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ABSTRACT 
 

This study explores the sustainability aspect of blockchain technology by focusing on its carbon 

footprint and externalities. With sustainability being a global priority, numerous countries have 

implemented regulations to promote a more sustainable future, while international agreements 

like the Paris Agreement aim for carbon neutrality. As a prominent distributed ledger technology 

(DLT), blockchain has gained attention due to its negative environmental externalities. The 

energy consumption required for processing blockchain transactions, particularly in the case of 

Bitcoin, has raised concerns. However, alternative DLTs, like Ethereum, have demonstrated the 

potential to reduce carbon emissions significantly. This research investigates the main drivers of 

the blockchain ecosystem's carbon footprint and explores the effects of structural breaks, 

protocol changes, and legislation. Findings highlight energy consumption as the primary driver, 

with additional variables such as hashing power and market prices found to be relevant. The 

results show dual Granger causality and cointegration within the variables. In one case, the 

ecosystem carbon footprint Granger causes effects in individual DLTs. In the long run, the 

variables have a negative long-term coefficient against an individual DLT. The DLTs have a 

predominant positive long-term relationship when considering the whole ecosystem. The study 

recommends regulations that permanently affect the relevant variables, which will also affect 

their long-term trend. The study also contributes to increasing awareness and understanding of 

blockchain's environmental impact, aiding in developing strategies for managing carbon 

emissions in DLTs. 
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CHAPTER 1 Introduction 

Sustainability is one of the top priorities for the world. Most countries have signed 

international treaties or are developing regulations to encourage a more sustainable future. For 

example, 175 nations pledged to become carbon neutral by 2050 in the Paris Agreement, and 

China vowed to do the same by 2060 (UN, 2023 & Hook, 2020). Furthermore, from 2022, 

new regulations require companies with more than 500 employees in Europe to report 

standardised metrics of their current CO2 emissions (UN, 2023). The regulation increases 

transparency and avoids greenwashing. Large corporations face increased regulation and 

accountability in terms of environmental standards. Small enterprises, on the other hand, face 

fewer similar trends.  

One emerging technology that is raising alarms in academia and hitting newspapers' 

first pages due to its negative environmental externalities is Blockchain. In essence, a 

Blockchain is a Distributed Ledger Technology (DLT). A DLT is a method of storing 

valuable information online or offline. DLTs make valuable information accessible 

(encrypted) to everyone and in multiple copies. There are different types of tokens to store 

information, which depends on their purpose. Most multinational enterprises and countries are 

developing and implementing processes using DLTs as a foundation. Forbes gathers an 

overview of the most relevant projects annually with the "Block 50" article (2022). 

Companies are experimenting with new ways to keep records, increasing traceability and 

accountability between parties. Also, the interaction between multinationals with Blockchain 

projects, such as executing transactions and supply chain management, is being tested. 

Estimations from Cambridge University (2023) show that the energy required to 

process one transaction on the most famous blockchain – Bitcoin – equals the energy needed 

to maintain an average American household for 30 days. Bitcoin's carbon footprint is 

estimated to be 74.31 Mt of CO2 per year, which is comparable to Colombia's carbon 

footprint in 2021 (Cambridge, 2021). Bitcoin operations have far-reaching impacts. 

Not all blockchains operate in the same way as Bitcoin. There exist alternative DLTs 

that, while sacrificing decentralisation, can significantly reduce their carbon emissions. This is 

done by minimising the computational resources required to sustain DLTs. For example, the 

Ethereum Blockchain (the second biggest by value) changed a core process: it decreased the 

carbon footprint by more than 99% and maintained its energy consumption relatively constant 

(Sarkar, 2022). I will elaborate specifically on Ethereum and Bitcoin operations and use that 

as a proxy for the DLT ecosystem. 
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Because energy expenditure for transactions is far from optimal, the viability of DLTs 

can be questioned, especially with DLT increasing its functionalities and exposure to 

individuals and institutions. Throughout 2019-2022, environmental concerns regarding 

blockchain technologies caused some pioneering nations to enforce restrictive legislation. For 

instance, China and eight other countries banned crypto mining (Quiroz Gutierrez, 2022). 

Moreover, a growing concern surrounds e-waste generated through maintaining the 

blockchains. Governments and academia are actively researching recent blockchain-related 

processes and their externalities from diverse perspectives.  

The United Kingdom, which is often a forerunner in the regulation of financial 

markets, in February 2023 released a report stating that the environmental impact of 

cryptocurrencies is considerable. Further, the UK wants to create a framework to calculate 

ESG scores for cryptocurrencies (HM Treasury, 2023). That score could inform individuals 

investing in crypto assets about environmental risks. To do so, the British government is 

researching blockchains' carbon emissions and energy usage drivers (HM Treasury, 2023). 

There is also the perspective that cryptocurrencies can affect the electricity market (Fitch, 

2022). This means that crypto operations put electricity prices under pressure, potentially 

driving them up. The goal of this research is to answer the following question:  

 

“What are the main drivers of the carbon footprint from the blockchain ecosystem and its 

externalities between 2019-2022?” 

 

By answering the research question, I provide insights into the primary causes of the 

carbon footprint from the blockchain ecosystem and peer-review the approaches that different 

researchers have taken while looking for structural breaks in the energy consumption of 

different blockchains. I could assist future developments in DLTs by increasing awareness of 

the leading causes of carbon emissions. Thus, different parties can have a more critical 

understanding of the carbon emission from their DTLs and could be able to manage carbon 

emissions more adequately.  

While there are many findings, energy consumption in DLTs is the primary driver of 

the carbon footprint. Further, there is a structural break in the carbon footprint of Ethereum at 

a 5% confidence level. Bitcoin also has a relevant structural break in its carbon footprint at a 

10% confidence level. After considering the structural breaks, other variables were also found 

relevant but not for the whole data sample. Those variables are hashing power and market 

prices. Collinearity was found while inspecting for Granger causality, and no relevant 
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Instrument variable was found. On the other hand, cointegration between the variables was 

found. Thus, their long-term relationship was modelled. The model found that energy, 

hashing power and price have a negative long-term relationship with individual DLTs. Lastly, 

the individual DLTs' carbon footprint has, in most cases, a positive long-term relationship 

with the ecosystem. 

I discuss all the findings in relation to the literature and my expectations in Chapter 5. 

Before that, I provide an overview of background information, contextualising the research 

(chapter 2). With the literature at hand, I determined key factors and approaches to model 

carbon footprints from blockchains and enumerated several hypotheses. I determine the data 

in the third chapter and comment on its properties. The fourth chapter discusses the specific 

methods by which the research and analyses were conducted. The fifth chapter displays the 

results generated from the data analysis and discusses its intricacies. The last section will 

respond to the hypotheses, answer the research question, and discuss the nuances of my 

findings.  
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CHAPTER 2 Literature Review  

In this chapter, I will touch upon the existing literature to explain how blockchains relate to 

sustainability, what blockchains' functionalities are, and consequently, derive four hypotheses.  

2.1 Sustainability   

Blockchains are constantly in the news due to their significant carbon footprint. For example, 

The Guardian (2022) writes about how crypto mining in the US contributes to raising utility 

bills. This news came after lawmakers in the US requested information from the country’s 

five biggest crypto mining companies. The report states that the mining operations generate 

1.6mln tons of CO2 annually. In comparison, the average household in the EU emits around 

10 tons of CO2 annually (Zerofy, 2022). The Guardian interrogated the Rochester Institute of 

Technology about the subject. They believe that US citizens cope with higher energy bills to 

compensate the mining companies in the region for maintaining blockchains. In other words, 

crypto mining companies have energy-intensive operations, which put pressure on the energy 

prices in the region. As a result, individuals in the region see an increase in their utility bills. 

Mining companies are willing to maintain blockchains because they are able to generate 

profits by doing so. The regional government is expected to create legislation to protect 

individuals from absorbing the external cost that mining companies produce. Because, as it is 

now, the price increase generated by crypto-mining companies is passed to the average 

person. This is made by electricity companies increasing the price of the megawatt-hours for 

everyone in the region.  

Numerous studies and reports have compared blockchain’s carbon emissions to other 

countries. Bitcoin is most frequently used to refer to the entire blockchain ecosystem. This is 

the case because Bitcoin has the most users. Cambridge University wrote the best-known 

report on Bitcoin’s carbon emissions. According to their calculations, Bitcoin alone has a 

similar yearly carbon footprint to Botswana, 52.1 and 52.3 megatons of C02, respectively 

(Cambridge University, 2023). But it is not the most precise and reliable comparison to put 

emissions into perspective. After all, blockchains do not run like nations.  

Bitcoins have also been compared to gold. Bitcoin mining sets off 48.3 megatons of 

CO2 less than gold per year (Cambridge University, 2023).  This comparison relies on the 

idea that both bitcoins and gold can maintain their value over time and have a finite amount. 

Thus, both currencies are connected to the concept of scarcity. Another similarity is that both 

are hard to be destroyed. Such an idea is shared within major investment banks such as 

Goldman Sachs (Economic Times, 2022).  
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The average person uses Bitcoin to make transactions. The emission for a bitcoin 

transaction can be compared against the average CO2 emission of a credit card such as a Visa. 

According to Best, one bitcoin transaction emits the CO2 equivalent to 706,765 Visa 

transactions (2023). This comparison is not ultimately straightforward. Only internal Visa 

operations directly related to the execution of a transaction are considered when calculating 

the CO2 emissions from a Visa transaction. Part of Visa’s operations is outsourced to the 

international banking system (e.g., SWIFT), whereas Bitcoin operates with a completely 

integrated value chain. Thus, in this instance, the total cost of a transaction, considering the 

entire banking system, should be included in the calculation. Measuring and comparing 

transactions in bitcoins to other transactions is necessary for tracking sustainability, 

nevertheless challenging because of its large scale.  

Beyond the features listed above, blockchains have additional capabilities. Because of 

these features, multi-national organisations like Unilever and federal authorities like the 

Swedish government are beginning to test blockchain in their operations. Because 

organisations and authorities are using the same technology as Bitcoin, similar carbon 

footprints can be expected from their blockchains if they are not constructed carefully. 

Therefore, it is crucial to comprehend what drives blockchains’ carbon emissions. The next 

section expands on blockchain technology and its implementations.  

2.2 What is blockchain? 

Blockchain technology, on a superficial level, can be described as a manner to store value. 

The idea of value can be anything a person deems worth it, from a written note to land 

ownership. The information is stored in a Distributed Ledger Technology (DLT).  The idea 

behind a distributed ledger is to store the same data in various locations while maintaining its 

integrity. This is made possible by computer software. Thus, a blockchain is a DLT. 

Traditionally, a ledger only keeps track of past transactions rather than necessarily the full 

details of each one (Merriam-Webster, 2023). For the vast majority of blockchains, this is also 

the case (Wang, 2021). 

A blockchain allows individuals to prove ownership reliably. This mechanism was 

formally introduced in the white paper from Nakamoto (2008), where he/she explains how 

computers can activate a consensus in the ledger using logic, encryption, and competition 

elements. This consensus mechanism is called Proof of Work (PoW). Blockchains rely on 

consensus mechanisms to operate. A consensus mechanism is a set of guidelines or 

agreements that allows every node in a blockchain network to verify the legitimacy of all 
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transactions (Lashkari & Musilek, 2021). There is another prominent consensus mechanism 

recently adopted by the second largest public blockchain Ethereum, which is Proof of Stake 

(PoS). This mechanism was mainly adopted with the goal of decreasing Ethereum’s carbon 

footprint (Ethereum, 2023). In the next two sections, PoW and PoS are respectively explained 

in depth.  

Oxford developed a framework to break down the fundamental of a blockchain 

(2022). That framework is named Oxford Blockchain Strategy Framework (OBSF). In such a 

framework, the DLT can be divided into three layers: protocol, network and application. The 

protocol layer consists of the basic operating principles, such as design expectations for 

speed, programmability and functionality, or even if the code is open or closed source. Now 

the network layer focuses on the infrastructure of the system. This entails setting the 

requirements for who can run a node, which nodes have reading or writing access, how 

difficult it is to calculate a nonce, and data storage requirements regulations. Lastly, the 

application layer focuses on the interaction between specific user cases develop to use the 

DLT system, such as trading native tokens. All blockchains have different approaches for 

their layers, thus allowing for diverse approaches to reaching a similar goal, which can result 

in distinctive externalities (Oxford, 2022).  

OBSF also defined six principles that all DLTs must comply with; those principles are 

also benefits that are implicit in the system. The principles are automation, continuum, 

stakeholders, reconciliation, value transfer, and immutability. Automation refers to a 

predictable and repeatable process, continuum relates to a process that keeps on going, 

stakeholders implies that it accommodates multiple stakeholders in the value chain, and 

reconciliation means that there must be an agreement on the validity of the information 

generated by the process, value transfer conveys the element of value transferer, which not 

necessarily is monetary, and immutability expresses the idea that the information cannot be 

changed (Oxford, 2022). 

As its name insinuates, a blockchain stores information in blocks and connects them 

by considering historical information. Each block has four components:  the information from 

the previous block, the information from its own block, a time stamp, and a nonce. The nonce 

is a mathematical problem that relates to the information stored in the block. When a nonce is 

calculated, a hash is produced. The hashing rate of a cryptocurrency network can be used to 

assess its stability and security because hashing adds an encryption layer that protects the 

information against tampering. Because the nonce relies on the speed of the machines being 

used and/or the number of miners in a network, hashing rate representations might vary from 
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network to network and even from miner to miner (Alam et al., 2021). For instance, the 

hashing rate for Bitcoin is measured in exahashes per second (EH/s) and is generated using 

the SHA-256 cryptographic algorithm (Singh, 2022). There are one quintillion hashes in an 

exahash. On the other hand, the current unit of measure for Ethereum speed is terahashes per 

second (TH/s). In one terahash, there are one trillion hashes (Ethereum, 2023). The TH/s will 

be utilized in order to improve blockchain comparison. In Figure 1, a schematization of a 

blockchain ledger structure is shown. 

 

 
Figure 1 Blockchain structure  
Adapted source: Lecture 2 Financial Economics Masters (Blockchain fundamental) 2022.  

 

In a blockchain, the servers are referred to as “nodes.” Transactions are processed by 

nodes. The ledger can be maintained and expanded by certain nodes by adding blocks of 

transactions to the chain. These nodes are known as “miners” in (PoW) networks like Bitcoin 

due to their nature and similarities with gold. Most commonly miners are rewarded by 

receiving the native token from the blockchains, as receiving bitcoins by mining in the 

Bitcoin blockchain.  

2.2.1 Proof of Work  

PoW can be seen as a small competition where all the mining nodes attempt solving the nonce 

to successfully create a new block. Thus, the node that solves the nonce first gains the rights 

over the mining prize, which changes according to blockchain protocols. This competition has 

a significant impact on the computational power required to mine a new block (Gulli, 2020). 

This high computational power requirement also implies a high energy demand. 
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 In a 1993 study, Cynthia Dwork and Moni Naor initially proposed the concept of 

employing computational work as a way to prevent spam and denial-of-service exploits. The 

term “proof of work” is considered to have appeared first in a 1999 essay by computer 

scientists Ari Juels and Markus Jakobsson. Their idea has been shaped by the computing 

community since the early 1990s. Just with Nakamoto’s white paper, PoW was 

conceptualized to verify transaction between peers.  

De Vries et al. (2022) speculates that Bitcoin has been operational for more than a 

decade without experiencing a significant outage or hack, which could be the most crucial 

evidence that PoW offers a greater level of security than alternative methods of consensus. 

While proof of work does provide the highest possible level of security and decentralization, 

it comes at a significant cost: it uses a significant quantity of energy. PoW is also used by 

many other cryptocurrencies that are not based on Bitcoin protocols, such as, Ethereum 

Classic, Monero, Zcash, Kadena, Ravencoin, Siacoin, and Horizen. 

2.2.2 Proof of Stake 

As was already mentioned, a different kind of consensus mechanism that has a smaller carbon 

footprint is becoming more and more popular (Pennella, 2023). This approach is called PoS. 

In a PoS system, network nodes place “stakes” of tokens for a certain amount of time in 

exchange for a chance to create the next block of transactions. The selected node, known as 

the “validator,” will be given the block rewards in the form of the network’s native token. But 

this comes at a cost, a loss in decentralization. 

PoS requires validator nodes to lock their tokens in order to stake them. This means 

that one gives up the right to trade the token in the market while running the validator node. 

To compensate for the loss in liquidity, the validator node is rewarded once it’s selected to 

mine a new node.  There are also fines if a validator is not active when selected to check the 

information. Further, validator nodes are also implemented to double-check the information in 

the new block. PoS takes out the competition element of the consensus by adding a random 

factor that gives turns for the miners to verify. Since the turns are randomly chosen, validators 

and miners stay idle to perform their tasks when necessary instead of competing over the 

nonce. Activities per node demand less energy to maintain the system's operation. This allows 

for an overall decrease in the required computational power. PoS systems should have a 

somewhat constant energy usage.  

PoS can solve some of the main issues PoW has, including energy consumption 

(because PoS uses less energy than PoW), transaction throughput (since PoS networks can 
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handle more transactions than PoW networks); and scalability (because PoS networks scale 

more readily than PoW networks).  

2.3 Carbon footprint  

The energy consumption generated by maintaining a computer running a miner node does not 

incorporate all the factors that explain CO2 in a DLT system. The core problem is not the 

energy consumption by itself, but the carbon generated by its operations. There is a growing 

debate on the relevance of some variables, such as the price of native tokens, but there is an 

agreement on the main driver, which is the CO2 generated by the mining nodes (Ghosh & 

Bouri, 2022).  

Different parties have estimated the carbon footprints of diverse DLTs systems. Most 

of them use the two largest open blockchains as a proxy for the ecosystem. This is acceptable 

because Bitcoin and Ethereum combined account for more than 80% of the world's 

cryptocurrency assets' power usage (The White House, 2022). In this research, I will also 

employ the summation of both blockchains as a proxy for the ecosystem. The carbon footprint 

is typically assessed based on the volume of transactions conducted over a period. However, it 

is important to note that this measure assumes a direct correlation between the number of 

transactions and the carbon footprint, which is not necessarily true as the blockchain's 

protocol defines the frequency of transactions over time. Nonetheless, utilising this measure 

will provide insights into how scalability can impact the carbon footprint. Hence, my 

approach will involve evaluating the carbon footprint of each blockchain on a per-transaction 

basis. Also, it is important to highlight that the carbon footprint of the DLTs is an estimation. 

Cambridge Center provides the most accepted estimation for DLTs’ carbon footprint and 

energy consumption for alternative finance and Digiconomist. Because the carbon footprint of 

a blockchain is an estimation, it is also relevant to check if they are statistically different 

within them.  I expect to find different carbon footprints per transaction due to their 

fundamental dissimilarities in its layers as defined by the OBSF. Thus, my first hypothesis is 

to test such expectations. 

 

“There is a statistical difference between the average carbon emission per transaction across 

different DLTs. “ 

 

Testing for such a statistical difference will also allow for a better understanding of the 

underlying drivers of carbon footprints. This can be done by comparing the differences 
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between the protocols, such as the maximum number of transactions per block or the type of 

consensus taken. In previous research, a relevant difference between PoW and PoS was found 

(de Vries et al., 2022). But no difference within DLTs with the same consensus mechanism 

was investigated. In this research, I will this occasion, by comparing Bitcoin and Ethereum's 

carbon footprint while they both followed the same consensus approach. The difference will 

be inspected both in absolute terms and in percentage changes. Possible differences in the 

carbon footprints of the DLTs, may emerge from the dissimilarities in their layers.  

2.3.1 Relevant variables 

The main cause of a carbon footprint comes from the computers trying to mine a new block 

(Gallersdörfer et al., 2020). The most appropriate way to derive the carbon footprint of a 

blockchain includes furthermore measuring how much energy was used to maintain the 

ecosystem and its external costs (Gallersdörfer et al., 2020). Measuring the energy used to 

maintain the computer running is a reasonable approach to estimating the carbon footprint of 

a blockchain.   

A DLT system's energy consumption has historically been estimated using two major 

methods. One method is to gauge the consumption of a participant node that serves as a 

representative sample before extrapolating from that data. Another method for measuring 

energy consumption that brings valuable insights comes from UCL Centre of Blockchain 

Technologies (Platt et al., 2021). Their mathematical model incorporates the essential DLT 

system parameters and calculates energy usage. This approach has the benefit of not needing 

to run an experimental study, where it would be necessary to run a miner node and measure 

actual energy consumption. UCL’s model estimates the energy consumption per transaction 

based on the projected number of validator nodes, their energy consumption, and the network 

throughput. Their research found a real difference between PoS and PoW. Further, despite the 

considerably smaller PoS energy consumption, within itself, there are a lot of variances, 

which could be a problem when those chains escalate in size (Platt et al., 2021). 

The carbon footprint generated by mining activities is derived from the energy mix 

present in the mining node’s locations. Cambridge Center for Alternative Finance has 

estimated the miners’ locations by working with prominent mining pools across the globe. 

However, the data is not updated, and the information is not complete (Carter, 2021). It has 

been estimated that 36% of the energy mix from Bitcoin mining is of sustainable sources 

(Cambridge, 2021). The actual number is expected to be smaller (Carter, 2021). 
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Focusing on the energy consumption of mining nodes, the relationship between itself 

and the carbon footprint of Bitcoin has been recently investigated. The research focus was on 

the presence of long-term memory on energy consumption, auto-correlation, and mean 

aversion between the inspected variables by applying different econometric models. It was 

found that Bitcoin's energy consumption does present a long memory in most cases. The long 

memory in energy consumption implies that temporary policies will not prevent a lasting 

effect on consumption. Thus, the paper recommends the creation of permanent legislation to 

assist in the reduction of carbon emissions in DLTs (Ghosh & Bouri, 2022).  

Private entities are aware of the high energy demand from mining Bitcoin, which 

generates a large carbon footprint. In response, projects such as Bitcoin Net Zero are 

emerging. The Bitcoin Net Zero project has three main components, the being: partnering 

with energy providers to source mining facilities, developing energy-efficient hardware, and 

purchasing carbon offsets to compensate for emissions. The project was made by NTDIC, a 

New York-based Bitcoin investment firm. The plan also recommends regulations to support 

this transition. The recommendations can be summarised into 5 different legislative scopes as 

requiring miners to disclose their energy consumption and emissions, providing incentives for 

miners to use renewable energy, setting standards for energy efficiency for bitcoin mining 

hardware, regulating the sale of carbon offsets, and investing in research and development of 

more sustainable bitcoin mining technologies (NYDIG, 2021). 

Apart from considering the energy consumption of the computers, external costs must 

also be taken into account. The main external sources found in the literature are hardware and 

cooling costs. Those costs are extreme in PoW systems due to their competitive nature 

(Klaaßen et al., 2020).  

Given that the competitive nature has a significant influence on CO2 emissions, it is 

pertinent to model it. A way to measure the competitiveness level of a blockchain is to track 

its hashing rate (Li et al., 2019). In other words, the overall processing power utilized by 

cryptocurrency to process transactions in a blockchain can be measured by the hashing rate. It 

can also serve as an indicator of how quickly a Bitcoin miner's apparatus performs the 

calculations. New hardware allows a miner to calculate hashes faster due to technological 

enhancements. Consequently, miners are motivated to upgrade their hardware constantly; 

otherwise, the odds of successfully mining a block will considerably decrease. Further, the 

study estimates that the life cycle of Bitcoin mining devices is up to 1.29 years. This is 

because of the high computational demands of mining a new block.  
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The Digiconomist index also tracks the e-waste generated by the Bitcoin blockchain. 

Its values are annualized and measured in Kiloton. The growing e-waste generated by the 

mining cycles is an emerging threat to the environment due to the toxic chemicals and metals 

that come with unregulated disposal and improper recycling. Consequently, the soil, air and 

water are polluted (de Vries & Stoll, 2021). The growing e-waste appears to be connected to 

its price. One indication comes from when Bitcoin e-waste grew beyond 64.4 metric kilotons 

in early 2021, which coincided with Bitcoin reaching new all-time high prices (de Vries & 

Stoll, 2021). 

Because individuals often are able to sell native tokens in diverse marketplaces, there 

might be a correlation between the carbon footprint and the price of a DLT system. Studies 

encountered qualitative reasoning for such a connection (CCRI, 2022). Because of higher 

prices, individuals searching for profitable ventures build new mining nodes (CCRI, 2022). It 

is expected that the prices of native tokens affect the carbon footprint of DLTs.  

Further research was also made on the main drivers of blockchain prices and its 

characteristics. The research uses an Auto-Regressive Distributed Lag model to inspect the 

short and long-term relations. The biggest five public blockchains were considered. It was 

found that the market beta, trading volume, and volatility have a significant impact on prices. 

It was also found that the S&P500 index has a weak positive impact in the long run, but in the 

short run, it becomes negative and insignificant, except for Bitcoin, which has a statistically 

significant estimate of -0.20 at a 10% significance level. It is also found that the prices 

between all the blockchains cointegrate (Platt et al., 2021).  

This implies that native tokens with a small market price will generate fewer carbon 

emissions from their operations. Because they have a smaller volume and volatility, on 

average. However, because they are expected to be cointegrated with other DLTs, in the long 

term they are expected to have a stable price spread. A type of hybrid blockchain is stable 

coins, where an institution controls the protocol while its network and application layers are 

open to the public. In such hybrid DLT, the market price of the native token is fixed to 

another asset. This is commonly done by pegging it to Euro or Dollar. This will decrease 

sharply the volatility of the currency and stabilize its market beta. Stable coins are also 

expected to lessen the competition between crypto miners, which decreases carbon emissions 

(de Vries et al., 2022). The relationship between price and carbon emission also indicates that 

DLTs with a low market value have a smaller user base. Subsequently, fewer individuals are 

maintaining the ecosystem, which indicates a less competitive environment. Unfortunately, 
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there is no available data for hybrid blockchains due to their private nature. A more detailed 

explanation of public, private, and hybrid DLTs will be provided later in this chapter.  

The price variable was also examined by Sarkodie et al. (2022), which investigated 

how the financial factors of Bitcoin can affect its carbon emissions and vice-versa. This 

analysis is made by comparing a Vector Auto-Regressive (VAR) model and a dynamic Auto 

Regressive Distributed Lag (ARDL). In the comparison, they assessed Granger causality 

cumulative impulse-response relationships and steady-state effects. It was found that their 

data did not present a serial correlation. Further, no structural brakes were found in their 

expression residuals. Their ARDL models found that trade volume has a stimulating effect on 

Bitcoin energy consumption in the long run. However, in the short run, trade volume has a 

mitigating effect on energy consumption. These results indicate that while trade volume 

initially reduces energy consumption, it eventually leads to an increase in the long term.  

Focusing on the Granger causality results, a unidirectional causality was found from 

carbon footprint and energy consumption to Bitcoin market capitalization, indicating a 

conservation interaction. This suggests that a reduction in Bitcoin's energy consumption and 

carbon footprint could lead to a decline in its market capitalization. On the other hand, 

bidirectional Granger causality is observed between market price and carbon footprint, as well 

as trade volume and energy consumption. These findings support the existence of feedback 

interactions, implying that market price and trade volume can impact Bitcoin's energy 

consumption and carbon footprint and vice versa. Overall, their results highlight the potential 

influence of market factors on Bitcoin's energy consumption and environmental impact 

(Sarkodie et al., 2022).  

There is a noticeable ambiguous relationship between innovation and competition 

regarding DLT's carbon footprint. This is the case, especially in Europe, because of the EU 

emission trading system. The trading system follows a cap-and-trade approach where 

corporations can trade limited CO2 credits in the market. The maximum amount of CO2 

credits decreases over time (European Commission, 2023). With the increasing scarcity of 

credits, their price is expected to increase. This forces corporations to track their CO2 

emissions and motivates them to decrease their carbon footprint over time. Mining 

companies, which are known to emit large amounts of CO2 with their operations, must pass 

the increasing costs of their emissions to consumers. The way that miners can pass their costs 

to consumers is by selling native tokens in the marketplace. Consumers who invest in native 

tokens indirectly help mining companies to buy more CO2 credits. If miners cannot pass the 

extra cost to consumers, there will be a loss in competitiveness. Mining companies will have 
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to decrease their operations to meet their carbon quota. Thus, the ability to roll over the costs 

is directly connected to the native token prices.  

