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Abstract

The idiosyncratic momentum anomaly can be calculated using different meth-

ods. This thesis studies four beta estimation methods: realised beta, linear re-

gression beta, random walk beta and DCC GARCH beta. It is shown that more

sophisticated models don’t always outperform simpler methods. The realised beta,

which is one of the simpler methods, performs best with a Sharpe ratio of 0.227. In

addition, different factor models are used to estimate the idiosyncratic momentum

anomaly. The idiosyncratic momentum anomaly performs best constructed with

the factor model by Daniel et al., resulting in a Sharpe ratio of 0.243.

Keywords: Idiosyncratic momemtum, Beta estimation, factor models
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1 Introduction
Throughout time, people have tried to predict financial markets as accurately as possible. during this

time, research has emerged showing patterns in the market. Firm characteristics patterns, human be-

haviour patterns, and return patterns are just a few examples. Jegadeesh and Titman (1993) were one of

the first researchers to show a pattern in returns. A pattern that had nothing to do with the underlying

firm, but with the returns of the asset. A pattern in which past winners tend to outperform past losers.

This was called the (relative) momentum anomaly. A strategy with a 12.01% yearly return over a net

zero investment portfolio in the studied time period. However, there was one major downside to this

anomaly, its exposure to crash risk. When the market experiences a style reversal, it is exposed to the

factors that perform the worst, resulting in major losses. Gutierrez Jr and Prinsky (2007) and Blitz

et al. (2011) find a momentum strategy that has similar returns, but reduces volatility by half. The

idiosyncratic momentum anomaly. Instead of comparing a stock’s momentum to that of other stocks,

it calculates momentum as the difference between the realised return and expected return. The major

question this study aims to investigate is, how do you calculate the expected return. This introduces the

research question of this thesis.

Hypothesis: The most accurate calculation of the expected return will lead to the best performance of

the idiosyncratic momentum anomaly.

This thesis presents significant scientific contributions by investigating alternative methods for esti-

mating the idiosyncratic momentum anomaly. Prior research has primarily focused on factor models to

estimate idiosyncratic returns. However, the influence of the construction of beta on the idiosyncratic

momentum anomaly has not been studied. In this study, three new beta estimation techniques were

examined, and the range of factor models was extended. As a result, this thesis aims to fill this gap in

the literature. Furthermore, the findings of this study have societal significance for investors seeking to

implement the idiosyncratic momentum anomaly effectively, as it shows which methods perform best.

There are two main parts to calculate returns. Which factor model is used, and how to estimate

the parameters of that factor model. How to estimate the parameters of the factor model is the main

research topic of this paper. The main parameter is beta. This study will test four different beta esti-

mation methods on the CAPM and see how this affects the performance of the idiosyncratic momentum

anomaly. First, the linear regression beta, which is most commonly used in previous literature, using

an ordinary least squares regression to estimate beta. Second, the realised beta, which is the linear

relationship between the market portfolio and an individual asset. Third, the random walk beta, which

assumes that beta follows a random walk. Fourth, the DCC GARCH beta, which is a more sophisti-

cated method allowing for different weights over time and allowing time-varying correlation between the

market portfolio and an individual asset.

Subhypothesis 1: A more accurate method of estimating beta will increase the performance of the

idiosyncratic momentum anomaly.
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Secondly, which factor model is used to calculate expected returns, will be touched upon. Every year

new factors emerge, and with that new factor models. For this study, seven factor models are studied. 4

of which showcased by Blitz et al. (2020) and three new ones that were published recently and gathered

scientific attention. The most traditional is the CAPM, which only uses the market portfolio as a factor.

Then there are the Fama and French 3-, and 5-factor models (Fama and French, 1993)(Fama and French,

2015). These use factors based on the characteristics of the firm. The Q- and Q5-factor models are based

on profitability and investment factor as a basis, with the Q5-factor model adding an expected growth

factor (Hou et al., 2015)Hou et al. (2021). The Daniel et al. (2020) factor model, which incorporates

behavioural factors. Lastly, the Stambaugh and Yuan (2017) factor model, which incorporates factors of

mispricing. In the paper of Hou et al. they compare different factor models and find that the Q5-factor

model performs best in their tests1. All factor models have different characteristics and some predict

expected returns better than others. In general it can be said from this research that the more recent

factor models do a better job at predicting stock returns. This introduces the second subhypothesis.

Subhypothesis 2: The most accurate factor models are better suited for the idiosyncratic momentum

anomaly, as they predict stock returns better.

In this thesis I use stock information from the using ranging from January 1925 up until December

2021. The assets of the NYSE, AMEX, and NASDAQ are used. All factors for the factor models are

retrieved from the corresponding author’s website.

For the methodology I start with the realised momentum, this follows the work of Jegadeesh and

Titman by calculating the sum of returns over the past 12 months excluding the most recent month. After

that, stocks are placed in decile portfolios, and the winner minus loser (WML) portfolio is constructed

by subtracting the loser portfolio from the winner portfolio. Then the idiosyncratic momentum anomaly

is constructed using linear regression and the CAPM. Here, first a 3-year window is used to construct

the estimated alpha and beta. A 1-year period is used to calculate the idiosyncratic momentum over

the past year. The paper will continue with the other three methods of estimating beta. The realised

beta is calculated by dividing the past assets return over the market return over the estimation period.

The random walk beta is estimated by using the realised beta at the previous observation. Lastly the

DCC GARCH is used to estimate beta. First, the GARCH model is fitted to estimate the conditional

variance of each asset return. The DCC model is then applied to estimate the time-varying conditional

correlation between asset returns varying over time. Finally, the DCC coefficients are used as measures

of beta for each asset. Once the betas are estimated, the idiosyncratic momentum is calculated identical

to the traditional method. For the factor models the traditional method of calculating betas is used:

the linear regression. The factor models are used to estimate expected returns. With the expected and

realised returns, the idiosyncratic momentum is calculated using the different factor models.

For the results, the same order as the methodology is followed. Here I will discuss the results of

the WML portfolio and in the results go into more detail. The relative momentum anomaly performed

1It must be noted that this was the paper where they introduced this factor so it can be seen as less
objective
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similar to previous research with an average return of 1.46% and a standard deviation of 7.01%. The

traditional idiosyncratic momentum anomaly performed slightly worse compared to previous research

with an average monthly return of 1.03% and a standard deviation of 4.55%. It was clear that there

was a strong reduction in volatility, resulting in a higher Sharpe ratio. Both anomalies were robust to

various empirical tests and remained statistically significant at 5%. Only in the spanning test when

adding the oposing anomaly to the regression, this was reduced to 10% significance. Continuing with the

other estimation methods, the realised beta showed promising results with an average return of 1.20%

and a standard deviation of 5.22%. The random Walk beta was underperforming with 0.44% and a

standard deviation of 3.06%. Lastly the DCC beta was underwhelming with a monthly return of 0.89%

and a standard deviation of 5.09%. The realised beta and DCC beta were robust to various empirical

tests however the random walk beta was not. Overall the realised beta performed best both on return

and Sharpe ratio. Finally the different factor models. Here all returns were relatively close. The lowest

volatility was achieved by the FF3-factor model. The highest return was achieved by the Daniel et al.

factor model. This was accompanied with the highest sharpe ratio, making the Daniel et al. factor model

the best performing factor model for the idiosyncratic momentum anomaly based on these results.
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2 Literature review

2.1 Relative momentum anomaly
Past winners tend to outperform past losers. This describes the relative momentum anomaly23, a theory

first discussed by Levy (1967), and later extensively worked out by Jegadeesh and Titman (1993). A

phenomenon in which stocks with the highest returns over the previous six to twelve months have, on

average, higher returns than stocks with the lowest returns over the same period. Although the relative

momentum anomaly used to be very persistent, a recent study by Dolvin and Foltice (2017) found that the

relative momentum anomaly was unable to generate significant returns during the 2007-2015 period. The

authors even stated that ”institutional investors seeking to profit from traditionally based momentum

trading strategies may need to rethink their approaches”. On top of the decreased performance, the

relative momentum anomaly is less systematic relative to other anomalies. This can be attributed to the

fact that it is solely dependent on the returns of an asset and not on the characteristics of the underlying.

Portfolios sorted on return have significant exposure to systematic factors (Kothari and Shanken, 1992).

This can be explained intuitively: during times when the market is in a bull (bear) market, high (low)

beta stocks tend to outperform low (high) beta stocks. This means that the relative momentum anomaly

on average goes long on high (low) beta assets and short on low (high) beta assets. Thus, indirectly

gaining exposure to systematic factors. This introduces a problem with the relative momentum anomaly.

When the market experiences rapid turns of direction, the relative momentum anomaly is heavily loaded

on assets that tend to perform worst during the style reversal. This is particularly strong when the style

is swapped from a bear market to a bull market. An example is the Fama-French momentum factor 4

making a -83% return in 2009 when the stocks that previously performed worst strongly outperformed

past winners. Exposure to the reversal anomaly is a major drawback of the relative momentum anomaly,

often described as crash risk.

2.2 Idiosyncratic momentum anomaly
Fund managers have a strong incentive to reduce exposure to crash risk. A sharp decline in performance

can result in a large outflow of funds as investors exhibit return chasing behaviour (Frazzini and Lamont,

2008). This strong outflow can danger a manager’s job and/or damage his reputation. Resulting in the

need to reduce the strategy’s volatility. Grundy and Martin (2001) show that hedging the dynamic

exposure to the size and market factors, reduces the volatility of the relative momentum anomaly while

preserving comparable returns. However, Daniel and Moskowitz (2016) argue that this outperformance is

driven by forward-looking betas. They show that when using ex ante betas, the performance improvement

does not hold. Gutierrez Jr and Prinsky (2007) propose an additional way of looking at momentum.

Relative momentum as described by Jegadeesh and Titman (1993) looks at a stock’s momentum relative

2Levy (1967) calls this relative strength
3Jegadeesh and Titman (1993) call this the momentum anomaly
4As can be seen on http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_li-

brary.html
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to the momentum of other stocks, but Gutierrez Jr and Prinsky (2007) look at a stock’s individual

momentum. The idiosyncratic momentum5, where the momentum is defined as the error in the forecast

return, the residual. This allows for a comparison of the return of an asset with its previous returns.

