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Abstract 

This study explores a novel approach to detecting money laundering in Bitcoin transactions using 

machine learning models and sampling techniques. The study focuses on class imbalance and explores 

the performance of traditional classification models compared to a novel model that combines Gradient 

Boosted Decision Trees with Graph Neural Networks. The results show that the XGBoost model with 

all features outperforms other models in terms of the F1 score, despite the expectation that the novel 

model would benefit from the graph structure of the data. Furthermore, the study finds that Generative 

Adversarial Networks produce more realistic samples than traditional sampling methods. This finding 

is significant in research on money laundering detection due to the class imbalance nature of this 

context. The study also investigates the possibility of concept drift and explores offline and online 

learning models. The findings suggest no significant sign of concept drift. Still, the XGBoost model 

shows a high variance in the ROC curve, indicating the need for further research on regularization 

techniques, online learning models, and concept drift detection. Overall, the study provides insights into 

the importance of addressing class imbalance and the effectiveness of various machine learning models 

and sampling techniques in detecting money laundering in Bitcoin transactions. The study suggests that 

dimensionality reduction techniques such as PCA, t-SNE, and LDA can be applied to large datasets to 

improve model performance. Further research can extend the study by combining fraud detection at the 

transaction and account levels.  
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1. Introduction  

Tuesday, February 8, 2022. "Two arrested for alleged conspiracy to launder $4.5 billion in stolen 

cryptocurrency" (U.S. Department of Justice Office of Public Affairs, 2022). The U.S. Department of 

Justice confiscated $3.6 billion in Bitcoin, making it the largest capture in its existence. In this lawsuit, 

the individuals were arrested for alleged conspiracy to launder money. Years before the arrest, hackers 

stole 119,757 Bitcoins from the cryptocurrency exchange Bitfinex during a significant security breach. 

Extracting large withdrawals right after the hack would have caused alarm bells to fire immediately. 

Thus, the suspects started routing small amounts of money over a six-year period using digital wallets 

designed to prevent tracing and state-of-the-art money laundering techniques (Chow, 2022). Deputy 

Attorney General L. O. Monaco on the case: "In a futile effort to maintain digital anonymity, the 

defendants laundered stolen funds through a labyrinth of cryptocurrency transactions. Thanks to the 

meticulous work of law enforcement, the department once again showed how it can and will follow the 

money, no matter what form it takes." (U.S. Department of Justice Office of Public Affairs, 2022).  

  

The practice of money laundering has been around for thousands of years. Seagrave (2010) 

describes money laundering in its earliest forms; ancient Chinese merchants around 2000 B.C. used to 

hide their wealth from their rulers because the regional authorities banned various forms of private 

businesses. As a result, the merchants invested their capital into offshore businesses. The term "money 

laundering" originated more recently, during the roaring twenties in the 20th century. The infamous 

American gangster Al Capone aka "Scarface" used launderettes to conceal the proceeds of his empire 

of crime and convert these proceeds into a legitimate source of income (Duyne et al., 2003). Al Capone 

was later successfully prosecuted for tax evasion (Storm, 2013).  

  

The first prominent law on anti-money laundering was introduced almost half a century later, 

with the U.S. 1970 Bank Secrecy Act. The U.S. Bank Secrecy Act requires banks and financial 

institutions to keep records, file reports, and report suspicious activity to detect and prevent money 

laundering (Buchanan, 2004). Later, in 1989, the G7 summit formed the Financial Action Task Force 

(FATF) as an international watchdog on money laundering. The awareness of money laundering and 

the efforts against it have intensified significantly ever since. The FATF is now the largest 

intergovernmental anti-money laundering body worldwide, with 205 associated jurisdictions (FATF, 

2021). Throughout the years, several incidents have fueled further tightening of the screws for financial 

institutions. Some instances that illustrate this phenomenon include the 2008 financial crisis which 

accelerated the enactment of the Dodd-Frank Wall Street Reform and Consumer Protection Act, as well 

as the Foreign Account Tax Compliance Act (FACTA). Additionally, the Panama Papers scandal 

caused policymakers across the globe to raise regulatory measures for financial institutions, including 

the implementation of more demanding Know Your Customer (KYC) policies, such as the enactment 

of the Corporate Transparency Act. Last year, President Biden's administration heightened the bar even 
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further for financial institutions through rigorous compliance expectations (Vanderford, 2022). 

Regulators expect financial institutions to have the latest and most sophisticated machine learning 

systems to flag suspicious transactions. If financial institutions do not meet the high standards imposed 

by regulators, hefty fines are issued. For example, Dutch bank ABN AMRO had to reach a $574 million 

settlement after serious shortcomings in combating money laundering (Deutsch & Meijer, 2021). 

Ultimately, the evolving regulatory landscape highlights the urgent demand for advanced machine 

learning algorithms to effectively prevent money laundering.  

 

With the creation of Bitcoin in 2009, the world's first cryptocurrency, the financial industry 

ushered into a new era of innovations. It was in 2018 that the cryptocurrency market caught traction 

with the large public, resulting in a push that led to a total market capitalization of around $730 billion. 

The total market capitalization of cryptocurrencies peaked in 2021 at a valuation of approximately $2.8 

trillion (CoinMarketCap, 2022), which is larger than the size of the subprime mortgage market ($1.3 

trillion) when it caused the global financial crisis in 2007 (European Central Bank, 2022). With the 

surges in popularity, participation of institutional investors, and exorbitant market capitalization figures, 

the crypto market is past its infancy. As a result, regulators have a new problem child. Foley et al. (2019) 

estimate that around $76 billion of illegal activity involve Bitcoin or 46% of all Bitcoin transactions in 

their sample, nearing the same size as the total narcotics market of the United States and Europe 

combined. The FATF warns about cryptocurrencies. The speed, global reach, and (pseudo) anonymity 

of these virtual assets threaten the world economy (FATF, 2020). This disruptive field within the finance 

industry attracts criminals who want to escape authorities' scrutiny. Without established regulation and 

oversight, this field is still referred to as the "Wild West" (European Central Bank, 2022). 

  

Academic research has explored advanced Machine Learning techniques for detecting 

suspicious transactions based on data provided by traditional financial institutions (e.g., Tang & Yin, 

2005; Lv et al., 2008; Zhang & Trubey, 2019). However, the decentralized and anonymous nature of 

cryptocurrencies, combined with multiple digital wallets and addresses to obscure the source of funds, 

presents a unique challenge for detecting illicit transactions. Additionally, the lack of regulation and 

oversight makes it difficult for authorities to detect and prevent money laundering. Moreover, the 

widespread use and the danger of the potential fraudsters lurking behind crypto's (pseudo)anonymity 

require attention. Therefore, further research is necessary to develop effective methods for detecting 

money laundering in Bitcoin transactions. 

 

In current academic research on money laundering detection, the Gradient Boosted Decision 

Tree (GBDT) models are among the best in class classification models for money laundering detection 

(e.g. Ahmed, 2021; Lin et al., 2019; Jullum et al., 2021; Vassallo et al., 2021). On the other hand, recent 

academic literature also explores the usage of Graph Convolutional Neural networks (GCN) that 
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leverage the power of graph data and neural networks in the context of money laundering (Alarab et al., 

2020; Weber et al., 2019).  As money laundering involves complex transactions that are connected 

through a network-like structure, models performed on graph data might be able to reveal hidden 

relationships that are not detected by conventional classification models. Given the strengths of both 

Gradient Boosted Decision Trees and the potential of Graph Neural Networks, Ivanov and 

Prokhorenkova (2021) recently proposed a model that combines the best of both worlds in a model 

called the BGNN or GBDT+GNN. This model can be interpreted as a GNN with an embedding layer 

of the GBDT or as a GBDT with a parametric loss function (Ivanov & Prokhorenkova, 2021). This 

model shows promising results, but has not been tested in the context of money laundering detection 

yet.  

 

 Next to optimization of classification models, a predominant challenge in fraud detection is 

data imbalance, since illicit transactions are inherently rare and vastly outnumbered by licit transactions. 

This can lead to biased models with a high accuracy at identifying licit transactions, however failing to 

identify the cases of interest, the illicit transactions. To address the problem of class imbalance, 

researchers have developed various sampling methods. Common methods used in the context of money 

laundering include Under- and Oversampling and SMOTE sampling (e.g. Vassallo et al., 2021; Zhang 

& Trubey, 2019). However, recently a novel method for sampling was proposed by Goodfellow et al. 

(2014): Generative Adversarial Networks (GANs). The GAN sampling method is an innovative kind 

of sampling that makes use of the generative capabilities of neural networks, resulting in realistic data 

samples (Wang et al., 2017). Research on this novel sampling method shows promising results. 

However, the GAN sampling method has not been applied in the context of money laundering, and 

specifically in Bitcoin transactions. Given the fundamental necessity of sampling methods in the 

research of money laundering detection and the powerful potential of the GAN sampling approach, this 

sampling method deserves to be investigated in this context. 

 

As a result, this paper aims to analyze the effectiveness of novel machine learning and sampling 

methods in the detection of money laundering in Bitcoin transactions. The scope of the research are 

supervised classification models and various sampling methods. The aim of the paper is to compare 

conventional and novel classification models and sampling methods. The paper focuses on the current 

state of literature on machine learning classifiers and sampling methods used to detect money 

laundering in Bitcoin transactions. The paper covers both the mechanics of the classification and 

sampling methods, as well as their respective advantages and disadvantages. The paper covers two main 

research questions: 
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Research question based on the novel sampling method: 

R.Q.1: How do Generative Adversarial Networks (GANs) impact the performance of money laundering 

detection models in Bitcoin transactions, compared to traditional sampling methods? 

 

Research question based on the novel classification model: 

R.Q.2: How does the performance of the Gradient Boosted Decision Tree + Graph Neural Network 

model compare to conventional models in detecting money laundering in Bitcoin transactions? 

 

This paper holds both academic relevance and yield practical implications. The paper contributes to the 

existing literature on money laundering, digital currencies, and machine learning methods. Furthermore, 

it advances the understanding of financial crimes and the implications of digital currencies. Finally, in 

terms of originality, it examines novel machine learning and sampling methods in combating money 

laundering, which has implications for academic research, regulators, and financial institutions.  