While miners can take advantage of native tokens, they also need to take advantage of 

the rapid innovation in the hardware sector to upgrade equipment. But this comes with an 

economic and environmental cost: the price of the new equipment and the e-waste generated 

by the disposal of the old equipment. And there are few ways developed yet to recycle e-

waste efficiently. Thus, miners must find a balance between passing the higher costs to 

consumers -expected to cause losses in miners’ market shares- and investing in innovation to 

maintain their competitive price. The trade-off between competition and innovation becomes 

eminent because of the EU emission trade system. I anticipate that this trade-off is 

incorporated into the native token prices and the e-waste generation index.  

Costs, competition, and innovation are the main factors driving carbon footprint. 

Those concepts can be broken down into energy consumption, hashing power, e-waste 

generation, and prices of native tokens. While those factors are expected to influence costs, 

competition, and innovation, they can be used to understand the carbon emissions of DLTs. 

So, I test this expectation using the comparison of data from different DLTs and their 

emissions. The second hypothesis reads as follows: 

 

“Energy consumption, hashing rate, e-waste generation, and prices of native tokens have a 

significant explanatory effect on the blockchain's ecosystem carbon footprint.” 

  

For this research, the ecosystem will be defined only by the Ethereum and Bitcoin 

blockchains. Those two blockchains are the most prominent in the public space, with a joint 

market value of EUR 596bln. Further, according to estimates, Bitcoin uses between 60% and 

77% of the world's cryptocurrency assets' power, while Ethereum uses between 20% and 39% 

(The White House, 2022). However, it would be interesting to consider smaller and private 

DLTs. This would allow for better segmentation and potential reasoning for carbon footprint 

drivers in the ecosystem. Especially when there are emerging blockchains with a sustainable 

focus. 

New research on blockchains solutions to the carbon credit market has been conducted 

(Sipthorpe et al., 2022). In this research, 39 organisations developing blockchain solutions 

were inspected. They also faced difficulties gathering data because most organisations were 

unwilling to share their private information. The authors find that the current ecosystem is 

diverse, fragmented, and relatively immature, with most solutions being early-stage proofs of 
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concept. They identify bottlenecks at various technology readiness levels that indicate critical 

issues such as scalability, systems integration, and regulation that need to be addressed. They 

conclude that the growth of blockchain in the carbon markets is significant, but it is often 

misunderstood and subject to speculation. 

A nominal example is the Regen blockchain. Regen is built using a PoS consensus 

approach and aims to create an ecosystem where individuals can develop impactful ecological 

projects. Investors can also directly buy carbon credits from farmers. Other verified users can 

also propose projects for others to support in exchanging carbon credits and other tokens in 

the ecosystem. Essentially, a public ecological accounting system is created by Regen Ledger. 

Further, this DLT is designed for the verification of environmental impact claims, 

agreements, and data. Regen DLT allows registries and credit standards to interact and 

conduct business with one another. 

Companies like Tesla follow a similar approach as Regen. Tesla sells their excess 

carbon credits to third parties, reaching USD 1.78bln in 2022 (Carbon Credits, 2022). In 

2021, Tesla generated more revenue from selling its excess carbon credits than from their 

electric cars (Carbon Credits, 2023). DLTs like Regen have the potential to bring together 

enterprises like Tesla with smaller entities and individuals with the benefits of a DLT, which 

are stated in the OBSF principles. 

But to be able to harvest data from a blockchain of this type to derive its energy 

consumption, one would have to create and maintain an active staking node. To do so, the 

Ethereum blockchain requires a deposit of 32 ETH, which is its native token (Ethereum, 

2023). This amount is equivalent to EUR 47.359,33 on 29th January 2023, according to 

Binance. For this thesis, it is not feasible to maintain an active staking node. Therefore, I only 

rely on third-party data.  

Blockchains can also be categorised as permissionless, permissioned (private), or 

both. The permissionless blockchain generally behaves as the one described in Nakamoto's 

paper, where anyone can join the ecosystem by becoming a node. The node has no restricted 

rights; it is fully decentralised and allows anyone to have pseudo-anonymity (Nakamoto, 

2008). Nowadays, the main purpose of a public blockchain is mining or exchanging currency 

tokens, such as Bitcoin and Ethereum. 

Now, permissioned blockchains do not allow for any type of anonymity. Permissioned 

blockchains are only partially decentralised. Therefore nodes might have restricted rights. 

Usually, those DLTs represent ventures undertaken by big corporations or countries aiming to 

optimise their operation while reducing costs (Amarasinghe et al., 2020). There is also the 
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concept of fully private and consortium blockchains, where the main difference is that the 

former is governed by only one entity while the latter is managed by a group of organisations. 

The projects executed within this blockchain segment reach a large spectrum of 

functionalities: supply chain management, certification of products, bookkeeping, transfer of 

monetary value, and more (Deloitte 2018; IBM, 2020). 

A single organisation or a group controls fully private blockchains. In this case, only 

users authorised by the central authority can access the blockchain or run a node. Thus, 

making it a partially decentralised blockchain. Further, the rights between the nodes can vary 

depending on their clearance level. 

Permissionless blockchains are frequently more secure than permission blockchains 

since it would be difficult for malicious actors to collaborate on the network because there are 

many nodes to confirm transactions. However, permissionless blockchains have a longer 

latency when validating new information. 

Permissioned blockchains, despite their restrictions, should also have the same carbon 

emission drivers because, in essence, they are also DLTs (Loreen et al., 2021). Investigating 

how such restrictions can affect their carbon footprint would be relevant. One restriction 

could be that all miners must use certain equipment at a specific output power, thus 

optimising its efficiency considering the carbon footprint. However, no data for private 

blockchains are available to the public. This research only deals with permissionless 

blockchains for reasons relating to data accessibility.  

2.3.2 Brakes in trends 

All types of DLTs have updates which are called forks. Forks can be considered soft or hard. 

In the majority of DLTs, forks can be proposed by any active node. For the fork to be 

accepted, the community must accept it. The community usually votes, and the type of vote 

changes according to the DLT (Alvi et al., 2022). 

         A hard fork is when the protocol layer has been changed considerably. Such a change 

consequently creates a new blockchain by requiring all users to upgrade their system to the 

latest version with no backward compatibility (Frankenfield, 2022). As a result, once a hard 

fork is executed, a branch of the blockchain is made. One branch follows the previous 

protocol and a new one follows the updated protocol. An example of a hard fork can be seen 

on July 20, 2016, when Ethereum performed a protocol update to unmake the effects of a 

hack and prevent it from happening again (Ethereum, 2023). 
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         Soft forks are also updates in the protocol but allow for backward compatibility. Thus, 

users are not required to update their system immediately (Frankenfield, 2023). Ethereum and 

other DLTs created soft forks to implement new functionalities or optimise existing ones. A 

significant soft fork was made by Ethereum on September 15, 2022, when it changed its 

consensus approach from PoW to PoS. After the update, Ethereum's carbon footprint shrank, 

it dropped by more than 95% (Cooling, 2021). Ethereum’s forks are listed in appendix A 

Table 1A.  

         Updates in the protocol have the potential to significantly change the performance of 

DLTs (Yang et al., 2020). Moreover, regulation has the potential to change the performance 

of a DLT system. For example, countries are banning the usage of cryptocurrencies. If a 

region has a significant user base, removing them from the ecosystem can affect its dynamics. 

This is the case for China, which before its ban its participation accounted for around 70% of 

the blockchain ecosystems (Sergeenkov, 2022). 

         It is pertinent to check if changes in protocol or in the legislative environment are 

significant to the point of creating structural breaks in the carbon footprint of DLTs. To 

perform such check the Chow-break test can be employed. Thus, my third hypothesis reads as 

follows. 

 

“There is at least one structural break in a blockchain carbon footprint per transaction.” 

 

If a structural beak is found, the previous hypotheses will be re-accessed. For this 

research, I will test for one structural break in each blockchain. One break will refer to a soft 

fork and another to a legislative change. The soft break is the change of consensus approach 

in the Ethereum blockchain. The legislative change refers to the date China banned 

cryptocurrencies in their territory. I choose those movements for testing, because they are the 

ones with the most relevance within the timeframe of my dataset. 

In sum, the literature indicates that energy is the main driver for carbon emission in 

DLTs. New research is starting to take a broader definition of what causes CO2 emission in 

blockchains, considering hardware circles, market prices, e-waste generation, and hashing 

power. Figure 2 displays a schematization of the variables that affect the carbon footprint. 
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Figure 2  Schematization of variables and interactions that affect the carbon footprint  
 

My goal is to investigate how some of those variables can explain existing measures 

of carbon emissions from the DLT ecosystem. I would like to also test more on the nuances 

between private and public blockchains, but there is little to no data available.  
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CHAPTER 3 Data 

In this chapter, I will expand on the sources for the data used in this research, give general 

statistics for all the variables, and explain the methods applied to ensure that the data has 

statistical significance. 

As mentioned in the Literature, only Bitcoin and Ethereum blockchains will be 

inspected. Those 2 blockchains incorporate most transactions in the ecosystem and have the 

highest adoption rate (The White House, 2022). Thus, those two have the potential to 

represent the public DTL ecosystem.  

The gathered data categories are hashing rate, energy consumption, transaction, e-

waste, and price. For the Bitcoin blockchain, the hashing rate and the number of transactions 

were gathered from the Nasdaq database. Nasdaq stores financial information from Ethereum, 

Bitcoin, and other financial instruments not listed in their exchange. 

(https://data.nasdaq.com/data/BCHAIN-blockchain).  

 The energy consumption and carbon emissions were retrieved from the Cambridge 

Bitcoin Electricity Consumption Index. The market price and e-waste generation were 

collected from Yahoo Finance and Digiconomics, respectively. The data on Ethereum have 

overlapping sources, such as Yahoo Finance and Digiconomist. The hashing rate and the 

number of transactions were sourced via Etherscan. 

Further, the carbon emissions were retrieved by CCRI and Kyle McDonald database, 

and energy consumption by Digiconomist. The carbon emission data from Kyle McDonald 

goes until the soft fork from Ethereum (2022). After that moment, only CCRI tracks the 

carbon footprint of the Ethereum blockchain.  

To investigate the carbon footprint per transaction in blockchains, I focused on the 

energy consumption per transaction, hashing power, annualized e-waste generation, their 

consensus approach, price, and a constant. All the data is presented on a daily basis, the 

hashing power is presented in Terahashes, carbon emissions in Megatons, e-waste in 

Kilotons, prices in USD, and energy in Terawatts.  

Because Ethereum changed its protocol, a categorical variable was created to consider 

that change. The e-waste is, in principle, a by-product of maintaining Bitcoins operations. 

Because Ethereum also follows the same consensus mechanism most of the time, it's 

reasonable to assume that a similar trend could be found. The carbon footprint and energy per 

transaction were calculated by dividing the total daily values by the daily transactions. The 
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ecosystem carbon footprint is the summation of Ethereum and Bitcoin's carbon footprint per 

transaction. The descriptive statistics of the raw data are displayed in Table 1.  

 
Table 1  Descriptive statistics for raw variables 

Variables Mean Median S.D. Max Min Skewness Kurtosis Obs 

CO2 BTC 142.009 143.323 77.443 346.489 0.239 0.067 2.089 1438 

Hashing 

power BTC 
7.39 x 1015 1.67 x 1015 8.69 x 1015 5.85 x 1016 4.71 x 1017 0.802 2.664 1438 

Price BTC 2.37 x 1010 1.78 x 1010 1.76 x 1010 6.76 x 1010 1.78 x 104 0.697 2.130 1438 

E-waste 25.755 23.990 7.756 44.230 12.190 0.442 2.648 1438 

Energy 

BTC 
0.001 0.001 0.000 0.001 0.000 0.786 2.328 1438 

Hashing 

power ETH  
4.26 x 106 2.52 x 106 3.37 x 106 1.13 x 107 0.000 0.709 1.999 1438 

CO2 ETH 0.009 0.008 0.005 0.021 0.000 0.411 2.622 1438 

Price ETH 1.32 x 109 6.71 x 108 1.29 x 109 4.81 x 109 1.05 x 108 0.838 2.482 1438 

Energy 

ETH 
0.000 0.000 0.000 0.000 0.000 1.107 2.764 1438 

Consensus 

ETH 
1.063 1.000 0.244 2.000 1.000 3.587 13.869 1438 

Ecosystem 

CO2 
142.019 143.332 77.445 346.504 0.252 0.067 2.088 1438 

Note. BTC stands for Bitcoin, ETH refers to Ethereum. S.D. means standard deviation and CO2 represents 

carbon emission. Energy relates to energy consumption. All the data is presented on a daily basis, the hashing 

power is presented in Terahashes, carbon emissions in Megatons, e-waste in Kilotons, prices in USD, and energy 

in Terawatts. Consensus ETH is a dummy variable with a value of 1 when ETH follows a PoS approach.  

 

In Table 1, all variables have a similar mean and median, but the hashing rate of 

Ethereum, which is expected from a normally distributed sample. Considering the SD, 63% of 

the variables present a value larger than one, which indicates high variance in the sample. The 

normal skewness is of value zero with a 0.5 difference in both directions. Thus, only three 

variables are not considered to be skewed, them being e-waste, the carbon footprint of 

Ethereum and the ecosystem. Further, all variables are positively skewed. Additionally, all 

variables but the dummy variable for the change in the consensus approach from Ethereum 

have a kurtosis smaller than 3, thus presenting a thin-tailed distribution.  

To further enhance the data quality, outliers from the generated carbon emission in the 

Bitcoin blockchain were removed. Such analysis was made by plotting the values over time 
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and looking for clear errors in the data. Please find the plotted values from before and after 

treatment in Figure 1B and Figure 2B appendix B. The summary statistics for all treated 

variables can be found in Table 2.  
 

Table 2  Descriptive statistics of all cleaned variables  

Variables Mean Median S.D. Max Min Skewness Kurtosis Obs 

CO2 BTC 156.621 154.096 67.838 346.489 50.541 0.220 2.020 1290 

Hashing 

power BTC 
7.26 x 1015 1.67 x 1015 8.58 x 1015 5.85 x 1016 4.71 x 107 0.830 2.810 1290 

Price BTC 2.36 x 1010 1.76 x 1010 1.76 x 1010 6.70 x 1010 1.78 x 104 0.710 2.150 1290 

E-waste 25.736 23.960 7.718 44.230 12.190 0.460 2.680 1290 

Energy BTC 0.000 0.000 0.000 0.001 0.000 0.800 2.360 1290 

Hashing 

power ETH  
4.21 x 106 2.51 x 106 3.35 x 106 1.13 x 107 0.000 0.740 2.060 1290 

CO2 ETH 0.009 0.008 0.005 0.021 0.000 0.430 2.680 1290 

Price ETH 1.31 x 109 6.36 x 108 1.28 x 109 4.74 x 109 1.05 x 108 0.840 2.480 1290 

Energy ETH 0.000 0.000 0.000 0.000 0.000 1.140 2.850 1290 

ETH 

Consensus 
1.064 1.000 0.245 2.000 1.000 3.550 13.610 1290 

Ecosystem 

CO2 
156.630 154.104 67.840 346.504 50.548 0.220 2.020 1290 

Note. BTC stands for Bitcoin, ETH refers to Ethereum. S.D. means standard deviation and CO2 represents 

carbon emission. Energy relates to energy consumption. All the data is presented on a daily basis, the hashing 

power is presented in Terahashes, carbon emissions in Megatons, e-waste in Kilotons, prices in USD, and energy 

in Terawatts. ETH consensus is a dummy variable with a value 1 when ETH follows a PoS approach.  

 

What leaps out of the page is the big difference between the mean and medium for the 

price and hashing power for both DLTs. The price from Ethereum also presented the same 

phenomena. This implies a clustering over time (e.g., heteroskedasticity). For the SD in 

Bitcoin's energy consumption, Ethereum hashing power and energy consumption was close to 

0. The skewness was once again all positive and with the same variables following a normal 

distribution. The pattern for the kurtosis also follows the trend from the raw data. The largest 

difference between the raw and cleaned data is the difference between the means and 

medians.   
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I checked for the stationarity of all variables by applying unit root tests from Dickey-

Fuller (DF) test (1979), Phillips-Perron (PP) test (1988) and the Kwiatkowski-Phillips-

Schmidt-Shin test (KPSS) (1992). According to the DF and PP tests, the stationary variables 

are Bitcoin’s hashing power, Bitcoin’s energy consumption and Bitcoin’s carbon footprint. 

However, the KPSS test indicated that all variables are non-stationary. An overview of results 

from the various unit root tests can be found in appendix A, Table 2A, 4A and 6A.  

 With the results from the KPSS test, I calculated the log differences for all non-

stationary variables. I retested the log difference to ensure stationarity. There was insufficient 

evidence from all the variables' log differences to reject the null hypothesis of stationarity. 

These results are shown in Table 3A, 5A and 7A.  

 With the goal of discovering which lags are relevant, I analyzed the autocorrelation 

(AC) and partial autocorrelation (PAC) for the carbon emission of both blockchains. The 

results from the AC and PAC calculations can be found in appendix B, Figures 3B - 6B.  

 Ultimately, all variables were stationary after performing the aforementioned methods. 

At least one relevant lag was found in the carbon footprints of both blockchains. The 

descriptive statistics of the treated variables can be found in Table 3 below. 
 

Table 3  Descriptive statistics of treated variables 

Variables Mean Median S.D. Max Min Skewness Kurtosis Obs. 

CO2 BTC -0.001 -0.011 0.123 0.585 -0.472 0.390 3.715 1289.000 

Hashing power 

BTC 

-0.001 0.000 3.550 16.183 -16.152 0.107 5.508 1289.000 

Price BTC 0.010 -0.001 0.387 13.814 -0.179 35.302 1260.331 1289.000 

Energy BTC -0.001 -0.001 0.019 0.120 -0.078 0.587 6.665 1289.000 

CO2 ETH -0.001 -0.009 0.124 0.559 -0.564 0.318 3.770 1289.000 

Hashing power 

ETH 

-0.000 -0.000 0.044 1.405 -0.064 25.022 797.025 1290.000 

Price ETH 0.018 -0.003 0.639 22.683 -0.580 34.690 1230.862 1289.000 

Energy ETH -0.002 -0.002 0.051 0.380 -0.249 0.703 8.823 1289.000 

E-waste 0.006 -0.004 0.202 5.680 -0.562 20.261 533.041 1289.000 

Note. BTC stands for Bitcoin, ETH refers to Ethereum. S.D. means standard deviation and CO2 represents 

carbon emission. Energy relates to energy consumption. All the values are calculated with log differences. 
 

In contrast to before, the treated variables do not present a considerable difference 

between the mean and median. Another disparity is the large kurtosis and skewness in the 

Bitcoin’s price log difference. This is somewhat expected for the Bitcoin market price is 
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known to have such properties (Vieira & Laurini, 2022). Ethereum characteristics are similar 

to before treating the data. 

 Another relevant statistical measure that is relevant for answering the hypotheses is 

the correlation between the variables. For it gives insight into the priority of the exogenous 

variables against carbon emission of blockchains. Bitcoin energy has the highest correlation 

followed byBitcoin native token prices, e-waste and Bitcoins hashing levels. The correlation 

summary for Bitcoin and Ethereum is displayed in Tables 4 and 5. This goes in line with my 

expectations because energy carbon emission can be considered a by-product of the energy 

consumption of a process. For Bitcoin's price, the high correlation might be a result from the 

increased incentive for people to start mining or upgrading their equipment. A similar 

rationale can be derived for the e-waste variable.  

 
Table 4  Bitcoins correlation matrix 

Variables CO2 BTC Hashing power BTC Price BTC E-waste Energy BTC 

CO2 BTC 1 0.5462 0.7940 0.6355 0.8079 

Hashing power BTC 0.5462 1 0.5051 0.5544 0.5479 

Price BTC 0.7940 0.5051 1 0.3926 0.6627 

E-waste 0.6355 0.5544 0.3926 1 0.6216 

Energy BTC 0.8079 0.5479 0.6627 0.6216 1 

Note. BTC stands for Bitcoin, and CO2 represents carbon emission. Energy refers to energy consumption. The 

variables used are in absolute terms.  

 

This correlation matrix provides valuable insights into the relationships among key 

variables associated with Bitcoin. Hashing power exhibits a moderate positive correlation 

with carbon emissions, indicating that increased computational power in Bitcoin mining is 

linked to higher carbon emissions. Similarly, carbon emissions show a strong positive 

correlation with energy consumption, suggesting that greater energy usage in Bitcoin mining 

leads to increased carbon emissions. 

Bitcoin's price demonstrates a strong positive correlation with both carbon emissions 

and energy consumption. This implies that as the price of Bitcoin rises, there is a 

corresponding increase in carbon emissions and energy consumption within the Bitcoin 

network. Additionally, e-waste displays moderate positive correlations with carbon emissions, 

hashing power, and energy consumption, highlighting the environmental implications of 

electronic waste resulting from Bitcoin mining activities. Further, the variables with the 
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lowest correlation with Ethereum carbon emission is the e-waste. The correlation matrix for 

Ethereum can be found in Table 5. 

 
Table 5  Ethereum correlation matrix 

Variables CO2 ETH Hashing power ETH Price ETH E-waste Energy ETH 

CO2 ETH 1 0.9318 0.6104 0.2064 0.9019 

Hashing power ETH 0.9318 1 0.7822  0.4579 0.9428 

Price ETH 0.6104 0.7822  1 0.4619 0.6716 

E-waste 0.2064 0.4579 0.4619 1 0.4447 

Energy ETH 0.9019 0.9428 0.6716 0.4447 1 

Note. ETH stands for Ethereum, and CO2 represents carbon emission. Energy refers to energy consumption. The 

variables used are in absolute terms. 
 

 Table 6 presents a correlation matrix between Bitcoin and Ethereum regarding CO2 

emissions, hashing power, price, and energy consumption. The findings indicate a moderate 

positive correlation between CO2 emissions and hashing power between Bitcoin and 

Ethereum. There is a strong positive correlation in prices, suggesting a close connection in 

market values. Additionally, Bitcoin and Ethereum demonstrate a relatively high positive 

correlation in energy consumption. These findings highlight the interdependency and 

interconnectedness of Bitcoin and Ethereum in terms of their environmental impact, 

computational power, market value, and energy usage. 

 

Table 6  Ethereum vs Bitcoin correlation matrix 

Variables CO2 BTC 
Hashing 
power 
BTC 

Price BTC Energy 
BTC 

E-waste 0.243 0.443 0.440 0.445 
CO2 ETH 0.551 0.699 0.774 0.605 
Hashing 
power 
ETH 

0.321 0.492 0.529 0.412 

Price ETH 0.501 0.689 0.922 0.521 
Energy 
ETH 0.710 0.831 0.831 0.827 

Note. ETH stands for Ethereum, CO2 represents carbon emission and BTC for Bitcoin. Energy refers to energy 

consumption. The variables used are in absolute terms. 
 

In sum, the majority of the data follows a normal distribution, considering its 

statistical values. Also, all the treated variables passed the unit root tests, allowing for 

statistical analysis (Dickey & Fuller, 1979). Lastly, there is at least one highly correlated 

variable against the CO2 from its respective blockchain.  
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CHAPTER 4 Methods 

I will describe the methodology for each hypothesis in detail, together with robustness check 

suggestions. Those checks are for the case some expectations are proven to be true.  

4.1 Hypothesis 1 
The first hypothesis reads:  
 

“There is a statistical difference between the average carbon emission per transaction across 

different DLTs.”  
 

Once all the data treatment is made, as described in the data section, the first 

hypothesis can be tested. To do so, a Two-Sample-T-test is employed between the log 

difference of the carbon footprint of Ethereum and Bitcoin. The Two-Sample-T-test is defined 

in the following expression.  

 

[1] Two-Sample-T-test 

𝑡 − 𝑣𝑎𝑙𝑢𝑒 =
(𝑥! −	𝑥!) − (𝜇! − 𝜇")

.𝑠!
"

𝑛!
+ 𝑠""
𝑛"

 

A two-sample t-test is commonly used to evaluate whether the difference between the 

means of two groups is statistically significant or due to chance. The goal is to discover if 

there is a statistical difference between the samples. I expect large differences in the carbon 

emissions per transaction within both blockchains. Especially because after a certain period, 

Ethereum changed its consensus approach, as explained in the background literature. 

4.2 Hypothesis 2 
To construct a model that has as a help explain the carbon footprint for the blockchain 

ecosystem per transaction, a bottom-up approach is used. The general explanatory model is 

defined in expression [2] The observed carbon footprint of the ecosystem is the summation of 

the CO2 emissions from Bitcoin and Ethereum, as mentioned in the Data section.  The second 

hypothesis is as follows:  

 

“Energy consumption, hashing rate, e-waste generation, and prices of native tokens have a 

significant explanatory effect on the blockchain's ecosystem carbon footprint.” 
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[2] General ecosystem model   

𝐶𝑎𝑟𝑏𝑜𝑛	𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡	𝑒𝑐𝑜𝑦𝑠𝑡𝑒𝑚#

= 𝛼# + 𝛽#𝐶𝑎𝑟𝑏𝑜𝑛	𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡	𝑜𝑓	𝐸𝑡ℎ𝑒𝑟𝑒𝑢𝑚#

+ 𝛽#𝐶𝑎𝑟𝑏𝑜𝑛	𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡	𝐵𝑖𝑡𝑐𝑜𝑖𝑛# + 𝜀# 

 

Where the carbon footprint of Ethereum and Bitcoin are independent models that are 

derived following expression [3], 𝛼 is a constant and the 𝜀 represents the error term. The 

derivation process is explained below.  

For the individual carbon footprint function, a bottom-up approach is considered. 

Thus, I start with a simple model by fitting a linear regression and then evaluating its fit by 

checking the coefficient significance. Further, I access heteroscedasticity and autocorrelation 

in the model. Those tests are made by applying the Breusch-Pagan-Cook-Weisberg and the 

Lagrange Multiplier test, respectively. If those characteristics are found in the model, Newley 

West (NW) standard errors will be used. After checking the fitting of the model, the 

polynomials of the same variable will be added up to the fourth dimension. Human behaviour 

biases such as risk aversion and the non-linear behaviour of renewable energy generation are 

the main reasons to assume a non-linear relation between the inspected variable and the 

exogenous one. The order in which the variables will be added to the model will have both 

quantitative reasoning, by inspecting their correlation, and qualitative, where there must be a 

relevant rationale for the explanatory variable to influence the carbon footprint of the 

blockchains. The bottom-up approach order is as follows: Energy consumption of the 

blockchain, hashing power, e-waste generation, type of consensus mechanism – when 

applicable -, and the native token price. The general model for each blockchain can be defined 

as an expression [3]. 

 

[3] General model 

𝐶𝑎𝑟𝑏𝑜𝑛	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛# = 𝛼 +	B (𝛽#,%𝑋#,%! + 𝛽#,%𝑋#,%" + 𝛽#,%𝑋#,%& + 𝛽#,%𝑋#,%' ) + 𝜀
'

%(!
 

 

Where “s” stands for the relevant variables that explain the carbon emission, 𝛼 is a 

constant, 𝛽 is the correlation coefficient, and the 𝜀 represents the error term. To further 

expand on the proposed model and its implications, I calculated the VAR model. VAR 

models are a class of time-series models used to analyse the dynamic relationship among 

multiple variables.  VAR model considers interdependencies within the variables. The 
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interdependencies refer to the fact that the behaviour of each variable is influenced by the 

values of other variables in the system. The variables are not considered in isolation but are 

seen as interconnected and affecting each other. In a VAR model, each variable is modelled as 

a function of its own lagged values and the lagged values of other variables in the system 

(Sims, 1980). A VAR model also allows for inspecting Granger causality, which evaluates 

whether the previous values of one variable may be used to predict the future values of 

another variable. To estimate and VAR model, all variables must be tested for unit root. As 

mentioned in the Data section, all variables were inspected for it using the DF test, and the 

necessary changes were made to satisfy the data stationarity requirements. Thus, the variables 

under analysis refer to the ones described in Table 3. Further, the optimal number of lags for 

the expression must be estimated. In this case, I minimise the Bayesian Information Criterion 

(BIC). The BIC is defined in expression [4] (Schwarz, 1978). 