They find that the idiosyncratic momentum anomaly yields returns similar to the relative momentum

anomaly for the first 12 months. After a year, the relative momentum anomaly suffers from a reversal

and yields negative returns. The idiosyncratic momentum anomaly does not suffer from the reversal

effect and remains positive on average for a holding period of up to five years. Blitz et al. (2011) add to

the idiosyncratic momentum anomaly6 with evidence that the volatility of the idiosyncratic momentum

anomaly is significantly lower than the relative momentum anomaly. This results in a Sharpe ratio

twice as high. In addition to lower volatility, the idiosyncratic momentum factor is not directly linked

to systematic factors. This results in the idiosyncratic momentum factor being less exposed to crash

risk than the momentum factor. Based on these facts, the idiosyncratic momentum factor historically

outperformed the relative momentum factor based on the risk-return trade-off.

2.3 Estimating beta
The model used for forming the idiosyncratic momentum factor plays a crucial role in the performance

of the idiosyncratic momentum anomaly. The way used to calculate the betas in the model ultimately

determines the value of the idiosyncratic momentum. The studies mentioned earlier use linear regression

to estimate parameters; however, there are alternatives that are more sophisticated and perhaps more

accurate. First discussing the linear regression. Univariate regressions are the most widely used method

to estimate betas. In the regression, the relationship between an asset and a portfolio is measured by

their covariance over the variance of the portfolio (Fama and MacBeth, 1973). When describing the

relationship to the market, the portfolio will be the market portfolio. This equation is based on the

hypothesis that the relationship between asset returns and the market is linear. Fama and MacBeth

tested this hypothesis by adding a non-linear estimator which turned out to be insignificant and thus

used the linear relationship. However, over time, evidence showed that the security market line is too

flat (Frazzini and Pedersen, 2014). That is, when stocks have a relatively low (high) beta, on average,

the estimate of their beta is too high (low). Thus, I explore different methods of estimating parameters.

I follow the work of Hollstein and Prokopczuk (2016) who give an overview of the different methods to

use when estimating beta.

The first option that the authors provide is to use the realised beta. In this option, the beta is

defined as how many times the returns of an asset are needed to get the equivalent return of the market.

Andersen et al. (2006) show that only under weak conditions this estimate of beta is consistent with the

true underlying beta. A major advantage of the realised beta approach is how simple it is to estimate,

as it consists solely of a division of previous observations. Compared to other approaches, no variances,

covariances, or correlations are required. The authors, however, note that realised betas display much

5Gutierrez Jr and Prinsky (2007) call this the abnormal momentum anomaly
6Blitz et al. (2011) call this the residual momentum anomaly
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less persistence and predictability compared to realised variances and covariances. The upside is that

the variation in the market variance and individual assets, but no variation in betas, is exactly what is

expected in a factor volatility model. Thus, the realised beta approach is significant to investigate.

The work of Hollstein and Prokopczuk continues with a discussion of what they call historical beta.

I will briefly explain the historical beta. It uses ordinary least-squares linear regression to estimate beta.

It follows the work of Fama and MacBeth (1973) where they regress the assets excess return on the

markets excess return. Where beta is the covariance between the asset and the market divided by the

variance in excess returns of the market. This is the method used for the base case and the same method

that previous literature used. Thus, it is already known in previous estimations. Therefore, the other

methods will be compared with the historical beta and will show whether an improvement is achieved.

Throughout this paper, this method will also be called the traditional method, referring to previous

literature.

The third method described by Hollstein and Prokopczuk is Dynamic Conditional Correlation beta,

DCC beta in short. Here they follow Engle (2002) to estimate beta. Until now, all estimations of

parameters have equally valued the information over the estimation period. Meaning, an observation at

the beginning of the estimation period has the same influence on the predicted parameter at t=0 as the

latest information in the estimation period. However, as one can understand, more recent observations

are more likely to influence an outcome than older observations. A way to solve this problem is using

a generalised auto-regressive conditional heteroskedasticity (GARCH) model. This model combines the

estimated average variance with a certain amount of variance lags7. In this way, the recent variance has

more influence. Therefore GARCH models are a popular choice to estimate volatility more accurately.

Multivariate GARCH was a theoretical solution; this links assets to ensure that a sudden change in

volatility is due to the change in volatility of the assets and not to a change in volatility in the market.

This turned out to be very difficult to implement. Asset allocation and risk management are strongly

dependent on correlations; however, in this setting, a large number of correlations and volatilities must

be estimated. The number of correlations can be is shown in Equation 1.

Ncorr =
N2

assets −Nassets

2
(1)

Consider a portfolio of three assets, this requires computing three pairwise correlations8. However, if we

instead consider a larger universe of assets, such as the S&P 500, the number of pairwise correlations

needed grows significantly. For the S&P 500, this translates to 124,750 pairwise correlations9. As the

number of assets increases, the number of pairwise correlations required grows exponentially. Thus,

Engle came up with the Dynamic Conditional Correlation GARCH (DCC GARCH) model to solve this

issue. DCC Garch is an extension of the standard GARCH model that allows time-varying correlations

between residuals of multiple time series. In a normal GARCH model, the variance predicted is merely

a function of its residuals. The DCC GARCH model uses two time series and is modelled in such a
7Often only one lag is used
8(3*3-3)/2=3
9(500*500-500)/2=124750
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way that the function of their residuals also uses the other time series’ residuals and the conditional

correlation between them. The DCC GARCH model includes two levels of estimation. In the first stage,

the GARCH model is estimated separately for each time period and its volatility is obtained. In the

second step, the relationship between the residuals is modelled using a dynamic regression model, where

lagged residuals and correlations are included as regressor variables. The correlation coefficients are then

used to calculate the covariance matrix, which is used to estimate the covariance of each time series for

the next period. The main advantage of the DCC GARCH model over a standard GARCH model is

that it allows for time-varying correlations. The standard GARCH model assumes that the residuals are

not time-related, which is not always true for financial data. This can lead to poor beta prediction and

poor risk management. By capturing changes in the relationship patterns between the market portfolio

and an individual asset, DCC GARCH can provide more reliable beta estimates. This model offers

the flexibility of univariate GARCH, while avoiding the complexity of traditional multivariate GARCH

models. This simplicity is achieved by employing the market portfolio as a proxy for the relationship

between an individual asset and all others. As a result, the number of parameters estimated in the

correlation process is independent of the number of series that are correlated, significantly reducing the

computational burden and speeding up the estimation process. For instance, if there are 500 assets in

the S&P500, only the correlation between each asset and the market portfolio needs to be estimated,

resulting in a total of 500 correlations. This results in a reduction of 99.60% in the number of correlations

estimated in the outlined example. This approach enables the use of a GARCH model to estimate beta

in a multivariate setting, which is essential for estimating the iMOM anomaly.

The fourth method of estimating beta is the Random Walk model, which is based on the theory

that betas follow a random walk. This means that there is no trend or pattern in observations and

that the best estimation for predicting beta is the last observed observation. This theory dates back to

1953 Kendall and Hill (1953), and although it may be outdated, it can still serve as a useful baseline for

testing the precision of beta estimates. If the Random Walk model is found to accurately predict beta,

it would suggest that beta is more random than expected. However, more sophisticated methods for

estimating beta have been developed, such as the CAPM and GARCH models. These models are better

able to capture the complexities of stock market behaviour and produce more reliable beta estimates.

Nevertheless, the Random Walk model is still relevant in finance and can provide a useful starting point

for understanding and analysing asset pricing models. Furthermore, the Random Walk model can be

used as a null hypothesis in statistical tests of asset pricing models.

The work of Hollstein and Prokopczuk continued with more sophisticated methods to estimate betas,

but these methods use daily observations and option data. As the idiosyncratic momentum anomaly is

an investment strategy traditionally studied on monthly data, the more sophisticated methods are not

well-suited for this thesis. Additionally, the required level of mathematics and econometrics is beyond

the scope of my level of expertise, making it infeasible to master these concepts in the given timeframe.

Therefore, more sophisticated methods for estimating beta will be left open for further research.
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2.4 Factor models
For the estimation of residuals, Gutierrez Jr and Prinsky (2007) use a traditional CAPM regression,

a Fama-French 3-factor model as described by Fama and French (1993) and a mean return model.

Blitz et al. (2011) use a Fama-French 3-factor model. The results show that the performance of the

idiosyncratic momentum anomaly is dependent on the chosen factor model. Nevertheless, none of the

factor models used in spanning tests can explain the outperformance of the idiosyncratic momentum

anomaly. Blitz et al. (2020) expand the number of factor models tested using the factor models proposed

by Hou et al. (2015) and Stambaugh and Yuan (2017). Blitz et al. conclude that the alpha remains

statistically significant and the models do not explain the outperformance. However, the results in

alpha are different and show that the choice of factor model is important. In recent years various other

factor models have emerged that have not been used to generate the idiosyncratic momentum factor in

scientific literature. The models include the Fama and French (2015) 5-factor model, the Daniel et al.

(2020) 3-factor model and the Hou et al. (2021) 5-factor model. This thesis will study whether these

factor models can explain the idiosyncratic momentum anomaly and which model is best suited to form

the idiosyncratic momentum factor. The reason for choosing these models is that they are the most

popular factor models that have emerged in recent years. This thesis will also compare the newer factor

models with the factor models already studied.

3 Data
For the stock data, the CRSP database is used to obtain US stock prices, holding period returns, and

delisting returns. Missing holding period returns are merged with delisting returns if available. This

prevents data from suffering from survivorship bias, as bankrupt companies are not automatically given

a return of −100%. Only stocks from the NYSE, AMEX, and NASDAQ are used, similar to Blitz et al.

(2011). The reason for using only American stocks is that the focus of this thesis is to expand the methods

used in the previous literature and not to explore different markets. Only common shares are used, with

sharecodes 10 and 11. Financial companies are excluded based on their SIC code (between 6000 and

6999) due to their inherently different capital structure. Financial firms tend to have more leverage and

this leverage often means for non-financial firms that they are in distress, whereas for financial firms this

is a part of their business model. Penny stocks are excluded, defined as stocks with a share price at the

beginning of the month smaller than 1 dollar. Additionally, microcap stocks are excluded from equally

weighted portfolios defined as stocks below the 20th percentile of stocks based on their market cap. This

is done to prevent microcaps from overinfluencing the results. The microcaps are excluded based on

their values at the start of the month so that the information is known at the start of the period to

the investor. I examine the period between January 1925 and December 2021. The reason for this time

frame is the availability of data as of writing this thesis. I will obtain the Fama-French factors from the

Kenneth R. French. library10. The factors of the Q- and Q5 factor model are obtained from the authors’

10http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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website global-Q11. The factors of (Daniel et al., 2020) are obtained from the author’s website12. lastly,

the factors of the (Stambaugh and Yuan, 2017) model are obtained from the Wharton open library13.