 

Figure 1: Conceptual Model for this Research on comparing Sampling Methods and Classification Models 
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2. Literature Review 

With the increasing societal impact of money laundering and Bitcoin, academic research on these 

subjects and their intersection is expanding. This section explores related literature, starting with the 

definition of money laundering. The subsequent section gives an overview of Bitcoin and the 

technologies brought together in this financial innovation. The section concludes with the intersection 

of money laundering and Bitcoin; an analysis of the mechanics of money laundering in Bitcoin. Next, 

the literature review discusses the methods used to detect money laundering, from traditional to 

advanced machine learning methods. The review analyzes previous findings regarding the effectiveness 

of various techniques and considers the advantages and disadvantages of these methods. At last, a novel 

advanced machine learning method is discussed, Gradient Boosted Decision Trees with Graph Neural 

Networks, which shows potential to be a powerful method in detecting money laundering in Bitcoin 

transactions.  

 

2.1 Background on Money Laundering and Bitcoin 

2.1.1 Definition of Money Laundering 

Money laundering is the practice of disguising the proceeds of criminal activity through 

transactions so that it appears to originate from an appropriate source (FATF, 2006).  

 

Money laundering is a three-step process (Richardson et al., 2019): The first step is placement, 

which involves introducing illicit funds into the financial system. Placement can be done by depositing 

small, non-rounded amounts to multiple accounts. The second step is layering, which involves moving 

the funds through various financial transactions to disguise the source and ownership of the funds. For 

example, using unrelated people in different locations to transfer resources between accounts. The third 

step is integration, which involves using the funds for legitimate purposes. For instance, purchase 

tangible assets like real estate. The detection of money laundering attempts to identify suspicious 

transactions across these layers and trace funds derived from illicit sources. 

 

 

Figure 2: Schematic Overview of the Money Laundering Process showing the Placement, Layering and Integration of Funds 
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The following section gives an overview of Bitcoin and explains how the distributed ledger in 

Bitcoin records the placement, layering, and integration of the transactions. This transparency enables 

research on money laundering in Bitcoin transactions. 

2.1.2 Overview of Bitcoin 

In 2008, Satoshi Nakamoto published the whitepaper "Bitcoin: A Peer-to-Peer Electronic Cash 

System" (Nakamoto, 2008). The goal of this paper was to allow online payments without the need for 

a third party (Nakamoto, 2008). With this paper, Nakamoto brought together four innovations: digital 

signatures, the distributed ledger, blockchain technology, and the proof-of-work concept.  

 

Digital signatures were invented in 1970 by the British intelligence agency Government 

Communications Headquarters (GCHQ) to have secure communication and check whether messages 

arrived unaltered (Vatra, 2009). Within Bitcoin, double-key cryptography ensures secure transfers of 

assets between digital wallets. This mechanism guarantees that a Bitcoin can only be transacted by the 

account that owns the Bitcoin. 

 

Blockchain is a technology that records new data in blocks, sequentially, in a write-only, 

digitally distributed ledger proposed by Nakamoto (2008), that brings together several concepts 

developed since the 1970s (e.g., Wong, 1997; Merkle, 1978; Haber & Stornetta, 1990). The blockchain 

consists of data packages (blocks), where a block contains data on multiple transactions (Nofer et al., 

2017). This technology makes changing the ledger impossible, as one must rewrite the entire blockchain 

to change one entry.  

 

 

Figure 3: Example of a Blockchain consisting where each Block contains Data on Multiple Transactions (Zheng et al., 2016) 

 

The distributed ledger replaces the need for a third party to guarantee correct data. Furthermore, 

the proposed technology is a crowd-sourcing solution where network members (nodes) compete in a 

proof-of-work competition. In proof-of-work, nodes solve a puzzle that requires computing power. The 

first node to solve this puzzle is rewarded if the network accepts a block. Proof-of-work validates 

transactions and prevents double spending of Bitcoins.   

 

The result is a fast and easy-to-use cryptocurrency that allows users to execute transactions 

between digital wallets without needing a third party. Blockchain technology lowers transaction 
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uncertainty through identity management, asset tracking, and reneging deals. Transaction fees are low, 

and users are (allegedly) anonymous. However, in the current information age, anonymity generally 

involves pseudonymity and unlinkability (Nissenbaum, 1999). Bitcoin allows for pseudonymity as 

users can hide behind their digital wallets. But, as transactions are recorded on the indelible blockchain, 

Bitcoin does not offer unlinkability. This linkability enables institutions to track the sources of illicit 

funds and label transactions accordingly. Linkability is a vital property enabling research on money 

laundering regarding Bitcoin transactions, as labeled data is needed to apply supervised machine 

learning methods.  

 

The following section discusses the intersection of money laundering and Bitcoin. The section 

outlines why Bitcoin is attractive for money laundering and how fraudsters execute money laundering 

in Bitcoin. 

2.1.3 Money Laundering in Bitcoin 

Bitcoin offers numerous benefits for fraudsters seeking to launder money. Some of the core 

concepts of Bitcoin as described by the whitepaper of Nakamoto (2008), are directly related to the 

advantages that Bitcoin provides in a money laundering context. One of the core aspects of Bitcoin is 

the pseudonymity it offers its users. Fraudsters are not required to disclose personal details to execute 

transactions. Consequently, it is challenging for regulators to find, trace, and link evidence to fraudsters. 

Next, as Bitcoin transactions are considerably faster than conventional bank payments, funds can be 

transferred rapidly and discretely. Additionally, Bitcoin transactions involve lower costs than 

conventional methods, making it an attractive money laundering technique. Furthermore, as Bitcoin is 

accessible everywhere, there are no constraints on transferring funds across borders. At last, the 

decentralized aspect of Bitcoin ensures there is no public authority or organization that will obstruct the 

(illicit) transactions. These considerations make Bitcoin a desirable option for fraudsters to launder 

money. Gaining an understanding of the mechanics of money laundering in Bitcoin is an integral part 

of the detection. The following paragraphs discuss the mechanics of the three-step money laundering 

process in the context of Bitcoin transactions: the placement, layering, and integration of illicit funds. 

 

Fraudsters have multiple options to place illicit funds in the Bitcoin ecosystem. The first 

placement options involve cash transactions. Firstly, criminals can offer people cash in a real-life, face-

to-face transaction. Subsequently, the counterparty transfers Bitcoins to the criminal's digital Bitcoin 

wallet. A second option for criminals is to buy stored-value cards, such as gift vouchers or phone cards, 

and buy Bitcoin through these cards. 

At last, criminals can opt to deposit cash at a Bitcoin ATM. Across the Netherlands, 19 Bitcoin 

ATMs are located across large cities where people can deposit cash in exchange for cryptocurrencies 

(CoinATMRadar, 2023). Hyman (2015) describes the risks of these Bitcoin ATMs and proposes 
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possible solutions to detect and prevent money laundering through these machines. Among the proposed 

solutions by Hyman (2015) are the implementation of an I.D. card scanner, a real-time camera to capture 

images of the customer, and the integration of (facial recognition) software that compares data from the 

I.D. card with governmental libraries. Next to cash options for placement, it is also possible for 

criminals to place illegitimate digital money in the Bitcoin ecosystem. This could be done by digitally 

transferring money for Bitcoins in a peer-to-peer transaction or through (illegal) exchanges that do not 

collect personal information. 

 

Subsequently, the layering step disguises the sources of the illicit funds. Using several digital 

wallets and exchanges not regulated by similar laws as conventional banks is one of the main ways to 

layer money in Bitcoin. Fraudsters can camouflage the sources and pathways of funds through these 

systems. In addition to this, criminals have unique crypto money laundering tools at their disposal, such 

as mixers and tumblers. Mixers and tumblers facilitate transactions by combining funds from different 

sources (Silva Ramalho & Igreja Matos, 2021). By combining funds, the mixer and tumblers disguise 

and 'mix' the funds' various sources and transaction histories. Subsequently, the service executes the 

desired transactions. Mixers and tumblers can be a beneficial tool for privacy protection and preventing 

third-party attacks. However, these tools also enable criminals to disguise the source of money that has 

been gained unlawfully and 'layer' it into the Bitcoin system (Silva Ramalho & Igreja Matos, 2021).  

 

The last step in the money laundering process is the integration of Bitcoin. Once placed and layered, 

fraudsters can use legal crypto exchanges to cash out their proceeds. Wegberg et al. (2018) highlight 

that using crypto exchanges to cash out money laundering proceeds is user-friendly and cost-efficient 

relative to traditional money laundering methods. The cost margin of money laundering through Bitcoin 

mixers and cashing out through exchanges is estimated to be 15%, a significant cost reduction to the 

cost margin of up to 50% for traditional methods (Wegberg et al., 2018). These benefits strengthen the 

case for both interferences by law enforcement and the demand for research on money laundering 

detection methods in Bitcoin.  

2.2 Context on Methods to Detect Money Laundering 

This section of the literature review examines the literature on both traditional methods and 

machine learning methods to detect money laundering. Despite being used for some time, conventional 

methods are becoming less reliable in current financial practices. Due to the increasing complexity of 

modern economic systems and suspects becoming more refined, these methods may only be partially 

effective in anti-money laundering operations. On the other hand, research on sophisticated machine 

learning techniques is expanding, and novel methods show possible advantages and improvements in 

effectiveness.  
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2.2.1 Traditional Methods Employed in Money Laundering Detection 

2.2.1.1 Rule-Based Method 

The rule-based method uses a set of predetermined rules and guidelines to identify potentially 

suspicious activity (e.g., Levi et al., 2014). In the Netherlands, for example, banks will flag cash deposits 

over 10 thousand euros (Zuurmond, 2022). This is a rule-based method related to the Dutch Anti-Money 

Laundering and Anti-Terrorist Financing Act (Wwft). The advantage of this method is that it is simple 

to use and interpret. This method's drawbacks include its high rate of false positives, poor thresholds, 

impractical data processing, and failure to automatically detect money laundering classifications and 

practical rules requiring expert knowledge in the respective domain (Vassallo et al. 2021). 

Furthermore, money launderers actively seek loopholes in the set rules and adjust their 

approaches accordingly (Zhang & Trubey, 2019). This makes this method unsuitable for detecting 

money laundering in Bitcoin transactions. Because of the shortages of rule-based systems, the FATF 

started advocating for financial institutions to shift away from rule-based systems and towards a more 

risk-based approach since 2012 (FATF, 2012). 

 

2.2.1.2 Social Network Analysis 

Social Network Analysis (SNA) can produce meaningful insights into the structure and 

dynamics of social networks. In SNA, an individual is represented by a node, while the connections 

between nodes are represented by edges. By identifying all people and relationships in a network, SNA 

can provide many statistics and insights into the network (Golbeck, 2013).  

