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1. Introduction 
In the last couple of years, there has been a high demand for housing in the Netherlands, 

which has caused house prices to increase and raised concerns about affordability (Statistiek, 

2023). However, there has been a slowdown in the continuous rise of house prices in recent 

months. The increase in the mortgage interest rate is a crucial factor that impacts individuals’ 

decisions not to make a housing purchase, leading to this deceleration in the continuous rise 

of house prices (Brasington & Sarama Jr., 2008). The ability to predict house prices 

accurately is of great interest in mortgage lending. The appraisal is vital in determining the 

mortgage amount (Zaken, 2022). An accurate appraisal is of great interest to the mortgage 

lender in perceiving the associated risk and to the mortgagee as a safeguard in not obtaining a 

mortgage that exceeds their financial capacity. In the last decade, the interest in creating an 

accurate model-based estimation of house prices increased significantly.  

The early focus of the existing literature is on the practice of the hedonic pricing models in 

the housing market, which use regression analysis to evaluate the property price based on 

specific attributes, including location, size, number of (bed)rooms, and other relevant features 

(Herath & Maier, 2010). The recent years' remarkable development in computational 

processing shifted the focus to applying several machine learning techniques. Advanced 

machine learning techniques, such as artificial neural networks (Kitapci et al., 2017; Peter et 

al., 2020; Rahman et al., 2019) and decision tree-based approaches (Yang et al., 2017; Zhang 

et al., 2021), are applied to outperform the estimation performance of the initial hedonic 

pricing models. The researchers show that house prices can be estimated using these types of 

models in many cities (e.g., London (Levantesi & Piscopo, 2020), Xiamen (L. Yang et al., 

2021), and Melbourne (Das et al., 2020)). However, the focus of much-existing literature on 

house price estimations is on a single city within a country. 

Another essential facet, besides the decision in method, is how to capture the geospatial 

aspect in the model. The existing literature has an ongoing debate about how to include how 

the physical location of the house impacts its value. Location is an essential feature of 

property valuation (Herath & Maier, 2010). Some of the papers capture the geospatial aspect 

by adding cartesian coordinates as a location feature (e.g., Dubin, 1998), while others include 

distances to points of interest (POIs) and area demographics (e.g., Clapp et al., 2004; Hurley 

& Sweeney, 2022). The paper of Bourassa et al. (2010) compares alternative ways to capture 

spatial dependence and finds the best results with a geostatistical model considering 

segmented submarkets. Given this ongoing debate and a dominant focus on single cities 

within a country in current literature, there is a significant interest in developing a model that 
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accurately estimates house prices of properties spread around an entire nation, incorporating 

the geospatial aspect of the properties. Therefore, this research will try to find an answer to 

the following (sub) research question(s): 

RQ: To what extent does the inclusion of geospatial segmentation based on socioeconomic 

and geospatial attributes enhance the accuracy of house price prediction models in the 

Netherlands? 

SUB-RQ (1): How can the zip codes in the Netherlands most effectively be segmented 

based on geospatial attributes? 

SUB-RQ (2):  What is the most accurate advanced machine learning technique in house 

price predictions in the Netherlands?    

SUB-RQ (3): Which factors are the most important in predicting house prices in the 

Netherlands? 

The main research objective is to develop an accurate house pricing model, which is of 

great interest for practical applications for homeowners, buyers, real estate agents, 

policymakers, and mortgage lenders. The research contains two parts. The first part will focus 

on segmenting the zip codes in the Netherlands based on socioeconomic, demographic, and 

geospatial attributes. The second stage will use these segmented sub-markets and house 

features to develop a housing pricing model. 

This report is organized as follows. The next part, the literature review, includes existing 

research on house price prediction, geographic clustering, and machine learning approaches in 

house price prediction models. The data section describes the dataset utilized in the study and 

the strategies used to prepare the data for analysis. The methodology section outlines the 

study's techniques, including the machine learning algorithms used for prediction and the 

statistical methods used to assess the effectiveness of the models. The results section presents 

the study's findings, including the explanations of the different created clusters, the accuracy 

of the prediction models, and the influence of geographical clustering on the home price 

prediction. Finally, the discussion part provides a critical analysis of the study, highlighting 

the research’s limitations and future research possibilities. The conclusion summarizes the 

study's key findings and discusses their implications for stakeholders. 

2. Literature Review 

Predicting house prices is a challenging task that attracted many researchers' attention. In 

the last years, advanced machine learning techniques made his occurrence in developing 

models that accurately predict house prices. One of the main challenges is capturing the 

model's geospatial aspect, as a property's location significantly affects its value. This literature 
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review explores the state of the art in estimating house prices in the Netherlands using 

advanced machine learning techniques, considering geospatial data.  

2.1 Hedonic house price predictions models 

The hedonic price model technique is excessively utilized in the early research on the 

relationship between house attributes and price (Freeman, 1979; Li & Brown, 1980). 

According to Rosen's hedonic price model developed in 1974, products are marketed as 

bundles of intrinsic traits. This means that one product's price will differ from another's 

because one good has more qualities than the other. Therefore, the price difference between 

houses is related to the different attributes of one house relative to another. A house's relative 

price can be calculated by summing all its marginal or implicit prices assessed using 

regression analysis. Freeman (1979) suggests that housing units can be classified based on 

structural and locational factors. These house characteristics are captured in the hedonic 

pricing function based on the levels of these attributes. The hedonic pricing function may be 

derived using observed prices and characteristics of many models, allowing the price of any 

model to be calculated depending on its characteristics. 

Structural attributes are seen as necessary in the prediction of house prices. Several studies 

have found a positive relationship between the house price and various house attributes, such 

as the number of rooms, bedrooms, bathrooms, and the floor area (Clauretie & Neill, 2000; 

Fletcher et al., 2000; Li & Brown, 1980). These qualities considerably affect a house's market 

worth, where the floor area is solidly found as the most crucial feature. Clark & Herrin (2000) 

found that the age of a building is negatively connected to its price because of increased care 

and repair expenses, as well as changes in architecture, electrical and mechanical systems, and 

decreasing usefulness; older homes are frequently worth less (Clapp & Giaccotto, 1998). 

However, Li and Brown (1980) discovered that age had the opposite impact on specific 

structures, which they attributed to historical relevance or vintage influences. Lot size, garage, 

patio, water heating system, one or more fireplaces, and an air heating system have all been 

demonstrated to be determinants in influencing house pricing (Garrod & Willis, 1992). 

Garrod and Willis (1992) discovered that a single garage adds 6.9% to the price of a house, 

and a double garage adds three times that amount, while central heating adds roughly 6.5% to 

the price of a home. However, little study on the impact of structural quality on housing prices 

has been undertaken, most likely because of the difficulties in objectively and accurately 

quantifying physical and environmental quality (Morris et al., 1972).  

Although the number of rooms and floor size are typically consistent between countries, 

other factors such as building design or environment may impact buyer preferences. 
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According to Kohlhase's (1991) research, the structural features that house buyers value may 

not be stable over time or between nations. This suggests that the relative value of structural 

features varies depending on the property's environment. 

Locational considerations are essential in influencing house values. Locational factors are 

seen as essential considerations in predicting housing values as well. To quantify locational 

features, surrogate variables such as socioeconomic class, racial composition, aesthetic 

attributes, pollution levels, and proximity to local amenities have been utilized (Dubin & 

Sung, 1990). Furthermore, the view is a residential amenity related to a dwelling site's 

position (So et al., 1997). Higher floors often have better views. So et al. (1997) discovered a 

tangible link between view and floor level, with higher-floor apartments typically imposing a 

higher price than lower-floor units. While neighborhood traits cannot be overtly priced in the 

marketplace, Goodman (1989) argues that hedonic pricing can implicitly be valued when 

comparing residences with different neighborhood qualities. Failure to incorporate 

neighborhood features can result in significant inaccuracies when evaluating individual 

properties and the market as a whole, as Linneman (1980) shows. The three main categories 

of neighborhood attributes are (1) socioeconomic variables such as the occupation of the 

inhabitants, (2) local government or municipal services such as schools and hospitals (e.g., 

Clauretie & Neill, 2000), and (3) externalities such as crime rates, traffic and airport noise, 

and shopping centers (e.g., Espey & Lopez, 2000). However, as mentioned earlier, 

implementing the locational and neighborhood (geospatial) aspect in house price modeling is 

challenging. Section 2.4 elaborates more on how researchers implement the locational and 

neighborhood aspects in their models.  

The current literature review on using hedonic price models in the housing market gives 

significant insight into the critical aspects to be incorporated into our pricing model. 

2.2 Integration of Advanced Machine Learning Techniques  

As mentioned in the previous section, the early focus in the existing literature was on the 

practice of the hedonic pricing models in the housing market. However, implementing 

advanced machine learning techniques in real estate price predictions experienced enormous 

interest in recent years. Ho, Tang, and Wong (2021) researched how effective different 

machine learning techniques are in the prediction of house prices, including gradient boosting 

machines (GBM), Random Forest (RF), and support vector machines (SVM). The comparison 

analyses are conducted on a dataset of residential properties from 14 areas in a highly dense 

district in Hong Kong. The authors conducted three different models to predict the transaction 

price of residential properties based on various property characteristics, such as the age of the 
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building, floor level of the property, and accessibility of the residential property. The gradient 

boosting machines and Random Forest model outperforms the SVM in accuracy and 

efficiency. According to the results, advanced machine learning techniques can predict house 

prices accurately. The R-squared value for gradient boosting and random forest models on the 

test set is around 0.903. 