4 Methodology
In this section, I will discuss the methodology used in this paper. First, I will briefly summarize the

methods used by previous authors and compare my result to theirs to asses a baseline. Afterwards I

will expand the methodology on the different beta estimation methods. Starting with the realised beta,

then the random walk beta and ending with the DCC GARCH beta due to its complexity. Lastly, I will

explain the methodology on the different factor models.

4.1 Replicating previous research
Starting with the relative momentum anomaly. Portfolios following the example of Jegadeesh and Titman

(1993) are first being constructed. Portfolios are rebalanced after each month. Each asset gets distributed

to a portfolio based on its cumulative 12 month past return, excluding the most recent month (t-12 to

t-2). The most recent month is excluded to prevent the influence of the short term reversal effect as

studied by Jegadeesh (1990). In formula:

MOM =

−2∑
t=−12

Ri,t (2)

Where Ri,t stands for asset i’s logarithmic return at time t. The fact that the log returns are additive is

used and, therefore, the sum of returns suffices to get the past total return. To get logarithmic returns,

simple returns are converted with the following formula:

Ri,t = log(ri,t + 1) (3)

Where R stands for the log returns and r stands for the simple returns. After constructing the relative

momentum, 10 portfolios are created, sorted on their relative momentum. In these portfolios equally

weighted returns are calculated. The results can then be compared to the study by Jegadeesh and

Titman, as well as the more recent studies by Gutierrez Jr and Prinsky (2007) and Blitz et al. (2011).

Similarly to the relative momentum anomaly, the idiosyncratic momentum anomaly is constructed.

However, first, idiosyncratic returns must be calculated. Here, the CAPM is used to estimate the alpha

and market beta of the model. The reason for choosing the CAPM over, e.g. the FF3 model14, is that

for the different estimation methods of beta, also a CAPM is used and this makes comparison more

11http://global-q.org/index.html
12http://www.kentdaniel.net/data.php
13https://finance.wharton.upenn.edu/ stambaug/
14As done by Blitz et al. (2020)
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accurate. In formula:

ri,t − rf,t = αi + βmkt,i × (rmkt,t − rf,t) + εi,t (4)

Where ri,t stands for asset i’s return at time t. rf,t is the risk free rate. αi is the constant of the asset

i. The β are the estimated relations of asset i with the market. rmkt,t − rf,t is the excess market return

at time t. Lastly, εi,t is the error term. Once the parameters are estimated, the returns are forecasted.

Then the actual returns are subtracted with the forecasted returns to get the idiosyncratic return. in

formula:

ei,t = ri,t − rf,t − (α̂i + ̂βmkt,i × (rmkt,t − rf,t)) (5)

Where ei,t are the idiosyncratic returns. The hat above alpha and beta signifies that the parameter is

estimated. After calculating the idiosyncratic returns, each asset gets distributed to a portfolio based on

their past 12 month idiosyncratic momentum, excluding the most recent month (t-12 to t-1). In formula:

iMOMi,t =

∑−2
t=−12 ei,t√∑−2

t=−12(ei,t − ēi)2
(6)

Where ēi is the average idiosyncratic return. The returns are standardized to provide a better estimate

and reduce noise. The result will be compared to a non-standardised idiosyncratic momentum anomaly

to make sure that the results are not driven by the standardisation of the anomaly. Additionally, the

performance of the standardized idiosyncratic momentum will be compared with a standardized relative

momentum strategy. After constructing both the relative momentum portfolios and the idiosyncratic

momentum portfolios, a portfolio is constructed for both factors where the 10th decile portfolio is sub-

tracted with the 1st decile portfolio to create a zero net investment portfolio. This portfolio is the winners

minus the loser portfolio, and this will be called the relative momentum portfolio, relative winners minus

losers (rWML). For the idiosyncratic momentum portfolio, it is called the idiosyncratic winners minus

losers (iWML) portfolio.

4.2 Estimating beta
This thesis focusses on the estimation of Beta. This is depicted in equation 5 as ̂βmkt,i. There are various

ways to estimate this beta, and this thesis will follow the work of Hollstein and Prokopczuk (2016). Here,

the historical beta, the realised beta, the random walk beta, and finally the dynamic conditional beta

will be discussed.

4.2.1 Historical beta

First, historical beta will be discussed. Hollstein and Prokopczuk Call this historical beta but it is the

method of using an ordinary least square regression (OLS) analysis to estimate the parameters alpha

and beta. Ordinary least squares is a method that minimises the sum of square errors (SSE) between the

observed value and the predicted value based on the independent variable. The ordinary least-squares

regression can be seen as a line between observed values in the estimation window that has the lowest
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sum of squared errors. In matrix form:

Y = Xβ + ε (7)

Where Y is the N × 1 matrix of the predicted returns of stocks. X is the N × 2 matrix representing the

independent variable with the first column being the risk free rate and the second column representing

the expect market return. β is the 2×1 matrix with the first row representing the intercept representing

the risk-free rate and the second row representing the slope. The OLS regressions minimises the SSE,

which is the sum of squared differences between forecasted Y and actual Y. Which can be expressed in

formula as:

SSE =
∑

(Y −Xβ)
2 (8)

The SSE is minimised, and this gives the estimated β. Beta is estimated as follows:

βj,t =
cov(rj,t, rM,t)

var(rM,t)
(9)

Where cov(rj,t, rM,t) is the covariance between the excess return of asset j at time t and the excess

market return at time t. The variation in this method is estimated as the average squared deviation

around the mean. For the DCC GARCH we will see a different method for calculating variances. OLS

regression is performed using the statistical software package STATA.

4.2.2 Realised beta

The Realised beta is relatively straightforward. The log returns of the asset in question are divided by

the log returns of the market to get the direct relationship. Log returns are used as they are additive

and thus over a period of time can be added together. The calculation of the realised beta can be seen

in Equation 10.

βR
j,t =

∑N
t=1 Rj,tRM,t∑N

t=1 R
2
M,t

(10)

The variables rj,t and rM,t refer to the excess return of the asset j and the market M at time

t respectively. N stands for the number of observations used for the estimation period. A numeric

example would be that if the average returns of asset i are 2 over the estimation period. And the average

returns of the market would be 1, that would result in a beta of 2. So, no variances or covariances are

used. The realised beta uses the excess returns and predicts that the beta at time t is the same as the

average over the estimation period. Realised beta beta relies heavily on the following assumption:

E(ri,t) = βi[E(rm,t)] (11)

Showing the relationship between the beta, expected market return and the expected return of asset i.
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4.2.3 Dynamic conditional beta

Third, the dynamic conditional beta is a more sophisticated approach for estimating beta. The first step

is to estimate the covariance and variance of the asset. After estimating the covariances and variances,

the beta can be estimated using the traditional historical beta formula.

To estimate the univariate volatility models, it is assume that the return at time t, denoted as rt, is

the average return denoted as µ, plus an error term εt that follows a normal distribution with mean 0

and variance σ2
t , as shown in Equation 12.

rt = µ+ εt (12)

Next, the univariate volatility model based on the work of Glosten et al. (1993) is estimated. This

model assumes that the variance at time t, denoted as h2
t , depends on the variance at time t-1, denoted

as ε2t−1, and the variance predicted at t-1, denoted as h2
t−1. The variance at time t-1 is used to capture

the slow development of h2
t over time, while ε2t−1 represents the influence of the most recent observation,

as shown in Equation 13.

h2
t = ω + α(ε2t−1) + βh2

t−1 (13)

Here, ω, α, and β are parameters estimated by the model. The term ω is the constant variance

component, α is the parameter that captures the impact of the squared lagged error term, and β is

the parameter that captures the persistence of the volatility. To estimate the parameters, the maximum

likelihood method is used to find the values that maximise the likelihood function. The likelihood function

measures the probability of observing the data given the parameters. Finally, the dynamic conditional

beta is calculated using the estimated univariate volatility model and the covariance between the asset

and the market. This approach is based on the work of Engle (2002). The dynamic conditional beta is

given by Equation 14.

βt =
γt∑t
i=1 γi

(14)

Here, γt is the time-varying covariance between the asset and the market at time t. The time-varying

covariance is estimated using the DCC-GARCH. Once the univariate volatility model is estimated for each

asset, the DCC-GARCH model can be used to estimate the time-varying conditional correlation between

the assets. The DCC-GARCH model is a multivariate volatility model that captures the correlation

between assets by modelling the conditional covariance matrix. The model assumes that the returns of

the assets follow a multivariate normal distribution with a time-varying mean and conditional covariance

matrix. The conditional covariance matrix is modeled using a GARCH-type specification as follows:

Qt = DtRtDt, (15)

where Qt is the conditional covariance matrix at time t, Dt is a diagonal matrix with the standard
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deviations of the returns of each asset at time t on its diagonal and Rt is the conditional correlation

matrix at time t.

The parameters of the DCC-GARCH model are estimated using maximum likelihood estimation

(MLE). The log-likelihood function is maximized with respect to the parameters αi, βj , and ωij using

the Broyden-Fletcher-Goldfarb-Shanno algorithm for numerical optimization (Dennis and Moré, 1977).

The method uses iteration which is capped at a maximum of 100 iterations. This is done to optimize the

speed of the model. Not all assets reach convergence, meaning that parameters were estimated below

an acceptable threshold. Assets that did not reach convergence are excluded as their parameters are not

trustworthy.

Once the parameter estimates are obtained, the log-likelihood function can be computed as: where

εt is the standardised error term, defined as εt = rt − µt/ht, and µt and ht are the conditional mean

and conditional standard deviation of the asset return at time t, respectively. The log-likelihood func-

tion is then optimised using the maximum likelihood estimator (MLE). The resulting estimates of the

parameters are used to construct the time-varying conditional beta of the asset, which is given by:

βt =
σi,t

σm,t
ρi,m,t (16)

where σi,t and σm,t are the conditional standard deviations of the asset return and market return,

respectively, and ρi,m,t is the conditional correlation between the two returns.

This dynamic conditional beta model is more sophisticated than the traditional static beta model,

as it takes into account the time-varying nature of the conditional covariance between the asset return

and market return.

