still optimizing the output value  from the first tree 

at this stage, this formula can be replaced by the following:  

[∑ 𝐿(𝑦𝑖 , 𝑝𝑖
0 + 𝑂𝑣𝑎𝑙𝑢𝑒)𝑛

𝑖=1 ]  + 
1

2
(𝛾 × 𝑂𝑣𝑎𝑙𝑢𝑒

2 )  

 Here, 𝑝𝑖
0 is the initial prediction made and 𝑂𝑣𝑎𝑙𝑢𝑒 is the output value from the new tree. 

The algorithm then tries different values for this 𝑂𝑣𝑎𝑙𝑢𝑒 and chooses the value that minimizes the 

equation’s outcome. As 𝛾  increases, the optimal 𝑂𝑣𝑎𝑙𝑢𝑒  decreases further towards zero, 

demonstrating the regularization capacity of the penalty term in the formula (Starmer, 2020). To 

(6) 

(7) 

(8) 
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find the output value more easily, the second-order Taylor series approximation below is normally 

utilized: 

𝐿(𝑦𝑖 , pi + 𝑂𝑣𝑎𝑙𝑢𝑒) ≈ 𝐿(𝑦𝑖, pi) + [
𝑑

𝑑𝑝𝑖
𝐿(𝑦𝑖 , pi)] 𝑂𝑣𝑎𝑙𝑢𝑒 +

1

2
[

𝑑2

𝑑𝑝𝑖
2 𝐿(𝑦𝑖 , pi)] 𝑂𝑣𝑎𝑙𝑢𝑒

2   

 This equation is simply made up of the loss function of the previous prediction as well as 

the first and second-order derivatives of this loss function. The first-order derivative can then be 

represented by the Gradient of the loss function, g, while the second-order can be represented 

by the Hessian, h (Starmer, 2020). This will simplify the equation to the following:  

𝐿(𝑦𝑖 , pi + 𝑂𝑣𝑎𝑙𝑢𝑒) ≈ 𝐿(𝑦𝑖, pi) + 𝑔 × 𝑂𝑣𝑎𝑙𝑢𝑒 +
1

2
× ℎ × 𝑂𝑣𝑎𝑙𝑢𝑒

2   

Taking the derivative of the expansion of this function with respect to the Output value, 

setting it to zero, and solving for the output results in the following:  

𝑂𝑣𝑎𝑙𝑢𝑒  =  
−(𝑔1+𝑔2+⋯+𝑔𝑛)

(ℎ1+ℎ2+⋯+ℎ𝑛+𝛾)
  

Deriving the first and second derivatives of equation 6, we obtain 𝑔𝑖 = −(𝑦𝑖 − 𝑝𝑖)and ℎ𝑖 =

𝑝𝑖 × (1 − 𝑝𝑖) . The numerator will therefore then be equivalent to the sum of the residuals. 

Replacing these values in the previous formula, the output value becomes equal to the following: 

𝑂𝑣𝑎𝑙𝑢𝑒  =  
∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖 

∑(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖×(1−𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖))+𝛾
  

  The next step now becomes computing the similarity score, which measures the 

similarities between the predicted values and the true values of the target variable. To do so, the 

optimal output value is plugged into equation 10 and the equation is multiplied by -1, such that 

the output value is represented by the maximum point on the curve (Starmer, 2020). This will then 

result in the following equation:  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =  
(∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖)2

∑(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖×(1−𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖))+𝛾
  

In summary, in XGBoost, the performance of the already-existing trees is evaluated in an 

effort to improve the outcomes every time a new iteration is introduced. This continues until the 

model's performance does not further improve or until the desired number of trees is attained 

(Chen & Guestrin, 2016). Therefore, gradient boosting is often used to generate an ensemble 

with strong prediction power when unanticipated data is incorporated. Using a gradient descent 

approach, the loss function, which measures the residual error, is minimized throughout the 

(9) 

(10) 

(11) 

(12) 

(13) 
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XGBoost model's optimization stage by repeatedly changing the weights of the decision trees. In 

doing so, it sets the decision trees' initial weights before readjusting them by moving toward the 

loss function's negative gradient until the training set's smallest loss is obtained (Chen & Guestrin, 

2016).  

