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Abstract  

Machine Learning models are widely adopted by businesses worldwide. However, without 

adequately comprehending a model's underlying mechanisms, evaluating its effectiveness 

can be difficult, leading to potential consequences for companies, policymakers, and the 

public. Simpler, more transparent models tend to be outperformed by more complex ones 

(black-box). This is commonly referred to as the interpretability vs. performance trade-off. 

This paper empirically evaluates the method of RuleFit by Friedman & Popescu (2008) as a 

solution to this dilemma. RuleFit is assessed in terms of performance and interpretability 

against a few transparent and black-box models across six datasets. According to this 

study, RuleFit can achieve a performance level that falls between simple and complex 

models, striking a meaningful balance, as long as it is tuned toward performance. However, 

the optimal performance parameters make the global interpretation of RuleFit challenging 

due to a large set of (extensive) features that need to be considered simultaneously. In that 

sense, RuleFit is shown to suffer from internal conflicts as its performance must be 

sacrificed to the level of inherently simpler models to become globally interpretable. On the 

other hand, RuleFit shows a significant advantage in local interpretation compared to the 

respective black-box solutions tested. Generally, for RuleFit, finding the optimal parameter 

levels to achieve an output that is both high-performing and easily interpretable was shown 

to be a challenging task. Based on these results, RuleFit may not be the optimal method for 

balancing interpretability and performance in most scenarios. Yet, there are two specific 

instances where RuleFit could prove advantageous for researchers in its current state. 

Moving forward, certain areas of improvement are identified for existing RuleFit 

implementations to address several issues found through this analysis.   
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1. Introduction 

Machine learning models have allowed businesses and researchers to extract essential 

insights from their data and use them in their operations and services. Ensemble learning 

methods are among the most powerful, accurate, and commonly used supervised machine 

learning models. Methods such as Bagging, Boosting, and Random Forests are famous 

examples that use decision trees as their base learners and are thus known as forests. 

These models can display a remarkable level of performance even without parameter 

tuning (Fernández-Delgado et al., 2014; Nalenz & Augustin, 2022). However, to do so, their 

interpretability is sacrificed to a considerable extent as their complexity increases when 

fitting the data. This also results in the loss of the intuitive structure of the decision trees. 

This lack of transparency leads to them being characterized as a “black box.” 

Understanding the inner workings of a model is necessary when communicating with the 

relative stakeholders and decision-makers. As noted by Doshi-Velez and Kim (2017), more 

than a single metric, such as accuracy, is needed to be a sufficient description of most real-

world applications. Furthermore, a model can only be audited when understood, and being 

unable to explain how a model works opens the risk of biases and discrimination. In other 

words, comprehending a model means evaluating its desiderata as a machine learning 

model in general (Doshi-Velez & Kim, 2017).  

Complex models with a higher performance suffer in interpretability while more 

“transparent” models are usually outperformed, a problem known as the interpretability vs. 

accuracy trade-off. Finding the right balance between the two depends on the use case. For 

example, predicting the price of a stock may not require a high level of interpretability but 

high-stake cases such as a medical application might do instead (Nalenz & Augustin, 2022).  

One solution proposed by Friedman and Popescu (2008) is RuleFit. It is based on the idea of 

Rule Ensembles wherein the trees of a forest ensemble are transformed into rule 

statements and inserted in a (lasso) regression called a meta-learner. This process realizes 
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the benefits of an ensemble method within a traditional regression framework. The 

following sections will elaborate upon RuleFit’s methodology and related work. Generally, 

the main idea behind RuleFit is that rules are considered more interpretable than complex 

trees. At the same time, the meta-learner's penalty factor eliminates the overall model's 

excess complexity while retaining a satisfactory performance. The paper and model of 

Friedman and Popescu (2008) will also be the basis of this paper. The goal is empirically 

testing and analyzing the trade-off between accuracy and interpretability using RuleFit, 

conventional ensemble methods, and inherently simpler models such as logistic 

regression. Thus, the main research question is: 

“To what extent does RuleFit manage to tighten the gap between accuracy and 

interpretability?” 

Followed by the sub-questions: 

I. To what extent does RuleFit compete with conventional ensemble approaches in terms 

of performance? 

II. To what extent does RuleFit compete with more straightforward and transparent 

methods in terms of performance? 

III. In which circumstances would using a simpler model be favorable? 

IV. In which circumstances would using a more accurate model be favorable? 

The following section provides an overview of the concept and literature of (black box) 

interpretability. Furthermore, the RuleFit method is described along with its fundamental 

theoretical concepts and its related studies. Next, the analysis results are presented and 

followed by a discussion. Finally, conclusions and suggestions are made based on the 

insights of this research. 
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2. Theoretical Framework  

2.1 Towards interpretability 

Interpretability holds no strict definition in machine learning (Lipton, 2016; Doshi-Velez & 

Kim, 2017). Generally, interpretability relates to the extent to which a model’s workings and 

output can be communicated in understandable terms to a human (Doshi-Velez & Kim, 

2017). Researchers commonly interchange the terms interpretability and explainability 

(Molnar et al., 2020). Still, considering Miller (2017) and Molnar (2022), a distinction of the 

term “explanation” is made in this paper. The term “explanation” refers to asking why a 

prediction is made instead of another one. Some examples are “Why was this patient 

diagnosed with a disease?” or "What if input X was different?” (Molnar, 2022).  

Lipton (2016) states that the two characteristics of interpretable models are post-hoc (after 

analysis) interpretability and transparency. Furthermore, Doshi-Velez & Kim (2017) attempt 

to formalize and formulate a general approach to define further, measure, and evaluate 

interpretability. They describe interpretability as a multi-faceted concept and propose three 

evaluation levels, as shown in Figure 1.  

 

Figure 1 - Taxonomy of evaluation approaches for interpretability, obtained by Doshi-Velez & Kim (2017) 

1. Application-grounded: According to the authors, interpretability should be evaluated 

based on whether the model’s predictions align with a user's needs. 

2. Human-grounded: This approach evaluates interpretability by how well the model's 

predictions align with human cognition and decision-making.  
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3. Functionally grounded: This approach evaluates interpretability based on how well 

the model performs on the task at hand based on domain knowledge. 

The authors argue that all three levels are critical when evaluating the interpretability of a 

model.  

The extent to which a model is considered interpretable may also relate to its fundamental 

theoretical structure. Efron (2020) highlights the differences between traditional regression 

(transparent) and pure-prediction (black-box) models. First, the author notes that 

traditional regression models are based on parametric modeling (causality), while pure-

prediction algorithms are non-parametric. Non-parametric models may be considered less 

interpretable as they involve a parameter tuning process related to the model instead of 

the “data generation process." This is exemplified by Neural Network models, commonly 

requiring the tuning of hundreds or thousands of parameters. In that sense, parametric 

models reflect a notion of causality, while the predictions of non-parametric models are 

much less understood. In other words, traditional regression models are considered "truth-

seeking," while pure-prediction models primarily focus on prediction (accuracy), ignoring 

the underlying truths or mechanisms behind the data. 

Furthermore, Efron (2020) explains that attribution (feature importance) in ensemble 

algorithms can become misleading. It is demonstrated that ensemble algorithms create 

new high-order combinations of features no longer directly related to the original ones. As 

a result, identifying the "truly" important features responsible for the model's accuracy 

becomes complicated. Contrary to that, traditional regression models avoid this issue by 

attempting to identify the importance of a much smaller set of features. Another difference 

is that traditional regression models are based on a long history of theoretical 

development, such as the Maximum Likelihood criterion and Neman-Pearson inference. 

On the other hand, pure-prediction algorithms are mostly based on empirical methods, 

such as the train/test paradigm. The author aspires to reunite the model categories in two 

ways. The first is through making black-box models more interpretable by becoming more 
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similar to traditional regression outputs. The second is by realizing the advantages of black-

box models within traditional frameworks. The latter can be exemplified by RuleFit in that it 

brings the accuracy of a Boosting algorithm in a regression framework.  

Watson (2022) divides the conceptual obstacles to making a Machine Learning model more 

interpretable into three categories. The first is Ambiguous fidelity. The author highlights 

that explanations of a model should be faithful to a target. Nevertheless, the exact type of 

target is underspecified. Explanations can either be faithful to the model (“Why did the 

model predict x ?”) or to the system (“Which fundamental truth or fact explains the truth 

conditions of this prediction ?”). This is based on a longstanding debate between two 

attribution methods, conditional and marginal importance. Marginal measures are 

considered faithful to the model itself, while conditional measures are considered faithful 

to the system the model is embedded in. In that sense, the choice of measure must be 

specified and motivated by the target of interest. The next obstacle is error rates and 

severe testing. According to the author, algorithmic explanations of black-box models 

cannot be confidently relied upon as they do not undergo severe testing, contrary to 

regression models as an example. Depending on the complexity of the model, different 

testing approaches are required. The last obstacle is process vs. product. The author claims 

that algorithmic explanations of black-box predictions produce a static product output. 