 

[4] BIC 

𝐵𝐼𝐶	 = 	𝑘𝑙𝑛(𝑛) 	− 	2	𝑙𝑛(𝐿) 

 

Where 𝑘 is the number of parameters in the model, 𝑛 the number of observations and 

𝐿 the model likelihood function BIC tends to underestimate the optimal amount of lag. (Bruns 

& Stern, 2018) which can be a problem because the Granger causality test in a VAR model is 

very sensitive to the number of lags (Zapata & Rambaldi, 1997). However, underestimation of 

the number of lags provides a good fit to the data while avoiding overfitting. In this case, the 

frequency of the VAR model is daily observations. The general form of a VAR model can be 

written as an expression [5] below. 

 

[5] VAR 

𝑌) = 	𝛼 +	B (𝛽*𝑋!!) +
+

*(!
B (𝛽,𝑋,")

+

,(!
+B (𝛽-𝑋-&) +

+

-(!
𝜀# 

 

Where 𝑌) is a vector of endogenous variables at time t, 𝛼 is a constant vector, and k is 

the number of lags. The 𝛽	is the short-run dynamic coefficient, and the 𝜀 represents the 

residual in the equation. After deriving the VAR an Impulse Response Function (IRF) will be 

performed. The IRF examines how variables respond to a one-time shock. It quantifies the 

magnitude, duration, and direction of the response over time. The impulse response function 
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shows the accumulated impact of the shock and helps understand system dynamics and 

effects.  

After observing the IRF, I will test if the explanatory variables granger causes the 

dependent one. The Granger causality test is a statistical technique for assessing whether a 

time series may be used to predict another.Being able to explain carbon emissions in different 

blockchains is a crucial point. It will allow a better understanding of which segments of this 

emerging technology significantly impact carbon emissions. This information could assist 

interested parties in minimizing their carbon emission from other DLS. 

If endogeneity, and particularly the simultaneity problem, is found in the models, the 

Two-Stage-Least Square method (2SLS) will be applied. Endogeneity issues are frequently 

faced in econometrics, where dual causation is encountered. To execute the 2SLS, two steps 

are followed. 

In the first step, the endogenous variable in the model is estimated using an 

Instrumental Variable (IV). An IV correlates with the endogenous variable but not with the 

error term in the regression equation. The endogenous variables from the first stage's 

estimated values are employed as the independent variable in the second stage's regression 

equation(s) for the dependent variable. The endogenous variables' estimated values are 

referred to as fitted values. Then, in the regression equation(s) for the dependent variable, the 

fitted values are substituted for the original endogenous variables. 

The 2SLS approach aids in removing this bias. The 2SLS approach offers reliable 

estimates of the causal relationship(s) between the variables of interest by using an IV to 

estimate the endogenous variable(s). The 2SLS approach, however, necessitates the discovery 

of a reliable instrumental variable, which can be challenging. If necessary, I will test all the 

other variables not used in the model as n IV.  

 After checking for Granger causality, it is pertinent to assess the cointegration 

between the variables. This test is made by performing the Johansen tests for cointegration. 

This statistical test is used to determine the presence and number of long-term relationships 

among a set of variables. These tests involve estimating a VAR model and examining 

eigenvalues to assess the stationarity of linear combinations of the variables. A Vector Error 

Correction Model (VECM) will be employed if cointegration is found. The VECM is an 

extension of the VAR model that considers not only its short-term dynamics correlations but 

also long-term equilibrium relationships. This is done by implementing an error correction 

term (Granger, 1969). The VECM model is in expression [6].  
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[6] VECM  

∆Yijt	 = 	β0ij	 + 	∑	βijl	k	l = 1	∆Yijt − l	 + 	λijECTjt − 1	 + 	uijt 

 

Where ∆𝑌𝑖𝑗𝑡 represents the change in the 𝑖th endogenous variable for the 𝑗th subject at 

time 𝑡, 𝛽0𝑖𝑗𝑡 is the constant term, ∑ 𝛽𝑖𝑗𝑙 𝑘 𝑙=1 represents the lagged coefficients up to the 𝑘th 

lag, 𝜆𝑖𝑗 represents the long-run equilibrium relationship between the 𝑖th endogenous variable 

for the 𝑗th subject and the error correction term 𝐸𝐶𝑇𝑡−1, and 𝑢𝑖𝑗𝑡 represents the error term or 

residual. 𝐸𝐶𝑇𝑡−1 is the lagged residual of the cointegrating equation. 

The main difference between VECM and VAR models lies in their treatment of 

cointegration. VECM explicitly models long-run equilibrium relationships among variables 

through cointegration, capturing both short-run dynamics and long-run adjustments. It 

includes an error correction term to measure the speed of adjustment towards equilibrium. In 

contrast, VAR assumes stationary variables without cointegration, focusing solely on short-

run dynamics. VECM requires estimating cointegrating relationships, error correction terms, 

and short-run dynamics, while VAR estimates autoregressive relationships without 

considering cointegration. VECM is suitable when cointegration is present, while VAR is 

used for analysing short-run dynamics without explicit consideration of long-run equilibrium. 
 

4.3 Hypothesis 3 
To inspect the third hypothesis, the Chow-break test was implemented. Hypothesis 3 reads:  
 

“There is at least one structural break in a blockchain carbon footprint per transaction.” 
 

The Chow-break test will be regressed using the model that presented the highest 

significance in hypothesis 2 after the bottom-up approach. Breaks will also be inspected 

considering only the energy consumption of each blockchain and a constant, as displayed in 

expression [7]. The Chow-break test for specific periods is defined as in expression [8].  

 

[7] Regression to check for structural breaks.  

𝑌) = 	𝛼 +	𝛽*𝐸𝑛𝑒𝑟𝑔𝑦	𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 + 𝜀# 

[8] Chow-break test 

𝐹 =

(𝑅𝑆𝑆. − 𝑅𝑆𝑆/)
(𝑘 + 1)
𝑅𝑆𝑆/
𝐷𝑜𝐹
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Where the RSS stands for the sum of squared residuals, the R relates to the restricted 

model, which only takes into account the period after the break and U to an unrestricted 

model, thus accounting for the whole sample. Further, the K stands for the number of 

coefficients in the model plus one, which counts for the constant. Also, DoF means degrees of 

freedom. The null hypothesis is that there are no structural break at the restriction moment. 

The dates selected for inspecting structural breaks are chosen by qualitative reasoning, 

such as when China banned cryptocurrency, or Ethereum changed its protocol from proof of 

stake to proof of work. I chose those two test moments because they have a clear reasoning 

for creating a shock in the carbon emission of the blockchain's ecosystem. China banning 

crypto mining forced miners to change their location. The ban also changes the energy mix 

used in the ecosystem because miners moved to other regions with different energy sources. 

This is the case because China has 30% of its energy produced by renewable sources, which 

is considerably high compared to other countries in the region, and there where a 

concentration of Bitcoin miners in the region. At the same time, other countries have worse 

ratios. Further, I will apply the Quandt-Likelihood Ratio (QLR) to look for other structural 

breaks. QLR is defined as expression [9], where F(τ) is the statistic computed over a range of 

eligible break dates τ0≤τ≤τ1. 

 

[9] QLR model 

𝑄𝐿𝑅 = 𝑚𝑎𝑥[𝐹(𝜏0), 𝐹(𝜏0 + 1), … , 𝐹(𝜏1)] 

 

Performing the QLR analysis is important because it essentially performs the Chow-

break test for each possible t.  The test being positive alone does not make that moment a 

significant break. Qualitative reasoning is also necessary to make the break relevant. My 

qualitative reasoning for the potentially found breaks can be found in the Discussion Section, 

touching upon what it may mean for future regulation and research. Lastly, I will re-examine 

the previous hypothesis considering the suggested breaks. 

4.4 Checking for predictive power 
The primary goal of this section is to explain how I will examine the predictive power of the 

proposed models.  The main approach is to test the Root Mean Squared Error (RMSE) from 

the proposed models against the benchmark by applying the Diebold-Mariano (DM) test. The 

benchmark is an Auto-Regressive (AR) model with one lag. A mathematical definition of the 

benchmark is shown in the expression [10]. 



   
 

 31 

[10] Benchmark 

𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚	𝐶𝑎𝑟𝑏𝑜𝑛	𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡	# = 𝛼# + 	𝛽#0! ∗ 	𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚𝐶𝑎𝑟𝑏𝑜𝑛	𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡	#0!, +	𝜀# 

 

Where 𝛼 is a constant, 𝛽 is the correlation coefficient, and the 𝜀 represents the error 

term. This approach will be taken for both individual blockchains and for the ecosystem. A 

plot of three benchmarks over time is displayed in Figure 7B - 9B in appendix B.  

The benchmarks are tested against the proposed models from hypothesis 2 three times. 

To minimise overfitting in the forecasts, pseudo-out-of-sample forecasts will be utilised. To 

do so, I will employ a rolling window. Also, I will use 30 days to train the model. Thus, the 

first forecast will be for the 31st day. The proposed model is an autoregressive model with 

multiple variables whose lags are fixed over time.  

To assess if the benchmark is worse than the suggested model, I will perform the DM 

test. The DM test assesses whether one model significantly outperforms the other. The test is 

based on the difference in forecast errors between the models. By comparing the RMSE and 

conducting a hypothesis test, it determines if one model is significantly more accurate than 

the other. Thus, if the proposed model has a statistically smaller RMSE, the same outperforms 

the benchmark. The proposed models will be derived by the end of the third hypothesis.  
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CHAPTER 5 Results   
In this chapter, I lay out the results of the tests described in the methodology and comment on 

their implications. I investigate each hypothesis separately and comment on the results. 

5.1 Hypothesis 1 
This hypothesis aims to investigate whether diverse protocols have a different average carbon 

emission per transaction, following the expectations from the literature. As explained in the 

methodology, a two-sample T-test was employed to explore the possibility. The two-sample t-

test for both perspectives can be found in Table 7. Despite their structural differences, no 

significant difference was found between Bitcoin and Ethereum’s average log difference in 

CO2 emissions per transaction, given a confidence level of 95%. Considering the absolute 

values, which represent the actual levels of CO2 emissions, the null hypothesis of equal 

averages is rejected. Further, the test also estimates that Bitcoin’s average is larger than that 

of Ethereum. Those results imply that Bitcoins and Ethereum’s carbon footprints are 

fundamentally different and follow a similar change over time, which is in line with the 

expectations from Hypothesis 1. 

 
Table 7  Two-sample T-test for the average carbon footprint 

Null Hypothesis P-value 

CO2 BTC = CO2 ETH 0.00 

CO2 BTC Log Difference = CO2 ETH Log Difference 0.29 

Note. BTC stands for Bitcoin, and ETH for Ethereum. CO2 relates to carbon emission. The log difference 

represents the change in the CO2 levels.  

5.2 Hypothesis 2 
While the first hypothesis inspected the absolute difference in the average carbon footprints, 

the second hypothesis aims to explain their carbon emission trends. The variables used for 

hypothesis 2 are: energy consumption per transaction, hashing power, e-waste generation, 

type of consensus mechanism -if applicable-and price. As explained in the methodology, I 

tested the heteroskedasticity and autocorrelation for the relevant variables during the bottom-

up approach. The tables from the bottom-up approaches (40 models for BTC and ETH) can be 

found in appendix A, Tables 8A - 24A. Next, Tables 25A and 26A present the 

heteroskedasticity in the data sample and the autocorrelation within the first lag. While 

covering this data in the appendix, the following paragraphs elaborate on models for 

Ethereum, Bitcoin and the ecosystem.  
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5.2.1 Hypothesis 2 Ethereum 
Starting with the Ethereum blockchain, energy consumption is found to have a significant 

correlation with a linear and non-linear approach. The final formula with the OLS and NW 

standard errors for the Ethereum Blockchain, based on Tables 12A – 16A from the appendix, 

can be found in Table 8. All variables were estimated to be significantly different from 0. The 

first, second, and third polynomials of energy consumption were found relevant at a 5% 

significant level. No other variable proved applicable when explaining the changes over time 

in Ethereum’s carbon emissions.  
 

Table 8  Model for Ethereum carbon emissions 

Variable (1) OLS (2) NW 

Energy ETH 1.047*** 1.047*** 
(0.199) (0.227) 

   
Energy ETH  
2nd Polynomial 

-0.549** -0.549*** 
(0.173) (0.114) 

   
Energy ETH  
3rd Polynomial 

0.0723* 0.0723*** 
(0.0281) (0.0132) 

   
Constant 0.0223 0.0223 

(0.018) (0.019) 
Observations 1289 1289 
R2 0.025 - 

Note. Standard errors are in parentheses. The OLS column stands for the model using the Ordinary Least Square 
standard errors. The NW column represents the model applying Newey-West standard errors. ETH stands for 
Ethereum. CO2 represents carbon emission. Energy relates to energy consumption. *p < 0.05. **p < 0.01. ***p < 
0.001. 
 

Only the first three polynomials of energy consumption from Ethereum are 

statistically relevant. Thus, according to the model, they incorporate all the information from 

the other variables. This was expected, given that the energy consumption, in some way, 

represents the other variables. For instance, information about the price is incorporated into 

the energy consumption. When it is profitable to mine the native token, more miners activate 

their nodes in the expectation of making a profit. Also, the higher the polynomial is, the 

smaller the coefficient is because the second polynomial decreased only by half and became 

negative. This implies that the second polynomial has a more significant effect than the first 

for large values and the opposite for smaller values. So, the negative effect is dominant when 

there is a large log difference.  

The model infers that minor daily differences increase, medium differences decrease, 

and large ones increase the carbon emissions of the Ethereum blockchain, as visualised in 
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Figure 3. The third polynomial is six times smaller than the second and positive. This allows 

for a higher likelihood of a positive trend forming for large values, which is necessary given 

the observed history of carbon footprints from various blockchains. Besides that, the R 

squared of 0.025 indicates that the model does not have a strong explanatory power.  

 

 
Figure 3  Visualization of model for Ethereum’s carbon emissions 

 

To test for causality between the variables of energy consumption and carbon 

emissions of Ethereum, I performed the Granger causality test, based on the calculated VAR 

(as explained in the methodology). I considered the optimum number of lags based on the 

BIC criteria for Ethereum’s VAR (see Table 27A in appendix A). From the maximum number 

of six lags, the optimum number of lags is two. In expression [11], the VAR model for 

Ethereum is presented.  

 
[11] VAR Estimation Equation Ethereum 

       
Variables CO2_ETH ENERGY_ETH1 ENERGY_ETH2 ENERGY_ETH3  
R-squared 0.985 0.607 0.889 0.942  

 
 

Yt=h
−0.290 0.031 −0.482 0.201
−0.309 0.056 1.144 −0.191
−0.655 0.552 6.437 −1.090
−3.390 2.319 36.637 −6.143

q	Yt-1 + h
−0.017 −0.238 0.242 0.000
0.008 −0.336 −0.458 0.129
0.002 −0.263 −2.671 0.559
0.006 −1.252 −16.628 3.382

qYt-2 +h
−0.001
−0.005
−0.014
−0.132

q 
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In the short term, the R-squared for all variables is above 0.5, which signals that, more 

often than not, the regression correctly represents the relationship. The R-squares for the CO2 

and energy in its second and third polynomials are close to 1. This indicates a potential 

overfitting of the data, dual causality, or other biases. Anyhow, the p-values for the equations 

are statistically significant, meaning that the lagged values of the variables help predict 

current values. It is also noticeable that the magnitude for the coefficients is not larger than 

0.5 in the carbon footprint Ethereum vector.  

To better understand how the variables relate, I performed the Impulse-Response 

Function. What stands out is that the impulses do not generate a permanent change in their 

trend for all the cases. Also, the carbon emissions of Ethereum do not pose any significant 

short-term response when receiving the impulse from the other variables. The IRF function is 

shown in Figure 4. 

Figure 4 Results from IRF for Ethereum 

 

 The coefficients with the p-value for Ethereum’s Granger causality test are shown in 

Table 9. When checking for Granger causality, all regressions have a p-value of 0.000. Thus, 

there is a two-way Granger causation, implying simultaneity, which can be caused by 

measurement errors or omitted variable bias (Antonakis et al., 2014).As mentioned in the 

methodology, there are ways to deal with such problems, such as performing a 2SLS method. 
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However, it was impossible to discover a reliable IV, which is necessary for the 2SLS 

method. The tests for IV are shown in Table 28A, appendix A.  
 

Table 9  Granger causality for Ethereum 

Y-variable Exclude DF P-value 
CO2 ETH Energy ETH first polynomial 1 0.000 
CO2 ETH Energy ETH second polynomial 1 0.000 
CO2 ETH Energy ETH third polynomial 1 0.000 
CO2 ETH All 3 0.000 
Energy ETH first polynomial CO2 ETH 1 0.000 
Energy ETH first polynomial Energy ETH second polynomial 1 0.000 
Energy ETH first polynomial Energy ETH third polynomial 1 0.000 
Energy ETH first polynomial All 3 0.000 
Energy ETH second polynomial CO2 ETH 1 0.005 
Energy ETH second polynomial Energy ETH first polynomial 1 0.000 
Energy ETH second polynomial Energy ETH third polynomial 1 0.000 
Energy ETH second polynomial All 3 0.000 
Energy ETH third polynomial CO2 ETH 1 0.000 
Energy ETH third polynomial Energy ETH first polynomial 1 0.000 
Energy ETH third polynomial Energy ETH second polynomial 1 0.000 
Energy ETH third polynomial All 3 0.000 

Note. ETH stands for Ethereum. CO2 represents carbon emissions. Energy relates to energy consumption. DF 

means degrees of freedom. 

 

Because a dual causality is present in the data, it is relevant to test for cointegration. 

The first step is checking for stationarity in the model's residuals. Three stationarity tests, DF, 

PP and KPSS were performed, the results can be found in Table 29A in appendix A. Only the 

KPSS test indicated non-stationary in the residuals, giving a reason for this research to 

continue investigating cointegration within the variables.  

With the Johansen-Juselius test for cointegration, I found enough evidence to reject 

the null hypothesis of no cointegration up to and including the first rank (see Table 30A in 

appendix A). This further suggests a long-term relationship between the variables. In further 

depth, through a VECM, I modelled the cointegration behaviour. The VECM results in the 

estimation displayed in expression [12]. The R-squared from the vectors lay above 0.5, with 

only one smaller than 0.9. This suggests that the model represents the endogenous variables' 

relationships in the short and long run. 

Further, the cointegration equation with CO2 as endogenous variables found that 

energy in its first and third polynomials has a negative long-term relationship. In contrast, the 
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energy second polynomial has a positive one. But because the CE vector has a negative value, 

the coefficients in the cointegration equation can be interpreted with the opposite sign. 

Therefore, their long-term coefficient arrangement follows a similar trend encountered in the 

regressions from the VECM equation. The same pattern is not found in their short-term 

coefficients within the VECM.  
 

[12] VECM Ethereum Full Sample 

Variables CO2_ETH  ENERGY_ETH1 ENERGY_ETH2 ENERGY_ETH3 
R-squared  0.989 0.565 0.905 0.957 

 

Yt = h

−1.559
−0.886
−1.357
−6.715

q	CEt-1+	h

0.022 −0.231 −0.603 0.048
−0.034 −0.292 0.786 −0.246
−0.109 −0.381 5.305 −1.139
−0.356 1.274 𝟑𝟒. 𝟑𝟗𝟒 −7.007

q	LDl	+h

0.000
0.000
0.000
0.000

q	

 
Variable CE 
CO2 ETH 1*** 

Energy ETH 1th Polynomial -0.619*** 
(-0.167) 

Energy ETH 2nd Polynomial 
0.802*** 

(0.41) 

Energy ETH 3rd Polynomial -1.009*** 
(0.008) 

Constant 0.001 
 

5.2.2 Hypothesis 2 Bitcoin 
For the Bitcoin carbon footprint model, 22 regressions were considered. Based on Bitcoin’s 

regressions from Tables 8A – 11A in the appendix, I derived the model in Table 10.  
 

Table 10   Model for BTC carbon emission 

Variable (1) OLS (2) NW 

Energy BTC 0.969*** 0.969*** 
(0.006) (0.007) 

   
Energy BTC 4th Polynomial 0.461** 0.461** 

(0.163) (0.164) 
   
Constant -0.000 -0.000 

(0.001) (0.001) 
Observations 1289 1289 
R2 0.950  

Note. Standard errors are in parentheses. The OLS column stands for the model using the Ordinary Least Square 
approach. The NW column represents the model applying Newey-West standard error. BTC stands for Bitcoin. 
CO2 represents carbon emission. Energy relates to energy consumption. *p < 0.05. **p < 0.01. ***p < 0.001. 
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Considering Bitcoin's carbon emissions, energy is highly relevant linearly and in its 

fourth polynomial. Considering OLS standard errors, the second polynomial proves relevant. 

The coefficient was positive but close to zero. When accounting for heteroskedasticity and 

autocorrelation, the second polynomial coefficient became irrelevant. The same happened to 

the first polynomial of e-waste. Different from hashing power, e-waste presented a large 

coefficient of 0.079. Other variables did not have significant coefficients.  

For Bitcoin, both coefficients positively correlate with the carbon emissions per 

transaction, which aligns with the literature. Further, because the constant is not significant, 

the intercept is zero. Implying that no underlying constant trend helps explain the inspected 

variable. For Bitcoin, the R-squared is extremally high, reaching a level of 95%. An R-

squared of this magnitude suggests overfitting of the data or dual causality. 

To further understand which added value the controlled variables bring, I calculated 

VAR after considering their first six lags as recommended by the BIC. The output of the BIC 

is displayed in appendix A, Table 31A. The VAR tested if the model adds information in the 

short run while considering the lag of the exogenous variable. The VAR model is displayed in 

expression [13]. The optimum number of lags is 6.  

 

[13] VAR Estimation Equation Bitcoin 
 

Variables CO2 BTC Energy1 BTC Energy4 BTC 
R-squared  0.449 0.442 0.17 

 

Yt=w
0.278 −0.918 1.352
0.182 −0.802 1.194
0.001 −0.009 0.370

x	Yt-1 + w
−0.286 −0.456 −1.65
−0.348 −0.378 −0.285
0.002 −0.005 −0.115

xYt-2 +w
−0.085 −0.565 0.494
−1.178 −0.459 0.436
0.007 −0.007 0.024

x	Yt-3  

 

+ w
−0.064 −0.553 0.359
−0.085 −0.524 0.230
0.004 −0.004 −0.002

xYt-4 +w
−0.146 −0.391 −1.255
−0.186 −0.339 −0.986
0.007 −0.007 −0.011

x	Yt-5 +  

 

w
−0.078 −0.301 0.968
0.142 −0.344 1.118
0.003 −0.003 −0.005

xYt-6 +w
−0.005
−0.005
−0.001

x 

 
 

 The VAR’s R-squared for CO2 and Energy (1) are a moderate fit and statistically 

significant. This is because they are close to 0.5. Bitcoin's CO2 vector has a negative 

relationship with energy in its first polynomial for all lags. If a constant and large positive 

change in energy consumption occurs, the VAR model suggests an increase in the carbon 
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footprint. If a small positive constant change is found, a negative change in the carbon 

footprint could be observed. For negative values, the change is positive once again. Therefore, 

the carbon footprint vector for Bitcoin would present a convex shape.  

From the VAR for Bitcoin, the impulse and responses between the variables were 

calculated. The results from IRF are displayed in Figure 5. From this figure, it is possible to 

infer that the fourth polynomial of energy consumption in the Bitcoin blockchain has a long-

term effect on the carbon emission of this estimation. Now, the opposite does not generate a 

response impulse. This implies that legislation in the energy consumption of DLTs can have a 

permanent effect on the carbon footprint of the same DLT but not the opposite. 

Figure 5  Results from IRF for Bitcoin 

 

From those coefficients, I calculated the Granger causality. The coefficients for 

Bitcoin’s Granger causality are displayed in Table 11. Focusing on explaining the carbon 

emissions, all the variables are relevant individually and with a 99.9% confidence interval. 

For explaining the first polynomial of energy consumption, all the variables are found to be 

relevant separately and together. Thus, there is a two-way Granger causation, implying 

selection bias because of endogeneity from the variables. Endogeneity occurs because of 

simultaneity (Antonakis et al., 2014). As with the Ethereum blockchain, there was insufficient 
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public data to develop a good IV. Thus, I am not able to proceed with 2SLS. The correlation 

matrix for IV against the residuals is displayed in appendix A, Table 32A. 

 
Table 11  Granger Causality Wald Tests for Bitcoin’s carbon emissions  

Y-variable Exclude DF P-value 
CO2 BTC Energy BTC first polynomial 1 0 
CO2 BTC Energy BTC fourth polynomial 1 0 
CO2 BTC ALL 2 0 
Energy BTC first polynomial CO2 BTC 1 0 
Energy BTC first polynomial Energy BTC fourth polynomial 1 0 
Energy BTC first polynomial ALL 2 0 
Energy BTC fourth polynomial CO2 BTC 1 0.463 
Energy BTC fourth polynomial Energy BTC first polynomial 1 0.02 
Energy BTC fourth polynomial ALL 2 0 

Note. BTC stands for Bitcoin. CO2 represents carbon emission. Energy relates to energy consumption. DF 

means degrees of freedom. 
 

The residuals from the VAR model are stationary, and the variables present 

cointegration up to the first rank (appendix A Table 33A and 34A). Cointegration suggests 

that although the variables display short-term fluctuations, they move together in the long run, 

sharing a common underlying trend append. VECM models the long and short-term 

relationships between the variables. The VECM for Bitcoin is shown in expression [14]. The 

R-squared from Bitcoin’s CO2 is 0.769, signalling that the model explains 76% of its 

variance. The long-term relationship between CO2 and energy in its first polynomial has a 

negative relationship, while CO2 and energy in the fourth polynomial has a negative 

relationship.  

 

[14] VECM for Bitcoin Full Sample 

Variables CO2 BTC Energy1 BTC Energy 4 BTC 
R-squared  0.769 0.761 0.275 

 

Yt = w
−1.236
−1.206
0.003

xCEt-1 +w
0.508 2.264 0.634
1.256 1.433 0.544
0.002 0.002 −0.473

x	LD1+ w
0.220 1.081 0.297
0.785 1.179 0.101
0.000 0.001 −0.490

xLD2 

+w
−0.133 1.245 0.585
0.493 0.838 0.354
0.002 −0.001 −0.350

x	LD3 +w
−0.068 0.691 0.738
0.293 0.430 0.369
0.001 0.000 −0.236

xLD4 

+w
−0.078 0.301 −0.687
−0.011 0.213 −0.768
0.003 −0.003 −0.150

x	LD5 +w
0.000
0.000
0.000

x 
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Variable (1) CE 
CO2 BTC 1 

Energy BTC 1st Polynomial 
0.256*** 
 (-0.108) 

Energy ETH 4TH Polynomial 
-0.354 
(0.884) 

Constant 0.007 

 

5.2.3 Hypothesis 2 Ecosystem 
With both models defined, I modelled the CO2 for the ecosystem. This is done to test the 

second hypothesis. The expression from the ecosystem model [2] has been defined in the 

methodology. Following this, the linear model in Table 12 was calculated using OLS and NW 

standard errors. With this approach, only the Ethereum blockchain is significant. Both 

regressions can be found in Table 12. 

 
Table 12  Model for the ecosystem's carbon emissions 

Variable (1) OLS (2) NW 

CO2 BTC 0.050 0.050 
(0.066) (0.058) 

   

CO2 ETH 0.823*** 0. 823*** 
(0.078) (0.123) 

   

Constant -0.000 -0.000 
(0.008) (0.005) 

Observations 1289 1289 
R2 0.083  

Note. Standard errors are in parentheses. The OLS column stands for the model using the Ordinary Least Square 
approach. The NW column represents the model applying the Newey-West standard error. ETH stands for 
Ethereum, and BTC for Bitcoin. CO2 represents carbon emission. Energy relates to energy consumption. *p < 
0.05. **p < 0.01. ***p < 0.001. 
 

To improve the understanding of how the variables interact, I found the optimum 

number of lags by minimising the BIC (6 lags) (Table 35A, appendix A). Given the optimum 

number of lags, I modelled the VAR for the ecosystem, which is shown in expression [15]. 

