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Abstract

Spare parts have erratic, lumpy, and intermittent demand patterns, characterized by in-
frequent demand occurrences and multiple extended periods of zero demand. Accurate fore-
casting and planning are crucial to finding the optimal balance between stock-out and holding
costs. This research paper evaluates various forecasting methods applied to four simulated data
sets, each representing a unique demand pattern (erratic, lumpy, smooth, and intermittent),
as well as four real industrial data sets. The evaluated methods include Croston’s method, the
Syntetos-Boylan approximation (SBA), the Teunter-Syntetos-Babai method (TSB), Willemain’s
bootstrapping approach, the hybrid model of Exponential Smoothing and Recurrent Neural
Network (ESRNN), two simple-average methods (ensemble 1 and 2), two stacking combinations
(Meta-learners 1 and 2), and two machine learning methods (LSTM and RNN). Moreover, SBA
is applied to aggregated simulated and industrial data. The results show that the stacking model
demonstrates the best overall accuracy performance across all eight data sets, while Willemain
shows the most favorable inventory control assessment in simulated data sets and one of the
four industrial data sets. Croston and its variation and two stacking methods show the best

inventory performance in the other three industrial data sets.
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1 Introduction

Spare parts are components of a machine or system that are specifically designed to replace
failed or worn-out parts and are important for maintaining the functionality. When part malfunc-
tions or becomes inoperative, spare parts are utilized to restore the equipment to its operational
state, minimizing downtime and ensuring continuous operation. Therefore, spare parts are crucial
for maintaining and repairing machines or systems, ensuring operational continuity, and minimizing
downtime (van der Laan et al., 2014; Durlinger & van Houtum, 2017).

Poor inventory management resulting in stock-outs of spare parts, which can be costly for
industries such as aviation, automotive, and heavy machinery. These industries rely heavily on
the availability of their capital goods to produce their manufactured products. The negative con-
sequences of machinery failure or long periods of downtime can result in lower product turnover,
leading to substantial financial losses. To ensure efficient handling of machinery shutdowns, com-
panies typically maintain all essential spare parts in stock. However, stocking spare parts during
periods of low demand can be expensive, given that spare parts demand is characterized as lumpy,
erratic, and intermittent. This implies infrequent demand with many periods of zero demand.
Holding spare parts carries the risk of devaluation, price protection costs, and the possibility of the
parts becoming obsolete. Companies must find an optimal balance between the inventory holding
costs and the potential revenue loss due to equipment downtime. Industrial companies and other
businesses must prioritize effective inventory management of their spare parts to avoid stock-outs
and subsequent financial losses. The optimal balance between inventory holding costs and potential
revenue loss can be achieved through careful planning and forecasting of spare parts demand. This
requires an understanding of the various factors affecting spare parts demand, including lumpy,
erratic, and intermittent demand, which highlights the need for a data-driven approach to inven-
tory management. Therefore, accurate forecasting of spare parts demand is essential due to its
uncertain and time-varying nature, influenced by fluctuations in machine usage and quantities.

Traditional time series forecasting methods, such as the simple moving average (SMA) and
simple exponential smoothing (SES), demonstrate poor performance when applied to intermittent
demand, as highlighted by Syntetos and Boylan (2005). This inadequacy arises from methodological

issues associated with zero values, particularly when dealing with spare parts patterns that exhibit



a non-continuous series and these methods tend to rely heavily on the most recent observations.

In the past, only a few time series methods have been developed to forecast intermittent de-
mand. Croston (1972) and its variants, such as SBA (Syntetos, Boylan, 2005) and TSB (Teunter
et al., 2011), outperform standard exponential smoothing as it is not well-suited for prolonged
periods of zero demand. Willemain et al. (2004) introduced a modified bootstrap approach for
inventory management, which has been claimed as having superior performance compared to Cros-
ton and its variations. Recently, the M4 and M5 time series competitions have demonstrated the
effectiveness of combining statistical models, pure machine learning methods in predicting time
series, and hierarchical data aggregation techniques to improve accuracy. The term ‘ensemble’ is
often used to describe the practice of combining two or more forecasting methods with the goal
of improving overall prediction performance. By integrating multiple outputs generated by each
individual method, ensemble approaches aim to achieve superior forecasting outcomes compared
to using a single method alone. The applied methods in M4 and M5, such as hybrid modeling,
ensemble modeling through equal weight and optimizer, recurrent neural network methods, and
data aggregation, have not been extensively tested on intermittent demand data or evaluated on
the characteristics of different types of data sets. Nikolopoulos et al. (2014) conducted a temporal
aggregation technique on aviation data by aggregating observations backward at different levels.
However, this technique has not been further tested on other industrial or simulated data sets.
Moreover, in the M5 competition, participants were not allowed to use Croston and its variations
or temporal aggregation method as it was already included in the benchmark. Considering the in-
termittent nature of the data that the methods are applied to, incorporating models that leverage
the Croston’s method or temporal aggregation method can potentially lead to a higher accuracy

performance.



This investigation leads to the formulation of the following research questions:

1. Do ensemble models outperform Croston and its variations in terms of forecast-
ing accuracy and inventory performance on 4 simulated and 4 industrial spare parts
demand data?

To address the main research question, our objective is to improve the accuracy of forecasting
intermittent demand by utilizing methods employed in the M4 and M5 forecasting competitions,
while using Croston and its variations as a benchmark. We will apply these methods to four
simulated data sets, each characterized by a unique pattern such as erratic, lumpy, smooth, and
intermittent. This is done to determine whether these characteristics influence the performance
of the methods. Furthermore, the same methods will be applied to four industrial data sets to
compare the results obtained from the simulated data. Specifically, the focus will be on forecasting
spare parts demands and evaluating the performance of both forecasting accuracy and inventory
performance.

The sub-research question is:

2. Does aggregating observations into larger intervals improve the accuracy of the
forecasting model?

To address the second research question, the training data from simulated and industrial data
sets will be aggregated at lower frequency levels. This aggregated data will be used to train the
forecasting models. The predictions generated by the models will then be disaggregated back to the
original seasonality level for evaluation and compared to the original data without any aggregation.

This paper will use Croston and its variations as the benchmark: Croston, Croston with an
optimized smoothing factor, Teunter-Syntetos-Babai (TSB), and the Syntetos-Boylan Approxima-
tion (SBA). The methods to be explored are the high-performing models and derived combining
techniques in the M4 and the M5 Forecasting Competition: ESRNN, combined Croston-based
models through equally distributed weight and via stacking, recurrent neural network (RNN), and
Long Short Term Memory (LSTM). These models will be trained on various types of data sets to
determine their accuracy and inventory control performance. To further validate and compare the
results, Willemain’s bootstrapping approach will also be incorporated. In the final step, the results

will be discussed with the existing literature to discuss their differences.



This research is academically significant as it aims to expand the knowledge of spare parts
forecasting by exploring the combination method, hybrid method, data aggregation, and recurrent
neural network. The results obtained will allow for comparisons of accuracy improvements com-
pared to Croston, SBA, and TSB. Additionally, the practical relevance lies in assessing whether
these models provide better inventory performance. The paper will start with a brief review of the
existing literature on spare parts forecasting, followed by a detailed explanation of the methodology,
introduction of simulated and industrial data sets, the chosen accuracy measures, and inventory
control considerations. Upon comparing the results, conclusions are drawn to address the research

questions, along with a discussion of limitations.



2 Literature About Spare Parts and Forcasting

Spare parts are stock items that keep machinery activities up or keep products processed in
optimal conditions (Kennedy et al., 2002). However, when it comes to forecasting, it is twice as
difficult as traditional time series forecasting as the spare parts demand is lumpy, erratic, and
intermittent in nature (Petropoulos et al., 2014). High sources of uncertainty in intermittent
forecasting need to be dealt with regarding the volatility in demand sizes, timing of demand, and
long periods without any demand. To make things worse, time series components as trend, level,
and seasonality should not be considered to be evident as these features are difficult to detect in
spare parts demand patterns (Petropoulos et al., 2014).

Furthermore, according to Syntetos et al. (2016), nearly 60% of any existing inventory con-
sists of stocks shared in intermittent characteristics, which becomes obsolete when time decays as
no demand occurs. Therefore, it is a challenging task for companies who are dealing with their
spare parts management to find the optimal balance between the probability of stock out and the
inventory holding costs.

This section begins with a comprehensive overview of spare part forecasting methods and
the insights gained from the M4 and M5 forecasting competitions. Following that, we present a
thorough review of prior comparison studies that haven compared various forecasting methods for
spare parts demand, taking into account among others methodologies, data sets, and evaluation
criteria. Finally, based on the insights obtained from the M4 and M5 competitions and the findings
of previous comparison studies, a conclusion is derived regarding the forecasting methods to be

implemented in this research.

2.1 Intermittent Forecasting Methods

The conventional forecasting methods such as SMA and SES fail to perform well for intermit-
tent demand (Syntetos and Boylan, 2005) due to methodological problems from the zero values
as spare parts pattern is considered as non-continuous series. The first defining approach was
introduced by Croston (1972), in which the non-zero demand interval and its demand size were
separately estimated by exponential smoothing. According to Willemain et al. (1994), Croston

with positive demand was robustly superior to SES in terms of smoothness, variation, and average



inventory holding costs while in the same service level. Since then, Croston has been used as a
benchmark as it generates lower safety stock at the same service level. Consequently, Syntetos
and Boylan (2005) modified Croston by introducing a bias correction. According to several studies
(Syntetos and Boylan, 2006; Teunter et al., 2011; Zhu et al., 2017; Babai et al., 2019), Croston
outperformed SBA in terms of service levels whereas SBA was more accurate on different types of
data sets. However, when it comes to obsolescence, i.e., demand decreases over time toward zero,
both models perform poorly as they don’t measure the obsolescence when the gradual decreasing
demand occurs. Teunter et al. (2011) approached the issue by forecasting the demand probability
while updating the demand when zero demand occurred. More specifically, the demand forecast
is adjusted downward when there is no demand to detect obsolescence. However, when the model

was tested empirically (Babai et al., 2019), there were no significant improvements.

2.2 Paramatric and Non-Parametric Intermittent Forecasting Methods

Croston and its variations are parametric approaches that assume the data will follow a pre-
defined probability distribution. Croston (1972) assumes that the demand interval follows the
geometric distribution while the demand size per demand interval follows a normal distribution.
On the other hand, Bootstrapping techniques such as Willemain, Empirical Method (Porras and
Dekker, 2008), variants on the empirical method, and neural network models are categorized as
non-parametric approaches, whereas no probability distribution function is assumed. Parametric
approaches may previously be inferior to non-parametric methods in determining the best lead de-
mand distribution since the distribution is not always distributed parametrically, and by selecting
an incorrect distribution it may lead to poor results. Because of this, non-parametric approaches
have been devised, and apply techniques looking for empirical ways to explain the lead-time de-
mand. This suggests that non-parametric approaches may be used for a wider range of data
than parametric methods, such as data with extremely irregular demand (Smith and Babai, 2011).
Several studies (Bookbinder and Lordahl, 1989; Hasni et al., 2019) demonstrate that utilizing a
non-parametric technique limits the possibility of assuming an incorrect distribution, which results

in superior estimates.

For example, Willemain et al. (2004) estimated intermittent inventory data with autocorre-

10



lation by simulating zero and non-zero requests using a two-state Markov process to capture the
autocorrelation, and then assessed the probabilities directly from the data by utilizing the counting
methods. A sequence of zeros and ones was generated using the transition probabilities. The next
step was to produce demand sizes using a jittering process, which modified the sampled demand val-
ues by adding random fluctuation. The method was applied to several industrial data sets and the
performance was more accurate than Croston or SBA. Another type of bootstrapping is proposed
by Zhou and Viswanathan (2011), which produced demand sizes by sampling and demand intervals
using bootstrapping. They used simulated and empirical data to compare this strategy to SBA in
terms of inventory performance. They found that the SBA was performing poorly when applied to
empirical data than to simulated data. In a comparison analysis, Hasni et al. (2019) found that for
highly intermittent demand and short lead-times, SBA outperformed the bootstrapping technique
in terms of inventory performance. On the other hand, when dealing with moderately intermittent
demand and longer lead-times, the proposed method performed better than SBA and Willemain.
In addition to the mentioned methods above, the mainstream methods include also machine
learning methods in predicting time series. Machine learning is known for its cross-learning between
the predictors to forecast the variable of interest. These techniques seek to identify the underlying
dependencies present in the demand data and use these to forecast future values and are capable
of capturing complex patterns in long-term forecasts (Hyndman & Khandakar, 2008). One of the
first who used machine learning techniques in predicting intermittent demand was Gutierrez et
al. (2008), who compared the outcome with SES, Croston, and SBA using electronic distributor
data. The results were found to be more accurate. Later on, Kourentzes (2018) extended the
modified model proposed by Mukhopadhyay et al. (2012), demonstrating that the neural network
technique outperformed Croston and its variations in terms of service levels but performed poorly
in accuracy metrics due to the difference between levels in the intermittency and the choice of error

function.

2.3 M4 and M5 Forecasting Competitions

M4 and M5 competitions have further expanded the expertise within the time series by the

competitors competing against each other to improve the existing models. In M4, the data come
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with different frequency and seasonality. It is clear that from M4 (Makridakis, Spiliotis, & Assi-
makopoulos, 2020; Hyndman, 2020), pure combined statistical, machine learning, and/or mixed
methods outperform the base statistical or machine learning algorithm. The competition showed
that as well as the results of the past three M Competitions were confirmed by the better numerical
accuracy of combining statistical and machine learning approaches. It indicates that no single ap-
proach is capable of accurately capturing time series patterns, but that a mixture of methods, each
of which captures a different aspect of such complex patterns, is more accurate since it leverages
the errors of individual models. Syml (2018) won the M4 competition by mixing models of both
statistical and machine learning features showing a winning significant 10% improvement over the
benchmark. The model can be described as hierarchical nature of parameter selection both globally
and locally for each time series, based on the variation of the RNN. Moreover, Montero-Manso et
al. (2020) utilized XGBoost optimizing outputs produced by statistical time-series models, and the
model was ranked as second behind the hybrid approach.

In addition to M4, the data in M5 consists contextual information, and the sequential data
was grouped in a cross-sectional manner, which also shows lumpy, erratic, and intermittent char-
acteristics. Participants may choose their approach to forecast unit sales at different aggregation
levels in several sub-groups. The results showed, confirmed the finding of the previous competi-
tion, the improved accuracy of combining forecasts from different methods (Makridakis, Spiliotis,
& Assimakopoulos, 2022). For example, the winning method used an equal-weighted combination
of six models, each of which took use of a distinct training set and learning strategy. Similarly, an
equal-weighted combination of five models, each of which had a different estimate of the trend, was
employed by the technique that placed second.