Moreover, to accelerate the model training process, XGBoost utilizes parallelization and 

tree pruning. It also uses distributed computation and sparse input formats, making it favorable to 

utilize when working with large datasets. By tuning hyperparameters such as the learning rate, 

maximum depth of trees, and regularization intensity, the performance of the model can be 

improved; cross-validation and grid-search are two methods that may be used for this (Chen & 

Guestrin, 2016).  

Overall, in comparison to other ensemble attribution methods, such as Random Forest 

and AdaBoost, XGBoost exhibits several advantages, leading to it ultimately being chosen for this 

research. While Random Forest combines the predictions of multiple decision trees, it lacks the 

iterative training process and specific handling of missing data and regularization techniques 

found in XGBoost. AdaBoost assigns higher weights to misclassified samples to improve 

subsequent iterations, yet differs from XGBoost in its training process and treatment of missing 

data and regularization (Breiman, 2001; Freund & Schapire, 1997).  

3.3 Shapley Values 

In the context of generating predictions, we can perceive each characteristic value of an 

observation as a participant in a game, where the prediction outcome serves as the reward. The 

Shapley value technique, derived from cooperative game theory, provides a fair and systematic 

approach to distributing this reward among the various features (Lundberg & Lee, 2017). This 

concept can also be applied to conversion attribution, where the objective is to attribute the end 

conversion to the marketing channels or touchpoints.  

In this case, the conversion outcome represents the reward, and measuring the 

contribution of each feature is equivalent to attributing the conversion to the relevant marketing 

channels. By utilizing the Shapley value approach, we can determine the relative importance of 

each feature in influencing the prediction outcome and, consequently, the conversion (Berman, 

2018). Similarly, this concept extends to predictions generated by the XGBoost model, enabling 

us to assess the impact and importance of each feature on the prediction outcome. To obtain 

numerical values for feature contributions, Shapley values consider all possible combinations of 

features and their effects. To compute Shapley values, the model's prediction is initially computed 
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using the input data. Subsequently, the prediction is recalculated by removing each characteristic 

from the input one at a time. The difference between the original forecast and the prediction after 

excluding a specific feature is then used to determine the contribution of that feature (Lundberg 

& Lee, 2017). This can be mathematically represented by the following equation: 

∅𝑖(𝑣) = ∑
|𝑆|!(𝑛−|𝑆|−1)!

𝑛!
(𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆))𝑆⊆𝑁   

In the above formula, 𝑁 represents the set of marketing channels, and 𝑛 the number of 

channels. These channels are considered the players in the marketing attribution model. The 

coalition, denoted as 𝑆, refers to a specific subset of players or channels that work together. The 

cardinality of the coalition, denoted by |𝑆|, represents the number of channels in the subsets 𝑆 of 

𝑛, excluding 𝑖. The characteristic function 𝑣(𝑆) gives the weight of each channel after calculation. 

The weight is then represented by 
|𝑆|!(𝑛−|𝑆|−1)!

𝑛!
 . The marginal contribution (𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)) of a 

channel is computed by comparing the value of the coalition with the channel to the value of the 

coalition without the channel. This incremental weighted sum captures the channel's specific 

impact on the coalition (Zhao et al., 2018). 

Tree SHAP is frequently used as an algorithm to estimate Shapley values, as it is faster 

and more accurate than other algorithms, particularly when the dataset possesses high 

dimensionality (Lundberg & Lee, 2019). This enables efficient model development and 

experimentation by speeding up the computation of Shapley values, allowing for quick iterations 

and exploration of different configurations. Secondly, faster computation facilitates (near) real-

time applications where timely decision-making and personalized user experiences are crucial. It 

also enhances interpretability and transparency by providing rapid insights into feature 

contributions and a deeper understanding of the model's behavior and data patterns (Mahboobi 

et al., 2018; Zhao et al., 2018). This speed is particularly relevant in marketing contexts where 

decision-making needs to be agile and data-driven. It allows marketers to identify the most 

effective channels and allocate resources accordingly, optimizing their marketing strategies in 

near real-time. Nonetheless, it is important to note that SHAP does not exactly match the exact 

Shapley values (Huang & Marques-Silva, 2023). 

