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ABSTRACT

Benchmarking Spare Part Demand Forecasting Methods

İrem Kasapoğlu

Spare part demand forecasting presents unique challenges due to intermittent demand pat-

terns and the high costs associated with inventory management. This study aims to enhance

forecasting accuracy and inventory control performance by evaluating diverse forecasting meth-

ods and investigating the impact of outlier detection and handling procedures as a part of data

preprocessing on both artificial and real data sets, categorized based on inherent data charac-

teristics. Nine forecasting methods, including parametric, bootstrapping, and machine learning

approaches, are assessed: Croston’s method, Simple Exponential Smoothing (SES), Syntetos-

Boylan approximation (SBA), the Teunter-Syntetos-Babai method (TSB), Willemain’s boot-

strapping method (WSS), Multi-Layer-Perceptron (MLP), LightGBM, Random Forest (RF),

and Support Vector Regression (SVR). Outliers are detected using the Local Outlier Factor

(LOF) and mean imputation is employed for outlier handling. Results indicate that the Syntetos-

Boylan approximation (SBA) achieves the highest forecasting accuracy overall, while there’s no

consistent superior performance of any method in stock control management over all data sets.

The study reveals that outlier detection and handling procedures enhance forecasting accuracy

for most methods, but have no significant impact on inventory control performance. Addition-

ally, the study emphasizes the importance of considering total execution duration and required

expertise when selecting a method. Overall, the research highlights the influential role of outlier

detection and handling as data preprocessing steps, as well as the impact of data characteristics

on forecasting method performance.
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Chapter 1

Introduction

In the field of supply chain management, most companies require demand forecasts as they

can represent a competitive advantage in the decision-making process. Given that precise fore-

casts serve as inputs for various functions, including production, sourcing, inventory planning,

and supply chain planning, their accuracy is of utmost importance (Ivanov et al., 2017). Pre-

cise forecasting guarantees to have a sufficient amount of products to meet customer demand

without holding excessive inventory that could result in tied-up cash for businesses. However,

the quest for reliable demand forecasting remains one of the biggest challenges in supply chain

management since observed inventory holding costs can vary with a range of 5-45% in the in-

dustry and with an average of 25% (Durlinger and Paul, 2012). Therefore, there is still a need

to develop dependable demand forecasting models to make better and more accurate predictions.

Spare parts are essential components that are used to replace worn-out or damaged parts, en-

suring that equipment and systems continue to operate in their intended way. Certain industries,

such as aerospace, automotive, manufacturing, commercial aviation, and military, maintain a

wide array of spare parts in inventory, which has notable consequences for both availability and

inventory holding. The management of these parts is thus a crucial task (Boylan and Syntetos,

2008). And the importance of spare parts lies in their ability to minimize downtime, reduce

maintenance costs, and increase the longevity of equipment.

Spare part demand forecasting is the process of predicting the future demand for replace-

ment parts that are required to maintain or repair equipment, machines, and products. Accurate

forecasting of spare parts demand is essential for organizations to ensure the availability of parts

when needed, minimize inventory holding costs, and avoid stock shortages that could disrupt

operations. Specifically, if predictions considerably exceed actual demand, it will lead to produc-

ing or stocking too many products that cannot be sold and, in the end, lead to increased costs
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and tied-up capital. On the other hand, lower service levels caused by longer lead times result

in prolonged downtime which can be very costly as well as loss of business opportunities when

forecasts fall short of actual demand. Thus, managing demand uncertainty has always been a

major concern in manufacturing planning and control systems. Accordingly, diverse methods

and techniques have been introduced to address the unpredictability of demand. (Bartezzaghi

et al., 1999).

Spare parts are frequently characterized by intermittent demand patterns, indicating that

the demand for such parts is marked by extended periods of zero demand and being infrequent,

also the demand sizes may vary greatly (Wang and Syntetos, 2011). Thus, spare part demand

requires specialized methods. In addition, items with intermittent demand can prove to be

highly costly for businesses, suggesting that such parts may account for as much as 60 percent

of the total investment in-stock inventory, according to Johnston et al. (2003). Therefore, the

evolution of spare part demand forecasting methods continues to advance by the need of organi-

zations in managing these items, improving accuracy, reducing costs, and enhancing operational

efficiency. As technology continues to advance and data availability continues to increase, newer

spare part demand forecasting methods and modifications to the existing ones emerge to meet

the specific needs of the organizations. However, forecasting methods with variable performance

results across different data sets or under different conditions have been reported. Therefore

the first research question will attempt to answer better why and when a particular forecasting

method performs better.

As an alternative strategy to improve forecasting performances, data pre-processing (e.g. out-

lier detection, handling missing values) may lead to an improvement in forecasting performance.

It is difficult to accurately identify abnormal demand and correct it due to the intermittent and

highly variable demand occurrences of spare parts. These occurrences may arise due to the high

demand for either preventive maintenance which is performed regularly and in high amounts or

corrective maintenance which is unplanned, both of which result in significant spikes in demand

and should be consequently labeled as outliers. Both the presence of missing values and outliers

in demand can lead to a decrease in the accuracy of a forecast. Although there are various

academic papers on outlier detection methods, a comprehensive study is lacking that utilizes

statistical and/or machine learning methods for outlier detection in the spare parts demand

6



forecasting field, how an outlier detection method is conducted as well as how it affects the

forecasting performance. Thus, this study aims to address this gap with the help of the second

research question. With all these taken into consideration, the main questions of this research

can be listed as:

”Which spare part demand forecasting method is best for which type of data?” and

”Does the performance of spare part demand forecasting method depend on the data pre-

processing?”

The steps that are planned to be taken in this paper are as follows. Firstly relevant and

comparative spare part demand forecasting studies will be reviewed to answer which method

performs better and under which circumstances it does so as well as to identify potentially good

methods. Secondly, an outlier detection method as a data pre-processing step will be applied

to the selected data set(s). At the end of this step, there will be first raw data sets to which no

outlier detection method is applied and second pre-processed data sets. After the pre-processing,

all the data sets will be characterized to identify similarities or differences according to a clas-

sification framework. As the last step, selected forecasting methods will be applied on all data

sets. Next, a comparative analysis will be made in terms of the methods’ performance results.

In addition, two different versions of a data set will be compared to answer whether data pre-

processing methods affect the forecasting method performance.
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Chapter 2

Literature Review

2.1 Recent Literature on Spare Part Demand Forecasting

The scholarly framework concerning the forecasting of spare part demand can be classified into

three primary branches, accompanied by multiple subcategories, which demonstrate the advance-

ment and progression of the discipline over time. The three main branches are as follows: time

series methods, contextual forecasting methods, and comparative studies which provide perfor-

mance benchmarks for various methods. The aforementioned literature framework is based on

Pinçe et al. (2021).

First of all, time series methods analyze historical data to identify patterns and trends in-

herent in the data. In practice, time series forecasting methods are widely used because of their

ease of usage. However, they do not consider external factors such as expert opinions, product

features, or maintenance information to determine the drivers of spare parts demand. The time

series methods can be subsumed under three branches, parametric methods as the first one

assume a specific mathematical distribution for the data and use this assumption to estimate

the future demand, whereas non-parametric methods do not make any assumptions about the

underlying distribution of the data and instead rely on the historical data itself to make pre-

dictions. As the third branch, forecast improvement strategies focus on categorizing demand

data by identifying the underlying demand characteristics (data classification) or grouping data

with similar demand patterns (data aggregation). As the second major category, contextual

methods employ both contextual information (equipment life, maintenance scheduling, working

conditions, etc.) and statistical techniques. It can be divided very broadly into installed base

forecasting which incorporates installed base information and judgemental forecasting which

incorporates forecasters’ opinions and experience into the prediction process. Lastly, the third

major category from this framework is the comparative studies that benchmark the performance
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of methods by conducting comprehensive empirical evaluations using either industrial or sim-

ulated data sets and assessing the methods’ performance based on either forecast accuracy or

inventory performance measures. In the following sections, these three main categories outlined

in the literature review framework on spare part demand forecasting by Pinçe et al. (2021) will

be discussed in detail. These categories include time series methods, contextual methods, and

comparative studies, respectively.

2.1.1 Time Series Methods

Parametric Approaches

The initial major branch within time series forecasting methods is known as the parametric

approach. These approaches refer to a collection of methods that depend on a distributional

assumption of demand lead time and the determination of the mean and variance of demand

via the utilization of a suitable forecasting procedure. (Syntetos et al., 2011). Following the

establishment of the demand distributional assumption, the determination of the inventory sys-

tem’s decision parameters (such as the re-order point or the order-up-to-level) is performed by

utilizing the demand and variance estimates. The main goal of these methods is to forecast

future demand by taking all these into consideration. Many parametric approach models have

been developed to forecast spare parts demand. Error-trend-seasonality (ETS) framework cov-

ers different exponential smoothing methods such as single exponential smoothing (SES) and

Holt-Winter’s method, as it uses trend and seasonality components to compute the error. How-

ever, ETS framework models fail to perform well when there is more than one seasonality (Naim

et al., 2018), and computationally heavy when there is large-scale time series data (Qi et al.,

2022). SES from the ETS framework is the first time series forecasting model. However, since

it is designed for continuous demand, the predictions yield inaccurate results when there are

long zero-demand periods, such as intermittent or erratic demand. Hence ad-hoc parametric

approaches have been developed to solve this problem. Croston (1972) was the first one to

investigate the problem, as a result, he developed a model that is called Croston or Croston’s

method which estimates the non-zero demand and demand interval with exponential smoothing

respectively, resulting in more accurate results with lower safety stock levels. As a modification

to Croston’s method, Syntetos and Boylan (2001) showed that Croston’s method is positively

biased and developed a method called Syntetos-Boylan Approximation (SBA) by defining a bias

correction coefficient Syntetos et al. (2005).
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In the field of spare part demand forecasting, there is another important problem called de-

mand obsolescence. It means that demand levels for a spare part gradually or suddenly decrease

and reduce to zero over time. Teunter et al. (2011) point out that Croston and its modifications

are slow to adjust to new demand levels when demand gradually decreases or suddenly becomes

zero. Hence a new method referred to as TSB has been developed by Teunter et al. (2011) to

address the issue of demand obsolescence. The difference between the new method and Croston

and SBA is that demand probability forecasts are used in combination with demand size fore-

casts instead of demand interval forecasts, additionally, the demand probability is updated in

every period (Pinçe et al., 2021). Since demand probability is updated every period, when there

is no demand it leads to a downward adjustment in forecast results, thus making it easier to

detect obsolescence. When scenarios with stationary demand, linearly decreasing demand, and

sudden obsolescence are observed, TSB outperforms other methods (SES, Croston, and SBA)

in both bias and variance. However, Babai et al. (2014) noted in an empirical paper that TSB

does not yield significantly more accurate results in comparison to other methods when there

is obsolescence. Taking this into consideration, building on TSB, Babai et al. (2019) developed

a new method called modified SBA or mSBA to address the same issue, demand obsolescence.

This new method can be defined as a combination of two methods, SBA and TSB. When there

is demand obsolescence, the forecast updates yield similar results to TSB, on the other hand,

when there is positive demand, the updates yield similar results to SBA. Thus they noted that

the modified SBA outperforms all other methods aforementioned in terms of mean error(bias)

and mean absolute error (Babai et al., 2019). As an alternative approach to address demand

obsolescence, SD et al. (2014), developed a new method referred to as hyperbolic exponential

smoothing (HES). When there is zero demand, forecast updates are adjusted downward similar

to TSB, however, the updates decay hyperbolically instead of exponentially. Though SD et al.

(2014) also show that the TSB method yields more accurate results when HES is easier to apply

in practical situations.

There are some dynamic time series models that have been developed. Pennings et al.

(2017) introduce a new model that covers the positive cross-correlation between interarrival

times and demand sizes in order to predict future spare parts demand. They compare their

newly introduced method with traditional methods by utilizing industrial data sets, although
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SBA outperforms all other methods including the new method in terms of forecast accuracy,

the proposed method outperforms all the traditional ones in terms of inventory measures if a

strong positive cross-correlation between the interarrival time and the demand size is observed.

Secondly, Snyder et al. (2012) introduced a new method that models the demand distribution

means with several different distributions (such as Poisson, negative binomial, and hurdle-shifted

Poisson) to incorporate the potential random changes in the mean of the demand distribution.

The mean gets updated by smoothing the previous period’s mean and the actual values of the

demand. Although these dynamic methods show gain in terms of accuracy, they require ad-

vanced statistics skills and thus are less intuitive when compared to traditional methods (such

as Croston, SBA, etc.). After Snyder et al. (2012), Jiang et al. (2020) introduced a new tech-

nique for forecasting by fitting a mixed zero-truncated Poisson hurdle model that takes into

account variations in the underlying demand process. By analyzing data from an electric power

company, they found that their method yielded better forecast accuracy results compared to

other techniques such as Croston, the Poisson model, etc. However, more research needs to be

conducted for a better performance assessment of both methods, Snyder et al. (2012) and Jiang

et al. (2020).

As the last branch of parametric approaches, parametric bootstrapping is a simulation tech-

nique that allows the generation of new samples by simulating data from a probability distribu-

tion that is assumed to represent the population. It is a powerful resampling method that can

estimate various distribution parameters. In parametric bootstrapping, a model is first fitted

to the original data set, and the estimated parameters of the model are then used to simulate

new samples to fill the gaps. The simulated samples are drawn from the assumed probabil-

ity distribution, using the estimated parameters as the input. By repeating this process many

times, a large number of new samples can be generated, and statistical properties of interest

can be estimated from these samples. Snyder (2002) proposes two different parametric boot-

strapping methods, namely the log-space adaptation (LOG) and the adaptive variance version

(AVAR). These methods leverage demand history to compute least-squares estimates of the

mean and standard deviation of demand, as well as the smoothing parameter of SES. According

to Bookbinder and Lordahl (1989), as the bootstrap is a ”distribution-free” approach, it is more

likely to capture the skewness of intermittent lead-time demand distributions effectively than

its parametric counterpart. Thus, as one of the initial bootstrapping methods they introduce
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a new model which can be viewed as an extension of Efron’s bootstrap method, featuring two

additional steps, first estimating the mean and standard deviation of the bootstrap samples’

lead-time demand values, and second deriving a theoretical density function using the empirical

mean and standard deviation of these values. In general, the bootstrap technique provides good

service levels at a lower cost, except when the simulated distribution has a standard shape and

a positive skewness (Hasni et al., 2019).

Non-Parametric Approaches

Non-parametric approaches are the second major branch under time series forecasting meth-

ods. When the lead-time demand can not be characterized by a parametric distribution, para-

metric methods may underperform. In addition, if the distribution is assumed incorrectly, it

would lead to a misleading estimation of the demand (Hasni et al., 2019). As a result, these non-

parametric approach methods are developed as an alternative to parametric methods. Although

non-parametric models require more computational power than parametric models, they make

fewer assumptions regarding the time series data and they solely retain the empirical structure

of the observed time series data (Gautam and Singh, 2020).

Viswanathan and Zhou (2008) introduce a non-parametric bootstrapping method, referred

to as VZ, which involves creating a lead-time demand distribution by sampling demand sizes

and demand intervals separately and in a progressive manner. If the demand is moderately in-

termittent and the historical data is limited, the VZ method outperforms other methods (SBA

and WSS) only when the lead time is long (Hasni et al., 2019). Next, Porras and Dekker (2008)

propose another method named the empirical method. The empirical method is a simpler non-

parametric approach that utilizes the empirical cumulative distribution function to estimate the

demand distribution for fixed lead times. As an extension of the empirical method, Van Winger-

den et al. (2014) also propose covering random lead times. Based on an empirical study with

different industrial data sets, the proposed model yields slightly better inventory performance

than that of the empirical method. Similarly, the empirical method is extended by Zhu et al.

(2017) in which the lead time demand distribution is constructed using historical demand data

by employing extreme value theory to model the tail of the distribution. Their study shows

that by conducting both empirical research and simulations, the proposed approach results in

reduced expected waiting times, increased cycle service levels, and improved target service lev-
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els in comparison to the empirical method. Lastly, one of the most popular non-parametric

approaches is developed by Willemain et al. (2004) and can be referred to as Willemain’s boot-

strapping method, WSS in short. They introduce a modified bootstrap method that addresses

three challenging characteristics of intermittent demand: autocorrelation, frequent repetition of

values, and short time series (Willemain et al., 2004). It resamples based on historical data by

using a Markov chain approach that alternates between periods of zero demand and periods of

demand equal to 1. A jittering procedure is then applied to create demand sizes by modifying

the sampled demand values with random variation, overall with the aim of reducing the irregu-

larities in the data. Through an extensive empirical study by the authors using nine industrial

data sets, their results indicate that their method leads to higher accuracy in the demand dis-

tribution with a fixed lead time when compared to both exponential smoothing and Croston.

In addition, one of the main advantages of the bootstrapping method proposed is its capability

to generate demand values that have not been observed historically and it does not require any

assumptions on the distribution of data (Syntetos et al., 2015).

Machine Learning Models

Another subcategory of non-parametric methods is machine learning (ML) models. Tradi-

tional time-series models may fail to capture the non-linear patterns in data. Therefore, ML

modeling can be used as an alternative to address these issues. ML techniques that are used

in the field of spare part demand forecasting belong to the supervised learning methods cat-

egory, which learns demand patterns directly from the data itself. Under the subcategory of

ML models, neural network models have been widely used in the literature. Gutierrez et al.

(2008), conducted one of the earliest studies in this area, in which they utilized an electronic

product distributor’s data to compare their neural network model with SES, Croston, and SBA.

They found that the neural network model generally produced more accurate forecasts than the

other methods unless there was a significant difference between the average demand sizes of the

training and test data sets. Next, Mukhopadhyay et al. (2012) used the same data to compare

a modified version of the method described in Gutierrez et al. (2008) study with traditional

methods, including SES, Croston, SBA, and weighted moving average. Their analysis shows

that the modified neural network method outperforms the others in terms of the MAPE and the

median relative absolute error (MdRAE). In a generalized version of Gutierrez et al. (2008) by

Kourentzes (2013), the proposed method incorporates three different network settings and the
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Levenberg-Marquardt algorithm (Marquardt, 1963) to improve the training speed. In contrast to

the findings of Gutierrez et al. (2008), Kourentzes’ study shows that the neural network method

yields worse results regarding accuracy measures, such as ME and MAE, but better in terms of

service levels than the Croston-type methods. In their study, Lolli et al. (2017) introduce an

extreme learning machine, a neural network with a simpler and faster learning algorithm. They

evaluate its performance by comparing it with the aforementioned methods using an automo-

tive data set. Their findings indicate that although the aforementioned neural network models

using back-propagation perform better than the extreme learning machine in terms of MAPE,

the proposed model is easier and faster to implement. Next, Guo et al. (2017) merge a genetic

neural network model with three exponential smoothing variants and a hierarchical forecasting

method. They evaluate the effectiveness of this combined method using aircraft spare parts

data and demonstrate that it generates superior results in terms of accuracy than the forecasts

of each method. On top of Pinçe et al. (2021)’s framework, recently Wei et al. (2022) propose

an improved sparrow search algorithm optimized back-propagation (CGSSA-BP) neural net-

work method to improve the accuracy and stability for intermittent spare part demand. The

authors conduct a comparison study with sparrow search algorithm (SSA)-BP neural network

and traditional BP neural network models, the results show that the newly introduced model

outperforms other neural network models.

Forecast Improvement Strategies

Forecast improvement strategies are the last major category under time series forecasting

methods. Different estimation approaches are necessary to account for the varying demand

characteristics of spare parts. It can be beneficial to comprehend these unique features as the

performance of a particular method may depend on them. In this section, methods that will be

covered are divided into two main sections, demand classification, and data aggregation meth-

ods. Papers that belong to the demand classification subcategory aim to identify a forecasting

technique that yields the best performance for a given demand characteristic, on the other hand,

papers that focus on improving forecasts through data aggregation aim to decrease the variabil-

ity in spare parts demand that can arise from extended periods of zero demand and highly

variable demand sizes.

Demand classification methods
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Williams (1984) conducted one of the initial studies on demand classification, wherein by

breaking down the variance in lead-time demand, demand is categorized as sporadic, slow-

moving, or smooth, and subsequently, a specific distribution is used to estimate reorder levels

for each demand category. Johnston and Boylan (1996) propose a forecasting technique that

is based on estimates of the mean and variance of demand size, along with the average inter-

vals between demand periods, as a means of providing evidence for Willemain et al. (1994)’s

assumption on the Croston’s method not being a significant improvement over SES when data

exhibits either too little or too much intermittency. Also, they establish a parameter called

average inter-demand interval (p). After that, Syntetos and Boylan (2005) not only define an

additional parameter for demand classification, the squared coefficient of variation of demand

(CV 2) but also carry out a comparative analysis of the mean squared errors (MSEs) for various

methods, and use this information to determine threshold values for p and CV 2. Subsequently,

these established threshold values are used as a classification framework based on two dimen-

sions of demand in order to identify the forecasting method that provides the highest level of

accuracy. Kostenko and Hyndman (2006) criticize the validity of this framework’s cutoff values

and introduce a different cutoff value scheme. Expanding on the aforementioned studies, Boylan

et al. (2008) demonstrate that the number of zero-demand periods can serve as an alternative

parameter for classification by investigating the stock control inferences of the demand classifi-

cation scheme. Nevertheless, the forecasting methods recommended under this framework fail to

meet the target service levels for lumpy demand. In a similar vein, Syntetos et al. (2011) expand

on this research area by conducting an empirical analysis of the connection between the classi-

fication parameters (p and CV 2) and the compatibility between practical demand distributions

and industrial data sets. Based on their findings, they form heuristic guidelines for selecting

the optimal theoretical demand distribution for inventory control. There are several other stud-

ies that propose alternative methods for addressing the demand classification problem. Lengu

et al. (2014) introduces a demand classification framework that categorizes SKUs according to

the mode and variability of the observed demand sizes and presents an empirical study that

reveals that the compound Poisson distributions considered by the classification scheme tend to

be well-suited for intermittent demand items. In their study, Petropoulos et al. (2014) examine

the primary factors that contribute to forecast accuracy, focusing on eight distinct character-

istics (seasonality, trend, cycle, randomness, number of observations, p, CV 2, and forecasting

horizon). They also introduce a selection method that takes these characteristics into account

15



to identify the most suitable forecasting technique and create a match in between.