Furthermore, the results showed that the top-performing submissions were not superior in all
aggregation levels. For example, the winning team was only superior in lower aggregation levels,
i.e., low frequency yearly compared to daily data. The same held for the second-ranked team, who
was also superior in lower aggregation levels. This can be explained as characteristics like trend
and seasonality are challenging to identify when forecasting disaggregated data with unpredictable
sales (Kourentzes, Petropoulos et al., 2014). Similarly, Nikolopoulos et al.(2014) applied Aggregate-

Disaggregate Intermittent Demand Approach (ADIDA) to British Royal Airforce data and claimed
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improved accuracy when the data was temporal arrogated into lower aggregation levels, but the
error increased when the temporal arrogation was too low.

Lastly, the M5 Forecasting Competition marks a significant shift as participants began heavily
incorporating machine learning combination methods, specifically utilizing Light GBM and RNN.
These approaches demonstrate their capability in handling a wide range of correlated time series
data. All of the top-performing techniques in the competition surpass the performance of traditional
statistical benchmarks and their combinations. However, the question raises whether these machine
learning methods would also achieve a high accuracy performance in the context of spare parts

demand, where the spare parts are largely uncorrelated with each others.

2.4 Comparative Studies

Pinge et al. (2021) did a quantitative literature analysis on 53 publications providing technique
comparisons to summarize the research on estimating intermittent demand. They concluded that
the SBA had a higher forecasting performance than Croston in 40 or more research papers while
being less clear when compared to inventory control. The comparative studies have been extended
by De Haan (2021) and Nguyen (2023) as they benchmarked Croston, TSB, SBA, Willemain,
MLP, and LightGBM on four simulated and four industry data sets. They found that from an
overall perspective, SBA had the highest accuracy, while Willemain had the highest inventory
control. But when there was extreme intermittency, MLP and LightGBM approaches delivered
the best inventory control results. For example, when compared to mean absolute scaled error
(MASE) using artificially erratic data, SBA performed better than all other methods. However,
when compared to smoother data, Croston was superior in terms of mean squared error (MSE) and
rooted mean squared scaled error (RMSSE). In contrast, statistical methods were more superior
when used to forecast industrial data while MLP was superior in forecasting simulated smooth data.
Also, it is good to know that the Light GBM performed the worst among all the models in terms

of accuracy.
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2.5 Conclusion Literature Review

Both M4 and M5 Forecasting Competitions have highlighted the potential of combining statis-
tical and machine learning methods to improve forecasting performance beyond that of individual
models. However, these findings are not extensively explored or tested on different types of demand.
The research conducted by De Haan (2021) revealed that the accuracy performance of Croston and
its modified models was influenced by the type of demand, whether it was simulated generated
or derived from the industrial data. This raises the question of whether combing Croston and its
modified models can exhibit superior accuracy performance across erratic, lumpy, smooth, and
intermittent demand patterns, as well as for both generated and industrial data. In this paper, we
will construct combined Croston and its variations model. These models will be combined using
simple-average (equal-weighted) and a stacking method facilitated by an optimizer. Two pools of
methods will be utilized, with the second pool incorporating the forecast of RNN. Therefore, a
total of four combined models will be evaluated. Additionally, we will employ the hybrid method
ESRNN to assess its contribution to intermittent demand forecasting, as this model has not been
previously applied in this context.

Furthermore, the M5 competition demonstrated the significant contribution of the machine
learning method RNN and Light GBM. However, in this research, we will exclude Light GBM as it
has been previously tested (De Haan, 2021) and found to be only effective in inventory performance
under extreme intermittency conditions. Instead, we will assess the performance of two types of
RNN: the classic RNN and the LSTM. Finally, it was observed in De Haan (2021) and in Nguyen
(2023) that Willemain exhibited the overall best inventory performance. Therefore, we will compare

the performance of the combined models with Willemain as well.
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3 Methodology

This paper aims to extend the existing comparative studies on spare parts forecasting by
evaluating different methods and their performance in forecasting various characteristics of demand.
The workflow follows a similar framework conducted by Pinge et al. (2021), Syntetos (2005), and
Teunter et al. (2011). The benchmark includes comparing the proposed approach to Croston, TSB,
SBA, and Willemain in terms of accuracy and inventory control metrics such as achieved fill rate
and holding costs. In this context, Croston-based model is used to refer the three forecasting
methods Croston, TSB, and SBA as these methods are all based on the Croston. In addition to
Croston-based models, this study introduces the use of combined Croston-based models, Willemain,

two types of recurrent neural networks, hybrid exponential smoothing-recurrent neural networks

(ESRNN), and ADIDA .

Furthermore, the setting for each method will be explained regarding the data processing and
the forecasting generation. It also covers the hyper tuning of any specific parameters to each method.
For all the data sets considered, the first 70% of observations will be utilized as training data, while
the remaining 30% will be used for testing. In the case of the stacking method, predictions on
the validation data will also be generated, a subset of 10 from the most recent observations from
the training data will be reserved for validation purposes in the simulated and OIL data sets, 4

observations for AUTO, 30 observations for MAN, and 15 observations for BRAF.

3.1 The Croston’s method

The first who recognized this is Croston (1972), who devised a new approach that is now known
as Croston. The intermittent demand issues that SES faces have been resolved by Croston. His
approach separates the inter-demand period and the demand size into two sections of the demand
estimation. It uses SES to forecast these values separately to provide smoothed estimates over
time.

Let g; be the ¢ th non-zero quantity, i.e. demand, and a; be the estimate of time interval
between non-zero demands g;_; and g;. If ¢;,,; and a,,,; denotes the one step forecast and using

« as smoothing factor, the method gives:
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Qi1 = (1 — ) @31 + ag,

(1)

i1 = (1—a)ay , +aa;

The smoothing parameter « is assumed to have values between 0 and 1, and is equal for both
Equations (1). Let j represent the moment of the most recent positive observation. The ratio is

then used to calculate the h-step forward prediction for the demand at time T + h,

Irenr = Giji/ G (2)

3.2 The SBA Method

The SBA was proposed by Syntetos and Boylan in 2005 and is similar to Croston in that it
separates the demand. A bias correction coefficient is added to Croston. The inter-demand interval

is smoothed by parameter a, which aims to lessen the bias:

- a

Y14hT = (1 - 5) qj+1\j/aj+1\j' (3)

SBA generally exceeds Croston in terms of predicting accuracy, whereas Croston performs
better in terms of inventory performance given different types of demand patterns (Pinge et al.,
2021). However, SES, Croston, and SBA might perform poorly in the presence of obsolescence or

combines with declining or increasing trend.

3.3 The TSB Method

Teunter et al.(2011) created TSB for these unique demand patterns with the presence of
obsolescence. The demand size approach is still the same as in Croston, but instead of using
the inter-demand interval projection, TSB mixes it with the demand probability estimate. In the
absence of demand, this approach adjusts the demand size, whereas Croston’s method does not
update. This results in a projection being revised downward when there is low demand, which
shortens the amount of time required to detect obsolescence. The demand probability d; is added
through SES to Croston in place of the inter-demand interval. When demand is met, it is 1,

otherwise it is 0O:
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Yrinr = Pjs1)jdj+1)5- (4)

3.4 Setting Croston, TSB, and SBA

The Croston, TSB, and SBA models in this study are implemented using the Statforecast
library (Statforecast, 2023). The library includes also an optimized Croston model that tunes the
smoothing parameters based on the average demand size and interval within the range of 0.1 to 0.3
to optimize the performance. Additionally, for the TSB model, the smoothing parameters for the
average demand size and its probability must be specified. Therefore, the parameters are manually

optimized within the range of 0.1 to 0.9, with steps of 0.2.

3.5 Willemain

Willemain et al. (2004) developed a modified bootstrap approach, that can deal with frequently
repeated value, autocorrelation, and short series. The model starts with a two-state, Markov process
to produce a series of zero and non-zero values over the L period of the lead-time. More specifically,
the forecast depends on the last observation whether the value is zero or non-zero. The next step
is to change the non-zero forecast by giving a specific numerical value. Instead of resampling from
historical non-zero-value, which would be both unrealistic and overfitting. They chose to add some

bias to capture more variance from a lumpy, erratic, and intermittent demand:

JITTERED = 1+INT{X*+ Z /X*}. (5)

Where X* denotes any random historical observation, and Z denotes bias, only the non-zero
estimates will be jittered. One prediction of the lead-time demand (LTD) is produced once the
expected values are added up over the forecast horizon. Lastly, estimating transition probabilities
and jittering are repeated to get multiple predictions, and these values are then sorted to generate

a distribution of the LTD.
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3.5.1 Setting Willemain

To replicate the results outlined by Willeman et al. (2004), the process described by De Haan
(2021) is conducted. Firstly, we generate the transition probabilities for the two-state Markov chain.
The Markov chain generated 0s and 1s over the specified forecast horizon. The non-zero demand
values are then modified with random values from the historical data. Next, a jittering technique
is applied to the non-zero demand values. After the fitting process, the final forecast is calculated

as the mean of the distribution of lead-time demand.

3.6 The Recurrent Neural Network Method

RNN uses the idea of saving memory, which enables them to save the states or details of
prior inputs in order to produce the subsequent output in the sequence. Recurrent neural networks’
outputs are reliant on the previous parts in the sequence, unlike typical deep neural networks,
which presumes that inputs and outputs are independent of one another. The network computes
the values of the hidden units and the final output after k time steps in the feedforward layer.
The networks’ related weights are shared throughout time (Elman, 1990). There are two types of
weights for each recurrent layer: one for the input and the other for the hidden unit. Similar to an
ordinary layer in classic neural networks, the final feedforward layer computes the final output for
the k-th time step. The structure of RNN can be explained as follow:

Let’s say we have k hidden layers. At time step ¢, the input x, € R is assumed to be a
one scalar value feature, w, € R™P“! are weights associated with inputs in the recurrent layer
and w, € RMden are weights associated with hidden units in the recurrent layer. The current
context h, € R™ vector stores the values of the hidden units/states at time ¢, m is the number of
hidden units. Initial stage the feedback value h is set to zero. b, € R™ serves the associated bias
associated within k-th layer, and y, € R is the output of the network at time step ¢.

At every k-th time step, we compute the h, with the use of an activation function until the

unfolding process, i.e. the feedforward layer:

higy = f (24, hyy Wy, wp, by) = f (W +wphy + b)) (6)
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The output y at time ¢ is computed as:

yt:f(ht,wy) :f(wy-ht—l—by). (7)

In other words, during the training phase of the RNN model, the sequence of historical data is
processed step by step. The RNN takes the current input to update its internal state by incorporat-
ing the information from previous time steps through its hidden state. For instance, with a context
size of 1, the context size refers to the number of previous timestamps that are considered when
making predictions for the next timestamp. At the initial ¢, timestamp, the RNN receives the input
value of ¢,. It processes this input, updates its internal state, and produces a prediction for the next
time step. Moving to the second ¢, 1, the RNN takes the input value for ¢, 1 and combines it with
the hidden state representing the information from ¢;. The RNN then updates its internal state
again and generates an output. This process is repeated for each subsequent timestamp, where
the RNN considers the current input along with the information stored in the hidden state from
previous timestamps. By incorporating the historical context through the hidden state, the RNN is
then able to capture patterns and dependencies in the time series (Cho et al., 2014; Elman, 1990).
After processing the last timestamp of the input sequence, the RNN has analyzed all the available
historical data. It has learned from the patterns and dependencies in the sequence, enabling it to
make predictions by leveraging the temporal information and dependencies within the data.

The context size is an adjustable parameter, that specifies n timestamps as context and
produces for the next timestamp ¢,. For example, a context size of 10 means that the first 10
timestamps are used as the initial context. It processes this context and produces a prediction for
the 11th timestamp. As previous studies show (Cho et al., 2014; Elman, 1990), a larger context
size can capture longer-term dependencies, but may increase computational complexity. On the
other hand, a smaller context size may focus more on recent patterns but may overlook longer-term
trends. For spare parts forecasting, a shorter context size can therefore be advantageous. As the
demand pattern often exhibits high volatile demand size and irregular intervals between demands.
The RNN may then be able to quickly respond to changing demand patterns and capture the

dynamics of spare parts demand, thereby improving its forecasting accuracy.
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3.7 The LSTM Method

Long-range sequence context preservation is a challenge for RNNs as lengthy sequences cannot
be processed by RNN (Cho et al., 2014). As a function of time, the influence of a certain input
within the hidden layer decays exponentially, which causes gradients toward zero, preventing the
network from learning new weights. To overcome the vanishing gradient problem, LSTM can be
the optimal solution (Hochreiter& Schmidhuber, 1997).

LSTM operates in a chain structure in so-called “the cell state”, which is a vector transfer
running down the whole chain (Sak, Senior, Frangoise, 2014). LSTMSs are capable of modifying the
cell state by removing or adding information, which is carefully controlled via several gates that
consist pointwise multiplication process, i.e. vector addition, and a layer of sigmoid neural networks
(Elman, 1990).

Selecting information from the cell state to discard is the first stage in LSTM. The forget gate
layer, a sigmoid layer generates a number between 0 and 1 in the cell state C,_jat h, ; and z,,
whereas 1 means saving the data, otherwise 0 discarding the data. The first step can be formulated

as follow:

ft:U<Wf‘ [ht—l’xt]_l'bf)‘ (8)

The next step is choosing which values i, should be updated by creating a set of new candidate
values ét using the input gate layer via both sigmoid and tanh layer looking at C,_; in h, ; and

T

iy =0 (W, [hy_1 2] +0;),
3 9)
Ct = tanh (Wc ’ [ht—h xt] + bc) .

In order to update the C,_; into C,, f, is in a linear combination manner with the C,_; in

addition with the set of new candidate values:

Ct :ft'ct—l "‘%'dr- (10)

In the final step, the output will be selected and filtered based on the status of the cell. A

sigmoid layer to determine which portions of the cell state will be output. Then, we multiply the
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output of the sigmoid gate by the cell state to ensure that we only output the portions we have

selected, after pushing the values to be between 0 and 1 using the tanh function:

o, =0 (W, [hy_y,7,] + bo) ) (1)
h, = o, - tanh (C,) .

3.8 Setting RNN and LSTM

The proposed model for this research is a classic RNN on the work of Elman (1990). It is a
multi-Layer Elman RNN with an MLP decoder. First, the data needs to be normalized as having
different demand size can impact the forecasting performance, the observations are normalized to
a range between 0 and 1. Next, a hyperparameter tuning process is conducted to find the optimal
combination of parameters. RNN and LSTM from the Nixtla library (Neuralforecast, 2023) are
implemented and the following parameters are hyper-tuned:

1. The size of the context window, which denotes the number of previous time steps considered

as input. It is varied within the range of 4 to 12.