In summary, the DCC GARCH model provides a way to estimate the time-varying conditional

covariance and correlation between asset returns and market returns, which can be used to estimate the

dynamic conditional beta of the asset. The estimation process involves estimating the univariate GARCH

models for asset and market returns, estimating the DCC model for the conditional covariance matrix,

and optimising the log-likelihood function to obtain parameter estimates. The resulting estimates are

used to construct the time-varying conditional beta, which, in theory, provides a more accurate measure

of the asset’s systematic risk than the traditional static beta model.

4.2.4 Random Walk beta

Lastly, the Random Walk method. The way to estimate these methods is more straightforward, as can

be seen in the work of Hollstein and Prokopczuk (2016). The random walk is estimated as can be seen

in Equation 17

βj,t =
rj,t−1

rM,t−1
(17)

Variable βj,t is the beta of the asset j at time t.The explanation of the Random Walk is simple; it assumes

that the relationship of the market to the individuals return are the same as yesterdays relation of the

market to the assets return.
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4.3 Factor models
After observing the impact of different estimations of beta on the idiosyncratic momentum, the signifi-

cance of selecting appropriate factor models will be explored. As previously demonstrated, the idiosyn-

cratic momentum anomaly was evaluated using a CAPM. Continuing, the results of various other factor

models will be compared to CAPM and each other in this study. To estimate the factor models, the

methodology employed in Equation 4 and Equation 5 will be replicated. Idiosyncratic returns obtained

from Equation 6 will be used in the analysis. First, all factor models will be listed in equation form.

Starting with the standard FamaFrench 3-factor model (FF3):

ri,t − rf,t = αi + βmkt,i × (rmkt,t − rf,t) + βhml,i × rhml,t + βsmb,i × rsmb,t + εi,t (18)

Here rHML is the return of the High Minus Low (HML) factor. rSMB is the return of the Small Minus

Big (SMB) factor. Lastly the betas are all corresponding to their factor.

Second, the FamaFrench 5-factor model (FF5):

ri,t−rf,t = αi+βmkt,i×(rmkt,t−rf,t)+βhml,i×rhml,t+βsmb,i×rsmb,t+βRMW,i×rRMW,t+βCMA,i×rCMA,t+εi,t

(19)

This factor expands the FF3 model by adding two additional factors; Robust Minus Weak (RMW) and

Conservative Minus Aggressive (CMA). rRMW stands for the return on the RMW factor and rCMA

represents the return on the CMA factor.

Third the Q-factor model (Q):

ri,t − rf,t = αi + βmkt,i × (rmkt,t − rf,t) + βME,i × rME,t + βIA,i × rIA,t + βROE,i × rROE,t + εi,t (20)

Their model consists, in addition to the CAPM, of a size (ME) factor, an investment (IA) factor, and a

Return on Equity (ROE) factor. r stands for the corresponding return to that factor.

Fourth is the Q5-factor model (Q5):

ri,t−rf,t = αi+βmkt,i×(rmkt,t−rf,t)+βME,i×rME,t+βIA,i×rIA,t+βROE,i×rROE,t+βEG,i×rEG,t+εi,t

(21)

This model expands the Q model by adding an expected growth factor (EG),

Fifth, the Stambaugh-Yuan (SY) model:

ri,t−rf,t = αi+βmkt,i×(rmkt,t−rf,t)+βsmb,i×rsmb,t+βMGMT,i×rMGMT,t+βPERF,i×rPERF,tεi,t (22)

This model consists of a market factor, a size factor, and two mispricing factors. The first is constructed

out of factors influenced by management, thus denoted as the management (MGMT) factor. The second

is more related to performance and, hence, is denoted as the performance factor (PERF).

16



Lastly, Daniel et al. model (D) is considered:

ri,t − rf,t = αi + βmkt,i × (rmkt,t − rf,t) + βPEAD,i × rPEAD,t + βFIN, i× rFIN,t + εi,t (23)

Their model expands the CAPM with two factors, the financing (FIN) factor and the performance

(PERF) factor.

Exactly like the CAPM, after the parameters are estimated, and used to forecast returns as done

with the CAPM in equation 4 but adjusted for their factors. Then the forecated returns are subtracted

from the actual returns to get the idiosyncratic returns.

5 Results
In this section, the findings of this study will be examined. First, the summary statistics of the relative

momentum anomaly and the traditional idiosyncratic momentum anomaly will be discussed. This will

be followed up with empirical results that contain the GRS test, Fama-Macbeth regressions, and the

spanning test. After the base case has been established, the results will be compared with the sum-

mary statistics of the different beta estimation methods. Lastly, the factor models used in the previous

literature are compared with newer factor models to test for improvement.

5.1 Descriptive statistics

Table 1: Summary statistics relative momentum

This table shows the characteristics of the relative momentum portfolios. Data ranges from
January 1925 to December 2021. Due to 1 year formation period of portfolios and one month
needed to calculate returns from price, returns are from February 1926 to December 2021.
Mean is the excess returns defined as return on the asset minus the risk free rate. Returns
are in percentages. sd stands for standard deviation. min stands for minimum excess returns
generated during a 1 month period. max stands for maximum excess returns generated during
a 1 month period. N is the amount of observations in the sample.

mean sd Sharpe min max skewness kurtosis
P1 0.031 10.265 0.003 -40.487 98.161 1.820 17.706
P2 0.506 8.336 0.061 -37.596 79.788 1.551 18.018
P3 0.649 7.441 0.087 -33.081 61.176 1.323 16.424
P4 0.717 6.887 0.104 -32.601 61.269 1.019 15.516
P5 0.803 6.503 0.123 -30.301 62.070 1.018 16.956
P6 0.919 6.327 0.145 -31.261 56.077 0.658 14.087
P7 0.959 6.039 0.159 -29.165 46.462 0.259 10.650
P8 1.109 6.221 0.178 -30.197 53.102 0.312 11.177
P9 1.272 6.462 0.197 -32.140 38.986 -0.219 6.812
P10 1.492 7.609 0.196 -34.354 48.465 -0.092 6.871
WML 1.460 7.007 0.208 -66.782 32.185 -2.663 25.340
N 1141
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Table 1 shows the summary statistics of the relative momentum. For the relative momentum

anomaly, there is, in line with previous literature, such as Jegadeesh and Titman (1993), a mono-

tonically increasing pattern from losers (P1) to winners (P10) for the mean. The volatility of the lowest

relative momentum portfolio is highest, with a standard deviation of 10.27%. Other portfolios are close

in volatility to each other with a standard deviation of around 7%. This leads to the Sharpe ratio also

monotonically increasing from losers to winners. For the skewness and kurtosis we see characteristics

that are typical to stock returns. A positive skewness is expected as there is a downside limit to returns

(-1) whereas the upside potential is infinite. This leads to stronger positive outliers and a positive skew-

ness. A high kurtosis indicates that the observations are centred around the mean with strong outliers,

which is common with stock returns. When looking at the WML portfolio, it can be seen that it has an

average monthly return of 1.46% which is higher than previous literature such as Blitz et al. (2020) and

Gutierrez Jr and Prinsky (2007). For the WML portfolio, the main drawback of the relative momentum

anomaly can also be seen, which is the crash risk. The lowest return on the WML portfolio is -66.8%.

Using an average of 1.40% monthly returns, it would take over six years to recover from this crash15.

Thus, a strategy less susceptible to this risk could drastically smoothen the returns. When looking at the

skewness and kurtosis, a negative skewness and high kurtosis is observed. The negative skewness follows

because P10 has low skewness compared to P1, therefore, when subtracting P1 from P10, the negative

skewness follows because the outliers that were first positive on average are now negative. The kurtosis

is high, which can be explained by the fact that some outliers cancel each other out, as outliers across

portfolios tend to happen at the same time. concluding, skewness and kurtosis are as expected. Crash

risk is visible and the WML generates a positive return on average in line with previous literature.

Table 2 shows the summary statistics of the idiosyncratic momentum portfolios. There is a steady

increase in returns as the idiosyncratic momentum increases. This is in line with previous literature.

The volatility of the portfolios is close to equal. The most notable is the volatility of the WML portfolio,

whose volatility is significantly lower. More importantly, the volatility of the idiosyncratic momentum

WML portfolio is also much lower than that of the relative momentum WML portfolio. The average

returns of the WML portfolio for the idiosyncratic momentum strategy are 1.03%, which is lower than

the average return of the WML portfolio of the relative momentum strategy. However, due to the

volatility being much lower, it has a higher Sharpe ratio, namely 0.226. The skewness and kurtosis show

the same characteristics for the idiosyncratic momentum portfolios as the relative momentum portfolios.

Thus, the same conclusions are drawn. When looking at the minimal and maximal returns, the minimal

return of the idiosyncratic momentum WML portfolio is closer to zero than the relative momentum

WML portfolio. The maximum of the two WML portfolios is close to equal. Based on these summary

statistics, I conclude that, on a stand-alone basis, the idiosyncratic momentum anomaly is a strategy that

outperforms the relative momentum anomaly on both risk and Sharpe ratio. One of the critiques of the

idiosyncratic momentum anomaly is that the outperformance based on the Sharpe ratio comes from the

way the idiosyncratic momentum anomaly is constructed. Namely standardizing the factor. However,

in the Appendix, from Tables 17 and 18 we can see that this is not the case. The relative momentum

15This scenario is purely hypothetical, it could be faster or slower
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Table 2: Summary statistics idiosyncratic momentum

This table shows the characteristics of the idiosyncratic momentum portfolios. Data ranges
from January 1925 to December 2021. Due to 3 year estimation period of parameters and 1
year formation period of portfolios returns, results range from February 1928 to December 2021.
Mean is the excess return defined as return on the asset minus the risk free rate. sd stands for
standard deviation. min stands for minimum excess returns generated during a 1 month period.
max stands for maximum excess returns generated during a 1 month period. N is the number
of observations in the sample.

mean sd Sharpe
ratio

min max skewness kurtosis

P1 0.396 7.899 0.050 -29.956 62.811 1.268 13.809
P2 0.552 7.230 0.076 -29.353 60.397 0.941 12.675
P3 0.688 7.136 0.096 -30.895 56.064 1.095 14.384
P4 0.779 6.888 0.113 -33.591 64.688 0.994 15.741
P5 0.897 6.940 0.129 -31.450 59.738 1.200 15.730
P6 0.954 7.033 0.136 -33.797 65.618 1.338 18.971
P7 1.038 6.875 0.151 -31.137 60.172 0.824 14.034
P8 1.163 6.977 0.167 -30.317 57.326 0.912 14.105
P9 1.237 7.121 0.174 -32.855 66.673 1.131 17.171
P10 1.429 6.719 0.213 -32.214 48.792 0.109 9.118
WML 1.033 4.555 0.227 -41.331 29.916 -1.260 17.224
N 1105

strategy performs worse when standardised, and the idiosyncratic momentum anomaly performs slightly

better when not standardised. Making not standardizing the relative momentum anomaly optimal while

standardizing the idiosyncratic momentum anomaly suboptimal. For this research, to make comparisons

to previous literature, the standardised version of the idiosyncratic momentum anomaly will be used.