Data aggregation methods

As an alternative approach to enhance the effectiveness of spare parts demand forecast-

ing methods, data aggregation essentially involves combining data with comparable demand

patterns, whether that be over time or across different time series, in order to reduce the oc-

currences of zero-demand periods and thus increase the accuracy of forecasts. Willemain et al.

(1994) are one of the first studies to examine the impact of temporal data aggregation on

Croston’s method and show that the aggregation of daily data into weekly data yields higher

accuracy. Next, Nikolopoulos et al. (2011) introduce a temporal aggregation framework referred

to as ADIDA (aggregate-disaggregate intermittent demand approach) which involves generating

forecasts using temporally aggregated data, which are then allocated back into the original (dis-

aggregated) time series. Through empirical evaluations with an industrial data set, the authors

demonstrate that ADIDA can substantially enhance the accuracy of both the näıve and SBA

methods. Building upon the study by Nikolopoulos et al. (2011), Babai et al. (2012) dive further

into the effectiveness of ADIDA by examining the inventory performance of three forecasting

methods (Croston, SBA, and SES) using the same industrial data set. They determine that

the use of ADIDA leads to higher service levels than those obtained through the utilization

of disaggregated data for these forecasting methods. Similarly, Mohammadipour and Boylan

(2012) suggest a temporal aggregation framework for the integer auto-regressive moving aver-

age (INARMA) process, when they apply this approach to two industrial data sets and reveal

that, in most instances, the forecasts generated by the aggregation method yield lower MSEs

compared to the cumulative forecasts obtained through summing up h-step ahead estimates.

Next, Petropoulos et al. (2016) formulate a new aggregation framework, referred to as iADIDA

(inverse ADIDA), that aggregates demand volumes rather than time to reduce the variability of

demand. Through their empirical evaluation, the authors show that iADIDA enhances forecast

accuracy and is particularly effective for data sets with high degrees of data-volume variance.

Boylan and Babai (2016) perform a statistical analysis to compare the performance of non-

overlapping and overlapping temporal aggregation methods in which they demonstrate with an

industrial data set that aggregating time series with overlapping time buckets generally outper-

forms the non-overlapping approach, with the exception of scenarios where the demand history

is limited or the demand changes slowly. These findings support Porras and Dekker (2008) em-

16



pirical method perspective which yields that overlapping time buckets enhance forecast accuracy.

Moreover, cross-sectional/hierarchical forecasting is an alternative forecast improvement ap-

proach to temporal data aggregation methods. This alternative approach enhances forecasting

by grouping items based on similar characteristics and then predicting their total demand as a

whole. In their study, Moon et al. (2012) evaluated direct and hierarchical forecasting meth-

ods, where direct forecasting methods relied on SES and hierarchical forecasts were generated

by employing item and group-level direct forecasts. The authors discover that the most effec-

tive approach for minimizing forecasting errors and inventory costs is a combination of SES

models, specifically involving aggregated quarterly data at the group level and monthly data

at the item level. Li and Lim (2018) conduct a more recent study that showcases the bene-

fits of using hierarchical forecasting in intermittent demand forecasting. They introduce a new

hierarchical approach for this purpose, which employs aggregated and disaggregated forecasts

through a greedy aggregation-decomposition method (GAD). The study’s findings indicate that

the authors’ proposed method outperform commonly used techniques like Croston and SBA,

as well as ADIDA and iADIDA. Additional widely recognized techniques to enhance forecast

accuracy are combining forecasts obtained from various alternative methods (Petropoulos and

Kourentzes, 2015) that can be referred to as Intermittent Multiple Aggregation Prediction Algo-

rithm (iMAPA) and improving outlier detection (Zhu et al. (2017), Romeijnders et al. (2012)).

Firstly, the authors’ analysis of combining forecasts derived from alternative methods concludes

that combining forecasts based on modified frequencies, whether from one or multiple methods,

can enhance the accuracy of predictions. Secondly, Pinçe et al. (2021) indicate that classifying

demand spikes as outliers can be an alternative solution since these demand spikes come from

preventive maintenance tasks. Thus, by detecting these significant demand points and conse-

quently removing them from the data set as outliers, the performance of the forecasting methods

may be improved. However, after detecting these demand spikes, removing them directly from

the data set may not be the case for this paper. First, these data points should be compared with

the installed base information (if there is any), then it needs to be decided whether removing

these demand values from the data set is appropriate.
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2.1.2 Contextual Methods

It is very well known that the management of spare parts is difficult since they have a high obso-

lescence risk because of their specific features and their demand is highly intermittent. Although

there are various time series forecasting methods that take historical demand into account, they

can be improved in such a way as to adapt rapidly to demand changes caused by external factors.

The demand for spare parts frequently changes and reflects the life cycle of the equipment that

they are used in. In addition, the other external factors that contain contextual information

affecting the spare parts demand in a dynamic way are mainly based on maintenance schedules,

the age of the equipment as well as its operating conditions. Hence there would be significant

benefits if the demand for spare parts could be predicted by taking contextual knowledge into

account. A practical example is from the energy industry, where the contextual data gathered

to offer suggestions to consumers improves forecast results for energy management in buildings

(Jozi et al., 2022). To overcome the limitations of time series techniques, the use of methods

that incorporates contextual information has increased recently. Depending on the available

contextual knowledge, this research stream can be separated into two subcategories. The arti-

cles categorized as the first group examines the effects of judgmental interventions on statistical

forecasting techniques, while those classified as the second group concentrate on creating new

forecasting methods that integrate data on the installed base.

Judgmental Forecasting

Both academic literature and standard industry practices suggest that human interventions

are frequently used in the area of demand forecasting. Judgmental forecasting can be described

as producing a forecast with the incorporation of human judgment and ”gut feeling”. According

to Perera et al. (2019), judgmental forecasting refers to 3 different approaches. The first approach

can be defined as pure judgmental forecasting, which involves creating predictions solely through

unassisted human judgment, cognitive abilities, and various types of accessible information and

insights. The second approach can be described as a combination of forecasts, which involves

generating distinct statistical and/or judgmental forecasts, which are subsequently merged or

averaged to obtain a final forecast using either additional human judgment or a structured

averaging methodology. Recently, integration methods have been widely used in practice and

implemented in numerous ways (Franses, 2014). The Third and final approach is the most

commonly used one, which involves using human judgment to modify forecasts derived from
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statistical models. One of the main challenges of judgmental forecasting is reaching a consensus

among evaluators who may have varying opinions because of their unique experiences, back-

ground knowledge, and perspectives (Salehzadeh et al., 2020). Pinçe et al. (2021) point out that

little research attention has been given to understanding the impact of the judgmental inter-

vention on items with intermittent demand over the years. Syntetos et al. (2009) provide the

first academic attempt to explore the impact of judgment in intermittent demand forecasting.

Their research shows that adjusted forecasts for intermittent demand items are more precise

than the forecasts generated by the system, marking the first evidence of the effectiveness of

judgmental interventions in this context. Also, the findings from the study indicate that negative

adjustments are likely to enhance precision, which supports Fildes et al. (2009)’s conclusions.

In a similar way, Boutselis and McNaught (2019) present a study on forecasting spare parts

demand for military equipment where the actual demand can vary substantially due to changes

in the context of military operations. To tackle this challenge, the authors introduce three

Bayesian network models to generate forecasts of spare parts demand for a single period. Their

findings suggest that the Bayesian network models are more accurate than the expert-adjusted

SES and logistics regression methods. The research results conducted in different contexts are

inconclusive regarding the effectiveness of making judgmental adjustments to statistically gen-

erated forecasts in improving accuracy and operational performance. Thus, additional research

is necessary to extend the initial discoveries, considering the practical importance of judgmental

forecasting in the field of intermittent demand.

Installed Base Forecasting

The need for spare parts comes from the replacement of parts in machines that are already

in use, either as a preventive or corrective measure. The information that regulates the spare

part demand for spare parts, such as the failure rate of components and maintenance policy, can

be referred to as the installed base information (Dekker et al., 2013). Consequently, installed

base forecasting is contextual forecasting where this information is fed into the forecasting pro-

cedure to increase prediction accuracy. According to the literature review Auweraer et al. (2019)

conducted, there are three primary sources of information that influence the demand for spare

parts related to the installed base: (1) the status of the spare part and the size and condition of

the installed base, (2) the maintenance policy that determines when parts need to be replaced,

and (3) environmental factors that affect the reliability of the part.
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Although the concept of installed base forecasting is not extensively discussed in the field

of operations literature, the idea of utilizing installed base information on demand forecasting

for spare parts is not novel. In order to enhance the accuracy of spare parts demand forecasts

at IBM, Cohen et al. (1990) propose integrating part failure rates and the number of machines

installed into exponential smoothing. The logistics software, named SPARTA II, was developed

by Petrovic and Petrović (1992). It employs fuzzy set theory and a Bayesian algorithm, along

with installed base information, to estimate the likelihood of satisfying spare parts demand

and to determine inventory levels. Next, in their study Aronis et al. (2004) utilize a Bayesian

approach to estimate the failure rates of parts in telecommunication systems, later these esti-

mation results are used to predict the demand for new parts that have no prior failure history.

Ghobbar and Friend (2002) examine the correlation between demand lumpiness and installed

base information for the aircraft industry by analyzing data from an airline operator using a

general linear model, their findings indicate that the two primary sources of the observed lumpi-

ness in demand patterns are maintenance (condition-based) and utilization information (flying

hours and the number of landings) for the aircraft. Later, Jalil et al. (2010) present a paper

to emphasize the possible economic benefits of utilizing installed base data in the field of spare

parts logistics, also examine several data quality concerns related to the use of installed base

data demonstrating that demand planning of spare parts depends on the quality factors as well.

Next, Dekker et al. (2013) present a summary of installed base management and suggest various

ways in which information installed base information can be utilized for improving forecasts,

in addition, they conclude by reviewing some models that the prediction power of spare part

demand forecast can be improved with the help of installed base information.

On the other hand, there are some academic papers aiming to fill the gap in the comparison

of the proposed methods against widely used spare part demand forecasting methods. Hua

et al. (2007) have been one of the first to do so. They introduce a new approach that takes the

plant and equipment overhaul information into account with logistic regression for forecasting

the intermittent demand of spare parts, and by utilizing petrochemical enterprise data, they

demonstrate that their approach generates more precise lead time demand predictions when

compared to SES, Croston’s method, and Markov’s bootstrapping method. Following Hua et al.

(2007), Wang and Syntetos (2011) introduce a new technique that focuses on maintenance
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information to predict intermittent demand, their simulation results show that their approach

performs exceptionally better when compared to SBA for almost all cases. Next, Romeijnders

et al. (2012) introduce the first method that uses component repairs information, the method is

evaluated in a comparative study using data from a service provider in the aviation industry with

the findings indicating that the two-step method is highly accurate and outperforms Croston’s

method. The two-step approach can leverage data on planned maintenance and repairs to reduce

forecasting errors by up to 20 percent (Romeijnders et al., 2012). Subsequently, Zhu et al. (2020)

propose a forecasting mechanism that estimates the spare part demand distribution by analyzing

the maintenance plan, and then they create a dynamic inventory control method that depends

on these predictions. To evaluate the proposed approach, they compare it to other time series

forecast methods, utilizing data from two major maintenance organizations, and their findings

reveal that their technique can result in significant cost savings.

2.1.3 Comparative Studies

The literature contains numerous reports of comparisons made between various forecasting meth-

ods such as this paper. These comparative studies practically use performance benchmarks for

forecasting methods that are utilized in predicting spare part demand. However, forecasting

spare parts demand is particularly challenging due to its intermittent nature, which makes it

difficult to estimate the lead-time demand distribution and find the right distribution if there

is any for lead-time demand (Willemain et al., 2004). Mostly, comparative studies evaluate

the performance of the different methods based on multiple forecast accuracy and inventory

performance measures (Pinçe et al., 2021). This allows for a comprehensive assessment of the

strengths and weaknesses of each forecasting method in handling spare part demand forecast-

ing. The measurement of forecast accuracy aims to determine the difference between the actual

demand observed in the past and the forecasts made. At the same time, inventory performance

measures evaluate the effectiveness of a given forecasting method concerning various aspects of

inventory management, such as service levels, on-hand inventory, instances of stock-outs, and

total inventory costs. Although calculating the 90-95th percentiles of the forecasted demand

distribution is a common practice in most inventory applications, it is essential to forecast the

distribution of the tail to develop an effective inventory management system.

By considering both forecast accuracy and inventory performance measures, a more com-
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plete picture of the effectiveness of different forecasting methods can be obtained. However,

when compared to forecast accuracy measures, there are only a small number of studies that

have assessed how effective a particular forecasting method is by using an inventory control mea-

sure. Attaining a high level of accuracy in forecasting spare parts demand does not guarantee

an equivalent level of performance in inventory management(Teunter and Duncan, 2009). Syn-

tetos and Boylan (2006) suggest that evaluating the effectiveness of a forecasting method should

be done based on inventory performance. Teunter and Duncan (2009) also demonstrate that

forecast accuracy measures are not suitable for intermittent demand, despite being frequently

employed in academic research. Therefore, it is crucial to assess a forecasting method by con-

sidering its impact on inventory management and service level. The most prevalent metrics for

assessing inventory performance are the service level and tradeoff curve measures according to

Pinçe et al. (2021). Most studies adopt cycle service level or fill rate as the primary criterion

for assessing service level, and employ tradeoff curves to elucidate the interplay between inven-

tory costs/volumes and attained service levels or back order volumes, where tradeoff curves are

considered as pragmatic and realistic measures of inventory performance (Syntetos et al., 2015).

In addition, a large number of studies utilize measure combinations for analyzing the impact

of a forecasting method on spare parts inventory. Hereafter, insights from several comparative

studies will be provided in the following subsections.

Insights from Comparative Papers

This section of the literature review focuses on comparative studies, in which critical bench-

marking of various forecasting techniques can be observed. Willemain et al. (1994)’s paper is

one of the first comparative studies, which compares SES and Croston’s method while violating

Croston’s normality and independence assumptions, they find that Croston performs better than

SES for both industrial and simulated data. By comparing five different forecasting techniques,

Sani and Kingsman (1997) show that the moving average achieves the best inventory perfor-

mance, followed by Croston and both provide higher inventory performance levels than SES

for intermittent demand. In a similar vein, adding SBA on top of earlier mentioned methods,

Syntetos and Boylan (2006) conclude that SBA outperforms all other methods in terms of in-

ventory performance. With a focus on aircraft spare parts demand, Ghobbar and Friend (2003)

compare thirteen well-known methods using MAPE, as a result, they find that the weighted

moving average outperforms all other methods. However, both Eaves and Kingsman (2004) and
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Teunter and Duncan (2009) criticize the inappropriate use of accuracy measures for forecasting

intermittent demand. Moreover, the number of comparative papers including bootstrapping

methods is surprisingly low (Pinçe et al., 2021). Syntetos et al. (2015) are one of the few ones

to do so. They conclude that although Willemain’s bootstrapping method (Willemain et al.,

2004) outperforms the traditional ones, parametric methods still may be preferable because of

their simplicity in practical applications.

The aim of Pinçe et al. (2021) is to provide a more comprehensive summary of the latest

spare parts demand forecasting literature by analyzing the related studies’ findings. To do so,

they use 56 papers, which conduct a forecasting method comparison study, from the literature.

For the quantitative analysis, they count how many times the method of interest is superior to

the other methods as a result they come up with ”better performance” scores. It is important to

note that they classify the papers according to both data and the selected performance measure

types. They divide the better performance score by the total number of comparisons, which

turns into a ”percentage better” score. Across data types and performance measures, they av-

erage these percentage better scores and obtain an ”average percentage better” score. In this

way, they provide where the method of interest stands among all other methods in such papers

that use different data types and performance metrics but carry out similar comparisons. Their

analysis starts with the comparison of Croston and SBA as the two benchmark methods. Next,

they extend their work to include the comparison of the benchmark methods with traditional

methods and newer forecasting methods. On top of these, they include the comparison of para-

metric and nonparametric methods as well as contextual methods. Their main findings are as

follows, SBA is superior to Croston 87% of the time in terms of accuracy measures, however, it is

inconclusive most of the time when the main concern is the inventory performance measures. In

addition, inventory measures should be used alongside the accuracy measures to provide a more

complete picture, the forecasting techniques using installed base information and deep learning

algorithms show promise.

Academic literature suggests that Machine Learning (ML) techniques can be used as alter-

natives for statistical methods in the prediction of time series since both try to find the best

possible combination of minimizing downtime and maximizing cost efficiency for organizations

(Spiliotis et al., 2020). Although the goal of ML techniques is identical to that of statistical
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methods, their performances differ in terms of forecasting accuracy, inventory control efficiency,

and computing efficiency, thus comparison between these methods becomes vital as the number

of technological improvements has been increasing recently. Furthermore, although Pinçe et al.

(2021)’s framework includes machine learning methods, it only considers Neural Network (NN)

techniques under machine learning methods which can be considered a shortcoming. Considering

the tradeoff between prediction performance and computational costs, deep learning approaches

are computationally more demanding in general than pure machine learning methods. Thus,

on top of the framework mentioned above, the literature review of other ML models (such as

Support Vector Regression (SVR), Regression Trees, Random Forest (RF), etc.) has been con-

ducted in a similar vein by including comparative papers. Firstly, Ahmed et al. (2010) showcase

a comprehensive evaluation study of 8 different time series forecasting machine learning mod-

els applied to M3 competition monthly data. According to their findings, MLP and Gaussian

processes (GP) are the top two models, and the radial basis function is the worst-performing

method in the study. Next, Makridakis et al. (2018) present a comparative paper including 8

ML methods and 14 statistical ones. Their study shows that statistical methods (such as SES,

Holt) are the best-performing methods in terms of sMAPE and are the least computationally

demanding ones compared to ML methods. In a more recent study, Spiliotis et al. (2020) present

a comprehensive comparative paper utilizing 11 statistical methods (e.g. SES, Croston, SBA,

and TSB) as well as 7 ML methods (e.g. MLP, RF, and SVR) on daily SKU demand that can

be characterized as intermittent and erratic. Their results show that the ML techniques such

as Gradient Boosting Trees (GPT), RF, SVR, and K-Nearest Neighbor Regression (KNNR) are

the top-performing methods in terms of absolute mean scaled error (AMSE) and root mean

squared scaled error (RMSSE). However, regarding the tradeoff between accuracy and compu-

tational costs, they highlight that ML methods take 4 times longer to compute on average.

Similarly, Kiefer et al. (2021) compare statistical, ML, and deep learning methods using mean

absolute scaled error (MASE) and a new metric called stock-keeping-oriented prediction error

costs (SPEC) on the M5 competition data set. In terms of the SPEC, Croston produces the most

favorable outcomes, on the other hand in terms of MASE, Long short-term memory (LSTM)

is superior to all other methods. In addition, they divide the time series based on intermittent

and lumpy classes. They show that in intermittent time series Croston again ranks first while in

lumpy time series Croston, LSTM and RF are the three top models. Moreover, M5 competition

results show the forecasting superiority of ML methods when applied to intermittent time series
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in terms of weighted RMSSE. Specifically, four out of five winning submissions use a variation

of the LightGBM algorithm (Makridakis et al., 2022). As a result, marking the first time in all

M competitions, in the M5 competition all of the ML methods outperform all of the statistical

benchmarks and their combinations. Most recently, Hendricks (2022) conduct a comparative

study utilizing 4 machine learning and 6 statistical techniques, aiming to identify the most effec-

tive approach for predicting the demand for spare parts in simulators and weapon ranges that

are used in non-manufacturing settings. The findings reveal that Support Vector Regression

(SVR) outperforms all other methods for predicting the demand for spare parts required for

scheduled and non-scheduled maintenance activities for a span of 52 weeks. In addition, they

reveal that ML methods employed such as SVR, RF, and MLP perform better in terms of accu-

racy for repairable parts needed for maintenance actions that span 2 and 4 years. However, when

predicting the demand for maintenance activities over 6 years, TSB shows superior performance

compared to some of the ML methods.

2.2 Recent Literature on Outlier Detection Methods

As an alternative strategy to improve forecasting performances, data pre-processing (e.g. outlier

detection, handling missing values) may lead to an improvement in forecasting performance. It

is difficult to accurately identify abnormal demand and correct it due to the intermittent and

highly variable demand occurrences of spare parts. These occurrences may arise due to the

demand for either preventive maintenance which is planned or scheduled maintenance which is

unplanned, both of which result in significant spikes in demand and are consequently labeled as

outliers. Both the presence of missing values and outliers in demand can lead to a decrease in

the accuracy of a forecast as it is suggested by Haan (2021b) that using a data preprocessing

method improves the forecast performance. Although there are various academic papers on out-

lier detection methods, a comprehensive study is lacking that utilizes statistical and/or machine

learning methods for outlier detection in the spare parts demand forecasting field, how an outlier

detection method is conducted as well as how it affects the forecasting performance. Outliers

are defined as data instances that exhibit a remarkable deviation from the established norms of

a data set or anticipated patterns of behavior (Smiti, 2020). While the presence of these outliers

may sometimes mislead analytical results and it is best to remove them, conversely, including

the outliers can provide meaningful insights and, thus, their retention may produce a better

performance. Therefore, this paper will investigate whether addressing these demand spikes can
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improve the performance of a forecasting model.