Similarly, Zhang et al. (2022) explore the accuracy and efficiency of implementing 

Random Forest in predicting second-hand house prices in Beijing (China). The findings 

suggest that training the dataset using Random Forest is adequate, whereas it gives an R-

squared value of 0.826 on the test set.  

The paper of Yang et al. (2021) focused on the relationship between Bus Rapid Transit 

(BRT) and house prices in Xiamen (China). They conducted a gradient-boosting decision tree 

(GBDT) algorithm on 5,185 properties. The study found that their GBDT algorithm 

outperforms the hedonic pricing models regarding predictive power. The findings confirmed a 

positive and non-linear effect of accessibility to BRT stations on the house price. Further, 

property location, size, and age are seen as the essential features in the prediction of prices.  

2.3 House price predictions in the Netherlands 

The paper of Guliker et al. (2022) compared different machine-learning techniques in 

developing hedonic pricing models in the Netherlands. The authors analyzed a dataset of 

11.434 properties sold between 2018 and 2020. The houses are established in five 

municipalities spread across the Netherlands: Rotterdam, Amsterdam, Eindhoven, 

Amersfoort, and Groningen. The machine-learning techniques Guliker et al. (2022) 

implemented are linear regression (LR), geographically weighted regression (GWR), and 

extreme gradient boosting (XGBoost). The authors consider the geospatial aspect by adding 

features that capture distances to POIs and neighborhood socioeconomic indicators (e.g., 

household income and urbanization degree). The geospatial features are well represented in 

the model, whereas the house characteristics are limited to 7 features. The authors trained the 

models on the five municipalities individually first. The total living area and the valuation of 

all nearby houses (WOZ-value) are the essential features in predicting house prices in the five 

municipalities in the Netherlands. The paper suggests that the XGBoost model outperformed 

the other two models based on average model performance for the five municipalities. The 

XGBoost model has an average RMSE of €61,028, whereas the LR and GWR models have 

RMSEs of €94,927 and €65,826, respectively. The RMSE for XGBoost training across all 

five municipalities, with the municipality name included as a variable, showed a slight 

increase to €65,312. 
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De Vor & de Groot (2011) conducted a hedonic pricing analysis in the Netherlands 

intending to investigate the impact of the distance to industrial sites on residential property 

value. They found that an increase of 10% in the distance to an industrial site is associated 

with a rise of 1.3% in property value. This research by De Vor & de Groot (2011) shows the 

impact of the physical location of a property on its value in the Netherlands.  

2.4 Geospatial aspect 

In the literature about the prediction of house prices, geospatial analysis is increasingly 

adopted, and various methods and algorithms have been proposed. One study by Bourassa et 

al. (2010) compared different methods to include spatial dependence in price-prediction 

models for nearly 13,000 houses in Louisville, Kentucky. The findings show the best results 

with a geostatistical model considering segmented submarkets. In this paper, the submarkets 

are segmented by hierarchical cluster analysis. The hierarchical cluster analysis includes 

features such as the hedonic house characteristics (e.g., age, # bathrooms) and price. The 

authors suggest that an increase in segmented submarkets results in a rise in predictive 

performance. Goodman & Thibodeau (1998, 2007) and Bourassa et al. (2003) are in line with 

Bourassa et al. (2010). Both found significant importance in segmenting area housing 

submarkets, using geospatial analysis, in predicting house prices. The paper of Hsieh (2011) 

created submarkets using the K-means clustering approach. To create homogenous 

submarkets, they perform K-means on five variables (site area, floor level, dwelling age, 

width of closest road, and distance to the city center). 

Norman et al. (2008) examine the relationship between a geospatial aspect (educational 

test scores) and house prices, accounting for spatial dependence. The study is conducted for 

the ten largest cities in Sweden using a spatial autoregressive model. They found a positive 

and significant effect on educational test scores and house prices. The focus of Cellmer et al. 

(2019) research is on the impact of the distance of an airport on the prices of houses. The 

analysis suggests that the vicinity of an airport and the type of airport, in terms of the 

frequency of flights, significantly impact house prices. Ramírez-Juidías et al. (2022) presented 

comparable research but focused on the impact of the distance of urban green spaces on 

housing prices.  

In the existing literature, much evidence exists for creating segments of areas. Further, the 

importance of spatial analysis in the prediction of house prices is highlighted in the literature. 
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3. Data Collection 
This research aims to create a model that accurately predicts house prices in the 

Netherlands. The analysis is split into two stages. The first stage focuses on segmenting the 

zip codes, and the second stage uses these clusters to predict the prices of properties in the 

Netherlands. The analysis is conducted on the base of two data sets. One data set contains 

features for the spatial clustering approach on the zip code levels, and the other contains 

house features of properties spread across the Netherlands. This section will describe the data 

used in the analysis. 

3.1 Geospatial Data Set 

As explained earlier, the first part of the analysis focuses on segmenting the zip codes 

based on spatial, socioeconomic, and demographic features. The data set is on a six numerical 

zip code (PC6) level. The motivation behind the decision to do the clustering on a six 

numerical zip code level is that the WOZ-value per zip code shows us that the house price 

indices significantly differ among six numerical zip codes. Therefore, performing the 

clustering algorithm on a five- or four-numerical zip code level gives a potential loss in 

information. However, the drawback of choosing the six numerical zip code levels is that 

there is a significant amount of missing socioeconomic and demographic data points. This 

problem is partially solved by taking the values of some of the features' five numerical zip 

codes (presented in Table 1). This approach gives us a data set of 444,492 zip codes, 

representing 96.5% of all the zip codes in the Netherlands. The missing zip codes are 

primarily in less populated areas and will be no significant problem in the application. Some 

demographic and socioeconomic variables are converted into percentages of the total 

inhabitants/households to make comparing the zip codes based on compositions easier. 

Further, the data set contains distances to points of interest (POIs) in one straight line. The 

distances are calculated using the `geosphere` package in R by taking the average longitude 

and latitude per zip code and the longitude and latitude of the POI. The explanation and 

source of each variable in this data set are presented in Table 1. The data on the 

socioeconomic variables are from 2020. The variables in this data set align with the most 

commonly used variables for geospatial analysis in other house pricing studies (Bourassa et 

al., 2010; Cellmer et al., 2019; Guliker et al., 2022; Yang et al., 2021).  
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TABLE 1: Explanation of the features of the geospatial data set 

Variable Explanation ZC (Level) Source 
Inhabitants Number of inhabitants PC6 CBS (2020) 

Houses Number of houses PC6 CBS (2020) 

under_15 % of inhabitants under an age of 15 PC5 CBS (2020)  

b_15_24 % of inhabitants between an age of 15 and 24 PC5 CBS (2020) 

b_25_44 % of inhabitants between an age of 24 and 44 PC5 CBS (2020) 

b_45_64 % of inhabitants between an age of 45 and 64 PC5 CBS (2020) 

above_65 % of inhabitants above an age of 65 PC5 CBS (2020) 

origin_NL % of inhabitants with Dutch heritage PC5 CBS (2020) 

origin_WE % of inhabitants with a western heritage PC5 CBS (2020)  

origin_NW % of inhabits with a non-western heritage PC5 CBS (2020) 

hh_one_pers % of households with one person PC5 CBS (2020) 

hh_one_parent % of households with one parent PC5 CBS (2020) 

hh_two_parent % of households with two parents PC5 CBS (2020) 

hh_no_child % of households with no children and multiple adults PC5 CBS (2020) 

buy_house % of houses as buy houses PC6 CBS (2020) 

Rent_house % of houses as renting houses PC6 CBS (2020) 

woz_value Average WOZ value (in thousands €) PC6 CBS (2020) 

density House density (addresses/ km2) PC5 CBS (2020)  

urbanization Urbanization degree (1 is high urbanization, 5 is low 
urbanization) PC5 CBS (2020) 

avg_dist_super Average distance to closest supermarket (m) PC6 - 

avg_dist_pschool Average distance to closest primary school (m) PC6 Rijksoverheid 
(2023)  

avg_dist_hschool Average distance to closest secondary school (m) PC6 Rijksoverheid 
(2023) 

avg_dist_train Average distance to closest train station (m) PC6 Rijdendetreinen.nl 
(2023) 

avg_dist_airport Average distance to closest airport (m) PC6 Google maps 
(2023) 

avg_dist_green Average distance to closest green space (m) PC6 PDOK (2023) 

Longitude Measurement of place east or west PC6 CBS (2020) 

Latitude Measurement of place north or south PC6 CBS (2020) 

The summary descriptives of the geospatial data set are shown in Table 2. One feature per 

category that serves as a reference group is deleted to address potential issues resulting from 

perfect collinearity between the categories that total to 100%. Additionally, compared to 

removing one reference feature per group, keeping all of the characteristics for each category 

in the dataset would not contribute any additional information. For the studies, the dataset is 

stripped of the over-65 age group, one-parent families, non-Western origins, and the 

percentage of rented housing. To provide a more practical knowledge of the clusters, the 

characteristics are introduced once again in the description of the clusters. The data set 

captures 444,492 six-numerical zip codes. On average, the number of inhabitants is 42, with a 
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minimum of 5 and a maximum of 2180. Further, the table shows us that the mean percentages 

of the compositions of the households, except for the one-parent households, are comparable. 

