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Abstract 
 

In recent years, the real estate sector has witnessed substantial expansion, establishing itself as an 

integral component of many economies globally. Possession of residential property, besides satisfying 

a basic human need, has been progressively acknowledged as a prudent financial venture and a vehicle 

for securing long-term financial stability. This underlines the crucial necessity of understanding the 

dynamics of housing prices. To address this, a myriad of methodologies have been deployed to predict 

house prices and comprehend the variables influencing them, which primarily comprise the property's 

amenities and the quality of the surrounding neighborhood. However, inherent characteristics of real 

estate datasets, such as heteroscedasticity and non-normality, impede the accurate modeling of these 

datasets through non-robust techniques. Certain scholars have attempted to address these issues by 

employing robust methods. Nonetheless, these methods have their limitations, particularly 

concerning the types of outliers found in real estate datasets, specifically casewise and cellwise 

outliers. Casewise outliers represent individual observations diverging from the overall distribution, 

while cellwise outliers correspond to specific outliers identified within subsets defined by variable 

combinations. Existing robust methods predominantly address casewise outliers, neglecting cellwise 

outliers. Addressing this shortfall, the present study applies a robust method developed specifically for 

managing cellwise outliers. The dataset was acquired from Kaggle.com, and it has been previously 

utilized by Babb (2019). The kc_house_data dataset contains significant information pertaining to 

residential properties that were sold within King County, Washington state, during the period spanning 

May 2014 to May 2015.It contains 12 different variables for 21,601 different houses. The variables 

were about the characteristics of the houses and some of them were about the quality of the 

neighborhood the houses were located in. This study incorporated three distinct methodologies on 

this dataset: the Ordinary Least Squares (OLS) sensitive to outliers, the M Robust regression resistant 

to casewise outliers (utilizing Huber and Tukey’s loss functions), and a methodology Robust to cellwise 

outliers (Cellwise M Robust regression). The price-influencing variables demonstrated variations in 

their effects and significance between OLS and the two robust methodologies. In terms of accuracy, 

the M robust regression employing the Huber loss function exhibited superior performance, followed 

by the CRM model. Therefore, the results imply that cellwise outliers do not significantly impact the 

price, and overall, casewise robust methodologies appear more favorable in the real estate market 

context 

  



4 
 

1. Introduction 
 

Homeownership, nowadays, is a focal point of modern living which is reflecting not only an individual's 

financial stability but also their social status (Kangane et al., 2021). A home is not merely a physical 

structure, but an investment, a financial asset, and a cornerstone of personal wealth. Consequently, 

the importance of this asset makes the understanding of its price valuation crucial. The price of a house 

is affected by various factors, including its location, size, condition, and the state of the market at a 

given time. Having a comprehensive understanding of how these factors influence the price of a house 

not only facilitates informed decision-making in buying or selling property, but also assists in predicting 

future trends, managing financial risk, and maximizing investment returns. A multitude of studies have 

been embarked upon with the goal of predicting housing prices, as well as discerning the factors that 

exert influence on these prices. These endeavors have employed a diverse array of methodologies; 

however, a prevalent limitation shared among the majority of these techniques is their susceptibility 

to outlier data. Anomalous data points can significantly distort the analytical outcome and bias the 

interpretation, thereby undermining the efficacy and accuracy of these prediction models. 

Consequently, the quest for a robust method that remains impervious to outliers continues to be a 

pressing need within the academic and professional realms of real estate data analysis. 

The real estate sector presents a highly intricate and oftentimes capricious market, underpinned by a 

myriad of factors capable of shaping property valuations. These include, but are not limited to, the 

broader economic climate, mechanics of supply and demand, geographic location, and intrinsic 

property features. Conventional regression techniques, such as Ordinary Least Squares (OLS), may not 

invariably provide adequate modeling for real estate data, due to their pronounced sensitivity to 

outliers and influential observations. Furthermore, these traditional methods may fail to 

accommodate the characteristic heteroscedasticity and non-normality often prevalent in real estate 

data (Yu & Yao, 2017). The influence of outliers on non-robust fit can be of such magnitude as to 

erroneously classify certain routine observations as outliers, a phenomenon termed as "swamping" 

(Davies & Gather, 1993). Therefore, navigating the intricacies of this complex market requires 

advanced analytical tools capable of accommodating these unique characteristics. 

Robust high-breakdown methods are more appropriate as they can mitigate the influence of outliers. 

These robust alternatives demonstrate the ability to accurately estimate the parameters of the 

assumed model, even when a minority portion (i.e., less than 50%) of the data exhibits considerable 

deviation from said model. Robust approaches, such the robust linear regression M-estimator with the 

Huber loss function (Huber, 1973), offer several advantages for modeling real estate data. Primarily, as 

mentioned by De Menezes et al. (2021b), they can competently manage outliers and influential 

observations with a higher degree of efficiency as compared to traditional methods. This leads to a 

more precise estimation of regression parameters and enhances the prediction accuracy of property 

valuations. Given the real estate market's susceptibility to extreme outliers and influential 

observations that can substantially affect property values, this attribute of robust methods is of 

paramount importance. Secondly, robust methods take into account the inherent heteroscedasticity 

and non-normality frequently observed in real estate data. This is crucial, as the assumption of 

homoscedasticity and normality is often violated in real estate data sets, leading to potentially biased 

and inefficient estimations of regression parameters when using conventional methods. Thirdly, robust 

methods can yield more durable and reliable estimates of model performance measures. This aspect 

is integral to assessing the efficacy of real estate models and to make informed decisions related to the 

purchase, sale, and investment in properties, underscoring the necessity of robust data analysis in real 

estate market dynamics. 
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Despite the efforts of numerous researchers to incorporate robust methods into real estate analysis 

for more accurate modeling, the focus has primarily been on casewise outliers, with minimal 

consideration given to cellwise outliers. The main difference between casewise outliers and cellwise 

outliers lies in the level at which they are identified and characterized. Casewise outliers are individual 

observations that deviate from the overall distribution, while cellwise outliers are specific outliers 

identified within subsets defined by combinations of variables. A more extensive review of those two 

types of outliers will be reviewed in the next section. Following an exhaustive review of methodologies 

in the real estate field, which predominantly focus on casewise outliers, it became clear that there was 

a significant gap in the literature when it comes to addressing cellwise outliers. Recognizing this gap, 

we aimed to remedy this evident oversight by focusing our analysis on the detection and impact of 

cellwise outliers. The ordinary least squares (OLS) regression method is widely recognized for fitting a 

regression line based on all provided observations, without explicitly considering the presence of 

outliers. Consequently, the resulting regression line may deviate from the underlying trend, as the 

model aims to minimize the sum of squared differences between the data points and the regression 

line. In contrast, robust methods take into account the presence of casewise outliers and employ 

strategies to downweight their influence, aiming to mitigate their impact on the regression line. By 

doing so, these methods disregard extreme data points to a certain degree, allowing for a better fit of 

the regression line to the patterns exhibited by the normal observations. It is important to note that 

there exists a trade-off in the prediction accuracy between inlying cases (non-outliers) and outlying 

cases. Robust regression, specifically designed to address cellwise outliers, aims to strike a balance 

between these two types of cases. It places emphasis on downweighting extreme cells that contribute 

the most to the outlying cases, rather than treating all cases equally. This approach allows for a more 

targeted and nuanced handling of outliers, offering improved model performance compared to both 

OLS regression and robust methods that do not account for cellwise outliers. In this research, we 

endeavor to critically assess the influence of cellwise outliers within the real estate market. We aim to 

investigate whether a model designed to specifically counteract these outliers yields more accurate 

results compared to existing robust models. Our study goes beyond just the recognition and handling 

of these cellwise outliers. We also aspire to illuminate the variances in how different housing variables 

contribute to the house's pricing structure. This comprehensive analysis will not only allow us to 

measure the impact of these variables but will also provide a clearer understanding of their individual 

contributions in shaping the price of a house. 

Taking those into consideration, we will apply four distinct analytical techniques to a comprehensive 

real estate dataset. Initially, we shall employ the widely recognized linear regression, a non-robust 

approach highly sensitive to the influence of both casewise and cellwise outliers. Subsequently, we will 

apply the M-estimator method with the Huber loss function, designed to manage the presence of 

casewise outliers. Finally, the Cellwise Robust M Regression method developed by Filzmoser et al. 

(2020) will be utilized, thereby incorporating the effect of cellwise outliers into our analysis. The 

primary aim of this research is to examine the distinct impact of casewise and cellwise outliers on the 

resultant models. Further, we endeavor to determine which parameters exert the most significant 

influence on property prices according to these models and whether these determinants diverge from 

those identified by previously developed non-robust models. This intricate study offers valuable insight 

into the myriad factors influencing property prices and the distinct role of outliers in shaping these 

analytical models, thereby enriching our understanding of the complexities inherent to the real estate 

market. Thus, the main research question is :  

“What differences are observed in the estimation of relationships (regression coefficients) between 

independent and dependent variables when using robust regression methods compared to 

ordinary linear regression in the real estate market?” 
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Followed by the sub-questions: 

a. Are robust methods performing better than the OLS in terms of accuracy? 

b. Do the Robust Methods have differences in their interpretation to OLS? 

Considering computational efficiency, is it worthwhile to employ a complex model such as the Cellwise 

Robust Regression (CRM) in this field?? 

Our case study validate our initial hypothesis, that the Cellwise Robust Regression is indeed the middle 

ground of this tradeoff. There are differences in the coefficients between our models as expected and 

at the importance of every variables as all the signs of some variables. In the discussion section we will 

highlight in which circumstances each methodology should be used and the proposed framework that 

should be followed in case there is need to apply the CRM in a dataset with high variability. Τhe 

limitations of this study and we will provided as well as the proposed extension of these findings. 

The organization of this study is as follows. Section 2 delves into the findings of previous studies, 

presenting key determinants influencing property prices as identified in earlier research, and 

elucidating the theory underpinning the concept of outliers. Section 3 elucidates the fundamental 

theoretical concepts undergirding the methodologies employed in this study, thereby offering a 

comprehensive understanding of the analytical tools at hand. The data utilized for this research is 

thoroughly detailed in Section 4. Section 5 unveils the results derived from the developed models, 

focusing on their interpretability and precision. A comparative analysis between the models is also 

presented to highlight their differential strengths and shortcomings. Finally, Section 6 provides a 

conclusive synthesis of the research findings, while Section 7 proposes directions for future 

investigation, acknowledges limitations of the current study based on the gleaned insights, and 

suggests potential strategies to address these limitations in subsequent research. 

 

2. Literature Review  
 

As we mentioned before, initially the studies that have been conducted in this field were utilizing non-

robust methods. Once more people were starting to do more research on the field, the existence of 

outliers was acknowledged and the need to counter them emerged. Thus, robust methods started to 

take the place of being more sensitive to outliers’ methods. Firstly, we are going to understand what 

the outliers are, the types of them and how they are affecting our models. Then we will go through 

most of the models that have been developed, both robust and non-robust ones and lastly, we are 

going to see the main drivers that affect the price of the house from previous studies.  