However, it is argued that interpretation should be thought of as more of a process 

instead. As a solution, Watson (2020) suggests treating explanations as a dynamic 

exchange between agents. This approach mimics the unfolding of real-world explanations 

more closely and can more likely lead to understanding by the inquiring agent. The 

example of a medical diagnosis is used by the author to demonstrate this approach; for the 

practitioner finding the medical name of the patient’s condition may be sufficient, while the 

patient may need their condition explained in more familiar terminology instead.  

The presence of numerous features and different sources of randomness further 

compounds the complexity of interpreting a model. Even inherently simpler models, such 

as a Regression or Decision Tree, may no longer be considered interpretable if hundreds of 
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parameters and features are included (Molnar et al., 2020). As mentioned, forest 

ensembles are based on the concept of bootstrapping, a random sampling of observations 

with replacement. Despite its potential benefits, this source of randomness makes it hard 

for a human to keep track of the model’s exact inputs. The situation becomes even more 

complicated after multiple different and complex trees are fit on each bootstrapped 

sample. The issue of randomness as a source of complexity is further emphasized in 

Random Forest models, which randomly sample a subset of features when fitting each 

tree.  

In understanding machine learning models, it is common to distinguish between two types 

of interpretability, global and local. Global interpretation refers to understanding the 

model's behavior as a whole. In contrast, local interpretation focuses on understanding the 

model's behavior on a particular instance or subset of the data. Global interpretation aims 

to obtain insights into the overall patterns and relationships in the data. Meanwhile, local 

interpretation aims to identify which factors drive a model's predictions for a particular 

observation or group of observations. Both types of interpretation can be important for 

understanding and improving the performance of machine learning models. 

2.1.1 Relevance 

As mentioned, Machine Learning algorithms are utilized by many companies for their 

operations worldwide. Companies that respond successfully to the changes caused by the 

increase in Artificial Intelligence and Machine Learning applications are expected to survive 

longer and realize higher profits, increasing by approximately 38% within the next decade 

(Daugherty & Wilson, 2018). Understanding and creating interpretable algorithms and 

(machine-learning) models is crucial for companies to safeguard their reputation, mitigate 

potential legal risks, and maintain positive relationships with stakeholders, policymakers, 

and the general public. Failure to comprehend the inner workings of these models can 

have harmful consequences for all parties. 
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Firstly, algorithms commonly reflect, carry, and perpetuate the biases of their creator 

(Bogen, 2021; O’Neil, 2016). This raises further ethical concerns and puts democracy at risk. 

Bogen (2021) discusses the example of hiring algorithms. When "shaping the candidate 

pool," the algorithms used to reach out to candidates via ads or notifications can re-enforce 

both gender and racial stereotypes regardless of the company’s or creator’s intent. As a 

result, the company may overlook potentially suitable and skilled candidates. At a higher 

level, this can also lead to discriminatory outcomes, damaging the company’s reputation 

and raising concerns among policymakers and the wider society. Bogen (2021) highlights 

the need for more thorough regulation and the responsibility of companies to monitor 

whether their algorithms promote equity. Another relevant example is the COMPAS 

algorithm, which was regularly used to predict the probability of re-offense by criminals, 

thus determining their sentences (Angwin et al., 2016). It was later found that black 

criminals were systematically assigned a higher bias in re-offense probability than white 

ones. Another detrimental consequence of not understanding the behavior and errors 

made by an algorithm is exemplified by companies like Uber and Tesla, which experienced 

significant accidents involving their autopiloting cars. When using the "self-driving" feature, 

a Tesla car’s behavior caused a crash injuring nine people (Kippenstein, 2023), while Uber’s 

autonomous vehicle fatally crashed a pedestrian (Smiley, 2022). These incidents 

underscore the importance of comprehending the underlying algorithms and ensuring 

their transparency and explainability. Diakopoulos (2014) states that despite their 

significant impact on society, most algorithms used regularly remain black boxes. 

2.1.2 Solutions  

A few methods can extract some level of interpretability from a black box (forest) model 

after training/post-hoc. Solutions specifically tailored to a method are known as model-

specific, while general-fitting ones are known as model-agnostic. Individual Conditional 

Expectation plots (ICE) (Goldstein et al., 2015), Partial Dependence Plots (PDP) (Friedman, 

2001), Variable Importance (Breiman, 2001), and (local) surrogate models (Pruett & Hester, 

2016) are to name a few existing solutions. They mostly rely on visually explaining the 
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model’s workings (e.g., PDP, ICE plots) or replicating its behavior more simply (e.g., 

surrogate). Both approaches aim to increase the transparency of the model. However, 

regardless of the solution, the intuitive structure of the original decision trees is lost in the 

context of forests.  

Molnar et al. (2022) discuss that (model-agnostic) solutions also have their pitfalls. The 

authors state that there is no "one-fits-all" solution when choosing a solution for 

interpretability. They explain that the choice of solution should be motivated by the 

research goals. Here are a few considerations that the authors discuss regarding the 

aforementioned solutions. First, they state that feature importance is sensitive to 

interactions and unable to capture non-linear effects leading to inconsistent results. 

PDP/ICE may become misleading when a feature marginally captures the effect of other 

features, or their relationship could be more complex. Surrogate models are characterized 

as inconsistent as their results depend on the choice of the type of surrogate model. In 

addition, surrogate models, by definition, lead to a loss of complex interactions found in 

the original model. Watson (2022) further discusses most of the above concerns in the 

context of Interpretable Machine Learning. Finally, Molnar et al. (2022) argue that it is often 

a misconception that simpler models are always expected to be highly outperformed by 

more complex ones. 

2.2 Rule Ensembles  

2.2.1 RuleFit 

Rule ensembles are one way to create an interpretable machine-learning model, which has 

remained relatively understudied. One such approach is the one of Friedman and Popescu 

(2008) known as RuleFit. The idea of Rule Ensembles, and thus of Rule Fit, is that when 

creating a forest ensemble, instead of directly “learning” its decision trees and their 

predictions, they are extracted and transformed into rules. This is achieved by traversing 

the tree from the root to each leaf node. The extracted rules refer to If - else statements. 
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According to the authors, rules are a more intuitive and easily understood construct than 

deep decision trees (Friedman & Popescu, 2008). Next, Friedman and Popescu (2008) 

propose using a lasso penalized regression using the extracted rules as predictors. This is 

commonly referred to as the meta-learner model. The penalty factor reduces unnecessary 

complexity by shrinking the coefficients of the least important rules to zero. In that sense, 

one retains satisfactory performance while reducing complexity, bridging the gap between 

interpretability and accuracy. 

2.2.2 Bridging the Gap 

The primary way in which RuleFit is expected to provide a higher level of interpretability is 

that it significantly reduces the final features/coefficients in the model compared to a 

typical black-box model. In principle, the final output of the RuleFit model is identical to a 

linear/logistic regression model, meaning that its interpretation also follows the same 

principles. This aids in interpretability as regression models are relatively well-established 

and straightforward. Efron (2020) adds that bridging a forest ensemble (i.e., boosting) with 

a logistic regression aims to retain the advantages of “pure-prediction models within a 

traditional framework." In terms of performance, the model aims to retain a level similar to 

a conventional black-box model such as Random Forest. This is because RuleFit leverages 

the accuracy of complex ensembles to derive its candidate features. This is based on the 

assumption that RuleFit keeps the high order and complex interactions responsible for the 

increased performance in the original ensemble method. Molnar (2022) mentioned that 

RuleFit could also be a way to obtain meaningful and complex interactions instead of 

requiring the researcher to identify and create them manually.  

All mentioned advantages are related to the interpretation of the model on a global level. 

However, the benefits extend to the local interpretation level. For example, for a given 

observation or group of observations, it is possible to check which rules are applicable and 

which are not. Therefore, one can directly understand how a prediction is made for said 
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observation(s). This can be very useful for applications where micro-level insights are 

crucial, such as medical cases.  

By tightening the gap between accuracy and interpretability, RuleFit can play a crucial role 

in addressing the challenges faced by businesses and society regarding interpretable 

models. Providing transparent and understandable insights into the decision-making 

process can help businesses build customer trust, mitigate reputational risks, and comply 

with regulations. In the societal context, it can enable individuals to comprehend and 

question the outcomes of ML algorithms, promoting fairness and accountability. The 

balance of the model between accuracy and interpretability can allow users to make 

informed decisions based on comprehensible and reliable outputs while still achieving high 

predictive performance. By offering a meaningful compromise, RuleFit contributes to a 

responsible and effective adoption of Machine Learning technologies, benefiting 

businesses and society. On the other hand, if RuleFit widens the gap, it is essential to 

examine the potential advantages or trade-offs that come with sacrificing interpretability 

for a higher accuracy level and vice versa. 

2.2.3 Related work 

Originally, the candidate rules were obtained from Gradient Boosted decision trees (GBM) 

(Friedman & Popescu, 2002), but more forests have been explored for this purpose (Nalenz 

& Villani, 2018). Nalenz & Augustin (2022) argue that the idea of RuleFit suffers from 

conflicting interests. Specifically, to reduce unnecessary rules (create smooth decision 

boundaries), RuleFit must first go through a series of different or overlapping rules. Instead, 

Nalenz & Augustin (2022) propose a univariate clustering of the splits of each covariate. The 

resulting clusters are referred to as ensemble conditions and are used in the meta-learner 

instead of the individual rules, unlike RuleFit (Nalenz & Augustin, 2022; Friedman & 

Popescu, 2008). Wei et al. (2019) propose a new regularization method called "smoothly 

clipped absolute deviation" (SCAD) to assign weights to rules. Its main advantages include 

an increase in stability and a reduction in overfitting. According to the authors, the 
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technique can be competitive with more complex models. Lastly, Kundu et al. (2021) show 

that using accuracy as a measure to assign weights to base learners may worsen the meta-

ensemble’s final performance, especially in the case of imbalanced datasets. To that extent, 

they instead propose a function with inputs of various metrics such as Recall, Precision, 

AUC, and F1 scores.  