Further, the mean ratio of buy/rent houses is 60/40, and the zip codes are roughly equally 

distributed among urban and less urban areas. On average are green spaces closer located than 

high schools. The primary schools are the closest on average to each zip code, whereas the 

airports are the furthest. The average WOZ value of the zip codes is €258,840 in 2020, where 

the minimum and maximum are €3,000 and €5,813,000, respectively. The zip codes 

corresponding to the minimum of €3,000 represents only garage boxes, which explains the 

low average WOZ value. The average WOZ value of a home in 2020 is roughly €351,000, 

which differs from the average WOZ value of the data set since the average WOZ value of a 

house is computed on an individual level (CBS, 2020). However, the WOZ value of the data 

set is derived on a zip code level. This discrepancy in calculation results in a disparity since 

the number of dwellings in a zip code is not considered in calculating the data set's mean. 

TABLE 2: Summary Descriptives for the features of the geospatial data set  
(n = 444,492) 

Features Mean Sd Min Max Range 
inhabitants 41.58 31.92 5.00 2180.00 2175.00 
houses 19.76 17.08 5.00 1050.00 1045.00 
woz_value (in thousands €) 285.84 163.86 3.00 5813.00 5810.00 
householdsize 2.24 0.58 1.00 6.70 5.70 
age_under_15 0.15 0.05 0.00 0.70 0.70 
age_15_24 0.12 0.05 0.00 1.00 1.00 
age_25_44 0.24 0.09 0.00 1.00 1.00 
age_45_64 0.28 0.06 0.00 1.00 1.00 
origin_NL 0.77 0.18 0.00 1.00 1.00 
origin_WE 0.11 0.07 0.00 0.70 0.70 
hh_one_pers 0.36 0.15 0.00 1.00 1.00 
hh_two_parent 0.26 0.12 0.00 1.00 1.00 
hh_no_child 0.31 0.09 0.00 1.00 1.00 
buy_house 0.61 0.26 0.00 1.00 1.00 
Density (addresses/km2) 1817.18 1758.15 3.00 12474.00 12471.00 
urbanization 2.89 1.44 1.00 5.00 4.00 
avg_dist_pschool (m) 533.82 514.46 0.00 10865.32 10865.32 
avg_dist_hschool (m) 1946.39 2069.06 0.00 17452.48 17452.48 
avg_dist_train (m) 3852.59 4181.26 7.03 35666.02 35658.98 
avg_dist_airport (m) 38011.76 26497.87 388.14 116432.01 116043.87 
avg_dist_green (m) 864.55 1277.40 0.97 28297.74 28296.78 
avg_dist_super (m) 647.03 732.84 0.24 10179.88 10179.64 
Longitude 5.34 0.79 3.36 7.22 3.86 
Latitude 52.11 0.54 50.75 53.50 2.75 
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FIGURE 1. Visualization of the average WOZ Value on zip code level in the neighborhoods Kralingen Oost (Rotterdam), Pierik (Zwolle), and Binnenstad (Maastricht) 

FIGURE 2. Visualization of the average distances to supermarkets on zip code level in the neighborhoods Kralingen Oost (Rotterdam), Pierik (Zwolle), and Binnenstad (Maastricht) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(A) Kralingen Oost (Rotterdam) 

(A) Kralingen Oost (Rotterdam) 

(B) Pierik (Zwolle) 

(B) Pierik (Zwolle) 

(C) Binnenstad (Maastricht) 

(C) Binnenstad (Maastricht) 
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To illustrate the spatial distribution of WOZ values and minimum distance to supermarkets 

for three neighborhoods the `ggplot2` package in R is used. The average WOZ values and  

distances to supermarkets for the neighborhoods Kralingen-Oost (Rotterdam), Pierik 

(Zwolle), and Binnenstad (Maastricht) on a zip code level are shown in Figures 1 and 2.  

As can be observed, these variables vary significantly between zip codes, indicating the 

prevalence of zip code differences. 

3.2 House Characteristic Data Set 

The second data set contains house features that are collected from VBO.nl with the use of 

the web scraping package ‘rvest’ in R (VBO, 2023). VBO.nl is a large real estate platform 

providing detailed house features for sale in the Netherlands. Vereniging Bemiddeling 

Onroerend Goed (VBO) is informed and has approved using their data. After removing 

missing and unreasonable high/low values and running through data pre-processing steps 

(e.g., text mining of house descriptions and cleaning of the data), the data set contains 10.840 

houses (observations) for sale between the beginning of February and the end of April (2023). 

Figure 3 shows the locations of the properties in the data set and confirms that the houses are 

spread all over the Netherlands, with a higher density in the "Randstad". 

FIGURE 3. The allocation of the 10,840 houses across the Netherlands 
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The features of a balcony, air conditioning, solar panels, garage, fireplace, bath, pool, 

jacuzzi, and heat-related, are created using text mining of the house text description. In the 

house description scraped from VBO.nl, different terms related to the different features are 

searched with the ‘grepl’ function in R, given a boolean variable of the occurrence of these 

related terms. This text-mining approach has considered negations to create accurate values 

for the different features. Since the house descriptions are in Dutch, the negations taken into 

account are “geen”, “niet” and “mogelijkheid tot”. The negations “geen” and “niet” are the 

most common negations in the Dutch language. The phrase "mogelijkheid tot" is often used in 

the real estate industry to indicate that a feature can be added in the future, even though it 

does not currently exist. We look at the two words before the focal word when considering 

negations. In order to confirm the text mining method, a random sample of 50 observations 

was reviewed and confirmed. Table 3 shows the included house features in the data set, 

separated by the features obtained from VBO directly and the text-mined features.  

The summary descriptives of the numerical features are presented in Table 4. The table 

shows that the mean price in the data set is €443,854, whereas the most and less expensive 

houses are €6,900,000 and €104,000, respectively. According to Centraal Bureau voor de 

Statistiek (CBS, 2023), the average sale price of a property in March 2023 is €415,100, which 

is slightly lower than our data set. The maximum building year is 2025, representing a house 

that will be delivered in 2025 but is already available for sale. Based on the coordinates, the 

TABLE 3: House features and data type 

VBO features Data Type Text mining features Data Type 

House Type (20 categories) Categorical Balcony Boolean 

Garden Boolean Patio Boolean 

Plot Size (m2) Integer Airconditioning Boolean 

Floor area (m2) Integer Solar panels Boolean 

External Storage (m2) Numerical Garage Boolean 

Building Year Integer Fireplace Boolean 

Number of floors Integer Pool Boolean 

Floor Location Integer Jacuzzi Boolean 

Price (in €) Numerical Bath Boolean 

Number of Bedrooms Integer Central Heater Boiler (NL: CV-Ketel) Boolean 

Number of Bathrooms Integer Block Heater (NL: Bloksverwarming) Boolean 

Latitude (North) Numerical City Heater (NL: Stadsverwarming) Boolean 

Longitude (East) Numerical Heater Pump (NL: Warmtepomp) Boolean 

  
Under Floor Heater (NL: 

Vloerverwarming) 
Boolean 
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midway point of the dwellings in the data set is around Utrecht. The summary statistics of the 

factor variables are presented in Appendix A.  

The data set is divided into train and test data in the modeling process, with an 80:20 ratio. 

The models are trained using the training data, while the test data is used to evaluate the 

model. 

TABLE 4: Summary Descriptives for the features of the house data set (n = 10,840) 

Features Mean Sd Min Max Range 
Plot Size (m2) 512.50 6019.90 26.00 372000.00 371974.00 
Floor Area (m2) 121.29 55.45 24.00 735.00 711.00 
External Storage (m2) 12.13 36.90 0.00 996.00 996.00 
Building Year 1966.76 42.02 1363.00 2025.00 662.00 
Number of Floors 2.38 0.96 1.00 7.00 6.00 
Floor Location 1.55 1.98 1.00 51.00 50.00 
Bedrooms 3.24 1.24 1.00 14.00 13.00 
Bathrooms 1.10 0.36 1.00 11.00 10.00 
Price (€) 443,853.67 271,289.57 104,000.00 6,900,000.00 6,796,000.00 
Longitude 4.97 0.77 3.38 7.16 3.78 
Latitude 51.99 0.49 50.76 53.48 2.72 

4. Methodology 
As discussed earlier, the research consists of two stages. The first stage will segment the 

zip codes in the Netherlands using socioeconomic, demographic, and geospatial variables. 