When looking at figure 1, it can be seen, that over time the investor is compensated with higher

returns for the relative momentum anomaly. What also is pictured clearly is that in times of a style

reversal the relative momentum suffers more than the idiosyncratic momentum anomaly. For example

looking at the great depression period around 1930 and the financial crisis around 2008, we see that the

relative momentum suffers from much higher losses than the idiosyncratic momentum anomaly. Thus,

previous literature is confirmed in both cases.

In this section, the summary statistics of both the relative momentum and idiosyncratic momentum

portfolios has been presented. The results showed a monotonically increasing pattern of mean returns

from losers to winners for both strategies, as well as expected characteristics such as positive skewness

and high kurtosis. However, the idiosyncratic momentum strategy outperformed the relative momentum

strategy on both risk and Sharpe ratio. Additionally, it was found that standardizing the idiosyncratic

momentum anomaly was suboptimal, while not standardizing the relative momentum anomaly was

optimal. These findings contribute to the literature on momentum trading strategies and suggest that

the idiosyncratic momentum strategy may be a better option for investors seeking higher returns with

lower risk.
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Figure 1: Cumulative return for the relative and idiosyncratic WML portfolios

5.2 Empirical results
To test whether the WML portfolios identified show a unique type of risk, regressions on other factors

including the CAPM, Fama-French 3-factor model (FF3), and Fama-French 5-factor model (FF5) are

run. When alpha remains significant, it can confidently be said that the other factors do not fully explain

the outperformance found in the market. This will be done by a CAPM regression, a regression on the

Fama-French 3-factor model (FF3) and the Fama-French 5-factor model (FF5). These regressions will

look as follows, respectively:

ri,t − rf,t = αi + βmkt,i × (rmkt,t − rf,t) + εi,t (24)

ri,t − rf,t = αi + βmkt,i × (rmkt,t − rf,t) + βhml,i × rhml,t + βsmb,i × rsmb,t + εi,t (25)

ri,t−rf,t = αi+βmkt,i×(rmkt,t−rf,t)+βhml,i×rhml,t+βsmb,i×rsmb,t+βrmw,i×rrmw,t+βcma,i×rcma,t+εi,t

(26)

From these equations, alphas and their corresponding t statistics are obtained to test whether they are

statistically significant.

The results of found alphas for the relative momentum strategy can be seen in Table 3. For the

relative momentum strategy, it can be seen that alphas are mostly statistically significant. All alphas of

P1, P10 andWML are statistically significant at the 1% confidence levels. This means that the risk factors

applied to the found returns cannot fully explain the outperformance of the market. Noticeable is that

the alpha is not decreasing with a more sophisticated model. This can indicate that the outperformance
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Table 3: Alpha regressions relative momentum

This table shows factor regressions on the formed residual momentum portfolios. Alpha is the
constant in the regression that cannot be explained by factors in the model. Data ranges from
January 1925 to December 2021. Due to 1 year formation period of portfolios returns are from
January 1926 to December 2021. Alpha returns are in whole numbers.t statistics in parentheses,
∗. p < .10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

CAPM alpha t-stat FF3 alpha t-stat FF5 alpha t-stat
P1 -1.06∗∗∗ (-6.40) -1.35∗∗∗ (-7.48) -1.04∗∗∗ (-5.84)
P2 -0.43∗∗∗ (-3.71) -0.57∗∗∗ (-5.19) -0.42∗∗∗ (-3.82)
P3 -0.21∗∗ (-2.25) -0.29∗∗∗ (-3.53) -0.25∗∗∗ (-2.88)
P4 -0.09 (-1.19) -0.17∗∗∗ (-2.90) -0.18∗∗∗ (-3.04)
P5 0.03 (0.48) -0.03 (-0.57) -0.08 (-1.57)
P6 0.17∗∗ (2.52) 0.07∗ (1.78) 0.02 (0.49)
P7 0.24∗∗∗ (3.79) 0.20∗∗∗ (4.66) 0.14∗∗∗ (3.25)
P8 0.38∗∗∗ (5.27) 0.34∗∗∗ (6.59) 0.30∗∗∗ (5.70)
P9 0.55∗∗∗ (6.10) 0.51∗∗∗ (6.93) 0.52∗∗∗ (6.99)
P10 0.69∗∗∗ (5.45) 0.64∗∗∗ (5.77) 0.75∗∗∗ (6.80)
WML 1.75∗∗∗ (8.89) 1.99∗∗∗ (8.20) 1.80∗∗∗ (7.22)
GRS pval: 0.000 (7.939) pval: 0.000 ( 8.723) pval: 0.000 (7.473)

Table 4: Alpha regressions idiosyncratic momentum

This table shows factor regressions on the formed residual momentum portfolios. Alpha is the
constant in the regression that cannot be explained by factors in the model. Data ranges from
January 1925 to December 2021. Due to 3 year formation period of portfolios and one month
needed to generate returns from prices, results range from February 1928 to December 2021.
Alpha returns are in whole numbers.t statistics in parentheses, ∗. p < .10, ∗∗ p < 0.05, ∗∗∗

p < 0.01

CAPM alpha t-stat FF3 alpha t-stat FF5 alpha t-stat
P1 -0.49∗∗∗ (-4.61) -0.61∗∗∗ (-5.39) -0.52∗∗∗ (-4.52)
P2 -0.27∗∗∗ (-3.11) -0.42∗∗∗ (-5.01) -0.42∗∗∗ (-4.87)
P3 -0.13 (-1.63) -0.30∗∗∗ (-4.47) -0.30∗∗∗ (-4.41)
P4 -0.01 (-0.17) -0.15∗∗∗ (-2.61) -0.18∗∗∗ (-3.04)
P5 0.10 (1.23) -0.00 (-0.03) -0.04 (-0.70)
P6 0.14∗ (1.80) 0.06 (1.24) 0.03 (0.58)
P7 0.25∗∗∗ (3.05) 0.13∗∗∗ (2.86) 0.11∗∗ (2.38)
P8 0.37∗∗∗ (4.33) 0.28∗∗∗ (5.54) 0.27∗∗∗ (5.33)
P9 0.43∗∗∗ (4.84) 0.46∗∗∗ (7.29) 0.48∗∗∗ (7.54)
P10 0.68∗∗∗ (7.46) 0.71∗∗∗ (8.48) 0.68∗∗∗ (8.13)
WML 1.17∗∗∗ (8.72) 1.32∗∗∗ (7.67) 1.21∗∗∗ (6.87)
GRS pval: 0.000 (85.864) pval: 0.000 (61.004) pval: 0.000 (47.726)

is not related to the factors added in the model.

Looking at Table 4, similar results are observed for the idiosyncratic momentum anomaly as for the

relative momentum anomaly. P1 and P10 and the WML portfolio have alphas significant at the 1% level.

The outperformance of the WML portfolio for the idiosyncratic momentum anomaly is lower than that

of the WML portfolio for the relative momentum anomaly. This can be attributed to portfolio 1 having a

higher performance in the idiosyncratic momentum anomaly. Nevertheless, all are alphas significant and
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are an outperformance of approximatley 1.2% monthly on average high. Overall, the added factors of the

FF3 and FF5 models cannot fully explain the outperformance of the market, supporting the conclusion

that the WML portfolios exhibit a different kind of risk.

5.2.1 GRS test

In addition to the inclusion of factors in the regression analysis, a Gibbons, Ross, and Shanken (GRS)

test was conducted to examine the average joint pricing errors for the momentum anomaly portfolios

Gibbons et al. (1989). The rejection of the null hypothesis in the GRS test suggests that the models used

in this study require further improvement. The GRS test results provide a stronger indication of the

model’s explanatory power than individual tests as it considers the correlation between portfolios. The

asymptotic GRS test was utilized as the sample size was large, and it does not require the assumption of

normality in the errors but instead relies on the convergence of alpha and beta to a normal distribution.

The results of the relative and idiosyncratic momentum anomaly portfolios are presented in Tables

3 and 4, respectively. For the relative momentum anomaly, the null hypothesis was rejected in all three

models. These results indicate that the models fail to explain the outperformance of alpha, suggesting

room for improvement. Interestingly, the test statistic did not decrease across models, contrary to

what might be expected. Although the FF5 model offered the best explanatory power for the relative

momentum anomaly, the overall performance was still inadequate.

For the idiosyncratic momentum anomaly, the pattern of decreasing test statistics across models was

observed. However, compared to the relative momentum anomaly, the test statistics were considerably

larger, indicating the robustness of the alpha found in this anomaly. It is noteworthy that the p-value for

both anomalies was far below 0.000, indicating their robustness and consistency with previous literature

findings Blitz et al. (2020). Therefore, it is concluded that the GRS test does not aid in explaining the

outperformance of either anomaly.

5.2.2 Fama-Macbeth regressions

Another popular test to test the persistence of anomalies is the Fama and MacBeth (1973) cross-section

test. Stock returns are regressed each month on various elements to gather a time-series of coefficients.