 

 

 

Figure 4. Social Network Consisting of Nodes and Edges (Golbeck, 2013)  

 

In the detection of money laundering, SNA can serve as an important component of the 

detection system. By studying the structure of a network, it is possible to identify suspicious patterns of 

behavior that may indicate suspicious transactions (Dreżewski et al., 2015). For example, if a node 

performs many transactions in a short period, this may indicate money laundering. Also, nodes with 

many connections to other nodes may show a suspicious pattern of transactions. By uncovering 
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networks of nodes, it is possible to identify clusters of individuals that may be involved in money 

laundering.  

 

One of the disadvantages of SNA is the large amount of data required to discover patterns, 

which can be challenging to obtain in the context of money laundering (Colladon & Remondi, 2017). 

Also, it may be difficult to distinguish between legitimate and suspicious activities, as patterns can be 

similar. At last, the accuracy of the SNA is limited by the accuracy of the data. This disadvantage is a 

significant obstacle in research regarding money laundering, as transactions in real data can only be 

labeled after the money laundering was confirmed, resulting in misleading data (Buchanan, 2004). 

Colladon and Remondi (2017) suggest combining network analysis with machine learning algorithms 

to detect suspicious nodes and prevent money laundering. 

 

2.2.2 Machine Learning Methods Employed in Money Laundering Detection 

This section discusses machine learning methods used for money laundering detection. 

Machine learning has become a powerful tool in many industries and is especially useful in detecting 

money laundering. Machine learning can analyze large and unstructured data quickly and accurately 

compared to traditional models. Traditional models rely on linear rules, whereas machine learning 

methods can capture complex patterns like nonlinear relationships. Moreover, in order to deliver 

accurate outcomes, machine learning models can learn from prior estimations and adapt to new inputs. 

The following subsections investigate existing literature on the effectiveness, pros, and cons of current 

detection methods applied to traditional money and cryptocurrencies. An explanation of the model 

mechanics of the standard machine learning models is delegated to Appendix A. A brief overview of 

the operating mechanisms is given in the text for the advanced models. 

 

2.2.2.1 Logistic Regression 

Logistic regression is an often-used statistical approach that models a binary outcome using a 

number of independent variables by applying a logistic function. Current academic research on the 

detection of money laundering aims to decrease false positives while not increasing false negatives, as 

the goal is to allow legitimate transactions while detecting illicit transactions. In academic research 

regarding the concerned topic, Logistic Regression, and Random Forests are often used as benchmark 

methods (Weber et al., 2019). Additionally, Harris et al. (2019) use real-world transaction data to 

compare the performance of different algorithms in money laundering detection. Their findings suggest 

that the traditional logistic regression significantly outperforms other supervised machine learning 

methods (Harris et al., 2019). On the contrary, Zhang and Trubey (2019) find that Support Vector 
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Machine and Random Forest models performed as well or better than the logistic regression in detecting 

money laundering based on actual U.S. transaction data provided by a financial institution.  

2.2.2.2 Support Vector Machine  

The Support Vector Machine (SVM) method is a robust classification model. The SVM has 

some strong properties, amongst others; the model excels in the classification of non-linearly 

distinguishable categories and does not need extensive training datasets, is less prone to overfitting 

compared to other models (e.g., decision trees), and it converges to a single and unified solution 

(Sudjianto et al., 2010; Ray, 2019; Zhang & Trubey, 2019). However, the drawbacks of SVM include 

that the results are difficult to understand, numerous algorithm parameters must be identified, and it 

requires a large amount of computing power in large datasets (Sudjianto et al., 2010; Zhang & Trubey, 

2019). The most relevant shortcoming of SVM in money laundering detection is that the model appears 

to experience lacking performance in the classification of rare events (Zhang & Trubey, 2019). This is 

a possible explanation for the limited research on the performance of SVM compared to other methods 

in the context of money laundering detection. Şahin and Duman (2011) compared the performance of 

different SVM models with varying trees of decision models in the context of credit card fraud 

detection. The findings of Şahin and Duman (2011) suggest the decision tree models outperform the 

SVM-based models in accuracy. However, Şahin and Duman (2011) discuss that accuracy is not the 

only important metric in money laundering, as accuracy reflects the percentage of correct 

classifications, independent of whether they are true licit or true illicit classifications. This is a critical 

observation, as money laundering detection works with highly unbalanced datasets since the occurrence 

of 'regular' transactions is much higher than 'fraudulent' transactions. Thus, other performance metrics, 

such as Precision, Recall, F1, and Area Under the Curve (AUC), are required for a fair performance 

evaluation. Unfortunately, these performance metrics were not included in the paper by Şahin and 

Duman (2011). 

On the other hand, Zhang and Trubey (2019) do include these different performance measures 

in their comparison of the performance of SVM compared to other models in a money laundering 

detection study. In their study, Zhang and Trubey (2019) also investigate the effects of under- and 

oversampling on the performance of classification methods in this context because of the inherent data 

imbalances in money laundering detection cases. Findings by Zhang and Trubey (2019) suggest that 

SVM performed worst across all models (i.e., Decision Tree, Random Forest, and ANN) on the data 

without sampling and gained the most performance from sampling. After sampling, findings suggest 

that SVM outperformed the Logistic Regression and Random Forest regarding the Area Under the 

Curve metric for specific low event rate ranges and even exceeded ANN in high event regimes when 

oversampling was used (Zhang & Trubey, 2019).  
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2.2.2.3 Decision Trees 

Decision trees work by drawing a flowchart-like structure of decisions and their outcomes based 

on a set of input data. In early research on money laundering detection, Senator et al. (1995) asserted 

that tree-based models displayed powerful capabilities in the respective context. However, as the 

unavailability of labeled data has been a continuous bottleneck in research on the concerning topic, 

proving the capabilities of the methods in this context was particularly challenging at the time. 

Nonetheless, decision trees offer several advantages over other techniques. Decision trees are easy to 

understand and interpret, and provide clear visualizations 

 

 Additionally, they need minimal data preparation, are capable of dealing with 

multicollinearity, and can handle both numerical and categorical data (de Oña et al., 2014; Ray, 2019). 

Furthermore, decision trees indicate which fields are important for prediction or classification. 

However, decision trees are also prone to overfitting and can be unstable due to variations in the data 

(Ray, 2019). Some supervision is then required to make sure the model is detecting patterns rather than 

noises in the data (Zhang & Trubey, 2019). Moreover, decision trees can generate biased trees in cases 

where some classes dominate. Kumar et al. (2021) compare the use of Decision Trees and Support 

Vector Machines in money laundering detection on a dataset consisting of raw data collected from 

secured sites. In their research, Kumar et al. (2021) find that the Decision Tree outperforms the Support 

Vector Machine in terms of precision, accuracy, and recall values, possibly due to the ability of Decision 

Trees to handle multicollinearity efficiently.  

2.2.2.4 Random Forests 

Random Forests are combinations of decision tree predictors, each depending on a randomly 

sampled vector, a concept introduced by Breiman (2001). Compared to decision trees, the random forest 

method is more precise in calculating the error rate;  Breiman (2001) established that the error rate 

converges as the number of trees grows. On the other hand, Schonlau and Zou (2020) argue this is a 

tradeoff, as random forests lose interpretability compared to 'weak' decision trees that are intuitive to 

interpret since random forests aggregate multiple decision trees. Weber et al. (2019) emphasize the 

power of jointly using logistic regression and random forests as benchmarks in money laundering, 

logistic regression for its explainability, and random forests for its accuracy.  

 

In academic research on random forests in the case of money laundering detection, random 

forest models have previously been described as "best in class" for fraud detection  (Bartoletti, 2018). 

Findings by Raiter (2021) confirm this description, as Raiter (2021) finds that compared to other 

techniques (e.g., Logistic regression, Support Vector Machines and Artificial Neural Networks), 

random forests perform best in terms of both accuracy and interpretability. It is important to note that 

in their research, Raiter (2019) uses a synthetic transaction data set due to a lack of publicly accessible 
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data. In contrast, Monamo et al. (2016) use a real Bitcoin transaction dataset accommodated by the 

Laboratory for Computational Biology at the University of Illinois. In their comparison of supervised 

detection models for money laundering, Monamo et al. (2016) found that the random forest model was 

the most successful classifier compared to GLM logistic regression and boosted logistic regression, 

irrespective of class imbalances. The findings by Weber et al. (2019) reinforce the idea of the random 

forest as an accurate classifier. In their paper, Weber et al. (2019) compare the performances of logistic 

regression, random forest, Multilayer Perceptrons, and Graph Convolutional Networks on real-world 

bitcoin transaction data provided by the Elliptic dataset. In this study, random forests outperformed the 

other models, even when graph convolutional networks leverage the power of graph data. The Graph 

Neural Networks section of the literature review further elaborates on the findings of the paper and the 

suggestions for future research by Weber et al. (2019).  

 

2.2.2.5 Gradient Boosted Decision Trees 

Gradient Boosted Decision Trees (GBDT) are, similar to random forests, a decision tree 

ensemble method. However, the GBDT method uses a boosting approach, whereas random forest uses 

a bagging approach. In GBDT, the trees are built sequentially to correct the mistakes of prior trees 

(Vassallo et al., 2021). Vassallo et al. (2021) note that tree-based ensemble methods are among the most 

popular methods in money laundering detection. The advantages of the GBDT method are the model's 

cutting-edge results in classification problems, scalability, and being less prone to overfitting due to the 

combination of weak learners (Chen & Guestrin, 2016; Vassallo et al., 2021). Yet, which ensemble 

method is best at identifying illegal activity in cryptocurrency transactions is undetermined.  

 

Jullum et al. (2021) note that, despite the apparent necessity for research on machine learning 

methods in anti-money laundering, the literature on detection methods is still scarce. A recurring theme 

in the literature on money laundering detection is the lack of real-world data. However, Jullum et al. 

(2021) were able to access real-world transaction data provided by Norway's largest bank, the DNB. 

Experiments on this real-world transaction dataset suggest the potential of Gradient Boosted Decision 

Trees in the context of money laundering detection through the XGBoost library presented by Chen and 

Guestrin (2016). Jullum et al. (2021) highlight the models' efficiency, scalability, and ability to decrease 

training time compared to traditional methods of money laundering detection (i.e., rule-based systems).  