2. The encoder amount of layers denotes the number of LSTM or RNN layers in the encoder
component of the model, different values ranging from 2 to 6 are explored.
3. The encoder hidden size parameter refers to the number of hidden units in each layer of the

encoder. It is varied from 200 to 400.

3.9 The ESRNN Method

The family of capable machine learning models known as the neural network (NN) is diverse.
However, they share in common by not being time-specific. It is necessary to preprocess the series
data, but the preprocess is difficult as NNs typically contain too many weights to fit for each time
series. This problem may be resolved via cross-learning and preprocess (normalization and often
deseasonalization), but the results can still be disappointing as NN and even RNN tend to average
their responses. Smyl (2018) approaches this problem by being hierarchical-part-time series-specific
and part global. It combines manually written components, such as the ES with RNN. Smyl (2018)
proves that his approach does not simply combine neural networks and exponential smoothing.

Instead, all parameters, including the initial ES seasonality and smoothing coefficients, are fitted
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simultaneously with the RNN weights using the same gradient descent method.

The model starts with the simplest algorithm of ES:

Y1 =Yty — 1) - (12)

Where « is the smoothing factor varying from 0 to 1, according to the algorithm, the forecast
is identical to the previous forecast adjusted by the previous error. Smyl (2018) uses an extended

version of ES, Holt-Winters, with multiplicative seasonality to observe time series components.

Ly =a(y/s) + (1 —a)(l_y +b4),

Y
= _— 1 — .
St+m 'Y(lt n bt) + ( v)s;

(13)

Where «, §, v are smoothing coefficients between 0 and 1, I denotes level and s denotes
multiplicative seasonality. Since ES is fitted for each series, cross-series learning is not possible.
However, an NN trained on all series can be used for nonlinear forecasting. The RNN is trained
with all the time series by being global, whereas the ES parameters are unique to each time series.
The outcome of RNN is used and integrated into the ES model, which has shared parameters to

learn the local trends among the series. Therefore, the forecasting becomes:

Ypi1 tan = BRNN (X)) % 1 % 8110 gip- (14)

Where X, is a vector of preprocessed data and the multiplication is element-wise, RNN (X,)
denotes the predicted trend by RNN. Moreover, X, is composed of normalized and deseasonalized
time series-derived parameters. The hybrid model optimizes two losses; quantile loss and regular-
ization:

Ly(y,9) =qly—9) + 1 —a)H—y),- (15)

However, it is possible when treating all series as a single global model might overlook the
individual behaviors of each spare part as each of them often exhibits high intermittency, meaning
that spare parts have infrequent demand patterns, unique characteristics, and unique demand

patterns. Moreover, spare parts demand can be influenced by local factors specific to each part,
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such as the life cycle of the equipment it belongs to, replacement cycles, and specific customer
demands. Training a global model might not capture these local trends and dependencies. In this
context, it is still interesting to explore whether a partially and globally trained model like ESRNN

can outperform Croston and its variations.

3.9.1 Setting ESRNN

To run the ESRNN model from the Neuralforecast package (Neuralforecast,2023), it is neces-
sary to ensure that the simulated and industrial data sets have the same dimensions as the data in
the M4 competition where the model was originally applied. This involved arranging the data such
that all time series are consolidated into one column, identified by a unique ID per stock keeping
unit (SKU) recorded in a separate column. These included calculating the number of timestamps
and unique numbers present in the data. For instance, in the case of the simulated data sets, which
initially have dimensions of (60,6500), a transformation is required to restructure the data into a
shape of (3,390000), which are unique ID, timestamps 1 to 60, and the value y at timestamp ¢ per
SKU, and up to 60 6500 = 390.000 rows.

One particular parameter of interest for potential optimization is the input size, the same
as the context size mentioned in RNN and LSTM, which denotes the number of previous time
steps considered as input. It is chosen to not adopt any parameters as it requires modifications
to the data loading and preprocessing tools within the nixtlats-data-tsdataset-module, which are
considered as technical limitations. For this method, a decision is made to keep the input size fixed
at 20% of the length per SKU per training data. I.e., the input size is 8 for simulated data, 8 for
Oil, 12 for BRAF, 21 for MAN, and 3 for AUTO.

One limitation of the ESRNN model from this package is its inability to run time series with
zero demand without disruptions. When a zero demand occurs within a series, the model encounters
errors and fails to continue running. To address this issue, a practical solution can be implemented
by adding a small bias to each observation within the time series. Specifically, a constant variable
of 0.01 is added to all data points. By doing so, even if the demand is zero, the series will have a

small non-zero value, allowing the ESRNN model to handle it without encountering errors.
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3.10 Equal weighted and Stacking Combination Methods

The practice of combining two or more forecasting methods with the goal of improving overall
prediction performance, so called ensemble methods will be described in this section. Several
methods will be employed to mitigate the errors associated with individual methods. Two commonly
combined techniques will be used. (1) Simple Average: assigning equal weights for each method’s
predictions. (2) Stacking: use of a Meta-learner to combine predictions from a pool of models
(Montero-Manso et al., 2019), a Meta-learner is a model that is used to determine the optimal

combination weights for forecast combination.

Montero-Manso et al.(2019) proposed a combined forecasting method by utilizing time series
characteristics in two separated processes: to reduce the loss function resulting from a weighted
forecast combination, they first employed a collection of time series to train a Meta-model for
weighing multiple potential forecasting approaches. Features that are taken from each series served
as the Meta-inputs. New series are estimated using a weighted forecast combination in the second
phase, where the weights are derived from the previously trained Meta-model. The objective is to
find a function optimized by XGBoost that assigns weights to the pool of approaches to minimize
the expected loss that will have been produced if the weights are assigned randomly. The Feature-
based Forecast Model Averaging (FFORMA) frameworks’ operation proposed by Montero-Manso
et al.(2019) is split into two phases: (1) A phase when the Meta-learner is trained, and (2) during
which the previously trained Meta-learner is used to determine forecast combination weights for a

new series, schematically:
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Figure 1: Meta-learning using XGboost. Each base learner is trained and the predictions on the
validation, i.e., features serve as Meta-input. During prediction, the Meta-learner updates and
combines the predictions on the test set of each base learner.

As Figure 1 shows, the original training data is further divided into training data less the
validation data. The validation data is reserved as a target reference in the feeding phase, and the

predictions on the validation data are utilized as a feature to train the model.

3.10.1 Setting Equal weighted and Stacking Combination Methods (Meta-learners 1

and 2 and Ensemble 1 and 2 )

In the stacking approach, the predictions from all models on the validation set are utilized,
and XGBoost is used as an optimizer. The training data, excluding the validation data, is used as
a feed feature, while the predictions on the validation data are used as the target. In this case, the
XGBoost model is also optimized. Since XGBoost is a regression tree-based model, the depth of
the trees will be optimized to achieve the best performance. Once the model has been trained, the
predictions on the test data from all the base learners are combined and weighted. Two types of
stacking are performed in this research. The first type included only the Croston-based methods,

where the predictions from these methods are combined. The second type involved combining
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the predictions from the Croston-based methods along with RNN. Moreover, to obtain the final
prediction for the simple average, i.e., assigning equal weights for each methods, the accumulated
predictions on the test data are divided by the number of models.

Therefore, a total of four combined methods are implemented and referred to as ensemble 1,
ensemble 2, Meta-learner 1, and Meta-learner 2, where ‘1’ denotes the first pool and ‘2’ denotes
the second pool of methods. The term ‘ensemble’ represents combination methods that are equal-

weighted, and the term ‘meta_ learner’ refers to the stacking.

3.11 The ADIDA Method

Nikolopoulos et al. (2011) proposed ADIDA to reduce the number of zero periods by using
temporal aggregation, i.e., combining multiple lower levels into higher levels of time series: daily
time series into, weekly, monthly, and for long time series into yearly. Nikolopoulos (2011) assumed
intermittent times series arrogation, which reduces the amount of zero demand interval, can reduce
the noise, and increase forecast accuracy.

At each aggregation level, n observations will be added together backward as a unique block
until there are no more observations left. At the stage of predicting, the predicted value is divided

by the aggregation factor that denotes the level at which the original time series was aggregated,

schematically:
Aggregated
Training Data Data Disaggregating
Aggregation Predicting Evaluation

factor

Figure 2: The ADIDA Method Workflow. Aggregating level 1 denotes the original training set, level
2 denotes 2 obsvertaions each block. Each predicted aggregated value will then be disaggregated.

According to Nikolopoulos et al. (2011), when comparing the use of SBA with and without the
use of ADIDA, it was found that the results were poorer when SBA was applied to aggregated BRAF
data. However, the authors argued that the aggregation process should be conducted carefully to

avoid having too few observations, as this could potentially lead to an increase in error.
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3.11.1 Setting ADIDA Method

For the simulated data sets (BRAF and OIL), aggregation levels 2 to 6 are selected to analyze
the impact of different levels of temporal aggregation. However, due to the shorter timestamps for
SKUs in the AUTO data set, aggregation levels 2 to 4 are considered, and in the case of the MAN
data set, the aggregation process begins at level 5 and extends up to level 9. In total 39 aggregated
data sets are generated. For simplicity and consistency with previous research by Nikolopoulos et
al. (2011), only the SBA method is applied to the aggregated data sets. Each aggregated data set
is evaluated using the four evaluation measures, and the aggregation level with the best accuracy is
selected for further analysis. During the process of aggregating time series, it is common for some
observations in the training set to be excluded due to the ratio between the length of time and the
chosen aggregation factor for not resulting in whole numbers. In such cases, each decimal place
is rounded down to the nearest integer. For example, let’s consider the training data from SIMI1,
which consists of 42 timestamps. If we apply an aggregation level of 2, all observations can be
grouped into 21 blocks. Similarly, at aggregation level 3, 14 blocks can be generated. However, at
aggregation level 4, only 10 blocks of 4 can be created, resulting in the first and second observations

being left unused.

During the process of disaggregation, a similar situation occurs as with the aggregation process.
Depending on the chosen aggregation level, a specific number of predictions is made, and each
prediction is divided by the aggregation factor to obtain the disaggregated values. For example,
let’s consider an aggregation level of 2 in simulated data. In this case, 9 predictions will be made.
Each of these predictions will be divided by the aggregation factor, resulting in 18 disaggregated
predictions for the simulated data. At aggregation level 3, 6 predictions will be estimated, which
will lead to 18 disaggregated predictions as well. However, at aggregation level 4, 5 predictions
are estimated. After disaggregation, the total number of predictions is then 20, which is greater
than the length of the test set. In such cases, it is chosen to remove the last 2 predictions after

disaggregation.
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4 Data Description

The next step involves data exploring, data cleaning, and generating simulated data sets
(Boylan et al., 2008; De Haan, 2019). In this chapter, we discuss data sets to which forecasting
methods are applied. In order to ensure reproducibility and validity, two types of data sets are
used: industrial data and simulated data sets. Simulated data is generated using the cut-off criteria
retrieved from Boylan et al. (2008), four types of demand are simulated: erratic, lumpy, smooth,
and intermittent. The objective is to assess whether the findings from the simulated data set align
with the empirical data set. Besides generating simulated data, aggregated data in n level for
both industrial and simulated are provided. The names of the data sets and the corresponding

abbreviation are provided in Table 1.

Table 1: Data Sets

Data.sets Abbreviation
Automotive Company AUTO
Manufacturing Firm MAN
British Royal Air Force BRAF
Refinery Oil Company OIL
Simulated 1 SIM1
Simulated 2 SIM2
Simulated 3 SIM3
Simulated 4 SIMA4

4.1 Empirical Data

Four industrial data sets are included. To begin, missing values in the data sets have been
replaced by zero, and SKUs with zero demand occurrences have been removed. The first data
comes from a Dutch manufacturing company consists 3451 SKUs recorded over 150 weeks. The
second data set, used by Teunter and Duncan (2009), consists of sales data on 5000 aircraft spare
parts from the British Royal Air Force over 84 weeks. The third data set (Syntetos and Boylan,
2005) comes from the automotive industry and comprises sales of 3000 items over two years. The
fourth data (Porras and Dekker, 2008) set covers sales data over 56 weeks for 14523 SKUs for an

oil refinery from January 1997 to August 2001. These data sets have already undergone cleaning
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and preprocessing by Nguyen (2023) and are available for use on her GitHub repository.

Descriptive statistics of each industrial data set are provided in Tables 2, 3 4, and 5. For every
SKU across the data, the mean and the standard deviation (sigma) are provided. The demand size
is calculated as the sum of the demand divided by the number of occurrences per time series. For
example, the mean minimum for demand size in MAN is 0.084 while the mean maximum, the
fourth quantile is 1149.910. Furthermore, the mean inter-demand interval refers to the mean time
period between two positive demands per time series, and the mean demand per period denotes
the average demand quantity during each time period.

To simplify the analysis, we decide to set the lead-time to zero for every SKU in both the
industrial and simulated data sets. Additionally, all exogenous variables are removed such as
minimum and maximum order quantity, current stock quantity, and the lead-time per SKU. This is
done because not all industrial data sets have the same variables, lead-times, and including different
variables would make the results of the applied methods less comparable across the data sets.
Moreover, since the price feature has in this analysis an important role in determining inventory
performance, pricing data has to be incorporated into both the AUTO and the simulated data sets,
as they are originally missing this information. The price data is generated using a framework that
relies on the correlation between pricing and its temporal order frequency, as described in De Haan

(2021). The pricing information for each data set can be found in Table 13 and Table 14 in the

Appendix.
Table 2: Data Description BRAF
Quantile Demand.per.period Demand.sizes. Demand.Intervals
Minimum (std) 0.036 (0.186) 1.000 (0.000) 3.786 (0.000)
1st Quantile (std) 0.155 (0.535) 1.556 (0.745) 7.222 (4.924)
Median (std) 0.369 (1.443) 3.833 (2.871) 9.000 (6.359)
3rd Quantile (std) 1.154 (4.408) 11.333 (8.727) 11.833 (8.074)

Maximum (std)  65.083 (274.062)  668.234 (798.233)  29.523 (14.295)
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Table 3: Data Description OIL

Quantile Demand.per.period Demand.sizes Demand.Intervals
Minimum (std) 0.036 (0.187) 1.000 (0.000) 1.000 (0.000)
1st Quantile (std) 0.073 (0.287) 1.000 (0.000) 5.400 (1.641)
Median (std) 0.145 (0.454) 1.500 (0,433) 8.000 (4.000)
3rd Quantile (std) 0.291 (0.913) 2.833 (1.225) 12.000 (6.500)

Maximum (std) 232.727 (599.107)  1600.000 (1523.778)  37.000 (25.000)

Table 4: Data Description MAN

Quantile Demand.per.period Demand.sizes Demand.Intervals
Minimum (std) 0.002 (0.015) 0.084 (0.000) 1.000 (0.000)
1st Quantile (std) 0.2737 (1.275) 3.400 (2.155) 4.028 (2.651)
Median (std) 0.962 (3.788) 8.96054 (7,022) 8.000 (5.377)
3rd Quantile (std) 3.112 (10.714) 22.865 (18.889) 15.000 (9.861)

Maximum (std)  1149.910 (4060.580) 10780.454 (7124.374)  92.000 (48.000)

Table 5: Data Description AUTO

Quantile Demand.per.period  Demand.sizes =~ Demand.Intervals
Minimum (std) 0.542 (0.493) 1.000 (0.000) 1.045 (0.208)
1st Quantile (std) 1.458 (1.291) 2.050 (1.108) 1.100 (0.300)
Median (std) 2.333 (1.881) 2.885 (1.716) 1.235 (0.498)
3rd Quantile (std) 4.166 (3.428) 5.000 (3.269) 1.437 (0.718)
Maximum (std) 129.167 (120.162)  193.758 (98.971) 2.091 (1.585)

4.2 Data Classification

In this section, the framework proposed by Boylan et al. (2008) is applied to the classification
of each SKU according to its characteristics. Prior studies (Boyland et al., 2008; Kourentzes, 2014)
showed that the models’ performance can be influenced by the characteristics of each SKU. Boylan
et al. (2008) assumed that SBA outperformed the Croston’s method and weighted moving average
approach (EWMA) in predicting lumpy, erratic, and intermittent demand.