The various R-squared appear statistically significant but are not a perfect fit to the 

endogenous variables' variance (only CO2 BTC is moderate). Unlike the OLS model, Bitcoin 

has a negative effect on the ecosystem’s carbon footprint, while Ethereum displays a positive 

impact. 
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[15] VAR Ecosystem 
 
Variables CO2 Ecosystem CO2 BTC CO2 ETH 
R-squared  0.183 0.435 0.18 

 
 

Yt=w
−0.037 −0.391 1.342
−0.010 −0.671 0.108
0.035 −0.090 −0.214

x	Yt-1	+	w
−0.092 −0.263 0.360
−0.027 −0.750 0.024
0.033 −0.145 −0.266

xYt-2	

+w
−0.032 −0.160 0.501
−0.006 −0.666 0.052
−0.012 −0.156 −0.085

x	Yt-3	+	w
0.012 −0.183 0.073
0.004 −0.635 0.028
−0.003 −0.126 −0.096

xYt-4	

+w
0.008 −0.041 0.126
−0.015 −0.529 0.008
−0.026 −0.103 −0.091

x	Yt-5	+	w
0.060 −0.041 0.038
−0.016 −0.219 0.039
−0.009 −0.004 −0.024

xYt-6	+w
−0.035
−0.007
−0.031

x	

 

Based on the ecosystem’s VAR model, despite its low to moderate fit, the impulse 

reaction analysis was performed (Figure 6). It shows a clear reaction from the ecosystem's 

carbon footprint when both DLTs generate an impulse. However, impulses from the 

ecosystem do not pose a significant reaction towards the individual's DLTs. Next to that, 

Bitcoin is affected by Ethereum but not the other way around.  

Figure 6 Results from IRF for the ecosystem 
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Upon estimating the Granger causality for the proposed VAR, the results reveal 

important relationships among the variables (see Table 13). Firstly, there is strong evidence of 

Granger causality between the carbon emissions of Ethereum, Bitcoin, and the ecosystem, as 

indicated by the p-values of 0.000. This suggests that changes in the ecosystem’s CO2 

emissions can be used to predict and explain variations in emissions from Bitcoin and 

Ethereum. Secondly, the Granger causality test indicates a significant relationship between 

Bitcoin and Ethereum, with a p-value of 0.021. This implies that fluctuations in Bitcoin may 

have an impact on Ethereum and vice versa. Additionally, Ethereum demonstrates strong 

Granger causality with the carbon footprint of the ecosystem and Bitcoin, further emphasizing 

the interconnectedness of the variables. The results of two-way Granger causality imply 

simultaneity, which is expected given that the ecosystem variable is generated by the 

summation of the original values of Ethereum and Bitcoin. When trying to derive an IV, all 

variables presented a correlation with the error term. Thus, no IV was found (see Table 36A, 

appendix A). 

 
Table 13 Granger causality for the ecosystem carbon emissions 

Y-variable Exclude DF P-value 
CO2 Ecosystem CO2 BTC 1 0.000 
CO2 Ecosystem CO2 ETH 1 0.000 
CO2 Ecosystem ALL 2 0.000 
CO2 BTC CO2 Ecosystem 1 0.07 
CO2 BTC CO2 ETH 1 0.021 
CO2 BTC ALL 2 0.012 
CO2 ETH CO2 Ecosystem 1 0.000 
CO2 ETH CO2 BTC 1 0.000 
CO2 ETH ALL 2 0.000 

Note. ETH stands for Ethereum and BTC for Bitcoin. CO2 represents carbon emission. Energy relates to energy 

consumption. DF means degrees of freedom. 

 

As with the individual blockchains, the stationarity of the residuals from the 

ecosystem was tested. The residuals were stationary for the DF and PP test; however, the 

KPSS test found the non-stationary (Table 37A, appendix A). Despite the divergence of the 

data, I continued to test for cointegration. The Johansen-Juselius test found cointegration 

within the variables (Table 38A, appendix A). Therefore, I calculated the VECM for the 

ecosystem. The VECM model is defined in expression [16]. The R-squared for the 

ecosystem’s CO2 is just below 0.5, indicating moderate explanatory power. Nevertheless, 
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there is a large improvement in the OLS R-squared, while both Bitcoin’s and Ethereum’s 

carbon emissions have a high R-squared. A positive relationship exists between the 

ecosystem’s emissions and both blockchain’s individual emissions.  
 
[16] VECM Ecosystem  
 

Variable CO2 Ecosystem CO2 BTC CO2 ETH 
R-squared  0.466 0.77 0.505 

 
 

Yt = w
−0.005
−0.049
−0.010

x CEt-1+ w
−0.859 0.114 1.214
0.037 2.806 −0.157
0.023 0.814 −0.984

xLD1 + w
−0.767 −0.082 1.213
0.008 2.055 −0.133
0.032 0.601 −0914

xLD2 + 

w
−0.592 −0.082 1.255
0.001 1.388 −0.080
−0.008 0.376 −0.633

x	LD3 +w
−0.378 −0.180 0.760
0.003 0.751 −0.050
−0.019 0.198 −0.394

xLD4 

+w
−0.189 −0.094 0.382
−0.014 0.220 −0.040
−0.042 0.038 −0.192

x	LD5 +w
−0.001
−0.000
−0.000

x 

 
Variable (1) CE 
CO2 Ecosystem 1 

CO2 BTC 
-8.007*** 
(-1.360) 

CO2 ETH 
-46.34*** 

(1.494) 
Constant 0.574 

 
Using the VECM, the log differences of the carbon emissions from the ecosystem per 

transaction were calculated. The summary statistics of the estimated variable can be found in 

Table 14. 

 
Table 14  Descriptive statistics CO2 estimates 

Variable Mean Median  SD Max Min Skewness Kurtosis Observations 
CO2 Estimate Ecosystem 0.009 0.008 0.085 1.244 -0.630 1.751 41.915 1290.000 

CO2 Estimate BTC -0.001 -0.009 0.120 0.586 -0.500 0.389 3.792 1290.000 

CO2 Estimate ETH 0.018 0.018 0.102 1.519 -0.753 1.858 45.205 1290.000 
Note. BTC stands for Bitcoin, ETH refers to Ethereum. S.D. means standard deviation, and CO2 represents carbon emission. 

All the values are calculated with log differences. 

 

All the variables have a small difference between the mean and median and are close 

to zero. They also have a standard deviation close to one. This together implies a normal 
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distribution for the values. The skewness of Bitcoin's estimated carbon emission is close to 0, 

which follows a normal distribution. But for the ecosystem and Ethereum, the skewness is 

closer to 2, implying skewness to the right. Bitcoin’s Kurtosis again follows a normal 

distribution, while Ethereum and the ecosystem present a highly positive one, exhibiting 

leptokurtic behaviour. A plot with the estimated carbon emissions per transaction of 

Ethereum, Bitcoin and the ecosystem can be found in Figure 10B - 12B in appendix B. 

To further inspect if the model has explanatory power, a two-sample t-test was 

implemented. The test compared the average estimated carbon emission per transaction of the 

ecosystem against the actual one. The t-test did not provide enough evidence to reject the 

hypothesis that the estimated CO2 equals the actual one. This implied that the proposed 

model does have some explanatory power. A summary of the test is shown in Table 15 below. 
 

Table 15  Two-Sample T-test for estimated CO2 against actual values  

Null Hypothesis P-value 

CO2 Estimate  <  Actual CO2 0.479 

CO2 Estimate  =  Actual CO2 0.959 

CO2 Estimate  >  Actual CO2 0.520 

Note. CO2 relates to carbon emission.  

5.3 Hypothesis 3 
After building the models, structural breaks were checked according to the methodology. The 

breaks were tested in two ways, using energy consumption per transaction as an explanatory 

variable and applying the models proposed in the second hypothesis. The Chow break test 

was performed for the day that China banned cryptocurrencies and the day Ethereum changed 

its consensus approach. The p-values are displayed in Tables 16 and 17. For Ethereum, a 

break in trend was found in both regressions, following expectations. Results show that only 

the change in consensus created a structural break with a 95% confidence interval. This 

implies that the Chinese legislation, despite its scope, did not change Bitcoin's carbon 

footprint trend. However, Chinese regulation would be a significant structural break if 

considering expression [7] at a 90% confidence interval (see methodology). Moreover, the 

regulatory break was not found when considering only electricity consumption in the 

proposed model from hypothesis 2.  
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Table 16  Results Chow-break considering the expression [4] 

Null Hypothesis P-value 

No Structural Break on ETH 0.000 

No Structural Break on BTC 0.076 

Note. BTC stands for Bitcoin, and ETH for Ethereum.  

 

Table 17  Results Chow-break considering proposed models [9 and 10] 

Null Hypothesis P-value 

No Structural Break on ETH 0.000 

No Structural Break on BTC 0.111 

Note. BTC stands for Bitcoin, and ETH for Ethereum. 

 

The check made using the QLR did not find any extra relevant structural breaks. 

Because a significant break was found for Ethereum, hypotheses 1 and 2 must be re-examined 

for Ethereum and the ecosystem, but not for Bitcoin individually.  

5.3.1 Reassessment of hypothesis 1 
Before reassessing the first hypothesis, I tested all the variables for unit roots considering the 

structural break. The same findings (Tables 2A-7A in appendix A) were obtained when not 

pondering structural breaks, meaning all variables were non-stationary in absolute terms. But 

when transformed into its log differences, the variables became stationary.  

When re-examining the first hypothesis with the structural breaks, there was not a 

significant difference between the average log difference of carbon emission per transaction 

of both blockchains, even after considering the first structural break. Yet, when considering 

the absolute values, a statistical difference between the blockchain was found. Their p values 

can be found in Tables 18 until 21. 
 

Table 18  Two-sample T-Test before the break 

Null Hypothesis P-value 

CO2 BTC < CO2 ETH 0.000 

CO2 BTC = CO2 ETH 0.000 

CO2 BTC > CO2 ETH 1.000 

Note. BTC stands for Bitcoin, and ETH for Ethereum. CO2 relates to carbon emission. Values are in absolute 

terms (levels).   
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Table 19  Two-sample T-Test after the break 

Null Hypothesis P-value 

CO2 BTC < CO2 ETH 0.006 

CO2 BTC = CO2 ETH 0.011 

CO2 BTC > CO2 ETH 0.995 

Note. BTC stands for Bitcoin, and ETH for Ethereum. CO2 relates to carbon emission. Values are in absolute 

terms (levels).   

 

Table 20  Two-sample T-Test before the break in logs 

Null Hypothesis P-value 

CO2 BTC < CO2 ETH 0.523 

CO2 BTC = CO2 ETH 0.952 

CO2 BTC > CO2 ETH 0.476 

Note. BTC stands for Bitcoin, and ETH for Ethereum. CO2 relates to carbon emission. Values are in log 

differences (changes).   

 

Table 21  Two-sample T-Test after the break in logs 

Null Hypothesis P-value 

CO2 BTC < CO2 ETH 0.848 

CO2 BTC = CO2 ETH 0.303 

CO2 BTC > CO2 ETH 0.151 

Note. BTC stands for Bitcoin, and ETH for Ethereum. CO2 relates to carbon emission. Values are in log 

differences (changes).   

5.3.2 Hypothesis 2 before the break  
Focusing on the regression for Ethereum’s carbon emissions before the break, energy is 

relevant in its first and fourth polynomials. This is considering OLS and NW standard errors. 

Differently from before, the second and third polynomials are irrelevant. Additionally, the 

first and second polynomial of the hashing power is found to be relevant and positive. The 

price in its first polynomial was also found to be relevant. No other variable was found to be 

relevant. The entire bottom-up approach can be found in the appendix. A total of 24 

regressions were tested when deriving the log difference of carbon emission per transaction 

for the Ethereum blockchain before the structural break (17A - 20A in appendix A). The final 

model and its coefficients can be found in Table 22. 
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Table 22  Model for Ethereum before the structural break    

Variable (1) OLS (2) NW 

Energy ETH 0.897*** 0.897*** 
(0.009) (0.011) 

   

Energy ETH 4th Polynomial -1.220*** -1.220* 
(0.214) (0.493) 

   

Hashing power ETH 0.959*** 0.959*** 
(0.035) (0.038) 

   

Hashing power ETH 2nd Polynomial -2.317* -2.317* 
(1.121) (1.145) 

   

Price ETH -0.353*** -0.353*** 
(0.015) (0.035) 

   

Constant 0.003** 0.003** 
(0.001) (0.001) 

Observations 1198 1198 
R2 0.901  
Note. Standard errors are in parentheses. The OLS column stands for the model using the Ordinary Least Square 
approach. The NW column represents the model applying Newey-West standard error. ETH stands for 
Ethereum. CO2 represents carbon emission. Energy relates to energy consumption. *p < 0.05. **p < 0.01. ***p < 
0.001. 
 

  What leaps out of the page is that the coefficient for the fourth polynomial is negative 

and bigger than one, while the first polynomial is positive and smaller than one. This implies 

that, for numbers smaller than one, energy will cause a positive effect on carbon emissions, 

while large changes in energy have a negative impact. This does go against what is suggested 

in the literature. It is expected that energy affects carbon emissions in a positive manner only. 

For the hashing power, the same pattern was found. This also contradicts the literature. 

Further, price is also found to have a negative coefficient. This suggests that when there is a 

price increase, there is less carbon used in a transaction. This goes against the idea that a 

higher price of the native token will result in a higher carbon emission because there will be 

more competition. According to Ethereum’s model, before the break, price, and therefore 

competition, drive down carbon emissions. Additionally, the constants were found relevant 

and positive. This implies that even if all other variables are zero, some underlying variable 

still generates carbon emission.  

As was done before, the Granger causality using the VAR approach considering BIC 

was calculated. In this case, the optimum number of lags is one (Table 39A in appendix A). 

The VAR derivation resulted in expression [17]. Based on the VAR model, the various R-



   
 

 49 

squared are close to zero. The R-squared indicates the proportion of the variance in each 

equation explained by the exogenous variables and suggests, in this case, that the variables 

have limited explanatory power. Only when considering the carbon footprint equation a 

similar relationship between the variables can be found in comparison to the NW model. As 

an example, the relationship direction (positive or negative) is the same. Different from the 

previous model, energy in its fourth polynomial became the largest coefficient.  

 

[17] VAR Ethereum before the break  
 

Variables CO2 
ETH 

Energy1 
ETH 

Energy4 
ETH 

Hashing1 
ETH 

Hashing4 
ETH 

Price 
ETH 

R-
squared  0.056 0.047 0.013 0.13 0.033 0.004 

 

Yt=

⎣
⎢
⎢
⎢
⎢
⎡
−0.446 0.250 −2.403 0.220 −0.741 −0.077
−0.406 0.205 −1.964 0.575 −0.512 −0.063
−0.006 0.008 0.058 0.012 −0.086 −0.002
−0.060 0.057 −0.056 −0.292 0.225 0.009
0.001 −0.001 0.000 0.002 0.138 0.001
−0.087 0.068 0.387 0.148 −0.879 −0.048⎦

⎥
⎥
⎥
⎥
⎤

	Yt-1 +

⎣
⎢
⎢
⎢
⎢
⎡
0.001
−0.000
0.000
−0.002
0.000
−0.002⎦

⎥
⎥
⎥
⎥
⎤

 

 
 

The IRF (see Figure 7) shows that no variables present a long-term reaction from the 

impulse of other variables. The hashing power in its second polynomial is the variable which 

creates the largest reaction from the carbon footprint. This goes against what was expected 

from the VAR model because the variable with the highest coefficient was energy 

consumption in its fourth polynomial. In contrast, the small reactions from the impulses were 

expected given the small R-squared for the vectors. An overview of all the impulses and 

responses is shown in Figure 7.  
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Figure 7  Results from IRF for Ethereum before the break 

This is to check if the model has some prediction power which could relate to 

explanatory as well. The p-values for all the individual factors and their clustered can be 

found in Table 23. 

 
Table 23  Granger Causality Wald Tests for Ethereum before the structural break 

Y-variable Exclude DF P-
value 

CO2 ETH Energy ETH first polynomial 1 0.004 
CO2 ETH Energy ETH fourth polynomial 1 0.000 
CO2 ETH Hashing power ETH first polynomial 1 0.123 
CO2 ETH Hashing power ETH second polynomial 1 0.840 
CO2 ETH Price ETH first polynomial 1 0.161 
CO2 ETH All 5 0.003 
Energy ETH first polynomial CO2 ETH 1 0.000 
Energy ETH first polynomial Energy ETH fourth polynomial 1 0.005 
Energy ETH first polynomial Hashing power ETH first polynomial 1 0.000 
Energy ETH first polynomial Hashing power ETH second polynomial 1 0.900 
Energy ETH first polynomial Price ETH first polynomial 1 0.2817 
Energy ETH first polynomial All 5 0.000 
Energy ETH fourth polynomial CO2 ETH 1 0.164 
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Energy ETH fourth polynomial Energy ETH first polynomial 1 0.043 
Energy ETH fourth polynomial Hashing power ETH first polynomial 1 0.075 
Energy ETH fourth polynomial Hashing power ETH second polynomial 1 0.627 
Energy ETH fourth polynomial Price ETH first polynomial 1 0.498 
Energy ETH fourth polynomial All 5 0.121 
Hashing power ETH first polynomial CO2 ETH 1 0.008 
Hashing power ETH first polynomial Energy ETH first polynomial 1 0.008 
Hashing power ETH first polynomial Energy ETH fourth polynomial 1 0.735 
Hashing power ETH first polynomial Hashing power ETH second polynomial 1 0.841 
Hashing power ETH first polynomial Price ETH first polynomial 1 0.527 
Hashing power ETH first polynomial All 5 0.011 
Hashing power ETH second 
polynomial CO2 ETH 1 0.105 
Hashing power ETH second 
polynomial Energy ETH first polynomial 1 0.384 
Hashing power ETH second 
polynomial Energy ETH fourth polynomial 1 0.992 
Hashing power ETH second 
polynomial Hashing power ETH first polynomial 1 0.115 
Hashing power ETH second 
polynomial Price ETH first polynomial 1 0.105 
Hashing power ETH second 
polynomial All 5 0.001 
Price ETH first polynomial CO2 ETH 1 0.155 
Price ETH first polynomial Energy ETH first polynomial 1 0.241 
Price ETH first polynomial Energy ETH fourth polynomial 1 0.380 
Price ETH first polynomial Hashing power ETH first polynomial 1 0.120 
Price ETH first polynomial Hashing power ETH second polynomial 1 0.732 
Price ETH first polynomial All 5 0.499 

Note. ETH stands for Ethereum. CO2 represents carbon emission. Energy relates to energy consumption. DF 

means degrees of freedom. 
 

The Granger causality test reveals significant relationships among variables in the 

Ethereum ecosystem. The tests indicate that carbon emissions and energy consumption have a 

statistically significant causal relationship. Additionally, carbon emissions are causally related 

to lagged energy consumption. Moreover, there is a significant causal relationship between 

energy consumption and hashing power, while hashing power is also causally related to 

carbon emissions. Furthermore, a lagged version of hashing power shows a significant causal 

relationship with carbon emissions.  These findings shed light on the underlying simultaneity 

between the variables. Such behaviour occurs because of endogeneity, which can be the result 

of omitted variables bias or measurement errors (Antonakis et al., 2014). 
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Because of the Granger dual causality, possible IVs were inspected. Unfortunately, all 

variables were correlated with the residuals of the model (40A in the appendix A). Thus, I am 

not able to process with the 2SLS approach. However, there is still the possibility of 

cointegration between the variables. When checking if the residuals from the model are 

stationary, the same was found to be true (41A in the appendix A). This allows me to test for 

cointegration with the Johansen-Juselius cointegration rank test. Overall, the results suggest 

that the variables in the dataset are interconnected and have long-run and short-run 

relationships. The Johansen-Juselius cointegration rank test results are in appendix A Table 

42A. 

Because cointegration was found in the VAR model, I can employ VECM. The 

VECM for Ethereum before the break is defined in expression [18]. The VECM resulted in 

equations with mixed r-squares, where some are extremely close to 0, whereas others are 

above 0.5. Further, the cointegration equation, which represents the long-run relationship of 

the exogenous variables against the endogenous. In this case, energy, price and hashing power 

in its second polynomial have a negative relation with carbon footprint, while hashing rate 

and the constant have a positive one. The short-term coefficients are all small and, in their 

majority, also present a negative relationship with carbon emissions.   

 
 
[18] VECM Ethereum before the break   
 

Variables CO2 ETH  Energy1 
ETH   

Energy4 
ETH 

Hashing1 
ETH 

Hashing4 
ETH Price ETH 

R-squared  0.029 0.008 0.002 0.663 0.037 0.008 
 
 

Yt=

⎣
⎢
⎢
⎢
⎢
⎡
−0.067
0.035
0.001
−0.087
0.000
0.020 ⎦

⎥
⎥
⎥
⎥
⎤

	CEt-1 +

⎣
⎢
⎢
⎢
⎢
⎡
0.000
0.000
0.000
0.000
0.000
0.000⎦

⎥
⎥
⎥
⎥
⎤
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Variable (1) CE 
CO2 ETH  1 

Energy1 ETH   
-1.026*** 

(0.559) 

Energy4 ETH 
-0.089 
(1.331) 

Hashing1 ETH 
9.693*** 
(0.218) 

Hashing4 ETH 
-43.3621*** 

(7.033) 

Price ETH 
-0.289*** 

(0.092) 
Constant 0.031 

 

5.3.3 Hypothesis 2 after the break 
I considered 16 models to derive the Ethereum carbon emission after the break. For the model 

after the structural break, only energy consumption in its first polynomial was found to be 

relevant. The regression has enough evidence to reject the null hypothesis of constant 

variance in the error term. Further, it was found that a serial auto relation exists up to its first 

lag. Further, the first polynomial was only found to be relevant when using NW standard 

errors. The regression can be found in Table 24.   

 
Table 24  Model for Ethereum after the structural break 

Variable (1) OLS (2) NW 

Energy ETH 0.233 0.233** 
(0.367) (0.069) 

Constant 0.241 0.241 
(0.256) (0.253) 

Observations 90 90 
R2 0.005  

Note. Standard errors are in parentheses. The OLS column stands for the model using the Ordinary Least Square 
approach. The NW column represents the model applying the Newey-West standard error. ETH stands for 
Ethereum. CO2 represents carbon emission. Energy relates to energy consumption. *p < 0.05. **p < 0.01. ***p < 
0.001. 

  

The small R-squared value in the model for Ethereum after the break leaps out of the 

page. This can be the result of the small data sample. Also, the only driver for a carbon 

footprint is energy which has a positive coefficient, which follows the literature expectations. 

The bottom-up approach for the log differences from carbon emissions from Ethereum after 

the break can be found in Tables 21A - 24A, appendix A.  
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Before I estimated the VAR model, I calculated the optimum number of lags 

considering the BIC, which is three (Table 43A, appendix A). The VAR model is defined in 

expression [19]. The VAR model presents a large improvement in the R-squared. The VAR 

indicates a negative correlation with Ethereum’s carbon emissions with its lags and a positive 

one with Ethereum's energy consumption in its first polynomial.   
 
[19] VAR Ethereum after the break 
 
Variables CO2 ETH Energy1 ETH 
R-squared  0.914 0.358 

 
 

Yt=�−1.257 1.677
0.367 0.890�	Yt-1 + �−0.555 4.023

0.095 −1.383�Yt-2 +�−0.038 2.063
−0.014 −0.311�	Yt-3+�−0.0100.057 � 

 
 From the VAR model, I estimated the IRF between the variables. Results from the IRF 

are in Figure 8. The carbon emissions of Ethereum are highly affected by itself and its energy 

consumption. On the other hand, energy consumption appears not to have large responses 

when faced with an impulse.  

 

 
Figure 8  Results from IRF for Ethereum after the structural break 
 

As conducted earlier, the Granger causality test was performed. The results (see Table 25) 

present the p-values obtained from the VAR model and indicate a significant two-way 

Granger causality relationship between Ethereum's carbon emissions and Ethereum's energy 
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consumption. This means that changes in Ethereum's energy consumption can help predict 

and explain variations in its carbon footprint and vice versa. Because of this bias, I applied the 

2SLS approach. Unfortunately, as before, no relevant IV was found because all the variables 

had a correlation with the VAR residuals (Table 44A, appendix A). 
 

Table 25  Granger Causality Wald Tests for Ethereum after the structural break 

Y-variable Exclude DF P-value 
CO2 ETH Energy ETH 1 0.000 
CO2 ETH all 1 0.000 
Energy ETH CO2 ETH 1 0.000 
Energy ETH all 1 0.000 

Note. ETH stands for Ethereum. CO2 represents carbon emission. Energy relates to energy consumption. DF 

means degrees of freedom.  

Given the two-way Granger causality, I tested if the residuals were stationary. The 

same results as for Ethereum before the break were found, meaning that residuals for the DF 

and PP tests were found stationary, whereas for KPSS non-stationary (Table 45A, appendix 

A). Once again, despite the divergence in the results, I continued to test for cointegration. The 

Johansen-Juselius cointegration rank test found cointegration within the variable (Table 46A, 

appendix A). Therefore, I estimated the VECM. The VECM for Ethereum after the break is 

shown in the Expression [20]. 
 
[20] VECM Ethereum after break 

Variables CO2 ETH  Energy1 ETH 

R-squared  0.953 0.328 
 

Yt=�−2.9040.558 � CEt-1+	� 0.627 −6.040
−0.149 1.600 �	LD1 + � 0.063 −1.999

−0.036 0.181 �LD2 +�−0.000−0.002� 
 

Variable (1) CE 
CO2 ETH  1 

Energy1 ETH 
-1.026*** 

(0.055) 
Constant -0.007 

 

The VECM model for Ethereum after the break has significant R-squares. Further, for 

the carbon footprint equation, the R-square is 0.95, which indicates a good fit within the 

model. However, the model for Ethereum’s energy consumption in its first polynomial has a 

low R-squared. The cointegration equation indicates that Ethereum’s carbon emissions and 

energy consumption have a long-term positive relationship with each other. For the carbon 
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emissions equation, in contrast with the VAR model, the coefficients of energy consumption 

became negative, and the coefficients of the carbon emissions lags became positive. 

5.3.4 Merging models 
To derive the general ecosystem formula, the predicted values for the Ethereum blockchain 

before and after the structural break were merged by connecting both data samples on the 

break day. Subsequently, the new estimate of Ethereum’s carbon emissions was regressed 

with the previously estimated emissions of Bitcoin. The result can be found in Table 26. 

 
Table 26  Model for ecosystem considering the structural break 
 
Variable (1) OLS (2) NW 

CO2 Estimate BTC 0.088 0.088 
(0.065) (0.069) 

   

CO2 Estimate ETH  0.767*** 0.767*** 
(0.073) (0.196) 

   

Constant -0.005 -0.005 
(0.008) (0.004) 

Observations 1289 1289 
R2 0.089  

Note. Standard errors are in parentheses. The OLS column stands for the model using the Ordinary Least Square 
approach. The NW column represents the model applying the Newey-West standard error. ETH stands for 
Ethereum, and BTC for Bitcoin. CO2 represents carbon emission. *p < 0.05. **p < 0.01. ***p < 0.001. 
 

For the ecosystem model considering structural breaks, only Ethereum proves relevant 

to explain the changes in the ecosystem’s carbon emission per transaction. This result 

contradicts expectations, given that Bitcoin holds a larger market value and user base and 

enjoys greater public recognition as a DLT than Ethereum. Besides that, both 

heteroskedasticity and serial autocorrelation were found.  

 Following the methodology, I minimised the BIC to discern the optimum number of 

lags in the VAR model. The minimisation showed two lags as optimal (see appendix A, Table 

47A). The VAR model is shown in expression [21]. The R-squares of all the equations in the 

VAR model are close to 0. This could indicate that other variables not included in the model 

may contribute to a more comprehensive understanding of the variables’ relationship. 
 
[21] VAR general mode for Ecosystem considering structural break 
 

Variables CO2 Ecosystem CO2 BTC CO2 ETH  
R-squared  0.035 0.443 0.163 
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Yt=w
0.121 0.035 −0.016
−0.036 −0.152 0.356
−0.005 0.005 −0.393

x	Yt-1 + w
−0.038 −0.025 −0.131
−0.002 −0.249 0.158
0.001 0.002 −0.134

xYt-2  +w
0.006
0.000
−0.00

x 

 

From the VAR model, I calculated the IRF. The IRF is displayed in Figure 9. From 

the IRF, it is possible to infer that carbon emission impulses generated by the ecosystem will 

create a permanent positive effect on itself. Further, the ecosystem does not affect the 

blockchains individually, whereas the blockchains do affect the ecosystem.   