 

Research by Lin et al. (2019) on real-world Bitcoin transaction data gathered by Toyoda & 

Ohtsuki (2018) shows the power of GBDT models as classifiers by leveraging transaction history to 

identify abnormal Bitcoin addresses. In their paper, Lin et al. (2019) compare the model performance 

of, amongst others, logistic regression, SVM, random forest, GBDT, and Neural Networks. Lin et al. 

(2019) adopt the stratified random sampling method to address the imbalance in the data. Lin et al. 
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(2019) find that random forests, GBDT models, and neural network models are the best-performing 

models out of the eight tested machine learning methods. Here, the GBDT model (Light GBM) shows 

the most strong consistent performance, and the Neural Network produces the most significant outcome 

but is less reliable across the tests.    

 

Previous experiments on the Elliptic dataset research the power of Gradient Boosted Decision 

Trees in the context of money laundering in Bitcoin transactions. Vassallo et al. (2021)  compared the 

performance of different GBDT models (i.e., XGBoost, Light Gradient Boosting Machine (LGBM), 

and CatBoost) against the performance of Random Forests. Furthermore,  Vassallo et al. (2021) 

highlight the importance of research on data-sampling techniques in the context of money laundering 

detection (in cryptocurrencies) to offset skewed class distributions. As a result, the paper additionally 

investigates model performance on different sampling methods (i.e., Synthetic Minority Over-Sampling 

(SMOTE), Neighbourhood Cleaning Rule (NCL), and NCL-SMOTE). The results show differences in 

model performance ranking across the different sampling methods, emphasizing the importance of data 

sampling in the given context. Analyzing various sampling techniques, such as the hybrid of under- and 

oversampling (i.e., NCL-Smote), demonstrates false negatives may be reduced (Vassallo et al., 2021). 

Furthermore, the results of the paper by Vassallo et al. (2021) give no conclusive evidence on which 

model performs better (GBDT or R.F.). Still, findings show the underperformance of Catboost 

compared to XGBoost and LGBM, providing a reason to prefer the XGBoost or LGBM model for this 

paper over the CatBoost model. 

  

On the other hand, Ahmed (2021) finds evidence for GBDT models (Light Gradient Boosting 

Algorithm and XGboost) outperforming the random forest model on the Elliptic dataset. In their paper, 

Ahmed (2021) compares similar data sampling methods as Vassallo et al. (2021) (i.e., NCL, SMOTE, 

NCL-SMOTE), confirming the finding that employing advanced sampling techniques can reduce false 

negatives. The results show GBDT models were as good as the R.F. model in precision and 

outperformed R.F. in accuracy, recall, and F1 score. The difference in outcomes between the papers of 

Vassallo et al. (2021) and Ahmed (2021) underscores the relevance of hyperparameter tuning. The 

paper's similarity in terms of dataset and data sampling results in comparable outcomes for the models 

before hyperparameter tuning. However, Ahmed (2021) accredits the model improvements to the 

Bayesian hyper-parameter optimization technique proposed by Xia et al. (2017). In contrast, Vassallo 

et al. (2021) adopted a variation named the Tree Structured Parzen Estimator (TPE), suggested by 

Bergstra et al. (2011), for its effectiveness in handling high dimensionality.   
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2.2.2.6 Graph Neural Networks  

As described in the previous paragraphs, various methods have been created to locate anomalies 

in Euclidean data. However, as graph data becomes more prevalent due to rich relation information 

among elements, machine learning approaches for structured graph data receive increasingly more 

interest (Heidari et al., 2022). Graphs are a type of data structure that depicts a collection of objects 

(nodes) and the relationship (edges) between them, similarly as previously illustrated in the SNA in 

figure 4 (Zhou et al., 2020). Graph data contains up to four types of information; nodes, edges, global 

context, and connectivity (Sanchez-Lengeling et al., 2021). Graph Neural Networks (GNNs) are a class 

of Neural Network-based machine learning algorithms designed to operate on graph data.  

  

Compared to the Euclidean data with a "fixed-size input and output" used in the previously 

discussed models (L.R., D.T., R.F., and SVM), graphs can be irregular and may have variable unordered 

nodes and edges and varying numbers of neighbors (Wu et al., 2020). As a result, GNNs take on a 

"graph-in, graph-out" design, where the existing node and edge embeddings are transformed without 

altering the connectivity of the input graph (Sanchez-Lengeling et al., 2021) (see schematic overview 

in figure 5). Furthermore, Wu et al. (2020) argue that another difference between the existing models 

(e.g., L.R., D.T., R.F., and SVM) and graph-based models (i.e., GNN) is the assumption of 

independence of observations. In contrast to the previously discussed model, this assumption no longer 

holds for graph-based models, as nodes are indeed related through edges and describe, for instance, 

social relations or interactions (Wu et al., 2020).  

 

 

Figure 5: Schematic Overview of "Graph-in Graph-out" Design in a Multi-Layer GCN  (Kipf & Welling, 2017) 

 

Applying traditional Neural Networks methods to graph data is challenging, as these models 

are designed to take fixed, grid-like arrays as input (Sanchez-Lengeling et al., 2021). To handle this 

issue, commonly used concepts in GNN are the message-passing mechanism and convolution, as 

applied in the Graph Convolutional Network (GCN) method. The message-passing mechanism updates 

node representations by passing messages between nodes based on aggregated information from 

adjacent nodes (Sanchez-Lengeling et al., 2021; Zhou et al., 2020). At the same time, convolution is the 
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concept of aggregating the local information of each node. The process of updating the graph and 

computing new messages is repeated multiple times in the Neural Network's layers until all nodes' 

representations have been updated; see the schematic overview in figure 6.  

 

 

Figure 6: Message Passing Mechanism and Convolution in GCN (Sanchez-Lengeling et al., 2021) 

 

Recent academic research focuses on GCN to detect money laundering in Bitcoin transactions, 

as this version of GNN emphasizes the representations of nodes and edges of the graph based on the 

local structure and relationships (Weber et al., 2019; Alarab et al., 2020; Alarab & Prakoonwit, 2022). 

This emphasis is an advantage in money laundering detection, as illicit transactions can be identified 

through the connections and patterns between nodes in the network. On the other hand, among the 

disadvantages of GCN are the high complexity, the model is computationally intensive, which makes 

it less scalable, and low interpretability as the learned representations are highly dimensional and 

abstract. 

 

Academic research on advanced machine learning applications to detect money laundering in 

Bitcoin received great stimulus with the public release of the Elliptic dataset, the most sizable dataset 

containing labeled data on money laundering in cryptocurrencies to date. The dataset was released to 

stimulate research and development of machine learning techniques to detect money laundering in 

cryptocurrencies (Robinson, 2019). Along with the dataset's publication, Weber et al. (2019), a 

collective of researchers from Elliptic Ltd. and the MIT-IBM Watson AI Lab, published a paper on 

experiments using GCN to detect money laundering in Bitcoin transactions using the Elliptic dataset. 

When evaluating the performance of GCN to L.R. and RF, Weber et al. (2019) find that R.F. 

outperforms both L.R. and GCN. These results might be surprising, as GCN leverages the power of 

graph data. However, Weber et al. (2019) argue that GCN can be seen as a nontrivial generalization of 

L.R., as GCN uses L.R. as the final output layer. As a result, Weber et al. (2019) suggest future research 

to explore the possibilities of combining R.F. with GCN to get the best of both worlds.  
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In succession of the paper by Weber et al. (2019), Alarab et al. (2020) propose an extension of 

GCN to detect money laundering in Bitcoin transactions using the Elliptic dataset. The novel approach 

is modeled by combining linear layers and the already-existing GCN; A single hidden layer created by 

the linear transformation of the node feature matrix is combined with node embeddings acquired from 

graph convolutional layers in the approach, which is then followed by a multilayer perceptron (Alarab 

et al., 2020). The result is a method that surpasses the performance previously achieved by Weber et al. 

(2019). For future work, Alarab et al. (2020) suggest real-time linked data as a potential feature to add 

to the GCN input.  

2.2.2.7 Gradient Boosted Decision Tree with Graph Neural Networks 

In learning from graph data, GNNs have been demonstrated to be a powerful tool (Zhou et al., 

2020). The GNN framework effectively transforms input data into meaningful representations to 

produce significant outcomes. However, real-world data often consists of tabular data with extensive 

information rich in semantics. For example, in money laundering research, data consists of personal 

information regarding sex, age, and geography. For that reason, Ivanov and Prokhorenkova (2021) 

explore the possibilities of combining GNN with Gradient Boosted Decision Trees (GBDT), as the 

latter has proven to be successful for tasks involving tabular data (Bentéjac et al., 2021).  

  

The reasons why GBDT is particularly effective for tabular data, according to Ivanov and 

Prokhorenkova (2021), include the following; GBDT effectively learns decision spaces with borders 

resembling hyperplanes, which are frequent in tabular data; GBDT is suitable for dealing with higher 

cardinality parameters, features with missing data and features of various scales; GBDT offers decision 

trees a meaningful explanation; even for extensive volumes of data,  GBDT often converges more 

quickly in pragmatic situations. On the other hand, Ivanov and Prokhorenkova (2021) argue GNN has 

several advantages over GBDT; to generate projections, GNN considers both the nodes' local 

information and their characteristics, whereas GBDT only considers the latter. Furthermore, it is 

theoretically demonstrated that message-passing GNNs can calculate any Turing machine-computable 

function on its graph input (Keriven & Peyré, 2019; Maron et al., 2019).  

 

Finally, Ivanov and Prokhorenkova (2021) assert several benefits to gradient-based neural 

network learning over tree-based methods; GNNs with relational inductive bias eliminate the 

requirement to design features to represent the network architecture explicitly.  

 

Ivanov and Prokhorenkova (2021) propose a model that yields the best of both worlds from 

GBDT and GNN. The presented model merges GBDT learning on tabular node characteristics with 

GNNs prediction-refinement using the structure of graphs. The solution is a Boosted Graph Neural 

Network (BGNN) that benefits from the representation learning and end-to-end training of GNN and 
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the heterogeneous learning and interpretability of gradient-boosted techniques (Ivanov and 

Prokhorenkova, 2021).  

 

 

 

Figure 7: Schematic Overview of End-to-End Training of GBDT and GNN (Ivanov & Prokhorenkova, 2021) 

 

The proposed model has two interpretations; it can be viewed as a GNN with an embedding 

layer of the GBDT or as a GBDT with a parametric loss function. Figure 7 displays a schematic 

overview of the presented BGNN model. By enabling the updated trees to match the gradient 

modifications of GNN, end-to-end optimization improves the model (Ivanov & Prokhorenkova, 2021).   