Two cut-off values are used for classification: the mean inter-demand interval, denoted by p,
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and the squared variation of demand size, denoted by CV?2. The value of p is calculated as the
ratio between the sum of T periods and C counts of the non-zero periods. CV? represents the ratio
between the standard deviation of non-zero demands and the mean of the zero demands. Both
cut-off values are used to classify whether demand is lumpy, erratic, smooth, and/or intermittent.
The demand data sets are categorized as erratic when p < 1.32 and CV? > 0.49), lumpy (when
p > 1.32 and CV? > 0.49), smooth (when p < 1.32 and CV? < 0.49), and intermittent (when

p > 1.32 and CV?2 < 0.49):

Intermittent Lumpy

p=1.32

Smooth Erratic

CVv2=0.49

Figure 3: Cut-Off Values. X-as denotes the squared coefficients of varation of zero demand, and
y-as the squared variation of demand size.

Based on the cut-off values, the average length of time series, and the average amount of
SKUs in industrial data sets. Four simulated, erratic, lumpy, smooth, and intermittent data sets
are generated. The simulated data sets were generated using the “tsintermittent” package in R.
This package allows us to create data sets by specifying both the parameters p and CV2. SIM1
represents the erratic pattern with p = 1 and C'V? = 0.75, SIM2 corresponds to the lumpy pattern
with p = 1.5 and CV? = 0.8, SIM3 represents the smooth pattern with p = 1.05 and CV? = 0.3,
and SIM4 represents the intermittent pattern with p = 1.45 and CV? = 0.25. All simulated data
sets have the size of 60 timestamps and 6500 SKUs, based on the average timestamps and SKUs of

industrial data sets. Table 6 shows the descriptive classification of both industrial and simulated
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data sets, the industrial data sets have relatively more mixed SKUs while in the simulated data
sets is clearly to observe which type of SKU is dominating. Please note that in Table 6, CV? is

represented as CV2 due to the formatting in Rmarkdown.

Table 6: Demand Description Based CV? and p

Data set CV2 p Erratic Intermittent Lumpy Smooth

MAN 0.92 16.41 23 562 806 1
BRAF 0.63 11.14 0 2905 2095 0
AUTO 041 1.32 378 1074 307 1241

OIL 0.18 14.52 0 6830 814 0

SIM1 0.75  1.00 6198 0 0 302

SIM2 0.80 1.50 410 451 5614 25

SIM3 0.30 1.05 36 0 0 6464

SIM4 0.25 145 1 5706 7 786

4.3 Aggregation of Data

In the research conducted by Nikolopoulos et al. (2011) on the BRAF data set, it was observed
that the SBA method yielded optimal results at lower frequency levels based on the Mean Absolute
Error (MAE). To explore this further, they experimented with different aggregation levels, where
higher aggregation levels corresponded to lower frequency levels. The original training data will be
aggregated at lower frequency levels, allowing for the generation of aggregated data with varying
time intervals. This approach enables the examination of forecasting performance across different
aggregation levels. In the current empirical setting, the simulated data, as well as the OIL and
BRAF data sets, will undergo a similar aggregation process by aggregating the data from level 2
to level 6. I.e., monthly data sets are transformed into two-monthly data, three-monthly data, and
so on. Since the AUTO data set has shorter timestamps for SKUs, aggregation levels from 2 to 4
are considered. Lastly, for the MAN data set, aggregation starts from level 5 and continues up to
level 9. In Table 7, the impact of aggregation level 3 on the mean demand size CV? and the mean

inter-demand interval p for industrial data sets can be observed.
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Table 7: Aggregation Level 3

Data set CV2 p FErratic Intermittent Lumpy Smooth
MAN 435 1 1301 0 0 91
BRAF 482 1 5000 0 0 0
AUTO 024 1 269 0 0 2731
OIL 439 1 7641 0 0 3

As anticipated with the exception of the AUTO data set, the mean inter-demand interval p
decreases when demands are aggregated due reducing of zero demand periods. The increase in the

mean demand size CV? can be explained as demands is larger due to the aggregation.
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5 Accuracy Measures

In this research, the performance of different forecasting methods is compared using various
performance measures. For intermittent demand forecasting, several accuracy measures are com-
monly used, including MSE and MASE (Pinge et al., 2021). MSE is mostly used to assess the
individual performance of a forecasting model, while MASE is independent of the scale of the time
series by providing a meaningful measure of forecast accuracy relative to a benchmark method: a
one-step naive forecast that assumes the future value will be the same as the most recent observed
value (Koehler, 2006).

Moreover, it is important to note that multiple accuracy measures should be used, as each
measure has its advantages and drawbacks (Goodwin and Lawton, 1999; Kolassa, 2020; Koutsan-
dreas et al., 2021). In this research, we incorporate the forecasting measures proposed in the M5
forecasting competition, which includes scaled errors that possess appropriate statistical properties.
Standard accuracy measures such as MSE and rooted mean squared error (RMSE) are also utilized

as they are commonly used in forecasting evaluations.

The mean squared error:
n

1 ~
MSE = —% (y;,— )" (16)
i=1
is a commonly used measure that quantifies the average squared difference between the predicted

values and the actual values. It provides an overall assessment of the models’ accuracy.

The mean absolute scaled error:

n b
ﬁ Ei:g 1Y — Yi 1l

MASE = (17)

is the performance measure used in M4 and M5 forecasting, that compares the predicted values
to the benchmark model. It considers the scale of the time series and provides a normalized error

metric, allowing for comparisons across different time series.

The rooted mean squared error:

RMSE = /1 374, - 7,2 a8)
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Equation (18) is the square root of the MSE and provides a measure of the average magnitude of

the forecast errors.

The rooted mean squared scaled error:

ﬁa Zizg(% — Y 1)?

(19)

3

RMSSE = J

is a variation of RMSE that incorporates the scaling of the time series by taking the variability of
the historical data into account.

In various fields, including time series forecasting and supervised learning, the performance
of models is commonly evaluated using metrics such as MSE and RMSE. These metrics assess the
average squared difference between predicted and actual values, indicating the overall magnitude

of errors. To ensure a more standardized and scaled score when comparing different time series,

RMSSE and MASE are commonly used in addition to MSE and RMSE.
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6 Inventory Control

Van Wingerden et al. (2014) argue that evaluating forecasting methods based on the accuracy
performance may not capture their practical relevance, and follow the methodology outlined by
Durlinger and Paul (2012), a base stock level is based on an evaluation of past demand patterns.
In this section, an inventory measure outlined by Nguyen (2023) and De Haan (2021) is used. An
order-up-to-level policy is implemented to replenish inventory as the stock level falls below the
reorder point. This approach aims is to find an optimal quantity of stock on a condition of a
certain service level. As mentioned earlier, each SKUs across all data sets are assumed to have a
lead-time as 0, indicates immediately stock replenishment. However, it is important to note that

even with a lead-time is 0, stockouts are not excluded as uncertain demand still needs to be met.

Next, target fill rate (TFR) will be set to generate the trade-off curves between the TFRs
and the AFRs , and between the AFRS and the inventory holding costs. The corresponding stock
levels are determined based on the forecasts generated by the methods, along with the variance of
the historical demand. These parameters are then used to fit a gamma distribution and compute
the base stock levels. The most widely used distribution in demand forecasting is the normal
distribution. However, this may not be well-suited for spare parts forecasting, as spare parts are
characterized by intermittency, which causes skewness and heavy-tailed distributions due to long
periods of zero demand (Moor and Strijbosch, 2002; Nguyen, 2023; Burgin, 1975). According to
Nguyen (2023), who applies Croston and its variants, SES, MLP, Light GBM, and Willemain to
the same data as in this paper, the achieved fill rates (AFR) are higher, except for Willemain,
when the forecasts follow the gamma distribution compared to the normal and negative binomial
distribution.

Therefore, the identical inventory measure employed by Nguyen (2023) is utilized and applied
to each forecast. In the subsequent section, a concise explanation is provided regarding Nguyen’s

implementation of inventory control.

6.1 Inventory Setting

Given an item, a TFR during period ¢, the base stock level R, ., is derived from the gamma

distribution, predictions, and historical demand. More specifically, the expected shortage per re-
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plenishment cycle ESC(R) is used from Burgin (1975), where R denotes the base stock level. Over

a base stock level R, we compute the value of ESC:

ESC =k/ao—R—kj/a-F(aR,k+1,1)+ R- F(aR,k,1). (20)

Where k denotes shape and « denotes rate, these parameters are used in the Erlang distribu-
tion, which is a special form of the gamma distribution where k is strictly a positive integer. In
this analysis, k = pu2/0?, where yu is the forecast, and o2 is the variance of historical demands. The
shape k parameter will not always result in a whole positive number. Therefore, the generalized
form of the Erlang distribution, the gamma distribution, will be used to allow & to take on fractional
values. The cumulative distribution function (CDF) of the gamma distribution is denoted as F, «

denotes rate of the gamma distribution and is computed as 1/\ and A\ = 02 /u (Burgin, 1975).

Beginning with an initial value of zero, R, ., is systematically incremented by whole integer
in each loop until the ESC meets the loss target (1 —TFR) - pu. The target fill rate TFR is defined
as:

ESC

TFR=1- =2 (21)
"

Equation (21) denotes the fraction of demand that can be supplied from the stock on hand
and is a widely used performance measure in inventory control. Equation (21) can be rewritten as
(1-TFR)-pu = ESC, implying that an increase in the TFR requires a higher base stock level
to meet the loss target. Assuming g = 1, 0 = 3 and a TFR of 0.85, this results in £ = 0.111
and o = 0.111. The loss target is (1 —0.85) - 1 = 0.15. To equate the loss target of 0.15 with
ESC(R,a,k), note R denotes base stock level, equation (21) suggests that the base stock level
should be set to at least R = 11, this results in £SC = 0.126 < loss target. ESCs are not always
equal to the TFRs due to the policy of increasing the base stock level only in integers. If the TFR
increases to 0.90, then the minimum value of R is 13, which results in ESC = 0.093, falling below
the loss target. The implementation of inventory for a period t in the forecasting horizon F' is as

follows:

(1) At the beginning of a period, the base stock level R, ., is computed and derived from the

gamma distribution and the target fill rate (TFR).
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(2) The R, ,  is compared with the actual inventory level, that is the actual inventory level at
the end of previous period I'L; ,. _;, to determine the replenishment @), ,. , that arrives during
the current period. Therefore, the actual inventory level I L;mk after the replenishment is
computed with the @, , , during the period, i.e., IL; ; =1L;, ; 1+ Q;, -

(3) For calculation purposes, a separate variable amount of supplied item S, rx during a demand
period is defined. Le., the S, , ;. denotes the minimum quantity of stock required to meet the

actual demand. The inventory level at the end of a period L, ., is computed as I L} . ,—S; . .

Furthermore, Nguyen (2023) assumes there are no back orders or initial inventory levels at the
beginning of each test set. Moreover, R, ., is zero when the forecast p < 0 as the shape parameter
k of the gamma distribution requires positive y value, the part fill rate is also zero when there is
no demand in test periods, and R, ,. ; is capped to the highest observed demand in training data to
avoid extremely high holding costs due to overstocking. However, this approach can also result in
understocking for items with demand that occurs in later periods, particularly in cases where there
are zero or very few demands observed in the training data, but a high occurrence of demands in
the test data. After obtaining S; . , for each forecasting period, the achieved part fill rate (APFR)

is computed, please note F' denotes now the forecasting horizon:

_ Zk}EF SZ‘,T’,k

APFR;, = . (22)
’ Zkep Di,r,k

Consequently, to compute the achieved fill rate of a data set (average-AFR), we average

APFR, , for every item by dividing number of N items:

1
AFR = — APFR,. 2
avgAFR 7 ; R; . (23)

Moreover, taking the ratio of the sum of all S, , , and all the occurred demand to obtain the

total achieved fill rate (total-AFR):

Zie],keF Simk

totalAFR,. = .
o " Di,r,k

(24)
Zie[,keF

In simpler terms, average-AFR denotes the average percentage of demand fulfilled for all
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items. This means that the low-demand items with a low APFR can significantly decrease the
overall average, even if other items have a high APFR. On the other hand, total-AFR calculates
the overall percentage of total demand met for all items, regardless of their individual APFR. This
suggests that the low-demand items have a smaller impact on the total-AFR because of the low
contribution to the overall demand and a high-demand item can significantly affect and lower the
total-AFR when the demand is not fulfilled. Therefore, by considering both average- and total-
AFR, we can evaluate the models’ performance at both the individual item level and the overall
level of demand fulfillment.

The evaluation includes the measurement of the AFR in terms of average-AFR and total-AFR.
Simultaneously, it involves an analysis of the trade-off between the AFRs and the associated holding
costs, aiming to assess the financial implications of various forecasting methods. The holding costs

are defined as 25 percent of the item price and the TFRs varied from 0.75 till 0.99.
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7 Results

In this section, the results obtained from the mentioned models applied to simulated and
industrial data sets will be presented. The first part focuses on forecasting accuracy, which is
evaluated using MSE, RMSE, MASE, and RMSSE. Additionally, the results from the ADIDA will
be presented in a separate table to highlight the developments of the accuracy performance of each
aggregation level. In the second part, we will present the inventory performance of each model
on each data set. For illustrative and comprehensive representation, we have decided to present
only the RMSSE for all methods applied to eight data sets in Table 8. For the overall performance
analysis, please refer to Table 19 in the Appendix.