 

 
Figure 9   IFR for The ecosystem considering the structural break 

 

 Following the IRF analysis, the Granger causality test (Table 27) examined bidirectional 

causality between variables. Results indicate no significant unidirectional Granger causality 

within the models at a 95% confidence level. However, as anticipated, closer examination 

reveals nearly significant findings, with three p-values demonstrating 94% confidence levels. 

This highlights the interactive impact of DLT systems on individual blockchains. 
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Table 27  Granger Causality Wald Test for ecosystem considering the structural break 

Y-variable Exclude DF P-value 
CO2 Ecosystem CO2 BTC 2 0.630 
CO2 Ecosystem CO2 ETH 2 0.924 
CO2 Ecosystem ALL 4 0.900 
CO2 BTC CO2 Ecosystem 2 0.059 
CO2 BTC CO2 ETH 2 0.168 
CO2 BTC ALL 4 0.059 
CO2 ETH CO2 Ecosystem 2 0.054 
CO2 ETH CO2 BTC 2 0.389 
CO2 ETH ALL 4 0.121 

Note. ETH stands for Ethereum. CO2 represents carbon emission. Energy relates to energy consumption. DF 

means degrees of freedom. 

The VAR model residuals confirmed stationary, the same way it did for Ethereum pre- 

and post-break (see Table 48A). Based on this, cointegration was examined. The Johansen-

Juselius test indicated first-rank cointegration (see Table 49A). Consequently, the VECM was 

computed to analyse the ecosystem's carbon footprint (expression [22]). 

 
[22] VECM general model for ecosystem consideringstructural break 
 

Variables CO2 Ecosystem CO2 BTC CO2 ETH  
R-squared  0.348 0.179 0.029 

 
 

Yt=w
0.001
−0.007
0.001

xCEt-1+ w
−0.422 0.093 0.084
−0.029 0.056 −2.483
−0.007 −0.045 −0.384

xLD  +w
0.006
0.000
0.000

x 

 
 

Variable (1) CE 
CO2 Ecosystem 1 

CO2 BTC 
139.004*** 

(4.622) 

CO2 ETH 
-713.248*** 

(35.643) 
Constant 0.031 

 

Results of the VECM model for the ecosystem's carbon footprint equation showed a 

moderate explanatory power (R-squared = 0.348), while Bitcoin and Ethereum equations 

exhibited a weak explanatory power (R-squared = 0.179, R-squared = 0.029). The 

cointegration equation confirmed a long-term relationship among the variables, with a 
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positive correlation observed for Bitcoin's carbon footprint and a negative correlation for 

Ethereum's carbon footprint relative to the ecosystem's carbon footprint. 

Using the VECM model, expected values for the ecosystem were estimated. Table 28 

presents descriptive statistics of estimated carbon emissions from the Ethereum blockchain 

and the ecosystem, accounting for a structural break. Bitcoin's carbon emission estimate was 

excluded because it was not changed.  
 

Table 28  Descriptive statistics of CO2 estimates for Ethereum and ecosystem 

Variable Mean Median SD Max Min Skewness Kurtosis Observations 

CO2 Estimate ETH 0.018 0.002 0.108 1.562 -0.436 3.140 39.731 1290 

CO2 Estimate Ecosystem 0.009 -0.004 0.289 9.807 -0.388 30.511 1033.184 1289 
Note. ETH refers to Ethereum. S.D. means standard deviation, and CO2 represents carbon emission. All the 

values are calculated with log differences.  

 

Similar to the descriptive statistics from before the breaks, the mean and median are 

close to each other and zero. This indicates a normal distribution. Further, the standard 

deviation is close to one, suggesting a normal distribution. Both variables' skewness is larger 

than zero, therefore not following a normal distribution. The variables present skewness to the 

right. Their kurtosis is also considerably large, which represents leptokurtic behaviour. A plot 

with the estimated carbon footprint per transaction of Ethereum and the ecosystem 

considering the break can be found in Figures 13B and 14B, appendix B. 

To further test the proposed model's explanatory power, I calculated the average log 

difference between the actual and predicted ecosystem carbon footprint. These test results can 

be found in Table 29. Based on the two-sample t-test, there is insufficient evidence to reject 

the hypothesis that the average log difference between estimated and actual carbon emissions 

of the ecosystem is not significant, suggesting some explanatory power from the proposed 

model. 
 

Table 29  Two-sample T-Test actual and predicted ecosystem carbon emissions  

Null hypothesis P-value 

CO2 Estimate Ecosystem < Actual CO2 Ecosystem 0.790 

CO2 Estimate Ecosystem = Actual CO2 Ecosystem 0.419 

CO2 Estimate Ecosystem > Actual CO2 Ecosystem 0.209 

Note. CO2 relates to carbon emission.   
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Regarding the third hypothesis, no structural break was observed for Bitcoin during the 

period of focus at a 95% confidence level. However, with a 90% confidence level, Chinese 

bans on cryptocurrencies would have resulted in a structural break for Bitcoin. Now Ethereum 

experienced a structural break due to a soft fork relevant at a 05% confidence interval.  

When reassessing the first hypothesis, a similar result from not considering the 

ecosystem was found. Thus, the carbon footprint of DLTs is different in absolute values but 

presents a non-different average change.  

For the reassessment of the second hypothesis, Bitcoin showed relevance in the first and 

fourth polynomials of energy consumption across the entire sample. Pre-break Ethereum 

demonstrated relevance in energy consumption, hashing power, and price. Post-break, only 

the energy consumption in the first polynomial remained relevant.  

When merging the model, in the simpler model, only Ethereum was considered relevant 

when explaining the carbon footprint. But when employing the more complex model, bitcoin 

also became relevant. The Granger causality test proves that the integration effect between the 

variables captured by the ecosystem Granger causes changes in the individual blockchains 

accounting for a 94% confidence interval.  

All models exhibited cointegration, enabling the use of VECM. In most cases, the 

VECMs improved the modelled relationship, as became evident through increased R-squared 

values. No statistically significant differences were found when comparing all VECM-

estimated values with actual values, verifying the proposed models' explanatory power. 

5.4 Predictive power 
The main goal of this section is to expand on the proposed model's explanatory power 

concerning the CO2 emissions of the ecosystem. To do so, I generated forecasts using the 

VECM models from hypothesis 3. The descriptive statistics of the forecasted variables can be 

found in Table 30. The forecasted values are made using the rolling window approach with 30 

days for training the models. The mean, median and standard deviation for all forecasts follow 

a normal distribution. But when considering their skewness and kurtosis, a non-normal 

distribution is found. The ecosystem skewness is negative, and Bitcoin is large and negative, 

resulting in a distribution skewed to the left, whereas Ethereum has positive skewness. For 

kurtosis, all the variables present a large and positive value. The higher the kurtosis, the more 

concentrated the values around the mean are. 
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Table 30  Descriptive statistics of CO2 estimates for ETH, BTC and ecosystem 

Variable Mean Median SD Max Min Skewness Kurtosis Observations 

CO2 Estimate 

ETH 

0.392 -0.000 29.327 915.011 -466.384 21.411 822.668 1231.000 

CO2 Estimate 

BTC 

-0.064 -0.001 5.253 76.869 -166.711 -23.425 862.564 1231.000 

CO2 Estimate 

Ecosystem 

-0.001 -0.006 0.292 1.891 -3.246 -1.696 28.694 1231.000 

Note. BTC stands for Bitcoin, ETH refers to Ethereum. S.D. means standard deviation, and CO2 represents 

carbon emission. All the values are calculated with log differences. 

 

 To inspect the explanatory power of the forecasts following the rolling window 

approach, a two-sample T-test was made against the actual values. There was not enough 

evidence to reject the null hypothesis of the average log difference of carbon emission from 

the forecast values being different from the actual ones considering a confidence level of 

95%. The p-values of the tests are displayed in Table 50A, appendix A. This implies that the 

proposed forecast has some explanatory power.  

 To further assess the explanatory power of the models, a comparison against a 

benchmark was made. The benchmark composes of an autoregressive model taking into 

account only the first lag of the endogenous variable, as explained in the methodology 

expression [10]. The descriptive statistics of the benchmark are shown in Table 31 below. 

 
Table 31  Descriptive statistics of CO2 benchmarks for ETH, BTC and ecosystem 

Variable Mean Median SD Max Min Skewness Kurtosis Observations 

CO2 Benchmark ETH 0.010 -0.000 0.091 2.506 -0.167 18.090 472.591 1231.000 

CO2 Benchmark BTC 0.020 -0.001 0.139 2.506 -0.197 8.364 103.908 1231.000 

CO2 Benchmark 

Ecosystem  

-0.002 -0.001 0.031 0.182 -0.178 -0.758 8.064 1231.000 

Note. BTC stands for Bitcoin, ETH refers to Ethereum. S.D. means standard deviation, and CO2 represents 

carbon emission. The benchmark relates to expression [8]. All the values are calculated with log differences. 

 

The variables' mean and median are close to 0, following a normal distribution. The 

benchmark for Bitcoin has a value close to zero for the standard deviation, which also follows 
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a normal distribution, conversely from the other variables. Considering the skewness, the one 

for Bitcoin is large and positive, indicating skewness to the left. Ethereum displays the same 

behaviour. The skewness of the ecosystem is close to 0. The kurtosis from all of them is large 

and positive. 

With the forecasts, I applied a DM test to search for differences between the RMSE of 

the benchmark and the predicted values. The p-values from the test can be found in Table 32. 
 

Table 32 Results from the DM test  

Null hypothesis P-value 

RMSE CO2 Ecosystem Estimate < RMSE Ecosystem CO2 Benchmark 0.925 

RMSE CO2 Ecosystem Estimate = RMSE CO2 Ecosystem Benchmark 0.149 

RMSE CO2 Ecosystem Estimate > RMSE CO2 Ecosystem Benchmark 0.074 

RMSE CO2 ETH Estimate < RMSE CO2 ETH Benchmark 0.552 

RMSE CO2 ETH Estimate = RMSE CO2 ETH Benchmark 0.897 

RMSE CO2 ETH Estimate > RMSE CO2 ETH Benchmark 0.448 

RMSE CO2 BTC Estimate < RMSE CO2 BTC Benchmark 1.000 

RMSE CO2 BTC Estimate = RMSE CO2 BTC Benchmark 0.000 

RMSE CO2 BTC Estimate > RMSE CO2 BTC Benchmark 0.000 

Note. CO2 relates to carbon emission. BTC stands for Bitcoin, ETH refers to Ethereum. The benchmark relates 

to the expression [8] 

 

According to the DM test, there is not enough evidence to reject the hypothesis that 

the models have an equal RMSE for Ethereum and the ecosystem's carbon footprint. This 

implies that the proposed model does have strong explanatory power. This also means that the 

proposed model is equal to the benchmark in any situation. So, despite not adding any extra 

information against the lag of the endogenous variable, it can still model relevant information. 

However, the DM test states that the model average is larger and different than the benchmark 

for Bitcoin. Thus, the proposed model for Bitcoin has a worse predictive power than the 

benchmark model.  
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CHAPTER 6 Conclusion 

In this chapter, I will accept or reject the hypotheses derived from the literature, while 

discussing their implications. After, the research question “What are the main drivers of the 

carbon footprint from the public blockchain ecosystem and its externalities between 2019-

2022?” will be answered. Lastly, the research limitations will be discussed, together with 

recommendations for future research.   

6.1 Hypothesis 1 

The first hypothesis tested whether blockchains differ in their average carbon emission per 

transaction over time. Previous research looked for differences between different consensus 

mechanisms and found relevant results (de Vries et al., 2022). Blockchains with the same 

consensus mechanism have dissimilarities in their protocol, network, and application layers. 

However, those dissimilarities are less evident than for blockchains with different consensus 

mechanisms. To expand on the literature, the first hypothesis was derived:   
 

“There is a statistical difference between the average carbon emissions per transaction 

across different DLTs.” 
 

A Two-sample T-Test on the cleaned variables showed a difference in the average 

carbon emissions per transaction between different DLTs. This is shown in the results Table 

6. There is not enough statistical evidence to reject hypothesis one. In other words, 

dissimilarities in the DLTs generate statistically different carbon footprints in absolute terms. 

This is a favourable discovery for the future development of DLTs because it means that there 

are multiple ways to decrease carbon footprint significantly.  

For the Two-sample T-Test considering the log difference of the carbon emissions per 

transaction, there was insufficient evidence of differences in trends. So, despite their 

statistically different absolute values, their average daily change is not significantly different. 

This result signals the difficulty of maintaining a sustainable DLT.    
 

6.2 Hypothesis 2 

Hypothesis 1 found an absolute difference in carbon emissions across DLTs, but not in their 

daily changes. The second hypothesis investigated the main drivers for the daily change in the 

carbon emissions of the blockchain ecosystem. The second hypothesis is: 
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“Energy consumption, hashing rate, e-waste generation, and prices of native tokens have a 

significant explanatory effect on the blockchain's ecosystem carbon footprint.” 

 

Considering the whole sample, only energy consumption was relevant for explaining 

the carbon emissions of the ecosystem. Based on this, the second hypothesis was rejected. 

This is understandable because the most common method for calculating carbon emissions is 

based solely on energy use. Further, if the energy consumption of the ecosystem were to be 

computed using a direct method, it would most likely be based on other variables, such as 

hashing power and the price of the native tokens.  

The VAR models, which I used to study carbon emissions in more detail, present an 

improvement in the R-squares of the OLS equations. The IRF showed that impulse in the 

carbon emissions of the ecosystem and individual DLTs do have a short-term response, but 

that the responses die out in the long run. The Granger test revealed a two-way Granger 

causality between the variables. When performing the 2SLS, all variables utilized in this 

research were found to have a correlation with the residuals from the VAR models. Thus, it 

was impossible to generate a relevant IV. I recommend future research to expand on IVs.  

Trying to improve the understanding of carbon emissions’ externalities, the residuals 

of the VAR models were found stationary, for two out of three tests employed. Further, the 

variables for all individual models have cointegration considering the VARs. Consequently, I 

was able to apply VECM model. The VECM models also improved the explanatory of the 

relationship, in comparison to the VAR. The cointegration coefficients indicate that the 

ecosystem has a positive and significant long-term relationship within the variables. This 

implies that regulations, motivating miners and stakers to run their computers on renewable 

energy sources, are likely to affect the ecosystem’s carbon emissions in the long run. On the 

private side, parties should prioritize energy consumption to maintain the ecosystem when 

creating new DLTs to minimize their carbon footprint. 

 

6.3 Hypothesis 3 

In the last years, DLTs are facing increasing regulations and updates. To some extent, those 

changes are triggered by sustainability concerns. Therefore, I derived the third hypothesis for 

testing if those legislative and technical changes affect the ecosystem's carbon emissions. The 

hypothesis is: 

 



   
 

 65 

 

“There is at least one structural break in a blockchain carbon footprint per transaction”. 

 

With a 5% error level, the Chinese government's change in legislation did not have 

enough data to support the hypothesis that there was a structural break, but it did so on a 10% 

level. With more data, relevant breaks could have been found. For Ethereum, the soft fork that 

changed its protocol was found to have caused a significant structural break. Consequently, 

there is insufficient evidence to reject the hypothesis. This means that updating DLT layers 

makes it possible to change the carbon emission trend. The impact of the structural break goes 

in line with what is expected. The primary external benefit of the protocol change is the 

reduction in energy consumption, which directly impacts a DLT's CO2 emissions. Using the 

QLR approach, which essentially implies doing a Chow-Break test for all the possible 

periods, I did not locate another relevant break in the sample. Given that a structural break 

was found at a 95% confidence level for Ethereum, hypotheses one and two must be re-

examined. This will allow a more comprehensive description of the ecosystem's carbon 

footprint. 

6.3.1 Reassessment of hypothesis 1 

When accounting for the structural break, the same results for hypothesis 1, as not considering 

the break, were found. This affirms that the first hypothesis cannot be rejected, making the 

result more robust. It is possible to discern with certainty that, while the Ethereum blockchain 

was following a PoW approach, it presented a statistically different carbon emission per 

transaction compared to Bitcoin. The same was found for Ethereum following PoS, after the 

break. However, there was insufficient evidence to prove that the average change in emissions 

between DLTs differs in the log differences and considering the structural break. This implies 

that both PoW and PoS have a similar underlying trend represented by the log differences. A 

similar conclusion was drawn when not accounting for structural breaks.   

6.3.2 Reassessment of hypothesis 2 

The structural break also affects how the model derivation is applied. Because of the break, 

the data sample was split in two, one before and one after the event. The model underwent 

significant change before the break. The variables failed the stationarity test in absolute terms, 

but all variables were found stationary in their log differences. For Ethereum pre-break, the 

hashing power and price became significantly relevant in addition to energy consumption. 
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This follows the expectation from de Vries et al. (2022), who add more focus on externalities 

when accounting for a DLTs carbon footprint. This research's proposed model similarly 

suggests that a group running a PoW DLT must consider three variables and their polynomial 

properties to optimize carbon emission.   

Ethereum, after the break, kept a similar model as when not considereding the break, in 

which only energy in its first polynomial was significant. This implies that there may be an 

omitted variable bias. Thus, more indirect variables could affect the PoS blockchain's carbon 

emissions per transaction trends.  

The model for the ecosystem, with the NW standard errors, revealed that only Ethereum 

is relevant to explain the ecosystem's emissions. Thus, while Ethereum ran a PoW approach, 

energy hashing power and price were relevant. Once the soft fork happened, only energy 

continued to be relevant. As a result, the second hypothesis considering structural breaks, 

should be rejected.  

The model in its VAR showed a worsening in its R-squared, in comparison to the NW. 

Thus, having a worse explanatory power. In the VAR case, all equations were found relevant. 

The second hypothesis continues to be rejected because, after the break, only energy is 

statistically relevant. The IRF found that shock in the ecosystem carbon footprint caused by 

itself have a permanent positive response. The Granger causality test found that there is a two-

way Granger causality within the variables. When testing for IVs, no available variable was 

found relevant. Further, the unit root tests indicated that the residuals are non-stationary. Also, 

the VAR model equations cointegrate with each other. The VECM model shows an 

improvement in the R-squares. The cointegration equation from the VECM found that most of 

the time DLTs have a positive relationship with the ecosystem in the long turn. This implies 

that permanent impulses (e.g., regulation and forks), to have a lasting effect on the carbon 

footprint of the ecosystem, can target individual DLTs. This is because the long-term 

relationship caused by the cointegration will reach a new equilibrium that accounts for the 

exogenous sock. 

6.4  Predictive power 
The predictive power from the VECM derived during the second and third hypothesis was 

assessed using the DM test. The benchmark used for the DM test is a simple AR(1) model. 

The proposed VECM for Ethereum and the whole ecosystem did not have a statistically 

different average RMSE in comparison to the benchmarks. Implying that the predictive power 

of the proposed VECM does not add enough information to the relationship to outperform a 
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model constructed with only the information of the lag of the exogenous variables. For 

Bitcoin’s VECM, the DB highlights its weak predictive power. The VECM model has a 

higher and statistically different RMSE. Thus, despite the higher R-squares from the VECM, 

which suggest a superior explanatory power, they do not have a stronger explanatory power 

than the benchmark. 

6.5   Answering the research question 

All the hypotheses were derived to assist in answering the research question: 

 

“What are the main drivers of the carbon footprint from the blockchain ecosystem and 

its externalities between 2019-2022?” 

 

According to this research, energy consumption is the primary driver of the carbon 

footprint for the public blockchain ecosystem. Energy consumption is the only variable 

relevant over the years 2019-2022. In most cases, energy consumption positively affects 

carbon emissions. Other variables were proven relevant to explain carbon emissions drivers in 

DLTs: price of native tokens and hashing power of DLTs. This research's models exhibit 

cointegration within the variables. Thus, permanent shocks in individual drivers will have a 

lasting effect on carbon emissions. However, the variables stopped being relevant because of 

the soft fork in Ethereum. Consequently, as it is known that other DLTs with a similar 

structure exist, those variables are still considered relevant for future DLT projects and 

regulations.  

Based on the models given, it is possible to assume that as hashing power increases 

considerably, users with outdated technology (temporarily) stop mining to save costs. 

Consequently, after miners disactivated their node, the hashing power decreases. If the shift is 

significant enough, the DLT's carbon footprint decreases correspondingly. However, if the 

decline in hashing power does not pass a minimum threshold, the negative externality is that 

ecosystem's carbon footprint is predicted to increase. This is contrary to expectations. 

 Another key finding is that increases in prices of native tokens and the hashing power 

will decrease the carbon emissions in the long run due to an increase in the competitiveness in 

the environment. Increases in price drive up the overall hashing power for DLTs, 

simultaneously, increases in hashing power also decreases the number of users mining nodes. 

The result of this is the externality of miners purchasing more efficient equipment. This is a 

positive externality, while new equipment is expected to consume less energy and 
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consequently, contributes to diminishing carbon footprints. Thus, if the price of native tokens 

and/or hashing power levels increase, and enough miners upgrade equipment, the ecosystem's 

carbon footprint is likely to decrease. 

6.6   Limitations and recommendations 

The primary limitation of this research stems from the scarcity of data available for small and 

private DLTs. In order to comprehend the intricacies associated with their carbon footprint, 

one must conduct thorough investigations that delve deep into the distinctions among 

different layers of blockchain technologies. Finding data without incurring excessive costs 

poses a significant challenge, although Bitcoin and Ethereum constitute approximately 80% 

of the public ecosystem (The White House, 2022).   

It is crucial to acknowledge that the ecosystem modelling process, as how I developed it 

within this research, is an indirect approach to calculate its carbon emissions. An alternative 

study may find ways to employ a direct method for peer-reviewing the identified drivers. 

Therefore, future research should consider adopting multiple approaches to validate and 

enhance the understanding of carbon emissions in DLTs.  

Furthermore, new research focusing on potential IVs is needed to address the 

endogeneity discovered while estimating the relationship between electricity consumption and 

carbon emissions in DLTs. Essentially, IVs act as proxy variables that are correlated with the 

endogenous variable of interest, but not directly correlated with the error term in the 

regression equation. One potential instrumental variable to explore in future research is the 

renewable energy mix from the geo-locations of miners. This variable could capture the 

exogenous variation in electricity sources and serve as a suitable instrument to address 

endogeneity concerns. By incorporating additional relevant IVs into the analysis, researchers 

can obtain more reliable and unbiased estimates of the causal relationship between electricity 

consumption and carbon emissions in DLTs, ultimately contributing to a more robust 

understanding of blockchain technologies’ environmental impact.  

Notably, energy consumption emerged as the sole pertinent variable throughout the 

entire data sample investigated. Therefore, the most effective strategy to reduce the carbon 

footprint of a DLT lies in adopting a PoS approach. According to this research’ findings, a 

systematic and gradual transition from PoW to PoS consensus mechanisms would have 

positive externalities. I recommend regulatory entities to incentivize the aforementioned 

transition, for instance with tax cuts on utility costs. Ideally, stakeholders involved in DLTs 

should prioritize formulating and initiating regulatory actions, while involving experienced 
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blockchain developers in the process. Control on energy consumption required per transaction 

is vital to foster blockchains. 

This research presented variables that lost their relevance after the structural break, 

which should still be taken into account in future research or regulation, or DLT ventures. 

Data from the layers of Ethereum before the break can be used as a point of reference, 

because there are still similar DLTs existent or under development in the ecosystem. 

Lastly, because of the competitive relationship between the variables in the long-run, 

future regulation should promote R&D in more efficient mining hardware and set policies to 

accelerate the adoption rate from miners towards more efficient hardware.  

In conclusion, despite the aforementioned limitations, this research sheds light on the 

complexities associated with the carbon footprint of DLTs. It highlights the necessity for 

careful exploration of various blockchain technology layers and emphasizes the significance 

of energy consumption control.  
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APPENDIX A   TABLES  

List of tables: 
Table 1A – List of Ethereum's forks 

Table 2A – Results unit root tests DF  

Table 3A - Results unit root tests DF log difference  

Table 4A - Results unit root tests PP  

Table 5A - Results unit root tests PP log difference 

Table 6A - Results unit root tests KPSS  

Table 7A - Results unit root tests KPSS log difference 

Table 8A – Tables bottom-up BTC 

Table 9A– Tables bottom-up BTC 

Table 10A– Tables bottom-up BTC 

Table 11A– Tables bottom-up BTC 

Table 12A– Tables bottom-up ETH 

Table 13A– Tables bottom-up ETH 

Table 14A– Tables bottom-up ETH 

Table 15A– Tables bottom-up ETH 

Table 16A– Tables bottom-up ETH 

Table 17A– Tables bottom-up before break ETH 

Table 18A – Tables bottom-up before break ETH 

Table 19A – Tables bottom-up before break ETH 

Table 20A– Tables bottom-up before break ETH 

Table 21A – Tables bottom-up after break ETH 

Table 22A – Tables bottom-up after break ETH 

Table 23A – Tables bottom-up after break ETH 

Table 24A – Tables bottom-up after break ETH 

Table 25A – Breusch-Pagan/Cook-Weisberg test for heteroskedascity 

Table 26A – Breusch-Godfrey LM test for autocorrelation 

Table 27A – BIC minimisation for Ethereum 

Table 28A – IV correlation matrix for Ethereum 

Table 29A - Results for the unit root tests of the residuals  
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Table 30A – Cointegration test for Ethereum 

Table 31A – BIC minimisation for Bitcoin 

Table 32A - IV correlation matrix for Bitcoin  

Table 33A - Results for the unit root tests of the residuals BTC  

Table 34A Cointegration test for Bitcoin 

Table 35A – BIC minimisation for the ecosystem   

Table 36A IV correlation matrix for Ecosystem   

Table 37A - Results unit root test of the residuals of the ecosystem  

Table 38A – Cointegration test for the ecosystem  

Table 39A BIC minimisation for Ethereum before the break    

Table 40A- IV correlation matrix for Ethereum before the break  

Table 41A  - Results for the unit root tests of the residuals of Ethereum before the break  

Table 42A – Cointegration test for Ethereum before the break  

Table 43A BIC minimisation for Ethereum after the break    

Table 44A IV correlation matrix for Ethereum after the break  

Table 45A  - Results unit root test of the residuals of Ethereum after the break  

Table 46A – Cointegration test for Eth after the break  

Table 47A - BIC minimisation for ecosystem considering the structural break  

Table 48A  Results unit root test for ecosystem considering the structural break  

Table 49A – Cointegration test for ecosystem considering the structural break  

. 
 
Table 1A Ethereum fork history 
 
Fork name Date Description 
Muir Glacier 

02/01/2020 
decrease waiting times in sending transactions and 
using apps 

staking deposit contract 
deployed 14/10/2020 

implemented staking in the ecosystem 

Beacon Chin Genesis 01/12/2020 skating chain started 
Berlin 15/04/2021 optimization of transaction costs 
London 05/08/2021 further updated on transaction costs 
Altair 27/10/2021 increased monitoring and penalties on validators 
Arrow Glacier 

09/12/2021 
decrease waiting times in sending transactions and 
using apps 

Gray Glacier 
30/06/2022 

decrease waiting times in sending transactions and 
using apps 

Bellatrix 06/09/2022 preparing for the merge 
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Paris 15/09/2022 change of proof of work to proof of stake 
Note. Forks of 2023 are not considered given the scope of this research.  

Table 2A  Results Dickey-Fuller test for unit root on cleaned variables 
 

Null hypothesis P-value 

Energy BTC Random Walk Without Drift 0.000 

Price BTC Random Walk Without Drift 0.671 

Hash BTC Random Walk Without Drift 0.000 

CO2 BTC Random Walk Without Drift 0.000 

Energy ETH Random Walk Without Drift 0.307 

E-waste Random Walk Without Drift 0.847 

Price ETH Random Walk Without Drift 0.542 

Hash ETH Random Walk Without Drift 0.762 

CO2 ETH Random Walk Without Drift 0.141 

CO2 Ecosystem Random Walk Without Drift 0.141 

Energy ETH Random Walk Without Drift Before Break 0.691 

E-waste Random Walk Without Drift Before Break 0.692 

Price ETH Random Walk Without Drift Before Break 0.581 

Hashing power ETH Random Walk Without Drift Before Break 0.940 

CO2 ETH Random Walk Without Drift Before Break 0.120 

Energy ETH Random Walk Without Drift After Break 0.060 

E-waste Random Walk Without Drift After Break 0.530 

Price ETH Random Walk Without Drift After Break 0.243 

Hashing power ETH Random Walk Without Drift After Break 0.056 

CO2 ETH Random Walk Without Drift After Break 0.173 

Note. BTC stands for Bitcoin, and ETH for Ethereum. CO2 relates to carbon emission. The log difference 

represents the change in the CO2 levels.  