 

2.1. Understanding Outliers  
 

The definition of outliers has been debated by researchers since the early 80s. Several definitions have 

emerged, but the core meaning remains the same (Papageorgiou et al., 2015). For example, Enderlein 

(1987) defined outliers as observations that deviate so much from other observations as to arouse 

suspicions that they were generated by a different mechanism, while Barnet and Lewis (1994) defined 

outliers as observations inconsistent with the remainder of the dataset. The generation of outliers in 

a dataset can stem from a variety of sources . Measurement or data entry errors are one such source, 

where mistakes made during data collection or entry introduce values that are incorrect or inconsistent 

with the rest of the dataset (Dixon, 1953) . For example, a typographical error or a misplaced decimal 

point could lead to an outlier in a numerical variable. Another source of outliers is natural variation 

within the data. In some cases, outliers can be a result of random fluctuations or extreme values that 
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occur due to inherent variability in the phenomenon being measured (Osborne and Overbay, 2004). 

These outliers may not necessarily indicate errors or problems with the data but rather reflect the 

inherent diversity or extreme nature of the data. Outliers can also be introduced into a dataset through 

data contamination or data quality issues (Cousineau & Chartier, 2010). For instance, during data 

merging or integration processes, outliers may arise if the data from different sources are incompatible 

or contain inconsistencies. Similarly, data transformation or preprocessing steps that are not properly 

handled can also generate outliers. Rare events or unusual cases can give rise to outliers as well. These 

outliers occur when certain data points deviate significantly from the normal behavior observed in the 

majority of the dataset. Examples include extreme values in financial transactions, abnormal medical 

test results, or anomalous behaviors in complex systems. Sampling or experimental design issues can 

also contribute to the generation of outliers. If the sampling process is not representative or suffers 

from biases, it may inadvertently include extreme observations that are not truly representative of the 

population. Similarly, in experimental studies, outliers can arise due to experimental errors, 

uncontrolled factors, or the presence of influential observations. 

Certain outliers may deviate substantially across all variables, while others may demonstrate atypical 

behavior in only a few variables. Hence two types of outliers have been acknowledged, the cellwise 

outliers and the casewise outliers. Casewise outliers, also known as global outliers or individual 

outliers, refer to observations that are extreme or deviate significantly from the overall pattern of the 

data (Wiggins, 2000). These outliers can occur in any variable within the dataset. They are 

characterized by having unusually high or low values compared to the majority of the data points. In 

contrast, cellwise outliers, also referred to as conditional or contextual outliers, are observations that 

are extreme within specific subgroups or categories defined by combinations of predictor variables. 

Unlike casewise outliers, which are outliers across all variables, cellwise outliers manifest as outliers in 

specific subsets of the data based on the grouping variables (Filzmoser et al., 2020). Cellwise outliers 

can provide valuable insights into the relationships between variables within particular contexts or 

conditions. They indicate that certain subgroups exhibit different characteristics or behaviors 

compared to the overall population. These outliers can be of interest in exploratory data analysis and 

may suggest the presence of interactions or contextual effects in the data. 

 

Consequences of Outliers 

 
It is really important to understand the consequences of both types of outliers. Cellwise outliers can 

have significant consequences on statistical analysis such as t-tests and ANOVAs, as they may not 

provide reliable results. Osborne and Overbay (2004) noted that the presence of cellwise outliers can 

lead to incorrect conclusions. In addition, the presence of cellwise outliers can also lead to model 

misidentification in process modeling and identification, where the model parameters are estimated 

incorrectly. This can cause incorrect process control decisions, leading to poor predictions and 

undesirable outcomes (Pearson, 2002).  

In contrast, casewise outliers present a different set of issues. They can have significant consequences 

on regression analysis as they may not provide reliable results. Osborne and Overbay (2004) argue that 

the presence of casewise outliers can lead to incorrect predictions and conclusions. In process 

modeling and identification, the presence of casewise outliers can also lead to model misidentification. 

The estimated model parameters can be biased, and this can lead to poor predictions and incorrect 

process control decisions (Pearson, 2002).  

Elaborating on the consequences of cellwise and casewise outliers, it is essential to emphasize that 

these outliers can significantly impact the quality of the results of the analysis. These outliers can also 

result in the violation of the assumptions of the statistical models used. Additionally, cellwise and 
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casewise outliers can reduce the accuracy of predictive models by influencing the training of machine 

learning algorithms. 

 

2.2. Previously Developed Models 
 

As we mentioned before, in this field, the development of models has evolved in response to emerging 

challenges, including the presence of outliers in the datasets. Initially, non-robust models were 

commonly employed, unaware of the potential influence of outliers on the analysis. Those models 

were mainly developed for two reasons, for predicting the price of a house and for discovering which 

variables influence price the most. However, given the fact that the models were not robust to outliers, 

the coefficients were biased, and the accuracy of the predictions was low. Thus, as the significance of 

outliers became apparent, the need arose for models that were less sensitive to these extreme 

observations. This section aims to provide an overview of the models used in this field, highlighting 

the transition from non-robust to robust approaches, followed by an exploration of the main variables 

identified as significant drivers of house prices based on existing research. 

2.2.1. Non-Robust Approaches 

 

Early models in housing price analysis predominantly utilized non-robust methodologies, assuming 

that the data followed a well-behaved distribution without considering the impact of outliers. The 

most common of those models are Linear Regression (LR), Multiple Linear Regression (MLR), Penalized 

Regressions ( Lasso and Ridge), Hedonic Regression (HR), Repeat Sales Method (RSM) and the SPAR 

method. 

Linear Regression (LR) and Multiple Linear Regression (MLR): Both these models predict a dependent 

variable based on one or more independent variables by fitting a linear equation to observed data. 

The parameters of the model are estimated using the least squares method. A significant limitation of 

these models is their sensitivity to outliers. The least squares estimation procedure employed in LR 

and MLR strives to minimize the sum of squared residuals, causing outliers to exert a disproportionate 

influence on the estimated model parameters, thereby leading to biased results (Su et al., 2012).  

Penalized Regressions (Lasso and Ridge): These regression techniques address multicollinearity 

problems in LR and MLR by adding a penalty term to the loss function, which shrinks the coefficients 

of less important features towards zero (Fu, 1998). However, similar to LR and MLR, Lasso and Ridge 

regressions are also vulnerable to outliers. The inclusion of outliers can distort the penalty term, 

leading to the suboptimal selection of features and compromised predictive performance.  

Hedonic Regression (HR): This method is commonly used in real estate economics to relate the price 

of properties to their characteristics. While useful, HR can be heavily impacted by outliers due to its 

reliance on ordinary least squares estimation, similar to LR and MLR, leading to biased coefficient 

estimates and unreliable predictions (De Haan & Diewert, 2013). 

Repeat Sales Method (RSM): RSM is typically used to construct real estate price indices. It is based on 

the idea that the ratio of sales prices of a property sold more than once should represent the overall 

price trend (Wang & Zorn, 1997). Although it mitigates unobserved property quality issues, extreme 

sales prices, both casewise and cellwise, can still distort the estimates. 

SPAR Method: This method combines the strengths of HR and RSM, using characteristics of a property 

and repeat sales information to estimate price indices (De Vries et al., 2009). Like RSM and HR, it is not 

inherently robust to outliers, and extreme observations can significantly affect the estimation of price 

indices.  
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2.2.2. Robust Approaches 

 

Recognizing the need for more robust modeling techniques that could mitigate the influence of 

outliers, researchers began adopting robust regression models. Several have been developed, among 

them Support Vector Regression (SVR), Decision Tree (DT), Random Forest Regression (RFR), Gradient 

Boosting (GB), XGBoost and Quantile Regression (QR). 

Support Vector Regression (SVR): (SVR) is a powerful method used for predicting continuous 

outcomes that incorporates the concept of 'epsilon-insensitive loss'. Unlike traditional linear 

regression, SVR aims to minimize the prediction errors while being less sensitive to outliers and noisy 

data points. The epsilon-insensitive loss allows the model to tolerate errors that fall within a specified 

threshold (epsilon) and considers them as negligible, not penalizing them during the optimization 

process. This feature enables SVR to focus on accurately fitting the majority of data points, particularly 

those close to the regression line, while reducing the influence of smaller errors and outliers. The 

choice of epsilon is a hyperparameter that can be adjusted to control the model's sensitivity to errors. 

A smaller epsilon value makes the SVR more sensitive to errors, while a higher value makes it more 

tolerant. This adaptability empowers SVR to strike a balance between flexibility and accuracy in 

predictions, making it a robust tool for handling real-world datasets with heteroscedasticity and non-

normality, common in real estate markets, and other domains with complex data patterns.  

Decision Tree (DT) and Random Forest Regression (RFR): Both these methods are non-parametric, 

and their mechanism of partitioning the data space makes them robust against outliers. Decision Trees 

split the predictor space (set of possible values X can take) into distinct regions based on conditions on 

the predictors. Random Forests, being an ensemble of Decision Trees, inherit this robustness (Ali et 

al., 2012). Extreme data points, unless they substantially affect the decision boundaries, do not impact 

these models' performance (Pranav Kangane et al., 2021).  

Gradient Boosting (GB) and XGBoost: As ensemble methods that typically use decision trees as base 

learners, GB and XGBoost can handle outliers effectively due to the robustness of decision trees 

(Bentéjac et al., 2020). Casewise outliers have less influence on these models, especially when using 

tree-based learners (Zhao et al., 2019). The robustness may vary depending on the loss function used.  

Quantile Regression (QR): QR predicts a quantile (or percentile) of the response variable rather than 

the mean, making it inherently robust against both cellwise and casewise outliers (Koenker & Hallock, 

2001). By focusing on quantiles rather than means, QR limits the impact of outliers, as the quantiles of 

the distribution are less influenced by extreme values.  

Even though those methods can handle outliers to varying extents, they may not be fully effective in 

tackling cellwise outliers. For instance, the efficacy of Support Vector Regression (SVR) in addressing 

cellwise outliers is largely contingent upon the 'epsilon' hyperparameter selection, which defines the 

width of the insensitive zone in the loss function. An ill-selected 'epsilon' could lead to underfitting or 

overfitting and may still be susceptible to high-dimensional cellwise outliers. Non-parametric methods 

like Decision Tree (DT) and Random Forest Regression (RFR) exhibit general robustness to outliers. 

However, extreme cellwise outliers can alter the partitioning of the data space, potentially resulting in 

overfitting. The same limitation applies to ensemble methods like Gradient Boosting (GB) and XGBoost, 

where extreme cellwise outliers can induce skewed splits and overfitting. Lastly, though Quantile 

Regression (QR) demonstrates robustness to outliers, it does not intrinsically address cellwise outliers 

effectively, especially if these outliers are influential and present in multiple dimensions. Additionally, 

the interpretability of QR models can be more complex compared to mean regression models, as QR 

provides estimates for different quantiles of the response variable distribution.  

Throughout the utilization of robust methods, two main disadvantages become evident. Firstly, these 

methods primarily account for casewise outliers, neglecting the presence of cellwise outliers. Cellwise 

outliers, which occur within specific subgroups or categories, can significantly affect the relationships 
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between variables and the price. Therefore, the exclusion of cellwise outliers limits the comprehensive 

understanding of these relationships. Secondly, certain robust methods fall into the category of "black 

box" models, which can pose challenges in terms of interpretability. While these models may exhibit 

robustness against outliers, their complex algorithms and intricate internal mechanisms make it 

difficult to interpret the relationships between variables and the housing price. This lack of 

interpretability hinders the transparent understanding of the underlying drivers of housing prices. 