2.2.4 Contribution 

The contribution of this paper can be summarized as follows: 

• Expands the literature on the understudied topics of Rule Ensembles and RuleFit, 

bringing attention to their potential to bridge the accuracy-interpretability trade-off.  

• Provides a guideline for researchers on when and how to effectively use RuleFit to strike 

a balance between interpretability and accuracy, contributing to the ongoing pursuit of 

narrowing the gap between these two crucial aspects in machine learning models. 

• It is the first to utilize the xrf package's implementation of RuleFit empirically, the only 

package capable of tackling overlapping rule concerns. 

• Identifies the shortcomings of the current implementations of RuleFit and makes 

suggestions for improving the method in its practical application. 

• Presents a thorough comparison between the RuleFit method and transparent and 

black box models. The evaluation is conducted in an objective manner, analyzing the 

performance and interpretability of each method. The findings offer a clear insight into 

their individual strengths and weaknesses. 
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3. Methodology  

This section presents a more detailed but not exhaustive description of the methodology of 

the RuleFit model and its base concepts. 

3.1. Ensembles 

Firstly, forest-type ensembles are based on the concept of bootstrapping. The main idea is 

that random sub-samples of the original data are drawn with replacement. Then each 

decision tree of the forest is trained on its respective bootstrap sample drawn. Each 

decision tree's training process happens independently or depends on the rest. They are 

known as parallel and sequential ensembles, depending on the process. Bagging is a 

popular parallel ensemble, while Boosting is a popular sequential ensemble. Random 

Forests are an extension of the Bagging method, but they consider random subsets of 

variables at each split instead of all variables.  

As mentioned, the candidate rules were originally obtained from Gradient Boosted 

Decision trees (GBM) (Friedman & Popescu, 2002; 2008). Regardless, any forest ensemble 

can be used for the rule extraction process. Each forest method has its potential benefits, 

such as reducing bias or variance. Therefore, using a different ensemble to extract the 

candidate rules will affect some aspects of the RuleFit model. Nalenz & Augustin (2022), for 

example, state that boosted decision trees (GBM) exhibit an elevated level of accuracy, 

meaning that they are likely to “find interesting subspaces” in the data. 

Following the definition of the original RuleFit paper of Friedman & Popescu (2003 & 2008), 

a general ensemble is mathematically described with the following formula (1): 

𝑓(𝑥) = 𝑎0 + ∑ 𝑎𝑚𝑓𝑚(𝑋)       (1)

𝑀

𝑚=1

 

𝑚 refers to the number of trees in the forest with their respective prediction 𝑓𝑚(x) . The 𝛼 

terms refer to the weight of each tree depending on the ensemble method (i.e., Bagging, 
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GBM, RF) and the respective method with which predictions are combined (i.e., weighted 

average, majority-vote). Together all these parameters make the up the ensemble 

prediction function 𝑓(𝑥).  

3.2. Extraction of Candidate Rules 

Each node, including the terminal ones, within the forest, produces a candidate rule. As 

mentioned, rules are obtained by traversing from the root to the node. Mathematically this 

is the product of all associated indicator functions 𝐼(∙) within that path. The indicator 

function of a rule 𝑟𝑚(𝑥) , part of 𝑚-th tree and for variable 𝑥𝑗 , checks whether the condition 

is true or false, taking a value of 1 and 0, respectively. The following equation summarizes 

the above: 

rm(x) = ∏ 𝐼

j∈𝑇𝑚

(xj ∈ 𝑠𝑗𝑚)        (2) 

Wherein 𝑇𝑚 refers to the set of features utilized within tree 𝑚. 𝑠𝑗 refers to all values that 

input variable 𝑥𝑗 can take. 𝑠𝑗𝑚 is a subset of 𝑠𝑗, whose bounds for feature 𝑗 are defined by 

the respective rule conditions (tree-splits). Finally, 𝐼 is the indicator function taking the value 

of 1 when input 𝑥𝑗 falls within the specified bounds 𝑠𝑗𝑚, for each 𝑗-th feature, and 0 

otherwise. 

The type of variable 𝑥𝑗 determines the structure of 𝑠𝑗𝑚: 

• For numerical variables: 𝑠𝑗𝑚is an interval with a lower and upper limit defined by the 

conditions of the extracted rule (e.g., 𝑥𝑗 <  xsjm, upper). 

• For categorical variables, 𝑠𝑗𝑚  contains a set of numbers corresponding to each 

category for both ordered and unordered inputs. 
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Figure 2 visualizes the process of extracting rules from a decision tree using a made-up 

example based on a few straightforward variables of the Adult (1996) dataset of the UCI 

Machine Learning Repository. 

 

 

The four unique rules that can be extracted from the decision tree of Figure 2 are: 

𝑟1(𝑥𝐴𝑔𝑒, 𝑥𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛) =  𝐼 (𝑥𝐴𝑔𝑒 < 50) ∙  𝐼 (𝑥𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 ∉ {𝑠𝑎𝑙𝑒𝑠, 𝑜𝑡ℎ𝑒𝑟})  , 

𝑟2(𝑥𝐴𝑔𝑒) =  𝐼 (𝑥𝐴𝑔𝑒 < 50) , 

𝑟3(𝑥𝐴𝑔𝑒, 𝑥𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛) =  𝐼 (𝑥𝐴𝑔𝑒 < 50) ∙  𝐼 (𝑥𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 ∈ {𝑠𝑎𝑙𝑒𝑠, 𝑜𝑡ℎ𝑒𝑟})  , 

𝑟4(𝑥𝐴𝑔𝑒) =  𝐼 (𝑥𝐴𝑔𝑒 ≥ 50) 

Here rules 𝑟2 and 𝑟4, are redundant since they are perfectly colinear (evaluate the same 

conditions) as explained in Fokkema (2020). In such cases, for most implementations of the 

RuleFit algorithm, the software automatically omits either of the two redundant rules. The 

same goes if the same rule occurs again within a “child node.” Resultingly, the user has 

fewer and less complicated rules to keep track of within the final ensemble. 

3.3. Meta Ensemble / Rule Fitting 

Figure 2 - The process of extracting rules, made-up example 

created based on variables from the Adult Dataset 
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Next, the extracted rules are used as the inputs of a penalized regression, specifically a 

lasso one. In this way, the model pushes rules that do not add “adequate” explanatory 

power to zero. Theoretically, this retains an elevated level of performance, but also 

interpretability as fewer parameters are present in the final output. The formula according 

to which the regression model assigns the respective weights to each rule is the following: 

{𝛼̂𝑚}0
𝑀 = arg min

{𝑎𝑚}0
𝑀

∑ 𝐿 (𝑦𝑖 , 𝑓(𝑥𝑖))

𝑁

𝑖=1

+ λ ⋅ ∑ |𝑎𝑚|

𝑀

𝑚=1

(3) 

The 𝛼 terms refer to the weight assigned to each rule in the linear model. The function 𝐿 

refers to the Loss Function between the actual value 𝑦𝑖 and the predicted 𝑓(𝑥𝑖). The exact 

type of loss function depends on the nature of the data. N is the total number of 

observations and M is the number of the decision tree in the ensemble. The term λ 

controls the magnitude of the 𝐿1-type lasso penalty. Higher values of 𝜆 lead to more 

shrinkage of the rules’ respective coefficients. Identifying the optimal value of 𝜆 is done 

through the (𝑘-fold) cross-validation process by finding the value which leads to the lowest 

level of (mean-squared) prediction error on the training data.  

3.4. Extensions and considerations 

3.4.1 Original features 

Fundamentally, the way rules act remains the same as the nodes of a decision tree; they 

divide the space of the data. However, some relationships, for example, distance in 

kilometers, are better captured by a continuous variable when compared to rules. 

Implementations of the RuleFit model by packages such as H20, pre, rulefit, and xrf, allow 

for both the candidate rules and the original features in the meta-ensemble. In practice, 

this extends formula (3) to accommodate a term 𝛽 that assigns weights to the 𝑝 original 

features. Both these new parameters are included in the penalization (second term of 

formula (3)). The structure of the final formula varies per use case; thus, it is not provided 
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here. In practice, the main idea is that the model becomes more flexible by including the 

original features. 