Additionally, Tree SHAP is used to show the Shapley values for specific occurrences, 

which adds clarity and aids in the interpretation of the results. While Shapley values can 

theoretically take negative values, their interpretation and application in marketing attribution or 

feature importance analysis often focus on the positive contributions of channels or features 

(14) 
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towards desired outcomes, such as conversions. This is because it is commonly assumed that 

channels have a positive impact on the conversion probability, so negative impacts are typically 

not considered. The XGBoost method has characteristics similar to that of the Tree SHAP 

algorithm in that it adds and removes features from a particular decision tree to determine the 

contribution of each feature. Instead of estimating each interacting feature's contribution 

separately, Tree SHAP evaluates the decision tree for each instance and then calculates the 

feature's contribution as the weighted sum of the differences between the predicted values with 

the feature present and when the feature is absent. This makes the Tree SHAP algorithm more 

effective and scalable (Lundberg & Lee, 2019). It employs a bottom-up methodology where the 

values of the terminal nodes are computed first. These are subsequently combined to provide the 

Shapley values of the parent nodes. Thus, Shapley values aid in understanding the underlying 

links and interactions between features and how they affect the results. 

Shapley values provide a valuable tool for conversion and touchpoint attribution by 

identifying the most effective channel in driving customer conversions (Berman, 2018). By 

assessing the contributions of each channel to the results and model performance, marketers can 

optimize their marketing strategies and allocate resources more effectively. If positive interaction 

effects are observed between channels, it indicates that combining channels can lead to improved 

conversion rates. This makes Shapley values a valuable blueprint for marketers to guide their 

resource allocation decisions and optimize their marketing strategies. 

 

4 Data 

The dataset utilized for this analysis is digital marketing panel data. It is comprised of 586,000 

marketing touch-points collected during July 2018, representing a diverse set of 240,000 unique 

customers who generated approximately 18,000 conversions. 

The dataset offers the following key features: 

❖ Cookie: This feature serves as an anonymous customer ID. This allows for effective 

tracking and analysis of the progression a customer makes throughout their interactions 

with the company’s marketing channels. 

❖ Timestamp: This represents the date and time of each customer's interactions. 

❖ Interaction: A categorical variable that signifies the type of customer interaction 

(impression vs. conversion). 
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❖ Conversion: A binary variable indicating whether a conversion occurred or not. This is 

equal to 1 when a conversion is made and 0 if not.   

❖ Channel: Specifies the marketing channel through which the customer arrived at the 

website. In this dataset, there are 5 potential channels: Facebook, Instagram, Online 

Display, Online Video, and Paid Search. 

 

5 Implementation 

The data integrated into this analysis is binary panel data. This data constitutes of hierarchical 

structure that features random effects stemming from the "Cookie" variable. Since it is common 

for a user to interact with multiple marketing channels during their journey, one user may generate 

multiple entries in the dataset under the same "Cookie" identifier. These entries are documented 

in the sequence in which the customer encountered the distinct channels, revealing valuable 

insights into their decision-making process. Consequently, it is important to acknowledge and 

accommodate these interdependencies during the construction of the machine learning models. 

Addressing these intrinsic dependencies, or "random effects," is pivotal as they may 

influence the model's predictive accuracy and generalization capability. Appropriately addressing 

random effects can be done through appropriate modeling techniques, such as mixed-effects 

models or Gaussian process-based approaches. These allow for a better capturing of the 

underlying structure of the data, enabling improved predictive performance and robust inference. 

To account for these dependencies, a Linear Mixed Effects Logistic Regression can be 

utilized within the lme4 package in R. In addition, a regular XGBoost model would not be suitable 

in this case. Thus, a GPBoost model was employed, using the GPBoost package in R. This model 

both incorporates the regular characteristics seen in XGBoost and addresses the random effects 

present (Sigrist, 2023). As such, both of these approaches are appropriate to use for the panel 

data utilized. 