This research did not actively monitor the runtime per model. Nevertheless, based on es-
timates, Willemain is presumed to require the longest processing time, approximately 90 to 150
minutes per data set. In contrast, ESRNN, RNN, and LSTM have an average runtime of around
20 minutes per data set. Croston and its variations require about 3 to 5 minutes for each data set.
Ensemble 1 and ensemble 2 are executed almost instantaneously once the individual methods have
been applied. Meta-learner 1 and 2, on the other hand, typically require an average of 10 to 15
minutes per data set. Lastly, it should be noted that Willemain is executed in R, while the other

models are implemented in Python.

7.1 Overall Accuracy Performance

Table 8 shows the RMSSE of the models applied to eight different data sets. A lower error
indicates better forecasting accuracy. The performance of the other accuracy metrics is provided

in the Appendix, Table 19.
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Table 8: Forecasting Performance - RMSSE

Model AUTO OIL MAN BRAF SIM1 SIM2 SIM3 SIM4
Croston 1.703 10.923  11.439 5.020 1.008 1.049 0.940 0.921
Croston_ T 1.699 10.853  11.439 5.019 1.008 1.049 0.940 0.922
TSB 1.725 12.996  11.437 5.062 1.007 1.048 0.938 0.920
SBA 1.698 10.931  11.428 5.018 1.009 1.050 0.941 0.922
RNN 2.153 10.700  11.995 4.988 1.033 1.114 0.939 0.933
LSTM 2.148 10.570  11.988 4.988 1.035 1.108 0.939 0.937
ESRNN 2.250 10.311  11.963 4.988 1.125 1.258 1.063 1.138
Willemain 1.690 9.877 11.475 4.953 1.001 1.049 0.937 0.926
Ensemble 1 1.705 11.299  11.435 5.029 1.008 1.049 0.940 0.921
Ensemble 2 1.701 10.820  11.485 4.970 1.005 1.050 0.934 0.917

Meta-learner_ 1 1.750 9.982 11.849 4.916 0.982 1.031 0.912 0.903

Meta-learner_ 2 1.750 9.982 11.849 4.916 0.982 1.031 0.912 0.904

7.1.1 Findings Simulated Data Sets

Regarding the simulated data sets, Meta-learner 1 and 2 are the best-performing models that
are evaluated on MSE, RMSE, and RMSSE. When MASE is selected, Meta-learners 1 and 2 only
outperform other methods in SIM3 and SIM4, while RNN and LSTM have the lowest MASE in

SIM1 and SIM2. ESRNN is the worst performer among all the models.

Furthermore, ensemble 2 outperforms ensemble 1 across all accuracy measures. This suggests
that the inclusion of the RNN model contributes positively to the accuracy performance. However,
when compared to stacking methods (Meta-learners 1 and 2), the contribution of the RNN model
does not improve the overall performance. The difference between the performance accuracy of

both two Meta-learners is negligible, making it difficult to distinguish between them.

7.1.2 Findings Industrial Data Sets

In the case of the BRAF data set, Meta-learner 1 and 2 demonstrate the best performance
among the evaluated models. However, surprisingly, ensemble 1 performs the worst across all
accuracy measures, which may have been unexpected considering its moderate performance score
in simulated data sets. Moving on to the methods applied to the MAN data set, SBA appears to
have the best accuracy performance in terms of MSE, RMSE, and RMSSE. ESRNN achieves the

lowest MASE score. As for the OIL and AUTO data sets, Willemain has the best performance when
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evaluated on MSE, RMSE, and RMSSE. ESRNN achieves the lowest MASE score in predicting the
OIL data, while ensemble 2 achieves the lowest MASE score in the AUTO data.

7.1.3 Overall Findings

It appears that the stacking method generally exhibits the best performance in terms of MSE,
RMSE, and RMSSE in simulated data sets. However, this is not always the case in industrial data
sets. In data sets such as AUTO and MAN, the stacking method performs the worst. This can
be attributed to the extremely high mean inter-demand interval and demand sizes of MAN data,
which could affect the performance of Meta-learners. In the case of AUTO data, the intermittency
and demand sizes are comparable to the simulated data, which suggest that the difference in
performance can be related to the relatively small timestamp of AUTO. Willemain demonstrates
superiority in MSE, RMSE, and RMSSE in the AUTO and OIL data. However, Willemain does
not have the same superiority in other simulated or industrial data sets.

Table 9 illustrates whether the RNN, LSTM, ESRNN, Willemain, equal-weighted combined
methods, and stacking methods improved the accuracy over the individual performance of the
Croston and its variations. Improvement (4) is observed when a model outperforms the individual
performance of Croston, Croston optimized, TSB, and SBA. For example, if a model’s MSE is lower

than Croston, Croston optimized, and T'SB but higher than SBA, it is considered as a deterioration

(-)-
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Table 9: Performance Comparsion on Croston Based Methods

Model Metrics AUTO OIL MAN BRAF SIM1 SIM2 SIM3 SIM4 Improvement chance
MSE - + - + - - - - 0.25
RMSE - + - + - - - - 0.25
RNN MASE - - + + + + + - 0.63
RMSSE - + - + - - - - 0.25
MSE - + - + - - - - 0.25
RMSE - + - + - - - - 0.25
LSTM MASE B - + + + + + - 0.62
RMSSE - + - + - - - - 0.25
MSE - + - + - - - - 0.25
RMSE - + - + - - - - 0.25
ESRNN MASE - + + + - - - - 0.38
RMSSE - + - + - - - - 0.25
MSE + + - + + - + - 0.62
Will . RMSE + + - + + - + - 0.62
illemain MASE B _ _ + - - - - 0.12
RMSSE + + - + + - + - 0.62
MSE - - - - - - - - 0.00
RMSE - - - - - - - - 0.00
Ensemble_ 1 MASE B _ _ _ - - - - 0.00
RMSSE - - - - - - - - 0.00
MSE - + - + + - + + 0.62
Ensemble_ 2 RMSE + ) i N N , . i s
— MASE + - - + + + + + 0.75
RMSSE - + - + + - + + 0.62
MSE - + - + + + + + 0.75
Meta.l 1 RMSE - + - + + + + + 0.75
eta-learner MASE B + _ + _ - + + 0.50
RMSSE - + - + + + + + 0.62
MSE - + - + + + + + 0.62
Meta-learner_ 2 RMSE ) N i N * M - . o0
eta-learner MASE _ + _ + _ - + + 0.50
RMSSE - + - + + + + + 0.62

According to Table 9, Meta-learner 1 has the highest likelihood of improvement over Croston-
based methods, while ensemble 1 has the lowest likelihood of improvement. Furthermore, the overall
likelihood of improving the MSE, RMSE, MASE, and RMSSE can be determined by calculating
column-wise, i.e., for each data set across all methods. For AUTO, OIL, MAN, BRAF, SIM1,
SIM2, SIM3, and SIM4, the overall improvement likelihoods are as follows: 0.155, 0.696, 0.091,
0.878, 0.484, 0.273, 0.513, and 0.364. For example, when using stacking or equal-weighted, RNN,
and Willemain applied on AUTO data, there is a 15.5% chance of improving one of the four
mentioned metrics over Croston, Croston optimized, TSB, and SBA.

Moreover, to determine the model with the best performance across all data sets, a cumulative

voting decision has been employed. Each accuracy measure per data set can contribute to a voting
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score, resulting in a total of 32 votes as there are eight data sets and four metrics.

Furthermore, when the performance of Meta-learner 1 and Meta-learner 2 is equal, it is prefer-
able to choose Meta-learner 1 due to its requirement of fewer features to achieve the same level of
performance:

Table 10: Cumulative Voting. Models with a voting score of 0 are not included.

Model Voting
Meta-learner 1 14
Willemain 6
Meta-learner 2 3
ESRRN 3
SBA 3
RNN 2
Ensemble_ 2 1

Finding 1. Based on the results presented in Tables 9 and 10, the stacking model Meta-learner
1, demonstrates the highest sum of the likelihood of improvement in various metrics, received the
highest number of votes, as indicated in Table 10. This stacking method exhibits the best overall
accuracy performance, particularly when the demand is strictly characterized as erratic, lumpy,
smooth, or intermittent, as observed in the simulated data. In industrial data, such as the AUTO,
OIL, and MAN data sets, the superiority of Meta-learner 1 and 2 has diminished compared to other
methods.

Finding 2. In SIM4, where the demand is characterized as intermittent. Three combination
methods, both Meta-learners and ensemble 2 show better accuracy performance than Croston and
its variations.

Finding 3. The difference between the models’ performance in industrial data is larger
compared to simulated data. On simulated data, the models show comparable evaluations across
all four metrics, except for ESRNN. However, on industrial data such as MAN, OIL, and AUTO,
the differences between the models are significantly greater. For instance, the difference in MSE
between Croston and RNN on AUTO data is as high as 60%, whereas the difference between these

two methods on simulated data ranges between 1% and 12%.

Moreover, when considering scaled error metrics like RMSSE, it can be observed that the
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difference between the predicted scaled errors among the industrial data sets is much larger than
that of the simulated data. For instance, the RMSSE of all models from simulated data sets varies
between 0.903 and 1.258, whereas the differences among the industrial data sets are more significant.
This indicates that the characteristics of simulated data do not align with those of industrial data.
These industrial data sets exhibit much higher intermittency and demand size compared to the cut-
off values used to generate the four simulated data sets. Consequently, this leads to a limitation of
this research, as the simulated data sets lack the same characteristics as the industrial data sets.
Future research should consider generating simulated data with higher intermittency and demand
sizes to address this disparity.

Finding 4. In cases when the intermittency is extremely high combined with a high mean
demand size such as in MAN data, no single applied model can overall outperform Croston, Croston
optimized, TSB, and SBA. Only RNN, LSTM , and ESRNN have a lower error when compared to
MASE metric.

Finding 5. Although ensemble 2 shows a similar likelihood improvement over the Croston
and its variations as Meta-learner 1, the absolute difference between performance across all metrics
in every data sets indicates that Meta-Learner 1 performs better with lower error.

Finding 6. In the AUTO, where the mean inter-demand interval p is 1.32 and the mean
demand size CV? is 0.41, there is a slight difference compared to SIM4, which has values of 1.45
and 0.25, and SIM3, which has values of 1.05 and 0.30. Despite stacking methods performing
exceptionally well in SIM3 and SIM4 and outperforming Croston, Croston optimized, TSB, and
SBA. Unexpectedly, Meta-learner 1 and 2 perform worse when applied to the AUTO data. Only
Willemain and ensemble 2 show better performance. Compared to the simulated data setting, the
cause for this outcome can be that the number of recorded periods in the AUTO is much shorter

compared to the simulated data, with 24 periods compared to 60 in the simulated data.

7.1.4 Data Aggregation with SBA (ADIDA)

As aforementioned, the same approach to Nikolopoulos et al. (2011) is adopted, utilizing SBA
on aggregated data. According to Table 11, the predictions using aggregated data have shown

improvements, especially in the industrial data sets. Significant improvements are observed in the
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OIL, BRAF, and MAN data sets. For instance, the performance of SBA in predicting OIL is
optimal at aggregate level 4, where the original MSE of 170.916 has been reduced to 139.412. This
improvement is also evident in other accuracy measures. In the case of the MAN data set, the
optimal aggregation level is 5, beyond which the error starts increasing. On the other hand, the
improvement is minimal in the AUTO data. Regarding the simulated data, the predictions have
become worse due to aggregation.

When comparing the improvement in accuracy performance with the degree of intermittency,
it is observed that the OIL data set shows a higher improvement compared to MAN, despite MAN
having a higher level of intermittency. This difference can be attributed to the higher mean demand
size in MAN. The demand pattern, including the occurrence and timing of positive demand, may
also impact the forecasting accuracy. For instance, in the OIL data, prolonged periods of non-
demand often follow a positive demand, potentially indicating patterns like periodic maintenance.
However, such patterns may not be as common in other industrial data sets. It is important to note
that these factors are beyond the scope of this research and will be acknowledged as a limitation.

Therefore, for the inventory performance, the aggregated level 6 of the OIL data set, denoted
as SBA-OIL-6, the aggregated level 5 of the MAN data set, denoted as SBA-MAN-5, and the
aggregated level 6 of the BRAF data set, denoted as SBA-BRAF-6 are evaluated. The remaining

data sets remain the same.

Finding 7. The predictions using aggregated data have shown improvements, especially in
industrial data sets. Significant improvement in accuracy have been observed in the OIL, BRAF,
and MAN data sets. However, no improvements have been observed in the AUTO and the simulated
data sets. Moreover, it can be inferred that aggregation, similar to lead-time, has an effect on the
inventory control assessment. This is because a longer lead-time requires a higher amount of
base stock level to meet the demand during that period. A high-demand item characterized by
low demand occurrences is also balanced, contributing to a more stable pattern. Therefore, both
aggregation and lead-time are expected to have a comparable impact on the need for maintaining
inventory levels. However, due to the unavailability of lead-time information, lead-time for each
data is set to zero. Future research is needed to determine whether aggregation remains necessary

to improve the forecasting performance after incorporating real lead-time information.
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Table 11: Aggregating Results of SBA. The first-row block is the original prediction of SBA without
any aggregation. Ignore the NAs due to the different starting and ending levels of aggregation for
the MAN and AUTO data.