 
Table 3A  Results Dickey-Fuller test for unit root on log differences 
 

Null hypothesis P-value 

Energy BTC Random Walk Without Drift 0.000 

Price BTC Random Walk Without Drift 0.000 

Hashing power BTC Random Walk Without Drift 0.000 

CO2 BTC Random Walk Without Drift 0.000 

Energy ETH Random Walk Without Drift 0.000 

E-waste Random Walk Without Drift 0.000 

Price ETH Random Walk Without Drift 0.000 
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Hashing power ETH Random Walk Without Drift 0.000 

CO2 ETH Random Walk Without Drift 0.000 

CO2 Ecosystem Random Walk Without Drift 0.000 

Energy ETH Random Walk Without Drift Before Break 0.000 

E-waste Random Walk Without Drift Before Break 0.000 

Price ETH Random Walk Without Drift Before Break 0.000 

Hashing power ETH Random Walk Without Drift Before Break 0.000 

CO2 ETH Random Walk Without Drift Before Break 0.000 

Energy ETH Random Walk Without Drift After Break 0.000 

E-waste Random Walk Without Drift After Break 0.000 

Price ETH Random Walk Without Drift After Break 0.000 

Hashing power ETH Random Walk Without Drift After Break 0.000 

CO2 ETH Random Walk Without Drift After Break 0.000 

Note. Note. BTC stands for Bitcoin, and ETH for Ethereum. CO2 relates to carbon emission. The log difference 

represents the change in the CO2 levels.  

 
Table 4A  Results Phillips-Perron test for unit root on cleaned variables 
 

Null hypothesis P-value 

Energy BTC Random Walk Without Drift 0.045 

Price BTC Random Walk Without Drift 0.665 

Hashing power BTC Random Walk Without Drift 0.000 

CO2 BTC Random Walk Without Drift 0.000 

Energy ETH Random Walk Without Drift 0.860 

E-waste Random Walk Without Drift 0.322 

Price ETH Random Walk Without Drift 0.607 

Hashing power ETH Random Walk Without Drift 0.627 

CO2 ETH Random Walk Without Drift 0.918 

CO2 Ecosystem Random Walk Without Drift 0.743 

Energy ETH Random Walk Without Drift Before Break 0.691 

E-waste Random Walk Without Drift Before Break 0.895 

Price ETH Random Walk Without Drift Before Break 0.590 

Hashing power ETH Random Walk Without Drift Before Break 0.940 

CO2 ETH Random Walk Without Drift Before Break 0.682 

Energy ETH Random Walk Without Drift After Break 0.006 

E-waste Random Walk Without Drift After Break 0.196 

Price ETH Random Walk Without Drift After Break 0.243 
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Hashing power ETH Random Walk Without Drift After Break 0.008 

CO2 ETH Random Walk Without Drift After Break 0.608 

Note. BTC stands for Bitcoin, and ETH for Ethereum. CO2 relates to carbon emission. The log difference 

represents the change in the CO2 levels.  

 
Table 5A  Results Phillips-Perron test for unit root on log differences 
 

Null hypothesis P-value 

Energy BTC Random Walk Without Drift 0.000 

Price BTC Random Walk Without Drift 0.000 

Hashing power BTC Random Walk Without Drift 0.000 

CO2 BTC Random Walk Without Drift 0.000 

Energy ETH Random Walk Without Drift 0.000 

E-waste Random Walk Without Drift 0.000 

Price ETH Random Walk Without Drift 0.000 

Hashing power ETH Random Walk Without Drift 0.000 

CO2 ETH Random Walk Without Drift 0.000 

CO2 Ecosystem Random Walk Without Drift 0.000 

Energy ETH Random Walk Without Drift Before Break 0.000 

E-waste Random Walk Without Drift Before Break 0.000 

Price ETH Random Walk Without Drift Before Break 0.000 

Hashing power ETH Random Walk Without Drift Before Break 0.000 

CO2 ETH Random Walk Without Drift Before Break 0.000 

Energy ETH Random Walk Without Drift After Break 0.000 

E-waste Random Walk Without Drift After Break 0.000 

Price ETH Random Walk Without Drift After Break 0.000 

Hashing power ETH Random Walk Without Drift After Break 0.000 

CO2 ETH Random Walk Without Drift After Break 0.000 

Note. BTC stands for Bitcoin, and ETH for Ethereum. CO2 relates to carbon emission. The log difference 

represents the change in the CO2 levels.  

 
Table 6A  Results Kwiatkowski-Phillips-Schmidt-Shin test for unit root on cleaned variables 
 

Null hypothesis Test statistic 
Energy BTC Random Walk Without Drift 9.67 (0 lag) 

Price BTC Random Walk Without Drift 15.2. (0 lag) 

Hashing power BTC Random Walk Without Drift 1.101 (0 lag) 

CO2 BTC Random Walk Without Drift 5.2 (0 lag) 
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Energy ETH Random Walk Without Drift 9.16 (0 lag) 

E-waste Random Walk Without Drift 11.70 (0 lag) 

Price ETH Random Walk Without Drift 12.70 (0 lag) 

Hashing power ETH Random Walk Without Drift 7.88 (0 lag) 

CO2 ETH Random Walk Without Drift 7.68 (0 lag) 

CO2 Ecosystem Random Walk Without Drift 2.783 (0 lag) 

Energy ETH Random Walk Without Drift Before Break 24.7 (0 lag) 

E-waste Random Walk Without Drift Before Break 8.22(0 lag) 

Price ETH Random Walk Without Drift Before Break 10.1 (0 lag) 

Hashing power ETH Random Walk Without Drift Before Break 21.7 (0 lag) 

CO2 ETH Random Walk Without Drift Before Break 23.7 (0 lag) 

Energy ETH Random Walk Without Drift After Break 0.611 (0 lag) 

E-waste Random Walk Without Drift After Break 0.410 (0 lag) 

Price ETH Random Walk Without Drift After Break 0.479 (0 lag) 

Hashing power ETH Random Walk Without Drift After Break 0.751 (0 lag) 

CO2 ETH Random Walk Without Drift After Break 0.758 (0 lag) 

Note. BTC stands for Bitcoin, and ETH for Ethereum. CO2 relates to carbon emission. The log difference 
represents the change in the CO2 levels. The critical value for the KPSS test is 0.146 
 
Table 7A  Results Kwiatkowski-Phillips-Schmidt-Shin test for unit root on log differences 
 

Null hypothesis Test statistic 
Energy BTC Random Walk Without Drift 0.076 (18 lag) 

Price BTC Random Walk Without Drift 0.143 (22 lag) 

Hashing power BTC Random Walk Without Drift 0.025 (22 lag) 

CO2 BTC Random Walk Without Drift 0.037 (22 lag) 

Energy ETH Random Walk Without Drift 0.149 (0 lag) 

E-waste Random Walk Without Drift 0.07 (0 lag) 

Price ETH Random Walk Without Drift 0.167 (2 lag) 

Hashing power ETH Random Walk Without Drift 0.185 (0 lag) 

CO2 ETH Random Walk Without Drift 0.084(0 lag) 

CO2 Ecosystem Random Walk Without Drift 0.107 (0 lag) 

Energy ETH Random Walk Without Drift Before Break 0.063 (22 lag) 

E-waste Random Walk Without Drift Before Break 0.072 (0 lag) 

Price ETH Random Walk Without Drift Before Break 0.167 (2 lag) 

Hashing power ETH Random Walk Without Drift Before Break 0.266 (15 lag) 

CO2 ETH Random Walk Without Drift Before Break 0.025 (0 lag) 

Energy ETH Random Walk Without Drift After Break 0.135 (0 lag) 
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E-waste Random Walk Without Drift After Break 0.273 (0 lag) 

CO2 Ecosystem Random Walk Without Drift After Break 0.018 (11 lag) 

CO2 Ecosystem Random Walk Without Drift Before Break 0.065 (19 lag) 

Price ETH Random Walk Without Drift After Break 0.062 (11 lag) 

Hashing power ETH Random Walk Without Drift After Break 0.113 (11 lag) 

CO2 ETH Random Walk Without Drift After Break 0.074 (0 lag) 

Note. BTC stands for Bitcoin, and ETH for Ethereum. CO2 relates to carbon emission. The log difference 
represents the change in the CO2 levels. The critical value for the KPSS test is 0.146 
 
Table 8A  BTC Energy 
 

Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. ***p < 0.001. 
 
Table 9A  Hashing Power BTC 
 

Variable (1) OLS (2) OLS (3) OLS (4) OLS 
Energy BTC 0.969*** 0.969*** 0.969*** 0.969*** 

(0.006) (0.006) (0.006) (0.006) 
Energy BTC 4rd Polynomial 0.461** 0.454** 0.461** 0.460** 

(0.163) (0.163) (0.163) (0.163) 
Hashing power BTC 0.000    

(0.000)    
Hashing power BTC 2nd 
Polynomial 

 -0.000   
 (0.000)   

Hashing power BTC 3rd 
Polynomial 

  0.000  
  (0.000)  

Hashing power BTC 4th 
Polynomial 

   0.000 
   (0.000) 

Constant 0.000 0.000 0.000 0.000 
(0.001) (0.001) (0.001) (0.001) 

Observations 1289 1289 1289 1289 
R2 0.950 0.950 0.950 0.950 

Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. ***p < 0.001. 
 

Table 10A  E-waste BTC  
 

Variable (1) OLS (2) NW (3) OLS (4) OLS (5) OLS 
Energy BTC 0.969*** 0.969*** 0.971*** 0.971*** 0.971*** 

Variable (1) OLS (2) NW (3) OLS (4) NW (5) OLS (6) OLS (7) NW 
Energy BTC 0.971*** 0.971*** 0.968*** 0.968*** 0.978*** 0.969*** 0.969*** 

(0.006) (0.007) (0.006) (0.007) (0.008) (0.006) (0.007) 
Energy BTC 
2nd Polynomial 

  0.077* 0.077    
  (0.031) (0.043)    

Energy BTC 
3rd Polynomial 

    -0.119   
    (0.100)   

Energy BTC 
4th Polynomial 

     0.461** 0.461** 
     (0.163) (0.164) 

Constant 0.000 0.000 -0.001 -0.001 0.000 0.000 0.000 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Observations 1289 1289 1289 1289 1289 1289 1289 
R2 0.950  0.950  0.950 0.950  
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(0.006) (0.007) (0.006) (0.006) (0.006) 
Energy BTC 4 0.467** 0.467**    

(0.163) (0.163)    
E-waste  0.079* 0.079    

(0.040) (0.049)    
E-waste 2nd 
Polynomial  

  1.353   
  (0.868)   

E-waste 3rd 
Polynomial 

   7.251  
   (10.110)  

E-waste 4th 
Polynomial 

    59.330 
    (102.500) 

Constant 0.000 0.000 0.000 0.000 0.000 
(0.001) (0.001) (0.001) (0.001) (0.001) 

Observations 1289 1289 1289 1289 1289 
R2 0.950  0.950 0.950 0.950 

Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. ***p < 0.001. 
 
Table 11A  Price BTC  
 

Variable (1) OLS (2) OLS (3) OLS (4) OLS 
Energy BTC 0.970*** 0.969*** 0.969*** 0.969*** 

(0.006) (0.006) (0.006) (0.006) 
Energy BTC 4th 
Polynomial 

0.462** 0.462** 0.462** 0.462** 
(0.163) (0.163) (0.163) (0.163) 

Price BTC 0.003    
(0.002)    

Price BTC 2nd 
Polynomial 

 0.000   
 (0.000)   

Price BTC 3rd 
Polynomial 

  0.000  
  (0.000)  

Price BTC 4th 
Polynomial 

   0.000 
   (0.000) 

Constant 0.000 0.000 0.000 0.000 
(0.001) (0.001) (0.001) (0.001) 

Observations 1289 1289 1289 1289 
R2 0.950 0.950 0.950 0.950 

Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. ***p < 0.001. 
 
 
Table 12A  Energy ETH  
 

Variable (1) OLS (2) OLS (3) OLS (4) NW (5) NW (6) NW (7) OLS 
Energy ETH 0.371*** 0.845*** 1.047*** 0.371*** 0.845*** 1.047*** 1.062*** 

(0.110) (0.248) (0.227) (0.088) (0.183) (0.199) (0.201) 
Energy ETH  
2nd 
Polynomial 

 -0.116** -0.549***  -0.116** -0.549** -0.099 

 (0.040) (0.114)  (0.039) (0.173) (0.719) 

Energy ETH  
3rd 
Polynomial 

  0.072***   0.073* -0.159 

  (0.013)   (0.028) (0.359) 

Energy ETH  
4th 
Polynomial 

      0.027 

      (0.041) 
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Constant 0.016 0.018 0.022 0.016 0.018 0.022 0.019 
(0.017) (0.018) (0.019) (0.018) (0.018) (0.018) (0.019) 

Observations 1289 1289 1289 1289 1289 1289 1289 
R2    0.014 0.020 0.025 0.026 

Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. ***p < 0.001. 
 
 
Table 13A Hashing Power ETH  
 

Variable (1) OLS (2) OLS (3) OLS (4) OLS 
Energy ETH 1.042*** 1.051*** 1.055*** 1.054*** 

(0.199) (0.200) (0.200) (0.200) 
     
Energy ETH 2nd Polynomial -0.507** -0.333 -0.121 -0.129 

(0.177) (0.677) (0.715) (0.715) 
     
Energy ETH 3rd Polynomial 0.058 0.002 -0.067 -0.064 

(0.031) (0.216) (0.228) (0.228) 
Hashing power ETH  0.975    

(0.862)    
Hashing power ETH 2nd Polynomial   3.005   

 (9.114)   
Hashing power ETH 3rd Polynomial   4.212  

  (6.832)  
Hashing power ETH 4th Polynomial    2.939 

   (4.862) 
Constant 0.023 0.019 0.019 0.019 
 (0.018) (0.020) (0.019) (0.019) 
Observations 1289 1289 1289 1289 
R2 0.026 0.025 0.026 0.026 

Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. ***p < 0.001. 
 
Table 14A  Dummy Variable Protocol ETH  
 

Variable (1) OLS 
Energy ETH 1.059*** 

(0.198) 
Energy ETH 2nd Polynomial -0.565** 

(0.172) 
Energy ETH 3rd Polynomial 0.075** 

(0.028) 
Protocol 0.273 

(0.072) 
Constant 0.005 

(0.018) 
Observations 1289 
R2 0.036 

Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. ***p < 0.001. 
 
Table 15A  E-waste ETH  
 

Variable (1) OLS (2) OLS (3) OLS (4) OLS 
Energy ETH 1.046*** 1.047*** 1.047*** 1.047*** 

(0.199) (0.199) (0.199) (0.199) 
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Energy ETH 2nd Polynomial -0.548** -0.548** -0.549** -0.549** 
(0.173) (0.173) (0.173) (0.173) 

Energy ETH 3rd Polynomial 0.072* 0.072* 0.072* 0.072* 
(0.028) (0.028) (0.028) (0.028) 

E-waste 0.106    
(0.909)    

E-waste 2nd Polynomial  -8.691   
 (19.88)   

E-waste 3rd Polynomial   -9.181  
  (231.1)  

E-waste 4th Polynomial    -361.8 
   (2344.5) 

Constant 0.022 0.026 0.023 0.023 
(0.018) (0.019) (0.018) (0.018) 

Observations 1289 1289 1289 1289 
R2 0.025 0.025 0.025 0.025 

Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. *** p< 0.001. 
 
Table 16A  Price ETH  
 

Variable (1) OLS (2) OLS (3) OLS (4) OLS 
Energy ETH 1.072*** 1.061*** 1.069*** 1.058*** 

(0.204) (0.201) (0.202) (0.201) 
Energy ETH 2nd 
Polynomial 

-0.561** -0.553** -0.555** -0.551** 
(0.174) (0.173) (0.173) (0.173) 

Energy ETH 3rd 
Polynomial 

0.074** 0.073** 0.073** 0.072* 
(0.028) (0.028) (0.028) (0.028) 

Price ETH  -0.202    
(0.352)    

Price ETH 2nd Polynomial  -1.197   
 (2.433)   

Price ETH 3rd Polynomial   -5.809  
  (8.661)  

Price ETH 4th Polynomial    -11.190 
   (26.14) 

Constant 0.022 0.026 0.023 0.023 
(0.018) (0.019) (0.018) (0.018) 

Observations 1289 1289 1289 1289 
R2 0.026 0.026 0.026 0.025 

Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. *** p< 0.001. 
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Table 17A  Energy ETH Before the Break 
 
Variable (1)  OLS (2) NW (3) OLS (4) NW (5) OLS (6) NW (7) OLS (8) NW 

Energy ETH  0.846*** 0.846*** 0.854*** 0.854*** 0.896*** 0.896*** 0.856*** 0.856*** 
(0.013) (0.023) (0.013) (0.017) (0.017) (0.028) (0.013) (0.017) 

Energy ETH 
2nd 
Polynomial 

  -0.225*** -0.225     

  (0.054) (0.134)     

Energy ETH 
3rd 
Polynomial 

    -0.789*** -0.789   

    (0.177) (0.522)   

Energy ETH 
4th 
Polynomial 

      -1.827*** -1.827* 

      (0.303) (0.740) 

Constant 0.001 0.001 0.002* 0.002* 0.001 0.001 0.001 0.001 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Observations 1198 1198 1198 1198 1198 1198 1198 1198 
R2 0.790  0.793  0.793  0.796  
Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. *** p< 0.001. 
 
Table 18A  Hashing Power ETH Before the Break 
 

Variable (1) OLS (2) NW (3) OLS (4) NW (5) OLS (6) OLS 

Energy ETH 0.851*** 0.851*** 0.851*** 0.851*** 0.851*** 0.851*** 
(0.011) (0.017) (0.011) (0.017) (0.011) (0.011) 

Energy ETH 4th Polynomial 
-

1.932*** -1.932* -
1.934*** -1.934* -

1.934*** -1.934*** 

(0.257) (0.807) (0.257) (0.804) (0.257) (0.257) 

Hashing power ETH 0.915*** 0.915*** 0.914*** 0.914*** 0.929*** 0.915*** 
(0.042) (0.046) (0.043) (0.046) (0.064) (0.043) 

Hashing power ETH 2nd 
Polynomial 

  -2.718* -2.718* -2.654 -2.424 
  (1.361) (1.345) (1.378) (2.567) 

Hashing power ETH 3rd 
Polynomial 

    -10.040  
    (33.530)  

Hashing power ETH 4th 
Polynomial 

     -94.470 
     (700.500) 

Constant 0.003** 0.003** 0.004*** 0.004*** 0.004*** 0.004** 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 
Observations 1198 1198 1198 1198 1198 1198 
R2 0.853  0.854  0.854 0.854 

Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. *** p< 0.001. 
Table 19A  E-waste ETH Before the Break 
 

Variable (1) OLS (2) OLS (3) OLS (4) OLS 

Energy ETH 0.850*** 0.851*** 0.851*** 0.851*** 
(0.011) (0.011) (0.011) (0.011) 

Energy ETH 4th Polynomial -1.912*** -1.931*** -1.932*** -1.933*** 
(0.257) (0.257) (0.257) (0.257) 

Hashing power ETH 0.914*** 0.914*** 0.914*** 0.914*** 
(0.042) (0.042) (0.042) (0.042) 

Hashing power ETH 2nd Polynomial -2.643 -2.711* -2.716* -2.712* 
(1.362) (1.362) (1.362) (1.361) 

E-waste 0.052    
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(0.045)    

E-waste 2nd Polynomial  -0.181   
 (0.983)   

E-waste 3rd Polynomial   1.428  
  (11.340)  

E-waste 4th Polynomial    -52.140 
   (114.800) 

Constant 0.004*** 0.004*** 0.004*** 0.004*** 
(0.001) (0.001) (0.001) (0.001) 

Observations 1198 1198 1198 1198 
R2 0.854 0.854 0.854 0.854 

Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. *** p< 0.001. 
 
Table 20A  Price ETH Before the Break 
 

Variable (1) OLS (2) NW (3) OLS (4) OLS (5) OLS 

Energy ETH 0.897*** 0.897*** 0.896*** 0.897*** 0.898*** 
(0.009) (0.011) (0.009) (0.009) (0.009) 

Energy ETH 4th Polynomial -1.220*** -1.220* -1.373*** -1.175*** -1.067*** 
(0.214) (0.493) (0.234) (0.256) (0.265) 

Hashing power ETH 0.959*** 0.959*** 0.958*** 0.959*** 0.960*** 
(0.035) (0.038) (0.035) (0.035) (0.035) 

Hashing power ETH 2nd Polynomial -2.317* -2.317* -2.326* -2.316* -2.323* 
(1.121) (1.145) (1.120) (1.121) (1.121) 

Price ETH -0.353*** -0.353*** -0.357*** -0.350*** -0.351*** 
(0.015) (0.035) (0.015) (0.018) (0.015) 

Price ETH 2nd Polynomial   0.177   
  (0.112)   

Price ETH 3rd Polynomial    -0.163  
   (0.508)  

Price ETH 4th Polynomial     -1.324 
    (1.359) 

Constant 0.003** 0.003** 0.003** 0.003** 0.003** 
(0.001) (0.001) (0.001) (0.001) (0.001) 

Observations 1198 1198 1198 1198 1198 
R2 0.901  0.901 0.901 0.901 

Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. *** p< 0.001. 
 
Table 21A Energy ETH After the Break 
 

Variable (1) OLS (2) NW (3) OLS (4) OLS (5) OLS 

Energy ETH 0.233 0.233** 0.782 0.409 0.314 
(0.367) (0.069) (1.307) (0.967) (0.835) 

Energy ETH 2nd Polynomial   -0.112   
  (0.256)   

Energy ETH 3rd Polynomial    -0.007  
   (0.034)  

Energy ETH 4th Polynomial     -0.001 
    (0.005) 

Constant 0.241 0.241 0.242 0.240 0.240 
(0.256) (0.253) (0.257) (0.258) (0.258) 

Observations 90 90 90 90 90 
R2 0.005  0.007 0.005 0.005 

Note. Standard errors in parentheses. 
*p < 0.05. **p < 0.01. *** p< 0.001. 
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Table 22A  Hashing Power ETH After the Break 
 

Variable (1) OLS (2) OLS (3) OLS (4) OLS 

Energy ETH 0.267 0.249 0.248 0.248 
(0.755) (0.716) (0.715) (0.715) 

Hashing power ETH -0.183    
(3.537)    

Hashing power ETH 2nd Polynomial  -0.062   
 (2.389)   

Hashing power ETH 3rd Polynomial   -0.042  
  (1.697)  

Hashing power ETH 4th Polynomial    -0.030 
   (1.207) 

Constant 0.240 0.240 0.240 0.240 
(0.258) (0.258) (0.258) (0.258) 

Observations 90 90 90 90 
R2 0.005 0.005 0.005 0.005 

Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. *** p< 0.001. 
 
Table 23A  E-waste ETH After the Break 
 

Variable (1) OLS (2) OLS (3) OLS (4) OLS 

Energy ETH 0.242 0.233 0.232 0.232 
(0.373) (0.369) (0.369) (0.369) 

E-waste 4.242    
(22.800)    

E-waste 2nd 
Polynomial 

 -216.300   
 (696.300)   

E-waste 3rd 
Polynomial 

  852.000  
  (12275.400)  

E-waste 4th 
Polynomial 

   -16384.100 
   (213403.300) 

Constant 0.244 0.268 0.243 0.243 
(0.258) (0.273) (0.259) (0.260) 

Observations 90 90 90 90 
R2 0.005 0.006 0.005 0.005 

Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. *** p< 0.001. 
 
 
Table 24A Price ETH After the Break 
 

Variable (1) OLS (2) OLS (3) OLS (4) OLS 

Energy ETH 0.192 0.248 0.236 0.237 
(0.376) (0.374) (0.372) (0.370) 

Price ETH 2.963    
(5.454)    

Price ETH 2nd 
Polynomial 

 -11.640   
 (44.510)   

     
Price ETH 3rd 
Polynomial 

  -18.980  
  (250.300)  

     
Price ETH 4th 
Polynomial 

   -290.500 
   (1436.000) 
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Constant 0.238 0.266 0.242 0.251 
(0.257) (0.275) (0.259) (0.263) 

Observations 90 90 90 90 
R2 0.008 0.005 0.005 0.005 

Note. Standard errors in parentheses. *p < 0.05. **p < 0.01. *** p< 0.001. 
 

Table 25A  Results Breusch-Pagan/Cook-Weisberg test for heteroskedascity 

Equation P-value 
ETH CO2, ETH Energy 0 
ETH CO2, ETH Energy, ETH Energy2 0 
ETH CO2, ETH Energy, ETH Energy2, ETH Energy3 0 
BTC CO2, BTC Energy 0 
BTC CO2, BTC Energy, BTC Energy2 0 
BTC CO2, BTC Energy, BTC Energy4 0 
BTC CO2, BTC Energy, BTC Energy4, E-waste 0 
Ecosystem CO2, BTC CO2, ETH CO2 0 
ETH CO2, ETH Energy before break 0 
ETH CO2, ETH Energy, ETH Energy2 before the break 0 
ETH CO2, ETH Energy, ETH Energy3 before the break 0 
ETH CO2, ETH Energy, ETH Energy4 before the break 0 
ETH CO2, ETH Energy, ETH Energy4, ETH Hashing1 before the break 0 
ETH CO2, ETH Energy, ETH Energy4, ETH Hashing1, ETH Hashing2 before the break 0 
ETH CO2, ETH Energy, ETH Energy4, ETH Hashing1, ETH Hashing2, ETH Price  
before the break 0 

ETH CO2, ETH Energy after the break 0 
Note. BTC stands for Bitcoin, and ETH for Ethereum. CO2 relates to carbon emission. The log difference 
represents the change in the CO2 levels. The number represents the polynomials. Before and after break refers to 
the structural break. 

Table 26A  Results Breusch-Pagan/Cook-Weisberg Lagrange Multiplier test for AC 

Equation P-value 
ETH CO2, Eth energy 0 
ETH CO2, ETH Energy, ETH Energy2 0 
ETH CO2, ETH Energy, ETH Energy2, ETH Energy3 0 
BTC CO2, BTC Energy 0 
BTC CO2, BTC Energy, BTC Energy2 0 
BTC CO2, BTC Energy, BTC Energy4 0 
BTC CO2, BTC Energy, BTC Energy4, E-waste 0 
Ecosystem CO2, BTC CO2, ETH CO2 0 
ETH CO2, ETH Energy before break 0 
ETH CO2, ETH Energy, ETH Energy2 before the break 0 
ETH CO2, ETH Energy, ETH Energy3 before the break 0 
ETH CO2, ETH Energy, ETH Energy4 before the break 0 
ETH CO2, ETH Energy, ETH Energy4, ETH Hashing1 before the break 0 
ETH CO2, ETH Energy, ETH Energy4, ETH Hashing1, ETH Hashing2 before the break 0 
ETH CO2, ETH Energy, ETH Energy4, ETH Hashing1, ETH Hashing2, ETH Price  
before the break 0 
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ETH CO2, ETH Energy after the break 0 
Note. BTC stands for Bitcoin, and ETH for Ethereum. CO2 relates to carbon emission. The log difference 
represents the change in the CO2 levels. The number represents the polynomials. Before and after break refers to 
the structural break. 

Table 27A  BIC minimisation for ETH 

 
 
 
 
 
 
 
 
 
 
 

Note. *optimal lag, AIC stands for Akaike Information Criterion, HQIC for Hannan-Quinn Schwarz’s 
Information Criterion, and SBIC for Schwarz’s Bayesian Information Criterion. 
 

Table 28A  IV correlation matrix for Ethereum  

Variables Residual 
Residuals 1 
Hashing power ETH 0.014 
E-waste 0.002 
Price ETH -0.013 
Energy BTC -0.012 
Hashing power BTC 0.023 
Price BTC -0.001 

Note. ETH is Ethereum, energy refers to energy consumption. The variables represent log differences (change).  