Another obstacle encountered in the data was the significant class imbalance in the 

conversions, since only 3% of the observations result in conversions. This imbalance arises partly 

from the data's nature, as only the last channel used before the conversion will obtain a 

conversion outcome of 1. All the preceding channels pertaining to that cookie will be considered 

impressions, obtaining a conversion outcome of 0. Addressing this class imbalance proved to be 

challenging and various approaches were attempted. 
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Adjusting the class weights allocated to each conversion outcome is one viable method to 

utilize here. It was not possible to adjust the class weights in the version of GPBoost that was 

utilized here, yet it seems as though this feature will be added soon. However, it can prove to be 

difficult to find the optimal values to choose for these weights in any case, as the model can be 

very sensitive to even minute adjustments. Even a small favoring of the minority class can make 

the model predict all the observations to have a conversion outcome of 1. Moreover, the 

computational expensiveness of the models may deem it challenging to test an array of values. 

That being said, a viable approach here would be to find the optimal class weights using a grid 

search.  

An alternative, albeit less optimal, option is under-sampling the majority class (conversion 

= 0). To alleviate some limitations of down-sampling, a loop was executed over the machine 

learning models, selecting an equal number of converted and non-converted sequences and 

iterating this 5 times. As such, this results in 5 different LMER and XGBoost models, each created 

from distinct training samples. Each of these models was then evaluated on their performance 

using metrics such as recall, accuracy, ROC-AUC, and F1 score. The best-performing model was 

then selected. Moreover, a large number of cookies in the data had only used one channel and 

did not result in conversion. Since these do not add much insight to the analysis, 95% of these 

observations were removed, contributing to the class balancing process. 

Other aspects considered included ensuring that the distribution of journey lengths in the 

training and testing sets was relatively balanced to guarantee that the models are evaluated fairly. 

In addition, measures were taken to make sure that Cookies with the same ID were kept together 

during the sampling processes and the various loops used; this allowed the model to capture the 

customer journey as a whole and prevented information loss due to data fragmentation. 

 

6 Results 

An amalgamation of heuristic and machine learning-based models were harnessed in order to 

facilitate a comprehensive analysis of their respective output. In this section, the output of the 

models employed will be documented. The models to be examined are last touch attribution, 

uniform attribution, linear mixed effects logistic regression, and the Gaussian Process Boosting 

algorithm as the XGBoost model.  

 Since LTA and uniform distribution are heuristics, their performance is difficult to assess 

against the data-driven models through evaluation metrics. Therefore, their outputs will simply be 
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compared to those generated by the data-driven methods. A visual overview of the different 

models’ channel credit attribution can be found in Table 1 at the end of this section to facilitate 

this comparison. 

6.1 Last Touch Attribution 

The LTA model determined that Facebook was the channel generating the most 

conversions, with 30.1% of all conversions being allocated to it. Paid search came second, 

attaining 25.8%. This was followed by the Online video channel with 19.3%, then the Instagram 

channel with 12.7%, and at last the Online Display channel with 12.1%.  

6.2 Uniform Attribution 

Interestingly, the results obtained from the uniform attribution resembled the 

aforementioned LTA credit distribution closely. Similar to the LTA results, Facebook was the 

channel that drove the most conversions, with Paid search coming in second, receiving 29.6% 

and 26.5% of the credit allocation, respectively. This is followed by Online Video, with 19.0%, 

Instagram with 12.8%, and Online Display with 12.0%.  

6.3 Linear Mixed Effects Logistic Regression  

The LMER model is evaluated on its performance in classifying the binary outcome 

variable: conversion. The model’s accuracy was circa 65%, signifying the proportion of the 

instances it predicted correctly. The ratio of true positive predictions to the total amount of positive 

predictions, also known as precision, was 0.675. In other words, if the model classifies an 

observation into class 1, it is correct 67.5% of all instances. The recall, or sensitivity of the model 

was 0.574. This means that the LMER model was able to determine 57.4% of the actual positive 

instances. The F1 obtained was 0.621; this metric serves as a balance between precision and 

recall in terms of measuring accuracy in both classes. Finally, the AUC, or the Area Under the 

(ROC) curve signifies how well the model can discriminate between the two classes of the 

outcome variable. The closer this value is to 1, the higher the model’s discrimination capabilities 

are. Here, the AUC was circa 70.0. The respective ROC (Receiver Operating Characteristic) 

Curve, which is a graphical representation of the AUC, can be seen in the figure below. 
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Figure 1: ROC Curve for the Linear Mixed Effects Logistic Regression Model 

 

The coefficients estimated by the LMER model are the following:  

❖ Facebook (baseline): 0 

❖ Instagram: 0.0374 

❖ Online Display: 0.24511 

❖ Online Video: -0.12356 

❖ Paid Search: 0.33529 

Since these coefficients are in the log-odds format, they are first exponentiated in order to 

obtain the odds ratio instead, as this is more interpretable. As such, in the case of Instagram, the 

odds ratio is circa 1.031. This value is then compared to the baseline channel, which is Facebook. 