One technique that addresses the aforementioned concerns is Cellwise Robust M-regression (CRM). 

By accounting for both casewise and cellwise outliers, CRM offers a more comprehensive and robust 

approach to modeling the relationships between variables and housing prices. Moreover, CRM aims 

to balance robustness against outliers with the interpretability of the model, allowing for meaningful 

insights to be extracted even in the presence of outliers. Cellwise Robust M-regression introduces a 

distinctive approach by employing a weighting mechanism at the level of individual cells within the 

dataset. This methodology goes beyond considering outliers solely at the case level and instead assigns 

weights to individual cells, allowing for the targeted reduction of influence from outlying cells. By 

adaptively down-weighting both casewise and cellwise outliers, CRM provides a significant advantage 

when modeling data that may contain both types of outliers. More about the methodology of CRM is 

explained in the following Section (3.3). Consequently, CRM can offer a more nuanced and effective 

approach to handling cellwise outliers in high-dimensional data, thus leading to potentially more 

reliable model estimates and predictions in the presence of such outliers. 

 

2.3. Main Drivers that effect the Price  
 

The real estate market's dynamics are shaped by two principal factors: the intrinsic attributes of the 

property and the contextual features of its surrounding neighborhood. The characteristics of the 

house, encompassing its size, number of bedrooms and bathrooms, presence of amenities, and overall 

quality, exert a profound influence on the property's valuation. Moreover, the neighborhood's 

geographical location, safety, proximity to essential facilities, and responsiveness to market trends are 

pivotal determinants of housing prices. This section draws support from various scholarly works that 

have observed similar findings regarding the impact of these drivers on the real estate market. While 

the cited papers provide valuable insights, it is noteworthy that numerous researchers have also 

documented the significance of these factors in shaping housing prices. 

2.3.1. Housing Characteristics 

 

In addition to the evolution of modeling techniques, extensive research efforts have focused on 

identifying the main variables that impact housing prices. Various factors have been recognized as 

significant drivers of house prices, encompassing both property-specific and external influences. The 

variables that exhibit a positive relationship, whereby an increase in their value by one unit 

corresponds to an increase in the housing price, include: 

Area in Square Meters: As observed by Neelam Shinde and Kiran Gawande (2018),the size of a house 

which is usually measured in square feet or meters, is one of the most straightforward factors affecting 

its price. Larger houses tend to be more expensive because they offer more living space, often come 

with more rooms, and can accommodate larger or more amenities. They also typically require more 

materials and labor to build, contributing to their higher cost. In the real estate market, the price per 

square foot or meter can be a useful measurement to compare the value of different. 

Number of Bedrooms and Bathrooms: These are crucial characteristics of a house Sirmans et al. 

(2005), and they have been for decades as Witte et al. (1979)  also obtained the same insights,  that 
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more bedrooms can accommodate larger families or can be used for various purposes such as guest 

rooms or home offices. More bathrooms reduce the inconveniences of sharing, especially in larger 

households, and can be a luxury feature in themselves. Therefore, houses with more bedrooms and 

bathrooms usually command higher prices. 

Garage Area and Number of Cars Accommodated: Pranav Kangane et al. (2021) note that garages 

serve dual purposes as storage and parking space. Houses with larger garages offer more storage space 

and can accommodate more vehicles. This is particularly valuable in areas where on-street parking is 

limited or unavailable, or where adverse weather makes covered parking desirable. Therefore, houses 

with larger garages tend to be priced higher. 

Overall Quality Rating: The overall quality and condition of a house significantly impact its price. This 

includes the quality of construction, the condition and quality of the interior finish, the state of repair, 

and the quality of the appliances and systems like heating and cooling. Babb (2019) found that higher 

quality houses generally command higher prices, reflecting the materials, workmanship, and 

maintenance of the property. 

Location: According to Bourassa et al. (2006a), location is one of the most important factors in real 

estate. Houses in desirable locations tend to have higher prices. Desirability can depend on a variety 

of factors, including proximity to city centers, schools, parks, and shopping centers, as well as the 

quality of the local school district, the level of local services, and even the prestige associated with a 

particular neighborhood or area. Houses with better views or in quieter, less congested areas can also 

command higher prices. 

Amenities: Amenities are special features or facilities that add to the comfort, convenience, or luxury 

of a house. This can include a wide range of features, from swimming pools and large, well-equipped 

kitchens to home theaters, fireplaces, and advanced home automation systems. Houses with more or 

better amenities typically command higher prices because they offer more comfort, convenience, or 

enjoyment to the homeowner (Zietz et al.,2008b).  

On the other hand, there are variables that have a negative effect on housing prices. These variables 

include: 

Age and Deterioration: While historical or vintage houses may sometimes be valued for their unique 

architectural features, generally older houses tend to sell for less, unless they've been substantially 

renovated. This is due to several reasons. According to several papers (Neelam Shinde and Kiran 

Gawande, 2018; Pranav Kangane et al., 2021; Bourassa et al., 2006a; Bourassa et al., 2009c) older 

houses might not meet current building codes, have outdated layouts and designs, or lack modern 

amenities and conveniences. In addition, they are more likely to need repairs and maintenance, 

including potentially costly updates to systems like plumbing, wiring, or heating. 

 

2.3.2. Neighborhood Quality 

 

Zabel's (1996) study highlighted the pivotal role of location and neighborhood quality in influencing 

housing prices. His research identified several variables directly linked to neighborhood characteristics 

that exert a negative impact on house prices. These findings were consistent with those of Sirmans et 

al. (2005), reaffirming the significance of these factors in the real estate market. Some of the variables 

negatively affecting house prices and closely associated with neighborhood attributes include:  

Location in a High Crime Area: Crime rates can significantly affect property values. Houses in 

neighborhoods with high crime rates are often less desirable to buyers, leading to lower prices. 

Potential homeowners may not feel safe living in such areas, and the crime rate could also affect their 

property insurance rates. This goes beyond just personal safety - areas with high crime rates often also 

suffer from issues like poor maintenance and neglect, which can further depress property prices. 
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Poor School Districts: For families with children, the quality of the local school district is often a key 

factor in choosing a house. Houses located in poor school districts can therefore have lower prices, as 

they may be less attractive to these buyers. Even for buyers without children, a poor school district can 

be seen as a negative feature, as it could make the house harder to sell in the future. 

Noise Pollution: Houses located near sources of noise, such as busy highways, airports, train tracks, or 

industrial areas, can be less desirable to buyers and therefore command lower prices. Noise can disrupt 

peace and quiet at home, disturb sleep, and generally reduce the quality of life. Noise pollution can 

also be a sign of other issues, such as heavy traffic, pollution, and a lack of green spaces. 

 

2.4. Relevance – Contribution 
 

The valuation of property holds immense relevance across diverse sectors, including real estate, stock 

market, taxation, and the broader economy. Four compelling reasons justify the emphasis on housing 

market analysis.  

Firstly, the wealth effect associated with housing exceeds that of financial assets, substantiated by Case 

et al. (2005) and Benjamin et al. (2004). Secondly, housing, as corroborated by Englund et al. (2002) 

and Flavin and Yamashita (2002), constitutes the primary asset in household portfolios. Thirdly, 

housing market downturns wield a significantly stronger impact on the economy than stock market 

declines. According to Helbling and Terrones (2003), the output effects linked with housing price 

declines during 1970-2002 were twice as significant as those associated with equity price downturns. 

Furthermore, the repercussions of housing price drops supersede those of stock market crashes, with 

the economic slowdown posting a housing market collapse being twice as protracted. Fourthly, 

housing purchases are primarily driven by consumption motives, coupled with the fact that high 

transaction costs, the heterogeneous and illiquid nature of housing limit arbitrage. Therefore, any 

inefficient pricing can endure for uncertain and extended periods, making the correction towards 'true' 

value a gradual process. 

Accurate prediction of house prices serves a plethora of stakeholders. For prospective homeowners, 

an accurate prediction facilitates informed decision-making regarding the property's purchase. Real 

estate agents and brokers can utilize these predictions to assist clients in setting reasonable prices, 

attracting potential buyers, and finalizing sales. Real estate developers can derive insights about 

construction decisions and pricing strategies by understanding price influencing factors. Other 

beneficiaries of this prediction include lenders, appraisers, tax assessors, government agencies, and 

housing market investors. 

Moreover, the housing dataset in this study represents multivariate data exhibiting high variability, a 

common feature in the contemporary world. Consequently, this study is not merely enhancing the 

predictive accuracy for a vital asset, but also paving the way for fields represented by similar datasets. 

In summation, this study proposes a novel approach to discern the relationship between house prices 

and various influencing variables. It augments existing literature on algorithms specializing in detecting 

cellwise outliers in real estate, an underexplored area. It is a pioneering effort to apply the CRM’s 

package implementation of the CRM algorithm to real estate data. 

The study aims to identify the limitations of current methodologies and presents a comprehensive 

comparison of methods sensitive to outliers, casewise outliers, and methods accounting for both 

cellwise and casewise outliers. Lastly, this work contributes a new technique to the current 

methodologies for predicting a variable in a multivariate dataset with high variability and provides 

guidance on its application in appropriate scenarios. 
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3. Methodology 
 

For this research, we are going to use the traditional Multiple Linear Regression, the M Robust 

Regression with the Hubert loss function, the M Robust Regression with the Bisquared loss function 

and the Cellwise M Regression. 

 

3.1. Multiple Linear Regression (MLR) 
 

Multiple linear regression (MLR) is a statistical technique used to model the relationship between a 

dependent variable and two or more independent variables. It builds upon simple linear regression, 

which focuses on the connection between a single independent variable and the dependent variable. 

In MLR, the goal is to estimate the regression coefficients that quantify the numerical relationship 

between the independent and dependent variables. These coefficients, when other variables are kept 

constant, indicate the average change in the dependent variable for a one-unit change in each 

independent variable. The MLR model is commonly represented as follows: 

𝑌 = 𝛽0 + 𝛽1𝛸1 + 𝛽2𝛸2 +⋯+ 𝛽ₚ𝑋ₚ + 𝜀 

Where: 

• 𝑌 represents the dependent variable 

• 𝑋₁, 𝑋₂, . . . , 𝑋ₚ represent the independent variables 

• 𝛽₀, 𝛽₁, 𝛽₂, . . . , 𝛽ₚ are the regression coefficients 

• 𝜀 represents the error term, which captures the unexplained variation in the dependent 

variable not accounted for by the independent variables 

 

3.1.1. Assumption of MLR  

 

To ensure the validity and reliability of the MLR model, several key assumptions need to be met. These 

assumptions provide the foundation for statistical inference and accurate interpretation of the 

regression results. In this subsection, we will discuss and describe each assumption in detail. 

Linearity: The relationship between each independent variable and the dependent variable should be 

linear, according to the linearity assumption in MLR. Additionally, there should be linearity in the 

overall relationship between the dependent variable and all of the independent variables. The pattern 

between the residuals and the fitted values can be represented with a straight line in the following 

Figure (1), demonstrating that the linear assumption is met at the initial plot. The assumption is 

broken, as can be seen on the right plot where the line representing this relationship is curled. This 

could lead to skewed standard errors, p-values, R squared, and coefficients. 