Afterwards, averages and corresponding t-statistics of the result are calculated. The cross-section test,

tests whether there is a premium in return associated with increasing a unit exposure to a factor. The null

hypothesis is that, under the CAPM, only beta should explain returns and all other factors influencing

the return should be zero. Therefore one would expect the other factors to be insignificant under the null-

hypothesis. The persistence of both the relative momentum strategy and the idiosyncratic momentum

anomaly is tested. As can be seen in Table 5, starting with the CAPM. All standard errors are adjusted

Newey and West (1987) standard errors with a maximum lag of 3 months. Individually, both the relative

momentum and the idiosyncratic momentum remain statistically significant at the 1% level. However,

when both are added to the model, only the idiosyncratic momentum anomaly remains statistically

significant, signalling that the idiosyncratic momentum anomaly is more robust. The model is expanded
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Table 5: Fama-Macbeth Regressions

This table shows the results from the Fama-Macbeth regressions on the returns. All results
are on individual stocks. Results are between January 1963 and December 2021. Beta is

estimated using a univariate regression over a 36 month time period on a CAPM. size is the
natural logarithm of a firm’s market capitalization. bm is the natural logarithm of the book to
market ratio defined as a firms book equity for the fiscal year ending in t-1 and the market

cap at the end of the previous month. Inv is the percentage of a firms growth in total assets at
the end of of the fiscal year ending t-1. Prof is the firms profitability defined as the ratio of
operating profits and book equity at the end of the previous fiscal year. Regressions one to
nine are all returns regressed on the given factors. All standard errors are Newey and West

(1987) calculated standard errors with a maximum of three lags. t statistics are in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

1 2 3 4 5 6 7 8 9
cons 0.81∗∗∗ 0.93∗∗∗ 0.83∗∗∗ 5.52∗∗∗ 4.75∗∗∗ 5.27∗∗∗ 5.53∗∗∗ 4.81∗∗∗ 5.31∗∗∗

(5.63) (6.76) (5.92) (9.18) (7.20) (9.24) (9.23) (7.29) (9.28)

beta 0.04 0.14 0.04 0.01 0.06 0.03 -0.09 -0.03 -0.05
(0.42) (1.13) (0.40) (0.11) (0.60) (0.38) (-0.95) (-0.31) (-0.58)

size -0.12∗∗∗ -0.10∗∗ -0.11∗∗∗ -0.12∗∗∗ -0.10∗∗ -0.11∗∗∗
(-3.04) (-2.48) (-2.84) (-3.08) (-2.48) (-2.83)

bm 0.45∗∗∗ 0.36∗∗∗ 0.44∗∗∗ 0.44∗∗∗ 0.37∗∗∗ 0.44∗∗∗
(7.24) (5.90) (7.26) (7.35) (5.92) (7.21)

inv -0.03 0.00 -0.01
(-0.60) (0.06) (-0.26)

prof 0.26∗∗∗ 0.27∗∗∗ 0.23∗∗∗
(4.12) (3.65) (3.25)

rMOM 0.74∗∗∗ 0.26 0.88∗∗∗ 0.77∗∗∗ 0.95∗∗∗ 0.77∗∗∗
(4.95) (1.22) (6.48) (4.17) (7.17) (4.15)

iMOM 0.24∗∗∗ 0.24∗∗∗ 0.23∗∗∗ 0.10∗∗ 0.25∗∗∗ 0.12∗∗
(7.74) (5.04) (6.52) (2.09) (6.78) (2.48)

r2 .03833 .0314 .04452 .06091 .05913 .06595 .07618 .07465 .0809
r2_a .0369 .02989 .04228 .05823 .05627 .06241 .07261 .07076 .0764

with the logarithmic size and logarithmic book to market characteristics of the firm. Size takes on a

negative sign, as expected, due to the size effect. Both the relative and idiosyncratic momentum remain

statistically significant at 1% and when combined at 5%. Lastly, whether the relative and idiosyncratic

momentum anomalies remain significant in the FF5 model is examined. This is done by adding the

investment and profitability factors to the model. Again, it can be seen that both remain statistically

significant at 5%. With these results, I conclude that even in a FF5 model, there is a premium in returns

associated with taking exposure to these anomalies, making them robust.
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Table 6: Spanning tests Relative momentum

This table shows spanning tests performed on the WML portfolio of the idiosyncratic mo-
mentum anomaly. Data ranges from January 1963 until December 2021. Returns are
in percentages. t statistics in parentheses. ∗ p < .10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(1) (2) (3) (4) (5)
rMOM rMOM rMOM rMOM rMOM

MktRF -0.234∗∗ -0.293∗∗∗ -0.225∗∗ -0.061
(-2.32) (-3.46) (-2.53) (-1.18)

SMB -0.065 -0.004 -0.214∗∗∗
(-0.35) (-0.03) (-3.48)

HML -0.521∗∗ -0.756∗∗∗ -0.309∗∗∗
(-2.34) (-3.60) (-3.30)

CMA 0.531 -0.057
(1.50) (-0.40)

RMW 0.242 0.207∗∗
(0.67) (2.00)

iMOM 1.212∗∗∗
(18.84)

_cons 1.455∗∗∗ 1.802∗∗∗ 1.995∗∗∗ 1.796∗∗∗ 0.334∗
(7.03) (7.78) (8.68) (5.85) (1.79)

N 702 702 702 702 702

5.2.3 Spanning Tests

In this section, the results of the spanning tests performed on the relative and idiosyncratic momentum

WML portfolios will be studied in order to assess their robustness. Spanning tests are a statistical

technique used to evaluate the relationship between two or more variables in a financial model. The

purpose is to determine whether the inclusion of additional variables can account for the alpha of the

dependent variable. In this study, the dependent variables are the relative and idiosyncratic momentum

WML portfolios, as presented in Table 6 and Table 7, respectively. The null hypothesis is that the

other factors can explain the alpha of the dependent variables, which is rejected if the alpha remains

statistically significant even after the addition of other factors.

Table 6 presents the results of the spanning tests on the relative momentum WML portfolio. The

table shows that the outperformance of this portfolio is approximately 1.46%. Interestingly, the addition

of other factors does not seem to explain the outperformance as expected. Further analysis reveals that

the market factor and the HML factor are statistically significant at 5% across regressions 2, 3, and 4, but

the market factor is no longer significant in Model 5. This may be due to the strong relationship between

the relative and idiosyncratic momentum factors, as evidenced by a t-statistic of over 18 in Model 5.

This finding is consistent with previous research indicating that the relative momentum factor is not

robust when the idiosyncratic momentum factor is included, as the two factors are highly correlated due
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to significant overlap between their high portfolio assets.

Table 7: Spanning tests Idiosyncratic momentum

This table shows spanning tests performed on the WML portfolio of the idiosyncratic mo-
mentum anomaly. Data ranges from January 1963 until December 2021. Returns are
in percentages. t statistics in parentheses. ∗ p < .10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

(1) (2) (3) (4) (5)
iMOM iMOM iMOM iMOM iMOM

MktRF -0.135∗∗ -0.189∗∗∗ -0.135∗∗ 0.000
(-2.00) (-3.17) (-2.22) (0.00)

SMB 0.163 0.173 0.175∗∗∗
(1.05) (1.46) (3.89)

HML -0.163 -0.369∗∗ 0.087
(-1.00) (-2.31) (1.39)

CMA 0.485∗∗ 0.165∗
(2.08) (1.75)

RMW 0.029 -0.117
(0.10) (-1.23)

rMOM 0.603∗∗∗
(24.50)

_cons 1.037∗∗∗ 1.283∗∗∗ 1.322∗∗∗ 1.207∗∗∗ 0.124
(7.52) (7.60) (7.58) (5.17) (1.03)

N 702 702 702 702 702

Table 7 presents the results of the spanning tests on the idiosyncratic momentum WML portfolio.

The table shows that the outperformance of this portfolio is approximately 1.03%. The addition of

the CAPM, FF3, and FF5-factors does not explain the outperformance, and the alpha only increases.

However, the addition of the relative momentum factor makes the alpha statistically insignificant. This

contrasts with the findings of Blitz et al. (2020), where the idiosyncratic momentum factor remains

statistically significant after the inclusion of the relative momentum factor. This discrepancy may be

due to differences in the construction of the idiosyncratic momentum factor, as this study uses the CAPM

instead of the FF3 model. The high correlation between the relative and idiosyncratic momentum factors

suggests that they can explain each other relatively well. Thus, based on the spanning tests, momentum

is a phenomenon that cannot be explained by more traditional factors that are widely known in the

finance industry.

5.3 Constructing beta
In this section, the different estimation methods’ results will be discussed. This section will follow

a similar line as the previous section starting with the descriptive statistics and following with the

empirical methods. The results will be compared to the traditional method as presented above.
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Table 8: Fama Macbeth Regressions

This table shows the Fama Macbeth regressions on the returns. rBeta is the realised
beta. rwBeta is the Random Walk beta. DCC is the Dynamic Conditional cor-
relation beta. Period is from February 1928 until December 2021. Returns are in
percentages. t statistics in parentheses ∗ p < .10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

RET RET RET
cons 0.88∗∗∗ 1.00∗∗∗ 0.74∗∗∗

(6.08) (4.94) (6.10)

rBeta 0.18∗∗
(2.18)

rwBeta 0.06
(1.46)

DCC_beta 0.28∗∗
(2.40)

r2 .01997 .01761 .03371

5.3.1 Constructing beta descriptive statistics

Starting with assessing the performance of different beta estimation methods in predicting returns. To

assess whether taking exposure to beta results in a return premium, a Fama-French two-step regression is

utilized. The results of the Fama-Macbeth regressions are summarized in Table 8. Both the realised beta

and the DCC beta are statistically significant at the 5% level of significance. In contrast, the random

walk beta is not significant, indicating poor predictive power. One possible explanation for this is that

the random walk beta can take extreme values when the market return approaches zero, due to the way

it is calculated:

βRW = lim
rm→±0

ri
rm

(27)

Anomalously high returns on a particular stock, relative to the overall market, can result in a

calculated random walk beta that is substantially elevated. For instance, if a stock experiences a gain of

50% in the previous month while the market only yields a return of 0.1%, the resulting beta value would

be 500, an extreme and atypical outcome. Such extreme values are improbable to be repeated, and thus

predicted returns based on this random walk beta may be subject to significant mispricing.

Now, the idiosyncratic momentum factor per asset is constructed using a CAPMmodel and estimated

betas. This allows assets to be divided into portfolios as previously done with the univariate regressions

in Section 5.1. Table 9 shows the results of the portfolio classification. Each beta estimation method

will be discussed and their corresponding result on the idiosyncratic momentum anomaly portfolios

individually. The focus will be on the WML portfolio. Comparisons will be made with Table 2.

First the realised beta. With the WML portfolio having a return of 1.20% monthly, it is higher than

that of the idiosyncratic momentum anomaly of 1.03%. This difference can be attributed to the fact that

P1 of the realised beta estimation portfolio has a lower return, making a short position in this portfolio
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Table 9: Portfolio returns of different beta estimations

This table shows the descriptive statistics of the different methods for estimating beta. Period
is from January 1925 until December 2021. Due to 3 years estimation period and one month
price to return conversion, results start at February 1928. Returns are in percentages.