3.4.2 Overlapping rules. 

Another consideration regarding the extraction of rules is 

that they can overlap. This means that one must keep track 

of multiple simultaneously true rules. Though it is not 

necessarily a problem in terms of performance, it could 

complicate the interpretation of the model. This eventually 

defeats the purpose of creating an interpretable and 

straightforward model. The meta-ensemble still follows the 

same interpretation as a general linear model. Molnar 

(2022) highlights that the interpretation of the weights in the 

meta-ensemble becomes unclear in the case of overlapping 

rules. This is because the standard coefficient interpretation 

assumes all other variables to be constant (ceteris paribus). However, in the case of 

overlapping rules, since multiple statements are true simultaneously, the “holding all else 

constant” assumption no longer holds. This problem is visually shown with a made-up 

example in Figure 3 obtained from Singh et al. (2021). Some implementations of RuleFit 

from statistical packages, such as the one of xrf, can de-overlap such cases to produce 

fewer but mutually exclusive features. The reader is referred to Holub (2022) for details 

about the exact process of de-overlapping.  

3.4.3 Depth of Trees 

One important choice to make prior to generating the initial trees is their depth. The 

reason behind this is twofold. First, trees with a higher depth can extract more complex 

interactions and relationships in the training data. This, in turn, enhances the flexibility and 

performance of the final linear model. On the other hand, highly complex rules are a 

problem when interpreting the model output, as the user must keep track of an extensive 

Figure 3 - Overlapping rules visualization 

obtained by imodels package documentation 

Singh et al. (2021) 
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list of high-order interactions. Moreover, only including high-order interactions could mean 

that the “main” rules which cover the essential/lower-order interactions are left out. This 

leads back to the original dilemma between accuracy and interpretability. Friedman & 

Popescu (2008) discusses that this question is directly related to the nature of the data. If 

the given research question requires multiple parameters (𝐿), there should mathematically 

be at least 𝐿 + 1 terminal nodes in the decision tree to generate a rule for each parameter. 

In other words, a decision tree with 𝐿 terminal nodes can only generate rules regarding 𝐿 −

1 features (Friedman & Popescu, 2008).  

One approach suggested by Friedman & Popescu (2008) is to learn trees of random depth 

by allowing the depth parameter to vary randomly per tree, revolving around a given 

average meta-parameter 𝐿̅. This ensures that the rules of the linear model include both the 

main/lower-order and more complex interactions, meaning a more even distribution of the 

rules. The authors suggest that the optimal level of 𝐿̅ can be found either via 

experimentation with cross-validation or based on field knowledge and prior assumptions 

regarding the data. 
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4. Data  

This section provides an overview of the chosen datasets, the motivations behind their 

choice, and a brief description of each.  

The chosen datasets are obtained from the UCI Machine Learning Repository (Dua & Graff, 

2019) and are presented in Table 1 below. They are chosen for the following reasons. First, 

each dataset has one or multiple characteristics such as a high-class imbalance, numerous 

features, and multiple observations. Thus, the RuleFit method can be tested under various 

scenarios. The datasets also require a minimal level of pre-processing. Furthermore, 

literature has used them to introduce, compare, and evaluate certain methodologies (Van 

Hulse et al., 2007; Mita et al., 2019; Wei et al., 2019; Fokkema, 2020). Specifically, using 

some of the mentioned datasets (and more), Mita et al. (2019) introduce and compare the 

LIBRE method, Van Hulse et al. (2007) examine several methods under high class-imbalance 

cases, Fokkema (2020) introduces the'pre’ package in R and how it compares to ‘RuleFit’, 

and finally Wei et al., (2019) introduces and compares the SIRUS method. This gives a 

baseline expectation of the (potential) performance across multiple methods and for each 

dataset.  

Name # Features # Observations Class Proportion (% 

of Positive Class) 

Task 

Adult 14 48842 24% Classification 

Bank 17 45211 11% Classification 

Mushroom 22 8124 48% Classification 

Bike Sharing 16 17389 - Regression 

Wine Quality 12 4898 - Regression 

Abalone 9 4177 - Regression 
Table 1 – Datasets obtained by UCI Repository with their observation count, number of features, class 

proportion, and their task (regression or classification) 

 The “Adult” dataset is commonly known as “census income." The goal is to predict whether 

individuals in the dataset exceed a yearly income of $50k. The variables in the adult dataset 

are a mix of categorical and numerical classes. The “Bank” dataset aims to predict whether 

a customer will subscribe to a term deposit after being contacted via direct marketing. The 

variables in this dataset are also a mix of categorical and numerical classes. For the 
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“Mushroom” dataset, multiple goals can be chosen for the classification task. In this case, 

the goal is to predict whether a mushroom is poisonous or edible. The variables in the 

dataset are all categorical. The “Bike Sharing” dataset aims to predict the hourly demand 

for sharing bikes. The variables in the dataset consist of both categorical and numerical 

data. The “Wine Quality” dataset contains information regarding the composition of various 

wines next to their assigned ratings by judges. The task is to predict the ratings of a wine 

based on its composition, such as sugar, sulfate, and alcohol levels. Besides the red or 

white wine category, the dataset consists of numerical values. Finally, the “Abalone” dataset 

aims to predict the age of abalone using physical measurements. The variables in the 

dataset are all numerical except for the sex of the abalone, which is nominal. All datasets 

required minimal or no pre-processing. 

4.1 Models 

There are two categories of methods that are compared along with RuleFit. The forest 

ensemble methods Boosting and Random Forests represent the black box category. On the 

other hand, the models (penalized) regression and decision trees represent the category of 

interpretable models. To determine an approximation of the optimal parameter levels in 

each model, a 5-fold cross-validation process is used on a few hyperparameters. The 

following parameters are tuned: 

➢ Random Forest: Number of variables tried at each split (mtry) 

➢ Boosting (GBM): Number of trees, Interaction Depth  

➢ Penalized regression: L1 Penalty parameter α  

➢ RuleFit: 

i. Trees extracted from GBM:  Penalty, Shrinkage 

ii. Trees extracted from Random Forest: Penalty, Number of variables tried at each 

split (mtry) 
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The RuleFit models are trained using the xrf engine in the tidymodels package (with the 

rules extension), which acts as a “wrapper” that simplifies and extends the use of the 

original xrf functionality. The xrf engine is chosen instead of other implementations, such 

as the RuleFit and pre-packages, as it can de-overlap rules, as mentioned in section 4.2. 

Furthermore, the xrf engine integrates the ability to extract the candidate rules from a 

Random Forest ensemble. Finally, it is worth noting that by default, the xrf package uses 

100 trees and a max depth of 3; in the tidymodels wrapper, these values are changed to 15 

and 6, respectively. Contrary to the pre package, however, xrf does not natively support 

sampling trees of random depths as mentioned in section 4.3, proposed by Friedman & 

Popescu (2008).  

In this paper, two versions of RuleFit are constructed, one following the original method by 

extracting the rules from GBM trees and one using the trees of a Random Forest instead.  

4.2 Performance Analysis  

In light of Fokkema (2020), the performance of each model is calculated and evaluated 

using the real-world data evaluation design of Hothorn et al. (2005). According to the 

design, multiple bootstrap samples of the original dataset are generated. In each iteration, 

a model is trained based on the bootstrap sample while the respective Out of Bag 

observations are kept aside and used as the test set. With this design, the distribution of a 

model’s performance is obtained, thus allowing one to assess the model’s stability. The 

Classification tasks are evaluated using the Area Under the Curve (AUC) metric, while the 

Root Mean Squared Error (RMSE) is used for regression tasks. Final model performance is 

measured as the average score across all bootstrap samples.  
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5. Results 

The structure of the following section goes as follows. First, the performance results of a 

250-bootstrap process based on the design of Hothorn et al. (2005) are shown and 

compared across each model and dataset. Then, interpretability is explored and compared 

within models using examples from the bank dataset.  

5.1 Performance Results  

The following performance scores are obtained and shown in Table 3. Mean rank refers to 

the average rank of a model across all datasets and out of the seven models. 

Dataset Random 

Forest  

Decision 

Tree 

GBM 

 

Linear/Logistic 

Regression 

Lasso RuleFit 

 GBM 

RuleFit 

 RF 

Adult 0.90 

(0.002) 
0.76 

(0.004) 
0.922 

(0.002) 
0.905 

(0.002) 
0.853 

(0.002) 
0.919 

(0.002) 

0.917 

(0.002) 
Bank 0.929 

(0.002) 
0.708 

(0.007) 
0.932 

(0.002) 
0.906 

(0.003) 
0.872 

(0.003) 

0.911 

(0.003) 
0.921 

(0.003) 
Mushroom 1 

(0) 
0.999 

(7.06e-4) 
0.999 

(2.9e-4) 
0.999 

(1e-4) 
0.974 

(0.003) 
0.999 

(3e-4) 
0.999 

(0.003) 

Bike Sharing 43.33 

(0.92) 
55.76 

(1.41) 
43.03 

(0.79) 
141.91 

 (1.44) 

141.91 

(1.45) 
56.62 

(1.95) 
45.97 

(1.09) 
Wine Quality 0.605 

(0.024) 
0.744 

(0.03) 
0.63 

(0.02) 
0.65 

(0.02) 
0.64 

(0.02) 
0.65 

(0.03) 
0.672 

(0.03) 
Abalone 2.16 

(0.053) 
2.56 

(0.063) 
2.18 

(0.057) 
2.22 

(0.057) 

2.24 

(0.059) 
2.2 

(0.052) 
2.45 

(0.064) 
Mean Rank 2 6.3 1.8 4.2 5.5 3.8 4 

Table 3 – Average measured performance across 250 Bootstrap iterations following the design of Hothron et al. 