Table 29A  The results for the unit root tests of the residuals ETH 

Test name P-value Test statistic 
Dickey–Fuller 0.000 - 
Phillips–Perron 0.000 - 
KPSS - 0.152 (lag 18) 

Note. KPSS stands for Kwiatkowski-Phillips-Schmidt-Shin. The critical value for the KPSS test with a 5% 
confidence level is 0.146.  
 

Table 30A    Cointegration test ETH 

Rank   Rank<=(r+1) Rank<=(p=3) 
0 1318.834    2881.156 
1 885.579        1562.322 
2 399.120      676.743 
3 277.623          277.623 

Note. The null-hypothesis of non-cointegration can be rejected if the trace statistics value is higher than the max-lambda in 
rank =>1. The max-lambda is Rank<=(r+1). The trace statistics values are presented in the third column.  
 

 

Lag AIC HQIC SBIC 
0 4.697 4.703 4.713 
1 -3.811 -3.780 -3.730 
2 -4.265 -4.210 -4.120* 
3 -4.307 -4.228 -4.098 
4 -4.343 -4.240 -4.069 
5 -4.395 -4.268 -4.057 
6 -4.420* -4.269* -4.018 
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Table 31A  BIC minimisation for BTC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note. *optimal lag, AIC stands for Akaike Information Criterion, HQIC for Hannan-Quinn Schwarz’s Information Criterion, 
and SBIC for Schwarz’s Bayesian Information Criterion.   
 

Table 32A IV correlation matrix for Bitcoin  

Variables Residual 
Residuals 1 
Energy ETH 0.011 
Hashing power ETH -0.005 
E-waste 0.051 
Price ETH 0.015 
Hasing power BTC 0.003 
Price BTC 0.036 

Note. BTC is Bitcoin, energy refers to energy consumption. The variables represent log differences (change).  
 

Table 33A   Results unit root test of the residuals BTC 

Test name P-value Test statistic 
Dickey–Fuller 0.000 - 
Phillips–Perron 0.000 - 
KPSS - 0.203 (lag 0) 

Note. KPSS stands for Kwiatkowski-Phillips-Schmidt-Shin. The critical value for the KPSS test is 0.146.  
 

Table 34A  Cointegration test BTC 

Rank   Rank<=(r+1) Rank<=(p=3) 
0 769.541       1129.686 
1 197.003      360.145 
2 163.142       163.142 

Note. The null-hypothesis of non-cointegration can be rejected if the trace statistics value is higher than the max-
lambda in rank =>1. The max-lambda is Rank<=(r+1). The trace statistics values are presented in the third 
column.  
 
Table 35 A – BIC minimisation for the ecosystem 

Lag AIC HQIC SBIC 
0 -13.552  -13.547 -13.540 
1 -13.797 -13.779 -13.748   
2 -13.917 -13.885  -13.832 
3 -13.964  -13.919   -13.843   
4 -14.052  -13.993   -13.895 
5 -14.2350  -14.162 -14.042   
6 -14.282  -14.196  -14.052* 
7 -14.306*   -14.206* -14.040   
8 -14.305   -14.191  -14.002   
9 -14.296 -14.168 -13.957   
10 -14.285   -14.144  -13.910   

Lag AIC HQIC SBIC 
0 -2.931 -2.926 -2.919   
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Note. The optimal lag is indicated with an *, AIC stands for Akaike Information Criterion, HQIC for Hannan-Quinn 
Schwarz’s Information Criterion, and SBIC for Schwarz’s Bayesian Information Criterion. 
 
 

Table 36A  IV correlation matrix for the ecosystem  

Variables Residual 
Residuals 1 
Hashing power ETH 0.055 
E-waste 0.005 
Price ETH -0.041 
BTC hashing power 0.022 
Price BTC 0.005 

Note. ETH is Ethereum, BTC stands for Bitcoin, energy refers to energy consumption. The variables represent 

log differences (change).  

 

Table 37A  Results unit root test of the residuals for the ecosystem 

Test name P-value Test statistic 
Dickey–Fuller 0.000 - 
Phillips–Perron 0.000 - 
KPSS - 0.119 (lag 22) 

Note. KPSS stands for Kwiatkowski-Phillips-Schmidt-Shin. The critical value for the KPSS test is 0.146.  
 

Table 38A  Cointegration test for the ecosystem 

Rank Rank<=(r+1) Rank<=(p=3) 
0 728.936      1267.712 
1 359.918      538.776 
2 178.858      178.858 

Note. The null-hypothesis of non-cointegration can be rejected if the trace statistics value is higher than the max-lambda in 
rank =>1. The max-lambda is Rank<=(r+1). The trace statistics values are presented in the third column.  
 

Table 39A  BIC minimisation for ETH before the break   

1 -3.220 -3.201 -3.171  
2 -3.368  -3.337 -3.284   
3 -3.436   -3.390 -3.315 
4 -3.542   -3.483 -3.385  
5 -3.730   -3.658 -3.537  
6 -3.769  -3.682* -3.539* 
7 -3.780  -3.680 -3.514   
8 -3.780    -3.666   -3.477  
9 -3.782*  -3.655   -3.443  
10 -3.774   -3.634    -3.400   

Lag AIC HQIC SBIC 
0 -34.993  -34.983 -34.967   
1 -35.175   -35.108   -34.996* 
2 -35.254   -35.129* -35.129* 
3 -35.294   -35.111*   -34.808* 
4 -35.345   -35.104   -34.706   
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Note. The optimal lag is indicated with an *, AIC stands for Akaike Information Criterion, HQIC for Hannan-Quinn 
Schwarz’s Information Criterion, and SBIC for Schwarz’s Bayesian Information Criterion. 
 
Table 40A  IV correlation matrix for Ethereum before the break 

Variables Residual 
Residuals 1 
E-waste 0.051 
Hashing power BTC 0.010 
Price BTC -0.069 

Note. ETH is Ethereum, BTC is Bitcoin, energy refers to energy consumption. The variables represent log 

differences (change).  
 

Table 41A   Results unit root test of the residuals for ETH before the break 

Test name P-value Test statistic 
Dickey–Fuller 0.000 - 
Phillips–Perron 0.000 - 
KPSS - 0.088 (lag 22) 

Note. Note. KPSS stands for Kwiatkowski-Phillips-Schmidt-Shin. The critical value for the KPSS test is 0.146. 

 

Table 42A  Cointegration test for Ethereum before the break 

Rank   Rank<=(r+1) Rank<=(p=2) 
0 103.050       20.409 
1 123.459 20.409 

Note. The null-hypothesis of non-cointegration can be rejected if the trace statistics value is higher than the max-lambda in 
rank =>1. The max-lambda is Rank<=(r+1). The trace statistics values are presented in the third column.  
 
Table 43A  BIC minimisation for ETH after the break   

 
 
 
 
 
 
 
 
 
 
 

Note. The optimal lag is indicated with an *, AIC stands for Akaike Information Criterion, HQIC for Hannan-Quinn 
Schwarz’s Information Criterion, and SBIC for Schwarz’s Bayesian Information Criterion. 
 

Table 44A  IV correlation matrix for Ethereum after the break 
Variables Residual 
Residual 1 
Hasing power ETH 0.128 
e-waste 0.005 
Price eth 0.026 
Hasing power BTC 0.017 

5 -35.407*  -35.108   -34.613  
6 -35.404   -35.047 -34.457 

Lag AIC HQIC SBIC 
0 6.716 6.738 6.771 
1 4.514 4.581 4.680 
2 3.821 3.933 4.098 
3 3.681* 3.838* 4.070* 
4 3.702 3.904 4.202 
5 3.774 4.021 4.385 
6 3.716 4.007 4.438 
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Price BTC -0.001 
Note. ETH is Ethereum, energy refers to energy consumption. The variables represent log differences (change).  
 
Table 45A  - Results unit root test of the residuals of ETH after the break 

Test name P-value Test statistic 
Dickey–Fuller 0.000 - 
Phillips–Perron 0.000 - 
KPSS - 0.070 (lag 22) 

Note. KPSS stands for Kwiatkowski-Phillips-Schmidt-Shin. The critical value for the KPSS test is 0.146.  
 

Table 46A – Cointegration test for Eth after the break 

Rank Rank<=(r+1) Rank<=(p=2) 
0 103.050     123.459 
1 20.409     20.419 

Note. The null-hypothesis of non-cointegration can be rejected if the trace statistics value is higher than the max-lambda in 
rank =>1. The max-lambda is Rank<=(r+1). The trace statistics values are presented in the third column.  
 
Table 47A - BIC minimisation for ecosystem considering the structural break 

 

 

 

 

 

 

 

 

Note. The optimal lag is indicated with an *, AIC stands for Akaike Information Criterion, HQIC for Hannan-Quinn 

Schwarz’s Information Criterion, and SBIC for Schwarz’s Bayesian Information Criterion. 
 

Table 48A – Results unit root test for the ecosystem considering the structural break 
Test name P-value Test statistic 
Dickey–Fuller 0.000 - 
Phillips–Perron 0.000 - 
KPSS - 0.108 (lag 11) 

Note. KPSS stands for Kwiatkowski-Phillips-Schmidt-Shin. The critical value for the KPSS test is 0.146.  
 

Table 49A Cointegration test for ecosystem considering the structural break 

Rank Rank<=(r+1) Rank<=(p=3) 
0 879.157 1669.451 
1 790.026  790.294 
2 0.266 0.266 

Note. The null-hypothesis of non-cointegration can be rejected if the trace statistics value is higher than the max-lambda in 
rank =>1. The max-lambda is Rank<=(r+1). The trace statistics values are presented in the third column.  
 

 

 

Lag AIC HQIC SBIC 
0 -4.912 -4.907 -4.899 
1 -5.070 -5.052 -5.022 
2 -5.142 -5.111* -5.058* 
3 -5.148 -5.103 -5.027 
4 -5.149 -5.089 -4.992 
5 -5.176* -5.103 -4.983 
6 -5.171 -5.085 -4.941 
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Table 50A Results two-sample T-test for forecasted values 

Null hypothesis P-value 

CO2 Ecosystem forecasted < Ecosystem CO2  0.691 

CO2 Ecosystem forecasted = CO2 Ecosystem  0.617 

CO2 Ecosystem forecasted > CO2 Ecosystem  0.308 

CO2 ETH forecasted < CO2 ETH  0.525 

CO2 ETH forecasted = CO2 ETH  0.948 

CO2 ETH forecasted > CO2 ETH  0.473 

CO2 BTC forecasted < CO2 BTC  0.487 

CO2 BTC forecasted = CO2 BTC  0.975 

CO2 BTC forecasted > CO2 BTC  0.512 

Note. CO2 relates to carbon emission. BTC stands for Bitcoin, ETH refers to Ethereum. 
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APPENDIX B   FIGURES 
 

In this appendix, I present fourteen figures that did not appear in-text. For all clarity, I first list the 
figures in this part of the appendix.  

1B - Plot before treatment CO2 Bitcoin 

2B - Plot after treatment CO2 Bitcoin 

3B – Autocorrelations of Ethereum's CO2 

4B – Partial autocorrelations of Ethereum's CO2 

5B – Autocorrelations of Bitcoin's CO2 

6B – Partial autocorrelations of Bitcoin's CO2  

7B – Plot of the ecosystem's benchmark 

8B – Plot of Ethereum's benchmark 

9B – Plot of Bitcoin's benchmark 

10B – Plot with estimated carbon footprint per transaction Ethereum 

11B – Plot with estimated carbon footprint per transaction Bitcoin 

12B- Plot with estimated carbon footprint per transaction the ecosystem 

13B – Plot of Ethereum considering the structural break 

14B – Plot of the ecosystem considering the structural break 

 

 
Figure 1B  Plots before carbon BTC 
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Figure 2B plots after treatment CO2 BTC 

 

 
Figure 3B  Autocorrelations of Ethereum's CO2 

 

 

 
Figure 4B Partial autocorrelations of Ethereum's CO2 
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Figure 5B Autocorrelations of Bitcoin's CO2  

 

 
Figure 6B   Partial autocorrelations of Bitcoin's CO2 

 
Figure 7B   Plot of the ecosystem's benchmark 
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Figure 8B   Plot of Ethereum's benchmark 

 

Figure 9B   Plot of Bitcoin's benchmark 
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Figure 10B   Plot with estimated carbon footprint per transaction Ethereum 

 

Figure 11B   Plot with estimated carbon footprint per transaction Bitcoin 

 

Figure 12B   Plot with estimated carbon footprint per transaction the ecosystem 
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Figure 13B   Plot of Ethereum considering the structural break 

 
Figure 14B   Plot of the ecosystem considering the structural break 
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APPENDIX C   ABBREVIATIONS 
 
Auto-Regressive (AR) 

Auto Regressive Distributed Lag (ARDL) 

Dickey-Fuller (DF) 

Distributed Ledger Technology (DLT) 

Diebold-Mariano (DM) 

Instrumental Variable (IV) 

Impulse Response Function (IRF) 

Kwiatkowski-Phillips-Schmidt-Shin test (KPSS) 

Newey West (NW) 

Oxford Blockchain Strategy Framework (OBSF) 

Proof of Stake (PoS) 

Proof of Work (PoW) 

Phillips-Perron (PP)  

Standard Deviation (SD) 

Vector Auto-Regressive (VAR) 

Vector Error Correction Model (VECM) 

Quandt-Likelihood Ratio (QLR) 

Two-Stage-Least Square method (2SLS)  
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APPENDIX D   CODE 
 
////Installing packages 
//ssc install ardl 
//ssc install kpss 
//ssc install johans 
 
clear 
 
//importing data 
 
import excel "/Users/acmar1/Library/CloudStorage/OneDrive-
Personal/Desktop/Master/thesis/Data/master2.0.xlsx", sheet("Sheet2") firstrow 
 
/////////////////////////////////////////////////////////////////////////// 
//fixing DATA 
/////////////////////////////////////////////////////////////////////////// 
 
//drop missing values 
drop if EstimatedMtCO2e == . 
 
//twoway line EstimatedMtCO2e DATE 
 
//distring 
destring EwastektperYear, generate(btcewast) float 
destring EstimatedTWhperYear, generate(energyeeth) float 
destring etchashrate, generate(ethhash) float 
 
destring bta_hash_rate, generate(btchash) 
destring btc_price, generate(btcprice) 
 
//drop string 
 
drop EwastektperYear 
drop EstimatedTWhperYear 
drop etchashrate 
 
drop bta_hash_rate 
drop btc_price 
 
//c02 per transaction 
gen btcco2t =EstimatedMtCO2e /btc_transactions 
gen ethco2t=Carbonemmisionktco2/transaction 
 
//energy per transaction 
 
gen btcenergyt = btcenergy /btc_transactions 
gen ethenergyt =  energyeeth / transaction 
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//ecosystem carbon emission 
gen co2ecosystem = btcco2t + ethco2t 
 
 
/////////////////////////////////////////////////////////////////////////// 
// summary STATS Raw data 
/////////////////////////////////////////////////////////////////////////// 
 
estpost sum btcco2t btchash btcprice btcewast protocol btcenergyt ethhash ethco2t price 
ethenergyt protocol1 co2ecosystem, de 
esttab using "stats__raw_data.csv" , cells ("mean(fmt(3)) p50(fmt(3))  sd(fmt(3)) max(fmt(3)) 
min(fmt(3)) skewness(fmt(3)) kurtosis(fmt(3)) count(fmt(3)) ") replace 
 
 
 
 
//take out outliners// 
 
 
twoway line EstimatedMtCO2e DATE 
 
drop if EstimatedMtCO2e < 10000000 
 
twoway line EstimatedMtCO2e DATE 
 
 
 
 
 
// time variable 
gen t = _n 
tsset t 
 
//log carbon emission 
gen co2ecolog = log(co2ecosystem) 
gen dco2ecolog = L1.co2ecolog - co2ecolog 
 
 
 
  
//log difference ETH  
gen co2log = log(ethco2t) 
gen hashlog = log(ethhash) 
gen pricelog = log(price) 
gen ewastlog = log(btcewast) 
gen energylog = log(ethenergyt) 
 
 
gen dco2log = L1.co2log - co2log 
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gen dhashlog = L1.hashlog- hashlog 
gen dpricelog = L1.pricelog- pricelog 
gen dewastlog = L1.ewastlog- ewastlog 
gen denergylog = L1.energylog-  energylog 
 
 
 
 
replace dhashlog = 0 if missing(dhashlog) 
 
//High polynomial variables ETH 
gen denergylog2 =  denergylog^2 
gen denergylog3 =  denergylog^3 
gen denergylog4 =  denergylog^4 
 
gen dhashlog2 =  dhashlog^2 
gen dhashlog3 =  dhashlog^3 
gen dhashlog4 =  dhashlog^4 
 
gen dpricelog2 =  dpricelog^2 
gen dpricelog3 =  dpricelog^3 
gen dpricelog4 =  dpricelog^4 
 
gen dewastlog2 =  dewastlog^2 
gen dewastlog3 =  dewastlog^3 
gen dewastlog4 =  dewastlog^4 
 
 
 
//log difference BTC  
gen btco2log = log(btcco2t) 
gen btchashlog = log(btchash) 
gen btcpricelog = log(btcprice) 
gen btcewastlog = log(btcewast) 
gen btcenergylog = log(btcenergyt) 
 
gen dbtco2log = L1.btco2log - btco2log 
gen dbtchashlog = L1.btchashlog - btchashlog 
gen dbtcpricelog = L1.btcpricelog - btcpricelog 
gen dbtcewastlog = L1.btcewastlog - btcewastlog 
gen dbtcenergylog = L1.btcenergylog -  btcenergylog 
 
 
 
//High order variables BTC 
gen dbtcenergylog2 =  dbtcenergylog^2 
gen dbtcenergylog3 =  dbtcenergylog^3 
gen dbtcenergylog4 =  dbtcenergylog^4 
 
gen dbtchashlog2 =  dbtchashlog^2 
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gen dbtchashlog3 =  dbtchashlog^3 
gen dbtchashlog4 =  dbtchashlog^4 
 
gen dbtcpricelog2 =  dbtcpricelog^2 
gen dbtcpricelog3 =  dbtcpricelog^3 
gen dbtcpricelog4 =  dbtcpricelog^4 
 
gen dbtcewastlog2 =  dbtcewastlog^2 
gen dbtcewastlog3 =  dbtcewastlog^3 
gen dbtcewastlog4 =  dbtcewastlog^4 
 
 
 
 
 
/////////////////////////////////////////////////////////////////////////// 
// summary STATS without outliners 
/////////////////////////////////////////////////////////////////////////// 
 
 
 
//summary data 
 
estpost sum btcco2t btchash btcprice btcewast  btcenergyt ethhash ethco2t price ethenergyt  
protocol1 co2ecosystem, de 
esttab using "stats_cleaned_data.csv" , cells ("mean(fmt(3)) p50(fmt(3))  sd(fmt(3)) 
max(fmt(3)) min(fmt(3)) skewness(fmt(3)) kurtosis(fmt(3)) count(fmt(3)) ") replace 
 
///table above 
 
/////////////////////////////////////////////////////////////////////////// 
//  STATS test 
/////////////////////////////////////////////////////////////////////////// 
 
//ETH 
 
//dickey-fuller 
dfuller ethhash 
dfuller ethco2t 
dfuller price 
dfuller ethenergyt 
dfuller btcewast 
 
 
 
//dickey-fuller log diff  
 
dfuller dco2log 
dfuller dhashlog 
dfuller dpricelog 
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dfuller dewastlog 
dfuller denergylog 
 
//Phillips-Perron (PP) Test: 
 
pperron ethhash 
pperron ethco2t 
pperron price 
pperron ethenergyt 
pperron btcewast 
 
 
 
pperron co2log 
pperron hashlog 
pperron pricelog  
pperron ewastlog  
pperron energylog  
 
 
 
pperron dco2log 
pperron dhashlog 
pperron dpricelog  
pperron dewastlog  
pperron denergylog  
 
//Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test: 
kpss ethhash 
kpss ethco2t 
kpss price 
kpss ethenergyt 
kpss btcewast 
 
 
kpss dco2log 
kpss dhashlog 
kpss dpricelog  
kpss dewastlog  
kpss denergylog  
 
 
//pac 
 
pac dco2log 
//pac dhashlog 
//pac dpricelog 
//pac dewastlog 
//pac denergylog 
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//ac 
 
ac dco2log 
//ac dhashlog 
//ac dpricelog 
//ac dewastlog 
//ac denergylog 
 
///////////// 
//btc 
///////////// 
 
 
//dickey-fuller 
dfuller btcco2t 
dfuller btchash 
dfuller btcprice 
dfuller btcenergyt 
 
 
 
//Phillips-Perron (PP) Test: 
 
pperron btcco2t 
pperron btchash 
pperron btcprice 
pperron btcenergyt 
 
//Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test: 
kpss  btcco2t 
kpss btchash 
kpss btcprice 
kpss btcenergyt 
 
 
 
//dickey-fuller log 
 
dfuller dbtco2log 
dfuller dbtchashlog 
dfuller dbtcpricelog 
dfuller dbtcewastlog 
dfuller dbtcenergylog 
 
pperron dbtco2log 
pperron dbtchashlog 
pperron dbtcpricelog 
pperron dbtcewastlog 
pperron dbtcenergylog 
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kpss dbtco2log 
kpss dbtchashlog 
kpss dbtcpricelog 
kpss dbtcewastlog 
kpss dbtcenergylog 
 
//pac 
 
pac dbtco2log 
//pac dbtchashlog 
//pac dbtcpricelog 
//pac dbtcewastlog 
//pac dbtcenergylog 
 
 
//ac 
 
ac dbtco2log 
//ac dbtchashlog 
//ac dbtcpricelog 
//ac dbtcewastlog 
//ac dbtcenergylog 
 
//ultimate variable  
dfuller dco2ecolog 
pperron dco2ecolog 
kpss dco2ecolog 
 
pac dco2ecolog 
ac dco2ecolog 
 
 
dfuller co2ecosystem 
pperron co2ecosystem 
kpss co2ecosystem 
 
pac co2ecosystem 
ac co2ecosystem 
 
 
//summary log variables  
//btc 
 
estpost sum dbtco2log dbtchashlog dbtcpricelog dbtcewastlog dbtcenergylog dhashlog 
dco2log dpricelog denergylog dco2ecolog,de 
esttab using "stats_all_logs.csv" , cells ("mean(fmt(3)) p50(fmt(3))  sd(fmt(3)) max(fmt(3)) 
min(fmt(3)) skewness(fmt(3)) kurtosis(fmt(3)) count(fmt(3)) ") replace 
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///correlation matrix normal variables  
 
cor btcco2t btchash btcprice btcewast btcenergyt 
 
cor ethco2t ethhash price  btcewast ethenergyt 
 
 
cor ethco2t ethhash price ethenergyt btcewast btcco2t btchash btcprice btcenergyt 
putexcel set "correlation_matrix1.xlsx", sheet("Sheet1") modify 
putexcel A1 = matrix(r(C)) 
putexcel close 
 
 
cor dbtco2log dbtchashlog dbtcpricelog dbtcewastlog dbtcenergylog 
 
 
/////////////////////////////////////////////////////////////////////////// 
//  First Hyphotesis difference between BTC and ETH 
/////////////////////////////////////////////////////////////////////////// 
 
ttest dco2log == dbtco2log 
ttest btcco2t == ethco2t 
 
/////////////////////////////////////////////////////////////////////////// 
//  second Hyphotesis 
/////////////////////////////////////////////////////////////////////////// 
 
//ETH  
  
//energy (relevant) 
eststo: reg dco2log denergylog  
hettest 
estat bgodfrey 
eststo: newey dco2log denergylog, lag(1) 
 
eststo: reg dco2log  denergylog denergylog2 
 
hettest 
estat bgodfrey 
eststo: newey dco2log denergylog denergylog2 , lag(1) 
 
 
eststo: reg dco2log denergylog denergylog2 denergylog3 
 
hettest 
estat bgodfrey 
eststo: newey dco2log denergylog denergylog2 denergylog3 , lag(1) 
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eststo: reg dco2log denergylog denergylog2 denergylog3 denergylog4 
 
esttab using Energy_eth.rtf, se r2 replace 
eststo clear  
 
 
//hash (relevant) 
eststo: reg dco2log denergylog denergylog2 denergylog3   dhashlog 
eststo: reg dco2log denergylog denergylog2 denergylog3   dhashlog2 
eststo: reg dco2log denergylog denergylog2 denergylog3   dhashlog3 
eststo: reg dco2log denergylog denergylog2 denergylog3   dhashlog4 
esttab using hash_eth.rtf, se r2 replace 
eststo clear  
 
//ewast (not relevant) 
eststo: reg dco2log denergylog denergylog2 denergylog3   dewastlog 
eststo: reg dco2log denergylog denergylog2 denergylog3   dewastlog2 
eststo: reg dco2log denergylog denergylog2 denergylog3   dewastlog3 
eststo: reg dco2log denergylog denergylog2 denergylog3   dewastlog4 
esttab using waste_eth.rtf, se r2 replace 
eststo clear  
 
//protocol (not relevant) 
eststo: reg dco2log denergylog denergylog2 denergylog3   i.protocol1 
esttab using protocol_eth.rtf, se r2 replace 
eststo clear  
 
//price (not relevant) 
eststo: reg dco2log denergylog denergylog2 denergylog3   dpricelog 
eststo: reg dco2log denergylog denergylog2 denergylog3   dpricelog2 
eststo: reg dco2log denergylog denergylog2 denergylog3    dpricelog3 
eststo: reg dco2log denergylog denergylog2 denergylog3    dpricelog4 
esttab using price_eth.rtf, se r2 replace 
eststo clear  
 
/////////////////////////////////////////////////////////////////////////// 
//final formula 
///////////////////////////////////////////////////////////////////////////// 
eststo: reg dco2log denergylog denergylog2 denergylog3   
hettest 
estat bgodfrey 
eststo: newey dco2log denergylog denergylog2 denergylog3, lag(1) 
esttab using final_eth.rtf, se r2 replace 
eststo clear  
 
 
 
//residual stationarity 
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var dco2log denergylog denergylog2 denergylog3, lags(2) 
predict resid, residuals 
 
 
dfuller resid 
pperron resid 
kpss resid 
 
//optimun amount of  
varsoc dco2log denergylog denergylog2 denergylog3 , maxlag(6) 
//var 
var dco2log denergylog denergylog2 denergylog3 ,lag (1 2) 
 
//Granger causality 
vargranger  
 
 
//cointegration test  
 
johans dco2log denergylog denergylog2 denergylog3, lags(2) 
 
 
//VECM 
eststo clear 
eststo: vec dco2log denergylog denergylog2 denergylog3, lags(2)  
esttab using test_etf.rtf, se r2 replace 
eststo clear 
 
 
gen eth_carbon =. 
vec dco2log denergylog denergylog2 denergylog3, lags(2) 
predict temp 
replace eth_carbon = temp 
replace eth_carbon = 0 if missing(eth_carbon) 
 
 
////////////////////////////////////////////////////////////////// 
//impulse test ////////////////// 
 
varbasic dco2log denergylog denergylog2 denergylog3, lags(1 2) step(10) irf 
 
//test for instrument variable  
 
corr resid dhashlog dewastlog dpricelog dbtcenergylog dbtchashlog dbtcewastlog 
dbtcpricelog 
 
drop resid 
 
/////////////////////////////////////////////////////////////////////////// 
//BTC 
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/////////////////////////////////////////////////////////////////////////// 
 
 
//energy (relevant) 
eststo: reg dbtco2log dbtcenergylog 
hettest 
estat bgodfrey 
eststo: newey dbtco2log dbtcenergylog, lag(1) 
  
eststo: reg dbtco2log dbtcenergylog dbtcenergylog2 
hettest 
estat bgodfrey 
eststo: newey dbtco2log  dbtcenergylog dbtcenergylog2, lag(1) 
 
 
eststo: reg dbtco2log dbtcenergylog  dbtcenergylog3 
eststo: reg dbtco2log dbtcenergylog  dbtcenergylog4 
hettest 
estat bgodfrey 
eststo: newey dbtco2log  dbtcenergylog dbtcenergylog4, lag(1) 
 
esttab using Energy_btc.rtf, se r2 replace 
eststo clear  
 
//hash (not relevant) 
eststo: reg dbtco2log dbtcenergylog  dbtcenergylog4 dbtchashlog 
eststo: reg dbtco2log dbtcenergylog dbtcenergylog4 dbtchashlog2 
eststo: reg dbtco2log dbtcenergylog  dbtcenergylog4 dbtchashlog3 
eststo: reg dbtco2log dbtcenergylog dbtcenergylog4 dbtchashlog4 
esttab using hash_btc.rtf, se r2 replace 
eststo clear  
 