 

Application of the BGNN model on classification tasks shows promising results. In their paper, 

Ivanov & Prokhorenkova (2021) find that the proposed BGNN outperforms existing alternatives 

(GBDT, GNN, and N.N.) regarding the accuracy of predictions and training time. These results make 

this novel model a compelling candidate for this research on the detection of money laundering in 

Bitcoin transactions.  

2.3 Data Imbalance in Money Laundering Detection 

Data imbalance is a significant concern in the research of money laundering as data imbalance 

is inherent to the topic of fraud detection. As fraud is naturally a rare event, datasets on money 

laundering often consist of a small minority class and a large majority class.  

 

The occurrence of imbalance in a dataset causes problems in money laundering detection 

models. Classification models are developed to reduce misclassification rates and increase model 

accuracy. These models assume that the studied data includes approximately an equal number of 

observations for each class (Thabtah et al., 2020). As a result, the classification models tend to generate 
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a bias towards the majority class in settings with unbalanced data, deteriorating the performance. 

Moreover, classifiers aim to improve the model's accuracy in traditional settings. However, as 

previously discussed in the literature review, Şahin and Duman (2011) highlight that accuracy is not the 

most appropriate metric in a money laundering detection setting. The model accuracy might perform 

well on the majority class and, by extension, the overall dataset, while the importance in this context 

lies in classifying the minority class (Thabtah et al., 2020).  

 

A potential solution to the problem of dataset imbalance is data sampling. The majority of 

studies in the field of money laundering detection concentrate on non-heuristic (e.g., random under- and 

over-sampling) or conventional methods (e.g., SMOTE) (Vassallo et al., 2021). The following sections 

discuss these standard methods for data sampling in anti-money laundering research and consider a 

novel approach for data sampling to be applied in this context, Generative Adversarial Networks 

(GAN).  

2.3.1 Under- and Oversampling 

A basic method to tackle imbalance is under or oversampling the dataset. Undersampling refers 

to dropping samples from the majority class, whereas oversampling duplicates samples from the 

minority class (Barandela et al., 2004). As oversampling duplicates existing observations, this method 

holds the risk of overfitting (Zhang & Trubey, 2019). The generated data might include instances where 

the majority and minority classes are similar, which results in models that become extremely 

complicated in classification tasks (Huang et al., 2021). As a result, Huang et al. (2021) argue models 

trained on oversampled data possibly perform equivalent or worse compared to models trained on 

imbalanced data. 

 

Furthermore, Zhang and Trubey (2019) note that oversampling will increase the size of the 

dataset, which demands increased computational power to train the models. On the other hand, 

undersampling the dataset will be less computationally demanding. However, a disadvantage of 

undersampling is that it may cause valuable information to be removed, as it only captures a subset of 

the available data (Zhang & Trubey, 2019). Drummond and Holte (2003) research the effectiveness of 

both sampling methods and the interaction with a decision tree classifier on four different datasets. 

Findings suggest that undersampling beats over-sampling, as undersampling obtains reasonable 

sensitivity to variations in misclassification costs and class distributions. In contrast, oversampling was 

inefficient and frequently resulted in no changes in performance measures (in the case of default 

settings) (Drummond & Holte, 2003).  
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Zhang and Trubey (2019) researched under and oversampling in a money laundering detection 

context. Their findings suggest that the ANN, SVM, and R.F. models benefit from both sampling 

methods (Zhang & Trubey, 2019). Furthermore, the models show similar performance for under- and 

oversampling, except for the D.T. and SVM, as these models are more sensitive to event rate changes 

for oversampling than undersampling. 

2.3.2 Synthetic Minority Oversampling Technique 

The Synthetic Minority Oversampling Technique (SMOTE) was introduced by Chawla et al. 

(2002) to develop classification models on datasets with class imbalances. Contrary to the previously 

discussed oversampling technique, which duplicates existing samples from the minority class, SMOTE 

is an augmentation technique that synthesizes new samples based on the minority class, applying a K-

nearest neighbors approach (Chawla et al., 2002). As a result, the overfitting problems induced by 

oversampling are minimized while there is no loss of important information. Nevertheless, a drawback 

is that it could increase data noise and can be ineffective in high-dimensional settings. Furthermore, a 

critique on SMOTE is that it occasionally adds minority-class samples identical to majority-class ones 

(He & Garcia, 2009). However, applying SMOTE on imbalanced datasets may modify the model to 

produce fewer false negatives but more false positives (Vassallo et al., 2021). As a result, SMOTE can 

result in higher recall at the expense of decreased accuracy. 

2.3.3 Generative Adversarial Networks 

Generative Adversarial Networks (GANs) are a novel type of sampling that leverages the power 

of neural networks for generative sampling. Initially proposed by Goodfellow et al. (2014), GANs 

produce realistic data by challenging two separate neural networks against one another in a zero-sum 

game (Wang et al., 2017). GANs have recently gained attention due to their capacity to produce accurate 

results based on limited training data. The networks consist of a discriminator and a generator trained 

concurrently (Wang et al., 2017). The discriminator's classifier attempts to distinguish between the true 

and false samples, whereas the generator produces new samples (see figure 8). Combined, the neural 

networks learn using an adversarial approach with the discriminator, improving the detection of false 

cases, whereas the generator attempts to deceive the discriminator with random variables (noise). The 

outcome is a model that generates unique and realistic samples. Conventional techniques often increase 

noise, resulting in overfitting as classification models attempt to fit this noise (Huang et al., 2021). 
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On the other hand, GANs attempt to disregard this noise and instead recognize the pattern of 

the minority class. For this reason, GANs are expected to have a lower probability of leading to 

overfitting and thus are expected to boost the performance of classification models (Huang et al., 2021). 

However, one of the drawbacks of GANs is the difficulty of training the model, as the discriminator 

and generator are continuously contending with one another, possibly leading to slower and unstable 

training (Huang et al., 2021).  

 

Figure 8: Schematic Overview of the GAN Procedure (Wang et al., 2017) 
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3. Data  

One of the primary challenges in the research on money laundering detection is the lack of available 

real-world data. Fortunately, as discussed in the previous chapter, Elliptic Ltd. released the Elliptic data 

set used in this research. The Elliptic dataset is the largest publicly available dataset consisting of labeled 

transaction data on cryptocurrency transactions (Robinson, 2019). The dataset consists of 203,769 

Bitcoin transactions worth six billion dollars when the data was published (Robinson, 2019). The 

transactions are labeled "licit", "illicit" or unlabelled based on publicly available data. This results in 

4,545 illicit transactions (2% of the sample) and 42,019 licit transactions (21% of the sample). The rest 

of the sample is unlabeled, and for this research, these observations are dropped as the study focuses on 

supervised models. Next, the dataset is assumed to be imbalanced since it consists of 4,545 illicit and 

42,019 licit transactions. This assumption is straightforward, as fraud detection is inherent to modeling 

a rare event and, thus, skewness in the data classes. The dataset is based on real-world transaction data, 

so features are masked and scaled to protect Bitcoin user privacy.  

 

Figure 9 displays the ratio and moving average of illicit to licit transactions over the 49 

timesteps of the dataset to gain insight on the prevalence of illicit transactions in the dataset. The 49 

timesteps are spread over two weeks. Weber et al. (2019) note that the Elliptic dataset includes a closure 

of a dark marketplace after timestep 43, displayed by a significant drop in the volume of illicit 

transactions after timestep 43. Through this volume drop, combined with various time plot tests and the 

Augmented Dickey-Fuller test, Vassallo et al. (2020) raise concerns regarding potential concept drift 

(changes in statistical properties over time) in the dataset. 

 

 

Figure 9: Illicit to Licit Ratio by Timestep: The illicit to licit ratio and moving average appear subject to changes over time, especially 

with a sharp decline after t=43 due to a black market shutdown. Changes in these metrics over time might indicate concept drift 

 

Each observation in the Elliptic dataset has 166 features. The features are split into local 

features and aggregated features. The 94 features local features consist of local details on the transaction 



 

 25 

such as transaction ID, timestamp, amount of inputs and outputs, service charge, the average quantity 

of Bitcoin sent or received by sender or receiver, as well as the average amount of transactions that 

come in or go out for the related addresses (Weber et al., 2019). All features, except the transaction ID, 

licit/illicit, and timestamp, were pre-scaled to zero mean and unit variance.  In addition to the Local 

Features, the dataset consists of  72 aggregated features. These features are derived by combining the 

neighboring transactions' minimums, maximums, variances, and covariances for the same metadata, 

moving one step backward or forward relative to the transaction (Weber et al., 2019).  

 

Feature Explanation Measure 

TxtID Four to nine number transaction ID 4 to 9 figure ID 

Timestamp Transactions are spread over two weeks 1 to 49 

Class Transactions are licit (1), illicit (2), or unknown "1", "2", "unknown" 

Local Info on transaction, scaled to zero-mean and unit variance -1 to 1 

Aggregated Info on one-step neighbors, scaled to zero-mean and unit variance -1 to 1 

Table 1: Overview of All Features in the Dataset 

 

Researchers were able to deanonymize a large part of the dataset by rescaling a few features 

and identifying those on the blockchain (Benzik, 2019). As a result, the masked transaction I.D. can be 

converted to transaction hashes on the blockchain and find real information on the transaction. For 

example, the transaction I.D. of the first transaction in the dataset is "230425980". Through scaling, the 

corresponding transaction hash can be found and the related transaction information can be traced using 

a blockchain tracker:  

 

“74d9bb85c6bbc471c6e18f409d23c3ef1191725bdb90376fdff66fd31da41043” 

 

Entering this hash in blockchair.com will yield that the amount transacted was 0.23 BTC, 

equalling around 102 USD at the time, with a transaction fee of 0.04 USD. Furthermore, this transaction 

took place on January 1, 2016, and the related sender and recipient addresses are given. Tracking and 

validating the transactions confirms the dataset is related to real-world transactions. Connecting the 

real-world features to the existing dataset falls out of the scope of this paper. However, the possibility 

of linking the real-world features to the current dataset opens doors for future research on feature 

importance in money laundering detection in Bitcoin. The transaction receipt is included in figure 10 in 

Appendix B for reference. 