(2005) (rounded to three decimal places, Standard Deviation in Parentheses)  

The results indicate that, on average, the performance of both RuleFit models lies in 

between the transparent and black box models, as shown by their mean rank. As expected, 

the more complex black-box models are consistently the top performers. However, the 

performance of the simpler models is mixed. Occasionally, they perform similarly to the 

black-box models and even outperform the RuleFit models, such as in the Abalone and 

Mushroom datasets. Overall, it can be argued that the performance gap between each 

model is relatively small on average. This finding is aligned with Molnar et al. (2022), who 
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argue that it is a misconception that more complex models will consistently outperform 

simpler models.  

Friedman & Popescu (2008) suggest that RuleFit’s performance is expected to be 

competitive with other black-box models. However, Molnar (2022) highlights that in 

practice, the performance of RuleFit is weaker than what is proposed by Friedman & 

Popescu (2008). Nevertheless, here the results are partly in line with both authors. 

Specifically, it is demonstrated that for most classification tasks, RuleFit performs more 

closely to the black box model category, confirming the suggestions of Friedman & Popescu 

(2008). On the other hand, for most regression tasks, RuleFit tends to underperform and 

stand closer to the simple category, as Molnar (2022) implied. One exception within the 

regression tasks is the Bike dataset, where RuleFit has a significant advantage over the 

simpler category and performs closest to the black-box category. It must be noted that the 

relative advantage of RuleFit in classification tasks over regression tasks is, in all likelihood, 

attributed to the specific datasets and not the type of task.  

5.2 Interpretability 

The training and testing set for the interpretation demonstration are obtained by randomly 

sampling one of the bootstrap samples used in the performance evaluation design.  

5.2.1 Bank Dataset Demonstration 

Rule Fit 

The (RF-based) RuleFit model generates 417 features consisting mainly of rules. 

Interpreting those many features becomes a highly complex process when dealing with 

lengthy rules. To counter that, a stronger level of penalization is required to reduce the 

rules in the model. The number of features and test set performance when using different 

penalty levels can be seen in the Appendix Section (Figure A.7). Initially, RuleFit achieves an 

AUC of 0.915 on the test set with 417 features. By increasing the lasso penalty and 

sacrificing the AUC to 0.903, a notable 387 rules are omitted, resulting in only 30 features 
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remaining in the model. The six largest absolute coefficients out of the remaining 30 

features are provided below in Table 4.  

 Table 4 –  Six largest absolute coefficients of RuleFit (RF) output (with lambda resulting in 30 total features) 

Table 4 shows that the largest coefficient is assigned to the original feature “Outcome 

Success P” referring to what happened with a client in the previous marketing campaign. As 

mentioned in Section 3.4.1, including the original features were expected to increase the 

model’s flexibility. The next largest coefficient is assigned to the extracted rule with ID 7_83. 

This rule is translated as; the age of the client is less than 57.5 years, the medium of contact 

(i.e., phone, email) is unknown, the duration of contact was less than 640.5 but more than 

225.5 seconds, the client was called in June, and the last marketing campaign was a 

success. When all conditions hold, the predictor takes the value of 1 and 0 otherwise. 

Therefore, the interpretation of this coefficient would be such that if all else is held 

constant (ceteris paribus), the probability that a client subscribes to a term deposit on 

average increases by 111.5% compared to the reference category. 

The model has 24 further rules/features of similar length that are not listed in Table 4 yet 

need to be considered. Given the number of conditions in each rule, this can become a 

challenging and time-consuming process. Rule length is directly related to the depth of the 

original trees, as mentioned in Section 3.4.3. At this date, the xrf package does not support 

or document a function to sample trees of random depth, as suggested by Friedman & 

Popescu (2008). Again, doing so is expected to result in more lower-level/base rules which 

Coefficient Term Rule Description 

-2.7430 (Intercept) 
 

1.832 Outcome Success P Original categorical feature of Bank Dataset  

1.115 Rule ID 7_83 ( age <  57.5 ) & ( contact != 'unknown' ) & ( duration <  640.5 ) & ( duration 

>= 225.5 ) & ( month == 'jun' ) & ( poutcome != 'success' ) 

1.06 Rule ID 2_57 ( day >= 19.5 ) & ( duration <  677.5 ) & ( duration >= 130.5 ) & ( month == 

'oct' ) & ( poutcome == 'unknown' ) 

0.777 Rule ID 13_79 ( balance <  2250.5 ) & ( duration >= 203.5 ) & ( job != 'retired' ) & ( loan != 

'yes' ) & ( month != 'jan' ) & ( pdays >= 382.5 ) 

0.584 Month March Original categorical feature of Bank Dataset 
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can make interpretation relatively more straightforward. Lastly, for global interpretability, 

an adapted method for Variable Importance is shown by Friedman & Popescu (2008). 

Though the authors’ approach is relatively straightforward, there is no known support for 

the exact method in combination with the xrf package (or R in general).  

To examine the local interpretability of RuleFit, a bank client is randomly sampled from the 

test set. The sampled client was predicted to subscribe to a term deposit with a probability 

of 77.6% by the RuleFit model. For this specific client, only three rules and one original 

feature were applicable out of the 30 total coefficients of the RuleFit model. The conditions 

of the remaining rules in the model were not met for this individual; thus, their coefficients 

can be ignored. The contributions of each applicable coefficient towards the prediction of 

77.6% probability are shown in Figure 4 below. 

 

Figure 4 - Contributions to the prediction of RuleFit (RF-based) towards the randomly sampled observation 

(made in r using ggplot package) 

Though the model has 30 features, only 3 rules apply to this specific client. Furthermore, 

Rule 7_83 was only valid for approximately 1% of clients in the dataset. A researcher can 

thus identify observations of interest and assess which rules/features apply to them. 

Assuming that the number of applicable rules to a specific observation remains low even 

with increased total rules in the model: the local interpretation of RuleFit is shown to be 

efficient and straightforward, making the model transparent.  
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Finally, regarding the global and local interpretation, since the last step of RuleFit is a 

penalized regression, there are no available coefficient p-values. In this case, Wei et al. 

(2019) observe the largest coefficient values to assess their significance. Nevertheless, they 

propose for future work to distinguish between original features, low-order rules, and high-

order rules. This suggestion is based on Friedman & Popescu (2008), who also propose a 

slightly refined method for assessing the importance of original features.  

Simpler Models 

The logistic regression model has 43 different features, and the lasso 29 after 14 

coefficients are shrunk to 0. It can be assumed that with fewer features, interpretation 

becomes clearer. At the same time, in the lasso model, there is a lack of p-values to signify 

the importance of each variable, in contrast to the logistic model. As explained earlier, a 

rule of thumb would be to observe the largest coefficients. For this specific test-set, both 

models give an AUC of 0.9.  

The main benefit of the Decision Tree model is its visual interpretability. Figure 5 below 

shows the structure of the Decision Tree model for the Bank dataset. 

  

Figure 5 - Visualized Decision Tree model for Bank Dataset (made using rpart in R) 
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By looking at Figure 5, the classification process can be understood relatively easily. The 

words “yes” and “no” refer to the model’s prediction, thus whether the client will subscribe 

to a term deposit. 

Despite its straightforward interpretation, the model is by far the weakest performing, 

scoring an AUC of 0.803 in the test set. Performance could be enhanced by tuning the 

Decision Tree’s parameters that were now left at default values. However, by allowing the 

model to become more complex, its length and number of splits would increase 

considerably. As a result, the model may no longer be considered equally interpretable.  

Black-box models 

For the black-box model interpretability solutions, Variable Importance Plots and Partial 

Dependence Plots are utilized for global interpretation. Individual Conditional Expectation 

(ICE) plots and Local Surrogate (LIME) methods are used for local interpretation. For the 

demonstration, the random forest model represents the black-box model category. In 

terms of performance, the random forest classifier scores an AUC score of 93.1% in the test 

data.  

Starting with the Variable Importance Plot in Figure 6, it is easy to obtain an overview of the 

most important variables. Here importance is measured as the mean decrease in the GINI 

coefficient. Features that lead to a more significant decrease in the GINI coefficient are 

considered more important than features that lead to a smaller decrease. 

 

Figure 4 - Bank Dataset Random Forest variable importance measured in the mean decrease in the GINI 

coefficient (made in R using the RandomForest package) 
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Figure 6 shows that the duration variable is the most important for the model’s splits. It is, 

however, impossible to establish the direction or relationship of duration with the 

dependent variable. Hence, whether a higher or lower level of call duration leads to a 

higher probability of subscribing to a term deposit is unclear. The only insight that can thus 

be derived is that the duration of the call is a strong determinant of the model’s behavior.  

A solution to obtain more insight into the relationship of a feature with the prediction of 

the dependent variable is Partial Dependence Plots (PDPs). PDPs can accommodate either 

one or two features when visualized. A one-feature PDP shows how the model’s predictions 

vary for different values of the feature holding all other features constant on their average 

value. For two features, the PDP shows how the predictions of the model change when 

both features of interest change while holding the remaining features constant on their 

average values.  