Multiple frameworks exist for classifying outlier detection techniques. They can be classified

into two categories, parametric (statistical) methods and nonparametric (model-free) methods

(Ben-Gal, 2006). Statistical methods generate assumptions about the underlying distribution

of the observations or estimate the parameters of the distribution. They identify outliers as ob-

servations that deviate from the assumed model. However, statistical outlier detection methods

have several drawbacks such as they often can not handle high-dimensional data and data with

no prior knowledge of its underlying distribution very well (Papadimitriou et al., 2003). Thus,

these approaches can not be used if the distribution is unfamiliar or unknown, which makes the

use of ML methods convenient. Since this paper’s focus will be on ML outlier detection meth-

ods, detailed information on statistical outlier detection methods will not be covered ( please

see Ben-Gal (2006) for detailed information).

Machine Learning (ML) Methods

Detecting outliers in extensive real-world databases presents significant challenges to the

current methods being used, which has led the ML methods to emerge. Outlier detection is an

example of how machine learning can be applied, as it employs techniques to identify observa-

tions that deviate greatly from the rest. In the field of demand forecasting, it is being explored

whether machine learning can be used to identify unusual patterns in the demand for spare

parts. There are two branches of machine learning approaches for outlier detection purposes,

supervised and unsupervised methods. Unsupervised methods develop a model without any

given information about which observations are outliers. On the other hand, supervised meth-

ods are trained on a subset of the data in which the outliers have been identified and labeled.

Since there are no outliers identified or labeled in any of the data sets that will be utilized in

this paper, the subsequent discussion covers only the unsupervised outlier detection methods.

In the following, firstly tree-based methods will be discussed, secondly, k-nearest neighborhood

(KNN) based methods will follow, and lastly, a discussion of a density-based method will be held.

Decision tree (tree-based) algorithms are highly recognized and extensively utilized among

all ML techniques (Salzberg, 1994). As one of the first and most commonly used tree-based

methods, Quinlan (1993) presents an algorithm, called C4.5 which is created as an extension
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of the ID3 algorithm. It constructs a decision tree through a recursive partitioning of subsets

of the training data set. Following the construction of the tree, certain nodes are identified

and eliminated based on their impact, measured by the decrease in error that results from their

removal. These pruned nodes are subsequently designated as outliers and their influence is elim-

inated from the model. Next, John (1995) suggests the presence of non-informative records at

a local level does not contribute to the algorithm’s ability to detect patterns at a global level

and develops a more robust method, called ROBUST-C4.5. It involves a continued application

of removal of observations, whereby the process is re-executed on a reduced training set, lead-

ing to the creation of newer decision trees with subsequent node pruning, and this sequence

is repeated iteratively until no further nodes can be pruned. Later on, the author presents

a comparative study on C4.5 and ROBUST-C4.5, which shows that ROBUST-C4.5 leads to

slightly higher accuracy and can generate trees that are 29 percent smaller compared to C4.5’s

trees, without compromising on the accuracy. As another tree-based method, Liu et al. (2008)

propose a method that utilizes the concept of isolation, which can be referred to as Isolation

Forest (iForest). The Isolation Forest algorithm employs a collection of randomly created trees

to evaluate the level of ”outlierness” of each observation. This is accomplished by computing

the average length of the path for each observation and filtering out the observations with the

shortest average length. The iForest algorithm is effective in dealing with problems that in-

volve a high number of irrelevant attributes, even in situations where the training data does

not include any outliers, in addition, it performs well in high-dimensional problems (Liu et al.,

2008). However, Fan et al. (2023) conduct an empirical study on intermittent time series based

on the real demand data for after-sale components from two major manufacturing companies

and conclude that iForest does not perform well in terms of accuracy for intermittent demand.

In outlier detection algorithms, distance-based methods known as nearest neighbor (NN)

techniques have gained popularity recently (Su and Tsai, 2011). In distance-based methods,

if an observation is positioned at a distance beyond a preset threshold value from a specified

proportion of other observations in the data set, then it can be classified as an outlier. When

dealing with higher dimensional space, distance-based methods tend to perform better and can

be computed more efficiently than statistical methods (Malik et al., 2014). However, a primary

challenge to the practical implementation of NN techniques lies in the computationally intensive

task of calculating the distance between every pair of data points (Su and Tsai, 2011). K-nearest
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neighbor (KNN) can be seen as one of the most widely used distance-based techniques due to

its simplicity and conventionality, which is a non-parametric approach that is used for classi-

fication purposes. Its algorithm estimates the distances between different points on the input

vectors based on a distance measure e.g. the Euclidean distance. Subsequently, it allocates the

unclassified point to the class of its K nearest neighbors Omar et al. (2013). Moreover, Ra-

maswamy et al. (2000) introduce a partition-based algorithm to speed up the KNN algorithm.

This novel algorithm initially divides the input data into separate subsets, followed by pruning

complete partitions once it is established that they can not contain outliers. Consequently, this

approach significantly reduces the computational costs involved in the process. In a more recent

paper, Bandaragoda et al. (2018) introduce a novel approach, referred to as iNNE, for detecting

anomalies using isolation, which integrates decision trees and KNN. The authors develop this

method to overcome the weaknesses of the iForest algorithm as it constructs spherical bound-

aries around a set of observations using their proximity to their closest neighbors. The size of the

sphere determines the likelihood of an observation being identified as an anomaly. It performs

multiple rounds of this process and identifies the observation with the largest sphere in each

round, adding it to a list. Subsequently, it assigns an isolation score to every observation on the

list, and the top-ranked observations are considered the most probable anomalies. The benefits

of utilizing this approach include its ability to effectively process multi-dimensional data sets

and its linear time complexity. Nevertheless, due to its recent development, there is limited

usage of this method apart from the reference provided in this paper.

The density-based approach for identifying outliers is introduced as a solution to the lim-

itations of distance-based global outlier detection techniques. As a density-based approach,

Local outlier factor (LOF) is known as a state-of-art unsupervised algorithm that focuses on

local outliers. Also, the concept of local anomalies was initially introduced with this method

which is defined by Breunig et al. (2000). It differs from other methods in such a way that it

attributes a score of outlierness to each object, referred to as the local outlier factor (LOF). This

degree is determined locally based on how isolated the object is relative to its surrounding data

points. LOF shows strong potential, according to Breunig et al. (2000), in detecting significant

local outliers that have gone unnoticed using previous techniques. Once the LOF algorithm is

defined, many more methods emerged following the same logic. Thus, variations are primarily

attributed to determining the local neighborhood and calculating outliers. While Tang et al.

28



(2002) propose a redefinition of outliers by connectivity-based outlier factor (COF) algorithm,

Ni et al. (2008) introduce a local entropy-based weighted subspace outlier mining algorithm,

referred to as SPOD, which can be seen as an enhancement to the LOF algorithm. In a similar

vein, Hu and Qin (2010) introduce the density-based local outlier finder (DLOF) method, which

utilizes information entropy to identify outlier characteristics for each data point. Later on,

Tang and He (2017) develop a new scoring system to compute the local outlierness, called a

relative density-based outlier score (RDOS). The authors conduct an extensive empirical study

using both synthetic and real-life data sets, their results illustrate that their approach is more

efficient in identifying outliers than existing methods.

Conclusion on the Recent Literature Review

In summary, time series methods aim to capture intermittent spare parts demand. Tradi-

tional methods like SES, Croston, SBA, and TSB are reliable benchmarks. Balancing forecasting

accuracy with inventory performance and obsolescence, determining lead-time demand distri-

bution, and performing well on different data sets are the most common challenges. Overall,

forecasting results are heavily dependent on the data, the method, and the performance measure

used. Each method has its strengths and performs well under specific conditions. Contextual

methods incorporate external information to enhance forecasting, while judgemental forecasting

uses managerial knowledge, and installed base forecasting utilizes product/maintenance char-

acteristics. Contextual methods improve precision but their reliance on intuition can harm

forecasting accuracy.

The academic literature compares various forecasting techniques, including traditional meth-

ods like SES, Croston, and SBA, as well as newer methods like deep learning algorithms. Evalu-

ating a forecasting method should consider both forecasting accuracy and inventory performance

measures. A comprehensive benchmarking framework by Pinçe et al. (2021) focuses on neural

network techniques but lacks a review of other ML models. Recent studies suggest that ML

techniques like RF and SVR may outperform traditional methods in specific conditions, but

their computational costs should be considered. Future research should explore ML techniques

for intermittent demand forecasting, considering both accuracy and inventory performance mea-

sures.
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Addressing missing values and outliers in demand through data preprocessing can improve

forecasting performance. This study explores whether identifying significantly different demand

values enhances forecasting. Existing literature lacks a comprehensive investigation of outlier

detection using statistical and/or ML techniques for spare part demand forecasting. Outlier

detection techniques can be classified as parametric and nonparametric methods, with a focus

on ML-based nonparametric methods in this paper. ML methods offer advantages over statistical

techniques, such as handling high-dimensional data and data with unknown distributions. The

use of ML for outlier detection in spare part demand forecasting is an emerging field requiring

further research to determine the most effective approach.
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Chapter 3

Methodology

In this section of the paper, a graphical representation of the experimental design is presented.

Following that, the selected forecasting methods employed to address the first research question

are introduced and described in technical detail. Furthermore, the outlier detection method

utilized to tackle the second research question is described similarly. Next, the paper will provide

details about the forecasting accuracy and inventory control measures used. Subsequently, the

methodology used for classifying demand based on the four categories established by Boylan

et al. (2008) will be elucidated. This methodology is employed to address the first research

question of this paper. As the last step, the information on how the data sets are split into train

and test sets will be provided.

3.1 Experimental Design

The experimental design, as visually presented in Figure 3.1, is grounded on the research ques-

tions presented in this paper’s introduction. These questions focus on the diverse outcomes

that can arise from utilizing data pre-processing and spare part demand forecasting methods on

various types of data sets. Initially, the industrial data sets that have been provided to me re-

quire some data wrangling, and subsequently, data pre-processing including an outlier detection

method will be applied. In the following step, the data sets are classified based on their demand

characteristics to address the initial research question of this paper which focuses on examining

the impact of different data types. The chosen forecasting methods are then applied, followed

by a comparison of these methods based on their forecasting accuracy and inventory control

measures. Additionally, a comparison will be conducted between two versions of industrial data

sets: one with applied outlier detection procedure and the other without, it aims to address the

second research question in this paper. Furthermore, the paper discusses the variations in the

outcomes due to differences in the data sets.
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Figure 3.1: The flow of the experimental design

3.2 Selected Forecasting Methods

The first forecasting method to be employed in this paper is Single Exponential Smoothing (SES)

which will serve as a benchmark. Although it is known to perform poorly with intermittent

demand, it is one of the most commonly used methods in forecasting which is why this method

is included (Monfared et al., 2014). The weighted average predictions produced by SES decrease

over time and are smoothed using the smoothing parameter α, which is determined by the cost

function. According to Syntetos and Boylan (2005), this smoothing parameter is usually set

between 0.1 and 0.3 in settings with intermittent demand. The formula of SES is as follows:

ŷt = αyt + (1− α)ŷt−1 (3.1)

As another benchmark method, Croston’s method, which is developed to outperform SES, will

be employed for comparison in this paper. Croston’s method predictions are based on two

components, namely the demand size zt and the inter-demand interval pt. Since predictions

are updated only when demand occurs, the demand size zt has to be non-zero in at least two

periods. The formula for Croston’s predictions is given as follows:

ŷt =
ẑt
p̂t

(3.2)

The first observation in the series is used as the initial values of zt and pt. SES is used to predict

both zt and pt, with a smoothing parameter optimized by a cost function, as recommended
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by Kourentzes (2014). The average estimated demand for each time period in the forecasting

horizon is the ultimate output from Croston.

As a modification to Croston’s method, Syntetos and Boylan (2005) showed that Croston’s

method is positively biased and developed SBA, which is included as the third forecasting

method. In their estimation, they incorporated a smoothing parameter α, which is used to

reduce bias and smooth out the inter-demand interval pt. In a similar vein to Croston, the

initial values of zt and pt are derived from the first observation, and α is set to be 0.1. SBA’s

formula is as follows:

ŷt = (1− α

2
)
ẑt
p̂t

(3.3)

As the next method TSB, which has been developed by Teunter et al. (2011) to address the

issue of demand obsolescence, is utilized in this paper. When dealing with intermittent demand

accompanied by obsolescence, both of them together could lead to delayed identification of

obsolescence. TSB’s forecasting is conducted based on SES, too. When addressing the issue

of obsolescence, TSB modifies Croston’s method by replacing the inter-demand interval pt with

dt which is the demand probability. dt becomes 1 when demand occurs, and 0 otherwise. The

formula for the predictions made by TSB is as follows:

ŷt = d̂tẑt (3.4)

Kourentzes’s (2014) R-package called ”tsintermittent” is utilized for Croston and three other

methods (SES, SBA, and TSB), which requires the selection of various parameters, including a

cost function, for optimization purposes. The cost function options that are discussed include

mean squared error (MSE), mean absolute error (MAE), mean squared rate (MSR), and mean

absolute rate (MAR), in addition, all of the parameters are extensively discussed in Kourentzes

(2014)’s work. Their empirical research shows that the MAR cost function is the most effective

for Croston, SES, and SBA, while TSB performs better with the MSR cost function. Therefore,

the MAR cost function is employed for Croston, SES, and SBA, and the MSR cost function is

employed for TSB in this paper.

Before diving into machine learning (ML) techniques, an alternative spare parts forecasting

method is Willemain’s bootstrapping (WSS) which is introduced by Willemain et al. (2004) and
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known as one of the most popular non-parametric approaches. In addition, as mentioned before,

it addresses challenging characteristics of intermittent demand as well as shows superior accu-

racy results when compared to both benchmark methods, namely SES and Croston, according

to Willemain et al. (2004). Taking all into consideration, this method is decided to be employed

in this paper. Utilizing a two-stage Markov chain process, WSS is a technique that calculates

non-zero demand points and resamples demand using historical data. The incorporation of a

jittering process provides greater variability in the method’s predictions and avoids replication

of prior values. The technique pre-calculates a sequence of zero and non-zero demands, based

on transition matrix probabilities, to prepare for the next step.

According to Spiliotis et al. (2020), ML methods have the ability to replace statistical meth-

ods in predicting time series since they share the same goal of determining the best possible

combination that minimizes downtime and maximizes cost efficiency. Thus, Spiliotis et al. (2020)

developed a method called Multi-Layer Perceptron (MLP), also known as a single hidden layer

neural network, which has been trained using Smyl (2020)’s approach. This method involves us-

ing a rolling input and output window of constant size to predict future data points. The MLP

is built using the R-package RSNNS, as described by Bergmeir and Beńıtez (2012). During

the training process, Grid Search Cross-Validation (CV) is used for one-SKU hyperparameter

optimization. The following parameters are selected to optimize the model by determining the

lowest RMSE values which provide the highest accuracy: maximum number of iterations to learn

(maxit), learning function which defines how learning takes place in the network (learnFunc),

learning rate (learnFuncParams). When applying the MLP model, the data needs to be scaled

due to its use of a non-linear activation function, and the learning speed increases with scaling

Zhang et al. (1998). The scaling for the linear transformation of the data to be between 0 and

1 is conducted according to the following formula:

ŷt =
yt − ymin

ymax − ymin
(3.5)

After generating predictions, the scaling needs to be reversed to obtain final forecasts and assess

forecasting accuracy.

As the second ML algorithm, LightGBM method is employed by using the code for construct-
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ing the predictive algorithm from Kailex (2020), which is used to enter the M5 competition. This

particular method is chosen for various reasons, such as LightGBM serving as the foundation for

many of the top-performing methods in the competition as well as the code for this method be-

ing available in R. Similarly to the MLP, the LightGBM method uses a rolling input and output

window, as well as lag variables to generate predictions. The model is trained using a Poisson

loss function, and the hyper-parameters for the LightGBM algorithm are also adapted from

Kailex (2020). In addition, the following parameters are tuned using Grid Search CV for one-

SKU hyper-parameter optimization of the LightGBM model by determining the lowest RMSE

value which provides the highest accuracy: the limit of the max depth for the tree (max depth),

the maximum number of leaves in one tree (num leaves) and the learning rate (learning rate).

Before the application of the LightGBM algorithm, the data needs to be scaled in a similar

vein with equation 3.5. After training the model, it gets evaluated at every 400 iterations to

determine the optimal stopping point. Once training is finished, lag variables are utilized to

generate forecasts. For a detailed understanding of its functionality and the R implementation,

please see Microsoft (2021).

This paper utilizes Random Forest (RF) as the third ML method. By constructing multiple

decision trees, RF overcomes the limitations associated with single decision trees as it becomes

more robust to noise and is less likely to over-fit on the training data (Breiman, 2001). Accord-

ing to Spiliotis et al. (2020), RF is one of the best-performing methods on daily SKU demand,

which is described as erratic and smooth, in terms of both AMSE and RMSSE. That’s why this

method is included in this study. Similarly to the other ML models, the RF method uses the

same logic of rolling input and output windows to generate predictions. The implementation

of RF is conducted using the randomForest R package Liaw and Wiener (2002). Before the

application of the RF algorithm, the data needs to be scaled in a similar vein with equation

3.5. The optimal values of the following parameters are obtained through hyper-parameter op-

timization based on a single SKU and by performing a grid search cross-validation: the number

of non-pruned trees (ntree), the minimum size of terminal nodes (nodesize), and the number of

variables randomly sampled as candidates at each split (mtry). This process involves identifying

the lowest RMSE value that ensures the highest level of accuracy.

Support Vector Regression (SVR) is the last forecasting and ML technique that is employed
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in this paper since it outperforms the rest of the methods besides RF in the study of Spiliotis et al.

(2020). By minimizing the overall error, SVR generates predictions through the identification

of a hyperplane that maximizes the margin between two classes (Schölkopf and Smola, 2001).

Before the application of the RF algorithm, the data needs to be scaled in a similar vein with

equation 3.5. Similarly to the other ML models, SVR method uses the same logic of rolling

input and output windows to generate predictions. It is implemented by using e1071 R package

(Meyer et al., 2019). As stated by Spiliotis et al. (2020), ν-regression is selected as it constructs

a small number of support vectors and therefore simplifies the computations. The kernel used

for both training and predicting is chosen from the linear, polynomial, radial basis, and sigmoid

alternatives. The optimal values of the following hyper-parameters are determined through

a combination of one-SKU based hyper-optimization and a grid search cross-validation (CV)

process which involves identifying the lowest RMSE value: tolerance of the termination criterion

(tolerance) and ν (nu), epsilon and cost (C).

3.3 Utilized Forecasting Accuracy Measures

There are numerous performance measures available in the literature to compare the predictive

power of various forecasting methods. Since there is not a generally accepted forecast accuracy

measure, most research papers utilize multiple metrics to provide a comprehensive understanding

of the overall performance of a specific method. Thus, two different forecasting accuracy metrics

will be employed in this paper. The forecasting accuracy metrics allow us to obtain insights into

the extent of the difference between the projected and realized levels of demand. They can be

categorized into two groups, namely absolute and relative accuracy measures (Pinçe et al., 2021).

Absolute accuracy measures evaluate the performance of a particular forecasting technique for

a specific time series. In line with Pinçe et al. (2021), mean absolute scaled error (MASE) is a

prevalent absolute accuracy metric, and it is also recognized by Koehler and Hyndman (2006) as

the most promising metric for intermittent demand. Henceforth, this study has opted to employ

MASE. The formula for MASEt is as follows:

MASEt =
1

t

t∑
s=1

|es|
1

t−1

∑t
i=2 |Yi − Yi−1|

(3.6)

where es can be defined as forecast error and equals to es = Ys − Ŷs. In this study, the second

metric to be utilized is the root mean squared scaled error (RMSSE), which is a scaled version
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of RMSE and a modified form of MASE. Koehler and Hyndman (2006) first introduce it and

reveal its superiority in handling data sets with intermittent demand. Moreover, it has also been

employed in the M5 Competitions (Makridakis et al., 2022). RMSSEt formula is as follows, in

which n indicates the number of observations within the training data, yt and ŷt signify the true

and forecasted values of the time series at time t and h denotes the prediction horizon (equal to

the duration of the test data set):

RMSSE =

√√√√ 1
h

∑n+h
t=n+1(yt − ŷt)2

1
n−1

∑n
t−2(yt − yt−1)2

. (3.7)

In terms of metric interpretation, superior results are indicated by lower values for both measures.

3.4 Utilized Inventory Control Measures

Attaining a high level of accuracy in forecasting spare parts demand does not always guarantee

an equivalent level of performance in inventory management (Teunter and Duncan, 2009). In

a similar vein, Dekker et al. (2013) support the idea of integrating inventory control metrics

results in enhanced management of the supply chain. Consequently, the intention of this paper

is to provide a more comprehensive assessment of the efficacy of diverse forecasting methods

by incorporating inventory performance measures in addition to forecasting accuracy measures.

As suggested by Pinçe et al. (2021), tradeoff curves and service levels are the most frequently

employed stock control measures in the current literature on spare parts demand, and therefore

have been chosen for this paper.

Firstly, trade-off curves between inventory holding costs and achieved fill rates will be estab-

lished since this approach provides more comprehensive insights according to Van Wingerden

et al. (2014). Holding cost can be found by the multiplication of the average inventory level by

the holding cost percentage. Since some data sets in this study do not provide necessary variables

for evaluation, industry-accepted proxy measures will be used to approximate the holding cost

variable. For instance, taking a holding cost between 20% to 30% of the total inventory value is

reasonable, where 25% is selected as a middle-ground approximation (McCue (2022), Durlinger

and Paul (2012)). The inventory policy approach outlined by Van Wingerden et al. (2014) is

used in this paper in order to assess achieved fill rates. It involves determining a base stock level

(R) based on the historical demand patterns and updating inventory position (IP) on a periodic
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basis with back orders being permitted as necessary. To determine the Part Fill Rate (PFR),

the current IP is divided by the current demand size and then the resulting value is multiplied

by 100. For instance, if the demand size is 20 and the IP is 10, the achieved PFR would be 50%.