The other stage will create a house prediction model by combining the cluster of the first 

stage with a data set including house features. The following part will discuss the proposed 

methods for both parts.  

4.1 Clustering analysis 

The K-means clustering approach is implemented to identify submarkets in the 

Netherlands. K-means is a prominent clustering approach that is utilized in a variety of 

disciplines. The K-means algorithm is an unsupervised clustering approach that identifies k 

centers in the feature space to split a dataset into k groups. The k-means technique is based on 

doing a series of local searches to find the best solution to a clustering issue (Likas et al., 

2003). This strategy aims to find homogenous k clusters within each cluster but diverse 

between them. The algorithm is divided into three phases. The required number of clusters (k) 

is first provided. Second, the initial centroids are determined, and each observation is 

allocated to the nearest centroid by calculating the Euclidean distance between each 

observation and the centroids. Finally, the new mean of each cluster updates the initial 

centroid, and the procedure is repeated until the clustering solution is stable (Hamzah et al., 
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2017). In other words, each observation is allocated to the closest center, and the center points 

are changed iteratively to reduce within-cluster variance while maximizing variance among 

centers. The mathematics behind k-means is that the algorithm iterates over a series of 

required conditions in order to minimize the k-means objective function, indicated as 

J(z, A) = ∑ ∑ 𝑧𝑖𝑘(‖𝑥𝑖 − 𝑎𝑘‖)2𝑐
𝑘=1

𝑛
𝑖=1    (1) 

Where J(z, A) is the k-means objective function, c is the number of clusters, 𝑧𝑖𝑘indicates 

whether an observation 𝑥𝑖 belongs to the kth cluster, 𝑎𝑘 is the cluster center in cluster k, and 

(‖𝑥𝑖 − 𝑎𝑘‖) is the Euclidian distance (Sinaga & Yang, 2020). One of the most challenging 

aspects of the k-means clustering technique is that the number of clusters must be 

predetermined. Widely used approaches to determine the optimal number of clusters are the 

elbow rule (calculating the total within-cluster sum of square (WSS)), the average silhouette 

method, and the Gap-statistic. 

The K-means algorithm has considerable advantages in that it works well with large data 

sets and performs better than the Hierarchical Clustering Algorithm, resulting in a higher 

quality of clusters (Kaushik & Mathur, 2014). This study uses K-means to group zip codes 

based on standard socioeconomic and demographic features and average distances to points of 

interest (POIs). Segmenting the zip codes based on the features and distances to POIs with the 

use of K-means is a new approach in the field of house price predictions. The paper of Hsieh 

(2011) has a similar idea of implementing K-means but uses the clustering approach to create 

submarkets based on structural and locational house attributes. However, the main drawback 

of this approach is that it is only easily applicable to a house in the original data set. In that 

case, the clustering process must be started again with the new properties. Using the K-means 

algorithm on a zip code level within a country allows one to easily connect any house in a 

country to a geospatial cluster using the zip code. Segmenting zip codes based on 

socioeconomic attributes is often performed in other fields (e.g., medical research). For 

example, Akbilgic et al. (2021) investigated the influence of socioeconomic and 

environmental variables on racial differences in children's preoperative physical condition. 

The authors implemented the K-means algorithm to segment the 29 zip codes from Memphis 

based on socioeconomic attributes. The paper of Khmaissia et al. (2020) aims to discover the 

underlying characteristics associated with a rise in the number of new COVID-19 cases in 

New York City. The study aims to identify the significant elements related to the virus's 

proliferation throughout the city. The authors successfully use the K-means algorithm to split 

the 177 zip codes in New York into 6 clusters based on demographic, socioeconomic, and 

mobility features and connect this back to the daily COVID-19 case increase rates.  
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Shokoohyar et al. (2019) implemented K-means similarly to this report. The authors 

investigate the impact of clusters, based on socioeconomic and transportation features, on the 

Uber waiting time. The results suggest that Uber tends to be more accessible in locations with 

a more significant population density, male inhabitants, better access to public transit, and a 

lack of facilities within walking distance. 

Literature confirms that K-means helps find comparable zip codes based on demographic, 

socioeconomic, and distance data. Therefore, this report will use the K-means algorithm to 

segment the zip codes in the Netherlands and use this to create an accurate house price model.  

4.2 Machine Learning Modeling 

Advanced machine learning techniques are used to predict house prices in the Netherlands. 

The Extreme Gradient Boosting (XGboost), Random Forest, and Support Vector Machines 

(SVM) approaches are implemented to create an accurate house pricing model. The main 

advantage of these techniques is that they can deal with complex, mixed, and high-

dimensional data. Advanced machine learning techniques are recommended since they 

provide overall accurate prediction models ( Ho et al., 2021). Further, another advantage of 

the advanced machine learning techniques is that multicollinearity does not influence the 

models’ predictive performance. However, the main disadvantage is that these models are 

often called “black box” models since it is difficult to interpret them. The three advanced 

machine learning techniques are frequently utilized for predicting house prices (Adetunji et 

al., 2022; Levantesi & Piscopo, 2020; L. Yang et al., 2021; W. Zhang et al., 2021; Y. Zhang 

et al., 2022). The advanced machine learning techniques are compared to an ordinary least 

square (OLS) model as a benchmark. Together with the home characteristics, the K-means 

method clusters are included in the model as a factor feature. Compared to SVM and OLS, 

which consider the cluster variable as one-hot encoding, the Random Forest and XGBoost 

technique can directly handle a factor feature. The following sections discuss the three 

advanced machine learning techniques and the benchmark method.  

4.2.1 Extreme Gradient Boosting (XGboost) 

Extreme gradient boosting (XGBoost) is a recent advancement in gradient-boosting 

machine learning. Friedman presented the initial gradient-boosting technique in 2001. 

Boosting is an ensemble learning approach of K-classification and regression trees that is an 

iterative procedure that creates numerous decision trees, one after the other. Boosting is based 

on the idea that each model concentrates on the poorly handled data in the preceding model, 

culminating in a powerful learning model with less bias. XGBoost is a more efficient and 
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adaptable version of Friedman's (2001) initial boosting strategy. One benefit of XGBoost over 

gradient boosting is that it manages overfitting better by including a regularization term, 

resulting in higher model performance. 

Chen and He (2016) discuss the XGBoost algorithm in their paper. The objective functions 

in the XGBoost must be decreased for the boosting method to stop. In this paradigm, the 

regularized objective function is defined as follows:  

𝜙 = ∑ 𝑙(𝑦𝑖, 𝑦𝑖̂) + γT + 1
2

𝜆 ∑ 𝑤𝑗
2𝑇

𝑗=1
𝑛
𝑖=1    (2) 

Where n represents the distinct data samples and the loss function is detailed as 

∑ 𝑙(𝑦𝑖, 𝑦𝑖̂)𝑛
𝑖=1  by the fit of that model. γT + 1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1  is defined as the regularization term in 

the objective function, which penalizes the function for the model's complexity. Because the 

trees are formed sequentially, each objective function of the next tree is based on the 

preceding tree's loss function or residuals in the predictions. This method is repeated until the 

objective function is reduced and the best model is discovered. In summary, XGBoost is a 

robust machine learning method that combines gradient boosting's benefits with extra features 

such as regularization to control overfitting. The XGBoost technique is a widely used 

modeling tool in real estate price predictions (Avanijaa & Al, 2021; Guliker et al., 2022; Zaki 

et al., 2022). The authors confirm that this approach gives accurate house price predictions 

and outperforms other advanced machine learning techniques. Finally, the model's accuracy is 

improved by performing a 10-k fold cross-validation and using a grid search for 

hyperparameter tuning, using RMSE as the accuracy metric on the training set.  

4.2.2 Random Forest 

Random forest is a commonly used ensemble learning approach described by Ho (1995) 

and used for classification and regression applications. Breiman (2001) lengthened this 

approach by extending the original. The first stage in a random forest uses bootstrap 

resampling to divide the original sample into several samples. A decision tree is generated for 

each of these samples. Each observation class will be identified by aggregating the majority 

vote of each decision tree in classification problems and averaging the predictions of each 

decision tree in regression problems. This underlines the critical distinction between random 

forest and other ensemble approaches, such as XGBoost, in that the latter grows trees 

sequentially while the former produces trees independently. 

The Random Forest algorithm entails constructing several decision trees and merging their 

results to provide a final forecast. Each decision tree in this approach is built using a random 

subset of the features and a random subset of the training data. The combination of these trees 
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aids in the reduction of overfitting and the improvement of generalization performance. The 

average of the projections from each tree in the forest is used to get the final prediction. The 

prediction formula of the random forest algorithm is as follows:   

𝑌 = 1
𝑛

∑ 𝑓𝑖(𝑋)𝑛
𝑖=1      (3) 

Here, Y acts as the predicted outcome, n represents the number of trees, 𝑓𝑖  is the prediction 

provided by the mth tree, and 𝑋 represents the value of the data point being tested at a 

particular node. To maximize the model's performance, the algorithm's hyperparameters, such 

as the number of trees, the maximum depth of each tree, and the number of features examined 

at each split are tuned using a grid search. Further, the analysis conducted a 10-k fold cross-

validation to improve its predictive power.  