 

 

Figure 1: Linearity Assumption of the Linear Regression obtained by  Choueiry (2022b)  
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Independence: MLR makes the assumption that the 

observations utilized in the regression analysis are 

independent of one another. In other words, the 

value of one observation is independent of the value 

of another. Two linear regression lines are depicted in 

Figure 2, with the points distributed randomly on the 

left. The points on the right are obviously impacting 

one another, which contradicts this presumption. 

Estimates of the regression coefficients may be 

skewed and ineffective if the mistakes are not 

random. 

 

 

Homoscedasticity: The term "homoscedasticity" describes the presumption that the error (or residual) 

variability is constant at all levels of the independent variables. In other words, regardless of the values 

of the independent variables, the spread of the residuals should be constant. The residuals are 

distributed across the range of predictors in Figure 3's left plot, with no clear trend to be seen. This 

suggests that the errors are dispersed normally. On the right plot, we can discern a pattern (a straight 

line) that suggests a non-normal distribution, though. For successful hypothesis testing and 

trustworthy standard errors, it is crucial to make this assumption. 

 

 

Figure 3: Homoscedasticity Assumption of Linear Regression obtained by Avcontentteam (2023b) 

 

Normality: According to the normality assumption, the residuals in MLR have a normal distribution. 

For performing hypothesis tests, creating confidence intervals, and drawing statistical inferences, 

normality is essential. Because the first two plots on the left follow the normality line, they show that 

the data are normal. The initial plot includes a few minor variations, but given the volume, they are 

tolerable because there are no significant ones. The data in the figure on the right, on the other hand, 

are not normal since they vary greatly from the normality line. The accuracy of the regression findings 

may be impacted by deviations from normality, which may point to potential problems with the 

model's underlying assumptions. 

  

Figure 2: Independence Assumption of Linear Regression 
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Figure 4: Normality Assumption of the Linear Regression obtained by Moran (2021) 

 

Multicollinearity: The multicollinearity assumption in linear regression refers to the presence of high 

correlation among the independent variables in the model. This condition can lead to unstable 

coefficient estimates, making it difficult to determine the unique contribution of each variable to the 

dependent variable. Interpretation of coefficients becomes challenging as the effects of individual 

variables are confounded by multicollinearity. Additionally, multicollinearity inflates standard errors, 

reducing the precision and statistical significance of the coefficient estimates. It also diminishes the 

predictive accuracy of the model, particularly for new observations. 

 

3.1.2. OLS fit to a sample Dataset 

 

We constructed a representative sample dataset incorporating distinctly observable outliers. 

Subsequently, we produced a scatter plot of this dataset, supplemented by a simple regression line, as 

depicted in Figure 5. In the scatter plot, the data points are marked by dots. While the black dots 

represent the 'normal' observations, the red ones signify the outliers. We fitted an Ordinary Least 

Squares (OLS) regression line to this dataset. An important characteristic of OLS regression is that it 

assigns equal weights to each observation, regardless of whether it is an outlier or a regular 

observation. As a result, the OLS regression model becomes sensitive to these extreme data points. 

This sensitivity is a double-edged sword: it can provide insights into unique occurrences within the 

dataset, yet it also has the potential to skew the regression line and thereby distort predictions. In our 

sample dataset, the three extreme points (indicated in red) significantly influence the OLS regression 

line, highlighting the impact outliers can have on this form of regression analysis. 

 

 

Figure 5: Fit of the OLS Regression Line as an example. 

The skewness of the line towards the red dots (outliers) shows the sensitivity of the fit.  
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3.2. M Robust Regression 
 

M-estimator robust regression (De Menezes et al., 2021b) is a statistical approach employed for 

parameter estimation in regression models when there are outliers or violations of assumptions. This 

technique aims to be more resilient to extreme data points and departures from normality in 

comparison to conventional regression methods like ordinary least squares (OLS). Its primary objective 

is to provide more robust and reliable parameter estimates in the presence of challenging data 

characteristics. The general form of the M-estimator can be expressed as follows: 

 

𝑆 = 𝛴ⅈ=1
𝑛 𝐻(𝜀ⅈ) 

 

Where: 

• H is the loss function 

• 𝑛 represents the number of observations in the dataset 

The mean squared error function can be considered an M-estimator in which 𝐻(𝜀) = 𝜀2. In robust 

regression using M-estimators, the goal is to determine the regression coefficients that minimize a 

particular loss function applied to the residuals. This loss function quantifies the difference between 

the observed values and the predicted values obtained from the regression model. By selecting an 

appropriate loss function, the M-estimator approach can mitigate the impact of outliers and handle 

deviations from underlying assumptions, leading to more resilient parameter estimates. So, in the case 

of general form of the error function, the derivative with respect to 𝑘𝑡ℎ parameter takes the following 

form after applying the chain rule: 

 

𝜕𝑆

𝜕𝜃𝑘
= 𝛴ⅈ=1

𝑛 𝑤𝑖𝜀𝑖𝑥𝑘𝑖 = 𝛴ⅈ=1
𝑛 𝑤𝑖(𝜃𝑘𝑥𝑖 − 𝑦𝑖)𝑥𝑘𝑖 

 
Where :  

• S represents the objective function or the loss function being minimized in the M-estimator 

approach 

• 𝜃𝑘 is the 𝑘𝑡ℎ regression coefficient being differentiated with respect to 

• 𝑤ⅈ is the weight associated with the 𝑖𝑡ℎ observation 

• 𝜃𝑘𝑥ⅈ represents the predicted value for the 𝑖𝑡ℎobservation based on the current regression 

coefficients 

• 𝑦ⅈ  is the observed value for the 𝑖𝑡ℎobservation 

• 𝑥ⅈ represents the input or independent variable of the 𝑖𝑡ℎ observation 

 

This expression is set to zero and solved simultaneously for all parameters. In the general case, the 

parameter values are obtained through an iterative reweighting procedure. This involves defining a 

"weight" variable as: 

𝑤ⅈ  =  
1

𝜀
 
𝜕𝛨

𝜕𝜀ⅈ
 

So, in this case:  
𝜕𝑆

𝜕𝜃𝑘
= 𝛴ⅈ=1

𝑛 𝑤𝑖𝜀𝑖𝑥𝑘𝑖 = 𝛴ⅈ=1
𝑛 𝑤𝑖(𝜃𝑘𝑥𝑖 − 𝑦𝑖)𝑥𝑘𝑖 = 0  
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In the robust regression procedure, the initial weights are set to a uniform value, typically of 1. This 

allows us to form a system of linear equations that can be solved for the parameter estimates, denoted 

as θ. With the newly obtained parameter values, the error terms are computed. These error terms are 

then used with a chosen residual function, denoted as 𝐻(𝜀), to calculate a new set of weights, denoted 

as 𝑤. This iterative process continues until convergence is achieved. In robust regression, different loss 

functions can be employed as the residual function. Two commonly used loss functions are the Huber 

loss function and the Bisquared loss function.  

 

3.2.1. Huber Loss Function 

 

The Huber loss function (Huber, 1973) is a combination of the squared loss and absolute loss. It 

provides a compromise between the efficiency , in terms of more precise parameter estimates with 

smaller standard errors, of the squared loss and the robustness of the absolute loss. The Huber loss 

function is defined as:  

{
 

 
𝜀2

2
𝑓𝑜𝑟|𝜀| ≤ 𝑘,

𝑘|𝜀| −
𝑘2

2
𝑓𝑜𝑟|𝜀| > 𝑘

 

 

For errors which are not bigger than some threshold this function behaves more like the mean squared 

error, which ensures that the function is continuous at the origin. In case of bigger errors, the function 

behaves more like the mean absolute error, and the penalization of the outliers becomes proportional 

to their distance to the mean. As for the 𝑘 value, Huber proposed 1.345 of standard deviation of a 

sample, which results in approximately 95% of efficiency which MSE provides. The efficiency of the 

Huber loss function essentially lies in its capability to strike a balance between the high precision of 

MSE, which is effective for smaller errors, and the robustness of Mean Absolute Error (MAE), which 

better accommodates larger errors. When we reference the 95% efficiency of the Huber loss function, 

we're speaking to its ability to deliver results that stand up to 95% of the efficiency level achieved 

through the least squares method. This comparative benchmark, the least squares method, is 

conventionally viewed as 100% efficient under specific circumstances, such as when errors display a 

normal distribution and exhibit homoscedasticity (constant variance across different values of the 

independent variables). 

 

3.2.2. Bisquare M – Estimation 

 

The Bisquared loss function developed by Tukey (1960) is another commonly used loss function 

in M-estimation. It is designed to be more robust to outliers than the Huber loss. The Bisquared 

loss function is defined as: 

{
 
 

 
 𝑘

2

6
(1 − (1 − (

𝜀

𝑘
)
2

)
3

) 𝑓𝑜𝑟|𝜀| ≤ 𝑘,

𝑘2

6
𝑓𝑜𝑟|𝜀| > 𝑘

 

 

This type of function is even more robust than the Huber M-estimator. For the residuals with 

the values greater than some threshold (the proposed value for 𝑘 is 4.685 standard deviations) 

the penalization remains constant.  
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3.2.3. Comparing Huber and Bisquare  

 

Figure 6 illustrates the behavior of Huber's function and Tukey's estimator in dealing with residuals. 

Huber's function resembles least squares until the residuals reach a certain magnitude, after which 

their influence diminishes gradually. In contrast, Tukey's estimator immediately reduces the influence 

of residuals, and beyond a certain point, they have no impact at all (Fox & Monette, 2003). The weight 

functions of these estimators, as shown in Table 1, differ in shape and the rate at which outliers are 

downweighted. Huber's weight function exhibits a smoother transition from quadratic to linear loss, 

resulting in a gradual reduction in weight for outliers. On the other hand, Tukey's Bisquare weight 

function shows a more abrupt decline in weight beyond the threshold, leading to a more significant 

downweighting of outliers. Huber's estimator aims to strike a balance between efficiency and 

robustness, while Tukey's estimator is more aggressive in downweighting outliers.  

 

Method Objective function Weight function 

Least Squares 𝐻𝐿𝑆(𝜀) = 𝜀
2 𝑊𝐿𝑆(𝜀) = 1 

Huber 

𝐻𝐻(𝜀)  =

{
 

 
𝜀2

2
𝑓𝑜𝑟|𝜀| ≤ 𝑘,

𝑘|𝜀| −
𝑘2

2
𝑓𝑜𝑟|𝜀| > 𝑘

 

 

𝑊𝐻(𝜀) = {

1, 𝑓𝑜𝑟 |𝜀| ≤ 𝑘
𝑘

|𝜀|
, 𝑓𝑜𝑟 |𝜀| > 𝑘

 

Tukey bisquare 

𝐻𝛵(𝜀) =

{
 
 

 
 𝑘

2

6
(1 − (1 − (

𝜀

𝑘
)
2

)
3

) 𝑓𝑜𝑟|𝜀| ≤ 𝑘,

𝑘2

6
𝑓𝑜𝑟|𝜀| > 𝑘

 

 

𝑊𝑇(𝜀) = {
[1 − (

𝜀

𝑘
)
2

]
2

, 𝑓𝑜𝑟 |𝜀| ≤ 𝑘

0, 𝑓𝑜𝑟 |𝜀| > 𝑘

 

Table 1: Objective function and weight function for the Least Square, Huber, and Tukey bisquare estimators 

 

 

Figure 6: Comparison of Huber's to Tukey's Bisquare  
and Least squares Loss Functions 
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3.2.4. Casewise Robust Regression fit to the sample Data 

 

Using the same sample dataset and the initial OLS regression line as referenced, we proceeded to fit 

an M-regression line to the data. Notably, M regression is recognized for its robustness against 

casewise outliers. In contrast to OLS, this model strategically downweights these outliers, resulting in 

less sensitivity to their influence.  