This calculation is repeated for each demand moment in the series and then averaged across all

these moments to determine the achieved PFR for each forecasting method. After all, a target

fill rate will be predetermined, followed by the computation of the corresponding R using the

selected forecasting method. In this study, fill rate targets of 75%, 80%, 85%, 90%, 95%, 99%,

99.99% will be utilized. The method’s fill rate performance will then be evaluated in compari-

son to the target fill rate, taking into account the holding costs associated with each achieved

fill rate. The described procedure will be iterated for each forecasting method, leading to the

generation of the tradeoff curves. Lastly, the item fill rate, which follows a normal distribution,

rather than the order fill rate as is utilized by Van Wingerden et al. (2014) will be employed in

this paper.

3.5 Utilized Outlier Detection Method

Local Outlier Factor (LOF) method is an unsupervised density-based outlier detection algo-

rithm, which is first proposed by Breunig et al. (2000) and has led the way in developments

of many more density-based techniques (Tang et al. (2002), Ni et al. (2008), and etc.). There

are 3 steps to take when calculating the LOF score, which is the resulting outlierness degree

of each object. According to Goldstein and Uchida (2016), firstly each record x requires deter-

mining its k nearest neighbors (Nk), and if there is a tie-in distance for the kth neighbor, more

than k neighbors are utilized. Secondly, the local reachability density (LRD) is computed by

determining the density of a record’s nearby k-nearest-neighbors (Nk). As the final step, by

evaluating the LRD of a record against the LRDs of its k neighbors, the LOF score is calculated

which represents the proportions of local densities of records. Normal records, which are not

computed to be outliers, are assigned to have a similar level of density to their neighbors with

an approximate score of 1.0. On the other hand, outlier records are attributed to lower levels of

density which results in higher LOF scores (higher than 2 as a rule of thumb).

For this algorithm, the only and the most significant task is to decide the value of k, the

number of neighbors we are interested in. The rule of thumb for k is to be between 10 and up to

50 (Goldstein and Uchida, 2016). In the context of evaluating the Local Outlier Factor (LOF)
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method against alternative outlier detection algorithms, such as the partition-based algorithm

proposed by Ramaswamy et al. (2000), an additional parameter known as ”top n” is introduced,

which requires optimization. It is the responsibility of the user to specify the desired value

for this parameter in the partition-based algorithm. The reason for selecting the LOF method

rather than the partition-based algorithm for implementation in this paper is partly attributed

to the fact that it involves optimizing a single parameter, which simplifies the optimization

process. The implementation is done by using the R-package called DDoutlier with k values

selected according to the rule of thumb. Lastly, the outlier detection procedure is applied only

to the industrial data sets in this study.

Finally, it is noteworthy to mention that when making decisions regarding the choice of outlier

detection methods, a total of three distinct methods were considered, the LOF, the partition-

based algorithm, and, the interquartile range (IQR) method. The rationale for excluding the

utilization of the partition-based algorithm is elaborated above. In addition, Interquartile Range

(IQR) is a statistical technique that entails segmenting the data set into quartiles. The IQR is

calculated as the disparity between the third quartile (Q3) and the first quartile (Q1). Detection

of outliers involves identifying data points that reside below Q1 - 1.5 times the IQR or exceed

Q3 + 1.5 times the IQR. The decision to refrain from implementing this approach comes from

the limited occurrence of non-zero demand values, which shows the intermittent characteristics

of the data sets. Thus, even minor demand values are classified as outliers by this method,

implying that the IQR necessitates a larger number of demand observations to determine the

outlierness of a record accurately.

3.6 Demand Pattern Identification and Data Splitting Rule

This section of the paper aims to describe the methodology for the demand classification frame-

work as well as the rule that’s been followed to split each data set into train and test splits. To

begin with demand classification, there have been many attempts in the literature to classify

demand (Williams (1984), Johnston and Boylan (1996), etc.), and demand classification has

been recognized as a forecast improvement strategy as well. Boylan et al. (2008) emphasize that

items with different SKUs have distinct demand characteristics that call for unique approaches.

Hence, to effectively address the first research question, which seeks to explore suitable methods

for different demand patterns, it is essential to categorize SKUs. In this study, Boylan et al.
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(2008)’s framework is adopted to identify demand patterns. They categorize demand patterns

into four groups according to two metrics, the mean inter-demand interval (p) and the squared

coefficient of variation of the demand sizes (CV 2). These four demand categories are erratic,

lumpy, smooth, and intermittent. Their threshold values can be seen in 3.6. Items with erratic

Demand pattern p CV 2

erratic < 1.32 ≥ 0.49
lumpy ≥ 1.32 ≥ 0.49
smooth < 1.32 < 0.49

intermittent ≥ 1.32 < 0.49

Table 3.1: Demand Patterns and Cut-off Values

demand are characterized by demand values that greatly fluctuate. Meanwhile, lumpy demand

items have rare occurrences of demand but highly variable demand values, whereas items with

intermittent demand have also rare occurrences of the same demand values. Lastly, items that

are categorized as smooth have regular demand patterns with low variability in demand sizes. In

order to identify demand patterns for each item in the following chapter, p and CV 2 values need

to be calculated. p can be computed by dividing the total number of periods by the number of

demand occurrences that have non-zero values. CV 2 values can be computed by first dividing

the standard deviation of demand occurrences that have non-zero values by the mean of demand

occurrences that have non-zero values and then taking the square of the resulting number.

Lastly, each data set is split into train and test splits for forecasting methods according to

the 70-30% rule, where the first 70% of each data is used for training purposes and the last 30%

is labeled as test data, which is used for validation purposes. On the other hand, the separation

of data sets into train and test is not a prerequisite for the outlier detection method.
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Chapter 4

Data Description and Classification

In this section, a concise description of the main attributes of data sets, both artificial and

industrial, is provided. In addition, data pre-processing steps including an outlier detection and

handling process are elucidated. Given that this paper employs an outlier detection method, it

results in two different versions of industrial data sets. Therefore, the classification of data sets

is performed correspondingly in the subsequent part. Lastly, the R script for data wrangling,

description, and demand classification is adapted from the GitHub repository Khue (2023) which

originates from Haan (2021a) and is adjusted according to the needs of this paper.

4.1 Industrial Data Sets

This paper will utilize four data sets sourced from industrial companies. The number of distinct

items originally within the data sets, the overall duration they represent, and the industry they

belong to can be seen in 4.1. In addition to the provided information in the table, these data sets

encompass additional variables. The initial data set, referred to as AUTO, lacks information

regarding price and lead time. The same data set was employed by Syntetos and Boylan (2005).

The second data set, referred to as MAN, encompasses various variables including prices, in-

ventory costs (equivalent to 20% of the product cost), lead time, demand frequency, demand

size data, minimum order quantity (MOQ), as well as fixed order costs (Haan, 2021b). It is

important to note that there are demand values that are not integers in the MAN data set. The

third data set, referred to as BRAF, was also employed by Teunter and Duncan (2009). BRAF

encompasses information on demand size, demand frequency, prices, and lead time; nevertheless,

lacks information on inventory costs (Haan, 2021b). The fourth data set, referred to as OIL, was

utilized in the studies of Porras and Dekker (2008). It also contains information on prices and

lead times. Additionally, it offers the minimum and maximum advised stock levels for each item

and indicates the classification of the system where an item is installed in terms of its impact

on operations, categorizing it as low (L), medium (M), or highly critical (H).
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Data Set # of Items (SKUs) Total Amount of Periods Industry

AUTO 3000 24 months Automotive
MAN 3451 150 weeks Manufacturing
BRAF 5000 84 months Aircraft
OIL 14523 56 months Petroleum

Table 4.1: Industrial Data Sets

Data set
Average Monthly Sales of Items Product Price (€)

RPS
Min Mean Max SD Min Mean Max SD

AUTO 0.542 4.450 129.167 7.573 25.075 727.851 5979.315 1053.357 163.569
MAN 0.007 24.224 4599.653 139.294 0.033 35.964 2669.700 101.824 1.485
BRAF 0.036 1.442 65.083 3.617 0.001 102.321 9131.992 373.334 70.943
OIL 0.036 1.077 228.571 4.114 0.010 450.338 82562.590 1453.955 418.280

Table 4.2: Descriptive Statistics of Industrial Data Sets

In 4.1, we compute the average monthly sales for each item across all time periods within

each data set. Subsequently, we calculate the minimum, maximum, mean, and standard devi-

ation values for each data set, encompassing all of its items. This table utilizes the data set

versions that have undergone data pre-processing steps, as detailed in the following subsection

called ”Data pre-processing”. There are two important things to note, firstly the minimum price

of 0.001 Euros can be interpreted as a result of multiple units of the same product being sold

at a reduced price, leading to an actual price below one cent. Secondly, weekly sales data is

aggregated over a 4-week period to obtain monthly sales figures for the MAN data set.

Computation of Individual Prices

In 4.1 above, the descriptive statistics of industrial data sets are given including the ratio of

price and sales (RPS) values. The computation of individual prices for the AUTO is adapted

from the studies of Haan (2021b). This analysis aims to facilitate the calculation of the inventory

control performance by incorporating pricing information into the AUTO. Hereafter, the steps

that are taken for this analysis are explained. Initially, RPS values are computed for the MAN,

BRAF, and OIL data sets. This is achieved by dividing the average product price by the average

monthly product sales. The RPS for the AUTO data set is established as the average of the

RPS values of the other data sets, which is equal to 163.569. Next, the mean price per item is

computed by multiplying the monthly sales by the RPS, which results in 727.851 in ??. Despite

the comparatively lower average monthly item sales, this high value can be explained by the
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existence of specific items that have high frequencies of demand, exerting a substantial influence

on the overall average product price. Next, the ratio of monthly sales (RMS) is calculated.

Individual item prices can be more accurately assigned by keeping in mind that items with high

frequencies typically exhibit lower prices. Thus, RMS is computed by dividing the monthly sales

values of each item by the average monthly item sales. As the last step, individual prices for

AUTO are calculated by dividing the mean product price by the RMS values.

4.2 Artificial Data Sets

The generation of artificial data enables the incorporation of specific attributes to examine their

influence on the performance of the selected forecasting methods. Thus, relating to the first

research question, artificial data sets are generated to evaluate the potential impact of different

data types. It is important to note that all artificial data sets are generated and provided by

Haan (2021b). Four simulated data sets in this study were generated using the R package ’tsin-

termittent’. According to Petropoulos et al. (2014), the package utilizes a Bernoulli distribution

to model non-zero demand arrivals, and a negative binomial distribution is employed to generate

non-zero demands. Furthermore, creating a data set with this package involves specifying certain

mandatory input parameters (such as the number of time series, the number of observations,

etc.). Considering that the average count of time series which means the average number of

items in the industrial data sets was 6493.5, the value of ’n’ for the artificial data sets was set to

6500. The data configuration emulated monthly sales data, with the number of periods set to

60 months (equivalent to a span of five years). Next, the average demand size, CV 2, and p were

intentionally established in a manner that ensured each of the four simulated data sets fell into

one of the four distinct categories outlined in section 2.6. These data sets are denoted as SIM1,

SIM2, SIM3, and SIM4 respectively. The average demand size for all the artificial data sets was

set to an arbitrary value of 10. The specific configurations can be found in Table 4.3. As can

be seen, when the inter-demand interval (p) exceeds 1, the mean monthly demand decreases.

Moreover, the average ratio of price and sales (RPS) of 163.569 was employed to determine the

average product price, consistent with the industrial data sets. Subsequently, the individual

product prices are determined following the process outlined in section 3.1.
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Data set Demand Category CVˆ2 p
Demand (monthly) Product Price (€)
mean SD mean SD

SIM1 Erratic 0.75 1.00 10.01 1.12 1637.97 189.28

SIM2 Lumpy 0.80 1.50 6.66 1.12 1089.67 196.00

SIM3 Smooth 0.30 1.05 9.50 0.74 1553.29 122.36

SIM4 Intermittent 0.25 1.45 6.90 0.81 1128.10 138.61

Table 4.3: Artificial Data Sets Configurations

4.3 Data Pre-processing

Given that the majority of forecasting techniques depend on the characteristics of the data, the

process of data pre-processing becomes highly significant as it is also suggested in Haan (2021b).

In light of this, a detailed explanation of the data pre-processing steps will be provided hereafter,

beginning with a description of the data wrangling process, and subsequently elaborating on the

procedure for detecting and handling outliers.

The data sets utilized in this study represent a panel structure, characterized by the inclusion

of multiple items over a time frame. Specifically, the items refer to distinct SKUs (spare parts)

as observations, while the columns (variables) pertain to time periods in the beginning. Firstly,

separate price vectors are generated from the MAN, BRAF, and OIL data sets for subsequent

utilization, as AUTO and artificial data sets lack price information. Moreover, the variable

representing the total installed base information in the OIL data set is also extracted. Next,

adhering to the approach described in Haan (2021b), all lead times are uniformly established as

one since some of them lack lead time information and also for the ease of computations. Next,

the AUTO and OIL data set columns are reversed to ensure that they begin from the nearest

period. As a result, all the data sets now commence from the earliest period. Subsequently, a

modification is made to the variable names by replacing them with the corresponding number

of periods. Following that, for industrial data sets, any negative demand values which can be

considered as returns are replaced with zeros. To facilitate computations, any missing demand

values (NAs) are substituted with zeros in industrial data sets. Next, a transpose operation

is performed on all the data sets, thereby rearranging the panel structure such that while the

observations correspond to time periods, the variables represent distinct spare parts from here

on. A selection process is carried out solely for the industrial data sets to eliminate items that

lack multiple occurrences of demand. As a result, a total of 2059 items from the MAN, and

5676 items from the OIL data set are omitted. The final number of items for MAN and OIL
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is 1392 and 8847 items respectively, AUTO and BRAF data sets remain unchanged. Lastly, all

the data sets are split into train and test sets according to the 70-30% rule.

Outlier Detection and Handling

In this study, the Local Outlier Factor (LOF) technique is employed during the data pre-

processing stage to detect outliers in industrial data sets. Subsequently, if outliers are identified,

the mean imputation is utilized as a strategy for handling these outlier values. The LOF detects

row-based outliers which translates to time periods in this case. The application of the LOF

begins with the determination of suitable values for the parameter ”k”, which is the number

of neighbors. By the rule of thumb for selecting the k values (10 < k < 50), various options,

namely 20, 30, and 40, were explored to optimize this parameter. As the value of k is altered,

the number of detected outlier rows also fluctuates, highlighting the dependency between the k

value and the identification of outlier rows. Consequently, a value of 40 is chosen for ”k”, except

in the case of the AUTO data set where a value of 20 is selected. This decision for AUTO

data set is influenced by the fact that the it comprises only 24 months, thereby limiting the

maximum selection of k to that specific value. The decision for selecting the k value equal to 40

is made with the help of total installed base information that was extracted from the OIL data

set. This information is used to analyze if those rows, which are detected as outliers when the

k value is 40, include any demand values that are higher than the total installed base. In the

process of calculating LOF scores, it is necessary to establish a threshold that determines the

classification of a row as an outlier. In general, normal instances tend to receive a score around

1 and outliers yield higher scores distinguishing them from the normal instances (Goldstein and

Uchida, 2016). Hence, a threshold value of 2 is established for the LOF score. If it is higher

than two, rows are identified as outliers. By this rule, no outliers are detected in the AUTO

data set. On the contrary, the BRAF and OIL data sets each present two months as outliers,

whereas the MAN demonstrates an exceptional 33-week outlier count, significantly surpassing

the others. This difference in the number of outliers can be attributed to variations in time pe-

riod units; the BRAF and OIL data sets employ months, while the MAN data set employs weeks.

During the outlier handling phase, the initial approach was the median imputation. Re-

garding the OIL and BRAF data sets, imputing the median values to the two identified outlier

rows led to both rows being filled with zeros, as the computed median values were all zero.
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Hence, instead of employing the median imputation, we used the mean imputation in this pa-

per. Therefore, firstly column-wise mean values per item over all time were computed, and

then these values were subsequently imputed into the respective outlier rows identified by the

LOF technique. Upon completing the mean imputation process, the MAN, BRAF, and OIL

data sets got labeled as their subsequent versions, MAN2, BRAF2, and OIL2 correspondingly.

Lastly, a re-evaluation was conducted to identify items within these data sets that possess a

single occurrence of demand. A total of 14 items were identified and subsequently dropped from

the MAN2 data set (1378 items exist as a result). However, no alterations were made to the

number of items within the BRAF2 and OIL2 data sets.

4.4 Classification of Data Sets

As mentioned earlier in Section 2.6, the framework of Boylan et al. (2008) is followed to iden-

tify demand patterns in this study. The distinct spare parts are categorized into four groups

(erratic, lumpy, smooth, and intermittent) according to the mean inter-demand interval (p) and

the squared coefficient of variation of the positive demand sizes (CV 2). The threshold values of

1.32 and 0.49 for the identification of demand patterns are shown in 3.6. Hereafter, two distinct

tables are presented. The initial table consists of data sets that have not yet addressed outliers,

while the second table comprises data sets where outliers have been addressed as per the steps

outlined in Section 3.3.

To create the first table (4.4), the initial step is undertaken by computing these two classifi-

cation parameters for each data set. After careful calculations, spare parts in the data sets are

classified into four categories. The BRAF and OIL data sets comprise intermittent and lumpy

items, with a notable prevalence of intermittent ones (58% and 77% respectively). The MAN

data set exhibits a similar composition characterized by lumpy and intermittent items, account-

ing for 58% and 40% respectively, accompanied by a smaller proportion of erratic items of 2%.

The AUTO data set is predominantly categorized as smooth with 41%; however, it also displays

a considerable variation across other classifications (intermittent, erratic, and lumpy with 36%,

13%, and 10% respectively). Regarding the artificial data sets, SIM1 predominantly exhibits

an erratic nature, accounting for 95% of its categorization. Similarly, SIM2 can be classified as

lumpy, with an 86% representation. On the other hand, SIM3 demonstrates a predominantly

smooth pattern, constituting 99% of its categorization. Lastly, SIM4 is primarily characterized
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as intermittent, representing 88% of its composition.

Data Sets CV 2 p Erratic Lumpy Smooth Intermittent

AUTO 0.41 1.32 378 307 1241 1074
MAN 0.92 16.41 23 806 1 562
BRAF 0.63 11.14 0 2095 0 2905
OIL 0.57 15.15 0 2040 0 6807
SIM1 0.75 1.00 6198 0 302 0
SIM2 0.80 1.50 410 5614 25 451
SIM3 0.30 1.05 36 0 6464 0
SIM4 0.25 1.45 1 7 786 5706

Table 4.4: Demand Pattern Identifications

To create the second table (4.4), the classification parameters are computed for the altered

versions of three industrial data sets, namely MAN2, BRAF2, and OIL2, excluding the AUTO

data set since it does not consist of any outliers. After the outlier handling process, the MAN2

data set exhibits a higher composition of lumpiness, accounting for 97%, accompanied by a

smaller proportion of erratic items of 3%. When compared to the MAN data set, The MAN2

data set displays a reduced intermittent pattern. Moreover, transitioning from MAN to MAN2

led to a significant increase in the CV 2 value and a substantial reduction in the p value. This

could be attributed to imputing mean values for those outlier rows, which were previously

populated mostly with zeros. As a result, the increased CV 2 metric value reflects heightened

variation in demand quantities, and the decreased the p metric value indicates a decrease in

the average interval between two demands, both due to the presence of non-zero demand values

post-imputation. The BRAF2 data set, on the other hand, can be described as exhibiting both

lumpiness (68%) and intermittency (32%). Upon comparison with the BRAF data set, it is

once again evident that BRAF2 displays a reduced intermittent pattern. The OIL2 data set is

predominantly categorized as lumpy with 69%; however, it also displays a considerable amount

of intermittent items (31%). Similarly, there has been a decrease in the intermittent pattern

observed when transitioning from the OIL data set to the OIL2 data set.

Data Sets CV 2 p Erratic Lumpy Smooth Intermittent

MAN2 4.76 3.18 37 1336 1 4
BRAF2 0.95 8.79 0 3400 0 1600
OIL2 0.81 10.23 0 6130 0 2717

Table 4.5: Demand Pattern Identifications Second Versions
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Chapter 5

Results

This chapter is structured into two primary sections. The initial main section, referred to as

”exemplary results” offers thorough insights into the various algorithms employed, encompassing

the selection and optimization of hyperparameters, the training process, and the generation of

predictions. The subsequent main section focuses on evaluating the attained level of forecasting

accuracy and the performance of inventory control for each method, as outlined in the exemplary

results section. In total, this study utilizes nine distinct forecasting techniques applied to eleven

different data sets. Hereafter, these two main sections will be discussed respectively.

5.1 Exemplary Results of Forecasting Methods

This section provides comprehensive elucidations in regard to all algorithms employed, encom-

passing the selection and optimization of hyperparameters, the training process, and the gen-

eration of predictions. A randomly selected item from the SIM4 data set, referred to as ts.12,

will be utilized to exemplify and clarify the processes in greater detail. Its descriptive statistics

as well as the demand pattern are given in Table 5.1. This series, ts.12, consists of demand

data spanning 60 periods, which is shown in 5.2. To facilitate the implementation of various

methods, it is separated into two: a training and a test set, with a ratio of 70% for the training

and 30% for the test set. As a result, the forecasting horizon is set to be 18 periods which is

defined by the duration of the test set. Hereafter, a step-by-step description of each method

will be presented, followed by the presentation of exemplary results showcasing the forecasting

accuracy and stock control measures.

Data CVˆ2 p
Demand

Price Classification
Min Mean Median Max

ts.12 0.19 1.82 0 7.28 7 23 1068.22 Intermittent

Table 5.1: Descriptive Statistics of Part ts.12
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Period
Demand
ts.12

1 12 9 0 0 0 0 8 0 14 13 7 8 0 6 23 19 10 13 0 4

21 18 0 0 17 7 11 0 0 4 0 6 14 0 16 15 0 4 7 11 9

41 7 7 10 11 0 2 23 0 11 11 17 2 8 5 0 13 6 6 4 9

Table 5.2: Demand Values of Part ts.12

SES, Croston, SBA and TSB

To begin with, SES requires the input of several parameters, such as the forecast horizon,

smoothing parameters, initial values for demand, interval size, and the selected cost function for

optimization. The input data for SES begins with the 42 values from the ts.12 training data. In

this case, the forecast horizon is set to 1, resulting in lead-time demand (LTD) forecasts. The

optimization of the smoothing parameters is carried out using the Mean Absolute Rate (MAR)

cost function, given in the appendix as equation (1), which has been identified by Kourentzes

(2014) as the optimal choice for Croston’s method and is used as the cost optimization function

for SES, Croston, and SBA methods. However, as explained in Kourentzes (2014), TSB diverges

from the others by employing the Mean Squared Rate (MSR) as the most suitable cost function.