Model Metric AUTO OIL MAN BRAF SIM1 SIM2 SIM3 SIM4

MSE 85.607 170.916  12958.075 205.273 79.538 78.757 35.295 40.463
RMSE 9.252 13.073 113.834 14.327 8.918 8.875 5.941 6.361

SBA

MASE 0.608 1.029 0.891 0.922 0.731 0.757 0.719 0.760
RMSSE 1.698 10.931 11.428 5.018 1.009 1.050 0.941 0.922
MSE 87.021  141.996 NA 200.006  78.076  78.353 34.498 40.194
Aggregating 2 RMSE 9.329 11.916 NA 14.142 8.836 8.852 5.873 6.340
MASE 0.619 0.958 NA 0.905 0.729 0.760 0.713 0.758
RMSSE 1.712 9.964 NA 4.954 0.999 1.047 0.931 0.919
MSE 86.667  141.528 NA 200.334 78.275 78.613 34.572 40.313
Aggregating 3 RMSE 9.310 11.897 NA 14.154 8.847 8.866 5.880 6.349
MASE 0.616 0.967 NA 0.905 0.732 0.764 0.716 0.759
RMSSE 1.709 9.947 NA 4.958 1.001 1.049 0.932 0.921
MSE 85.488  139.412 NA 200.835 78.990 79.397 34.837 40.643
Aggregating 4 RMSE 9.246 11.807 NA 14.172 8.888 8.911 5.902 6.375
MASE 0.615 0.960 NA 0.902 0.736 0.768 0.720 0.762
RMSSE 1.697 9.873 NA 4.964 1.005 1.054 0.935 0.924
MSE NA 141.146  12880.216  200.574 79.358  79.782  35.007 40.815
Agaregating 5 RMSE NA 11.880 113.491 14.162 8.908 8.932 5.917 6.389
MASE NA 0.952 0.872 0.897 0.739 0.769 0.722 0.764
RMSSE NA 9.934 11.394 4.961 1.008 1.057 0.937 0.926
MSE NA 139.430  12925.675 199.924 79.315 79.724  34.975  40.805
Agaregating 6 RMSE NA 11.808 113.691 14.139 8.906 8.929 5.914 6.388
MASE NA 0.957 0.871 0.893 0.739 0.769 0.721 0.764
RMSSE NA 9.873 11.414 4.953 1.007 1.056 0.937 0.926
MSE NA NA 12889.818 NA NA NA NA NA
Agaregating 7 RMSE NA NA 113.533 NA NA NA NA NA
MASE NA NA 0.870 NA NA NA NA NA
RMSSE NA NA 11.398 NA NA NA NA NA
MSE NA NA 12901.995 NA NA NA NA NA
Agaregating 8 RMSE NA NA 113.587 NA NA NA NA NA
MASE NA NA 0.872 NA NA NA NA NA
RMSSE NA NA 11.403 NA NA NA NA NA
MSE NA NA 12926.229 NA NA NA NA NA
Aggregating 9 RMSE NA NA 113.694 NA NA NA NA NA
MASE NA NA 0.872 NA NA NA NA NA
RMSSE NA NA 11.414 NA NA NA NA NA
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7.2 Inventory Performance

In this section, the term achieved fill rate (AFR) is frequently used as an inventory performance
measure. When used without specification, the AFR generally refers to both average-achieved fill
rate (average-AFR) and total-achieved fill rate (total-AFR), as the observed pattern is consistent
for each target fill rate (TFR) and with inventory holding costs. However, if there is a need to dis-
tinguish between the two measures, both average-AFR and total-AFR will be explicitly mentioned.

Furthermore, the goal is to achieve an AFR that matches the TFR. It is essential to avoid
overestimating the AFR (AFR > TFR) because doing so would lead to holding more inventory

than required, resulting in higher inventory costs.

7.2.1 SIM1 Performance

The SIM1 data shows the presence of irregular items, characterized by highly volatile demand
sizes with low intermittency. According to Figures 4a and 4c, ESRNN consistently achieves higher
average-AFRs and total-AFRs compared to other methods up to the TFR of 0.98. However, the
difference in AFR also leads to an increase in holding costs. ESRNN demonstrates the poorest
performance among all methods when balancing AFRs and holding costs, whereas Willemain out-
performs other models up to a TFR of 0.83, with no significant difference in incurred costs compared
to the other models.

Regarding accuracy performance, the stacking methods exhibit superior results, surpassing
other methods in accuracy metrics. Willemain closely follows as the second-best performer. In
terms of inventory performance, the top-performing methods in accuracy exhibit comparable in-
ventory performance with methods that have lower accuracy performance, such as Croston and its

variations.
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(a) TFR vs. Average-AFR (b) Average-AFR vs. Inventory holding costs
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Figure 4: SIM1 Inventory Performance

7.2.2 SIM2 Performance

The SIM2 data is characterized as lumpy, consisting of intermittent and erratic items with
a longer mean interval between demands compared to the SIM1 data. Similar to the findings in
SIM1, ESRNN achieves higher average-AFRs and total-AFRs at each TFR compared to other
models. However, in the trade-off between AFRs and inventory holding costs, as shown in Figure
5b and Figure 5, ESRNN shows the worst performance followed by RNN and LSTM, while the
remaining methods perform better with lower inventory costs. On both average-AFR and total-
AFR, the inventory holding costs for ESRNN, LSTM, and RNN are higher than all other models
until the TFR of 0.99 is reached. Ensemble 1 stands out as the superior model, achieving a higher
AFR at every TFR without incurring any further costs compared to other models.

Contrary to the accuracy performance, the superior accuracy performance of Meta-learner 1
and 2 does not seem to correlate with inventory control measures. Both methods demonstrate
similar inventory performance to other methods except for ESRNN, RNN, and LSTM. This finding
shows, along with the results from SIM1, suggests that evaluating models based solely on accuracy
is not sufficient in practice. The findings from SIM1 and SIM2 indicate that higher accuracy does

not always translate to a better inventory performance.
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(a) TFR vs. Average-AFR (b) Average-AFR vs. Inventory holding costs
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Figure 5: SIM2 Inventory Performance

7.2.3 SIM3 Performance

The SIM3 data is characterized by a smooth demand pattern, with minimal variability in
demand size and a low average demand interval. In contrast to the previous findings from SIM1
and SIM2, as shown in Figure 6a and 6c¢, Willemain emerges as the top-performing model in the
trade-off between AFRs and TFRs. Willemain remains superior until a TFR of 0.9, after which the
difference becomes less visible and ESRNN surpasses it at TFR of 0.93. In addition, as observed in
Figures 6b and 6d, the increase in AFR does not lead to a significant increase in costs of Willemain
compared to other models.

Regarding accuracy performance, despite the superior performance of Meta-learner 1 and 2,
this has not resulted in a higher inventory performance. Willemain ranked as the third best in
terms of MSE, yields the highest AFR at each TFR, while the costs remain the same. ESRNN
continues to exhibit poor inventory performance, incurring higher costs at each AFR up to 0.99.

This aligns with the previous findings in SIM1 and SIM2.
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Figure 6: SIM3 Inventory Performance

7.2.4 SIM4 Performance

The analysis of SIM4 data, primarily composed of intermittent items, further supports the
consistent findings observed in SIM1, SIM2, and SIM3. Figures 7a and 7c demonstrate that the
ESRNN consistently achieves higher AFRs at each TFR, but with the worst performance in the
trade-off between AFRs and inventory holding costs. More specifically, LSTM exhibits the worst
inventory performance after reaching a TFR of 0.96 in both trade-off curves. Willemain is consid-
ered superior due to achieving a higher AFR up to a TFR of 0.85, with inventory holding costs that
do not differ from other models. After that point, models, except for ESRNN, LSTM, and RNN,
exhibit comparable inventory performance. Furthermore, in this data set, Meta-learner 1 and 2
demonstrate a similar inventory performance to models with lower accuracy, such as Croston and
its variations, which further indicates that accuracy does not necessarily correlate with inventory

performance.
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Figure 7: SIM4 Inventory Performance

7.2.5 AUTO Inventory Performance

The AUTO data is characterized by mixed demand patterns, including various types of demand
such as smooth and intermittent items. Analyzing Figures 8a and 8c, it becomes clear that ESRNN
consistently achieves the highest AFR at each TFR. Figure 8b shows, Willemain is superior in the
trade-off between average-AFRs and inventory holding costs, while ESRNN, LSTM, and RNN
have the worst performance. However, according to Figure 8d, considering the total-AFR, the
costs of ESRNN, LSTM, and RNN are lower than Willemain and other models. This suggests
that the Willemain performs better in predicting expensive items with low demand, while ESRNN,
LSTM, and RNN excel in forecasting cheaper items with higher demand. Another observation is
that LSTM performs worse in the trade-off between total-AFRs and inventory holding costs after
reaching a total-AFR of 0.925.

Regarding accuracy performance, Willemain demonstrates superior performance in terms of
MSE, RMSE, and RMSSE compared to other models. However, this superiority is only reflected

in the trade-off between average-AFRS and inventory holding costs.
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Figure 8: AUTO Inventory Performance

7.2.6 OIL Inventory Performance

In the OIL data, where most items are classified as intermittent and some as lumpy, all models
achieve a relatively low average-AFR compared to previous results. With the exception of RNN, all
models fall within the range of 0.42 to 0.44 for average-AFR. When considering the trade-off curves
between average-AFRs and TFRs, as well as total-AFRs and TFRs, ESRNN and LSTM achieve
higher AFRs at each TFR. However, in the trade-off between AFRs and inventory holding costs,
they are inferior compared to other models. TSB is superior in the trade-off between average-AFRs
and inventory holding costs, while both Meta-learners outperform others in the trade-off between
total-AFRs and inventory holding costs. This suggests that the T'SB performs better in predicting
expensive items with low demand, while the Meta-learners excel in forecasting cheaper items with
higher demand. As for RNN, in this case, it consistently predicts a value of 0 for both average-
and total-AFR at all TFRs, suggesting that the base stock level is always predicted as 0. This

also explains why a black dot is observed at the origin of the graph, indicating no inventory costs
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incurred due to the inventory performance of RNN.

In contrast to the findings of Nguyen (2023), both the trade-off curves between TFRs and
AFRs have shown a decline in performance. This change in performance can be attributed to the
use of shorter timestamps in the OIL test data. Specifically, each item in the test demand now
has 15 timestamps, whereas Nguyen (2023) utilized 17 timestamps per item. This reduction in
timestamps affects the data representation and modeling, leading to the observed differences in
results. In the OIL data, there are a total of 3253 items in the test data with a total demand
of zero during the test periods. As a consequence, the part fill rate of these items is zero due
to the inventory setting and therefore significantly impacts the average-AFR. It explains why all
trade-off curves between average-AFRs and TFRs of all models are concentrated around 0.45 and
0.55. With 3253 out of 7644 items (representing approximately 42.6% of all items) having zero
total demand, the average-AFR is affected substantially. As a result of this data composition, the
maximum achievable average-AFR in this data set is estimated to be around 0.574.

Although the average-AFRs are low, the impact of items with 0 total demand on the total-AFR
is relatively less significant. Items with higher demand have a greater influence on the total-AFR
compared to items with low demand. This observation is also evident in Figure 9c, where the trade-
off curves of all models between total-AFRs and TFRs are higher than the trade-off curves between
average-AFRs and TFRs. Similar to Figure 9A, it is observed that the trade-off curves of ESRNN
and LSTM barely change as the TFR increases. One possible explanation for this phenomenon is
that certain items, depending on their forecast p and variance o2 values, generate high base-stock
levels even at low TFRs, while for other items, minimal stock is maintained. To illustrate this, let’s
consider a few items from ESRNN on TFRs of 0.80 and 0.90 for the first 10 forecasting periods:
the 3137-th item with p = 0.015 and o = 0.226, the 4603-th item with p = 0.009 and o = 0.243,
the 35-th item with ¢ = 0.010 and o = 3.252, the 84-th item with = 0.010 and ¢ = 0.714.

Table 12: Individual Base Stock Levels in OIL - ESRNN. The TFR is 0.80, these items have atleast
one positive demand in the test periods.

Item Periodl  Period2 Period3 Period4 Period5 Period6 Period7 Period8 Period9 Periodl0
3137-th Item 1 3 4 4 4 4 4 4 4 4
4603-th Item 1 5 5 5 5 5 5 5 5 5

35-th Item 20 876 891 891 891 891 933 933 1116 1181
84-th Item 6 37 37 37 37 37 37 87 87 87

54



Table 13: Individual Base Stock Levels in OIL - ESRNN. The TFR is 0.90, these items have atleast
one positive demand in the test periods.

Item Periodl  Period2 Period3 Period4d Period5 Period6 Period7 Period8 Period9 Periodl0
3137-th Item 1 5 5 6 6 6 6 6 6 6
4603-th Item 1 7 7 7 7 7 7 7 7 7

35-th Item 20 1341 1345 1345 1345 1423 1423 1716 1794 1794
84-th Item 6 58 58 58 58 58 138 138 138 138

Tables 12 and 13 demonstrate that although the trade-off curves between total-AFRs and
TFRs appear to be relatively flat, the base stock levels of all items increase significantly with higher
TFRs. Notably, the 35-th and 84-th items exhibit extremely high base stock levels compared to
the other two items. This difference is likely attributed to the relatively high observed variance o2
in the historical demand of these two items (the 35th item has 4 demand occurrences, with one
of them being larger than 80), as their forecast u values are comparable. It is assumed that most
items have a very low forecast u, considering the mean forecast p,,.,, = 0.015 predicted by ESRNN.
Consequently, an increase in the variance of historical demands will have a substantial impact on
the base stock levels. To simplify the analysis, it is considered that the base stock level experiences
a significant increase when the standard deviation o > 0.5. Approximately 3400 items among all
items have a standard deviation o > 0.5. Assuming that 42.6% of these items have no demand in
the test periods, there remain 1950 items with extremely high base stock levels. Importantly, it
should be noted that, as shown in Tables 12 and 13, these extremely high base stock levels exist
already at lower TFRs. As the TFR increases, the base stock levels become even higher, but they
are not expected to contribute further to total-AFRs, as items with high demand are already fully
supplied at earlier TFRs. The observed trade-off curves’ flatness in relation to total-AFRs and
TFRs reinforces the idea that once the base stock levels for high-demand items are set at lower
TFRs, further increasing the TFR does not significantly impact the total-AFR, as these items are
already supplied.

Considering the mean demand size C'V? of OIL is 0.18, if we assume that the mean demand
size in the test set is comparable, most items will still be fully supplied despite their low observed
variance. It could be possible that only a limited number of items, characterized by high demand

during the test periods, but with low historical demand variability, might not be fully supplied.
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This could result in the trade-off between total-AFRs and TFRs appearing relatively flat due to
the limited impact of these items on the overall total-AFR. In the case of ESRNN, extremely high
base stock levels are often generated for items with a low forecast, combined with a relatively high
variance from the historical demand. In this context, the question arises whether the base stock
levels change when the forecast further increases. For this analysis, we consider the forecast from

Willemain, where the mean forecast p,,.,,, = 0.716 compared to ESRNN ( = 0.015).

Hmean

Let’s consider base stock levels for the same items but with a different forecast 1 and the same
variance o2 from the historical demand at a TFR of 0.80: the 3137-th item with u = 0.134 and
o = 0.226, the 4603-th item with p = 0.097 and o = 0.243, the 35-th item with p = 0.454 and
o = 3.252, the 84-th item with y = 0.408 and ¢ = 0.714.

Table 14: Individual Base Stock Levels in OIL - Willemain. The TFR is 0.80, these items have
atleast one positive demand in the test periods.

Item Periodl  Period2 Period3 Period4 Period5 Period6 Period7 Period8 Period9 Periodl0
3137-th Item 1 1 1 1 1 1 1 1 1 1
4603-th Item 1 1 1 1 1 1 1 1 1 1

35-th Item 20 38 43 43 43 43 51 51 65 65
84-th Item 3 3 3 3 3 3 3 6 6 6

Based on the observations from Table 14, it is clear that an increase in the forecast leads to
a reduction in the base stock level, as seen in all four items. Conversely, it appears that as the

variance increases, the base stock level rises as well.
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Figure 9: OIL Inventory Performance

7.2.7 MAN Inventory Performance

In the MAN data, which consists of items classified as intermittent and lumpy, with a few
falling under the categories of erratic and smooth, similar patterns emerge when comparing the
findings to the previous observations from the OIL data. Based on Figures 10a and 10c, ESRNN
consistently achieves higher AFRs at each TFR. However, this model incurs higher inventory costs
at each AFR compared to other models. LSTM emerges as the second-worst performing model
in the trade-off between AFRs and TFRs, incurring higher inventory holding costs compared to
other models. It appears that the Croston and its variations are superior in the trade-off between
average-AFRs and inventory holding costs, while both Meta-learners outperform other models in
the trade-off between total-AFRs and inventory holding costs.