As visualized in Figure 7, the M-Regression line lies notably lower than the Ols regression line. This shift 

is attributable to the counteractive mechanism of M-Regression again casewise outliers, 

downweighting their impact to minimize distortion. The resulting M-Regression line more closely 

reflects the pattern of the “normal” observations in the dataset. By mitigating the influence of the 

outliers, this model achieves a better fit, yielding a more reliable representation of the majority data 

points. 

 

 

Figure 7:  Fit of the Casewise Robust Regression line 

 

3.3. Cellwise Robust M Regression 
 

Cellwise Robust M (Filzmoser et al., 2020) is a robust regression method that effectively handles the 

presence of outliers or influential data points within a dataset. The fundamental objective of this 

methodology is to furnish dependable estimates of the regression coefficients by diminishing the 

impact of extreme observations. Notably, CRM distinguishes itself from other robust regression 

methods by accounting for both casewise outliers and cellwise outliers. By incorporating cellwise 

outliers into its framework, CRM enhances the reliability and accuracy of the estimated regression 

coefficients. This comprehensive approach ensures that the influence of extreme observations is 

suitably downweighted during the estimation process. Consequently, CRM is better equipped to 

capture the underlying relationships between variables and provide robust results.  
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In this section, we present an algorithm that extends cellwise robustness properties to various robust 

regression methods. As different robust regression methods have distinct characteristics, several 

details in the algorithm have been adjusted to accommodate specific regression techniques. The 

algorithm we describe is primarily a cellwise extension of robust MM regression, which is known for 

its favorable robustness-efficiency tradeoff demonstrated in theory, simulations, and practical 

applications (Maronna et al., 2006). The MM regression estimators involve two steps: first, a highly 

robust initial estimate is computed, leveraging its high breakdown point throughout the procedure. 

This initial estimate then serves as a plug-in estimator for an M-estimator, where it acts as a starting 

point for an iterative reweighting algorithm to achieve improved efficiency. We delve into the specifics 

of how this concept is utilized to develop an efficient and highly robust cellwise regression method, 

providing a detailed explanation of each essential step in the subsequent discussion. The main 

purposes of the CRM algorithm are to robustly estimate regression coefficients, improve model 

reliability and accuracy in the presence of outliers, and handle both casewise and cellwise outliers 

effectively. By incorporating these steps, CRM ensures that extreme observations are appropriately 

downweighted, enabling the algorithm to capture the underlying relationships between variables and 

provide robust results. The algorithm's performance is evaluated based on the Robust Mahalanobis 

distance, and convergence is achieved when the algorithm stabilizes and provides reliable coefficient 

estimates for all cases. 

The initial step of the algorithm involves robustly scaling and centering the data. The authors 

recommend using estimators with a 50% asymptotic breakdown point, such as the L1 median and Qn 

scale estimator (Rousseeuw & Croux, 1993), to ensure robustness. Here the asymptotic breakdown 

point implies that those estimators handle up to 50% of data contamination or outliers without 

providing arbitrary or completely incorrect estimates. Beyond this point, the reliability of the estimator 

can significantly deteriorate, and it may yield faulty or misleading conclusions. Subsequently, a robust 

Linear Regression method like MM robust regression or the LTS estimator is applied. After obtaining 

the initial estimates, the algorithm proceeds by scaling the residuals using the Median Absolute 

Deviation (MAD) and determining the weights for each case using the Hampel weights function 

(Adamczyk, 2017). Cases with absolute standardized residuals exceeding the 95% quantile of the 

standard normal distribution are identified as outliers. The algorithm then determines whether these 

cases are casewise outliers or if they contain subsets of cells that exhibit outlying behavior. To address 

this, the SPADIMO method (Debruyne et al., 2019) is employed. For cases identified as containing 

cellwise outliers, the outlying variables are treated as missing cells and their values are imputed using 

the two nearest neighbors method based on the clean cells within the case. After these cells are 

pinpointed, the algorithm calculates a new value for each of these cells. This new value is determined 

by finding the two nearest cases (that have not been flagged as outliers), averaging the values of the 

two neighbors. This imputation procedure is called the Nearest Neighbors and it results in modified 

cases with reduced residuals, leading to increased case weights. Consequently, the valuable 

information contained in the non-outlying variables contributes more substantially to the model. The 

algorithm proceeds by replacing the new values in the outlying cells and utilizing the IRLS procedure 

to obtain updated coefficients and weights. The iterations are evaluated based on the  Robust 

Mahalanobis distance and the algorithm continues until convergence is achieved. During each 

iteration, the residuals are recalculated, and casewise outliers are identified based on the magnitude 

of the residuals. For cases flagged as outliers, the variables contributing to their outlyingness are 

identified using the SPADIMO method. For cases that are not entirely classified as outliers, the outlying 

cells are imputed as previously described. The iterations persist until convergence is attained for all 

cases. 
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The CRM Algorithm step by step: 

1) Robust scaling and centering the data 

2) Application of a robust regression estimator 

3) Calculate the case weights based on the residuals of the robust regression using Hampel 

Weight 

4) Apply SPADIMO algorithm to detect which cells are contributing most to outlyingness of the 

flagged cases and impute the flagged cells. 

5) Repeat step 2-4 until convergence. 

6) Scale the coefficients back to the original scale 

 

The SPADIMO Algorithm: 

1) Calculate the Robust Malahanobis distance for every outlying case  

2) Identify which cells are outlying and impute them with the Nearest Neighbors Method 

3) Repeat steps 1-2 until there are no outlying cases anymore 

 

CRM fit to the sample Data 

Once again utilizing the same mock dataset, we applied the Cellwise Robust Method (CRM), a model 

designed specifically to counteract cellwise outliers. In Figure 8, we can observe a shift in the regression 

line, positioning it slightly above the casewise robust (M-regression) line. Interestingly, the CRM 

model's regression line is now situated between those produced by the Casewise and OLS models. The 

upward shift of the CRM model's regression line, as compared to the M-regression line, points to the 

model's unique approach in handling outliers. While the M-regression model specifically targets and 

downweights casewise outliers, the CRM model operates on a broader scope, accounting for both 

cellwise and casewise outliers. This behavior lends the CRM model a notable degree of flexibility, 

enabling it to deliver a balanced fit that aligns more closely with the data pattern as a whole, rather 

than being heavily skewed towards normal observations or unduly influenced by outliers. The 

juxtaposition of these three regression models - OLS, M-regression, and CRM - on the same dataset 

provides a comprehensive illustration of how different outlier-handling mechanisms can significantly 

alter the line of best fit. 
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Figure 8: Fit of all 3 models 

3.4. Evaluation 
 

To assess the performance of the aforementioned methods, three metrics will be considered: Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), and Median Absolute Error (MAE). 

 

Mean Squared Error (MSE) 

Mean Squared Error (MSE) is a measure used to evaluate the average squared difference between 

predicted and actual values in a regression or prediction model. It provides an indication of the overall 

magnitude of errors or residuals in the model predictions. A lower MSE indicates better model 

performance, as it signifies a smaller average squared difference between predicted and actual values. 

The MSE is calculated using the following formula: 

 

𝑀𝑆𝐸 =
1

𝑛
 𝑥 𝛴(𝑦ⅈ − �̂�ⅈ)

2 

 

Where: 

• n is the number of observations. 

• 𝑦ⅈ  represents the actual observed values. 

• ŷⅈ  represents the predicted values for the corresponding actual values. 

 

Root Mean Squared Error (RMSE) 

Τhe Root Mean Squared Error (RMSE) is a metric employed to evaluate the disparity between 

predicted values and actual values in a regression scenario. It gauges the average difference between 

the predicted and actual values, denoted in the same units as the target variable. The RMSE is 

computed as the square root of the mean of the squared differences between predicted and actual 

values. A smaller RMSE signifies superior model performance. The RMSE is derived by taking the 

square root of the MSE.  
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 Median Absolute Error (MAE) 

Mean Absolute Error (MAE) is a metric utilized to evaluate the average magnitude of errors between 

predicted values and actual values in a regression scenario. It quantifies the absolute difference 

between predicted and actual values, using the same units as the target variable. The MAE is calculated 

as the mean of the absolute differences between predicted and actual values. A lower MAE indicates 

better model performance. The formula for calculating MAE is as follows: 

 

MAE =  
1

𝑛
 × ∑|�̂�ⅈ  −  𝑦ⅈ|  

 

Where: 

• n is the number of observations or data points. 

• ŷⅈ  represents the predicted values for the corresponding actual values. 

• 𝑦ⅈ  represents the actual observed values. 

 

In the Methodology section, we have elucidated the statistical methodologies that will be adopted in 

this study. Now, transitioning to the Data section, we will delve into the intrinsic characteristics of the 

real estate dataset that will serve as the foundation for our investigation. Additionally, we will perform 

a Descriptive Analysis to unveil inherent relationships and correlations within the dataset, enabling us 

to gain valuable insights into the interplay between different variables and their impact on housing 

prices. 

 

4. Data 
 

The dataset was retrieved from the Kaggle.com, an online platform for predictive modeling and 

analytics competitions. It has also been used by Babb (2019), whose work have been mentioned in the 

literature review and Sahu et al. (2019b). The kc_house_data dataset provides valuable information 

on residential properties sold in King County, Washington state, between May 2014 and May 2015. 

Table 2 presents the description of every variable our dataset contained. These variables can be used 

to study the relationship between the characteristics of a property and its sale price. Furthermore, 

sqft_living15 and sqft_lot15 can be considered as measures of the neighborhood's characteristics and 

can be used to investigate the impact of the neighborhood's features on the sale price of a house. 
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Variables Description 

id A unique identifier for each property 

date The date the property was sold 

price The sale price of the property 

bedrooms The number of bedrooms in the property 

bathrooms The number of bathrooms in the property 

sqft_living The total living area in square feet 

sqft_lot The total lot area in square feet 

floors The number of floors in the property 

waterfront A binary variable indicating whether the property has a waterfront view. 

view An index from 1 to 5 of the quality of the view from the property 

condition An index from 1 to 5 of the overall condition of the property 

grade An index from 1 to 13 of the overall grade of the property, based on the King County 
grading system 

sqft_above The square footage of the house apart from the basement 

sqft_basement The square footage of the basement 

yr_built The year the property was built 

yr_renovated The year the property was last renovated, or 0 if it has not been renovated 

zipcode The ZIP code of the property 

lat The latitude of the property 

long The longitude of the property 

sqft_living15 Τhe average interior square footage of living space of the 15 nearest houses to the 
subject property 

sqft_lot15 Τhe average size of land lots of the 15 nearest houses to the subject property 

age  The age of the property 

Table 2: Description of the Variables 

 

4.1. Data Preparation  
 

Initially, missing values were eliminated from the dataset. Subsequently, we computed the correlation 

matrix to identify potential collinearity among variables. Interestingly, our analysis revealed a 

significant correlation among three variables: sqft_living, sqft_basement, and sqft_above. Further 

investigation unveiled that the sqft_living variable was derived as the sum of sqft_basement and 

sqft_above. Consequently, we decided to retain only the sqft_living variable, as it encapsulated the 

information contained within the other two variables. 