Hence, this value signifies that the odds of a customer converting are around 3.1% higher when 

they use Instagram, as opposed to Facebook. As for Online Display, the odds ratio becomes 

around 1.278, indicating that conversion odds increase by approximately 27.8% when using 

Online Display over Facebook. The odds ratio of Online Video is around 0.884, implying that the 

odds of converting decrease by circa 11.6% when using Online Video over Facebook. Finally, the 

odds ratio of the Paid Search channel is 1.399. This suggests that, when compared to Facebook, 

the use of Paid Search increases the odds of conversion by about 39.9%. 
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 Finally, utilizing these values, one can obtain the credit allocation percentages suggested 

by the LMER model for these channels. Here, Paid Search obtained the highest score, with 25.0% 

of conversions being credited to this channel. Online Display attains second place with 22.9%. 

This is followed by Instagram with 18.4%, Facebook with 17.9%, and lastly, Online Video with 

15.8%.  

6.4 Gaussian Process Boosting Algorithm  

The GPboost model predicted the correct class circa 80.0% of all instances. In finer detail, the 

precision of the model was 0.754, meaning that circa 75.4% of the predictions of the positive class 

were accurate. The recall, or sensitivity, obtained was 0.883; the model captures approximately 

88.34% of actual positive instances. The F1 score stands at 0.814. At last, the Area Under the 

ROC Curve (AUC) of the GPBoost model is 0.859. The respective ROC curve is displayed in the 

figure below:  

 

Figure 2: ROC Curve for the Gaussian Process Boosting Model 

 

Following this, a Shapley Value analysis was employed to decipher the feature importance 

and channel contributions in the GPBoost model. The first channel with the highest Shapley Value 
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of 0.153 is the Paid Search channel. This indicates its relatively prominent role in shaping the 

predictions. The distinct feature value distribution, including a dominant negative effect and less 

pronounced positive influences, suggest that there are varied impacts of individual features within 

this channel. The subsequent Online Display channel obtained a Shapley Value of 0.084, also 

signifying its relative impact on the prediction outcomes. Nonetheless, its feature values, 

particularly a dominant negative effect alongside relatively minor positive contributions, similarly 

collectively underscore its influential dynamics. Online Video attains a Shapley Value of 0.052, 

showcasing a medium relative contribution to the outcome. A pivotal positive influence, coupled 

with more subtle opposing effects, reflects the nuanced interplay of features within this channel. 

Facebook acquired a Shapley Value of 0.006, still exerting some minimal influence on the 

outcome. The nearly neutral high feature value and minimal yet balanced low feature values drive 

this subtle contribution. At last, the Instagram channel received a Shapley Value of 0.002, 

encapsulating its limited impact. A near-neutral high feature value, paired with correspondingly 

low, balanced feature values, illustrates its minor role in the predictive landscape. The 

corresponding Shapley Value Figure is shown below:  

 

Figure 3: Plot of the Shapley Values for the GPBoost Model 
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 By making use of these Shapley Values, one can determine the respective credit 

allocation for the various marketing channels. With this approach, the Paid Search channel attains 

51.6% of the attribution credit, followed by Online Display with 28.3%, Online video with 17.5%, 

Facebook with 2.1%, and Instagram with 0.5%.  

 For comparative purposes, a regular variable importance plot was also constructed 

(Figure 4). Akin to Shapley values, the variable importance (VI) measure quantifies the 

contribution of individual variables in the GPBoost model’s predictions. Thus, it provides insights 

into the impact each feature, or channel in this case, had on the model’s performance and output. 

The distribution of channels and their respective importance, as depicted in the VI plot, closely 

aligns with the findings from the Shapley value analysis. Paid Search emerges as the most 

significant channel, trailed by Online Display, Online Video, with Facebook and Instagram 

occupying the subsequent positions in descending order of importance. 