Similarly to the findings in the OIL data, the trade-off between AFRs and TFRs appears to be
flat for ESRNN, LSTM, and RNN in the MAN data. However, the performance in this context will

also depend on whether demand is observed in the test periods and the extremely high base stock
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levels generated for items. There are 176 items with no demand in the test periods, meaning the
maximum overall achievable average-AFR is 0.874 since the fill rate for these items is zero due to
the inventory setting. As explained earlier, this will have a relatively less impact on the total-AFR
as these items do not contribute significantly to the total-AFR. To illustrate this further, we will
also run the base stock level for four items using the forecasts of ESRNN to determine if, similar
to the observations in the OIL data, extremely high base stock levels are generated based on the
forecast p and the variance o2.

Let’s consider a few items from ESRNN at the TFR of 0.80 for the first 10 forecasting periods:
the 86-th item with p = 0.010 and ¢ = 0.449, the 132-th item with p = 0.010 and ¢ = 22.090
(please refer to Table 20 in the Appendix for the size of the historical demand for this item), the

1189-th item with p = 0.518 and o = 2.23, the 340-th item with © = 0.009 and o = 0.358.

Table 15: Individual Base Stock Levels in MAN - ESRNN. The TFR is 0.80, these items have
atleast one positive demand in the test periods.

Item Periodl  Period2 Period3 Period4d Period5 Period6 Period7 Period8 Period9 Periodl0
86-th Item 10 16 16 16 16 16 16 16 16 16
132-th Item 100 31746 31746 31746 31746 31746 31746 33055 33117 36120

1189-th Item 10 12 12 12 12 14 14 14 14 14
340-th Item 2 15 15 15 19 19 19 19 19 19

We also assume that, as the TFR increases, the base stock levels tend to rise accordingly. For
the 132-th item, an exceptionally high base stock level is generated, likely due to the significant
variability observed in the historical demand, given the very low value of the forecast. Moreover,
when comparing the base stock level of the 1189th item to that of the 86th item, despite the variance
being four times larger, the difference can be attributed to the higher value of forecast, as observed
earlier in Table 14. The mean forecast fi,,,.,,, of all items of ESRNN is equal to 0.022, and the mean
standard deviation o,,.,, is 17.28. This implies that all items, including those with high demand,
are fully supplied, resulting in the highest trade-off between AFRs and TFRs. It is important
to know that these extremely high base stock levels are already generated at earlier TFRs, and
further increasing the TFRs will not significantly contribute to the AFRs. However, there are a
few items with low variability in historical demand but with high demand in test periods, for which

the demand will not be fully met. It is expected that the number of such items is relatively low,
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and their impact on the total-AFR is negligible, leading to a relatively flat curve for ESRNN and
LSTM.

The question arises again whether the base stock levels change as the forecast further increases.
For this analysis, we compare the forecast from Willemain, where the overall mean forecast p,, ., =
6.286, with ESRNN’s mean forecast (f,,,cqn = 0.022). Let’s examine the base stock levels for the
same items but with different forecasts while maintaining the same variance from the historical
demand. We will use a target fill rate (TFR) of 0.80 for all items. Specifically, we consider the
86-th item with p = 0.091 and ¢ = 0.449, the 132-th item with p = 7.430 and o = 22.090, the
1189-th item with p = 1.491 and o = 2.23, and the 340-th item with p = 0.325 and o = 0.358.

Table 16: Individual Base Stock Levels in MAN - Willemain. The TFR is 0.80, these items have
atleast one positive demand in the test periods.

Item Periodl  Period2 Period3  Period4 Period5 Period6 Period7 Period8 Period9 Periodl0
86-th Item 2 2 2 2 3 3 3 3 3 4
132-th Item 53 53 53 53 53 53 53 53 53 53

1189-th Item 7 7 7 7 7 7 7 7 7 7
340-th Item 1 1 1 1 1 1 1 1 1 1

According to Table 16, consistent with Table 15, an increase in the forecast leads to a decrease
in the base stock levels for all items. This observation is similar to what we found in the OIL data,
where higher forecasts corresponded to lower base stock levels, while an increase in the variance led
to higher base stock levels. This phenomenon explains why the trade-off curves between AFRs and
TFRs for Willemain and other models are not flat, as the smaller base stock levels resulting from
the increase in the forecast lead to varying slopes in the trade-off curves. Consequently, increasing
the TFR can contribute further to items with high demand. The final observation is that RNN
performs poorly in the trade-off between AFRs and TFRs. It appears that, for many items (but
not necessarily all), negative forecasts result in their base stock levels being set to 0, making it

impossible to fulfill any demand during the test periods for these specific items.
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Figure 10: MAN Inventory Performance

7.2.8 BRAF Inventory Performance

Similar to the MAN data, the BRAF data primarily consists of items classified under inter-
mittent and lumpy demand patterns. Among the methods analyzed, ESRNN, LSTM, and RNN
emerge as the worst performing models in the trade-off between AFRs and TFRs, incurring higher
inventory holding costs compared to other models. Willemain exhibits the worst performance in
the trade-off between average-AFRs and TFRs, as well as in the trade-off between average-AFRs
and inventory holding costs. Moreover, in the trade-off between total-AFRs and TFRs, Willemain
is inferior to most other models. Nevertheless, in the trade-off between total-AFRs and inven-
tory holding costs, Willemain stands as the second-best performer up to the average-AFR of 0.79.
Croston and its variations demonstrate the best inventory performance in the trade-off between
average-AFRs and inventory holding costs. On the other hand, Meta-learners exhibit the lowest
costs in the trade-off between total-AFRs and TFRs, and they also show strong performance in

the trade-off between total-AFRs and TFRs. Consistent with previous findings, ESRNN, LSTM,
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and RNN incur the highest inventory costs, likely due to the extremely high base stock levels they
maintain.

Consistent with previous findings in the OIL and MAN data sets, the trade-off curves of
ESRNN, LSTM, and RNN in Figures 11a and 11c appear to be flat. This behavior can be attributed
to the generation of extremely high base stock levels when the forecast is low and the variance in
historical demands is high. Let’s compare the mean forecast f,,,.,, = 0.015 of ESRNN with the
mean forecast p,,.qn, = 1.588 of Willemain, while maintaining the overall mean standard deviation
o of historical demands at 5.852. We expect that, under the ESRNN method, many more extremely
high base stock levels will be generated for most items compared to Willemain, primarily due to the
significant difference in the mean forecast. As a result, most low-demand and high-demand items
will be fulfilled at earlier TFRs, and an increase in the TFR will not significantly contribute to
the AFR since the base stock levels are already extremely high at earlier TFRs. This phenomenon
leads to a flatter curve in the trade-off between AFRs and TFRs. In contrast, under Willemain, the
increase in TFR is expected to contribute to a higher AFR, as the base stock levels are generally

lower than those under ESRNN in this data set.
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Figure 11: BRAF Inventory Performance

7.2.9 Overall Findings Inventory Performance

Finding 8. The analysis of inventory performance across all data sets reveals that ESRNN,
LSTM, and RNN exhibit the worst inventory performance, incurring higher inventory holding costs
compared to other models. Although these methods generally excel in the trade-off between AFRs
and TFRs, this indicates that they tend to maintain excessive inventory levels, resulting in higher
inventory costs when compared to other models. An exception is observed in the AUTO data, where
they perform better in the trade-off between total-AFRs and inventory holding costs. Conversely,
Willemain demonstrates the best inventory performance in the SIM1, SIM3, and SIM4 data sets,
requiring slightly fewer inventory holding costs to achieve the same AFR compared to other models.
Additionally, Willemain outperforms other models in the AUTO data, but only in the trade-off
between total-AFRs and inventory holding costs. Ensemble 1 exhibits the overall best inventory
performance in the SIM2 data set. In the OIL, MAN, and OIL data sets, Meta-learners show

the best inventory performance, particularly in the trade-off between total-AFRs and inventory
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holding costs. On the other hand, Croston and its variations exhibit the best performance in the
trade-off between average-AFRs and inventory holding costs. This suggests that Meta-learners and
Croston based models achieve lower costs while attaining the same total-AFR (Meta-learners) or

average-AFR (Croston and its variations) compared to other methods.

Finding 9. Higher accuracy does not guarantee better inventory performance. This pattern
becomes evident in the simulated data sets where Meta-learners demonstrate superior forecasting
performance, but are outperformed by Willemain in inventory control assessment. Similarly, in the
OIL data, Willemain exhibits the best forecasting performance, but it is outperformed by Croston
and its variations in the trade-off between average-AFRs and inventory holding costs. Conversely,
the worst-performing models in terms of accuracy, namely ESRNN, LSTM, and RNN, generally

exhibit the worst inventory performance.

Finding 10. The implementation of inventory control is highly sensitive to small adjustments,
as observed in the OIL data, where Nguyen (2023) used two more timestamps in the test periods.
This change resulted in a increased likelihood of positive demand in the test periods, leading to less
items being assigned a fill rate of 0. Therefore, by having fewer timestamps in the test periods, this
adjustment significantly impacted the average-AFR. In such cases, a question arises as to whether
we should assign a fill rate of 1 to items that have no demand in the test periods. This decision
could have a substantial impact on inventory performance, particularly in the OIL and MAN data

sets.

Finding 11. In the simulated data, the difference between evaluating inventory control based
on average-AFR and total-AFR is minimal, as both measures are approximately equal at the given
TFR, resulting in similar holding costs. While ESRNN is slightly more expensive than other models,
the difference in holding costs is not significant compared to the industrial data sets. However, in
industrial data sets, the choice of metric has a significant impact on the inventory holding costs.
The discrepancy between the two metrics could be attributed to models like Meta-learners, which
are better at predicting cheaper items with high demand, compared to Croston and its variations,
which excel at forecasting expensive items with low demand. These findings suggest that not only
the intermittency between industrial and simulated data sets does not match, but also the demand

size does not align. It is recommended to introduce more variation in the demand when generating
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simulated data in future research. Moreover, it has been found that the time period of five years
in the industrial data is often too short to observe the demand adequately. A longer time period
would provide more demand data, leading to more stable demand patterns.

Finding 12. As mentioned earlier, the base stock level R, ., is zero when the forecast p < 0.
This implies that the RNN model is not suitable for the MAN and OIL data sets, since forecast u
values of most items are below zero. Specifically, in the case of the OIL data, nearly all forecasts
predicted by the RNN model are below zero, resulting in setting the base stock level to zero for
all items. Similarly, in the MAN data, although there are a few items with positive forecasts, the
overall mean forecast for the entire data set is negative.

Finding 13. Machine learning methods like ESRNN, LSTM, and RNN demonstrate flat
trade-off curves between AFRs and TFRs in the OIL, MAN, and BRAF data sets. This behavior
can be attributed to the generation of extremely high base stock levels by these methods. As
previously explained, the base stock levels for forecasted demands by ESRNN, LSTM, and RNN
are already set high at lower TFRs. Consequently, an increase in the TFR leads to even higher
base stock levels, but it does not significantly impact the AFR since most demands are already
fulfilled at earlier TFRs. This dynamic is likely the reason why the trade-off curves appear flat in
these cases.

Finding 14. Under the assumption that the forecast follows the gamma distribution and
using the inventory setting as described in this paper, a decrease in the forecast leads to a rise
in the base stock level, while an increase in the forecast causes it to decline. Similarly, as the
variance in the historical demand increases, it results in higher base stock levels, and the base stock
level decreases when the variance becomes smaller. The combined effect of these two parameters
can either amplify or diminish the impact on the base stock level, for example, when the forecast
decreases and the variance increases, or when the forecast increases and the variance increases. To
illustrate this, let’s consider three items given a TFR of 0.85:

(1) Item 1 (p = 0.01 and o = 2), this results in £ = 0.0025 and a = 0.000025, the loss target
(1-TFR)-p=(1—0.85)-0.01 =0.0015, the base stock level should be set to at least 398,
this results in £SC = 0.001496 < loss target.

(2) Item 2 (= 1 and o = 2), this results in £ = 0.25 and o = 0.25, the loss target (1—-TFR)-pu =
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(1—-0.85)-1=0.15. To equate again the loss function to the ESC, a base stock level of at
least 5 is required.
(3) Item3 (1 =1 and o = 6), this results in k£ = 0.028 and o = 0.028, the loss target is still 0.15,

a base stock level of 37 is needed to equate the loss function to the ESC.

These examples demonstrate that a decrease in the forecast or an increase in the variance
would likely imply a higher base stock level to meet the loss target. This observation aligns with
the findings of ESRNN and Willemain in the cases of OIL, MAN, and BRAF data sets. It is
logical that the loss target becomes much lower when the forecast is extremely small, leading to
the expectation of requiring a higher base stock level to meet it. However, the examples also
demonstrate that even with the same forecast p, but a higher variability in historical demands, a
higher base stock level is generated while the loss target remains unchanged. This suggests that the
reduction in the shape and rate parameters from the gamma distribution due to a higher variance
(or a smaller forecast) results in a smaller decrease in the ESC per unit increase in the base stock

level. As a consequence, higher base stock levels are expected to be needed to meet the loss target.

Lastly, High base stock levels could be mitigated by exploring alternative probability distribu-
tions, such as the normal or negative binomial distribution. It would be interesting to evaluate these
distribution functions and determine if they lead to a improved inventory performance, especially

when the forecast is (extremely) low.

7.3 Comparative Studies

As mentioned in section 2.4, Pinge et al. (2021) found that SBA exhibited better overall
accuracy performance than Croston in their comparison of 53 spare parts forecasting studies. De
Haan (2021) extended the comparative studies by benchmarking Croston, TSB, SBA, Willemain,
MLP, and Light GBM. These methods were implemented on the same empirical data setting as this
paper, including four simulated data sets with unique demand patterns: erratic, lumpy, smooth,
and intermittent, as well as four industrial data sets. De Haan (2021) found that no single model
outperformed others in both accuracy and inventory measures. Specifically, SBA demonstrated
the best accuracy performance overall, while it lagged behind Willemain in terms of inventory

performance. However, in cases where demand exhibits extreme intermittency, such as in the MAN
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and OIL data, MLP and Light GBM performed better in terms of inventory performance compared
to Willemain.