In addition, several other variables were deemed irrelevant for our study and were excluded. These 

variables included the house identification (id), as well as the zipcode, longitude, and latitude. The 

waterfront variable was also removed from the dataset, as it exhibited a mere 200 observations out of 

the original 21,600. Additionally, we created the age of every house by deducting the year that the 

house was built and the year it was sold. After the data preparation stage, the dataset comprises 

21,601 observations and 12 variables.  

 

4.2. Descriptive Analysis 
 

Table 3 provides an overview of the key characteristics of the variables in the dataset. This table reveals 

important insights into the remaining variables' distributions and ranges. For instance, the "price" 

variable exhibits a wide range, with values ranging from 7,500 to 7.7 million dollars. The majority of 
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houses have 3 bedrooms and 2.25 bathrooms on average, with "sqft_living" ranging from 290 to 

13,540 square feet. The "sqft_lot" variable shows a similar pattern, ranging from 520 to 1,651,359 

square feet. The number of floors in most houses tends to be around 1 to 1.5.  

The analysis of the "condition" and "grade" variables reveals that the majority of houses in the dataset 

exhibit a favorable overall condition and grade, with a concentration in the middle range of the 

respective scales. These findings suggest that the houses generally possess satisfactory qualities and 

meet certain standards. Further examination of the summary statistics Table 3 provides valuable 

insights into the distribution and skewness of the variables. Notably, the "price" variable demonstrates 

a positively skewed distribution, indicating a clustering of house prices below the mean value. Similarly, 

variables such as "bedrooms," "bathrooms," "floors," "sqft_living," and "sqft_lot" also exhibit positive 

skewness, suggesting the presence of longer tails on the right side of their distributions. A comparison 

of the mean and median values within the summary statistics Table 3 further highlights the extent of 

skewness present in the dataset. For instance, the median value of "sqft_lot" is 7620, while the mean 

value is more than twice that figure. Conversely, variables such as "floors" display relatively mild 

skewness, as evidenced by a median of 1.5 compared to a mean of 1.49. The observed skewness in 

these variables indicates the potential presence of outliers or extreme values that deviate from the 

majority of data points.  

 

 

Variables Minimum Quartile_1 Median Mean Quartile_3 Maximum 

price 75000 321500 450000 540129.5 645000 7700000 

bedrooms 0 3 3 3.370909 4 33 

bathrooms 0 1.75 2.25 2.11459 2.5 8 

sqft_living 290 1430 1910 2079.835 2550 13540 

sqft_lot 520 5042 7620 15113.19 10696 1651359 

floors 1 1 1.5 1.493866 2 3.5 

view 1 1 1 1.234341 1 5 

condition 1 3 3 3.409657 4 5 

grade 1 7 7 7.656405 8 13 

sqft_living15 399 1490 1840 1986.675 2360 6210 

sqft_lot15 651 5100 7620 12772.46 10086 871200 

age 0 18 40 43.34244 63 115 

Table 3: Summary Statistics 

 

Upon examining the distribution of the price (Figure 9a), it is evident that it exhibits that it is skewed 

to the right. This is indicated by a longer tail on the right side of the distribution, with a few properties 

having significantly higher prices compared to the majority. The majority of house prices tend to be 

concentrated towards the lower end of the scale, while a smaller proportion of houses command much 

higher prices. The distribution of the price variable follows a positively skewed pattern, implying that 

the mean price is higher than the median which can also been seen from Table 3. This suggests that 

the presence of a few expensive properties significantly influences the average price.  

Furthermore, an interesting observation can be made regarding the distribution of the "View" variable 

(Figure 9b). Table 3 corroborates this finding, as both the first and third quartiles (Q1 and Q3) are 

identical, indicating that the variable's value changes exclusively within the fourth quartile. Upon 

examining the distribution, it is notable that the majority of properties in the dataset have a view rating 

of 1. Specifically, among the 21,600 houses, nearly 19,500 of them do not have a notable view. The 



26 
 

distribution of the view variable is highly skewed towards the lower view ratings, resulting in an 

imbalanced distribution. Such a high concentration of observations in a single category raises concerns 

about the variable's impact on the robust scaling of the CRM model. Consequently, this variable was 

excluded from the subsequent models. 

 

 

 

Figure 9: a)Distribution of the Price of the Houses, b)Distribution of the View of the houses  scaling from 1 to 5 

where 1 is the worst 

 

 

 

Figure 10 : Distribution of the Age of the Houses 

 

Additional noteworthy insights are revealed through the examination of relationships between 

variables. Figure 10 depicts the relationship between a house's age and its price. Surprisingly, the graph 

indicates that the age of a house has minimal effect on its price, contrary to conventional expectations 

that older houses tend to have lower prices compared to newer ones. This unexpected finding may be 

attributed to the dataset containing a significant number of new houses and relatively few older ones, 

as evidenced by the distribution of the age variable in Figure 10. 
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Figure 11 a) Scatter Plot of Living Area in relation to the Price of the Houses, b) Scatter Plot of the Age of the Houses in 
relation to the Price of the Houses 

 

From Figure 11a) we observe a positive relationship between the squared meters of the house and its 

price. As the size of the living area increases, there is generally an upward trend in the prices of the 

houses. This suggests that larger houses with more spacious living areas tend to have higher price tags. 

Figure 12a) explores the relationship between the number of floors in a house and its price. Upon 

analyzing the scatter plot, we can observe a somewhat varied relationship between the number of 

floors and the price of houses. While there is not a clear and consistent linear trend, there are some 

noticeable patterns. In general, houses with a lower number of floors, such as single-story homes, tend 

to exhibit a wider range of prices. There is no distinct indication that having fewer floors leads to lower 

or higher prices. However, as the number of floors increases, we can observe that some houses with 

two or three floors tend to have higher prices.  

Figure 12b) demonstrates a positive correlation between the square meters of the living area of the 

15 nearest houses and the price of the subject house. From analyzing the scatter plot, we can observe 

a positive relationship between the average interior square footage of living space and the price of 

houses. As the sqft_living15 increases, there is a general upward trend in the prices of the houses. This 

suggests that houses surrounded by larger living spaces in the neighborhood tend to have higher 

prices. 

 

Figure 12 a) Scatter Plot between the Floors and the Price, b) : Scatter Plot between the Living Area of the 15  
nearest Houses and the Price 
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Figure 13: Scatter Plot of Bedrooms and Bathrooms 

 

From the Figure 13, we can observe a positive relationship between the number of bedrooms and the 

number of bathrooms. As the number of bedrooms increases, there tends to be a corresponding 

increase in the number of bathrooms. This positive relationship suggests that larger properties with 

more bedrooms tend to have a greater number of bathrooms. It aligns with the common expectation 

that larger homes typically feature more bedrooms and consequently require more bathrooms to 

accommodate the needs of the occupants. 

 

 

Figure 14 Scatter Plot between Grade and Price 

Upon examining the relationship between price and grade from Figure 14, it becomes apparent that 

there is a positive correlation between these variables. Generally, properties with higher grades tend 

to command higher prices, while properties with lower grades are typically priced lower. This positive 

relationship suggests that buyers are willing to pay a premium for properties with higher grades, which 
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reflect superior quality, design, and construction. Properties with higher grades often offer enhanced 

features, finishes, and overall desirability, leading to their higher market value.  

 

5. Results 
 

A total of four models were developed in this study: a linear regression model, a Robust M regression 

model using the Huber Loss Function, another Robust M Regression model using the Tukey's Bisquare 

Loss Function, and the CRM model. All models were implemented in the R Studio environment using 

specific packages. The "stats" package was utilized for the linear regression model R Core Team (2023), 

the "MASS" package for both M estimator models (Venables & Ripley, 2002), and the "crmReg" 

package for the CRM model (Filzmoser et al., 2020).  

For the CRM model, the default method for initial scaling was the Qn (quantile normalized) scaling 

method. The Qn scaling method involves sorting the data in ascending order for each variable, 

calculating the median of each variable, obtaining the absolute deviations from the median for each 

observation, and computing the median absolute deviation (MAD). The MAD represents the median 

value of these absolute deviations. The Qn statistic is derived by dividing the MAD by a constant scaling 

factor, ensuring robustness against outliers. This scaling factor is based on the asymptotic consistency 

of the MAD estimator. Subsequently, each observation is divided by the Qn statistic of its respective 

variable to achieve data scaling. 

However, due to the heavy skewness observed in our data, certain variables had MAD values of zero, 

rendering the division undefined. To address this issue, alternative robust scaling methods were 

explored. Filzmoser et al. (2020) proposed various alternatives to the Qn method. Considering the 

skewness of our data, the only feasible robust scaling method was the Interquartile Range (IQR) 

scaling. In this approach, each observation is divided by the IQR, which represents the difference 

between the 75th percentile (Q3) and the 25th percentile (Q1). 

 

5.1. Interpretability  
 

Table 4 presents the coefficients of the variables in the three models that were developed as well as 

the variables importance. It should be mentioned here that the price variable was adjusted for scale 

and ease of interpretation by dividing each value by 10,000. This transformation does not affect the 

relative relationships in the data but provides more manageable numbers, making our results easier 

to interpret and communicate. Consequently, the resulting coefficients associated with the predictors 

in the regression analysis reflect the change in the house price for each unit change in the predictor, 

with the house price being in units of 10,000. The initial observation from this analysis is that the signs 

of the coefficients remain with the same sign across the models, except for the squared feet of the lot 

area. In linear regression, it demonstrates a negative relationship with the price, which contrasts with 

the sign observed in the M regression and CRM models. In general, there are noticeable differences in 

coefficient values between the linear regression model and the CRM model. However, the disparities 

between the M regression model and the CRM model are relatively minor in some variables. An 

interesting observation is that the coefficients of the Tukey’s model are between the Huber model and 

the CRM model. 

Furthermore, it is noteworthy that the number of bedrooms consistently shows a negative coefficient. 

This implies that an additional bedroom in a house leads to a noticeable decrease in the house price, 

varying depending on the respective model. Except for the number of bedrooms and the squared feet 

of the total lot area of the 15 nearest houses, all other variables have a positive impact on the 
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dependent variable across all models. Interestingly, if the age of the house increases by one unit, the 

price of the house also increases by several units, with the magnitude varying across the models. 

Contrary to expectations, where an older house would typically cost less than a newer one, we believe 

this is due to the dataset containing a substantial number of new houses and a smaller proportion of 

older ones. Additionally, another factor influencing the relationship between house price and age is 

whether the house has undergone renovations. Although a variable containing relevant information 

was excluded due to limited inputs, it plays a role in shaping this relationship.  