Random Forest is a popular approach in different fields, including real estate, because of 

its high predictive performance and reliable feature importance estimations (Ho et al., 2021). 

However, the main disadvantage of this approach is the relatively high computational time 

and the necessary amount of vector memory compared to a machine learning technique such 

as the Support Vector Machine (SVM).  

4.2.3 Support Vector Machine (SVM) 

The Support Vector Machine algorithm was initially introduced by Cortes & Vapnik in 

1995. The Support Vector Machine (SVM) technique is commonly employed for 

classification and regression issues. SVM tries to identify a hyperplane in a higher-

dimensional space to separate samples belonging to various categories in classification 

efficiently. SVM may be built for multi-class classification by merging two classifiers. SVM 

regression, on the other hand, attempts to predict continuous values based on numerous 

sample properties (Mohandes et al., 2004). The regression function of SVM is presented in 

equation (4):  

𝑦 = (𝑧∗ ∗ 𝑥𝑡) + 𝑙     (4) 

Where the input data is expressed by 𝑥𝑡 and the corresponding output data by 𝑦. 𝑧∗ 

captures the weight vector and the 𝑙 is a normal. The goal of SVM is to identify the function 

that minimizes the sum of the errors between the predicted and actual values, given a specific 

margin constraint. In order to get this done, the SVM uses the idea of "support vectors," 

which are data points closest to the hyperplane. The "margin" acts as the distance between the 

hyperplane and a support vector, and the best hyperplane is the one that maximizes this 

margin. The weight vector determines the margin. The SVM approach can be extended by 

implementing a Kernel function to solve the problem of handling non-linearly data. 
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Implementing a Kernel function reduces the complexity of calculations and, therefore, the 

computational time. Like other advanced machine learning techniques, the choice of each 

variable's value in the model significantly impacts the model's performance, such as the kind 

of kernel function and the related kernel parameters. Therefore, comparable to the other 

advanced machine learning techniques, the parameters are tuned using grid search, and 10-

fold cross-validation is performed.  

The support vector machine (SVM) is an essential component in the deployment of 

advanced machine-learning techniques due to its short processing time and exceptional 

prediction performance. In the existing literature on house price prediction, the results of 

SVM are seen as accurate and have less error compared to other advanced machine learning 

techniques, for example, Neural Networks (Sarip & Hafez, 2015; Sasaki & Yamamoto, 2018). 

Consequently, SVM may be used with other advanced machine learning algorithms to 

improve overall efficiency and effectiveness.  

4.2.4 Ordinary Least Square (OLS) (Benchmark) 

As explained in the literature review, Lancaster (1966) and Rosen (1974) laid the 

theoretical groundwork for the hedonic pricing model. As a baseline model in our analysis, 

we used a typical hedonic pricing model calculated using ordinary least squares (OLS) 

regression. This benchmark model is applied to investigate the need for advanced machine 

learning techniques in creating house price models because OLS has interpretability and 

computational benefits over advanced machine learning techniques. In order to compare the 

results of advanced machine learning techniques and ordinary least squares, the same 

explanatory variables are used in all analyses. This results in the creation of dummy variables 

for categorical variables and boolean variables for OLS. 

4.3 Model evaluation 

The predictive performance of the models is measured based on several metrics, such as 

root means squared error (RMSE), mean absolute error (MAE), mean absolute percentage 

error (MAPE) and R-squared. These are the commonly used metrics for advanced machine-

learning techniques (Guliker et al., 2022). The metrics are applied to assess the models’ 

accuracy and precision in the house price predictions.   

In addition, global interpretability methods, such as feature importance analysis and partial 

dependency plots (PDP), and local interpretability methods, such as LIME, were conducted to 

interpret the model better. The feature importance analysis identifies the most crucial features 

or variables contributing to the model's overall performance. Additionally, the PDP provides 
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information on the link between a specific characteristic and the model's output across all 

observations. In order to make the PDPs easier to understand, we remove outliers when 

making the plots. LIME (Local Interpretable Model-agnostic Explanations) helps explain 

machine learning models' predictions by using an easy-to-understand model for each instance. 

These are helpful tools since the advanced machine learning techniques are difficult to 

interpret and seen as black boxes.  

As discussed earlier, the created models will be compared to an ordinary least square 

(OLS) as a robustness check. Further, to answer the research question, to what extent the 

inclusion of geospatial segmentation based on socioeconomic and geospatial attributes 

enhance the accuracy of house price prediction models in the Netherlands, the models are 

created as well, including all socioeconomic and geospatial attributes, instead of the cluster. 

When these findings are compared to the results of the models that include the clusters, the 

influence of employing geographic clusters rather than all variables can be isolated. In line 

with the dataset of K-means, one reference feature will be removed per category to overcome 

potential problems regarding perfect collinearity. 

5. Results 
This section will discuss the results following the outline of the entire report by reviewing 

the results per stage. Therefore, the first part of the results focuses on interpreting the clusters 

created using K-means on the geospatial data set. The second part compares the predictive 

performance of the advanced machine-learning techniques and the OLS benchmark model. 

The results aim to give an excellent fundamental to answer the research questions in the 

conclusion.  

5.1 Geospatial clustering analysis 

An essential aspect of the K-means clustering analysis is predetermining the number of 

clusters. However, the traditional methods, mentioned in the methodology section, do not 

provide a clear outcome in determining the number of clusters. The total within the sum of 

square plots shows a slowly continuous decrease, where no elbow can be interpreted. The 

other two measurements suggest 1 and 2 clusters, which is not meaningful in this context of 

house price predictions. Since the clustering stage is an aid in achieving the main objective of 

creating an accurate house price prediction model, the number of clusters will be determined 

based on the predictive performance of advanced machine learning and the clusters’ 

interpretability. This process involves training three advanced machine learning techniques 

using default settings and varying the number of clusters (10, 20, 25, 30, 40, 50) to determine 
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the best predictive performance. Afterward, the clusters' interpretability will be taken into 

consideration. This approach shows us that the model with 25 clusters outperforms the other 

number of clusters based on the metrics RMSE, MSE, MAE, and R-squared for the XGBoost 

and RF approach. The SVM technique achieves the best performance for 20 and 25 clusters. 

Further, the 25 clusters have favorable interpretability properties. Therefore, we choose to 

continue with 25 clusters. The RMSE per model and cluster is presented in Appendix B.  

Understanding the characteristics of the different clusters formed with the zip codes is 

essential to understand each cluster’s impact on the house price in the end model. This section 

will focus on elaborating on the most interesting clusters. Table 5 shows this section's most 

important information about the explained clusters. The complete information on each cluster 

can be found here. Figure 4 shows the allocation of the clusters in six neighborhoods. 

Table 5 shows us that clusters 4 and 22 represent zip codes with, on average, the lowest 

WOZ value, whereas cluster 2 has the highest WOZ value. The average WOZ value differs by 

roughly €875,000. Clusters 2 and 22 are mainly located in moderate urban areas, whereas 

cluster 4 is in less urban areas. Figure 5 shows that the zip codes in cluster 4 are mostly 

located in the Northern part of the Netherlands, in contrast to cluster 9, which mostly are in 

the south of the Netherlands. Table 5 shows that the main differences between the high and 

low average WOZ value clusters are the percentage of buying houses and average household 

size. Whereas cluster 2 consists primarily of buying houses, cluster 22 is the inverse. Cluster 4 

shows an equal division of buying and renting houses. The average household size of the zip 

codes in clusters 4 and 22 are 2.05 and 1.80, respectively, whereas cluster 2 has a significantly 

higher average household size of 2.62. According to the map in Figure 4, a substantial portion 

of Kralingen-Oost refers to cluster 2, while Pierik corresponds to cluster 22. 

Cluster 15 has a high average number of inhabitants, where one zip code in Kralingen Oost 

(Rotterdam) and a great part of Oosterhout (Nijmegen) belongs to. The highest average 

household size can explain this. Cluster 3 shows a comparable characteristic. These clusters 

can be categorized as "Family-friendly zip codes" based on family size, the high proportion of 

families with two parents, and the age distribution. The biggest difference between the two is 

in the number of residents, with cluster 3 having a larger proportion of people aged 45 to 64, 

while cluster 15 has a higher proportion of people aged 25 to 44. Therefore, cluster 15 can be 

interpreted as zip codes housing younger families than Cluster 3. In contrast to clusters 3 and 

15, cluster 7 segmented the more elderly zip codes. In these zip codes, on average, 45% of the 

inhabitants are older than 65, 56% of households are one-person households on average, and 

 

https://rpubs.com/Pkemper/clustertable
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TABLE 5: Average Information per most interesting cluster 

This table shows the most important average values of the socioeconomic, demographic, and distance attributes per elaborated cluster. The complete information per cluster can be found here. The meanings of the 
abbreviations are: Inhab = inhabitants, WOZ = WOZ Value, HH-Size = Household size, NL = Netherlands, WE = Western, NW = Non-Western, One Person = One Person Household, Two Parent = Two Parent 
Household, No Child = More adults but no children household, Buy = Buying houses vs. renting houses ratio, Urban = Urbanization Degree, Prim. School = Distance to Primary School, and Supermarket = Distance 
to Supermarket.   
 Age groups Origin Household Composition   Distance (m) 

Cluster Inhab WOZ HH-size <15 15-24 25-44 45-64 > 65 NL WE NW 
One 

person 

Two 

Parent 

No 

Child 
Buy Density Urban 

Prim. 