 

Figure 5 - PDP (Random Forest) change in model predictions for different values of the "duration" variable 

(made in r using pdp package) 

To demonstrate, Figure 7 displays a one-feature PDP in which the model assigns a higher 

probability of subscribing to a term deposit when a call is shorter than a thousand seconds 

(approximately 16 minutes).  

One concern regarding PDPs is that the features displayed in a PDP are selected by the 

researcher. As a result, they do not necessarily display the most important features 
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responsible for the model’s behavior. Another concern is that PDPs are suscept to 

confounding relationships of features (Molnar et al., 2022). In this case, it could be that the 

duration feature is related to whether the call to a client was placed during working hours, 

as it would likely last shorter. In that sense, the effect of “duration” would be mediated by 

the employment status instead. Lastly, PDPs are unable to capture interactions or non-

linear feature relationships. 

Individual Conditional Expectation (ICE) plots are similar to Partial Dependency Plots (PDPs) 

in that they effectively visualize the relationship between a change in a feature and the 

corresponding change in the model's predictions. ICE plots, however, show a more detailed 

image by showing the change in the model’s prediction for all observations instead of only 

the averaged curve as in the PDP. The benefits of ICE plots are that one can identify any 

heterogeneity in the data along the variable of interest or spot outliers that deviate from 

the average trend. For example, Figure 8 below shows the ICE plot for the “duration” 

variable in the bank dataset. The red line represents the average across all observations 

equivalent to the PDP in Figure 7.   

 

Figure 8 - ICE plot for Random Forest model for duration variable from bank dataset. Each line represents the 

conditional expectation of a bank client. The red line shows the average of all individual clients (made in R using 

pdp package) 

Figure 8 reveals that there is a lot of variation in the model's predictions among the bank 

clients in all duration levels. This is indicated by the large spread of the model’s predictions 
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among each observation. Beyond the calling duration of approximately 700 seconds, more 

predictions start to stand out, and some outliers appear. Overall, the ICE plot suggests that 

the model depends on more features for its predictions, which is evident as clients with 

similar call durations are predicted to have considerably different subscribing probabilities.  

The concerns of ICEs, similar to PDPs, include being suscept to confounding variable 

relationships and being unable to capture interactions or complex and non-linear 

relationships. Furthermore, in the example of Figure 8, the graph becomes overpopulated 

due to a larger dataset, making it harder to identify the details in the plot. 

Lastly, a LIME solution is demonstrated for the Random Forest. LIME aims to explain how a 

black-box model predicts one or a few specific observations. To do so, LIME generates a 

new dataset containing perturbed samples of the chosen observation(s) and records the 

predictions of the black-box model for them. In other words, it records how the predictions 

of the black-box model change when the features of the chosen observation are slightly 

altered. These newly sampled observations are weighted based on their proximity to the 

original observation of interest. A simpler model is then trained on the predictions of the 

black box and with respect to the proximity weights. For the complete implementation of 

local surrogate (LIME) models, the reader is directed to the paper of Ribeiro et al. (2016). 

Figure 9 below depicts the results of a LIME explanation using a linear model with 10 

features to explain the Random Forest’s prediction. All remaining parameters are left at the 

defaults of the lime package. The observation chosen to be explained by LIME is the same 

one that was sampled for RuleFit’s local interpretation. 
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Figure 9 - LIME explanation of random forest model for the randomly sampled observation seen in RuleFit 

interpretation. Explanation using a linear model with 10 features and default settings (made in r using lime 

package). 

Figure 9 shows that the Random Forest model assigns the client a 67% probability of 

subscribing to a term deposit. LIME shows features that increased or decreased the 

probability of subscribing to a term deposit in blue and red, respectively. Overall, features 

relating to the client’s contact have a strong negative impact on the likelihood of 

subscribing to a term deposit. On the contrary, features relating to the client's personal 

details increased the likelihood of subscribing to a term deposit. 

Despite the benefits of LIME's visual prediction representation, concerns exist. Firstly, a 

critical concern of LIME is that user changes can heavily influence the outcome, reducing 

the confidence in LIME’s explanations. A crucial parameter in LIME that has to be decided 

by the user is the definition of proximity weights. This is commonly known as defining the 

neighborhood around the point of interest. Molnar (2018; 2020) discusses that this choice 

can turn around LIME's results. The same applies to the remaining parameters that must 

be chosen by the user, such as the type of simple model and the number of features in it. 

Yet, there is no correct way to estimate which parameter levels are preferable. Slack et al. 

(2020) even show that a user/scientist can tweak LIME's parameters to hide biases in the 

black-box model. Another potential concern is that LIME makes the strong assumption that 
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linear parameters locally explain the black-box model’s prediction. All in all, due to the 

instability of results, it is difficult to establish trust in the explanations of LIME. Molnar 

(2020) concludes that the method is promising, but some critical issues must be addressed 

before confidently using LIME.  
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6. Discussion 

This paper aimed to empirically analyze whether RuleFit can tighten the gap between 

interpretability and performance and to identify which factors support or hinder this 

process. In this section, the insights of the results are discussed concerning the research 

question and the relevant sub-questions.  

6.1 Performance 

There are two main insights regarding model performances in Table 3 Section 5.2. Firstly, 

both RuleFit models perform on average between the simpler and black-box models. Based 

on Friedman & Popescu (2008), the performance of RuleFit was expected to be competitive 

with black-box models, whereas Molnar (2022) suggests that in practice, RuleFit performs 

less competitively. In this paper, both propositions are partly supported. This finding may 

be explained by the following. Theoretically, RuleFit achieves a high accuracy through the 

complex rules extracted from the initial ensemble. On the other hand, that complexity is 

later diminished due to the penalty of the lasso meta-learner. This can be considered a 

case of conflicting interests within RuleFit, supported by Figure A.7 (Appendix), wherein 387 

extra rules are required to go from an AUC of 0.903 to 0.913. Therefore, the features 

responsible for increasing the performance of RuleFit closer to one of the black-box 

methods are largely omitted through the penalization process, moving performance 

progressively towards simpler models. From a different angle, this means that when aiming 

for significantly better performance, RuleFit becomes less easily understandable. 

Another insight in terms of model performance is that even though the simpler models 

remain the weakest performers, their gap with more complex models is relatively smaller 

than expected, given their complexity. This may be related to the fact that the datasets 

used in this study required minimal pre-processing with pre-determined tasks, meaning 

that they were used for accessibility and comparability. It can be expected that with “real-
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world” datasets and tasks where complexity increases, the performance gap of simple and 

black-box models may further widen.  

This paper’s first two sub-questions can thus be addressed.  

Sub-question i: To what extent does RuleFit compete with conventional ensemble 

approaches in terms of performance?  

When tuned for performance, the average performance of RuleFit is similar but still short of 

conventional forest black-box methods. When tuned toward interpretability, RuleFit scores 

a much lower level of performance relative to other black-box models. 

Sub-question ii: To what extent does RuleFit compete with more straightforward and 

transparent methods in terms of performance? 

When tuned for performance, the average performance of RuleFit is higher than that of the 

simpler models tested, though the gap between them is relatively small. When tuned 

towards interpretability, RuleFit performs similarly or slightly better than simpler models. 

6.2 Interpretability  

In Section 5.2, the demonstration of interpretability showcases the difficulties and 

advantages of utilizing RuleFit. The primary issue with interpreting RuleFit globally was 

directly related to its conflicting internal interests. When tuned in for performance, RuleFit 

reaches a meaningful middle ground between simple and black-box models, but many 

features must be omitted for RuleFit to become globally interpretable. In addition, as 

shown in the Bank dataset in Table 4, the extracted rules can be lengthy. Even with fewer 

features, the interpretation process may still be considered relatively complex. One 

potential solution for addressing rule length is to sample trees of varying lengths. This is 

expected to result and fewer and less complex features in the model, aiding with 

interpretation. However, this approach is not currently supported by the xrf package. Using 

model-agnostic solutions such as Variable Importance plots and PDPs could aid the 
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interpretability of RuleFit at the global level. Yet again, there is no support for either 

method in r for RuleFit-type models. Overall, the above renders RuleFit redundant, making 

an inherently simpler model such as a simple regression preferred in most cases.  

The main benefit of RuleFit is found at the local interpretation level. A desideratum of an 

explainable model is the existence of a causal account; “Why did the model predict x ?” 

(Watson, 2022). For each observation of interest, RuleFit was shown to be transparent and 

explainable, meeting this desideratum reliably. The bank dataset demonstrated that only a 

few rules are true for a single observation, meaning that the researcher can efficiently 

understand how a prediction was made (Figure 4). One practical limitation regarding the 

current RuleFit implementations in r is that users must manually check which rules apply to 

an observation. This can be a time-consuming task, even with fewer features. Automating 

this process would enable the user to efficiently retain more features in the model. By 

doing so, the model becomes more accurate, as Figure A.7 (Appendix) suggests. More rules, 

however, would come at the expense of global interpretability.  

Finding the right balance between performance and interpretability for RuleFit was shown 

to be a difficult task that requires a trial-and-error approach to determine the optimal 

combination of parameters. This conclusion applies to both local and global interpretation 

levels. 