//ewast (not relevant) 
eststo: reg dbtco2log dbtcenergylog dbtcenergylog4 dbtcewastlog 
hettest 
estat bgodfrey 
eststo: newey dbtco2log  dbtcenergylog dbtcenergylog4 dbtcewastlog, lag(1) 
 
eststo: reg dbtco2log dbtcenergylog dbtcenergylog4 dbtcewastlog2 
eststo: reg dbtco2log dbtcenergylog  dbtcenergylog4 dbtcewastlog3 
eststo: reg dbtco2log dbtcenergylog dbtcenergylog4 dbtcewastlog4 
 
esttab using waste_btc.rtf, se r2 replace 
eststo clear 
 
 
//price (not relevant) 
eststo: reg dbtco2log dbtcenergylog dbtcenergylog4 dbtcpricelog  
eststo: reg dbtco2log dbtcenergylog dbtcenergylog4 dbtcpricelog2  
eststo: reg dbtco2log dbtcenergylog dbtcenergylog4 dbtcpricelog3  
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eststo: reg dbtco2log dbtcenergylog  dbtcenergylog4 dbtcpricelog4 
 
esttab using price_btc.rtf, se r2 replace 
eststo clear  
 
/////////////////////////////////////////////////////////////////////////// 
//final formula 
/////////////////////////////////////////////////////////////////////////// 
eststo: reg dbtco2log dbtcenergylog dbtcenergylog4   
hettest  
bgodfrey 
eststo: newey dbtco2log dbtcenergylog dbtcenergylog4, lag(1) 
 
esttab using final_btc.rtf, se r2 replace 
eststo clear 
 
 
//residual stationarity 
var dbtco2log dbtcenergylog dbtcenergylog4, lag (1) 
 
predict resid, residuals 
 
 
dfuller resid 
pperron resid 
kpss resid 
 
//optimun amount of  
varsoc dbtco2log dbtcenergylog dbtcenergylog4, maxlag(6) 
//var 
var dbtco2log dbtcenergylog dbtcenergylog4, lag(1 2 3 4 5 6) 
 
//Granger causality 
vargranger  
 
 
 
//cointegration test  
 
johans dbtco2log dbtcenergylog dbtcenergylog4, lags(6) 
 
 
//VECM 
 
//VECM 
eststo clear 
eststo: vec dbtco2log dbtcenergylog dbtcenergylog4, lags(6) trend(t) 
esttab using btc_test.rtf, se r2 replace 
eststo clear 
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////////////////////////////////////////////////////////////////// 
//impulse test ////////////////// 
 
varbasic dbtco2log dbtcenergylog dbtcenergylog4, lags(1 2 3 4 5 6) step(10) irf 
 
 
//test for instrument variable  
 
corr resid denergylog dhashlog dewastlog dpricelog dbtchashlog  dbtcpricelog 
 
drop resid 
  
 
gen btc_carbon =. 
vec dbtco2log dbtcenergylog dbtcenergylog4, lags(6) trend(t) 
predict temp9 
replace btc_carbon = temp9 
replace btc_carbon = 0 if missing(btc_carbon) 
 
  
 
 
///// gerental formula 
 
gen co2_estimate_before =. 
reg  dco2ecolog btc_carbon eth_carbon 
hettest  
bgodfrey 
newey dco2ecolog btc_carbon eth_carbon, lag (1) 
 
vec dco2ecolog btc_carbon eth_carbon, lags(6) trend(t) 
 
predict temp80 
replace co2_estimate_before = temp80 
 
 
 
 
ttest co2_estimate_before == dco2ecolog 
 
 
estpost sum co2_estimate_before btc_carbon eth_carbon,de 
esttab using "stats_prediction_eco_second_logs.csv" , cells ("mean(fmt(8)) p50(fmt(8))  
sd(fmt(8)) max(fmt(8)) min(fmt(8)) skewness(fmt(8)) kurtosis(fmt(8)) count(fmt(8)) ") 
replace 
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//residual stationarity 
var dco2ecolog btc_carbon eth_carbon, lag(1 2 3 4 5 6) 
 
predict resid, residuals 
 
 
dfuller resid 
pperron resid 
kpss resid 
 
//optimun amount of  
varsoc dco2ecolog btc_carbon eth_carbon, maxlag(10) 
//var 
var dco2ecolog btc_carbon eth_carbon, lag(1 2 3 4 5 6) 
 
//Granger causality 
vargranger  
 
varbasic dco2ecolog btc_carbon eth_carbon, lags(1 2 3 4 5 6) step(10) irf 
 
 
//cointegration test  
 
johans dco2ecolog btc_carbon eth_carbon, lags(6) 
 
 
//VECM 
vec dco2ecolog btc_carbon eth_carbon, lags(6) trend(t) 
 
 
 
////////////////////////////////////////////////////////////////// 
//impulse test ////////////////// 
 
 
 
corr resid dhashlog dewastlog dpricelog dbtchashlog  dbtcpricelog 
 
drop resid 
 
/////////////////////////////////////////////////////////////////////////// 
//  third Hyphotesis 
/////////////////////////////////////////////////////////////////////////// 
 
//ETH 
 
 
gen breaks= (t >1200) 
gen breakx = breaks*denergylog 
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reg dco2log denergylog breakx breaks 
reg dco2log denergylog denergylog2 denergylog3 breakx breaks 
test breaks breakx 
//Break found  
 
 
 
reg dco2log denergylog 
estat sbsingle 
 
 
 
/////////////////////////////////////////////////////////////////////////// 
// 1200 (when it changed protocal) 
/////////////////////////////////////////////////////////////////////////// 
 
 
// 
 
//BTC 
 
gen breakb= (t >724) 
gen breakbx = breakb*dbtcenergylog 
 
reg dbtco2log dbtcenergylog breakb breakbx 
reg dbtco2log dbtcenergylog dbtcenergylog4 breakb breakbx 
test breakb breakbx 
 
 
 
reg dbtco2log dbtcenergylog 
estat sbsingle 
 
////// no structural break was found //// 
 
 
//unit root rest  
 
//dickey-fuller log diff  
 
dfuller dco2log if t > 1200 
dfuller dhashlog if t > 1200 
dfuller dpricelog if t > 1200 
dfuller dewastlog if t > 1200 
dfuller denergylog if t > 1200 
 
pperron dco2log if t > 1200 
pperron dhashlog if t > 1200 
pperron dpricelog if t > 1200 
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pperron dewastlog if t > 1200 
pperron denergylog if t > 1200 
 
kpss dco2log if t > 1200 
kpss dhashlog if t > 1200 
kpss dpricelog if t > 1200 
kpss dewastlog if t > 1200 
kpss denergylog if t > 1200 
 
dfuller dco2log if t < 1200 
dfuller dhashlog if t < 1200 
dfuller dpricelog if t < 1200 
dfuller dewastlog if t < 1200 
dfuller denergylog if t < 1200 
 
 
pperron dco2log if t < 1200 
pperron dhashlog if t < 1200 
pperron dpricelog if t < 1200 
pperron dewastlog if t < 1200 
pperron denergylog if t < 1200 
 
 
kpss dco2log if t < 1200 
kpss dhashlog if t < 1200 
kpss dpricelog if t < 1200 
kpss dewastlog if t < 1200 
kpss denergylog if t < 1200 
 
kpss dco2ecolog if t < 1200 
kpss dco2ecolog if t > 1200 
kpss co2ecosystem if t < 1200 
kpss co2ecosystem if t > 1200 
 
//dickey-fuller 
dfuller ethhash if t > 1200 
dfuller ethco2t if t > 1200 
dfuller price if t > 1200 
dfuller ethenergyt if t > 1200 
dfuller btcewast if t > 1200 
 
pperron ethhash if t > 1200 
pperron ethco2t if t > 1200 
pperron price if t > 1200 
pperron ethenergyt if t > 1200 
pperron btcewast if t > 1200 
 
kpss ethhash if t > 1200 
kpss ethco2t if t > 1200 
kpss price if t > 1200 
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kpss ethenergyt if t > 1200 
kpss btcewast if t > 1200 
 
//dickey-fuller 
dfuller ethhash if t < 1200 
dfuller ethco2t if t < 1200 
dfuller price if t < 1200 
dfuller ethenergyt if t < 1200 
dfuller btcewast if t < 1200 
 
pperron ethhash if t < 1200 
pperron ethco2t if t < 1200 
pperron price if t < 1200 
pperron ethenergyt if t < 1200 
pperron btcewast if t < 1200 
 
kpss ethhash if t < 1200 
kpss ethco2t if t < 1200 
kpss price if t < 1200 
kpss ethenergyt if t < 1200 
kpss btcewast if t < 1200 
 
 
 
 
/////////////////////////////////////////////////////////////////////////// 
//  1st hyphotersis with break 
/////////////////////////////////////////////////////////////////////////// 
  
 
ttest dco2log == dbtco2log if t < 1200 
ttest dco2log == dbtco2log if t > 1200 
 
ttest btcco2t == ethco2t if t < 1200 
ttest btcco2t == ethco2t if t > 1200 
 
 
 
/////////////////////////////////////////////////////////////////////////// 
//  2st hyphotersis with break 
/////////////////////////////////////////////////////////////////////////// 
 
 
//ETH if t < 1200 
 
 
//energy ( relevant) 
eststo: reg dco2log denergylog if t < 1200 
hettest 
estat bgodfrey 
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eststo: newey dco2log denergylog if t < 1200  , lag(1) 
 
 
eststo: reg dco2log denergylog denergylog2 if t < 1200 
hettest 
estat bgodfrey 
eststo: newey dco2log denergylog denergylog2 if t < 1200  , lag(1) 
 
eststo: reg dco2log denergylog denergylog3 if t < 1200 
hettest 
estat bgodfrey 
eststo: newey dco2log denergylog  denergylog3 if t < 1200  , lag(1) 
 
 
eststo: reg dco2log denergylog    denergylog4 if t < 1200  
 hettest 
estat bgodfrey 
eststo: newey dco2log denergylog  denergylog4 if t < 1200  , lag(1) 
 
 
esttab using Energy_eth.rtf, se r2 replace 
eststo clear  
 
 
//hash (relevant) 
eststo: reg dco2log denergylog  denergylog4 dhashlog if t < 1200 
hettest 
estat bgodfrey 
 
eststo: newey dco2log denergylog denergylog4 dhashlog if t < 1200  , lag(1) 
   
eststo: reg dco2log denergylog denergylog4 dhashlog dhashlog2 if t < 1200  
hettest 
estat bgodfrey 
 
eststo: newey dco2log denergylog denergylog4 dhashlog dhashlog2  if t < 1200  , lag(1) 
  
eststo: reg dco2log denergylog denergylog4 dhashlog dhashlog2 dhashlog3 if t < 1200  
 
eststo: reg dco2log denergylog denergylog4 dhashlog dhashlog2  dhashlog4 if t < 1200   
esttab using hash_eth.rtf, se r2 replace 
eststo clear  
 
//ewast (not relevant) 
eststo: reg dco2log denergylog denergylog4 dhashlog dhashlog2  dewastlog if t < 1200 
eststo: reg dco2log denergylog denergylog4 dhashlog dhashlog2   dewastlog2 if t < 1200 
eststo: reg dco2log denergylog denergylog4 dhashlog dhashlog2 dewastlog3 if t <1200 
eststo: reg dco2log denergylog denergylog4 dhashlog dhashlog2 dewastlog4 if t <1200 
esttab using waste_eth.rtf, se r2 replace 
eststo clear  
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//protocol (not relevant) 
eststo: reg dco2log denergylog denergylog4 dhashlog dhashlog2 i.protocol1 if t < 1200 
esttab using protocol_eth.rtf, se r2 replace 
eststo clear  
 
//price ( relevant) 
eststo: reg dco2log denergylog denergylog4 dhashlog dhashlog2   dpricelog if t < 1200 
hettest 
estat bgodfrey 
 
eststo: newey dco2log denergylog denergylog4 dhashlog dhashlog2   dpricelog if t < 1200  , 
lag(1) 
 
eststo: reg dco2log denergylog denergylog4 dhashlog dhashlog2   dpricelog dpricelog2 if t < 
1200 
 
  
eststo: reg dco2log denergylog denergylog4 dhashlog dhashlog2   dpricelog  dpricelog3 if t < 
1200  
eststo: reg dco2log denergylog denergylog4 dhashlog dhashlog2   dpricelog  dpricelog4 if t < 
1200  
esttab using price_eth.rtf, se r2 replace 
eststo clear  
 
/////////////////////////////////////////////////////////////////////////// 
//final formula before break eth 
/////////////////////////////////////////////////////////////////////////// 
eststo: reg dco2log denergylog denergylog4 dhashlog dhashlog2   dpricelog   if t < 1200  
eststo: newey dco2log denergylog denergylog4 dhashlog dhashlog2   dpricelog if t < 1200  , 
lag(1) 
 
esttab using final_eth.rtf, se r2 replace 
eststo clear  
 
 
 
//var 
 
varsoc dco2log denergylog denergylog4 dhashlog dhashlog2  dpricelog  if t < 1200 , 
maxlag(6) 
 
var dco2log denergylog denergylog4 dhashlog dhashlog2  dpricelog  if t < 1200 ,lag(1) 
 
//granger 
vargranger  
 
//cointegration 
johans dco2log denergylog denergylog4 dhashlog dhashlog2 dpricelog if t < 1200, lags(1) 
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//test for instrument variable  
var dco2log denergylog denergylog4 dhashlog dhashlog2  dpricelog     dpricelog if t < 1200, 
lag(1) 
 
predict resid, residuals  
 
dfuller resid if t < 1200 
pperron resid if t < 1200 
kpss resid if t < 1200 
 
 
corr resid  dewastlog dbtchashlog dbtcewastlog dbtcpricelog if t < 1200 
 
drop resid 
 
varbasic dco2log denergylog denergylog4 dhashlog dhashlog2  dpricelog  if t < 1200, lags(1) 
step(10) irf 
 
// 
vec dco2log denergylog denergylog4 dhashlog dhashlog2  dpricelog if t < 1200, lags(1) 
 
 
gen eth_carbon_before_break_fork =.  
vec dco2log denergylog denergylog4 dhashlog dhashlog2 dpricelog if t < 1200, lags(1) 
predict temp99 if t <1200 
replace eth_carbon_before_break_fork= temp99 
 
 
//after the break 
//ETH if t > 1200 
 
 
//energy (not relevant) 
eststo: reg dco2log denergylog if t > 1200 
eststo: newey dco2log denergylog if t >1200  , lag(1) 
eststo: reg dco2log denergylog denergylog2 if t > 1200 
eststo: reg dco2log  denergylog denergylog3 if t > 1200 
eststo: reg dco2log denergylog  denergylog4 if t > 1200   
esttab using Energy_eth.rtf, se r2 replace 
eststo clear  
 
 
//hash (relevant) 
eststo: reg dco2log denergylog dhashlog if t > 1200   
eststo: reg dco2log denergylog dhashlog2 if t > 1200   
eststo: reg dco2log denergylog dhashlog3 if t >1200   
eststo: reg dco2log denergylog dhashlog4 if t >1200   
esttab using hash_eth.rtf, se r2 replace 
eststo clear  
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//ewast (not relevant) 
eststo: reg dco2log  denergylog  dewastlog if t > 1200 
eststo: reg dco2log  denergylog  dewastlog2 if t > 1200 
eststo: reg dco2log  denergylog dewastlog3 if t >1200 
eststo: reg dco2log denergylog   dewastlog4 if t >1200 
esttab using waste_eth.rtf, se r2 replace 
eststo clear  
 
//protocol (not relevant) 
eststo: reg dco2log  denergylog  i.protocol1 if t > 1200 
esttab using protocol_eth.rtf, se r2 replace 
eststo clear  
 
//price (not relevant) 
eststo: reg dco2log   denergylog  dpricelog if t > 1200 
eststo: reg dco2log  denergylog  dpricelog2 if t > 1200 
eststo: reg dco2log  denergylog   dpricelog3 if t > 1200  
eststo: reg dco2log  denergylog   dpricelog4 if t >1200  
esttab using price_eth.rtf, se r2 replace 
eststo clear  
 
/////////////////////////////////////////////////////////////////////////// 
//Only Energy linear found sifnigicant nw 
/////////////////////////////////////////////////////////////////////////// 
 
//best match  
eststo: reg dco2log denergylog if t > 1200 
hettest 
estat bgodfrey 
 
eststo: newey dco2log denergylog if t >1200  , lag(1) 
esttab using final_eth.rtf, se r2 replace 
eststo clear  
 
varsoc dco2log denergylog  if t > 1200 , maxlag(6) 
 
var dco2log denergylog if t > 1200 ,lag(1 2 3) 
vargranger 
 
 
 
//cointegration 
johans dco2log denergylog if t > 1200, lags(3) 
 
//test for instrument variable  
newey dco2log denergylog if t > 1200, lag(1) 
 
predict resid, residuals  
 
dfuller resid if t > 1200 
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pperron resid if t > 1200 
kpss resid if t > 1200 
 
 
corr resid  dewastlog dbtchashlog dbtcewastlog dbtcpricelog if t > 1200 
 
drop resid 
 
varbasic dco2log denergylog  if t > 1200, lags(1 2 3) step(10) irf 
 
// 
vec dco2log denergylog if t > 1200, lags(3) 
 
 
gen eth_carbon_after_break1 =.  
vec dco2log denergylog if t > 1200, lags(3) 
predict temp52 if t >1200  
replace eth_carbon_after_break1 = temp52 
replace eth_carbon_after_break1 = 0 if missing(eth_carbon_before_break) 
 
 
 
 
//general formula  
 
 
///// gerental formula 
 
replace eth_carbon_before_break_fork = 0 if missing(eth_carbon_before_break_fork) 
replace eth_carbon_after_break1 = 0 if missing(eth_carbon_after_break1) 
 
 
gen ETH_co2_estimate1= eth_carbon_before_break_fork + eth_carbon_after_break1 
replace ETH_co2_estimate1 = 0 if missing(ETH_co2_estimate1) 
 
 
 
varsoc dco2ecolog btc_carbon ETH_co2_estimate1, maxlag(6) 
 
eststo: var dco2ecolog btc_carbon ETH_co2_estimate1, lag (1 2) 
eststo: vargranger 
 
 
//cointegration 
johans co2ecolog btc_carbon ETH_co2_estimate1 , lags(2) 
 
//test for instrument variable  
var dco2ecolog btc_carbon ETH_co2_estimate1, lag (1 2) 
 
predict resid, residuals  
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dfuller resid if t > 1200 
pperron resid if t > 1200 
kpss resid if t > 1200 
 
 
corr resid  dewastlog dbtchashlog dbtcewastlog dbtcpricelog 
 
drop resid 
 
varbasic co2ecolog btc_carbon ETH_co2_estimate1, lags(1 2) step(10) irf 
 
// 
vec dco2ecolog btc_carbon ETH_co2_estimate1, lags(2) 
 
 
 
eststo clear  
 
 
 
gen co2_estimate =. 
eststo: reg dco2ecolog btc_carbon ETH_co2_estimate1 
hettest 
estat bgodfrey 
eststo: newey dco2ecolog btc_carbon ETH_co2_estimate1, lag (1) 
eststo: vec dco2ecolog btc_carbon ETH_co2_estimate1, lags(6) 
esttab using mergedeco.rtf, se r2 replace 
eststo clear  
 
predict temp84 
replace co2_estimate = temp84 
///getting info on new variables 
 
estpost sum dco2ecolog ETH_co2_estimate1 ,de 
esttab using "stats_prediction_eco_breaksds_logs.csv" , cells ("mean(fmt(8)) p50(fmt(8))  
sd(fmt(8)) max(fmt(8)) min(fmt(8)) skewness(fmt(8)) kurtosis(fmt(8)) count(fmt(8)) ") 
replace 
 
 
 
ttest dco2ecolog == co2_estimate 
 
 
 
 
 
/////////////////////////////////////////////////////////////////////////// 
//  Predictive power 
/////////////////////////////////////////////////////////////////////////// 
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drop temp 
drop temp52 
drop temp80 
drop temp84 
drop temp9 
drop temp99 
//forecastes Btc 
 
 
gen AR_Forecasts = . 
 
forvalues s = 30/1290 { 
 vec dbtco2log dbtcenergylog dbtcenergylog4 if t>=`s'-30 & t<`s', lags(6) 
 predict temp if t==`s' 
 replace AR_Forecasts = temp if t==`s' 
 drop temp 
} 
 
 
gen MSE_MODEL_btc = sqrt((AR_Forecasts - dbtco2log)^2) 
 
 
 
/////////////////////////////////////////////////////////////////////////// 
//banckmark btc 
/////////////////////////////////////////////////////////////////////////// 
 
 
 
gen AR1_Forecasts = . 
 
forvalues s = 30/1290 { 
 reg dbtco2log L1.dbtco2log if t>=`s'-30 & t<`s' 
 predict temp if t==`s' 
 replace AR1_Forecasts = temp if t==`s' 
 drop temp 
} 
 
 
gen MSE_BANCKMARK_btc = sqrt((AR1_Forecasts - dbtco2log)^2) 
 
 
 
 
//forecastes eth before break 
 
gen AR_eth_b_Forecasts = . 
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forvalues s = 30/1200 { 
 vec dco2log denergylog denergylog4 dhashlog dhashlog2  dpricelog if t>=`s'-30 & 
t<`s', lag(1) 
 predict temp if t==`s' 
 replace AR_eth_b_Forecasts = temp if t==`s' 
 drop temp 
} 
 
 
gen MSE_MODEL_eth_b = sqrt((AR_eth_b_Forecasts - dco2log)^2) 
 
 
 
 
/////////////////////////////////////////////////////////////////////////// 
//banckmark before the break 
/////////////////////////////////////////////////////////////////////////// 
 
 
// AR --> Forecast before the break 
gen AR_eth_bm_b_Forecasts = . 
 
forvalues s = 30/1200 { 
 newey dco2log L1.dco2log if t>=`s'-30 & t<`s', lag(1) 
 predict temp if t==`s' 
 replace AR_eth_bm_b_Forecasts = temp if t==`s' 
 drop temp 
} 
 
 
gen MSE_BANCKMARK_eth_b = sqrt((AR_eth_bm_b_Forecasts - dco2log)^2) 
 
 
 
//////////////////////////////////////////////////////// 
//ETH AFTER THE BREAK  
//////////////////////////////////////////////////////// 
//reg dco2log  denergylog if t > 1200 
 
 
 
 
//forecastes eth after break  
 
 
 
gen AR_eth_a_Forecasts = . 
 
forvalues s = 1200/1290 { 
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 vec  dco2log L1.denergylog  if t>=`s'-30 & t<`s', lag(3) 
 predict temp if t==`s' 
 replace AR_eth_a_Forecasts = temp if t==`s' 
 drop temp 
} 
 
 
gen MSE_MODEL_eth_a = sqrt((AR_eth_a_Forecasts - dco2log)^2) 
 
 
 
/////////////////////////////////////////////////////////////////////////// 
//banckmark after the break 
/////////////////////////////////////////////////////////////////////////// 
 
 
// AR --> Forecast before the break 
gen AR_eth_bm_a_Forecasts = . 
 
forvalues s = 1200/1290 { 
 newey dco2log L1.dco2log if t>=`s'-30 & t<`s', lag(1) 
 predict temp if t==`s' 
 replace AR_eth_bm_a_Forecasts = temp if t==`s' 
 drop temp 
} 
 
 
gen MSE_BANCKMARK_eth_a = sqrt((AR_eth_bm_a_Forecasts - dco2log)^2) 
 
 
///getting all together 
 
 
 
 
 
replace AR_eth_a_Forecasts = 0 if missing(AR_eth_a_Forecasts) 
replace AR_eth_b_Forecasts = 0 if missing(AR_eth_b_Forecasts) 
 
replace MSE_BANCKMARK_eth_a = 0 if missing(MSE_BANCKMARK_eth_a) 
replace MSE_BANCKMARK_eth_b = 0 if missing(MSE_BANCKMARK_eth_b) 
 
replace MSE_MODEL_eth_a = 0 if missing(MSE_MODEL_eth_a) 
replace MSE_MODEL_eth_b = 0 if missing(MSE_MODEL_eth_b) 
 
 
 
gen co2_eth_total_final = AR_eth_a_Forecasts + AR_eth_b_Forecasts 
 
gen MSE_MODEL_eth_final = MSE_MODEL_eth_a + MSE_MODEL_eth_b 
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gen MSE_BANCKMARK_eth_final = MSE_BANCKMARK_eth_a + 
MSE_BANCKMARK_eth_b 
 
 
gen co2_estimate_final_mf = . 
forvalues s = 60/1290 { 
 vec dco2ecolog co2_eth_total_final AR_Forecasts if t>=`s'-30 & t<`s', lag(3) 
 predict temp if t==`s' 
 replace co2_estimate_final_mf = temp if t==`s' 
 drop temp 
} 
 
 
 
 
replace AR_eth_bm_a_Forecasts = 0 if missing(AR_eth_bm_a_Forecasts) 
replace AR_eth_bm_b_Forecasts = 0 if missing(AR_eth_bm_b_Forecasts) 
 
gen co2_eth_bm_total_final = AR_eth_bm_a_Forecasts + AR_eth_bm_b_Forecasts 
 
 
 
gen co2_bm_final_mf = . 
forvalues s = 60/1290 { 
 reg dco2ecolog L1.dco2ecolog if t>=`s'-30 & t<`s' 
 predict temp if t==`s' 
 replace co2_bm_final_mf = temp if t==`s' 
 drop temp 
} 
 
 
 
 
drop if co2_estimate_final_mf == . 
 
 
 
 
estpost sum co2_bm_final_mf co2_eth_bm_total_final  AR1_Forecasts ,de 
esttab using "stats_bm_final_logs.csv" , cells ("mean(fmt(3)) p50(fmt(3))  sd(fmt(3)) 
max(fmt(3)) min(fmt(3)) skewness(fmt(3)) kurtosis(fmt(3)) count(fmt(3)) ") replace 
 
 
estpost sum co2_estimate_final_mf co2_eth_total_final   AR_Forecasts ,de 
esttab using "stats_predi_final_mf_logs.csv" , cells ("mean(fmt(3)) p50(fmt(3))  sd(fmt(3)) 
max(fmt(3)) min(fmt(3)) skewness(fmt(3)) kurtosis(fmt(3)) count(fmt(3)) ") replace 
 
//droping day of change in eth 
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//drop if co2_eth_bm_total_final >200 
// 
 
 
gen rmse_estimate = sqrt((co2_estimate_final_mf - dco2ecolog)^2)  
 
 
gen rmse_estimate_bm = sqrt((co2_bm_final_mf - dco2ecolog)^2)  
 
//diobold marino test RSME 
ttest rmse_estimate == rmse_estimate_bm  
ttest MSE_MODEL_eth_final == MSE_BANCKMARK_eth_final   
ttest MSE_MODEL_btc == MSE_BANCKMARK_btc  
 
 
//ttest estimate against actual 
 
 
ttest co2_estimate_final_mf == dco2ecolog  
ttest co2_eth_total_final ==  dco2log 
ttest AR_Forecasts == dbtco2log  
 
 
 
 
 
//plot benchmark  
 
 
twoway line co2_eth_bm_total_final DATE //eth 
twoway line AR1_Forecasts DATE // BTC 
twoway line co2_bm_final_mf DATE //ECOSYSTEM 
 
 
 
//plot estiamtion  
  
 
 
 
twoway line eth_carbon DATE //eth 
twoway line btc_carbon DATE // BTC 
twoway line co2_estimate_before DATE //ECOSYSTEM 
 
 
 
twoway line dco2ecolog DATE //ECOSYSTEM 
twoway line ETH_co2_estimate1 DATE //eth 
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 //drop co2_estimate_before_break 
 //drop co2_estimate_after_break 
 // 
// drop co2_bm_before 
// drop co2_bm_after 
//  
// drop rmse_estimate_before 
// drop rmse_estimate_after 
//  
// drop rmse_estimate_before_bm 
// drop rmse_estimate_after_bm 
//  
//  
//  
// 