 

Figure 4: Variable Importance Plot for the GPBoost Model 
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Table 1: A summary of the various % credit attribution values created by the different models. 

 

7 Conclusion and Discussion 

The field of attribution modeling stands at a confluence where traditional heuristic approaches 

meet advanced machine learning methodologies. This section endeavors to dissect and discuss 

the results obtained in the section prior, with the aim to provide more actionable insights. 

 Evaluating the accuracy of credit attribution in heuristic models is complex, yet the 

similarity in attribution percentages highlights their intrinsic reliability. Additionally, most customer 

journeys were short, featuring single-channel use followed by gradual engagement with more 

channels. Studies have affirmed the effectiveness of these heuristics in such scenarios. However, 

it's important to note that these models overlook intricate data dynamics, potentially rendering 

them less suitable when multiple channels are involved. Therefore, the machine learning models 

were employed.  

The first machine learning model, the linear mixed effects logistic regression, provides a 

white box, interpretable manner to predict customer conversions, whilst taking into account the 

random effects present in the data. Seeing as the model attained an AUC of circa 0.70, the overall 

performance of the model at predicting customer conversions is average. Nonetheless, this 

average outcome is balanced with ease in interpreting its outcomes and obtaining the credit 

distributions. Notably, this model resulted in similar allocations for the Paid Search channel as the 

heuristic approaches did. Surprisingly, the Online Display and Instagram channels, which 

registered as having the lowest and second lowest values in both heuristics, obtained the second 

and third highest credit allocations in the linear mixed effects logistic regression (LMER) model. 

 Last Touch 

Attribution 

Uniform Attribution LMER GPBoost 

Facebook 30.1% 29.6% 17.9% 2.1% 

Instagram 12.7% 12.8% 18.4% 0.5% 

Online Display 12.1% 12.0% 22.9% 28.3% 

Online Video 19.3% 19.0% 15.8% 17.5% 

Paid search 25.8% 26.5% 25.0% 51.6% 
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In contrast, Facebook and Online Video garnered relatively lower allocations in comparison to the 

heuristic models. 

The linear mixed effects logistic regression model uniquely accounts for intricate 

dependencies between channels used by customers, which may explain the altered significance 

of the channels. Recognizing these dependencies is crucial, as it distances itself from the 

isolationist perspective, where channels operate independently. In reality, a customer's interaction 

with one channel might magnify or diminish the impact of a subsequent channel in their journey. 

For instance, the increased significance of Online Display and Instagram in the LMER model, as 

compared to their heuristic rankings, might suggest that these channels are pivotal in particular 

sequences. They may act as 'catalysts', making subsequent channels more effective, or even 

amplifying the resonance of preceding channels. Conversely, the decreased significance of 

Facebook and Online Video suggests that when viewed within the broader ecosystem of channels 

— and not in isolation — their individual contribution to conversions might be more nuanced, or 

possibly diluted.  

The GPBoost model proved to be performant, attaining an AUC of circa 0.86. This implies 

that the model was able to effectively classify customer conversions. This success can be 

attributed to GPBoost's unique capability to harness the predictive strength of XGBoost while also 

considering the intricate interdependencies among observations associated with the same 

cookie. Noteworthy is the model's alignment with the LMER approach in attributing the lion's share 

of credit to the Paid Search channel, impressively accounting for 51.6% of the credit allocation. 

Similarly, paralleling the LMER model's outcomes, the subsequent channel was Online Display, 

while Facebook followed as the fourth most impactful channel. The coherence observed across 

these models underscores that the intrinsic random effects and dependencies captured within 

them could be instrumental in elevating the significance of these specific channels. Surprisingly, 

Facebook, attained a 2.1% credit allocation for the GPBoost-Shapley Value approach, making it 

the second-lowest scored channel. This strongly challenges the values obtained by the heuristic 

approaches, where Facebook attained the highest credit attribution. Lastly, the GPBoost model 

allocated a measly 0.5% to the Instagram channel, which is also drastically different from all the 

other credit allocations from the other models.  