In comparison, the models of the simple category are established to be transparent and 

explainable both locally and globally. Furthermore, several practical solutions were 

assessed for the black-box category on a global level. Solutions, such as Variable 

Permutation Importance and Partial Dependency Plots, provided an understanding of a 

black-box model's essential functions. However, these methods are limited when capturing 

interaction effects, confounding variables, and complex non-linear relationships (Molnar et 

al., 2022). These limitations were also explained in the demonstration of the Bank dataset. 

Regarding the local interpretation of black-box models, Individual Conditional Expectation 

(ICE) plots and LIME solutions were utilized in this study. Yet, ICE plots are suscept to the 
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same concerns as PDPs (Molnar et al., 2022). In addition, as discussed in section 5.2.1, they 

offered only a limited understanding of the random forest’s local interpretation in the bank 

dataset. LIME, however, proved valuable and straightforward by visually explaining the 

prediction of a black-box model for a specific observation. However, as concluded by 

Molnar (2020), concerns still need to be addressed before establishing confidence in LIME's 

explanations.  

The remaining two research subquestions can thus be addressed. 

Subquestion iii:  In which circumstances would using a simpler model be favorable? 

 A simpler model is almost always preferred when it displays a sufficient level of 

performance compared to a more complex method, especially when a higher transparency 

level is required. This case would apply to almost all datasets examined earlier.  

Subquestion iv: In which circumstances would using a more accurate model be 

favorable? 

  A more complex model is preferred when there is a relatively large performance gap 

compared with simpler models, and a compromise in interpretability is acceptable. One 

such example in this paper is the bike dataset. 
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7. Conclusions 

Ultimately the primary research question “To what extent does RuleFit manage to 

tighten the gap between accuracy and interpretability?” can be addressed. 

Regarding performance, it was shown that RuleFit could reach a meaningful middle ground 

between transparent and black box models. However, the performance had to be 

sacrificed to achieve an interpretable model output, down to the level of inherently simpler 

models. This was shown to be the main weakness of RuleFit, regarding interpretability. This 

process can also be regarded as an internal conflict of interest within RuleFit’s parameters. 

Additionally, the simple models performed relatively better than expected, given their 

complexity compared to the black box models. The most vital point of RuleFit was its local 

interpretation, especially compared to other model-agnostic solutions for local 

interpretability. For RuleFit, only a few rules applied to a specific observation, making the 

model explainable and its inner workings transparent. Overall, the method could benefit 

from using model-agnostic solutions, but currently, there is no support in r  for any of the 

methods shown. 

In conclusion, even though the method is promising, for most cases, RuleFit does not 

sufficiently tighten the gap between interpretability and performance at its current 

state. Yet, there are two scenarios where RuleFit may be helpful to a researcher.  

1. When the performance gap between transparent and black box models is 

adequately large, RuleFit could still reach a meaningful middle ground despite the 

increased penalty required for easier interpretation.  

2. When the researcher’s interest primarily lies on the local level and a higher 

performance level than a simpler model is required, RuleFit can realize an 

advantage compared to the existing black-box solutions. 
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8. Limitations and Future Work 

This research comes with limitations and suggestions for future work. The datasets utilized 

in this study were relatively straightforward and intended for accessibility and 

comparability. This lack of complexity may explain the similarity in the performance 

between all models. Future studies could use “real word” datasets and tasks to assess both 

the performance and interpretation of RuleFit. With a higher degree of complexity, real-

world datasets may show a change in the performance gap between the different model 

categories. Another limitation of this study is the number of datasets used. Future studies 

could utilize more datasets to better understand RuleFit's functionality from both 

perspectives. Next, a more extensive cross-validation process could be utilized for RuleFit. 

This may translate into using a different performance measure, a higher number of folds, 

or a more extensive list of parameters tuned. This way, both aspects of interpretability and 

performance could be improved. 

Moreover, in this paper, the function of sampling trees of random depth was not utilized as 

it was not supported by the implementation of RuleFit chosen. On the other hand, 

implementations that allow this functionality do not support the de-overlapping of rules. 

Both functions are essential to the interpretability of the model. Future work could focus on 

enabling both functionalities and assessing their joint impact. Similarly, model-agnostic 

tools could be applied to RuleFit to aid interpretation, especially globally. However, no 

support exists within r  to apply solution methods to RuleFit-type models. Building support 

for RuleFit models and model-agnostic solutions can significantly improve RuleFit’s 

functionality and reach a more meaningful compromise between accuracy and 

interpretability. Future work could build on existing packages to support RuleFit-type 

models and thus address these limitations.  
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Appendix 

Dataset Random 

Forest 

Mtry 

GBM 

# of 

Trees 

GBM 

Interaction 

Depth 

Lasso 

Penalty 

RuleFit- 

Penalty     

 RF         GBM 

RuleFit 

(RF) 

Mtry  

RuleFit 

(GBM) 

Shrinkage  

Adult 13 300 8 0.001 0.003 0.002 10 0.1 

Bank 10 400 8 0.003 0.002 0.002 11 0.1 

Mushroom 4 50 5 0.001 0.001 1e-4 20 0.001 

Bike Sharing 7 400 8  0.231 1e-10 0.1 12 0.2 

Wine Quality 6 50 7 0.012 0.01 0.1 9 0.2       

Abalone 2 150 5 0.002 0.01 1e-5 6 0.001 

Table A1 – Final parameter values obtained from a 5-fold cross-validation process using the packages caret and 

tidymodels in R (rounded to three decimal places). Notes: For the Random Forest models, the number of trees 

is held constant at 500. For the GBM models, the shrinkage parameter is constant at 0.1, and the minimum 

node size is constant at 10.  

 

 

Figure A.1 - RuleFit Cross-Validation Performance path (RMSE & R2) for the Wine dataset. Left side shows the 

parameters of penalty and shrinkage for the GBM version. Right side shows the parameters of penalty and mtry 

for the RandomForest version (made using tidymodels package) 
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Figure A.2 - RuleFit Cross-Validation Performance path (Accuracy & AUC) for the Bank dataset. Left side shows 

the parameters of penalty and shrinkage for the GBM version. Right side shows the parameters of penalty and 

mtry for the RandomForest version (made using tidymodels package) 

 

Figure A.3 - RuleFit Cross-Validation Performance path (RMSE & R2) for the Bike Sharing dataset. Left side shows 

the parameters of penalty and shrinkage for the GBM version. Right side shows the parameters of penalty and 

mtry for the RandomForest version (made using tidymodels package) 
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Figure A.4 - RuleFit Cross-Validation Performance path (RMSE & R2) for the Abalone dataset. Left side shows the 

parameters of penalty and shrinkage for the GBM version. Right side shows the parameters of penalty and mtry 

for the RandomForest version (made using tidymodels package) 

 

 

Figure A.5 – RuleFit Cross-Validation Performance path (Accuracy & AUC) for the Mushroom dataset. Left side 

shows the parameters of penalty and shrinkage for the GBM version. Right side shows the parameters of 

penalty and mtry for the RandomForest version (made using tidymodels package) 
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Figure A.6 – RuleFit Cross-Validation Performance (Accuracy & AUC) path for the Adult dataset. Left side shows 

the parameters of penalty and shrinkage for the GBM version. Right side shows the parameters of penalty and 

mtry for the RandomForest version (made using tidymodels package) 

 

Figure A.7 – RuleFit (Random Forest based) for Bank dataset: The number of features for different penalty 

values on the training data (left plot) and the respective AUC scores when predicting the test data (right plot). 

(made in R using ggplot package)  

 



 

 

 
45 

References 

1. Adult. (1996). UCI Machine Learning Repository. https://doi.org/10.24432/C5XW20 

2. Angwin, J. A., Larson, J. L., Kirchner, L. K., & Mattu, S. M. (2020, February 29). Machine 

Bias. ProPublica. https://www.propublica.org/article/machine-bias-risk-assessments-

in-criminal-sentencing  

3. Bénard, C., Biau, G., Da Veiga, S., & Scornet, E. (2021). SIRUS: Stable and Interpretable 

RUle Set for classification. Electronic Journal of Statistics, 15(1). 

https://doi.org/10.1214/20-ejs1792 

4. Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. 

https://doi.org/10.1023/a:1010933404324  

5. Bogen, M. (2021, August 30). All the Ways Hiring Algorithms Can Introduce Bias. Harvard 

Business Review. https://hbr.org/2019/05/all-the-ways-hiring-algorithms-can-

introduce-bias  

6. Danuser, Y., & Kendzia, M. J. (2019). Technological Advances and the Changing Nature of 

Work: Deriving a Future Skills Set. Advances in Applied Sociology, 09(10), 463–477. 

https://doi.org/10.4236/aasoci.2019.910034 

7. Diakopoulos, N. (2014). Algorithmic Accountability Reporting: On the Investigation of 

Black Boxes. Tow Center for Digital Journalism, Columbia University. 

https://doi.org/10.7916/d8zk5tw2  

8. Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. Multiple Classifier 

Systems, 1–15. https://doi.org/10.1007/3-540-45014-9_1  

9. Doshi-Velez, F., & Kim, B. (2017). Towards A Rigorous Science of Interpretable Machine 

Learning. Cornell University - ArXiv. https://doi.org/10.48550/arxiv.1702.08608 

https://doi.org/10.24432/C5XW20
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://doi.org/10.1214/20-ejs1792
https://doi.org/10.1023/a:1010933404324
https://hbr.org/2019/05/all-the-ways-hiring-algorithms-can-introduce-bias
https://hbr.org/2019/05/all-the-ways-hiring-algorithms-can-introduce-bias
https://doi.org/10.4236/aasoci.2019.910034
https://doi.org/10.7916/d8zk5tw2
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.48550/arxiv.1702.08608


 

 

 
46 

10. Dua, D. and Graff, C. (2019). UCI Machine Learning Repository 

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of 

Information and Computer Science. 