 

 Next, an Uniform Manifold Approximation and Projection (UMAP) figure is created to 

visualize the high-dimensional data in a reduced, two-dimensional space, see figure 11. Creating the 

UMAP projection provides a way to detect potential patterns, clusters, and outliers. The projection 

below shows some potential clusters of illicit transactions, indicating clusters of comparable data points 



 

 26 

in the original high-dimensional space. These clusters potentially show the presence of groups of illicit 

transactions with distinct behavioral patterns. These observations give insight into the underlying 

structure of the dataset and invite research on the detection of fraudulent transactions based on the 

patterns in the dataset in the following sections of this paper.  

 

 
Figure 11: UMAP Visualization: Clusters of Illicit Transactions Potentially Indicate Patterns in High-Dimensional Settings   
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4. Methodology 

This section first discusses the sampling methods applied to the datasets. The different sampling 

methods are compared in their performance of tackling the problem of dataset imbalance. Subsequently, 

graph data is introduced and node embeddings are added to the datasets to enable research on graph-

based models. Then, the machine models are applied to the sampled datasets. At last, the evaluation 

metrics are discussed to assess the performance of the sampling methods and machine learning models.  

 

4.1 Data Imbalance 

Firstly, the sampling methods to tackle the imbalance of the dataset are discussed. I note that 

for the scope of this paper, I exclude the timestamps in the sampling process as preserving the temporal 

relationships while creating synthetic data yields challenges beyond the scope of this research. This 

opens doors for further research on online learning models, which I touch upon in the discussion section.   

 

For this paper, I opt for undersampling instead of oversampling for further comparison of 

sampling methods. The rationale behind undersampling instead of oversampling is the high probability 

of overfitting in oversampling. As the dataset is highly imbalanced, duplicating the minority class 

towards a balanced dataset will most likely yield significant overfitting. Additionally, the 

undersampling method will decrease the size of the dataset and will be computationally more efficient. 

This is an advantage in the context of this research, as the classification models combined with various 

sampled datasets will require significant computational time. At last, I will also apply SMOTE sampling 

in the dataset, which outperforms random oversampling in imbalanced class distributions without 

leading to overfitting (Yen & Lee, 2009). Thus, for the undersampled dataset, I randomly undersample 

the data to have a balanced dataset of 4,500:4,500 licit to illicit observations.  

 

For the train, validation, and test splits, an 80:10:10 ratio is used for all sampling methods. This 

train-test-validation split is a common approach in machine learning. As the dataset is large, I expect 

this split to allow for model evaluation and hyperparameter tuning while providing sufficient data for 

model training. With this split, I expect to have a sufficient amount of data to avoid overfitting and 

produce generalizable results through the use of a validation set. I anticipate that the sample is large 

enough to cover the underlying patterns of the high-dimensional datasets for the undersampling, 

SMOTE, and GAN methods. The training split consists of the balanced dataset, whereas the test and 

validation split set will follow the imbalanced data distribution. Using the balanced data for the training 

will ensure the models are not ‘lazy’ and will not simply classify all observations as the majority class. 

The balanced training set forces the model to understand the underlying patterns of licit and illicit 

transactions and classify the observations accordingly. However, if I use a balanced data distribution 

for the validation split, the model might be too specialized, and this will limit the potential to generalize 
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the results. Therefore, I choose the original, imbalanced distribution for the training and validation 

splits. Subsequently, the models will yield generalizable results.  

 

Next to the undersampling method, I explore the performance of the SMOTE sampling method.  

The SMOTE method is commonly researched in the context of imbalanced data and research on money 

laundering detection (e.g., Ahmed, 2021; Vassallo et al., 2021), with the advantage of SMOTE reducing 

model overfitting when balancing datasets compared to randomly oversampling the minority class. I 

import the imblearn library to access the SMOTE sampling function to sample the training set. I split 

the majority class into 33,647:4,218:4,154 for train, test, and validation and the minority class into 

3,604:438:503, respectively. After applying the SMOTE technique, the minority in training sets gets 

oversampled, so the balanced ratio becomes 33,647:33,647 in the training set. 

 

At last, I compare the previous data sampling methods with the novel GAN sampling method. 

As the GAN sampling method can learn patterns from the minority class to generate realistic synthetic 

data points, I expect this method to produce superior results and reduce overfitting. To perform the 

GAN data augmentation, I apply the GAN pipeline as developed in the paper by Huang et al. (2021). I 

use six layers to build the GAN generator and seven layers to build the GAN discriminator. 

Furthermore, I use the selu activation in all hidden layers and sigmoid for the output layers. This 

activation function has led to better training convergence and generalization performance (Klambauer 

et al., 2017). I apply the same train, test, and split ratio and balanced training dataset as the SMOTE 

sampling method. This results in 33,647:4,218:4,154 and 3,604:438:503 splits for the majority and 

minority classes, respectively. After applying the GAN framework to sample the dataset, the balanced 

training dataset consists of 33,647:33,647 licit to illicit observations.  

 

 

Table 2: Overview of Train, Test and Validation Splits per Sampling Method 

 

 

4.2 Graph Data 

The edge list provided by Elliptic Ltd. was utilized in conjunction with the NetworkX library to 

create a graph for the Elliptic dataset. I use this approach to retrieve the graph data for the undersampled 

dataset. However, to generate synthetic data through SMOTE and GAN, I take the k-nearest neighbors 
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approach to create nodes and edges for the sampled data. I use the k-nearest neighbors approach over 

the Euclidean distance method for computational efficiencies. This approach slightly limits the potential 

of the graph network, as it limits the data on the relative distance of the nodes. Future research can 

explore different approaches' effects on accuracy and computational times in creating edge lists. In the 

realm of money laundering detection in the real world, there is a trade-off between model accuracy and 

computational time that holds significant value. 

 

 

Figure 12: Visualizations of the Graph Network Retrieved From the Elliptic Dataset 

 

4.3 Node Embeddings 

As I am interested in the power of graph data and the potential of models that leverage this 

graph data, I take into account the embedded relationship between the observations. The dataset does 

not provide the node embeddings (NE). I use the graph networks I created previously for the 

undersampled, SMOTE, and GAN datasets to generate the node embeddings. I use the node2vec library 

that Grover and Leskovec (2016) proposed to generate the node embeddings. I develop an extra dataset 

with 64 enhanced node embedding features for each sampling method. 

At last, I separate two categories of datasets. The data consists of local features, one-step 

forwards, and one-step backwards aggregated features. I create LF (Local Features) sets, consisting of 

only the first 94 features, and AF (All Features) sets consisting of all features (local and aggregated). 

This results in four categories of datasets for each sampling method: LF, LF + NE, AF, AF + NE.  

 

 

 

4.4 Classification Models 

This paper uses seven classification models to analyze their performance on previously 

acquired datasets. Specifically, I first apply the Logistic Regression, Decision Tree, Random Forest, 

and Support Vector Machine models. To implement these models, I access the scikit-learn (sklearn) 

library and import the relevant functions, including LogisticRegression (LR), DecisionTreeClassifier 

(DT), RandomForestClassifier (RF), and SVC (SVM). Additionally, I apply a gradient-boosted decision 
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tree model in this study. To implement this model, I import the XGBClassifier from the xgboost library. 

Finally, I implement both the GNN and GBDT + GNN pipeline as proposed by Ivanov and 

Prokhorenkova (2021) and published by Ivanov (2021).  

4.5 Evaluation Metrics 

I employ a range of evaluation metrics to evaluate the discussed sampling methods and 

classification models.  i access the sklearn library to get the performance measure for the models in 

terms of accuracy, precision, recall, F1, and AUC-ROC score. The F1 score will be the primary metric 

of interest, allowing for a balanced evaluation. As the F1 score is the harmonic mean of the precision 

and recall scores, focussing on this score will allow to assess the models’ effectiveness in detecting 

illicit transactions while minimizing false positives. The focus on the F1 score as the primary metric is 

backed by previous studies in the given context (e.g., Vassallo et al., 2020; Weber et al., 2019). The 

formulas for the basic metrics are provided by the following mathematical equations, where the 

abbreviations are True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives 

(FN): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝐹𝑃+𝐹𝑁
  (3) 

 

𝐹1 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
  (4) 

 

Furthermore, I use the Kullback-Leibler (KL) divergence to measure the similarity of the 

distribution of the sampled and original datasets at the variable level, computed over the marginal 

probability mass functions of the sets (Goncalves et al., 2020). I implement the KL measure as proposed 

by Maklin (2019). The following mathematical equation denotes the KL divergence measure, where I 

denote the relative entropy from Q to P for the discrete probability distributions P and Q within similar 

sample space 𝑋 (MacKay, 2003): 

𝐷𝐾𝐿(𝑃||𝑄) =  ∑ 𝑃(𝑥) 𝑙𝑛 (
𝑃(𝑥)

𝑄(𝑥)
)𝑥𝜖𝑋   (5) 
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4.6 Tree-Structured Parzen Estimator Hyperparameter Tuning 

Next, I apply hyperparameter optimization to the models to improve performance. I decide on 

Bayesian optimization using the Tree-Structured Parzen Estimator (TPE). The rationale for this variant 

of the Bayesian optimization is that the TPE estimator has shown strong performance in high 

dimensional search spaces and is in line with previous research on money laundering detection in 

Bitcoin (Xia et al., 2017; Vassallo et al., 2021). I access the optuna library to implement the default 

TPE algorithm. I use a sample of 5,000 observations to optimize the TPE. I focus on the F1 score as the 

main variable of interest and maximize this score as the objective function in line with Vassallo et al. 

(2021) and Weber et al. (2019). 
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5. Results 

This section provides the evaluation of the classification and sampling models. I first compare the 

performance of logistic regression, decision tree, random forest, support vector machine, XGBoost, 

Graph Neural Network (GNN), and a GBDT+GNN model on three different datasets: the undersampled 

dataset, the SMOTE sampled dataset, and the GAN sampled dataset. The aim is to evaluate the impact 

of other sampling methods and machine learning models on the model performance based on the F1 

scores regarding under- and overfitting. I also investigate the effect of hyperparameter tuning on the 

performance of the models. Figure 13 displays a brief overview of a selection of the models of interest. 

The total overview of the performance of all models on all sampling methods is displayed in figures 14 

to 19 in Appendix C.  