The initial demand for SES is derived from the first observed non-zero demand, while the initial

interval is set to the value of the first interval. Given the comparable approach and simplic-

ity of SES, Croston, SBA, and TSB, the process configurations remain consistent across these

methods. The function iterates over each item and forecasts the next period’s value using these

methods based on the available historical data in the training set. The loop then increments

the period used for prediction by 1 and continues to the next iteration to forecast the subse-

quent period. This process is repeated until all periods for all items in the test data are predicted.

Willemain’s Bootstrapping Method (WSS)

Willemain’s bootstrapping methodology (Willemain et al., 2004) commences by converting

the training data into a binary format, where the absence of demand is denoted by 0, while

periods exhibiting positive demand are represented by 1. The method proceeds with the com-

putation of the transition probability matrix, which characterizes the likelihood of the series

transitioning between distinct demand states. In the case of ts.12, the transition probabilities

can be summarized as follows: If the preceding demand was zero, there is a 35.7% probability

that the subsequent demand will also be zero, and a 64.3% probability of positive demand. If

the preceding demand was positive, there is a 33.3% probability of a demand-free period and
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a 66.7% probability of another positive demand. Utilizing this transition matrix, a sequence

comprising zeroes and non-zeroes is generated to cover the forecast horizon, which corresponds

to the lead time. Subsequently, the method involves the prediction of the lead-time demand

(LTD) by leveraging the transition matrix and the last observation from the training data. This

prediction process is iteratively performed, repeated 1000 times, with the objective of obtaining

a comprehensive distribution of projected LTD values. Next, all positive demand values are

substituted with random positive demand values drawn from the training data. Subsequently,

a jittering process is applied to both the predicted and substituted values, simulating natural

variations in demand. Consecutively, the predicted and jittered values are accumulated over the

forecast horizon, leading to a singular LTD value. Lastly, the mean and standard deviation of

the ensemble of LTD values is derived.

Multi-Layer Perceptron (MLP)

The initial step in the neural network approach involves normalizing the data within the

range of 0 to 1 according to the equation (3.5). It is worth noting that this normalization pro-

cess is the same across all ML methods employed. Next, a rolling window approach is applied to

the training data, as suggested by Haan (2021b) and Smyl (2020), a window size of 5 periods as

input is selected for several reasons, such as it provides sufficient information for ML methods to

capture underlying dependencies, but choosing a larger window could lead to underperformance

of the methods. Thus, the first 5 periods of the training data are saved as input data, while the

6th period serves as the first output data point. The decision to have an output window equal

to 1 is not only due to matching the lead time but also to ensure a comparison between the

MLP method and the statistical methods (Haan, 2021b). The window is then shifted by one

period, with periods 2-6 becoming the input data and period 7 as the output data. This process

continues until no additional input data is available, creating a new data set for each item. In

this new data set, the first 5 columns represent the input, while the 6th column represents the

corresponding output.

The subsequent stage involves training the NN model using the newly constructed data.

This study utilizes the MLP by comprising 6 hidden layers (size), consistent with the work con-

ducted by Haan (2021b). In order to identify the optimal values for specific hyperparameters,

as described in Chapter 3, the grid-search CV method is employed. The optimal value for the
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maximum number of iterations (maxit) is determined to be 100 from the given set of values

(100, 250, 500, 1000), which aligns with Spiliotis et al. (2020). This indicates that setting the

parameter maxit to 100 results in the lowest RMSE value. The optimal value for the learning

rate is determined to be 0.1, from the given set of values (0.01, 0.1, 0.2) and the maximum output

difference value is set to the default, which is 0. Finally, the default activation function for the

hidden layer, Act Logistics, is utilized, while for the learning function, the standard backprop-

agation method is chosen as the optimal option to estimate the network weights (learnFunc).

This decision is made after considering alternative approaches such as scaled conjugate gradient

(SCG) and weight decay backpropagation aligning with the work of Spiliotis et al. (2020). Us-

ing the identified optimal hyperparameter values, the NN model is trained, and predictions are

generated accordingly. As the final step, denormalization is applied to these predictions in order

to transform them into representative demand values. The resulting prediction values from the

MLP model can be seen in Table 5.3 for ts.12.

LightGBM

To begin the LightGBM method, the data is first adjusted to fit within the 0 to 1 range.

Next, a rolling window technique is utilized on the training data, where the initial five periods of

the training data are preserved as input, and the sixth period is taken as the output data point.

There are three hyperparameters that are optimized by the grid-search CV for this algorithm.

The learning rate (learning rate) is determined from a set of values as 0.001, 0.01, 0.05, 0.1,

and 0.5, while the maximum tree depth max depth) ranges from 20 to 100, increasing by 10.

Additionally, the maximum number of leaves for each weak learner (num leaves) ranges from 10

to 130, increasing by 10. The optimal parameter values are as follows: the learning rate is set

to 0.001, the maximum depth is set to 20, and the number of leaves is set to 20. The rest of the

parameter configurations are made according to Kailex (2020). The algorithm undergoes mul-

tiple training iterations until it achieves the minimum RMSE value. Once the model is trained,

it becomes capable of forecasting the next period based on the preceding five periods and the

process of generating subsequent period predictions continues until the forecasting horizon is

reached. Lastly, the forecasted values are denormalized and the resulting predictions can be

seen in 5.3.

The forecasted values for the last 18 periods for ts.12 with the lightGBM algorithm exhibited
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the same pattern. Through several iterations of diverse lightGBM models employing different

parameter configurations, it has been observed that training the algorithm with a single item

consistently generates identical predictions for all periods. However, when multiple items are

used, the predictions for the last 18 periods do not consistently yield the same value. Also, during

the evaluation of the forecasting accuracy performance, the occurrence of identical predictions

is not considered problematic when compared with other techniques in terms of forecasting ac-

curacy measures.

Random Forest (RF)

The initial step in the RF model is again normalizing the data within the range of 0 to

1. In a similar vein to the previous ML algorithms, the rolling window approach is employed.

Thus, the algorithm trains itself with the initial five columns, while the sixth column acts as

the corresponding output for the given input values. There are several hyperparameters that

are optimized by using the grid-search CV. The selection process involved determining the ap-

propriate number of non-pruned trees (ntree) from a set of options from 100 to 1000 increasing

by 100. Similarly, the minimum size of terminal nodes (nodesize) is chosen from alternatives

including 5, 10, 100, 250, and 500. Additionally, the number of variables randomly sampled as

potential candidates at each split (mtry) is selected from 1,2,3,4,5. These parameter choices are

in accordance with the values chosen by Spiliotis et al. (2020) in their comparative study. The

hyperparameter values that result in the most accurate predictions, in terms of RMSE, are as

follows: ntree is set to 1000, nodesize is set to 100 even though the 100, 250, and 500 provides

the equally lowest value and mtry is set to 1 since all values provide the equally lowest value for

mtry. Despite the optimal ntree value being 1000, the default value of 500 is employed due to

the excessively lengthy execution duration of the RF algorithm. Once the model is trained with

the optimal hyperparameters, it is employed to forecast the subsequent period by leveraging the

information derived from the first five periods. Consequently, the predictions are generated for

the subsequent periods until the conclusion of the forecasting horizon and they get denormalized

in a similar way. The resulting prediction values can be seen in Table 5.3 for ts.12.

Support Vector Regression (SVR)

The Support Vector Regression (SVR) model begins by normalizing the data within the range

of 0 to 1 and then employs the rolling window technique in a similar way for the training process.
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As suggested by Spiliotis et al. (2020), nu-regression is employed to enhance computational

efficiency and reduce complexity for the SVR model. The optimal values of hyperparameters

are found by the grid-search CV. During the optimization phase, the cost (C) is assigned values

of 0.001, 0.01, 0.1, 1, and 10, while the epsilon is set to 0.001, 0.01, 0.1, and 1, where the optimal

values for both are determined to be 1. The termination criterion tolerance (tolerance) is chosen

from a set of values including 0.001, 0.01, and 0.1. Additionally, the value of nu (nu) ranged

between 0.3 and 0.7. The optimal configuration for the most accurate model entails setting the

nu to 0.3 and the tolerance to 0.001. These sets of values are all in alignment with the study of

Spiliotis et al. (2020). The SVR method offers various options for the kernel function (kernel)

during the training and prediction processes. These include linear, polynomial, radial basis, and

sigmoid kernels. The polynomial kernel provides the most accurate results in terms of RMSE in

this case. When training the model with the optimal hyperparameters, it utilizes the data from

the initial five periods to forecast the subsequent period, and it again continues until the end of

the forecasting horizon, generating predictions that are subsequently denormalized in a similar

manner. The resulting prediction values can be seen in Table 5.3 for part ts.12.

5.2 Exemplary Results of Performance Measures

Once the training procedure is complete for all forecasting techniques, the predictions are gen-

erated and denormalized, yielding forecasted demand values for the ts.12 series, which are pre-

sented in Table 5.3. The table shows that each method produces 18 predictions, with the initial

row displaying the actual demand values from the last 18 periods of the part ts.12 data. The

presented table illustrates that despite the wide range of demand sizes observed in the test set of

ts.12, ranging from 0 to 23, the predicted demand values derived from all the methods employed

in this paper exhibit a narrower range of variations, generally falling within the range of 5 to

9. Hereafter, the performance of all the forecasting methods will be examined according to two

different aspects: initially forecast accuracy measures and subsequently stock control measures.

Exemplary Results of Forecasting Accuracy Measures

The forecasting accuracy measures, including Mean Absolute Scaled Error (MASE), and

Root Mean Squared Scaled Error (RMSSE), are utilized to conduct a comparative analysis for

this study. The results, presented in Table 5.4, reveal the performance of each method in relation

to these metrics. A lower value indicates a better performance for both of the measures. The
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Methods
Period

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ts.12 10 11 0 2 23 0 11 11 17 2 8 5 0 13 6 6 4 9
Croston 8.04 8.09 8.33 8.20 6.53 8.36 8.36 7.71 8.09 8.90 8.21 8.18 7.78 7.75 7.56 7.39 7.20 6.88
SES 7.40 7.78 8.24 7.05 6.31 8.54 7.46 7.90 8.28 9.11 8.34 8.30 7.96 7.14 7.74 7.58 7.43 7.11
SBA 8.03 8.12 7.94 7.94 6.12 7.70 7.70 7.13 7.45 8.10 7.86 7.89 7.70 7.65 7.30 7.27 7.20 7.07
TSB 7.78 8.13 8.56 7.18 6.60 8.60 7.46 7.91 8.31 9.06 8.45 8.44 8.14 7.27 7.81 7.69 7.56 7.26
WSS 7.82 7.83 8.27 7.51 7.99 8.22 7.55 7.79 8.06 7.77 8.14 8.16 8.07 7.68 8.09 7.93 8.02 8.70
MLP 7.55 7.55 7.52 7.57 7.64 7.49 7.51 7.60 7.44 7.55 7.49 7.60 7.54 7.66 7.55 7.52 7.59 7.55
LightGBM 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51
RF 5.16 7.14 8.29 8.46 7.51 6.79 8.26 9.42 3.99 9.14 5.09 5.74 4.13 9.07 8.82 8.32 8.87 4.58
SVR 7.50 7.53 7.50 7.50 7.54 7.54 7.48 7.56 7.32 7.81 7.44 7.68 7.45 7.59 7.49 7.47 7.50 7.46

Table 5.3: Comparison of Test Set of Part ts.12 and Predicted Demand Values

method that performs the best for each metric is highlighted in bold fonts. In terms of MASE and

RMSSE, the MLP method outperforms the others by providing the lowest values for ts.12 series.

Methods MASE RMSSE

Croston 0.708 2.377
SES 0.725 2.403
SBA 0.702 2.375
TSB 0.724 2.398
WSS 0.693 2.286
MLP 0.686 2.262
LightGBM 0.687 2.267
RF 0.752 2.440
SVR 0.691 2.276

Table 5.4: Forecasting Accuracy Measures Exemplary Results of Part ts.12

Exemplary Results of Stock Control Measures

The subsequent assessment focuses on the stock control performance of each method. Ini-

tially, the predictions made by each method are used to determine the base stock levels R for

each target fill rate. Secondly, the calculation of holding costs and achieved fill rates associated

with these base stock levels follows. Figure 5.1 presents the results corresponding to each target

fill rate based on the predictions made for ts.12. It is essential to highlight that these tradeoff

curves are specifically for a single item (ts.12). It is observed that the achieved fill rate surpasses

the target fill rate for all utilized methods, which reveals that these methods tend to overestimate

the anticipated demand quantity and in the end, this leads to too much stock in hand. Among

all Random Forest (RF) tends to overestimate the anticipated demand the least with the lowest

achieved fill rates for each target fill rate, and it is followed by the LightGBM model. Regarding

the inventory holding costs associated with each achieved fill rate, all methods exhibit a similar

trend of gradual cost increase as the fill rates increase.
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(a) (b)

Figure 5.1: Tradeoff Curves of Stock Control Performance Measures for ts.12 Predictions

5.3 Main Results

According to the configurations outlined in the exemplary results section above, all the forecast-

ing methods are utilized on every data set. To be precise, a total of 9 forecasting techniques are

applied to 11 distinct data sets. Furthermore, the execution times for each method applied on

all data sets are measured and recorded in Table 5.5, allowing for an assessment of their ease

of implementation, which will be discussed in the next chapter. For the execution times, the

elapsed time which means the total duration elapsed in real life, is used. However, it is worth

noting that the running time of these methods is contingent upon the computational capabil-

ities of the computer employed, and all the computations for all methods, except the TSB, of

this paper have been conducted using a standard Windows computer with Intel(R) Core(TM)

i7-8550U CPU @ 1.80GHz, 8GB RAM. *For the TSB method, the computer used has the fol-

lowing configurations, Apple M2 Pro, 16GB RAM. Hereafter, in this main results section, the

discussion will begin with the level of forecasting accuracy performance achieved, and continue

with evaluating the results of the inventory control performance for each model.

Forecasting Accuracy Main Results

By employing all the methods on full data sets, the comprehensive outcomes of forecasting

accuracy are derived, relying upon the chosen accuracy metrics, namely MASE and RMSSE.

Table 5.7 provides these accuracy findings for each method and for all data sets. Additionally,

in the last column, the average Percentage Better score is computed following the guidelines

outlined in Pinçe et al. (2021). This metric quantifies the frequency with which a particular
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Method Total Elapsed Run Time (min) Total Elapsed per Item (sec)

SES 9.62 0.010
Croston 114.41 0.115
SBA 135.63 0.137
TSB* 36.20 0.037
WSS 1857.82 1.875
MLP 318.70 0.322
LightGBM 92.12 0.093
RF 1402.38 1.415
SVR 393.53 0.397

Total 4360.41 = 72.67 hours

*Computer configurations are different for TSB, as explained in the text.

Table 5.5: Total Elapsed Run Time for Each Forecasting Method on All Data Sets

method outperformed another, expressed as a percentage of the total number of comparisons

made.

To begin with the simulated data sets, SBA exhibits superior performance over all other

methods in terms of both metrics when considering the SIM3 data set, which showcases a smooth

demand pattern. Furthermore, in the case of the SIM1 data set, which presents an erratic de-

mand pattern, SBA outperforms other methods in terms of the MASE metric. Conversely, when

analyzing SIM2 and SIM4 data sets, characterized by mainly lumpy and intermittent demand

patterns respectively, MLP demonstrates a superior performance across both metrics. In addi-

tion, it provides the most accurate model in terms of RMSSE with SIM1 data.

For the initial versions of the industrial data sets (AUTO, MAN, BRAF, and OIL), where

no outlier detection and handling method is implemented, three methods exhibit superior per-

formance. Primarily, for the AUTO data set, SBA surpasses other methods, except for SES,

in terms of both metrics, by demonstrating higher accuracy values. Furthermore, SES exhibits

superior performance specifically for the MAN data set when assessed using the RMSSE met-

ric. Lastly, the SVR algorithm emerges as the most effective method across both metrics for

the BRAF and OIL data sets. Additionally, when considering the MAN data set, SVR out-

performs other methods in terms of the MASE metric. Despite benchmarking methods being

specifically tailored to address intermittent demand, it can be seen that SVR displays a superior

performance for most of the real data sets characterized as intermittent and lumpy with the

incorporation of hyper-parameter optimization.
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For the second version of real data sets (referred to as MAN2, BRAF2, OIL2), wherein

the outlier detection and mean imputation for outlier handling are implemented, SVR emerges

as the top-performing technique for both the BRAF2 and OIL2 data sets, which both exhibit

mainly lumpy and intermittent pattern. However, in the case of the MAN2 data that is mainly

lumpy, SBA and SES exhibit better performance than other methods in terms of the MASE and

RMSSE metrics, respectively. Moreover, an assessment is carried out, as presented in Table 5.6,

to determine whether the application of an outlier detection and handling procedure has led to

enhanced accuracy for each method. The evaluation compares the forecasting performance of

each method with the two different versions of the data sets, for example, MAN is compared

with MAN2, and BRAF is compared with BRAF2. If one outperforms the other, it is indicated

with a ”check” symbol. Consequently, all methods with the exception of WSS and SVR for

the MAN and BRAF data sets, have demonstrated improvements when detected outliers are

handled by the mean imputation, thus the MAN2 and BRAF2 data sets exhibit better per-

formance than the first versions of themselves respectively across both measures. Specifically,

the WSS method does not exhibit improvements in terms of the MASE metric for the same

data sets, while MAN2 does not display a higher accuracy for the SVR method in terms of the

MASE. For the comparison of the OIL and OIL2 data sets, only three methods, specifically

MLP, LightGBM, and RF, demonstrate improved performance based on the RMSSE metric.

It is shown that the OIL2 data set has lower RMSSE values with these methods, indicating

enhanced accuracy in comparison to the OIL data set, however, when considering the MASE

metric, no method demonstrates any improvements in accuracy when the outlier detection and

handling procedure is applied to the OIL data set.

Lastly, the Percentage Better results are computed by comparing the performance of each

method with the rest of the given methods for each metric and data set. This comparison is based

on the achieved forecasting accuracy and is conducted column-wise. Subsequently, row-wise av-

erages are calculated to evaluate the overall performance of each method. SBA outperforms the

other methods on average across both measures. Conversely, the LightGBM method consistently

exhibits the poorest performance overall. It is noteworthy to state that these average percentage

better results are consistent with the conclusions drawn by Haan (2021b) despite the inclusion

of two other ML methods in this study.
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Method Measure
Data Set

MAN MAN2 BRAF BRAF2 OIL OIL2

SES
MASE ✓ ✓ ✓
RMSSE ✓ ✓ ✓

Croston
MASE ✓ ✓ ✓
RMSSE ✓ ✓ ✓

SBA
MASE ✓ ✓ ✓
RMSSE ✓ ✓ ✓

TSB
MASE ✓ ✓ ✓
RMSSE ✓ ✓ ✓

WSS
MASE ✓ ✓ ✓
RMSSE ✓ ✓ ✓

MLP
MASE ✓ ✓ ✓
RMSSE ✓ ✓ ✓

LightGBM
MASE ✓ ✓ ✓
RMSSE ✓ ✓ ✓

RF
MASE ✓ ✓ ✓
RMSSE ✓ ✓ ✓

SVR
MASE ✓ ✓ ✓
RMSSE ✓ ✓ ✓

Table 5.6: Forecasting Performance Comparison for Two Different Versions of Data Sets

Inventory Control Performance Main Results

An evaluation of inventory performance is conducted, and to illustrate the performance level,

trade-off curves are constructed individually for each data set. These curves present two distinct

trade-offs. Firstly, they demonstrate the trade-off between the average achieved fill rates over

all items by the method and the associated holding costs, denoted by label (a). Secondly, the

other trade-off curve illustrates the trade-off between the achieved fill rate and the predeter-

mined target fill rate, labeled as (b). A higher fill rate results in increased holding costs, with

the figures reaching their maximum at the 99.99% fill rate level, which approximates a 100% fill

rate for the purposes of this study. In addition, the second curves display a gradual rise in the

achieved fill rate until it reaches the 99.99% target fill rate once again. The separate analysis of

trade-off curves is performed to evaluate the performance of the employed forecasting method

within the specific characteristics of each data set. It is worth acknowledging that the trade-off

curves of some data sets, which yield similar results, are placed in the appendix. To better

capture the inventory control performances of different methods for each data set, Table 5.8 has

been generated, which shows the ranking of average achieved fill rate values over all target fill

rates of all methods for each data set, from 1 to 9, 1 being the highest fill rate and 9 being the

lowest one. It can be seen that the WSS achieves the highest average fill rates in 10 out of 11

data sets.
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Method Measure
Data Set Percentage

Better (Avg)SIM1 SIM2 SIM3 SIM4 AUTO MAN BRAF OIL MAN2 BRAF2 OIL2

SES
MASE 0.673 1.028 0.488 0.783 0.780 2.335 1.996 1.410 1.703 1.966 1.836 71.59%
RMSSE 2.722 3.358 1.883 2.424 1.710 5.215 3.283 1.404 4.046 3.257 1.651 72.73%

Croston
MASE 0.673 1.027 0.487 0.780 0.788 2.499 2.080 1.799 1.667 2.069 2.158 64.77%
RMSSE 2.722 3.346 1.878 2.412 1.721 5.329 3.300 1.651 4.071 3.270 1.752 57.95%

SBA
MASE 0.664 1.012 0.484 0.778 0.777 2.439 2.001 1.659 1.664 1.974 2.058 80.68%
RMSSE 2.712 3.337 1.874 2.409 1.710 5.304 3.289 1.622 4.070 3.254 1.729 76.14%

TSB
MASE 0.675 1.032 0.490 0.785 0.792 2.321 1.956 1.420 1.698 1.904 5.591 60.23%
RMSSE 2.731 3.363 1.887 2.430 1.728 5.223 3.287 1.471 4.053 3.254 2.522 52.27%

WSS
MASE 0.689 1.043 0.498 0.783 0.906 2.537 2.307 2.046 3.408 2.341 2.682 20.45%
RMSSE 2.737 3.353 1.889 2.420 1.875 5.319 3.376 1.536 4.347 3.344 1.831 31.82%

MLP
MASE 0.669 0.999 0.518 0.773 0.820 3.055 2.274 1.879 2.307 2.264 2.436 46.59%
RMSSE 2.701 3.308 2.069 2.386 1.735 5.468 3.347 1.976 4.296 3.330 1.774 47.73%

LightGBM
MASE 0.896 1.367 0.714 0.994 1.156 3.258 2.389 1.964 2.493 2.381 2.376 5.68%
RMSSE 3.561 4.421 2.756 3.162 2.652 6.369 3.464 1.992 5.231 3.459 1.800 2.27%

RF
MASE 0.682 1.039 0.491 0.777 0.808 2.926 2.327 1.931 1.905 2.324 2.337 40.91%
RMSSE 2.712 3.338 1.876 2.394 1.724 5.500 3.380 1.944 4.260 3.340 1.759 51.14%

SVR
MASE 0.694 1.075 0.510 0.815 0.840 1.953 1.174 0.767 1.988 1.147 1.095 56.82%
RMSSE 2.730 3.365 2.031 2.515 1.768 5.391 3.254 1.295 4.281 3.229 1.571 53.41%

Table 5.7: Forecasting Accuracy Measure Results for Each Method and Each Data Set

Data
Methods

Croston SES SBA TSB WSS MLP LightGBM RF SVR

SIM1 5 4 8 3 1 9 7 6 2
SIM2 4 5 7 3 1 9 8 6 2
SIM3 3 4 6 2 1 8 9 5 7
SIM4 4 5 7 3 1 9 8 6 2
AUTO 4 6 8 3 1 2 9 5 7
MAN 3 2 5 4 1 8 7 6 9
BRAF 2 5 6 8 1 7 4 3 9
OIL 2 3 4 5 1 8 7 6 9
MAN2 4 3 5 2 1 7 8 6 9
BRAF2 2 7 6 8 1 5 4 3 9
OIL2 3 4 5 1 2 6 8 7 9

Table 5.8: Average Achieved Fill Rate Ranking over All Target Fill Rates for Each Data Set

a. Stock Control Performance of SIM1

The trade-off curves for the SIM1 data set are given in Figure 5.2. The figure’s part (a)

demonstrates closely clustered outcomes across all methods for inventory holding costs. Part

(b) states that the WSS method achieves the highest fill rate across all target fill rate levels.