Realised Beta Idiosyncratic Momentum Portfolios
mean sd min max skewness kurtosis

P1 0.256 8.026 -31.374 65.037 1.294 12.826
P2 0.466 7.770 -32.853 77.167 1.383 17.487
P3 0.634 7.466 -32.200 61.601 1.191 14.759
P4 0.697 7.273 -31.540 55.141 0.892 13.120
P5 0.812 7.171 -33.002 54.894 0.973 14.265
P6 0.917 7.061 -32.523 57.286 0.806 13.574
P7 1.035 6.986 -31.690 60.672 0.985 15.490
P8 1.162 6.876 -32.772 56.246 0.494 11.801
P9 1.242 6.619 -30.884 48.725 0.119 9.229
P10 1.457 6.406 -30.941 41.207 0.024 8.546
WML 1.201 5.222 -39.076 28.630 -1.422 13.440
N 1105

Random Walk beta Beta Idiosyncratic Momentum Portfolios
mean sd min max skewness kurtosis

P1 0.645 7.276 -32.187 52.844 0.744 11.120
P2 0.737 7.211 -33.125 59.486 0.777 13.186
P3 0.820 7.272 -33.387 66.710 0.903 14.527
P4 0.857 7.231 -31.467 62.109 0.998 14.688
P5 0.889 7.085 -34.466 58.230 0.793 13.274
P6 0.850 6.962 -29.546 54.415 0.689 12.006
P7 0.878 7.142 -30.130 53.641 0.971 13.584
P8 0.921 6.808 -30.087 49.937 0.495 9.919
P9 1.000 6.840 -29.680 56.170 0.808 12.706
P10 1.082 6.794 -30.457 55.643 0.786 14.154
WML 0.436 3.062 -25.727 18.592 -0.401 12.196
N 1105

DCC Beta Beta Idiosyncratic Momentum Portfolios
mean sd min max skewness kurtosis

P1 0.513 7.734 -30.303 47.335 0.885 9.748
P2 0.644 7.348 -33.027 54.050 0.801 11.820
P3 0.717 7.057 -29.902 58.183 1.105 13.919
P4 0.832 7.097 -34.413 66.426 1.340 18.093
P5 0.929 6.687 -30.828 54.718 0.653 12.379
P6 0.952 6.839 -29.458 62.842 1.125 16.447
P7 1.018 6.688 -33.050 55.631 0.840 15.056
P8 1.187 6.611 -31.991 54.291 0.616 12.819
P9 1.263 6.719 -32.040 56.960 0.714 13.929
P10 1.400 6.627 -30.030 55.168 0.289 11.332
WML 0.886 5.090 -41.294 31.916 -0.763 11.421
N 1105

generate higher returns. The standard deviation is higher as well at 5.22%, meaning its risk is higher.

Combine these two and you get a Sharpe ratio of 0.230, which is almost equal to the Sharpe ratio of
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0.227 of the univariate beta idiosyncratic momentum WML portfolio.

Second, there is the Random Walk beta. Where the results of the realised beta portfolios were

relatively close to the univariate beta portfolios, the random walk beta is much more different. Most

importantly is that the average monthly return of only 0.44% is not even half that of the univariate beta

WML portfolio. It should be noted that the standard deviation is also lower, with only 3.06%. What

stands out is that the minimum and maximum returns are also closer to zero. Therefore concluding that

the portfolio sorts based on the Random Walk beta are less prone to crash risk. lastly the Sharpe ratio is

also a lot lower with only 0.142, meaning that the reduced risk is not enough to compensate for the lower

returns. The general conclusion I take off these results is that the Random Walk beta is less accurate in

predicting returns16, and therefore does a worse job in exploiting the idiosyncratic momentum anomaly.

This is invigorated by the fact that portfolios P3 to P8 only differ slightly and all portfolios are much

closer than the portfolios that followed out of the other estimation techniques. Therefore, the conclusion

is that the Random Walk beta is not suited to form the idiosyncratic momentum anomaly. There is not

enough reduced risk to compensate for the lower returns based on Sharpe ratio.

Third, the portfolios were formed on the DCC beta. The results are somewhat disappointing. It

performs worse than traditional method for estimating the idiosyncratic momentum anomaly. The

returns of the WML portfolio are lower, 0.89% compared to 1.03% in the traditional method. The

standard deviation is higher at 5.09%. Resulting in a much lower Sharpe ratio of only 0.174. The

conclusion is therefore clear: the DCC beta should not be used for estimating the idiosyncratic returns

based on these results. However, there are some notes that are important to address and that might

make this method more plausible in the future. The first is that to estimate the DCC beta, a lot of data

is needed. Even with daily data, it often does not reach convergence. For monthly data, a 60-month

window is used with a minimum of 24 observations. Making convergence harder to achieve and reducing

the size of the data set. Second is that the amount of Iterations was capped at 100 to the speed of the

model17. One could increase the amount of iterations to improve the chance of finding convergence. This

is possible as in practice a data set of 1925 until the present will be redundant and a researcher can chose

a much smaller time window for their research.

In Figure 2 the cumulative returns over the entire studied period are shown for the idiosyncratic

momentum anomaly using the different beta estimation techniques. A logarithmic y-axis is used due

to the cumulative returns growing exponentially over time, making the different WML portfolios more

comparable. This graph is a visual representation of Tables 2 and 9. We see that overall they show

similar patterns. When all portfolios crash at the same time and show large gains at approximately the

same time. Remarkable is that the DCC beta WML portfolio has a much stronger crash compared to

the other methods after the 2008 financial crisis. A possible explanation could be that due to the DCC

GARCH method adjusting quicker to style reversals, a quick style reversal happening twice might cause

the DCC GARCH WML portfolio to be exposed first in the crash, and then in the reversal from bear to

bull market.
16As also can be seen in Table 8
17The current model took approximately 40 hours to complete, making time optimization necessary.
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Figure 2: Cumulative returns for the idiosyncratic momentum anomaly using different
beta formations

5.3.2 Empirical results betas

To test the robustness of the results for the different beta estimation methods, empirical tests are

performed similar to those previously performed for traditional idiosyncratic and relative momentum

factors. The alpha regressions, GRS test and spanning tests will be performed. As I am most interested

in comparing the different idiosyncratic momentum methods, the results will be compared to Table 4. For

the empirical methods, the exact same tests will be performed as performed previously on the traditional

relative and idiosyncratic momentum anomalies. In the next section the found differences and similarities

will be discussed.

Starting with the idiosyncratic momentum factor created using the realised beta. The results are

shown in Table 10. Compared to Table 4, the realised beta has, in all factor models, a larger difference

between the winner and loser alphas. This results in greater outperformance in the WML portfolio. The

WML alphas are larger. Noteworthy is that the realised WML alphas show a similar pattern to the

traditional WML alphas. The CAPM has the lowest alpha, the FF3 model the highest, and, lastly, the

FF5 alpha is between these two. Important to note is that all WML alphas, as well as those of P1 and

P10 are statistically significant at the 1% confidence level. Based on these notes I conclude that the

alphas are more robust than the traditional idiosyncratic momentum factor.

Second, the robustness of the Random Walk beta is studied. The results can be seen in Table 11.

The pattern of Table 8 and Table 9 continues. The Random Walk beta performed poorly in these

tests and continues to do so in Table 11. The Loser portfolio has higher returns than for the Random
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Table 10: realised beta alphas

This table shows factor regressions on the formed idiosyncratic momentum portfolios formed by
using the realised beta method. Alpha is the constant in the regression that cannot be explained
by factors in the model. Data ranges from January 1963 to December 2021. Alpha returns are
in percentages. t statistics in parentheses ∗ p < .10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

CAPM alpha t-stat FF3 alpha t-stat FF5 alpha t-stat
P1 -0.63∗∗∗ (-3.86) -0.84∗∗∗ (-6.47) -0.74∗∗∗ (-5.57)
P2 -0.37∗∗∗ (-2.76) -0.56∗∗∗ (-5.93) -0.51∗∗∗ (-5.29)
P3 -0.20∗ (-1.67) -0.37∗∗∗ (-4.74) -0.35∗∗∗ (-4.33)
P4 -0.09 (-0.86) -0.26∗∗∗ (-4.04) -0.25∗∗∗ (-3.85)
P5 0.04 (0.39) -0.10∗∗ (-1.99) -0.12∗∗ (-2.17)
P6 0.10 (0.98) -0.03 (-0.75) -0.02 (-0.52)
P7 0.29∗∗∗ (2.92) 0.20∗∗∗ (4.10) 0.22∗∗∗ (4.38)
P8 0.45∗∗∗ (4.18) 0.37∗∗∗ (7.29) 0.39∗∗∗ (7.64)
P9 0.58∗∗∗ (5.25) 0.54∗∗∗ (8.50) 0.55∗∗∗ (8.57)
P10 0.80∗∗∗ (6.64) 0.80∗∗∗ (9.32) 0.79∗∗∗ (8.93)
WML 1.44∗∗∗ (7.18) 1.64∗∗∗ (8.49) 1.53∗∗∗ (7.69)
GRS pval:

0.000
(64.12) pval:

0.000
(95.87) pval:

0.000
(90.23)

Table 11: Random walk beta alphas

This table shows factor regressions on the formed idiosyncratic momentum portfolios formed
by using the random walk beta method. Alpha is the constant in the regression that cannot be
explained by factors in the model. Data ranges from January 1963 to December 2021. Alpha
returns are in percentages. t statistics in parentheses ∗ p < .10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

CAPM alpha t-stat FF3 alpha t-stat FF5 alpha t-stat
P1 -0.16 (-1.34) -0.31∗∗∗ (-3.68) -0.29∗∗∗ (-3.40)
P2 -0.06 (-0.57) -0.19∗∗∗ (-2.86) -0.17∗∗ (-2.48)
P3 0.03 (0.31) -0.08 (-1.28) -0.05 (-0.90)
P4 0.06 (0.62) -0.04 (-0.76) -0.02 (-0.29)
P5 0.13 (1.24) 0.01 (0.11) 0.04 (0.86)
P6 0.09 (0.82) -0.05 (-0.95) -0.03 (-0.53)
P7 0.09 (0.79) -0.05 (-0.94) -0.02 (-0.41)
P8 0.20∗ (1.83) 0.06 (1.23) 0.09 (1.62)
P9 0.22∗∗ (2.07) 0.11∗ (1.95) 0.13∗∗ (2.29)
P10 0.37∗∗∗ (3.49) 0.28∗∗∗ (4.88) 0.28∗∗∗ (4.65)
WML 0.52∗∗∗ (4.54) 0.59∗∗∗ (5.17) 0.57∗∗∗ (4.83)
GRS pval:

0.002
(28.57) pval:

0.000
(35.31) pval:

0.000
(33.53)

Walk beta idiosyncratic momentum anomaly than the anomaly has formed on the traditional method

or the realised beta. Vice versa is true for the winner portfolio. This results in a very poor result. The

combination of these factors results in a WML portfolio that performs significantly worse. It should

be noted that, despite its relatively poor performance, it is still possible to generate significant returns

even at the 1% confidence level. This signals that despite the performance dropping as beta is estimated

using the Random Walk method, there is still an underlying foundation of the idiosyncratic momentum
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anomaly that can generate returns, as this test proves that the outperformance is not driven by any of

the Fama French factors18. Nevertheless, despite the outperformance being statistically significant, there

are better ways for forming the idiosyncratic momentum factor than using the Random Walk method

based on these results.