11. Efron, B. (2020). Prediction, Estimation, and Attribution. Journal of the American 

Statistical Association, 115(530), 636–655. 

https://doi.org/10.1080/01621459.2020.1762613  

12. Fanaee-T, H., & Gama, J. (2014). Event labeling combining ensemble detectors and 

background knowledge. Progress in Artificial Intelligence, 2(2–3), 113–127. 

https://doi.org/10.1007/s13748-013-0040-3  

13. Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need 

hundreds of classifiers to solve real world classification problems? The journal of 

machine learning research, 15(1), 3133-3181.    

14. Fokkema, M. (2020). Fitting Prediction Rule Ensembles with R Package pre. Journal of 

Statistical Software, 92(12). https://doi.org/10.18637/jss.v092.i12  

15. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. 

The Annals of Statistics, 29(5). https://doi.org/10.1214/aos/1013203451  

16. Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The 

Annals of Applied Statistics, 2(3). https://doi.org/10.1214/07-aoas148  

17. Goldstein, A., Kapelner, A., Bleich, J., & Pitkin, E. (2015). Peeking Inside the Black Box: 

Visualizing Statistical Learning With Plots of Individual Conditional Expectation. 

Journal of Computational and Graphical Statistics, 24(1), 44–65. 

https://doi.org/10.1080/10618600.2014.907095  

18. Hara, S., & Hayashi, K. (2016). Making Tree Ensembles Interpretable. ArXiv: Machine 

Learning. https://arxiv.org/pdf/1606.05390 

19. Holub, K. (2022). xrf: eXtreme RuleFit. https://CRAN.R-project.org/package=xrf 

https://doi.org/10.1080/01621459.2020.1762613
https://doi.org/10.1007/s13748-013-0040-3
https://doi.org/10.18637/jss.v092.i12
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/07-aoas148
https://doi.org/10.1080/10618600.2014.907095
https://arxiv.org/pdf/1606.05390
https://cran.r-project.org/package=xrf


 

 

 
47 

20. Hothorn, T., Leisch, F., Zeileis, A., & Hornik, K. (2005). The Design and Analysis of 

Benchmark Experiments. Journal of Computational and Graphical Statistics, 14(3), 

675–699. https://doi.org/10.1198/106186005x59630 

21. Huguenin, N. (2020). Thinking inside the box: exploratory research on factors 

influencing attainment of trustworthy algorithms. Business Information 

Management. Retrieved from http://hdl.handle.net/2105/54520  

22. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical 

Learning: with Applications in R. Springer Publishing. 

23. Klippenstein, K. (2023, May 16). Klippenstein, K. (2023b, June 2). Exclusive: Surveillance 

Footage of Tesla Crash on SF’s Bay Bridge Hours After Elon Musk Announces “Self-

Driving” Feature. The Intercept. https://theintercept.com/2023/01/10/tesla-crash-

footage-autopilot/  

24. Kohavi, R. (1996). Scaling up the accuracy of Naive-Bayes classifiers: a decision-tree 

hybrid. Knowledge Discovery and Data Mining, 202–207. http://dblp.uni-

trier.de/db/conf/kdd/kdd96.html#Kohavi96  

25. Kundu, R., Das, R., Geem, Z. W., Han, G. T., & Sarkar, R. (2021). Pneumonia detection in 

chest X-ray images using an ensemble of deep learning models. PLOS ONE, 16(9), 

e0256630. https://doi.org/10.1371/journal.pone.0256630  

26. Lipton, Z. C. (2016). The Mythos of Model Interpretability. Cornell University - ArXiv. 

https://doi.org/10.48550/arxiv.1606.03490 

27. Miller, T. (2017). Explanation in Artificial Intelligence: Insights from the Social Sciences. 

ArXiv (Cornell University). https://arxiv.org/pdf/1706.07269.pdf  

https://doi.org/10.1198/106186005x59630
http://hdl.handle.net/2105/54520
https://theintercept.com/2023/01/10/tesla-crash-footage-autopilot/
https://theintercept.com/2023/01/10/tesla-crash-footage-autopilot/
http://dblp.uni-trier.de/db/conf/kdd/kdd96.html#Kohavi96
http://dblp.uni-trier.de/db/conf/kdd/kdd96.html#Kohavi96
https://doi.org/10.1371/journal.pone.0256630
https://doi.org/10.48550/arxiv.1606.03490
https://arxiv.org/pdf/1706.07269.pdf


 

 

 
48 

28. Mita, G., Papotti, P., Filippone, M., & Michiardi, P. (2019). LIBRE: Learning Interpretable 

Boolean Rule Ensembles. ArXiv (Cornell University). 

http://export.arxiv.org/pdf/1911.06537  

29. Molnar, C., Casalicchio, G., & Bischl, B. (2020). Interpretable Machine Learning – A Brief 

History, State-of-the-Art and Challenges. Communications in Computer and 

Information Science, 417–431. https://doi.org/10.1007/978-3-030-65965-3_28  

30. Molnar, C. (2022). Interpretable Machine Learning: A Guide for Making Black Box 

Models Explainable. Christoph Molnar. 

31. Molnar, C., König, G., Herbinger, J., Freiesleben, T., Dandl, S., Scholbeck, C. A., 

Casalicchio, G., Grosse-Wentrup, M., & Bischl, B. (2022). General Pitfalls of Model-

Agnostic Interpretation Methods for Machine Learning Models. Lecture Notes in 

Computer Science, 39–68. https://doi.org/10.1007/978-3-031-04083-2_4  

32. Nalenz, M., & Villani, M. (2018). Tree ensembles with rule structured horseshoe 

regularization. The Annals of Applied Statistics, 12(4). https://doi.org/10.1214/18-

aoas1157 

33. Nalenz, M., & Augustin, T. (2022, May). Compressed Rule Ensemble Learning. In 

International Conference on Artificial Intelligence and Statistics (pp. 9998-10014). 

PMLR. 

34. O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and 

Threatens Democracy. https://ci.nii.ac.jp/ncid/BB22310261  

35. Pruett, W. A., & Hester, R. L. (2016). The Creation of Surrogate Models for Fast 

Estimation of Complex Model Outcomes. PLOS ONE, 11(6), e0156574. 

https://doi.org/10.1371/journal.pone.0156574 

36. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?”: Explaining the 

Predictions of Any Classifier. https://doi.org/10.18653/v1/n16-3020  

http://export.arxiv.org/pdf/1911.06537
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1007/978-3-031-04083-2_4
https://doi.org/10.1214/18-aoas1157
https://doi.org/10.1214/18-aoas1157
https://ci.nii.ac.jp/ncid/BB22310261
https://doi.org/10.1371/journal.pone.0156574
https://doi.org/10.18653/v1/n16-3020


 

 

 
49 

37. Singh, C., Nasseri, K., Tan, Y. S., Tang, T., & Yu, B. (2021). imodels: a python package for 

fitting interpretable models. In Journal of Open Source Software (Vol. 6, p. 3192). The 

Open Journal. https://doi.org/10.21105/joss.03192 

38. Slack, D., Hilgard, S., Jia, E., Singh, S., & Lakkaraju, H. (2020). Fooling LIME and SHAP. 

https://doi.org/10.1145/3375627.3375830 

39. Smiley, L. (2022, March 8). ‘I’m the Operator’: The Aftermath of a Self-Driving Tragedy. 

WIRED. https://www.wired.com/story/uber-self-driving-car-fatal-crash/  

40. UCI Machine Learning Repository: Data Sets. (2023). Accessed on March 2023 

https://archive.ics.uci.edu/ml/datasets.php  

41. Van Hulse, J., Khoshgoftaar, T. M., & Napolitano, A. (2007). Experimental perspectives on 

learning from imbalanced data. International Conference on Machine Learning. 

https://doi.org/10.1145/1273496.1273614  

42. Watson, D. I. (2022). Conceptual challenges for interpretable machine learning. 

Synthese, 200(2). https://doi.org/10.1007/s11229-022-03485-5  

43. Wei, D., Dash, S., Gao, T., & Günlük, O. (2019). Generalized Linear Rule Models. 

International Conference on Machine Learning, 6687–6696. 

http://proceedings.mlr.press/v97/wei19a/wei19a.pdf  

https://doi.org/10.21105/joss.03192
https://doi.org/10.1145/3375627.3375830
https://www.wired.com/story/uber-self-driving-car-fatal-crash/
https://archive.ics.uci.edu/ml/datasets.php
https://doi.org/10.1145/1273496.1273614
https://doi.org/10.1007/s11229-022-03485-5
http://proceedings.mlr.press/v97/wei19a/wei19a.pdf