8 Limitations of this Research 

The pursuit of sophisticated attribution models, while promising, reveals several limitations 

that must be acknowledged. To begin with, the machine learning models employed require not 
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only specialized skills in data science but also in attribution modeling. Seeing as the combination 

of these skills is likely very niche, the practicality for widespread adoption of these data-driven 

approaches is currently unrealistic. This challenge is exacerbated by the fact that most 

businesses lack data in the necessary format and/or volumes required for these advanced 

methodologies. Smaller businesses face the challenge of model implementation due to limited 

resources, while even larger enterprises encounter obstacles due to the specialized nature of the 

models and the need for meticulous data preparation. Nonetheless, the current landscape, 

dominated by LTA, reinforces the need for robust models, particularly when dealing with longer 

customer journeys. Simultaneously, the field of attribution modeling ought to make advances in 

creating models that are not only reproducible and standardizable but also more accessible and 

easier to use by a larger audience. To be effective, these models need to be more user-friendly 

and comprehensible for businesses, which might not have specialized expertise in attribution 

modeling.  

Another issue faced by this field and research is the reliance on cookie-based data, which 

faces increasing regulatory constraints. Furthermore, a new session may begin after a certain 

elapsed time and customers increasingly switch between devices; hence, cookies may not 

provide a complete view of customer journeys. In addition, the origin of the dataset used in this 

research remains ambiguous, leaving uncertainty regarding its authenticity as real-world data or 

a purposely generated dataset for model evaluation. Despite this uncertainty, the dataset was 

employed in this study as a result of the absence of a more suitable alternative. Consequently, 

the behaviors manifested within this dataset might not dependably mirror real consumer 

behaviors. 

The application of the GPBoost model, while exhibiting superior predictive performance, 

introduces complexities. The model evaluations and predictions demonstrate performant 

outcomes. That being said, the interpretability of the GPBoost model, and the reliability of the 

Shapley values obtained, warrants careful consideration, potentially diminishing its utility in 

providing actionable insights. The novelty of the GPBoost package, combined with limited 

research on its integration with Shapley value analysis in attribution modeling specifically, may 

contribute to the unusual values observed in the Shapley value analysis.  

Finally, it is fundamentally challenging to determine which split for credit allocation 

between the channels produced by the various models is best. As such, the evaluation of these 

credit allocations is difficult to assess. A comprehensive assessment would ideally involve a 

marketing specialist well-versed in each channel's intricacies and market-specific dynamics. 
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All in all, as the field evolves, refining attribution methods to strike a balance between 

complexity and practicality remains a central challenge in harnessing the full potential of 

attribution modeling. 

9 Relevance of This Research 

This research aims to bridge a gap in the field of attribution modeling by investigating the utilization 

of XGBoost in conjunction with Shapley values to quantify the impact of various touchpoints on 

customer conversions. The relevance of this study lies in the scarcity of literature on the 

application of XGBoost in attribution modeling, especially when combined with Shapley values. 

In addition, by conducting a comprehensive comparative analysis between the XGBoost model 

with Shapley value analysis and LTA, this study seeks to provide valuable insights into the relative 

performance and effectiveness of these approaches. This knowledge will facilitate further 

research and exploration of novel methodologies in the pursuit of more accurate and reliable 

attribution modeling techniques. As such, the overall goal of this research is to both fill an existing 

gap in the current research on attribution modeling and to encourage firms to make more 

educated decisions when it comes to touchpoint credit allocation by highlighting the potential 

benefits of using a data-driven approach.  

This research equips businesses with evidence-based insights for selecting the 

appropriate attribution model based on specific marketing channels and targets. Businesses can 

utilize this information to optimize their resource allocation, directing investments towards 

impactful touchpoints and maximizing return on investment. Additionally, the use of Shapley 

values with the XGBoost model enhances the interpretability and transparency of the attribution 

model. It provides a deeper understanding of each touchpoint's contribution to conversions, which 

further facilitates efforts in fine-tuning marketing strategies and making informed budget/resource 

allocation-related decisions. By focusing on channels that drive the highest conversions, 

businesses can optimize their marketing efforts and achieve better results. Furthermore, this 

research provides valuable insights into the role of touchpoints in customer decision-making. By 

implementing the proposed model, the relative contribution of different channels to customer 

conversion can be uncovered, allowing businesses to tailor their strategies, gain a competitive 

edge, and improve overall performance and revenue. 
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