 

 

Figure 13: Brief Overview of F1 Scores for Train, Test, and Validation set of the Tuned XGB, GNN, and GBDT + GNN Models with 

All Features and Node Embeddings on the Undersampled (US), SMOTE (SM), and GAN Datasets: I find that models show signs of 

overfitting for the undersampled datasets. Applying SMOTE sampling significantly improves the signs of overfitting, however, the 

XGBoost model still shows signs of overfitting. The GAN sampling method shows the best performance and generates the most 

generalizable results across this selection of models and all models displayed in Appendix C 

 

All models show signs of overfitting for the undersampled dataset in figure 14 in Appendix C, 

as the training F1 scores are higher than the test and validation scores (Subramanian and Simon, 2013). 

Tuning the hyperparameters does not significantly affect the overfitting and test and validation of the 

F1 scores. A potential explanation for the overfitting is the loss of information due to the undersampling 

process. 

 

For the SMOTE sampled dataset displayed in figure 16 in Appendix C, I observe that the default 

settings of all models using the Local Features and All Features do not overfit. However, introducing 

Node Embeddings leads to significant overfitting across all models except for the XGB and GNN 

models with All Features, which perform well. Hyperparameter optimization slightly improves the 

performance of most models. However, the models performed on the Node Embedded set still show 
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overfitting. Hyperparameter tuning does seem to resolve most signs of overfitting in the Node 

Embedded All Features models for the RF, SVM, and GBDT+GNN.  

 

For the GAN sampled dataset, I find that the models show slight to no overfitting with the 

default model settings, as displayed in figure 18 in Appendix C. However, the GNN model with All 

Features shows underfitting. Overall, the GAN sampling method delivers the best performance for the 

default settings across the sampling methods in default settings and thus generates the most 

generalizable results. After hyperparameter tuning, the underfitting of the GNN All Features model is 

resolved, resulting in the tuned GAN dataset showing the most robust and generalizable results across 

all sampling methods and with default and tuned hyperparameters. These results lead back to the 

research question, suggesting that the GAN sampling method is the most effective approach for 

addressing the class imbalance in the context of money laundering in Bitcoin transactions. 

Furthermore, these results align with previous research on the GAN method, suggesting GAN 

produces unique and more realistic samples than conventional techniques (Huang et al., 2021). The 

results show that traditional techniques (Undersampling and SMOTE) tend to increase noise and result 

in overfitting. In contrast, the GAN method disregards this noise and recognizes the underlying patterns 

within the minority class.  

 

 

Figure 20: Kullback-Leibler Divergence Measure Scores: The results display a higher KL divergence for the GAN sampled than the US 

and the SMOTE methods. The GAN sampling method generates more ‘realistic’ samples; these samples resemble the original data but do 

not precisely replicate it. On the other hand, the US and SMOTE show a closer approximation to the original data 

 

Figure 20 shows the Kullback-Leibler Divergence (KLD) measure results for the GAN, 

SMOTE, and Undersampled datasets compared to the original dataset. The GAN sampling method has 

a significantly higher KLD score than the SMOTE and Undersampling method. This indicates that the 

GAN sampling method generates samples with features that are substantially different from the original 

data distribution. Firstly, if the samples generated by the GAN deviate too far from the original data 

distribution, this might result in less stability and poor model performance. Secondly, the samples 

produced by the GAN may offer more variety to the training data, which might benefit the classification 

models and lead to better performance. This second suggestion aligns with the previous observations, 
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as displayed in figure 18 and 19 in Appendix C, where the GAN sampling method results in less 

overfitting and improved model performance. Combining the earlier observations on comparing the 

train, test, and validation performance of the sampling methods with the findings of the KLD measure, 

I find that the KLD measure confirms the suggestion on the solid performance of the GAN sampling 

method. Thus, I conclude the GAN sampling method produces the most ‘realistic’ samples, leading to 

less overfitting and most generalizable results compared to the SMOTE and Undersampling methods.  

 

Next, I take a broader view of the evaluation metrics for the performance of the classification 

models. I provide a complete overview of the evaluation metrics of all models on the undersampling, 

SMOTE, and GAN datasets in tables 3, 4 and 5 in Appendix C, respectively. Below, table 6 gives a 

brief overview of the evaluation metrics of selected models and sampling methods. I include model 

performance before and after tuning, separated by a hyphen for completeness. 

 

 
 

Table 6: Brief Overview of Evaluation Metrics on a Selection of Models: I find that the XGB model outperforms the Graph-based 

models in terms of F1 score across all sampling methods. Other relevant evaluation metrics confirm the XGB is the best classification model  

 

For the undersampled dataset, I find that the XGBoost classifier performed best regarding F1 

score across the Local Features, All Features, and with and without Node Embeddings compared to the 

other models. The GNN and GBDT+GNN models underperform compared to the other models in the 

undersampled dataset for Local Features and Local Features with Node Embeddings. This 

underperformance could stem from overfitting or a lack of data in the undersampled dataset. This 

dataset is relatively small, and these models require large amounts of data to learn meaningful 

representations. 

 

For the SMOTE sampling method, I observe that the XGBoost model with All Features yields 

the highest F1 score. Furthermore, the XGBoost model with All Features outperformed all other models 

with All Features in terms of Accuracy, Precision, and AUC ROC score. Additionally, the other 

XGBoost models also show robust performance across all metrics.  

 

For the GAN sampling method, I find that the XGBoost model outperformed all other models 

in terms of F1 score across Local Features, All Features, with and without Node Embeddings. 

Specifically, the best-performing model in terms of F1 score is the XGBoost with All Features. 



 

 35 

Furthermore, the XGBoost outperforms the GBDT+GNN models across all evaluation metrics, even 

after introducing Node Embedding on the All Features set. This observation is remarkable, as the 

GBDT+GNN should be able to leverage the Graph network in this set. However, I also find the GNN 

and GBDT+GNN model outperforms the Logistic Regression, demonstrating the advantages of a graph-

based approach over a method that disregards the graph data structure, which is consistent with earlier 

work by Weber et al. (2019).  

 

Another observation I make is that the LR, DT, SVM, and XGBoost models do not tend to 

improve upon adding Node Embeddings to the dataset or even perform worse. This observation is in 

line with my intuition, as these models are not developed to handle graph-structured data precisely and 

are thus unable to accurately capture the connections and patterns between a graph’s nodes. On the 

other hand, the graph-based models, the GNN and GBDT+GNN, are built to perform on graph-

structured data and benefit from the graph’s structure and node representations. However, the GNN 

model does not improve on adding Node Embeddings to the Local Feature set. The slight reduction in 

model performance could be due to the complexity of the model, data sparsity, or feature engineering. 

However, I find model improvements upon adding Node Embeddings for the All Features set of the 

GNN model and the Local and All Features set for the GBDT+GNN model.  

 

To further compare the performance of the XGBoost All Features model versus the 

GBDT+GNN All Features with Node Embeddings, I display the confusion matrices of both models 

side by side in figure 21. In the confusion matrices, the X-axis (Actual Values) and Y-axis (Predicted 

Values) display either a 1 (Positive) or 0 (Negative). This results in TP=4211, FP=56, FN=7, and 

TN=333 for the XGBoost model and TP=4206, FP=105, FN=12, and TN=333 for the GBDT+GNN 

model. From these confusion matrices, I find the XGBoost outperformed the GBDT+GNN model in 

correctly predicting True Positives and True Negatives while also predicting fewer False Positives and 

False negatives. I conclude the XGBoost model is more effective across the board than the GBDT+GNN 

model.   

 
 

Figure 21: Confusion Matrices for Tuned XGBoost All Features (Left) and Tuned GBDT + GNN All Features with Node 

Embeddings (Right) Using GAN Sampling 
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Next, I discuss the potential concept drift as indicated by figure 9 in the Data section. To handle 

the possible concept drift, I take on two approaches. I introduce both “offline” learning with a temporal 

split and “prequential” or “online” learning models to see if the model performance is affected and 

potentially deteriorated by concept drift. 

 

I apply offline learning models with a temporal split to the dataset. Through a temporal split, I 

test the model’s ability to generalize new data it has not seen before. The likelihood of potential concept 

drift increases when the model is significantly less effective on the testing set than the training set. In 

figure 9 in the Data section, the black market shutdown resulted in a drop in the illicit to licit transaction 

ratio after timestep 43. Furthermore, I find that the moving average is decreasing after timestep 34. As 

a result, I decided to split the dataset into training and testing as follows: for the training set, I include 

all observations based on t < 34, and for the testing set, I include all observations for t <= 34. I test the 

models on the imbalance dataset, the SMOTE, and the GAN sampled dataset. I display the results for 

the basic models and tuned basic models in terms of F1 score in Appendix D, figures 22 and 23. For the 

default models, I find slight overfitting across all models and datasets. After tuning, I find that this 

overfitting is reduced, and all models only show minor signs of overfitting. The only model showing 

significant overfitting for both default and tuned settings is the DT model on the SMOTE dataset. These 

results, in combination with the effects on the train, test, and validation sets displayed in Appendix C, 

figures 13 to 18, appear to show that the performance of the models is sound and does not show 

significant signs of concept drift.  

 

Subsequently, I perform an online learning model to inspect concerns regarding concept drift 

further. I opt for the XGBoost model for online learning, as this was the best-performing model in the 

previous experiments.  

 

 

Figure 24: Prequential Evaluation of Online Learning Model:  The ROC curve shows high variance, with sharp declines through time. 

This might indicate the model is overfitting or is not robust to potential concept drift in the data. 
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Here, the XGBoost model is trained continuously as incoming data is added to the model over time. 

I use prequential evaluation to assess the model sequentially. The results are displayed in figure 24. 

From the results, I find a high variance in the ROC curve. This high variance in the ROC curve might 

happen due to various reasons. Firstly, the model may be overfitting on the data. I use the imbalanced 

dataset for online learning, as it is hard to perform synthetic sampling on time-stamped data. This 

potentially results in a bias towards the majority class, and the model captures irrelevant patterns in the 

data. However, it is also possible that the model is not robust to potential concept drift in the data, and 

the distribution of the data indeed changes over time, leading to poor generalization performance. This 

leaves the door open for further research on regularization techniques, online learning models, and 

concept drift detection in the context of money laundering detection in Bitcoin transactions 
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6. Conclusion and Discussion 

 

In summary, I aimed to assess the effects of novel sampling techniques and machine learning 

models on the effectiveness of classification models for detecting money laundering in Bitcoin 

transactions. In this paper, I investigated the performance of three sampling methods: Undersampling, 

SMOTE, and the novel GAN method in concert with the effectiveness of seven classification models, 

including Logistic Regression, Decision Tree, Random Forest, Support Vector Machine, XGBoost, 

Graph Neural Network, and the novel Gradient Boosted Decision Tree + Graph Neural Network model. 