Another interesting insight is the positive coefficients for bathrooms which indicates that an increase 

in the number is bathrooms is associated with a higher house price in contrast with the number of 

bedrooms. This could be attributed to the desirability and convenience of having more bathrooms, 

which is often considered a luxury or a desirable feature. A great example of that can be seen in 

Airbnb’s where it can be observed that many bedrooms have their own bathrooms so they can offer 

hospitality to many people. As expected, the squared feet of living area of the houses are associated 

with a higher house price in all three models. This is intuitive , as larger living areas generally command 

higher prices due to increased space and potential functionality. The number of floors, the condition 

of the house and the overall grade of the property have positive coefficients across all three models 

which suggest that they have a positive impact on house prices. Intuitively more floors, better 

condition and better overall grade tend to increase the price of house. Finally, the two variables that 

are associated with the characteristics of the neighborhood the house is located in tend to have a 

positive impact on the price. This suggest that the characteristics of the neighborhood indeed are 

affecting the price of the house. From these observations, it can be concluded that various factors such 

as the number of bedrooms, bathrooms, square footage of living space, lot area, number of floors, 

condition, grade, neighboring property characteristics, and age influence house prices. The specific 

magnitudes of the coefficients may differ across models which validates that there are outliers in our 

dataset hence hypothetically the more robust models should outperform the linear regression.  

 

Variable Linear Regression Importance M Regression Huber M Regression Tukey’s CRM 

Intercept -1055880 *** -911544 -825359 -770022 

bedrooms -49582.2 *** -30456.3 -22966.3 -23668.8 

bathrooms 54132.2 *** 41960.26 37969.3 40522.35 

sqft_living 176.80 *** 106.37 80.32 75.84 

sqft_lot -0.0063  0.11 0.13 0.13 

floors 23510.65 *** 39992.15 44033.45 43909.25 

condition 19966.56 *** 21090.02 20474.76 17158.07 

grade 123591.6 *** 111201.3 102151.2 98214.98 

sqft_living15 31.94 *** 46.80 54.25 52.32 

sqft_lot15 -0.52 *** -0.36 -0.28 -0.24 

age 4034.44 *** 3412.64 3140.20 3077.20 

Table 4: Coefficients of the variables of every model. 
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5.2. Performance  
 

Table 5 presents the performance metrics of the four models that were developed. The MSE values for 

the four models range from 512.66 to 608.47. These values indicate that on average the squared 

difference between the predicted and actual house prices (in units of 10,000) is ranging between those 

values. The Linear Regression (LM) model has the lowest MSE, suggesting that it provides relatively 

good predictions compared to the other models. The M Regression with Huber (MH) model has the 

next lowest MSE, followed by the M Regression with the Tukey’s loss function and lastly CRM Model. 

The RMSE values for the models range from 22,64 to 24,67 measured in 10.000 USD. These values 

represent the average prediction error in terms of house prices and indicate the dispersion of errors 

around the true prices.  

The Linear Regression (LM) model also has the lowest RMSE which is also measured in 10.000 USD, 

indicating relatively better accuracy compared to the other models. The M Regression with Huber (MH) 

model has the next lowest RMSE, followed by the other M Regression model and the CRM. This means 

that for example, if we use the OLS model to predict the price on average, the predictions will be off 

by about 22.64 * 10,000 = 226,400 USD from the actual house prices. Given the fact that the price is 

ranging from 75.000 to 7.700.000 this is a relatively good prediction. 

The MAE values range from 13.68 to 14.47,also measured in 10.000 USD, representing the average 

absolute prediction error in terms of house prices. This metric suggests that the robust methods are 

performing better than the OLS which contradicts the other two metrics. The two Casewise models 

are ranking first, followed by the Cellwise model and lastly comes the OLS. This means that if we use 

the M regression model with the Huber loss function on average the predictions will be off by about 

14.47 * 10,000 = 144,700 USD from the actual house prices. MAE provides a measure of the model's 

typical prediction accuracy. The M Regression with Huber (MH) model has the lowest MAE, indicating 

relatively better performance in terms of minimizing the average absolute errors. The CRM Model has 

a slightly higher MAE, while the Linear Regression (LM) model has the highest MAE. 

It is pretty clear that there is a conflict in our results. The MSE and RMSE metric suggest that the OLS 

model performs better than the Robust model while the MAE says otherwise. This discrepancy arises 

due to the different sensitivity levels of these metrics to outliers. The first two metrics square the 

residuals (i.e., the differences between the predicted and actual values) before averaging them. This 

squaring operation makes these metrics very sensitive to outliers. A few large residuals can lead to a 

much higher MSE or RMSE. This is why your Ordinary Least Squares (OLS) model, which minimizes the 

sum of squared residuals, tends to perform well in terms of these metrics. MAE takes the average of 

the absolute differences between the predicted and actual values. It doesn't square the residuals, 

making it less sensitive to outliers than the MSE or RMSE. This is why the robust models, which aim to 

fit the majority of the data well without being unduly influenced by outliers, are performing better in 

terms of MAE.  

Sahu et al. (2019b) conducted their study using the same dataset, employing multiple models including 

Multiple Linear Regression (MLR), Lasso, and Gradient Boosting, and compared their performance 

using the Accuracy metric. Among these models, the Gradient Boosting model demonstrated superior 

performance compared to the other two. However, considering that only Lasso can be classified as a 

robust method, and the accuracy metric is sensitive to outliers, it is crucial to incorporate a metric such 

as Mean Absolute Error (MAE) to provide a more comprehensive assessment. This suggestion aligns 

with the findings of Babb (2019), who also investigated various robust and non-robust methods on the 

same dataset. Babb utilized metrics such as Root Mean Squared Error (RMSE), MAE, Mean Absolute 

Percentage Error (MAPE), and Adjusted 𝑅2 for comparison. The outcomes of their study corroborate 

our observations, as per RMSE, MAPE, and Adjusted 𝑅2 which are not robust, the sensitive-to-outliers 

methods outperformed the robust methods. Conversely, according to MAE, the robust methods 
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demonstrated better performance, with Support Vector Regression (SVR) using a Gaussian Kernel 

achieving the highest ranking. 

In conclusion, the M robust regression model employing the Huber loss function exhibits superior 

performance and robustness when compared to all other models considered in this study. Notably, the 

differences observed among the various robust regression models are minimal. The primary emphasis 

lies in the comparison between robust and non-robust models, where the robust models distinctly 

outperform the non-robust model in terms of performance. This finding underscores the efficacy of 

robust regression techniques in handling outliers and influential data points, thereby contributing to 

more reliable and stable model outcomes. 

 

Model MSE RMSE MAE 

Linear Regression (lm) 512.66 22.64  14.47  

M Regression with Huber Loss (MH) 553.88  23.53  13.68  

M Regression with Tukey's Bisquare 597.03  24.43  13.74  

CRM Model 608.47  24.67  13.80  

Table 5: Performance Metrics of every model  

 

Diagnostics of the models 

 
Figure 15a) and Figure 15b) illustrate the residual plots for both the Linear Regression and M robust 

regression models. In these plots, a red line is fitted to the residuals to facilitate the identification of 

any discernible patterns. The absence of significant patterns in the residuals implies that the 

assumption of linearity is upheld. Notably, the red line in the robust regression plot appears to exhibit 

a smoother trend, suggesting an enhanced fit to the data. Moreover, as we traverse along the x-axis, 

there is an increasing density of residuals. This observation manifests as a tunnel-shaped pattern, 

indicative of the presence of heteroscedasticity. Furthermore, the figures reveal the occurrence of 

outliers, characterized by values that deviate considerably from the predictions generated by the 

models. While there is an improvement in the shape of the residuals, suggesting that the robust 

regression model handles them more effectively, the discrepancy in performance between the two 

models is not substantial. 

 

 

Figure 15 a) Residuals vs Fitted values of the Linear Regression Model, b) Residuals vs Fitted values of the Robust M with the 
Huber Loss function model 
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Figure 16a) and Figure 16b) depict the Q-Q plots of the Linear Regression model and the M Robust 

Regression model respectively. These plots serve as a means to assess whether the data adheres to a 

normal distribution assumption. Notably, both plots demonstrate deviations from normality, as 

evident by the data points straying from the diagonal line. Following the initial segment, the data 

points display significant deviations, signifying departures from normality. Furthermore, an 

examination of the left tail of both models reveals a heavy distribution, with more data points 

positioned below the diagonal line. This observation further supports the conclusion that the data 

violates the assumption of normal distribution. However, it is worth noting that the M Robust 

Regression model exhibits a relatively closer alignment with the diagonal line in the left tail, indicating 

an improvement in handling the non-normality of this extreme region. Conversely, the right tail of both 

models is considered light, as all data points fall above the line. At this juncture, it is challenging to 

ascertain whether the robust model outperforms the Linear Regression model in handling non-

normality in that particular region. Additionally, it is noteworthy that the maximum value of residuals 

is higher in the robust model. Although this may appear counterintuitive, it suggests that the robust 

model has encountered more extreme observations or potential outliers that were not adequately 

addressed by the Linear Regression model. 

 
Figure 16 a) QQ plot of Linear Regression, b) QQ plot of Robust M Regression 

 

The scale-location plot serves as a simplified analysis of the homoscedasticity assumption and is closely 

related to the residuals vs. fitted plot. However, it represents the square root of the absolute value of 

standardized residuals rather than plotting the residuals themselves. In Figure 17a), we observe that 

the red line in the Scale-Location plot for the Linear Regression model is not horizontal. The presence 

of a curved trend line in the Linear Regression model's Scale-Location plot indicates a non-constant 

spread of residuals across the range of fitted values. This violation of the assumption of 

homoscedasticity suggests that the spread of residuals systematically varies as the fitted values 

change. Conversely, the smoothening of the trend line in the Robust Regression model's Scale-Location 

plot suggests a more stable and consistent spread of residuals across the range of fitted values. This 

indicates that the Robust Regression model effectively handles heteroscedasticity, resulting in a more 

even and less variable spread of residuals. From these observations, we can conclude that the Robust 

Regression model handles outliers better, as anticipated. Although the residuals still exhibit a tunnel-

shaped pattern, the smoother pattern in the Robust Regression model's Scale-Location plot suggests 

improved handling of outliers. This indicates that the Robust Regression model robustly 

accommodates extreme observation, resulting in a more stable spread of residuals. 
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Figure 17 a) Scale – Location plot of Linear Regression, b) Scale – Location plot of M Robust Regression 

 

The residuals vs. leverage plot serves as a diagnostic tool to identify influential observations within a 

regression model. Each data point from the dataset is represented as a single point on the plot, with 

the x-axis indicating the leverage of each point and the y-axis representing the standardized residual. 

In Figure 18a), we observe certain data points that lie in close proximity to the border of Cook's 

distance, but they do not extend beyond the dashed line. This indicates that there are no influential 

points present in either of the models under consideration. However, notable differences emerge 

when comparing the two models. Specifically, the robust regression model exhibits a more effective 

handling of outliers, as evidenced by the absence of data points in close proximity to the dashed line. 