School 
Supermarket 

2 31.60 1046.60 2.62 0.18 0.12 0.17 0.30 0.23 0.74 0.18 0.07 0.32 0.33 0.30 0.76 2305 2.44 501.33 620.99 

3 43.18 351.08 2.96 0.19 0.15 0.20 0.32 0.15 0.93 0.03 0.02 0.18 0.45 0.31 0.85 552 4.38 675.17 910.10 

4 33.45 170.87 2.05 0.15 0.11 0.22 0.26 0.26 0.85 0.07 0.08 0.42 0.20 0.29 0.51 1245 3.15 423.58 442.31 

5 38.35 312.20 2.34 0.14 0.11 0.19 0.32 0.24 0.88 0.09 0.02 0.26 0.30 0.38 0.79 671 4.19 519.90 662.23 

6 60.60 363.91 2.82 0.19 0.14 0.22 0.32 0.14 0.80 0.10 0.10 0.22 0.42 0.29 0.82 1687 2.49 397.27 530.30 

7 36.83 217.93 1.61 0.08 0.07 0.17 0.24 0.45 0.79 0.11 0.10 0.56 0.10 0.28 0.36 2162 2.02 415.45 334.16 

9 38.34 185.37 2.02 0.13 0.11 0.23 0.29 0.24 0.71 0.18 0.11 0.42 0.20 0.29 0.50 1614 2.54 436.83 458.09 

10 38.39 250.35 2.33 0.16 0.11 0.21 0.29 0.23 0.86 0.08 0.06 0.30 0.29 0.34 0.69 1303 3.03 395.75 494.65 

11 42.83 235.51 1.45 0.05 0.38 0.36 0.13 0.08 0.64 0.19 0.16 0.76 0.05 0.15 0.24 4124 1.21 447.34 258.08 

12 43.05 385.42 1.72 0.12 0.12 0.42 0.23 0.12 0.48 0.26 0.26 0.58 0.13 0.22 0.33 7650 1.01 284.25 185.93 

15 69.03 358.10 3.00 0.29 0.09 0.36 0.20 0.06 0.81 0.08 0.11 0.17 0.51 0.23 0.76 1086 3.45 524.13 701.25 

16 32.69 266.28 2.44 0.16 0.12 0.21 0.32 0.20 0.93 0.05 0.01 0.26 0.33 0.35 0.79 118 5.00 634.74 3278.09 

19 42.02 254.68 2.20 0.17 0.11 0.27 0.27 0.18 0.68 0.12 0.20 0.40 0.24 0.25 0.50 2512 1.71 349.87 360.44 

20 26.59 329.70 2.49 0.14 0.12 0.17 0.36 0.21 0.92 0.05 0.01 0.24 0.33 0.37 0.83 100 4.98 2639.31 3003.04 

21 37.01 230.57 1.63 0.11 0.14 0.38 0.23 0.15 0.63 0.16 0.21 0.60 0.11 0.22 0.36 3533 1.22 383.27 280.25 

22 32.48 177.54 1.80 0.13 0.13 0.28 0.26 0.20 0.72 0.11 0.17 0.53 0.15 0.22 0.35 2210 1.90 378.65 346.82 

23 36.79 303.55 2.22 0.15 0.11 0.21 0.30 0.24 0.83 0.10 0.08 0.31 0.28 0.34 0.72 1579 2.61 393.57 447.59 

Average 47.48 302.79 2.23 0.15 0.13 0.24 0.28 0.20 0.78 0.11 0.11 0.37 0.26 0.29 0.61 1769 3.08 595.60 756.43 

https://rpubs.com/Pkemper/clustertable
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28% comprise just adults and no children. These numbers suggest that the zip codes in this 

cluster are the more “elderly” zip codes. Clusters 11, 12, and 21 are urban areas near city 

centers with low urbanization degrees and relatively low distances to points of interest. 

Cluster 12 has the highest housing density of 7,650 houses/km2, while clusters 11 and 21 have 

4,124 and 3,533 houses/km2, respectively. Cluster 12 is responsible for a significant portion of 

the Zuidas Zuid neighborhood in Amsterdam and has the highest average WOZ value among 

the urban area clusters. Cluster 11 is interpreted as a student neighborhood with many one-

person households aged 15-24 living in rented houses. The map of the Binnenstad 

(Maastricht) and Kralingen-Oost (Rotterdam) in Figure 4 shows that the complete 

neighborhood of Binnenstad (Maastricht), and a couple of zip codes in Kralingen-Oost 

(Rotterdam) belongs to cluster 11. This aligns with the interpretation of a “student” 

neighborhood since Rotterdam and Maastricht have large universities and many students. In 

contrast, the least urban zip codes are represented by cluster 16 and 20, represented in the 

neighborhood Zalk in Kampen. Based on the locations of the zip codes, low house density, 

and an urbanization degree of nearly five, the zip codes in these clusters are interpreted as the 

farmer areas. Further, the inhabitants of these clusters are of Dutch or Western origin. The 

cluster information shows us that the points of interest are located at a significant distance 

from the location of the zip codes. On average, the houses in cluster 20 have a higher WOZ 

value compared to cluster 16.  

Most zip codes are grouped into clusters 5, 6, 10, 19, and 23. These clusters account each for 

more than 7% of all zip codes, with Clusters 19 and 23 accounting for most of the zip codes 

with 9%. Cluster 6 has a relatively high number of occupants, with an average of 61 people, 

and is located in moderate urban regions. Further, Cluster 23 has an average WOZ value of  

€303,549, whereas cluster 19 has a significantly lower value of €254,678. Cluster 5 represents 

the least urban areas among the most representing clusters, while cluster 19 represents the 

most urban areas. Table 5 shows that most of the inhabitants have a Dutch origin, whereas 

only cluster 19 shows a higher percentage of non-western inhabitants. Cluster 10 contains the 

zip codes furthest from a commercial airport. Figure 4 shows that some of the zip codes in 

Pierik (Zwolle) are clustered in cluster 10. The zip codes in Pierik have a distance to the 

airport of Groningen of around 76 km (in a straight line). Additionally, Figure 6 displays that 

Cluster 10 primarily comprises zip codes located in the eastern region of the Netherlands. In 

contrast, Cluster 6 and 23 consist mostly of zip codes in major cities and the "Randstad" area.  



 25 FIGURE 4. Cluster allocation on zip code level in the Neighborhoods Kralingen Oost (Rotterdam), Pierik (Zwolle), and Binnenstad (Maastricht) 
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The clusters created with K-means are well interpretable. Some clusters are quite similar 

and have minor differences, while others are distinct and dependent on factors such as the 

WOZ value. K-means performed an excellent job of grouping the zip codes and avoiding a 

single cluster with most of the zip codes. In the following stage, the clusters are employed as a 

categorical variable based on the zip codes of the properties for sale.  

 

5.2 House price predictions  

In this section, we provide a summary of the results obtained from the XGBoost, Random 

Forest, and SVM models that were trained. The evaluation of each model is based on the 

quantitative metrics outlined in the methodology section. The hyperparameters of each model 

are tuned and cross-validated to achieve the best possible results. The hyperparameters 

settings are presented in Appendix D. The results are compared to a hedonic house price 

benchmark model computed with an ordinary least square regression. To assess their 

performance, the models undergo training using a training data set and then undergo 

evaluation using a separate test set. The evaluation metrics of each model are displayed in 

Table 6 and are based on the test data set. The three advanced machine learning models 

exceed the performance of the benchmark model. However, the SVM model has the weakest 

FIGURE 6. The allocation of zip codes in cluster 6 and 10 FIGURE 5. The allocation of zip codes in cluster 4 and 9  
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 performance, as indicated by significantly lower evaluation metrics. The results suggest that 

the XGBoost and RF models have a strong R-squared value of 0.831 and 0.795, respectively. 

This means that 83.1% and 79.5% of the variation in house price can be attributed to the 

house's features and the cluster it belongs to. Based on quantitative evaluation metrics, the 

XGBoost model performs better than the RF model. This is evident by its lower error rates, as 

indicated by the lowest RMSE, MAE, and MAPE. The XGBoost has a mean absolute error 

(MAE) of €60,002. This means that, on average, there is a difference of €60,002 between 

predicted and actual house prices. However, the Random Forest approach performs better 

than XGBoost in terms of computational time. 

 

 

 

 

 

 

  

 

Figure 7 shows the actual price versus the predicted price of the XGBoost (A) and RF (B) 

models. Based on the plot, there is a significant difference between the predicted and actual 

values of houses with higher worth. The plot shows that most predicted prices in the higher 

price range are underpriced, especially in the Random Forest model. The houses above 

€750,000 are filtered out to see if the predictive performance increases. Houses worth more 

than €750,000 may potentially not be a good representation of the overall population of 

houses. This approach has filtered out 8.7% of the total houses in the data set. 