The MLP method exhibits the lowest achieved fill rates for each target fill rate, followed by

the SBA method. However, as the target fill rate increases to 99%, the SVR method achieved

higher fill rates, while the MLP method continues to perform lower achieved fill rates for every

target fill rate. Overall, due to fluctuations in performance, it is not possible to identify a single

best-performing approach among the methods for the SIM1 data. In terms of forecasting accu-

racy, the SBA and MLP methods demonstrated superiority based on the MASE and RMSSE
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measures, respectively. These findings of the performance comparisons prove that relying solely

on forecasting accuracy measures for practical relevance is not sufficient.

(a) (b)

Figure 5.2: Tradeoff Curves of Stock Control Performance Measures for SIM1 Predictions

a. Stock Control Performance of SIM2

The SIM2 data set follows mainly a lumpy demand pattern. Trade-off curves for the SIM2

data are given in the appendix in Figure 1 since it presents similar outcomes to the SIM1 data.

The first trade-off curve (part a) demonstrates clustered outcomes across all methods when as-

sessing inventory holding costs. In part (b), the WSS method consistently achieves the highest

fill rates with a big margin at every target fill rate and is followed by the SVR method. Con-

versely, the MLP exhibits the lowest achieved fill rates across all target fill rates and is followed

by the LightGBM. The inclusion of zero values and the increased variability in demand pattern,

when compared to the SIM1 data set, does not appear to have significantly impacted the stock

control performance of the WSS and MLP methods for both SIM1 and SIM2 data sets. In order

to address the first research question, although both demonstrate similar outcomes in terms

of stock control, their demand patterns do not show similar characteristics. Lastly, the MLP

method demonstrates superior performance in terms of the MASE and RMSSE measures, the

current findings reveal its deficiency in achieving high fill rates across all target fill rates.

a. Stock Control Performance of SIM3

In Figure 5.3 below, the trade-off curves for the SIM3 data set are given. In part (a), various

methods are relatively similar in terms of the holding costs and the achieved fill rates. In the

second curve, there is a distinct segregation, which illustrates that the WSS achieves the highest

fill rates for each target fill rate. The TSB and Croston methods follow closely as second and
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third respectively, while the remaining methods are grouped closely. Conversely, the LightGBM

shows the lowest achieved fill rates for each target fill rate and is followed by the MLP and the

SVR respectively, which means they overestimate the anticipated demand to a lesser extent.

The presence of a smooth pattern, indicating a limited degree of demand variability and low

occurrence of intermittency, appears to have influenced the stock control performances of the

TSB, Croston, LightGBM, and SVR methods. The superior performance of SBA in terms of

forecasting accuracy for the SIM3 data conflicts with the inventory control outcomes. This in-

dicates that these two types of measures hold independent significance to determine the most

suitable method.

(a) (b)

Figure 5.3: Tradeoff Curves of Stock Control Performance Measures for SIM3 Predictions

a. Stock Control Performance of SIM4

The trade-off curves for the SIM4 data showcase similar outcomes to the SIM2 data, thus the

curves are given in Figure 2 in the appendix. In part (a), all the methods demonstrate a minor

disparity in terms of the holding costs for achieved fill rates. In part (b), the WSS method shows

again the highest achieved fill rates for each target fill rate. Similarly to the SIM2 results, the

MLP provides the lowest achieved fill rates. Although SIM2 and SIM4 data sets’ stock control

performances are in alignment, their demand characteristics show different patterns (lumpy and

intermittent respectively). Thus, there is no consistent behavior in the methods’ performances

to indicate which method is best for which type of data in this case. In terms of forecasting

accuracy, the MLP method had superior performance across all metrics. However, this outcome

does not correlate with the inventory control performance in this case.

a. Stock Control Performance of AUTO
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The AUTO data set’s trade-off curves show similarity to the inventory control performance

of the SIM3 data, thus these curves are given in Figure 3 in the appendix. In part (a), the Light-

GBM method exhibits the worst performance in terms of high holding costs for every achieved

fill rate, while the remaining methods display relatively similar performance. In part (b), the

LightGBM achieves the lowest achieved fill rates across all target fill rates similar to the SIM3

data set. In contrast, the WSS method demonstrates higher achieved fill rates with each target

fill rate, leading to overestimating the demand to a bigger extent. Since the LightGBM achieves

the lowest fill rates and higher holding costs for each target fill rate, it shows the poorest per-

formance. Thus, in addressing the first research question, it becomes evident that despite the

predominantly smooth demand patterns in both the AUTO and SIM3 data sets, no consistent

performance of the methods emerges in terms of inventory control. Regarding the forecasting

accuracy results, the SBA model emerged as the top-performing method based on both metrics.

However, this outcome contradicts the stock control performance results of the SIM3 data.

a. Stock Control Performance of MAN

In Figure 5.4 below, the trade-off curves for the MAN data set are given. The first trade-off

curve reveals a consistent pattern where the utilization of the SVR method is at first linked to

lower holding costs at the expense of lower achieved fill rates. This trend is also evident in the

second curve, where the SVR method occupies the lowest position compared to other methods,

indicating its tendency to achieve lower fill rates for each target fill rate. The remaining meth-

ods, however, are closely grouped together in part (a). In contrast, the WSS model occupies the

highest position on the curve, indicating its ability to achieve higher fill rates for every target

fill rate and having average inventory holding costs for each achieved fill rate. These findings

are in contrast with the forecasting accuracy metrics, as the SVR and SES models provided the

highest levels of accuracy in terms of the MASE and RMSSE measures, respectively.

a. Stock Control Performance of BRAF

The BRAF data set consists of mainly intermittent and lumpy items, demonstrating a high

mean duration between demands (p:11.14) along with both substantially and slightly fluctu-

ating demand sizes. The trade-off curves of the BRAF data exhibit similarities to the MAN

data set and thus are placed in the appendix in Figure 4, which is as expected since both of

them showcase similar demand characteristics. In part (a), all the methods are clustered close
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(a) (b)

Figure 5.4: Tradeoff Curves of Stock Control Performance Measures for MAN Predictions

to each other except the SVR which is linked to the lowest holding costs for every achieved fill

rate. In part (b) the WSS is connected to higher achieved fill rates for every target fill rate,

which means overestimating the anticipated demand to a higher extent. Conversely, the SVR

overestimates the demand to a lesser extent by achieving the lowest achieved fill rates for each

target fill rate, but still overpassing every target rate. In addressing the first research question,

it can be concluded that for mainly lumpy and intermittent demand patterns, the SVR method

shows similar inventory control performance. Lastly, these findings do not fully align with the

forecasting accuracy results, where the SVR was the best-performing method for all accuracy

measures.

a. Stock Control Performance of OIL

In Figure 5.5 below, the trade-off curves for the OIL data set are given. In both trade-off

curves, a clearer separation of the method performances can be seen. It is shown that the WSS

method achieves lower holding costs with higher achieved fill rates, also achieving higher fill

rates for each target fill rate. Thus, it outperforms other methods in terms of inventory control

for this data set. On the other hand, the SVR is associated with lower achieved fill rates for rel-

atively high holding costs. It is followed by the MLP method, which exhibits lower achieved fill

rates for each target fill rate and higher holding costs for each achieved fill rate. Consequently,

the WSS method emerges as the superior approach, while the SVR and MLP methods show the

poorest performances among other utilized methods. Therefore, the superior performance of the

more straightforward methods shows that in data sets characterized by high intermittency and

lumpiness, the straightforward estimation approach tends to outperform the understanding of

underlying dependencies offered by ML techniques, specifically the SVR and the MLP methods.
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a. Stock Control Performance of MAN2

Transitioning to the second version of industrial data sets, the MAN2 data set is character-

ized by mainly lumpy behavior. The trade-off curves for the MAN2 data set are given in Figure 5

in the appendix since the trade-off curves of both the MAN and MAN2 data sets show similarity.

It can be seen from the curves that while the WSS method outperforms all techniques, achieving

higher fill rates and lower inventory holding costs for each target fill rate, the SVR method is

the poorest-performing one as achieving lower fill rates and higher inventory holding costs for

each target fill rate. Although the MAN and MAN2 data sets have similar demand patterns

(both are mainly lumpy), the WSS and the SVR methods’ performances showcase differences

in terms of inventory control. When comparing the forecasting accuracy, the SBA and SES

methods outperform others in terms of both measures. Thus, there is no alignment between the

findings of forecasting accuracy and inventory control performance for the MAN2 data set.

(a) (b)

Figure 5.5: Tradeoff Curves of Stock Control Performance Measures for OIL Predictions

a. Stock Control Performance of BRAF2

Figure 6 in the appendix presents the trade-off curves of the BRAF2 data, which can be

described as mainly lumpy. It can be seen that the WSS method achieves higher fill rates to

be associated with higher holding costs for every target fill rate. In addition, the SVR method

exhibits the lowest holding costs to be associated with the lowest achieved fill rates across all

target fill rates. Taking into account the implementation of the outlier detection and handling

procedure, resulting in an increased CV 2 and a decreased p value, it appears that this proce-

dure has not had a substantial impact on the outcomes of inventory control performance. In

addressing the first research question, when there are mainly intermittent and lumpy items, the
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inventory control performance of the SVR method yields similar results. Lastly, the stock control

performance findings contradict the forecasting accuracy results of the BRAF2 data set, which

displayed that the SVR method outperformed all the other methods for both accuracy measures.

a. Stock Control Performance of OIL2

Lastly, in Figure 7 in the appendix, the trade-off curves for the OIL2 data set are given. The

OIL2 data set is categorized as both lumpy with 69% and intermittent with 31%. There has been

a decrease in the intermittent pattern and an increase in the lumpy pattern when transitioning

from the OIL data set to the OIL2 data set. The TSB method achieves the highest holding

costs to be associated with the highest achieved fill rates for each target fill rate for the OIL2

data set. On the other hand, the SVR method shows the lowest holding costs that are linked

with the lowest achieved fill rates for every target fill rate. It can be concluded that the SVR

method’s inventory performance results yield similar outcomes when data sets exhibit mainly

intermittent and lumpy demand patterns. Lastly, the stock control performance findings again

contradict the forecasting accuracy results, which displayed that the SVR method outperformed

all the other methods for both accuracy measures for the OIL2 data set.
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Chapter 6

Conclusion and Discussion

In this section, firstly a series of findings will be introduced and discussed thoroughly. Next,

these findings will be compared with the results reported in the existing academic literature.

After presenting all of the findings, a connection will be established between the findings and the

research questions that are listed in the paper’s introduction. Lastly, a comprehensive conclusion

will be provided, accompanied by discussion points on the present paper and recommendations

for future research endeavors.

6.1 Findings

Finding 1: The implementation feasibility of the utilized and evaluated methods varies in terms

of the overall execution duration and the level of expertise necessary.

The execution times for each method are measured and recorded in Table 5.5, in terms of the

total elapsed run time from the beginning of the execution until the end in minutes and the total

elapsed run time per item in seconds. As can be seen, the SES exhibited the shortest execution

duration, whereas the WSS displayed the longest, primarily attributable to the iterative nature

of the bootstrapping technique for 1000 times in this case. The RF model, surprisingly for a

machine learning approach, exhibits the second longest execution duration. RF is a methodol-

ogy that entails the consolidation of numerous complex decision trees to address the challenge

of overfitting associated with individual decision trees. The long execution duration can be

attributed to this consolidation process, specifically in our case, involving 500 decision trees, to

yield a singular result. The remaining methods showcase an average execution time of 6.5 hours

or less for all data sets. However, when it comes to the level of expertise needed for the implemen-

tation of the methods, there are major differences. First of all, the Croston, SES, SBA, and TSB

methods are extensively documented and possess a straightforward application process. On the

other hand, the WSS method, despite being well-documented, necessitates strong mathematical

knowledge such as Markov chains, thus it makes this method harder to implement. Secondly,
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all the ML methods offer various configurations for their hyperparameters, signifying that while

the methods are relatively easy to implement, achieving optimal performance is challenging.

In the case of all machine learning (ML) methods, the hyperparameter optimization process is

carried out, leading to the generation of multiple versions of each model. These versions are

subsequently compared based on the root mean square error (RMSE) metric. Therefore, the

training process for hyperparameter optimization requires a profound understanding of data

science, highlighting the requirement for a high level of knowledge in this domain. Moreover,

the implementation of the LightGBM method is also challenging due to its limited availability of

implementation examples in comparison to other methods. As a result, both the total execution

duration and the required level of expertise should play a pivotal role in the selection of a method.

Finding 2: SBA outperforms the other methods on average across both accuracy measures.

Conversely, the LightGBM method consistently exhibits the poorest performance overall accord-

ing to the average Percentage Better score.

In Table 5.7, the SBA method demonstrated an overall superior forecasting accuracy, achieving

the highest average Percentage Better scores for both accuracy measures. Furthermore, the SBA

method exhibited favorable characteristics in terms of ease of implementation and average total

execution duration compared to the other methods. Therefore, it holds significant potential as

an overall method for practical applications to be prioritized when forecasting accuracy is the

key metric. Nevertheless, these favorable results in forecasting accuracy did not extend to the

inventory control assessment for the SBA method. Conversely, the LightGBM method exhibited

the lowest performance according to the average Percentage Better score, highlighting its poor

performance when accurate forecasts are required, even with one-SKU based hyper-parameter

optimization implementation. Lastly, it should be noted that this finding is in full alignment

with the results of Haan (2021b).

Finding 3: The process of outlier detection and handling has shown enhancements in the

results of forecasting accuracy. However, this process did not lead to significant changes in the

performance of inventory control.

Except for the WSS and SVR methods, all other approaches demonstrate improvements when

transitioning from MAN and BRAF to their second versions respectively for both forecasting

accuracy measures when outliers are handled using mean imputation. It is worth noting that
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the WSS method performs poorly in terms of the MASE metric for both data sets, while SVR

exhibits lower accuracy in terms of only the MASE measure for the MAN2 data set. Regarding

the OIL2 data set, only 4 out of 9 methods (namely SES, MLP, LightGBM, and RF methods)

show improved performance in the RMSSE metric. However, none of the methods demonstrate

enhanced accuracy when considering the MASE measure. As a result, in the context of three

distinct data sets for both measures as well as nine distinct techniques, there has been an en-

hancement in the accuracy of forecasting outcomes in 46 out of 63 instances, thereby yielding a

noteworthy improvement rate of 73.02%. On the other hand, when considering the application

of the outlier detection and handling procedure to the MAN2, BRAF2, and OIL2 data sets,

which led to changes in CV 2 and p values, it is evident that this procedure has not significantly

influenced the results of inventory control performance. The visualizations of both trade-off

curves reveal that the initial versions of the data sets (MAN, BRAF, and OIL) closely resemble

their respective second versions (MAN2, BRAF2, OIL2). This can be attributed to the fact

that both the original data sets (MAN, BRAF, OIL) and their revised versions predominantly

consist of lumpy and intermittent items.

Finding 4: Willemain’s method (WSS) exhibits higher achieved fill rates for each target

fill rate across almost all examined data sets and the Support Vector Regression (SVR) exhibits

lower achieved fill rates.

The WSS emerges as showing the highest achieved fill rates for all target fill rates in 10 out of

11 data sets. However, consistently surpassing the target fill rates results in an overestimation

of the anticipated demand, leading to an excess stock in hand for the majority of scenarios.

Consequently, achieving higher fill rates by this means has not substantiated any superiority

over alternate methodologies. This way of behavior in inventory control can be attributed to

its unique approach. It assesses the likelihood of the next demand occurrence being positive or

zero, thus acquiring knowledge from the available data. Thus, as mentioned in Haan (2021b),

exploring the potential of combining this method’s approach with a more accurate forecasting

technique for estimating expected demand sizes could be a promising avenue for future research.

Conversely, the SVR method exhibits the lowest achieved fill rates for each target fill rate in

6 (all industrial) out of 11 data sets. Despite its effectiveness in terms of accuracy measures,

as evidenced by its performance in 4 out of 7 industrial data sets with hyper-parameter opti-

mization, the SVR method fails to deliver superiority in terms of inventory control. When the
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hyper parameter optimization process is conducted for all the ML methods, different parameters

leading to different models are subsequently compared based on only the RMSE metric. Thus,

there exists a potential avenue for future investigation, wherein the hyper-parameter optimiza-

tion process integrates an inventory control measure to augment the performance of the SVR

method for inventory management applications. This approach may exhibit promising results

for enhancing the methods’ effectiveness, specifically in terms of improving inventory control

performance.

6.2 Comparison of the Findings with the Existing Body of Lit-

erature

Pinçe et al. (2021) Review

This paper’s literature review is based on the framework of Pinçe et al. (2021), which aims

to provide a comprehensive summary of the latest spare parts demand forecasting literature

by analyzing the related studies’ findings. Thus, their framework is being revisited to com-

pare the outcomes of this research paper with the corresponding findings of their study. In the

framework, they utilize 56 papers from the literature where they systematically examined and

quantified the outcomes of those papers in their review without actually implementing them.

Their analysis initiates by comparing Croston and SBA as the two benchmark methods. The

findings indicate that in terms of accuracy measures, SBA outperforms Croston approximately

87% of the time. For this research paper, there are a total of 22 comparisons between Croston

and SBA, and SBA outperforms Croston 100% of the time. Pinçe et al. (2021) noted in their

analysis that the sole instance where Croston outperformed SBA was observed when applied to

a data set from the fashion industry. This could explain the higher percentage of superiority ob-

served in the present paper’s comparison since exclusively spare parts demand data was utilized.

On the other hand, when considering inventory performance measures as the primary con-

cern, the results are indicated as often inconclusive by Pinçe et al. (2021). In this study, with

the stock control performance results given in the appendix for Croston and SBA, it is evi-

dent that Croston consistently attains lower fill rates across all target fill rates. However, the

disparities observed are of such negligible magnitude that one could interpret these findings as

inconclusive similar to Pinçe et al. (2021). The authors explain this dissimilarity in stock control
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performance by the inherent bias present in Croston. As Croston exhibits a positive bias, it con-

sistently yields higher average inventory levels and service levels compared to the SBA method

(Pinçe et al., 2021). Due to the utilization of distinct aggregated groups of methods that are

not employed within the scope of this paper, it is not feasible to conduct a further comparison

with the quantitative results presented by Pinçe et al. (2021).

Spiliotis et al. (2020) Review

The framework proposed by Pinçe et al. (2021) primarily concentrates on Neural Network

(NN) techniques within the domain of machine learning (ML), presenting a limitation in terms

of methodological diversity. To address this limitation, our paper incorporates a comparative

analysis study conducted by Spiliotis et al. (2020), which encompasses 11 statistical and 7 ML

methods. The methodology employed in our study not only aligns with the selection of methods

utilized in their research but also incorporates the process of hyper-parameter optimization,

whereby parameter values are chosen in accordance with them. However, some points from the

study of Spiliotis et al. (2020) do not align with our paper, which can be listed as first they did

not take into account inventory control performance, and second, they applied the methods to

a single data set, which was predominantly characterized as smooth and erratic, similar to the

demand patterns of SIM1, SIM3, and AUTO data sets of our paper.