The degree of under- and overfitting and the F1, Accuracy, Precision, and Recall scores of the models 

were compared. The effect of hyperparameter tuning using the Tree Parzen Estimator (TPE) on the 

models' performance was also investigated. 

 

The findings demonstrate that the Undersampling method caused overfitting for all 

classification models. The overfitting improved when applying SMOTE sampling, although the basic 

models performed on the Node Embedded sets continued to exhibit signs of overfitting. The GAN 

sampling technique outperformed the other sampling techniques in terms of performance and 

generalizability. Thus, I discovered that the GAN sampling method shows potential as the best strategy 

for tackling class imbalance in the context of money laundering in Bitcoin transactions. The Kullback-

Leibler Divergence (KLD) measure confirmed that the GAN sampling method produced the most 

'realistic' samples, leading to less overfitting and more generalizable results than the SMOTE 

Undersampling methods. The research findings indicate that where the GAN method detects underlying 

patterns within the minority class, conventional strategies (Undersampling and SMOTE) tend to 

enhance noise and lead to overfitting. 

 

Furthermore, I demonstrate that the XGBoost model with All Features is the best-performing 

model across every sampling technique regarding the F1 score. Additionally, although the GBDT+GNN 

models were expected to benefit from the graph structure of the data, the results for the GAN sampled 

data show that the XGBoost model surpasses the GBDT+GNN model in every evaluation criterion. 

Nonetheless, the results show that the GNN and GBDT+GNN models perform better than the Logistic 

Regression model, highlighting the potential benefits of a graph-based methodology. All in all, these 

findings emphasize the power of the XGBoost model in the context of money laundering detection and 

advance the understanding of how other machine learning models perform for GAN sampling 

 

Additionally, I explored the possibility of concept drift and took on two approaches: offline 

learning with a temporal split and online learning models. The offline learning experiments suggest that 

the models' performance is sound and does not show significant signs of concept drift. However, the 

prequential evaluation for the XGBoost model revealed high variance in the ROC curve, which 
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highlights the need for further research on regularization techniques, online learning models, and 

concept drift detection in the context of money laundering detection in Bitcoin transactions. 

 

Overall, I provide insights into how various sampling techniques and machine learning models 

affect classification model performance for identifying money laundering in Bitcoin transactions. The 

observations can guide the development of better strategies for dealing with class inequality in this 

situation. 

 

While I shed light on essential aspects in the current state of the literature on money laundering 

detection in Bitcoin transactions, there are still ample avenues for future research to be explored in this 

context. The results show that adding Aggregated Features and Node Embeddings provided diminishing 

returns in terms of model performance, complexity, and computational times due to the nature of the 

large dataset with high-dimensional features. As a result, I suggest adding dimensional reduction 

techniques such as PCA, t-SNE, and LDA to reduce the dimensionality of the data. These dimensional 

reduction techniques can help reduce overfitting, speed up training, and improve performance, which 

are essential aspects of money laundering detection. Another approach is to use the reduced embeddings 

in Graph Networks for tasks such as node classification. However, it's important to note that 

dimensional reduction techniques can result in a loss of information. Nonetheless, I believe that 

dimensional reduction techniques provide an exciting avenue for future research in money laundering 

detection in Bitcoin transactions using traditional and graph-based models. 

 

Furthermore, I suggest further research into combining online learning models with GAN 

sampling to tackle data imbalance, as the online learning models can adapt to changing patterns in the 

data over time. As online learning models update predictions in real-time, these models will be less 

prone to the potential concept drift in time-stamped data. I expect these models to be instrumental in 

this context, as a rapidly changing environment characterizes cryptocurrencies. Additionally, these 

online learning models efficiently handle large volumes of data, which is highly relevant in this context. 

Combining GAN sampling with online learning can improve overall model performance through 

continuously updated models trained in concert with synthetically balanced samples. This could reduce 

the potential concept shift that might be present in changes in the transaction data over time. 

 

Moreover, this paper focused on classification and sampling models for money laundering detection 

on the transaction level. Further research could extend the findings by leveraging fraud detection at the 

transaction level with fraud detection at the account level and seek to compare and combine detection 

across these two dimensions.  
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Appendix A: Machine Learning Methods Explained     

This section gives an overview of the standard machine learning methods used in this paper.  

 

Logistic Regression 

Logistic Regression (L.R.) is a supervised machine learning method that is used for 

classification problems. Logistic regression is a powerful tool for predicting the probability of binary 

outcome based on independent variables (Healy, 2006). Compared to a linear regression that produces 

a straight line, the logistic regression produces a curve that represents values between zero and one 

(Hosmer Jr et al., 2013). The following equation represents the logistic regression in mathematical form: 

 

𝑝 =  
𝑒𝛼+𝛽𝑛𝑋 

1 + 𝑒𝛼+𝛽𝑛𝑋
 

 

 

Decision Trees 

The Decision Tree (D.T.) method is a type of supervised learning that is also used to classify 

data in different categories. The decision tree works by drawing a flowchart-like structure of decisions 

and their outcomes, based on a set of input data. The data is split in nodes, and the decisions in leaves 

(Ray, 2019). The tree starts with the root node, which branches out in different paths, matching potential 

outcomes. Every node defines an attribute, while each branch that subsides from that node corresponds 

to one of the possible values for that attribute (Mitchell, 1997). In order to classify an instance, one 

starts at the root node, tests the specified attribute and then moves down the tree branch accordingly. 

Subsequently, one repeats this process for the subtree rooted at the new node. Below, an example of a 

decision tree by Quinlan (1986), known for his extensive contributions to the development of decision 

trees:  

 

Figure 3: Decision Tree that Classifies Saturday Mornings if They are Suitable to Play Tennis (Quinlan, 1986) 
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Entropy is often used as a splitting criterion in classification problems, an application of the 

source coding theorem by Shannon (2001). The following formula gives entropy at every internal node 

of the decision tree: 

𝐸 =  − ∑ 𝑝𝑖  ×  𝑙𝑜𝑔(𝑝𝑖)

𝑐

𝑖=1

  

Maximizing this formula attains the most information possible at each node in the decision tree. 

Here, c is the number of distinct classes, and 𝑝𝑖 is the prior probability for each respective class.  

 

Random Forests  

Random Forests (R.F.) are a type of ensemble method that combines predictions of multiple 

decision trees to create a more accurate model. Random forests are created by randomly selecting a 

subset of features from the given dataset and building a decision tree based on these features (Breiman, 

2001). This process is repeated multiple times, and the output of each tree is subsequently combined to 

produce a single prediction. As the random forest is built on multiple trees, each of which is trained on 

a different subset of features, the model is less prone to overfitting compared to decision trees (Biau 

and Scornet, 2016). Furthermore, by looking at the relative importance of each feature and identifying 

which has most significance in predicting output, the model offers feature importance.  

 

Support Vector Machine 

The Support Vector Machine (SVM)  was introduced by Cortes and Vapnik (1995) for two-

group classification problems. SVM maps data points from a high-dimensional space into a two–

dimensional space. SVM tries to find the optimal two-dimensional space, the hyperplane, to best 

separate the classes. The goal is to find a decision boundary that maximizes the margin between classes 

(Chen et al., 2018). The following equation defines the hyperplane that separates the data:  

𝑤𝑇𝑥 + 𝑏 = 0 

Where 𝑤𝑇  is the transpose of coefficient matrix w, with 𝑤 ∈ 𝐹 feature space. Furthermore, x 

is the observed vector and 𝑏 ∈  𝑅 real numbers (Chen et al., 2018).  

 

Figure 4: Example of a Simple 2-class Support Vector Machine (Raiter, 2021) 
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Appendix B: Sample Transaction 

 

Figure 10: Transaction Receipt Related to Transaction ID 230425980 
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Appendix C: Model Results 

 

Figure 14: Train, Test and Validation for the Undersampled Dataset using Default Settings: Most models slightly overfit, as the 

training F1 scores were higher than the test and validation F1 scores 

 

 

Figure 15: Train, Test and Validation for the Undersampled Dataset using Tuned Hyperparameters: Tuning the hyperparameters 

does not significantly affect the overfitting and test and validation of the F1 scores 
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Figure 16: Train, Test and Validation for the SMOTE Dataset using Default Settings: The default settings of all models using the local 

features and all features do not overfit.  Introducing node embeddings leads to significant overfitting across all models except for the 

XGBoost model and the Graph Neural Network model with All Features, which perform well 

 

 

 

Figure 17: Train, Test and Validation for the Undersampled Dataset using Tuned Hyperparameters: The performance of some 

models improves due to hyperparameter tuning, such as random forest, SVM, XGB, GNN, and GBDT+GNN on the Node-Embedded All 

Features dataset. Model overfitting is reduced on the named models 
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Figure 18: Train, Test and Validation for the GAN Dataset using Default Settings:  The models do not overfit. However, the GNN 

model with all features shows signs of  underfitting 

 

 

 

 

Figure 19: Train, Test and Validation for the GAN Dataset using Tuned Hyperparameters: The underfitting of the GNN All Features 

model is resolved, resulting in the tuned GAN dataset showing the strongest and most generalizable results across all sampling methods and 

with default and tuned hyperparameters 
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Table 3: Model Evaluation Metrics for Undersampling. For Completeness the results before tuning are included. The XGBoost 

model outperforms both the basic models and graph-based models in terms of F1 score 

 

Table 4: Model evaluation metrics for SMOTE.  For Completeness the results before tuning are included. The XGBoost model 

outperforms both the basic models and graph-based models in terms of F1 score 
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Table 5: Model evaluation metrics for the GAN sampling.  For Completeness the results before tuning are included. The XGBoost 

model outperforms both the basic models and graph-based models in terms of F1 score 
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Appendix D: Models to Inspect Potential Concept Drift 
 

 

 
 

Figure 22: Offline learning performed on basic models, where the training set includes observations for t < 34 and the test set 

includes observations for t > 34: All models show slight overfitting, with most overfitting on the LR model 

 

 

 
 

Figure 23: Offline learning performed on tuned (T) basic models, where the training set includes observations for t < 34 and the test 

set includes observations for t > 34: Tuning the models does not significantly improve the slight overfitting compared to the default 

models 
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