TABLE 6: Predictive Performance Models 

Model R2 RMSE MAE MAPE Time 

XGBoost 0.831 € 111,543 € 60,002 13.11 % 235 min 

Random Forest 0.795 € 122,366 € 65,403 14.72% 198 min 

SVM 0.764 € 135,205 € 79,161 17.69 % 54 min 

OLS 0.690 € 149,352 € 94,861 22.39 % < 1 sec 
*Note: Time refers to the total time needed for training the model,  

which involves hyperparameter tuning and cross-validation. 

FIGURE 7. XGBoost and RF actual vs. predicted values 
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TABLE 7: Predictive Performance Models with only houses worth  
 < € 750,000 

Model R2 RMSE MAE MAPE 
XGBoost 0.794 € 60,792 € 43,228 11.93 % 
Random Forest 0.754 € 67,011 € 48,023 13.34 % 
SVM 0.648 € 80,082 € 58,759 16.03 % 
OLS 0.549 € 89,946 € 68,437 19.48 % 

The results of filtering out houses worth more than €750,000 are shown in Table 7. It is 

observed that the RMSE and MAE metrics significantly decrease when this filter is applied to 

the models. The MAPE assessment measure is the most essential when evaluating forecasts' 

improvement since it focuses on percentage changes. In contrast, MAE utilizes absolute 

numbers, which logically drop if it eliminates residences worth more than € 750,000. 

According to the results, the MAPE improves slightly with approximately 1% when high-

value houses are removed compared to when they are not removed. However, the value of R-

squared decreases noticeably.  

In order to determine to what extent geospatial clusters influence the accuracy of house 

price prediction models, we used the most successful method, XGBoost, to train a model that 

incorporates all socioeconomic, demographic, and distance attributes rather than just the 

cluster itself. Table 8 presents the results, indicating that a model which includes all 

socioeconomic, demographic, and distance attributes delivers better predictive performance 

than one that only incorporates the cluster. Including the features result in an increase in 

variance explained (R2) of 3.9%. Additionally, the validation metrics for error rates indicate a 

decrease. The mean absolute error (MAE) for the XGBoost benchmark and XGBoost without 

high-value houses both decreased by €13,943 and €3,613, respectively. One weakness of 

including all features is the increased variables, leading to a significant rise in computational 

time. The K-means algorithm took around 3 minutes to compute, which makes a total of 238 

minutes to compute the XGBoost algorithm with the cluster variable. Therefore, the model 

that did not include clusters took 55% longer to compute than the one that did. 

TABLE 8: Predictive Performance XGBoost with all socioeconomic, demographic, and 
distance attributes 

Model R2 RMSE MAE MAPE Time  
XGBoost (Benchmark) 0.870 € 97,600 € 55,454 12.50 % 368 min 
XGBoost (Benchmark) 
Only houses < € 750,000 0.818 € 57,179 € 40,114 11.07 % 343 min 
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5.2.1 Global Interpretability  

Advanced machine learning models have a major drawback: They are often referred to as 

"black box models" because they are difficult to interpret. To improve our understanding of 

the XGBoost model's predictions and the factors contributing to its accuracy, it is necessary to 

enhance its interpretability.  

The first technique is the feature importance plot, which is a global model-independent 

way of determining the increase in the model's prediction error after permuting the feature. It 

shows which features are the most important in predicting the house price. Figure 8 shows the 

feature importance plots for both XGBoost models, including all houses (A) and omitting 

high-value houses (B). The graph clearly illustrates that the living area (m2) is the most 

essential element in both models. Both models place significant importance on the longitude 

and latitude coordinates feature. When considering the initial XGBoost, the vital structural 

features to take into account are the plot size, building year, floor location, and balcony 

existence. If we remove high-value houses from the XGBoost model, the presence of an 

underfloor heating system becomes more important than the house's floor location or a 

balcony's existence. The plots reveal that the number of bedrooms did not have much 

importance in the initial XGBoost model, but it does in the modified XGBoost model. Two 

clusters stand out as the most important: clusters 2 and 12 in the original model and only 

cluster 12 in the revised one. Cluster 2 indicates the pricier neighborhoods, while Cluster 12 

signifies the areas with the highest concentration of houses close to city centers. 

To enhance comprehension of the impact of each feature, partial dependency plots (PDPs) are 

utilized on a global level for interpretability. These plots provide insight into each feature's 

marginal influence and complement feature significance plots.  
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FIGURE 9. Partial Dependency Plots most important structural features 

Figure 9 shows the partial dependency plots of the most important structural house 

features. Floor area (m2) is seen as the most important feature in the XGBoost model. The 

partial dependency plot of floor area suggests a positive relationship between floor area and 

house price. The plot size also exhibits a positive relationship in line with the floor area. 

Based on the partial dependency plot of the building year, there appears to be a U-shaped 

relationship between the building year and house price. Initially, newer homes are priced 

lower up to a certain point, after which there is a significant positive relation. A similar 

relationship can be observed for the external storage house characteristic. However, the 

relationship between external storage and house price is more complex. Overall, a negative 

relationship may be seen first, followed by a positive one. The model's features that capture 

the property's location are longitude, latitude, and the created cluster. The partial dependency 

plots of latitude and longitude in Appendix E illustrate how the house's location affects its 

price in terms of north/south and east/west directions. Overall, there is a positive association 

between latitude and housing price, with a negative relationship between 52.25 and 52.85. 

This negative pattern is observed to the north of the "Randstad”. Further, the more eastern the 

house's location, the lower the house price, as indicated by the negative relationship of the 

longitude. In Appendix F, the two-dimensional spatial dependency plot shows a positive 

impact in the "Randstad" area when examining longitude and latitude. Figure 10 shows the 

partial dependency plot for the created cluster variable, which is important to understand each 

cluster's effect on the house's price. The plot shows that the two most important clusters in the 

model, 2 and 12, have the highest positive impact on house prices. Cluster 16 has the least 
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beneficial influence on home prices, implying that houses in less urban regions negatively 

impact its house price. Based on the plot, it is interesting to note that the cluster identified as 

the least expensive neighborhood (cluster 22) actually has a somewhat positive effect on the 

house prices. 

5.2.2 Local Interpretability 

Global interpretability approaches were utilized in the preceding section to better 

comprehend the XGBoost model on a global basis. Local interpretability approaches can be 

used to understand better how a house price prediction is raised on an individual house level. 

The local interpretability LIME is used in this study, as mentioned in the methods section. To 

enhance comprehension of the XGBoost model's inaccurate predictions, this section will 

analyze two houses where one is under-predicted and the other over-predicted. The house 

attributes of each specific case can be found in Appendix I. 

Figure 11 presents the LIME plots of the two cases (5962 and 3806), where case 5962 is 

overpredicted and case 3806 underpredicted. The property price of case 5962 is predicted at  

€ 442,298, which is actually € 749,500. The most important supporting feature is the latitude 

between 52 and 52.3, which represents the middle part of the Netherlands. The main negative 

feature of the price prediction is the non-existence of a balcony. Additionally, the property's 

plot size is 121 square meters and has four bedrooms which negatively impacts the predicted 

price. By examining the details of the house, we can see that it underwent a complete 

renovation in early 2022. This may have led to an undervaluation of the property. Case 3808 

is valued at € 417,247, which is actually € 269,000. The house features that positively affect 

the price prediction are that the houses’ location belongs to cluster 12 and a latitude between 

51.7 and 52.0. The floor area, house type and building year, all have a negative influence on 

the prediction, but not enough to compensate for a considerable overestimation. Upon 

FIGURE 10. Partial Dependency Plot of the cluster feature 
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examining this particular case, it becomes evident that the house is a standard fixer-upper, 

potentially leading to the over-estimation. 

 

6. Conclusion 
This paper investigates if including geospatial clusters improves the accuracy of the house 

pricing model. We conducted a study comparing three machine-learning techniques' 

predictive performance and efficiency. Based on our findings, we used the best-performing 

technique to investigate the impact of geospatial clusters. The conclusion section of this study 

focuses on answering to what extent the inclusion of geospatial segmentation based on 

socioeconomic, demographic, and geospatial attributes enhances the accuracy of house price 

prediction models in the Netherlands. Additionally, this research will address three sub-

questions to enhance the foundation of the study. 

After conducting extensive research, it can be concluded that geospatial segmentation 

based on socioeconomic, demographic, and geospatial factors does not improve the accuracy 

of house price prediction models in the Netherlands. The model's ability to make predictions 

is only slightly affected when comparing the one that includes clusters to the one that does 

not, in terms of predictive performance. The model without clusters has a MAPE of 0.61% 

lower and an R-squared of 3.9% higher. However, the model's training process, including 

clusters, has an efficiency advantage, where the training process takes 55% less time. 

Therefore, there is a trade-off between predictive performance and efficiency.  