In their study, four ML techniques, namely Gradient Boosting Tree (GBT), RF, SVR, and

kNN Regression (kNNR) stood out as the top-performing methods when evaluated using the

RMSSE metric. Considering the similar hyper-parameter optimization approach, while the RF

did not exhibit exceptional performance in our paper, the SVR model’s results align with their

findings as it outperforms other methods utilized in terms of the RMSSE across a majority of

the industrial data sets. Nevertheless, their investigation revealed that the forecasting accuracy

of the MLP approach, as evaluated by the (RMSSE), was inferior to that of the statistical

methods employed. This partially contradicts this paper’s findings, since, in 3 out of 4 artificial

data sets, the MLP is superior to the statistical methods for both measures. Moreover, SBA

was identified as the most accurate statistical method in terms of forecasting accuracy by their

study. This finding aligns with the results of our study, where SBA consistently demonstrates

superior performance. Finally, the researchers emphasize that on average, ML methods require

four times longer computational time compared to other methods, which can also be observed

70



in and aligns with our results.

6.3 Conclusion

This section aims to establish a link between the previously discussed findings and the two

research questions addressed in this paper. The first research question is as follows: ” Which

spare part demand forecasting method is best for which type of data?”

This paper evaluates multiple methods, specifically 9 different methods, as well as multiple

types of methods, including parametric, bootstrapping, and machine learning approaches. The

selection of a suitable method based on the data type exhibits variability as established by the

main results and the comprehensive literature review. The findings indicate that none of these

methods consistently outperformed others in terms of both forecasting accuracy and inventory

control. Specifically, the SBA method, which is parametric, demonstrated the highest forecast-

ing accuracy, while for the inventory control performance, the superior method is not consistent

over all data sets. Consequently, to answer which method is best for which type of data, there

has been no consistency of superiority to decide which type of method is best for which type of

data over all data sets.

The second research question of this study is as follows: ” Does the performance of spare

part demand forecasting method depend on the data pre-processing?

Outlier detection and handling as a data pre-processing procedure has shown enhancements

in the results of forecasting accuracy. Specifically, with the exception of the WSS and SVR, all

other approaches exhibit improvements in both the MAN2 and BRAF2 data sets when outliers

are handled through mean imputation. However, the WSS method underperforms after outlier

detection handling in terms of the MASE metric for both data sets, while SVR shows lower

accuracy in the MASE measure for only the MAN2 data set. For the OIL2 data, only MLP,

LightGBM, and RF methods demonstrate enhanced performance after the outlier detection and

handling process for the RMSSE metric among the 9 methods evaluated, however, none of the

methods exhibit improved accuracy when considering the MASE measure. On the other hand,

this outlier detection and handling process did not lead to significant changes in the performance

of inventory control. The trade-off curve visualizations indicate a similarity between the initial
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versions of the data sets (MAN, BRAF, and OIL) and their respective second versions.

6.4 Discussion

In this section, several possibilities are listed to elucidate the potential directions for future re-

search and to highlight the aspects that were not included within the scope of this paper. First,

in the current approach, the hyper-parameter optimization process is carried out for all ML

methods but with a model comparison based solely on the RMSE metric. However, a potential

area for further research lies in incorporating an inventory control measure into the hyper-

parameter optimization, specifically aimed at enhancing the performances of the ML methods

in the field of inventory management applications. This approach may hold promise for improv-

ing the methods’ efficiencies for practical applications in the supply chain domain.

Lastly, there exist certain opportunities for modifying the data pre-processing choices made

in this study, as well as potential adjustments for future research to explore their implications.

One notable change would involve incorporating actual lead times instead of setting all to 1.

In addition, segmenting the data sets based on classifications, investigating demand patterns

such as seasonality or substantial trends, and incorporating installed base forecasting as also

suggested by Haan (2021b).
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APPENDIX

MARn =

n∑
i=1

|ri| (1)

ri = ŷi − i−1
i∑
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yj (2)

(a) (b)

Figure 1: Tradeoff Curves of Stock Control Performance Measures for SIM2 Predictions

(a) (b)

Figure 2: Tradeoff Curves of Stock Control Performance Measures for SIM4 Predictions
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(a) (b)

Figure 3: Tradeoff Curves of Stock Control Performance Measures for AUTO Predictions

(a) (b)

Figure 4: Tradeoff Curves of Stock Control Performance Measures for BRAF Predictions

(a) (b)

Figure 5: Tradeoff Curves of Stock Control Performance Measures for MAN2 Predictions
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(a) (b)

Figure 6: Tradeoff Curves of Stock Control Performance Measures for BRAF2 Predictions

(a) (b)

Figure 7: Tradeoff Curves of Stock Control Performance Measures for OIL2 Predictions

Table 1: Stock Control Performance Results for ts.12

Achieved Fill Rate Holding Costs Target Fill Rates Method

0.9552169 3269.031 0.7500000 Croston

0.9646240 3558.657 0.8000000 Croston

0.9718086 3896.251 0.8500000 Croston

0.9808486 4321.022 0.9000000 Croston

0.9892217 4950.597 0.9500000 Croston

0.9999034 6131.573 0.9900000 Croston

1.0000000 10337.508 0.9999999 Croston

0.9541853 3241.362 0.7500000 SES

0.9640351 3530.988 0.8000000 SES

0.9712198 3868.583 0.8500000 SES

0.9802597 4293.354 0.9000000 SES

0.9889714 4922.928 0.9500000 SES

0.9996532 6103.905 0.9900000 SES

1.0000000 10309.840 0.9999999 SES
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0.9522493 3189.437 0.7500000 SBA

0.9629301 3479.063 0.8000000 SBA

0.9701147 3816.657 0.8500000 SBA

0.9791547 4241.428 0.9000000 SBA

0.9885018 4871.002 0.9500000 SBA

0.9991835 6051.979 0.9900000 SBA

1.0000000 10257.914 0.9999999 SBA

0.9555813 3278.806 0.7500000 TSB

0.9648320 3568.432 0.8000000 TSB

0.9720167 3906.026 0.8500000 TSB

0.9810566 4330.797 0.9000000 TSB

0.9893101 4960.371 0.9500000 TSB

0.9999918 6141.348 0.9900000 TSB

1.0000000 10347.283 0.9999999 TSB

0.9563447 3299.280 0.7500000 WSS

0.9652677 3588.906 0.8000000 WSS

0.9724524 3926.500 0.8500000 WSS

0.9814923 4351.271 0.9000000 WSS

0.9894953 4980.845 0.9500000 WSS

1.0000000 6161.822 0.9900000 WSS

1.0000000 10367.757 0.9999999 WSS

0.9522284 3188.877 0.7500000 MLP

0.9629181 3478.503 0.8000000 MLP

0.9701028 3816.098 0.8500000 MLP

0.9791427 4240.868 0.9000000 MLP

0.9884967 4870.443 0.9500000 MLP

0.9991784 6051.419 0.9900000 MLP

1.0000000 10257.355 0.9999999 MLP

0.9517242 3175.355 0.7500000 LightGBM

0.9625227 3464.981 0.8000000 LightGBM

0.9698150 3802.576 0.8500000 LightGBM

0.9788550 4227.346 0.9000000 LightGBM

0.9883744 4856.921 0.9500000 LightGBM

0.9990561 6037.897 0.9900000 LightGBM

1.0000000 10243.833 0.9999999 LightGBM

0.9481482 3079.444 0.7500000 RF

0.9589467 3369.070 0.8000000 RF

0.9677739 3706.664 0.8500000 RF

0.9768138 4131.435 0.9000000 RF

0.9875069 4761.009 0.9500000 RF
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0.9981886 5941.986 0.9900000 RF

1.0000000 10147.921 0.9999999 RF

0.9517936 3177.215 0.7500000 SVR

0.9625921 3466.841 0.8000000 SVR

0.9698546 3804.435 0.8500000 SVR

0.9788945 4229.206 0.9000000 SVR

0.9883912 4858.780 0.9500000 SVR

0.9990730 6039.757 0.9900000 SVR

1.0000000 10245.692 0.9999999 SVR

Table 2: Stock Control Performance Results for SIM1

Achieved Fill Rate Holding Costs Target Fill Rates Method

0.9423585 41819748 0.7500000 Croston

0.9536177 45598991 0.8000000 Croston

0.9638693 50004160 0.8500000 Croston

0.9734651 55546869 0.9000000 Croston

0.9829830 63761998 0.9500000 Croston

0.9923018 79172214 0.9900000 Croston

0.9994298 134054221 0.9999999 Croston

0.9423605 41820204 0.7500000 SES

0.9536194 45599447 0.8000000 SES

0.9638708 50004616 0.8500000 SES

0.9734658 55547324 0.9000000 SES

0.9829838 63762454 0.9500000 SES

0.9923022 79172670 0.9900000 SES

0.9994298 134054677 0.9999999 SES

0.9391145 41065621 0.7500000 SBA

0.9509275 44844863 0.8000000 SBA

0.9616884 49250032 0.8500000 SBA

0.9717933 54792741 0.9000000 SBA

0.9818950 63007870 0.9500000 SBA

0.9917740 78418086 0.9900000 SBA

0.9993818 133300093 0.9999999 SBA

0.9424799 41826962 0.7500000 TSB

0.9537280 45606205 0.8000000 TSB

0.9639666 50011374 0.8500000 TSB

0.9735429 55554083 0.9000000 TSB

0.9830374 63769212 0.9500000 TSB

0.9923294 79179428 0.9900000 TSB
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0.9994307 134061435 0.9999999 TSB

0.9457122 43781185 0.7500000 WSS

0.9559397 47560428 0.8000000 WSS

0.9653732 51965597 0.8500000 WSS

0.9742698 57508306 0.9000000 WSS

0.9832380 65723435 0.9500000 WSS

0.9922077 81133651 0.9900000 WSS

0.9993823 136015658 0.9999999 WSS

0.9368958 41583873 0.7500000 MLP

0.9489600 45363116 0.8000000 MLP

0.9601023 49768285 0.8500000 MLP

0.9705729 55310994 0.9000000 MLP

0.9810996 63526123 0.9500000 MLP

0.9915729 78936339 0.9900000 MLP

0.9995633 133818346 0.9999999 MLP

0.9399531 42567986 0.7500000 LightGBM

0.9515047 46347229 0.8000000 LightGBM

0.9620881 50752398 0.8500000 LightGBM

0.9720740 56295107 0.9000000 LightGBM

0.9820413 64510236 0.9500000 LightGBM

0.9919435 79920452 0.9900000 LightGBM

0.9994945 134802459 0.9999999 LightGBM

0.9422362 42966518 0.7500000 RF

0.9533040 46745761 0.8000000 RF

0.9634735 51150930 0.8500000 RF

0.9730432 56693639 0.9000000 RF

0.9826601 64908768 0.9500000 RF

0.9922432 80318984 0.9900000 RF

0.9995787 135200991 0.9999999 RF

0.9434603 43886202 0.7500000 SVR

0.9542600 47665445 0.8000000 SVR

0.9642020 52070614 0.8500000 SVR

0.9735708 57613323 0.9000000 SVR

0.9830047 65828452 0.9500000 SVR

0.9924621 81238668 0.9900000 SVR

0.9996449 136120675 0.9999999 SVR

Table 3: Stock Control Performance Results for SIM2

Achieved Fill Rate Holding Costs Target Fill Rates Method
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0.9335466 22149588 0.7500000 Croston

0.9462346 24676450 0.8000000 Croston

0.9577866 27621816 0.8500000 Croston

0.9686105 31327759 0.9000000 Croston

0.9794861 36820524 0.9500000 Croston

0.9904060 47124039 0.9900000 Croston

0.9991610 83819020 0.9999999 Croston

0.9330821 21924840 0.7500000 SES

0.9459867 24451702 0.8000000 SES

0.9577026 27397068 0.8500000 SES

0.9686360 31103011 0.9000000 SES

0.9796170 36595777 0.9500000 SES

0.9905371 46899292 0.9900000 SES

0.9991855 83594272 0.9999999 SES

0.9294388 21514286 0.7500000 SBA

0.9429361 24041148 0.8000000 SBA

0.9551942 26986514 0.8500000 SBA

0.9667105 30692456 0.9000000 SBA

0.9782731 36185222 0.9500000 SBA

0.9898503 46488737 0.9900000 SBA

0.9991142 83183718 0.9999999 SBA

0.9339912 22116268 0.7500000 TSB

0.9466470 24643129 0.8000000 TSB

0.9581647 27588495 0.8500000 TSB

0.9689514 31294438 0.9000000 TSB

0.9797794 36787204 0.9500000 TSB

0.9905895 47090719 0.9900000 TSB

0.9991832 83785700 0.9999999 TSB

0.9633567 29717637 0.7500000 WSS

0.9701476 32244498 0.8000000 WSS

0.9763617 35189864 0.8500000 WSS

0.9822698 38895807 0.9000000 WSS

0.9882753 44388573 0.9500000 WSS

0.9944378 54692088 0.9900000 WSS

0.9995112 91387069 0.9999999 WSS

0.9229127 21094845 0.7500000 MLP

0.9375312 23621707 0.8000000 MLP

0.9508894 26567073 0.8500000 MLP

0.9634632 30273016 0.9000000 MLP

0.9761566 35765782 0.9500000 MLP
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0.9889994 46069297 0.9900000 MLP

0.9992472 82764277 0.9999999 MLP

0.9293700 22391107 0.7500000 LightGBM

0.9427618 24917969 0.8000000 LightGBM

0.9549211 27863335 0.8500000 LightGBM

0.9664287 31569278 0.9000000 LightGBM

0.9780978 37062043 0.9500000 LightGBM

0.9898597 47365558 0.9900000 LightGBM

0.9992667 84060539 0.9999999 LightGBM

0.9330259 22678118 0.7500000 RF

0.9456275 25204980 0.8000000 RF

0.9571634 28150346 0.8500000 RF

0.9680733 31856289 0.9000000 RF

0.9791229 37349054 0.9500000 RF

0.9903377 47652569 0.9900000 RF

0.9993297 84347550 0.9999999 RF

0.9382988 24015438 0.7500000 SVR

0.9498188 26542300 0.8000000 SVR

0.9603919 29487666 0.8500000 SVR

0.9704049 33193609 0.9000000 SVR

0.9806041 38686375 0.9500000 SVR

0.9910860 48989889 0.9900000 SVR

0.9994529 85684870 0.9999999 SVR

Table 4: Stock Control Performance Results for SIM3

Achieved Fill Rate Holding Costs Target Fill Rates Method

0.9529304 33928996 0.7500000 Croston

0.9635260 36333908 0.8000000 Croston

0.9729595 39137126 0.8500000 Croston

0.9815064 42664214 0.9000000 Croston

0.9895083 47891891 0.9500000 Croston

0.9964036 57698143 0.9900000 Croston

0.9999114 92622169 0.9999999 Croston

0.9515647 33637083 0.7500000 SES

0.9625023 36041995 0.8000000 SES

0.9722031 38845213 0.8500000 SES

0.9809908 42372302 0.9000000 SES

0.9892443 47599978 0.9500000 SES

0.9963257 57406230 0.9900000 SES
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0.9999094 92330256 0.9999999 SES

0.9491452 33293511 0.7500000 SBA

0.9604985 35698423 0.8000000 SBA

0.9706288 38501641 0.8500000 SBA

0.9798348 42028730 0.9000000 SBA

0.9885058 47256406 0.9500000 SBA

0.9960173 57062658 0.9900000 SBA

0.9999017 91986684 0.9999999 SBA

0.9531562 33934464 0.7500000 TSB

0.9637397 36339376 0.8000000 TSB

0.9731461 39142594 0.8500000 TSB

0.9816550 42669683 0.9000000 TSB

0.9896148 47897359 0.9500000 TSB

0.9964527 57703611 0.9900000 TSB

0.9999123 92627637 0.9999999 TSB

0.9604708 36094001 0.7500000 WSS

0.9692171 38498913 0.8000000 WSS

0.9770498 41302131 0.8500000 WSS

0.9841738 44829219 0.9000000 WSS

0.9908982 50056896 0.9500000 WSS

0.9967843 59863148 0.9900000 WSS

0.9999190 94787174 0.9999999 WSS

0.8916617 26575122 0.7500000 MLP

0.9143356 28980033 0.8000000 MLP

0.9351624 31783252 0.8500000 MLP

0.9545192 35310340 0.9000000 MLP

0.9734371 40538017 0.9500000 MLP

0.9906716 50344268 0.9900000 MLP

0.9998458 85268294 0.9999999 MLP

0.8880512 26424401 0.7500000 LightGBM

0.9115215 28829312 0.8000000 LightGBM

0.9330197 31632530 0.8500000 LightGBM

0.9531232 35159619 0.9000000 LightGBM

0.9725720 40387295 0.9500000 LightGBM

0.9902008 50193547 0.9900000 LightGBM

0.9998036 85117573 0.9999999 LightGBM

0.9511892 34171031 0.7500000 RF

0.9619259 36575943 0.8000000 RF

0.9716288 39379161 0.8500000 RF

0.9805078 42906250 0.9000000 RF
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0.9889304 48133926 0.9500000 RF

0.9963961 57940178 0.9900000 RF

0.9999613 92864204 0.9999999 RF

0.8989494 27390812 0.7500000 SVR

0.9201745 29795724 0.8000000 SVR

0.9396063 32598942 0.8500000 SVR

0.9576537 36126031 0.9000000 SVR

0.9753146 41353707 0.9500000 SVR

0.9913827 51159959 0.9900000 SVR

0.9998655 86083985 0.9999999 SVR

Table 5: Stock Control Performance Results for SIM4

Achieved Fill Rate Holding Costs Target Fill Rates Method

0.9405261 20539226 0.7500000 Croston

0.9556926 22449083 0.8000000 Croston

0.9688045 24675255 0.8500000 Croston

0.9801479 27476287 0.9000000 Croston

0.9900675 31627839 0.9500000 Croston

0.9974096 39415460 0.9900000 Croston

0.9999881 67150325 0.9999999 Croston

0.9401541 20410779 0.7500000 SES

0.9555360 22320636 0.8000000 SES

0.9687782 24546807 0.8500000 SES

0.9802245 27347840 0.9000000 SES

0.9901690 31499392 0.9500000 SES

0.9974705 39287013 0.9900000 SES

0.9999878 67021878 0.9999999 SES

0.9351092 19987256 0.7500000 SBA

0.9515103 21897113 0.8000000 SBA

0.9657588 24123285 0.8500000 SBA

0.9781383 26924317 0.9000000 SBA

0.9889960 31075869 0.9500000 SBA

0.9971155 38863490 0.9900000 SBA

0.9999856 66598355 0.9999999 SBA

0.9409140 20504690 0.7500000 TSB

0.9560939 22414547 0.8000000 TSB

0.9691693 24640719 0.8500000 TSB

0.9804654 27441751 0.9000000 TSB

0.9902873 31593303 0.9500000 TSB
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0.9974912 39380924 0.9900000 TSB

0.9999878 67115789 0.9999999 TSB

0.9471504 21637420 0.7500000 WSS

0.9604652 23547277 0.8000000 WSS

0.9720167 25773449 0.8500000 WSS

0.9820849 28574481 0.9000000 WSS

0.9908986 32726033 0.9500000 WSS

0.9975715 40513654 0.9900000 WSS

0.9999878 68248519 0.9999999 WSS

0.9306181 19927974 0.7500000 MLP

0.9477223 21837831 0.8000000 MLP

0.9628047 24064002 0.8500000 MLP

0.9761413 26865035 0.9000000 MLP

0.9879609 31016587 0.9500000 MLP

0.9971367 38804208 0.9900000 MLP

0.9999968 66539073 0.9999999 MLP

0.9351113 20605354 0.7500000 LightGBM

0.9512897 22515211 0.8000000 LightGBM

0.9654593 24741382 0.8500000 LightGBM

0.9778589 27542415 0.9000000 LightGBM

0.9888149 31693967 0.9500000 LightGBM

0.9971335 39481587 0.9900000 LightGBM

0.9999923 67216453 0.9999999 LightGBM

0.9388560 20691370 0.7500000 RF

0.9541767 22601227 0.8000000 RF

0.9676148 24827399 0.8500000 RF

0.9793677 27628431 0.9000000 RF

0.9896857 31779983 0.9500000 RF

0.9975420 39567604 0.9900000 RF

0.9999966 67302469 0.9999999 RF

0.9444886 22129773 0.7500000 SVR

0.9584976 24039630 0.8000000 SVR

0.9706437 26265802 0.8500000 SVR

0.9812478 29066834 0.9000000 SVR

0.9905353 33218386 0.9500000 SVR

0.9974948 41006007 0.9900000 SVR

0.9999856 68740872 0.9999999 SVR

Table 6: Stock Control Performance Results for AUTO
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Achieved Fill Rate Holding Costs Target Fill Rates Method

0.9412319 3954331 0.7500000 Croston

0.9527760 4318403 0.8000000 Croston

0.9632684 4742773 0.8500000 Croston

0.9730921 5276727 0.9000000 Croston

0.9828719 6068128 0.9500000 Croston

0.9921214 7552664 0.9900000 Croston

0.9989867 12839698 0.9999999 Croston

0.9399131 3884876 0.7500000 SES

0.9518332 4248947 0.8000000 SES

0.9627332 4673317 0.8500000 SES

0.9728111 5207272 0.9000000 SES

0.9827768 5998673 0.9500000 SES

0.9921830 7483209 0.9900000 SES

0.9990225 12770243 0.9999999 SES

0.9347902 3820762 0.7500000 SBA

0.9474310 4184833 0.8000000 SBA

0.9590509 4609203 0.8500000 SBA

0.9699490 5143158 0.9000000 SBA

0.9808249 5934559 0.9500000 SBA

0.9912250 7419095 0.9900000 SBA

0.9989223 12706129 0.9999999 SBA

0.9419402 3949093 0.7500000 TSB

0.9533809 4313165 0.8000000 TSB

0.9638365 4737535 0.8500000 TSB

0.9735879 5271489 0.9000000 TSB

0.9832378 6062890 0.9500000 TSB

0.9923279 7547426 0.9900000 TSB

0.9990240 12834460 0.9999999 TSB

0.9602320 4807963 0.7500000 WSS

0.9675362 5172035 0.8000000 WSS

0.9742376 5596405 0.8500000 WSS

0.9806563 6130359 0.9000000 WSS

0.9872344 6921760 0.9500000 WSS

0.9936833 8406296 0.9900000 WSS

0.9989983 13693330 0.9999999 WSS

0.9409011 4152962 0.7500000 MLP

0.9526591 4517033 0.8000000 MLP

0.9635234 4941403 0.8500000 MLP

0.9735608 5475358 0.9000000 MLP
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0.9837912 6266759 0.9500000 MLP