Additionally, we observe that in the linear regression model, some leverage points fall within the range 

of 0 to 0.2 leverage values. However, as observed in Figure 18b), in the robust regression model, these 

leverage points appear to possess a value of 0. The presence of these values, which are considered 

less influential due to the robust estimation methods employed, further highlights the superior 

handling of outliers by the robust regression model. The presence of a smoother red line in the Robust 

Regression model reflects the model's robustness to outliers and influential points. This indicates that 

the robust regression model is more resilient to the effects of outliers and can produce more stable 

and reliable estimates. 

 

 
Figure 18 a) Residuals vs Leverage plot of Linear Regression, b) Residuals vs Leverage plot of M Robust Regression 

 

Overall, the diagnostic plots suggest that the Robust Regression model adheres better to the 

assumptions around the Linear Regression model. The Robust Regression model shows a smoother fit, 

closer alignment with the diagonal line in the Q-Q plot, and a more consistent spread of residuals in 

the Scale-Location plot. These observations indicate the robustness of the Robust Regression model in 

addressing the limitations of traditional Linear Regression and its ability to provide more reliable and 

robust estimates. 

  



35 
 

The presented visual representation, denoted as Figure 19, comprises a heatmap that effectively 

portrays the initial 20 outlying houses as rows. Each row corresponds to a specific house, while the 

columns represent diverse features of the houses, some of which have been identified as 

contaminated or exhibiting outlier characteristics. These exceptional features are visually depicted 

through colored boxes embedded within the heatmap. The color scheme employed in the heatmap 

serves the purpose of distinguishing distinct types of deviations manifested by the anomalous cells. 

Specifically, the colors blue and red are utilized to indicate upward and downward deviations, 

respectively, concerning the original data values. To elaborate, blue cells signify values intended to be 

replaced with larger counterparts, while red cells will be substituted with smaller values through the 

application of the CRM model. The intensity or saturation of colors featured in the heatmap provides 

a visual cue, aiding in the understanding of the magnitude of differences between the imputed values 

and the original data values. Figure 20 subsequently displays the imputed values generated by the 

CRM model. For instance, upon scrutinizing the 50th case presented in Figure 19, it becomes evident 

that both the "sqft_lot" and "sqft_lot15" values have been flagged with red, indicative of their higher-

than-expected magnitudes. Additionally, it is pertinent to note that the opacity or intensity of the red 

color in the flagged cells exhibits variation, signifying that the imputed values will undergo distinctive 

adjustments. In particular, cells that appear opaquer will experience a comparatively smaller decrease 

as opposed to those displaying lower opacity. It is evident from Figure 20 that the "sqft_lot" value, 

which exhibits lesser intensity than the "sqft_lot15," underwent a relatively smaller decrease. 

Significantly, the CRM analysis proved successful in identifying a total of 3010 casewise outliers within 

the dataset, which consists of 21600 houses. Casewise outliers are identified based on the presence 

of at least one contaminated or outlying cell, as determined by the CRM method. The robust 

identification of these outliers through the CRM model contributes to the robustness and accuracy of 

the overall analysis, enabling the detection and treatment of exceptional cases that deviate 

significantly from the expected data distribution. 

Remarkably, a striking observation emerges from the imputation process, as all the newly imputed 

values appear to cluster around the median of their respective variables. This finding carries significant 

implications for the performance and efficacy of the algorithm in addressing cellwise outliers. To 

illustrate this point, let us examine the variable "bedrooms" as an example, where the median value is 

determined to be 3. Upon close examination of the imputed values, it becomes evident that the 

algorithm has successfully taken corrective measures to bring the outlier values back in line with the 

central tendency represented by the median. For instance, at the 52nd observation, the original value 

of 5 for the "bedrooms" variable was identified as an outlier and consequently reduced to 4 to align 

with the central tendency. Similarly, in the 54th observation, the initial value of 2 was imputed as 3.5, 

while in the 70th observation, the original value of 5 was adjusted to 3.2. These examples illustrate the 

consistent trend of the algorithm in adjusting the imputed values closer to the median. 

This pattern of imputation, where the algorithm seeks to align the imputed values with the central 

tendency of each variable, serves as compelling evidence that the model indeed exhibits effective 

behavior in countering cellwise outliers. By anchoring the imputed values around the median, the 

algorithm ensures that the overall distribution of the data is preserved while mitigating the impact of 

outlier values on the analysis. This observation further bolsters the confidence in the reliability and 

accuracy of the proposed approach in handling cellwise outliers within the dataset. The adherence of 

the imputed values to the central tendency underscores the algorithm's ability to maintain the 

integrity of the data while effectively addressing the presence of anomalous observations. 

Consequently, this outcome enhances the credibility and robustness of the analysis conducted using 

the CRM method, making it a valuable tool for identifying and handling outliers in diverse datasets. 

In this context, the M-robust regression model with the Huber loss function is utilized to assess the 

weights assigned to the cases that were previously flagged by the CRM model. Table 6 displays these 
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weights for the same 20 cases that are visualized in Figures Figure 19 and Figure 20. The presence of 

weights equal to 1 in the M-robust regression results indicates that certain cases were not considered 

outliers according to this robust model. Consequently, these cases were not downweighted, as their 

residuals were not significantly deviant from the model's predictions. It is essential to recognize that 

while the CRM model identifies certain cases as outliers based on the contaminated cells, the M-robust 

regression model evaluates outliers using a different criterion, focusing on the Huber loss function to 

determine weights. 

Particularly, the 50th case, which bears the lowest weight of 0.61 among all the cases, stands out as a 

highly downweighted observation. Comparing this case's weight with the heatmap visualizations, it 

becomes evident that two variables, "sqft_lot" and "sqft_lot15," were flagged by the M-robust 

regression and underwent substantial decreases in their values during the imputation process. 

Conversely, for cases that were not flagged as outliers by the M-robust regression, limited and non-

dramatic changes are observed. Consequently, these cases receive weights equal to 1, signifying that 

they were not considered outliers by the robust model. The stability of their weights can be attributed 

to the model's perception of these cases as conforming reasonably well to the overall data distribution. 

It is important to highlight that the M-robust regression and the CRM model employ distinct 

approaches to identify and address outliers. While the CRM model relies on the detection of 

contaminated cells, the M-robust regression focuses on minimizing the impact of outliers through the 

Huber loss function. The differences in their identification criteria can lead to discrepancies in the 

flagged cases. Nonetheless, the combination of both methods offers a comprehensive approach to 

handling outliers and enhances the robustness and accuracy of the overall analysis. 

 

Column name Weights Column name Weights 

19 1 66 1 

22 1 70 1 

25 1 89 1 

37 1 92 1 

50 0.61 96 1 

52 0.90 104 0.85 

54 0.87 116 1 

56 0.73 126 0.77 

58 1 128 1 

59 1 139 0.78 

Table 6: Weights of the M Robust Regression model 

  



 

Figure 19 Heatmap of the first 20 cases that were not yet imputed by the CRM model 

 

 

Figure 20 Heatmap of the first 20 cases that were imputed by the CRM mode



Conclusions 
 

The analysis looked at multiple models to predict house prices based on a range of factors. The models 

consistently showed that most variables (like the number of bathrooms, living area square footage, 

number of floors, house condition, and neighborhood characteristics) positively impacted house 

prices, while the number of bedrooms negatively impacted prices. One point of discrepancy was seen 

in how the square footage of the lot area was treated across models. In the linear regression model, it 

had a negative relationship with the price, but in the M regression and CRM models, the relationship 

was positive. Another unexpected finding was that the housing age was positively associated with 

price, which is against common expectations. It was hypothesized that this may be due to the dataset 

containing a large number of new houses and fewer old ones, and the possible impact of house 

renovations. The coefficients for each variable varied across the models, with the M regressions and 

CRM models showing more similar results to each other than to the linear model, presumably due to 

the latter's sensitivity to outliers. In conclusion, the house price is influenced by a variety of factors, 

including the number of bedrooms and bathrooms, square footage of living and lot area, number of 

floors, house condition, property grade, and characteristics of the neighborhood. However, the specific 

influence of these factors may differ depending on the statistical model used, highlighting the 

importance of model selection, and understanding potential outliers in the data. 

Performance wise based on the MSE and RMSE metrics, the LM model showed the highest accuracy, 

however, when using the MAE metric, which is less sensitive to outliers, the robust models (MH and 

CRM) performed better. This discrepancy arises because MSE and RMSE square the residuals, making 

them more sensitive to outliers. A few large residuals can significantly increase MSE and RMSE values. 

On the other hand, MAE does not square the residuals, making it less sensitive to outliers, hence robust 

models perform better in terms of MAE. It can be observed that, as the M Regression outperforms the 

CRM in terms of MAE, the impact of cellwise outliers is not considerable. 

In conclusion, an understanding of the specific attributes of the house to be predicted, the nature of 

the dataset, and the characteristics of different models can significantly enhance the precision of the 

property valuation process. The choice between the M-regression and CRM models should be guided 

by these considerations to ensure the most accurate house price prediction. Finally, from this analysis 

can be highlighted that our models are not affected by cellwise outliers thus a model that is robust to 

casewise outliers is sufficient. 

 

6. Limitations and Future Work 
 

This study, while insightful and contributive to the field of real estate price prediction, faced several 

limitations that could inspire future research directions. The primary limitation lies in the data utilized 

for the analysis. Some variables within the dataset lacked substantial representation, leading to their 

exclusion. This exclusion potentially resulted in the loss of vital information about specific house 

features that might have otherwise significantly influenced price prediction. For instance, variables 

encapsulating certain architectural characteristics or specific amenities might not have been 

adequately represented. Moreover, the age variable was skewed towards newer houses with a limited 

number of older ones. This skewness could have influenced the conclusion that a positive relationship 

exists between the age of a house and its price. This raises a question about whether this relationship 

would have changed with a more balanced representation of house ages. The quality of a 

neighborhood is another crucial aspect influencing house prices, yet it was not considered in this study. 

Variables reflecting the quality of a neighborhood, such as the proximity to schools, hospitals, parks, 
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and the crime rate, can have a significant impact on real estate prices. Future research could benefit 

from considering these aspects. Turning to the methodologies used, while OLS, M-regression, and CRM 

have shown efficacy in this context, they are not universally applicable. The choice of method is 

sensitive to the nature of the data. Therefore, future studies could aim to develop more versatile 

models or mechanisms that can intelligently choose between models based on the characteristics of 

the dataset. The study also offers a framework for those intending to apply the CRM model to real 

estate datasets. On a broader scale, there is ample room to test these methodologies in other fields 

dealing with multivariate datasets exhibiting high variability. Such studies could help to generalize the 

findings of this research and might reveal additional insights regarding the performance of these 

models across diverse contexts. Furthermore, the proposed framework for applying the CRM model 

to real estate datasets could be empirically tested and refined. For example, the step involving scaling 

of residuals using the IQR method in place of MAD in the case of skewed data could be subjected to 

additional testing. Finally, while this study focused primarily on the detection of cellwise outliers, other 

types of outliers and anomalies might also be relevant in real estate data, such as blockwise or 

groupwise outliers. Future research could delve into the development or adaptation of methodologies 

to handle these different types of outliers more effectively. This would contribute to the broader aim 

of enhancing the robustness and reliability of house price predictions. 
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