The first stage of this study segmented the zip codes using K-means. This approach could 

group approximately 445,000 zip codes into 25 distinct clusters. The 25 clusters are easily 

understandable, and the small increase in model fit by 3.9% shows that they capture 

FIGURE 11. LIME Plots for cases 5962 and 3806 
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significant information. The loss of information caused by creating clusters is minimal. 

Therefore, it can be concluded that K-means is an accurate method to cluster zip codes based 

on socioeconomic, demographic, and geospatial features.  

The study showed that advanced machine-learning techniques give better results than the 

traditional ordinary least square approach. The extreme gradient boosting model (XGBoost) 

outperformed the other models, such as Random Forest and SVM, in terms of predictive 

performance and is therefore recommended for use in future house price prediction models in 

the Netherlands. The biggest disadvantage of the XGBoost method is its comparatively long 

calculation time. 

The findings demonstrate that the floor area is the most important house feature in the 

XGBoost model and has a positive relationship with the house price, which is consistent with 

the current literature (Guliker et al., 2022; Ho et al., 2021). The location in terms of 

coordinates (Longitude and Latitude) also shows high importance. The cluster feature created 

is quite significant in the model, particularly clusters 2 and 22, as they positively affect the 

house price. Building year and plot size are the most important structural house features 

besides the floor area. In line with floor area, the feature plot size shows a positive 

relationship with the house price, whereas the building year has a U-shaped relationship.  

Overall, this study provided insight into the factors that impact home prices in the 

Netherlands and how locational segmentation and sophisticated machine-learning techniques 

influence the accuracy of house price prediction models. These findings can be valuable for 

various stakeholders, including homeowners, buyers, real estate agents, policymakers, and 

mortgage lenders.  

7. Discussion 
In the end, the XGBoost model outperforms the other advanced machine learning 

techniques. However, the mean absolute error on the test set is € 60,002, which is a significant 

amount in the real estate market. If the model uses only houses of under € 750,000 because 

especially the higher value houses cause a large increase in variance, the error rates decreases. 

However, excluding the houses worth over € 750,000 still shows the most variance in the 

higher segment. The problem here is that the higher segment houses are scarce in the training 

data set, potentially resulting in a higher error rate in this segment. This shows the challenge 

of the valuation of the most expensive houses.  

Another limitation of this research is that it takes asking prices as house prices instead of 

the official sale price. Asking prices are chosen because they are easily accessible data 
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compared to actual sale prices. However, it was frequently observed in 2022 that buyers 

offered higher bids than the asking price. The first half of the year saw 80% of purchases 

being outbid, while in the second half, the figure was 44%. The beginning of 2023 shows a 

further decrease in the outbidding on house prices (Hypotheek.nl, 2023). Predicting asking 

prices is useful for various stakeholders, and there is a decreasing trend in outbidding. 

Therefore, using asking prices is not an issue. Furthermore, because all of the properties 

utilize asking prices, this technique allows for property comparisons, which might be useful 

for mortgage lenders.   

We use text mining techniques on the house description to obtain many of the house 

features. Negations are also taken into consideration in order to make the Boolean variables as 

precise as possible. However, it is important to note that the accuracy of the obtained data can 

be impacted by incomplete descriptions. Inaccuracies may affect the model and its 

predictions.  

The last limitation of this study is that it does not capture an energy label, house quality, 

and customer preferences. It is possible that approximately 17% of the unexplained variance 

is due to missing variables that can explain the condition of the house, including energy labels 

and house quality, as well as customer preferences. The two cases explained with the LIME 

interpretability method show the importance of house conditions. The energy label is left out 

of the analysis since text mining on the house description for the energy label resulted in 

many missing values.  

This study shows that one of the biggest challenges in predicting house prices is obtaining 

precise data on the house's features, accurately valuing high-end properties, and incorporating 

the house's condition into the model. 

Based on the previous conclusions and discussions, it is recommended that future research 

focuses on how to capture the house's condition into the model. Using a neural network 

technique to analyze the house images from real estate websites to assess the house’s 

condition and customer preferences would be interesting. Adopting this approach can improve 

the model fit as it provides a better understanding of the house.  

Additionally, future research could also consider developing localized house price 

prediction models on a city or province level. The accuracy of predictions can be improved by 

using a geospatial clustering technique on a localized house price prediction model. It would 

be beneficial to explore the impact of incorporating geospatial clusters in these localized types 

of models for predicting house prices. 
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Lastly, house price per square foot is a common term used in the real estate market in the 

Netherlands. Therefore, it would be interesting to model the average house price per square 

foot in a zip code based on socioeconomic, demographic, and geospatial attributes. The 

average square footage, determined by zip code, can potentially enhance the accuracy of the 

house price prediction model. This approach will be another way to include the geospatial 

aspect of a property. 

Appendix 

Abbreviations: 
NL   Dutch language (Netherlands) 

XGBoost  Extreme Gradient Boosting 

RF   Random Forest 

SVM   Support Vector Machine 

ML   Machine Learning 

OLS   Ordinary Least Square 

CBS  “Centraal Bureau Voor de Statistiek” (In English: Central Agency For 

 Statistics) 

PDP  Patial Dependency Plot 

LIME  Local Interpretable Model-Agnostic Explanations 
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Appendix A. Summary Statistics Categorical House Features 

Feature N = 10,840 Feature N = 10,840 
House_type balcony 4,267 (39%) 

2-onder-1-kapwoning 1,145 (11%) garden 8,239 (76%) 
beneden + bovenwoning 33 (0.3%) Patio 248 (2.3%) 
benedenwoning 444 (4.1%) airconditioning 1,063 (9.8%) 
bovenwoning 719 (6.6%) solar_panels 1,989 (18%) 
dubbel benedenhuis 37 (0.4%) garage 2,421 (22%) 
eindwoning 190 (1.8%) fireplace 261 (2.4%) 
galerijflat 499 (4.6%) pool 757 (7.0%) 
geschakelde 2-onder-1-kapwoning 164 (1.5%) jacuzzi 138 (1.3%) 
geschakelde woning 298 (2.7%) und_floor_heat 2,897 (27%) 
halfvrijstaande woning 234 (2.2%) cent_heat_boiler 8,411 (78%) 
hoekwoning 886 (8.2%) block_heat 53 (0.5%) 
maisonnette 249 (2.3%) city_heat 63 (0.6%) 
penthouse 77 (0.7%) heat_pump 491 (4.5%) 
portiekflat 888 (8.2%) bath 3,755 (35%) 
portiekwoning 206 (1.9%)   
Recreatiewoning 142 (1.3%)   
tussenverdieping 120 (1.1%)   
tussenwoning 2,483 (23%)   
vrijstaande woning 2,026 (19%)   

*Note: The boolean variables are set to “Yes” 
 
Appendix B. Determining number of clusters using RMSE (€) 
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Appendix C. Allocation of the clusters within the training and test data set 

 
 
Appendix D. Parameters settings 

Model Parameters 

XGBoost  nrounds = 500, max_depth = 7, eta = 0.1, gamma = 0, colsample_bytree = 1, 
min_child_weight = 1, and subsample = 0.65 

XGBoost < €750,000 nrounds = 500, max_depth = 7, eta = 0.05, gamma = 0, colsample_bytree = 0.8, 
min_child_weight = 3, and subsample = 0.65 

RF ntree = 500, mtry = 27, splitrule = variance and min.node.size = 1 
RF < €750,00 ntree = 500, mtry = 27, splitrule = variance and min.node.size = 1 
SVM Kernel function = Radialcost, Cost = 10 
SVM < €750,000 Kernel function = Radialcost, Cost = 10 
XGBoost (Excl. 
Clusters) 

nrounds = 500, max_depth = 5, eta = 0.1, gamma = 0, colsample_bytree = 0.8, 
min_child_weight = 1, and subsample = 0.8 

XGBoost (Excl. 
Clusters) 
< € 750,000 

nrounds = 500, max_depth = 7, eta = 0.05, gamma = 0, colsample_bytree = 0.8, 
min_child_weight = 7, and subsample = 0.65 

 
 Appendix E. Partial Dependency Plot Latitude (A) and Longitude (B) 
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Appendix F. Two-dimensional Partial Dependency Plot Latitude and Longitude 

 
Appendix G. Coordinates (Longitude/Latitude) Map of The Netherlands 
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Appendix H. Partial Dependency Plot House Type   

Appendix I. Features cases 3806 and 5963 for LIME 

Note: * are the heating related variables. 

Case House_type balcony garden Patio plot_size living_space extern_storage airconditioning building_year 

3806 bovenwoning No No No 105 90 0 No 1887 

5962 tussenwoning No Yes No 121 121 5 Yes 2021 

Case # Floors floor_location solar_panels garage fireplace bedrooms bathrooms pool jacuzzi 

3806 2 2 No No No 2 1 No No 

5962 3 1 No No No 4 1 No No 

Case und_floor* Boiler* Block* City* Pump* bath Longitude Latitude cluster 

3806 No Yes No No No Yes 4.47912 51.93279 12 

5962 Yes Yes No No No No 5.565662 51.95599 22 

Case Price Predicted Price       

3806 € 269,000 € 417,247        

5962 € 749,500 € 442,298        
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