0.9937946 7751295 0.9900000 MLP

0.9995043 13038329 0.9999999 MLP

0.9276593 4120984 0.7500000 LightGBM

0.9415389 4485056 0.8000000 LightGBM

0.9543275 4909426 0.8500000 LightGBM

0.9663761 5443380 0.9000000 LightGBM

0.9785904 6234781 0.9500000 LightGBM

0.9907714 7719317 0.9900000 LightGBM

0.9991882 13006351 0.9999999 LightGBM

0.9403515 4099411 0.7500000 RF

0.9520938 4463483 0.8000000 RF

0.9629561 4887853 0.8500000 RF

0.9729902 5421807 0.9000000 RF

0.9831799 6213208 0.9500000 RF

0.9933384 7697744 0.9900000 RF

0.9993775 12984778 0.9999999 RF

0.9373744 4211868 0.7500000 SVR

0.9496352 4575940 0.8000000 SVR

0.9612008 5000310 0.8500000 SVR

0.9718917 5534264 0.9000000 SVR

0.9827779 6325665 0.9500000 SVR

0.9935748 7810202 0.9900000 SVR

0.9995814 13097235 0.9999999 SVR

Table 7: Stock Control Performance Results for MAN

Achieved Fill Rate Holding Costs Target Fill Rates Method

0.9540260 178090.9 0.7500000 Croston

0.9597055 204826.9 0.8000000 Croston

0.9651039 235990.9 0.8500000 Croston

0.9705284 275202.4 0.9000000 Croston

0.9765834 333319.7 0.9500000 Croston

0.9841197 442338.2 0.9900000 Croston

0.9944322 830596.9 0.9999999 Croston

0.9541098 173629.6 0.7500000 SES

0.9597806 200365.6 0.8000000 SES

0.9651952 231529.6 0.8500000 SES

0.9706384 270741.1 0.9000000 SES

0.9766585 328858.4 0.9500000 SES
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0.9841634 437876.9 0.9900000 SES

0.9944388 826135.6 0.9999999 SES

0.9534522 175222.9 0.7500000 SBA

0.9592366 201958.9 0.8000000 SBA

0.9647304 233122.9 0.8500000 SBA

0.9702344 272334.4 0.9000000 SBA

0.9763753 330451.7 0.9500000 SBA

0.9839944 439470.2 0.9900000 SBA

0.9944038 827728.9 0.9999999 SBA

0.9539155 173596.0 0.7500000 TSB

0.9595782 200332.0 0.8000000 TSB

0.9650056 231496.0 0.8500000 TSB

0.9704527 270707.5 0.9000000 TSB

0.9765093 328824.8 0.9500000 TSB

0.9840406 437843.3 0.9900000 TSB

0.9943942 826102.1 0.9999999 TSB

0.9548842 174406.0 0.7500000 WSS

0.9603462 201141.9 0.8000000 WSS

0.9655865 232306.0 0.8500000 WSS

0.9708429 271517.5 0.9000000 WSS

0.9767664 329634.8 0.9500000 WSS

0.9841305 438653.3 0.9900000 WSS

0.9943709 826912.0 0.9999999 WSS

0.9490991 163873.7 0.7500000 MLP

0.9558412 190609.7 0.8000000 MLP

0.9621750 221773.8 0.8500000 MLP

0.9684255 260985.2 0.9000000 MLP

0.9753769 319102.6 0.9500000 MLP

0.9837214 428121.0 0.9900000 MLP

0.9946067 816379.8 0.9999999 MLP

0.9504997 169697.5 0.7500000 LightGBM

0.9568894 196433.5 0.8000000 LightGBM

0.9629246 227597.5 0.8500000 LightGBM

0.9689218 266809.0 0.9000000 LightGBM

0.9755912 324926.4 0.9500000 LightGBM

0.9837919 433944.8 0.9900000 LightGBM

0.9946000 822203.6 0.9999999 LightGBM

0.9514922 172997.3 0.7500000 RF

0.9576611 199733.3 0.8000000 RF

0.9634680 230897.3 0.8500000 RF
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0.9693353 270108.8 0.9000000 RF

0.9758717 328226.2 0.9500000 RF

0.9839000 437244.6 0.9900000 RF

0.9945880 825503.4 0.9999999 RF

0.9341203 120333.7 0.7500000 SVR

0.9435108 147069.7 0.8000000 SVR

0.9522719 178233.8 0.8500000 SVR

0.9608121 217445.2 0.9000000 SVR

0.9699025 275562.6 0.9500000 SVR

0.9805230 384581.0 0.9900000 SVR

0.9937597 772839.8 0.9999999 SVR

Table 8: Stock Control Performance Results for BRAF

Achieved Fill Rate Holding Costs Target Fill Rates Method

0.9578326 126231.37 0.7500000 Croston

0.9624342 148124.70 0.8000000 Croston

0.9671440 173644.05 0.8500000 Croston

0.9722001 205753.23 0.9000000 Croston

0.9781653 253343.85 0.9500000 Croston

0.9856840 342615.95 0.9900000 Croston

0.9950540 660549.99 0.9999999 Croston

0.9569366 120141.35 0.7500000 SES

0.9616763 142034.68 0.8000000 SES

0.9665379 167554.03 0.8500000 SES

0.9717553 199663.20 0.9000000 SES

0.9778757 247253.83 0.9500000 SES

0.9855711 336525.93 0.9900000 SES

0.9950869 654459.97 0.9999999 SES

0.9571103 123117.16 0.7500000 SBA

0.9617683 145010.49 0.8000000 SBA

0.9665544 170529.84 0.8500000 SBA

0.9716928 202639.01 0.9000000 SBA

0.9777584 250229.64 0.9500000 SBA

0.9854313 339501.74 0.9900000 SBA

0.9950077 657435.77 0.9999999 SBA

0.9567939 119180.67 0.7500000 TSB

0.9615098 141074.00 0.8000000 TSB

0.9663631 166593.35 0.8500000 TSB

0.9715714 198702.52 0.9000000 TSB
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0.9776890 246293.15 0.9500000 TSB

0.9854090 335565.25 0.9900000 TSB

0.9950061 653499.28 0.9999999 TSB

0.9607159 138632.46 0.7500000 WSS

0.9650520 160525.79 0.8000000 WSS

0.9694592 186045.14 0.8500000 WSS

0.9741274 218154.31 0.9000000 WSS

0.9795305 265744.94 0.9500000 WSS

0.9863493 355017.04 0.9900000 WSS

0.9950781 672951.08 0.9999999 WSS

0.9572978 128084.45 0.7500000 MLP

0.9617898 149977.78 0.8000000 MLP

0.9664326 175497.13 0.8500000 MLP

0.9714246 207606.30 0.9000000 MLP

0.9775011 255196.93 0.9500000 MLP

0.9853723 344469.03 0.9900000 MLP

0.9951321 662403.07 0.9999999 MLP

0.9576885 130036.45 0.7500000 LightGBM

0.9621824 151929.78 0.8000000 LightGBM

0.9668214 177449.13 0.8500000 LightGBM

0.9718135 209558.30 0.9000000 LightGBM

0.9778337 257148.93 0.9500000 LightGBM

0.9855804 346421.03 0.9900000 LightGBM

0.9951765 664355.07 0.9999999 LightGBM

0.9577485 130132.88 0.7500000 RF

0.9622396 152026.21 0.8000000 RF

0.9668761 177545.57 0.8500000 RF

0.9718558 209654.74 0.9000000 RF

0.9778733 257245.36 0.9500000 RF

0.9856015 346517.46 0.9900000 RF

0.9951830 664451.50 0.9999999 RF

0.9476785 88149.92 0.7500000 SVR

0.9532511 110043.25 0.8000000 SVR

0.9589565 135562.60 0.8500000 SVR

0.9651584 167671.77 0.9000000 SVR

0.9726136 215262.40 0.9500000 SVR

0.9823069 304534.50 0.9900000 SVR

0.9943331 622468.53 0.9999999 SVR
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Table 9: Stock Control Performance Results for OIL

Achieved Fill Rate Holding Costs Target Fill Rates Method

0.9665717 3465440 0.7500000 Croston

0.9697738 4126540 0.8000000 Croston

0.9732208 4897133 0.8500000 Croston

0.9771034 5866715 0.9000000 Croston

0.9820266 7303781 0.9500000 Croston

0.9888610 9999478 0.9900000 Croston

0.9976286 19599944 0.9999999 Croston

0.9657696 3069932 0.7500000 SES

0.9690380 3731032 0.8000000 SES

0.9725426 4501624 0.8500000 SES

0.9764711 5471206 0.9000000 SES

0.9814701 6908272 0.9500000 SES

0.9885016 9603969 0.9900000 SES

0.9976217 19204436 0.9999999 SES

0.9657764 3417629 0.7500000 SBA

0.9690150 4078729 0.8000000 SBA

0.9725105 4849322 0.8500000 SBA

0.9764481 5818903 0.9000000 SBA

0.9814575 7255969 0.9500000 SBA

0.9884612 9951666 0.9900000 SBA

0.9975912 19552133 0.9999999 SBA

0.9655907 3194752 0.7500000 TSB

0.9688495 3855852 0.8000000 TSB

0.9723536 4626445 0.8500000 TSB

0.9762795 5596027 0.9000000 TSB

0.9812983 7033093 0.9500000 TSB

0.9883591 9728790 0.9900000 TSB

0.9975626 19329256 0.9999999 TSB

0.9699824 3099716 0.7500000 WSS

0.9729735 3760816 0.8000000 WSS

0.9760970 4531409 0.8500000 WSS

0.9795943 5500991 0.9000000 WSS

0.9839398 6938057 0.9500000 WSS

0.9899118 9633754 0.9900000 WSS

0.9976517 19234220 0.9999999 WSS

0.9642840 4078289 0.7500000 MLP

0.9675306 4739389 0.8000000 MLP

0.9710644 5509982 0.8500000 MLP
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0.9751403 6479563 0.9000000 MLP

0.9803786 7916629 0.9500000 MLP

0.9878198 10612326 0.9900000 MLP

0.9976471 20212793 0.9999999 MLP

0.9648658 3822261 0.7500000 LightGBM

0.9680998 4483361 0.8000000 LightGBM

0.9716163 5253953 0.8500000 LightGBM

0.9756473 6223535 0.9000000 LightGBM

0.9808001 7660601 0.9500000 LightGBM

0.9880753 10356298 0.9900000 LightGBM

0.9976902 19956765 0.9999999 LightGBM

0.9649491 3819005 0.7500000 RF

0.9681783 4480105 0.8000000 RF

0.9716795 5250697 0.8500000 RF

0.9757027 6220279 0.9000000 RF

0.9808406 7657345 0.9500000 RF

0.9881044 10353042 0.9900000 RF

0.9976940 19953509 0.9999999 RF

0.9580213 2664360 0.7500000 SVR

0.9616694 3325460 0.8000000 SVR

0.9656236 4096052 0.8500000 SVR

0.9702389 5065634 0.9000000 SVR

0.9762528 6502700 0.9500000 SVR

0.9849641 9198397 0.9900000 SVR

0.9971200 18798864 0.9999999 SVR

Table 10: Stock Control Performance Results for MAN2

Achieved Fill Rate Holding Costs Target Fill Rates Method

0.9607984 134107.7 0.7500000 Croston

0.9652132 153956.9 0.8000000 Croston

0.9695271 177093.5 0.8500000 Croston

0.9738679 206204.6 0.9000000 Croston

0.9788012 249351.8 0.9500000 Croston

0.9850397 330288.6 0.9900000 Croston

0.9941704 618537.2 0.9999999 Croston

0.9621387 134519.2 0.7500000 SES

0.9663492 154368.4 0.8000000 SES

0.9704312 177505.0 0.8500000 SES

0.9746131 206616.1 0.9000000 SES
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0.9793592 249763.3 0.9500000 SES

0.9854266 330700.1 0.9900000 SES

0.9943039 618948.7 0.9999999 SES

0.9606371 133325.1 0.7500000 SBA

0.9650803 153174.2 0.8000000 SBA

0.9694209 176310.8 0.8500000 SBA

0.9737856 205422.0 0.9000000 SBA

0.9787475 248569.1 0.9500000 SBA

0.9850143 329505.9 0.9900000 SBA

0.9941670 617754.6 0.9999999 SBA

0.9621101 134929.5 0.7500000 TSB

0.9663718 154778.7 0.8000000 TSB

0.9704843 177915.3 0.8500000 TSB

0.9746520 207026.4 0.9000000 TSB

0.9793732 250173.5 0.9500000 TSB

0.9854105 331110.3 0.9900000 TSB

0.9942759 619359.0 0.9999999 TSB

0.9659234 140536.5 0.7500000 WSS

0.9696704 160385.6 0.8000000 WSS

0.9732917 183522.3 0.8500000 WSS

0.9769742 212633.4 0.9000000 WSS

0.9812893 255780.5 0.9500000 WSS

0.9867441 336717.3 0.9900000 WSS

0.9947260 624966.0 0.9999999 WSS

0.9598025 130536.7 0.7500000 MLP

0.9643880 150385.9 0.8000000 MLP

0.9687945 173522.5 0.8500000 MLP

0.9733397 202633.6 0.9000000 MLP

0.9785522 245780.7 0.9500000 MLP

0.9850632 326717.5 0.9900000 MLP

0.9943775 614966.2 0.9999999 MLP

0.9594519 132727.3 0.7500000 LightGBM

0.9641028 152576.5 0.8000000 LightGBM

0.9685434 175713.1 0.8500000 LightGBM

0.9731107 204824.2 0.9000000 LightGBM

0.9782540 247971.3 0.9500000 LightGBM

0.9847469 328908.1 0.9900000 LightGBM

0.9941704 617156.8 0.9999999 LightGBM

0.9605543 133530.5 0.7500000 RF

0.9649519 153379.7 0.8000000 RF
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0.9692067 176516.3 0.8500000 RF

0.9735904 205627.4 0.9000000 RF

0.9786494 248774.6 0.9500000 RF

0.9850164 329711.4 0.9900000 RF

0.9942609 617960.0 0.9999999 RF

0.9510407 108955.4 0.7500000 SVR

0.9573325 128804.6 0.8000000 SVR

0.9630658 151941.2 0.8500000 SVR

0.9688106 181052.4 0.9000000 SVR

0.9752300 224199.5 0.9500000 SVR

0.9831752 305136.3 0.9900000 SVR

0.9939351 593384.9 0.9999999 SVR

Table 11: Stock Control Performance Results for BRAF2

Achieved Fill Rate Holding Costs Target Fill Rates Method

0.9574853 123532.5 0.7500000 Croston2

0.9620382 144700.3 0.8000000 Croston2

0.9667303 169373.9 0.8500000 Croston2

0.9717694 200418.9 0.9000000 Croston2

0.9777347 246432.3 0.9500000 Croston2

0.9852644 332745.8 0.9900000 Croston2

0.9948358 640143.1 0.9999999 Croston2

0.9564361 117024.6 0.7500000 SES

0.9611344 138192.3 0.8000000 SES

0.9659675 162865.9 0.8500000 SES

0.9711737 193911.0 0.9000000 SES

0.9773130 239924.4 0.9500000 SES

0.9850873 326237.9 0.9900000 SES

0.9948516 633635.1 0.9999999 SES

0.9566271 119870.6 0.7500000 SBA

0.9612469 141038.3 0.8000000 SBA

0.9660161 165711.9 0.8500000 SBA

0.9711430 196756.9 0.9000000 SBA

0.9772289 242770.3 0.9500000 SBA

0.9849707 329083.8 0.9900000 SBA

0.9947729 636481.1 0.9999999 SBA

0.9560356 115137.9 0.7500000 TSB

0.9607322 136305.6 0.8000000 TSB

0.9655758 160979.2 0.8500000 TSB
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0.9707999 192024.3 0.9000000 TSB

0.9769767 238037.7 0.9500000 TSB

0.9848335 324351.2 0.9900000 TSB

0.9947489 631748.4 0.9999999 TSB

0.9608181 136684.1 0.7500000 WSS

0.9650920 157851.9 0.8000000 WSS

0.9694281 182525.5 0.8500000 WSS

0.9740146 213570.5 0.9000000 WSS

0.9793440 259583.9 0.9500000 WSS

0.9860885 345897.4 0.9900000 WSS

0.9949016 653294.7 0.9999999 WSS

0.9569176 125361.2 0.7500000 MLP

0.9613639 146529.0 0.8000000 MLP

0.9659692 171202.6 0.8500000 MLP

0.9709327 202247.6 0.9000000 MLP

0.9770040 248261.0 0.9500000 MLP

0.9849183 334574.5 0.9900000 MLP

0.9949119 641971.8 0.9999999 MLP

0.9573767 127925.3 0.7500000 LightGBM

0.9618161 149093.0 0.8000000 LightGBM

0.9664122 173766.6 0.8500000 LightGBM

0.9713773 204811.7 0.9000000 LightGBM

0.9773776 250825.1 0.9500000 LightGBM

0.9851547 337138.6 0.9900000 LightGBM

0.9949656 644535.8 0.9999999 LightGBM

0.9575004 128170.2 0.7500000 RF

0.9618920 149337.9 0.8000000 RF

0.9664501 174011.6 0.8500000 RF

0.9713503 205056.6 0.9000000 RF

0.9773460 251070.0 0.9500000 RF

0.9851391 337383.5 0.9900000 RF

0.9949702 644780.7 0.9999999 RF

0.9470923 85318.5 0.7500000 SVR

0.9526118 106486.3 0.8000000 SVR

0.9582867 131159.9 0.8500000 SVR

0.9644645 162204.9 0.9000000 SVR

0.9719274 208218.3 0.9500000 SVR

0.9817076 294531.8 0.9900000 SVR

0.9940549 601929.0 0.9999999 SVR
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Table 12: Stock Control Performance Results for OIL2

Achieved Fill Rate Holding Costs Target Fill Rates Method

0.9591945 1286573.2 0.7500000 Croston

0.9627143 1497313.7 0.8000000 Croston

0.9665239 1742957.4 0.8500000 Croston

0.9708028 2052033.4 0.9000000 Croston

0.9762578 2510130.4 0.9500000 Croston

0.9839949 3369444.4 0.9900000 Croston

0.9952868 6429808.6 0.9999999 Croston

0.9584980 1164858.2 0.7500000 SES

0.9620624 1375598.6 0.8000000 SES

0.9659166 1621242.4 0.8500000 SES

0.9702511 1930318.3 0.9000000 SES

0.9757876 2388415.4 0.9500000 SES

0.9837043 3247729.3 0.9900000 SES

0.9952819 6308093.5 0.9999999 SES

0.9584252 1244245.3 0.7500000 SBA

0.9619803 1454985.8 0.8000000 SBA

0.9658419 1700629.5 0.8500000 SBA

0.9701834 2009705.4 0.9000000 SBA

0.9757452 2467802.5 0.9500000 SBA

0.9836565 3327116.4 0.9900000 SBA

0.9952418 6387480.6 0.9999999 SBA

0.9634562 1377243.6 0.7500000 TSB

0.9666424 1587984.1 0.8000000 TSB

0.9701038 1833627.8 0.8500000 TSB

0.9740090 2142703.7 0.9000000 TSB

0.9790328 2600800.8 0.9500000 TSB

0.9862464 3460114.8 0.9900000 TSB

0.9965396 6520479.0 0.9999999 TSB

0.9632704 1282248.2 0.7500000 WSS

0.9665237 1492988.6 0.8000000 WSS

0.9699528 1738632.4 0.8500000 WSS

0.9738104 2047708.3 0.9000000 WSS

0.9786499 2505805.4 0.9500000 WSS

0.9854830 3365119.3 0.9900000 WSS

0.9954594 6425483.5 0.9999999 WSS

0.9580828 1315282.6 0.7500000 MLP

0.9616183 1526023.0 0.8000000 MLP

0.9654459 1771666.8 0.8500000 MLP
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0.9698468 2080742.7 0.9000000 MLP

0.9755083 2538839.8 0.9500000 MLP

0.9836492 3398153.7 0.9900000 MLP

0.9955941 6458517.9 0.9999999 MLP

0.9575057 1274718.7 0.7500000 LightGBM

0.9610686 1485459.1 0.8000000 LightGBM

0.9649410 1731102.9 0.8500000 LightGBM

0.9693992 2040178.8 0.9000000 LightGBM

0.9751109 2498275.9 0.9500000 LightGBM

0.9833241 3357589.8 0.9900000 LightGBM

0.9955017 6417954.0 0.9999999 LightGBM

0.9576830 1280751.6 0.7500000 RF

0.9612459 1491492.1 0.8000000 RF

0.9651013 1737135.8 0.8500000 RF

0.9695357 2046211.8 0.9000000 RF

0.9752197 2504308.8 0.9500000 RF

0.9834015 3363622.8 0.9900000 RF

0.9955151 6423987.0 0.9999999 RF

0.9495205 849141.2 0.7500000 SVR

0.9535429 1059881.7 0.8000000 SVR

0.9579280 1305525.4 0.8500000 SVR

0.9630431 1614601.4 0.9000000 SVR

0.9697118 2072698.4 0.9500000 SVR

0.9794829 2932012.4 0.9900000 SVR

0.9944677 5992376.6 0.9999999 SVR
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