Furthermore, De Haan (2021) found that the performance of a model depended on the measure
being evaluated and the type of data. No model proved to be superior across all types of data sets,
accuracy measures, and inventory performance. In line with the findings of Nguyen (2023), the
study observed that SBA demonstrated the best overall accuracy performance, while Light GBM
performed the worst. In terms of inventory control performance, Willemain was found to be the
best, except for data sets with high intermittency such as MAN, OIL, and BRAF. For these specific
data sets, MLP and Light GBM methods were found to have the best performance based on the
applied inventory control measures.

Similar to previous studies (De Haan, 2021; Pinge et al., 2021; Nguyen, 2023), the findings of
this research indicate that no single model consistently achieves the highest forecasting performance
across all accuracy measures and types of data sets. Through cumulative voting, Meta-learner 1

receives the highest number of votes and demonstrated superior performance in SIM1, SIM2, SIM3,

SIM4, and BRAF data sets, as evaluated on MSE, RMSE, and RMSSE.

In contrast to the findings of previous studies by De Haan (2021) and Nguyen (2023), SBA
is not found to be superior in the forecasting performance when the data input is non-aggregated.
However, the aggregation of the industrial data sets, except for the AUTO data, led to improved
accuracy performance for SBA-OIL-6, SBA-MAN-5, and SBA-BRAF-6 models. These models
even ranked first in the OIL and MAN data sets based on MSE, RMSE, and RMSSE metrics.
Furthermore, the results presented in this paper do not support the claim that machine learning
methods, such as ESRNN, LSTM, and RNN are superior when dealing with data sets characterized
by high intermittency as observed in the OIL, MAN, and BRAF data sets.

Lastly, the results demonstrate that Willemain exhibits a slightly better inventory performance
in simulated data sets and is superior in the AUTO data. Meta-learners prove to be superior in the
trade-off between total-AFR and inventory holding costs in the OIL, MAN, and BRAF data sets,
while Croston and its variations are found to be superior in the trade-off between average-AFR and

inventory holding costs in the same data sets.
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8 Conclusion

Based on the literature review (Croston, 1972; Syntetos, Boylan, 2005; Willemain et al., 2004;
Teunter et al., 2011; Kourentzes, 2018), the M4 and M5 forecasting competitions (Makridakis,
Spiliotis, & Assimakopoulos, 2022), as well as the comparison studies (De Haan, 2021; Pinge et al.,
2021; Nguyen, 2023), various methods have been utilized in spare parts forecasting. These methods
have been assessed for their accuracy and inventory performance across different types of data sets.
In this research, the following methods are implemented: Croston, Croston optimized, TSB, SBA,
RNN, LSTM, ESRNN, Willemain, equal-weighted combination (ensemble 1 and 2), and stacking
through XG-Boost (Meta-learners 1 and 2). These methods are applied to simulated data sets
with erratic, lumpy, smooth, and intermittent demand patterns, as well as real industrial data sets
including BRAF, MAN, AUTO, and OIL.

The sub-research question addressed in this study was:

Does aggregating observations into larger intervals improve the accuracy of the fore-
casting model?

Based on the findings presented in Table 11, the accuracy performance of SBA is increased
across all accuracy measures in the OIL, BRAF, and MAN data. However, no improvements are
observed in the AUTO and the simulated data. These findings are consistent with the research
conducted by Nikolopoulos (2011), which suggests that aggregating time series can enhance forecast
accuracy when the data is characterized by a high mean inter-demand interval. In this study,
ADIDA is found to be effective in improving the forecasting measure, particularly when applied
to data sets with extremely high mean inter-demand intervals. In addition, despite the higher
intermittency in the MAN data, the reduction in forecasting error is more significant in the OIL
data, which has lower intermittency. This difference is likely due to the specific demand patterns,
occurrences, and timing of positive demand observed in the OIL data.

The main research question addressed in this study was:

Do ensemble models outperform Croston and its variations in terms of forecasting ac-
curacy and inventory performance on 4 simulated and 4 industrial spare parts demand

data?

The results show, no single model consistently demonstrated superiority across all forecasting
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measures and data sets. However, cumulative voting results in Table 10 reveal that Meta-learner
1 emerges as the best-performing model in terms of MSE, RMSE, and RMSSE. When compared
to Croston and its variations, Meta-learner 1 outperforms them in the SIM1, SIM2, SIM3, SIM4,
OIL, and BRAF data sets. Regarding the inventory performance, similar to the evaluation of
accuracy performance, there is no single model that consistently outperforms all other models on
every data set. Willemain demonstrates a slightly better inventory performance compared to other
models in simulated data sets, except for SIM2 data, and is also superior in the trade-off between
average-AFRs and inventory holding costs in the AUTO data. Meta-learners exhibit superiority
only in the trade-off between total-AFRs and inventory holding costs in OIL, MAN, and BRAF data
sets, while Croston and its variations incur the lowest costs to achieve the same average-AFR. On
the other hand, ESRNN, LSTM, and RNN show the worst inventory performance in all data sets,
primarily due to their tendency to hold excessive inventory, leading to significantly higher inventory
holding costs compared to other forecasting models. The findings of this study partially align
with previous research (De Haan, 2021; Nguyen, 2023), indicating that Willemain shows superior
inventory performance as long as the data is not characterized by high intermittency. However, it
is important to note that in previous studies, machine learning methods like Light GBM and MLP
were found to be superior in inventory control assessment for data sets with high intermittency.
In contrast, the machine learning methods used in this paper, namely ESRNN, LSTM, and RNN,

exhibit the worst inventory performance in data sets such as OIL, MAN, and BRAF.
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9 Limitations

In future research, it is important to continue examining the effectiveness of spare parts fore-
casting methods using a combination of empirical and simulated data. While simulated data allows
for controlled experiments and the assessment of different demand patterns, it is crucial to vali-
date the findings by comparing them with real-world industrial data. This will provide a clearer
understanding of how well the methods perform in practical scenarios. One important aspect to
consider is the generation process of simulated data. In cases where extreme values are observed in
industrial data, such as in MAN, BRAF, and OIL data, it would be better to generate simulated
data that closely resembles these characteristics, which indicates longer zero-demand periods and
higher demand sizes to accurately simulate the characteristics in real-world scenarios.

Additionally, it is important to address the issue of zero-demand occurrences in certain test
data, such as OIL and MAN. These zero-demand occurrences can have a significant impact on
forecasting accuracy and inventory performance. One potential approach to mitigate this is by
either adding demand occurrences or removing the item with no demands in the test data.

Moreover, it would be valuable to conduct a more comprehensive analysis of the demand
pattern, including the number of demand occurrences, the timing of demand, and whether there are
subsequent positive demands following an initial positive demand. This more detailed classification
of demand patterns can provide more insights beyond the general categories of erratic, lumpy,
smooth, or intermittent. By examining these specific aspects by different methods, a more thorough
understanding of demand behavior can be obtained.

Regarding the implemented methods, it is recommended to explore a broader range of com-
bined forecasting methods. In this study, only four combined methods are considered, but other
combinations can further improve accuracy and inventory performance in spare parts forecasting.
This can involve expanding the pool of methods, exploring different optimization techniques beyond
XGBoost, or even assigning weights to each model using cross-validation. Also, it is worth knowing
that in this research, only SBA is used to predict the aggregated simulated and industrial data
sets, it is recommended to explore other methods beyond SBA to improve the forecasting accuracy
when dealing with high intermittency.

Furthermore, in this research, ESRNN, LSTM, RNN are implemented and demonstrate a poor
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forecasting accuracy. A poor forecasting performance can be attributed to the fact that ESRNN,
being a partially and globally trained model, overlooks the individual behaviors of each spare part,
and a bias is introduced due to a technical limitation. The recommendation is to develop or utilize
a hybrid framework specifically designed for spare parts forecasting. This framework should take
into account the unique characteristics and demand patterns of spare parts, such as intermittency

and individual behavior.

Extremely high base stock levels are observed in the OIL, MAN, and BRAF data sets when
using the methods ESRNN, LSTM, and RNN, which are not the case with other models such as
Willemain, Meta-learners, and Croston and its variations. This disparity can be attributed to the

extremely low mean forecast ( ) predicted by ESRNN, LSTM, and RNN in comparison to other

Hmean
models. Consequently, it results in lower shape and rate parameters for the gamma distribution,
implying the need of a higher base stock level to achieve the loss target. Moreover, the study has
revealed that an increase in the variance of historical demand leads to higher base stock levels.
Both the decrease in the forecast and the increase in the variance contribute to lower shape and
rate parameters of the gamma distribution, leading to a smaller reduction in the ESC per unit
increase in the base stock level. An interesting question arises regarding the comparative impact of
changes in the forecast versus changes in the variance on base stock levels. Moreover, it would be

interesting to determine specific combinations of the forecast ;1 and the variance o2 at which base

stock levels experience a significant increase.

Lastly, to improve the evaluation of inventory performance, future studies should consider
exploring the use of probability distributions beyond the gamma distribution, avoiding of excessively

high base stock levels, and consider using real lead-time information.
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12 Appendix

Table 17: Descriptive statistics Industrial Data Sets

Data set MinSale MeanSale MaxSale StDevSale MinPrice MeanPrice MaxPrice StDevPrice
MAN 0.007 24.224  4599.653  139.294 0.085 19.958 297.537 31.356
BRAF 0.036 1.442 65.083 3.617 0.001 102.321 9131.992 373.334
AUTO 0.542 4.450 129.167 7.573 32.596 946.176 7772.856 1369.320

OIL 0.036 0.629 232.727 4.016 0.010 355.848  20493.170  1076.121
Table 18: Descriptive Statistics Simulated Data Sets
Dataset CV2 p  MeanSale StDevSale MeanPrice StDevPrice
SIM1 0.75 1.00 10.014 1.125 2129.298 246.061
SIM2 0.80 1.50 6.662 1.124 1416.519 254.797
SIM3 0.30 1.05 9.496 0.737 2019.207 159.058
SIM4 0.25 1.45 6.897 0.812 1466.476 180.186
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Table 19: Forecasting Performance

Model Metric ~ AUTO OIL MAN BRAF  SIM1  SIM2  SIM3  SIM4
MSE  86.107 170.642 12082.277 205.379 79.468  78.686  35.181  40.393

Croston RMSE  9.279  13.063  113.940  14.331 8914 8871 5931  6.356
MASE  0.615 1.041 0.880 0929 0731 0759 0719  0.759

RMSSE  1.703  10.923 11.439 5.020  1.008  1.049  0.940  0.921

MSE  85.724  168.487 12082.191 205.357 79.472  78.698  35.200  40.432

Croston T RMSE  9.259  12.980  113.939  14.330 8915 8871 5933  6.359
oston_ MASE  0.611 1.027 0.880 0929 0731 0759 0719 0.760
RMSSE  1.699  10.853 11.439 5.019  1.008  1.049  0.940  0.922

MSE  88.320 241.594 12077.837 208.891 79.281  78.547  35.071  40.258

TSR RMSE  9.398 15543  113.920  14.453 8904  8.863 5922  6.345
MASE  0.627 1.385 0.883 0.995 0731 0761  0.718  0.759

RMSSE  1.725  12.996 11.437 5062  1.007  1.048 0938  0.920

MSE  85.607 170.916 12958.075 205.273 79.538 78757  35.295  40.463

SBA RMSE  9.252  13.073  113.834  14.327 8918 8875 5941  6.361
MASE  0.608 1.029 0.891 0.922 0731 0757 0719  0.760

RMSSE  1.698  10.931 11.428 5018  1.009  1.050 0941  0.922

MSE  137.574 163.775 14275197 202.786 83.357 88.743  35.096  41.385

RNN RMSE  11.729  12.797  119.479  14.240  9.130  9.420 5924  6.433
MASE  0.722 1.267 0.749 0.435 0712 0724 0714 0.766

RMSSE  2.153  10.700 11.995 4988  1.033  1.114 0939  0.933

MSE  137.001 159.803 14258.628 202.778 83.642 87.792  35.140  41.806

LSTM RMSE  11.705  12.641  119.409  14.240 9.146  9.370 5928  6.466
MASE  0.725 1.085 0.824 0.433 0712 0726 0.715  0.768

RMSSE  2.148  10.570 11.988 4.988  1.035  1.108 0939  0.937

MSE  150.242 152.068 14198.584 202.757 98.917 123.762 88.268 101.197

BSRNN RMSE  12.257 12332 119.158  14.239  9.946  11.125  9.395  10.060
MASE  0.834 0.456 0.649 0.433  0.807 0871 0774  0.792

RMSSE 2250  10.311 11.963 4.988  1.125  1.258  1.063  1.138

MSE  84.740 139.530 13063.914 199.971 78.241 78.718  34.966  40.769

Willemain RMSE 9205  11.812  114.297  14.141 8845 8872 5913  6.385
MASE  0.659 0.928 0.927 0.890  0.774  0.797  0.746  0.769

RMSSE  1.690 9.877 11.475 4.953  1.001  1.049 0937  0.926

MSE  86.317 182.603 12074.434 206.134 79.427  78.660 35.176  40.376

Ensemble. 1 RMSE  9.201  13.513  113.905  14.357 8912 8869 5931  6.354
semble_ MASE  0.615 1.120 0.884 0.944  0.731 0.759 0719  0.759
RMSSE  1.705  11.299 11.435 5029  1.008  1.049 0940  0.921

MSE  85.881 167.468 13087.264 201.306 78.971  78.778  34.760  39.984

Ensemble 2 RMSE  9.267  12.941  114.400  14.188 8.887 8876 5896  6.323
— MASE  0.597 1.100 0.832 0.840 0721  0.742 0714 0.756
RMSSE  1.701  10.820 11.485 4970  1.005  1.050 0934 0917

MSE  90.864 142.519 13931.038 196.948 75.400 75.936  33.140  38.829

Metadoarmer 1 BMSE 9532 11938 118030  14.034 8683 8714 5757  6.231
CeAmer_t NMASE  0.633 0.849 0.935 0.778  0.734  0.765  0.710  0.748
RMSSE  1.750 9.982 11.849 4916  0.982  1.031 0912  0.903

MSE  90.864 142.519 13931.038 196.948 75.394  75.939  33.136  38.838

Metadoarmer o BMSE 9532 11938 118030 14034 8683 8714 5756  6.232
- —“  MASE  0.633 0.849 0.935 0.778  0.734  0.765  0.710  0.748
RMSSE  1.750 9.982 11.849 4916  0.982  1.031 0912  0.904
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Table 20: Positive demands of the 132nd item. Obtained from the training set of the MAN data.

Period Demand

Period4 2
Period10 20
Period20 2
Period24 12
Period32 30
Period39 10
Period40 10
Period42 10
Period45 22
Period47 42
Period51 20
Period56 20
Period65 10
Period68 50
Period70 20

Period73 100

Period87 130
Period89 20
Period93 20
Period95 100
Period99 10
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