Table 12: DCC GARCH beta alphas

This table shows factor regressions on the formed idiosyncratic momentum portfolios formed by
using the DCC GARCH beta method. Alpha is the constant in the regression that cannot be
explained by factors in the model. Data ranges from January 1963 to December 2021. Alpha
returns are in percentages.

CAPM alpha t-stat FF3 alpha t-stat FF5 alpha t-stat
P1 -0.22 (-1.53) -0.45∗∗∗ (-3.78) -0.47∗∗∗ (-3.85)
P2 -0.13 (-1.09) -0.33∗∗∗ (-3.70) -0.41∗∗∗ (-4.45)
P3 -0.03 (-0.28) -0.21∗∗∗ (-2.82) -0.29∗∗∗ (-3.83)
P4 0.10 (1.00) -0.08 (-1.30) -0.18∗∗∗ (-2.93)
P5 0.20∗∗ (2.26) 0.05 (0.77) -0.07 (-1.26)
P6 0.22∗∗ (2.57) 0.07 (1.39) -0.03 (-0.52)
P7 0.29∗∗∗ (3.58) 0.17∗∗∗ (3.32) 0.09∗ (1.85)
P8 0.53∗∗∗ (6.32) 0.45∗∗∗ (8.17) 0.39∗∗∗ (6.99)
P9 0.54∗∗∗ (5.44) 0.50∗∗∗ (7.08) 0.44∗∗∗ (6.21)
P10 0.75∗∗∗ (6.43) 0.75∗∗∗ (8.09) 0.74∗∗∗ (7.73)
WML 0.97∗∗∗ (4.86) 1.20∗∗∗ (6.36) 1.22∗∗∗ (6.23)
GRS pval:

0.000
(54.73) pval:

0.000
(83.33) pval:

0.000
(71.57)

The last beta method examined is the DCC GARCH method. The results are shown in Table 12.

Unlike Table 10, not all the alphas for P1 and P10 are statistically significant at 1%. For the CAPM

Alpha of P1, the result is not significantly different from zero. This can be attributed to the fact that

the CAPM Alpha of P1 in the DCC GARCH method lies closer to zero, -0.16 versus -0.63. When

looking at the WML portfolio, contrary to expectations, the outperformance of alpha increases as the

model becomes more sophisticated. This is against expectations as one would expect that adding factors

helps explain the outperformance of alpha. When looking at absolute returns of the WML portfolio, the

WML portfolios performs significantly better than the idiosyncratic momentum formed using Random

Walk beta estimation. However, the factor formed using realised beta outperforms the DCC beta.

Compared to the traditional method, the results are very close. Due to the more complex method used

to construct the DCC beta, one might think that the more simplistic traditional method might have the

advantage. While there are cases where this definitely is true, such as time limited situations, there is

not enough evidence to deem the DCC beta unusable. There are situations in which investors can use

this method where it may be beneficial. The possibilities lie in shorter investment horizon strategies.

This is due to the fact that DCC GARCH requires a high number of observations to be used. When

using daily data instead of monthly data, we see that DCC GARCH tends to perform better as seen in

18I do however not fully contribute the outperformance to the underlying Idiosyncratic momentum
mechanism as there may be uncaptured factors that drive the outperformance

31



Hollstein and Prokopczuk (2016). So when looking at the DCC beta method and taking into account

that the situation is suboptimal, the fact it still generates comparable returns to the traditional method

is promising. Therefore I would conclude that this thesis shows that the DCC GARCH method is a

method that shows potential in the monthly period and will likely perform even better when using daily

returns as strategy due to the nature of the method.

5.3.3 Spanning tests

In this section, the results of spanning tests performed on the different WML portfolios of the various

beta construction methods are discussed. The results will be compared with Table 7.

Table 13: Realised beta spanning tests

This table shows spanning tests performed on the WML portfolio of the id-
iosyncratic momentum anomaly formed on the realised beta. Due to the fac-
tors only being available from 1963, data ranges form January 1963 until Decem-
ber 2021. t statistics in parentheses. ∗ p < .10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

WML WML WML WML WML
MktRF -0.138∗ -0.187∗∗∗ -0.155∗∗ 0.012

(-1.80) (-2.96) (-2.29) (0.54)

SMB -0.126 -0.078 -0.075∗∗
(-0.81) (-0.56) (-2.26)

HML -0.532∗∗∗ -0.632∗∗∗ -0.070
(-3.24) (-3.68) (-1.56)

CMA 0.217 -0.178∗∗
(0.83) (-2.47)

RMW 0.193 0.013
(0.66) (0.21)

rMOM 0.744∗∗∗
(42.89)

_cons 1.356∗∗∗ 1.438∗∗∗ 1.641∗∗∗ 1.528∗∗∗ 0.191∗∗
(6.97) (8.06) (9.04) (6.29) (2.35)

Following the order as has been done throughout this paper, the first method examined is the Realised

beta. The results of the spanning tests performed on the WML portfolio formed on the realised beta can

be seen in Table 13. Looking across all regressions, it can be seen that the most influencial factor is the

rMOM factor. This is not a surprise due to the similar nature of the underlying mechanism that drives

the idiosyncratic WML factor and the realised WML factor. It should be noted that the HML factor

is statistically significant until the rMOM factor is added. Most important out of the spanning tests

is that the constant remains statistically significant at 5%. This means that the added factors are not

able to fully explain the returns of the WML portfolio. The idiosyncratic momentum factor formed on

the realised beta is robust and prices a potential risk not covered by the other factors. This is different
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from the traditional method tested in Table 7, here the rMOM was able to explain most of the iMOM

returns. Important is that this is only the case in this study; Blitz et al. (2020) show in their paper that

the traditional method remains statistically significant even when adding the rMOM factor. This can

be explained by the fact that they form their iMOM factor with a FF3 method and this paper uses a

CAPM regression to make it comparable to the different beta estimation techniques. returning to the

realised beta method, it again shows dominance over the traditional method, making it robust and it

can be seen as an improvement. Therefore after all tests performed I conclude that forming portfolios

using realised beta, despite its more simplistic approach, performs better than the traditional method

for forming the idiosyncratic momentum anomaly.

Table 14: Random Walk beta spanning tests

This table shows spanning tests performed on the WML portfolio of the idiosyn-
cratic momentum anomaly formed on the random walk beta. Due to the fac-
tors only being available from 1963, data ranges form January 1963 until Decem-
ber 2021. t statistics in parentheses. ∗ p < .10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

WML WML WML WML WML
MktRF -0.093∗∗ -0.131∗∗∗ -0.126∗∗∗ -0.065∗∗

(-2.03) (-3.46) (-3.18) (-2.02)

SMB 0.053 0.063 0.064
(0.80) (0.91) (1.35)

HML -0.205∗ -0.221∗∗ -0.015
(-1.82) (-2.53) (-0.24)

CMA 0.033 -0.111
(0.19) (-1.04)

RMW 0.044 -0.022
(0.24) (-0.20)

rMOM 0.272∗∗∗
(8.00)

_cons 0.469∗∗∗ 0.524∗∗∗ 0.590∗∗∗ 0.568∗∗∗ 0.080
(3.40) (3.87) (4.49) (3.56) (0.64)

Second, the Random Walk spanning tests. The results are shown in Table 14. These results will be

discussed shortly as the beta estimation method has already been proven to be less useful in previous

tests. The alpha is approximately one third of the realised beta alpha. However, it is statistically

significant at 1% until the rMOM factor is added to the regression. But other than this it is an inferior

method to the realised beta on all fronts, hence proven to be a less effective method for estimating the

idiosyncratic momentum. Therefore, my advice to investors would be not to use the Random Walk

method to calculate beta to form the idiosyncratic returns based on the results shown.

Lastly, the spanning tests performed on the DCC GARCH beta estimation method. The results are

shown in Table 15. Results are very similar to the traditional method. The outperformance remains
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Table 15: DCC beta spanning tests

This table shows spanning tests performed on the WML portfolio of the idiosyn-
cratic momentum anomaly formed on the DCC GARCH beta. Due to the fac-
tors only being available from 1963, data ranges form January 1963 until Decem-
ber 2021. t statistics in parentheses. ∗ p < .10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

WML WML WML WML WML
MktRF -0.123 -0.210∗∗∗ -0.208∗∗∗ -0.057∗

(-1.56) (-3.24) (-2.83) (-1.71)

SMB -0.016 -0.030 -0.027
(-0.09) (-0.21) (-0.52)

HML -0.653∗∗∗ -0.668∗∗∗ -0.159∗∗
(-4.23) (-3.84) (-2.33)

CMA 0.042 -0.316∗∗∗
(0.17) (-3.36)

RMW -0.060 -0.223∗∗∗
(-0.22) (-2.64)

rMOM 0.673∗∗∗
(22.28)

_cons 0.904∗∗∗ 0.976∗∗∗ 1.210∗∗∗ 1.222∗∗∗ 0.012
(4.43) (5.09) (6.29) (5.02) (0.11)

statistically significant at 1% until the rMOM factor is added. It is noteworthy that outperformance is

actually increasing across the first 4 regressions as more factors are added. This can be attributed to

the fact that except for the CMA factor, all have negative sings. The reason for this can be that the low

portfolio is more exposed to these factors than the high portfolio, resulting in a net negative exposure.

The DCC GARCH shows signs of possible benefits due to the limitations as described in the previous

section. Although the setting is not optimal for the DCC GARCH, it performs relatively similar to the

traditional method, making it interesting to see for further research how the idiosyncratic momentum

anomaly in combination with DCC GARCh based on daily data performs. For now, however, we must

conclude that the DCC GARCH method is performing worse than the realised beta method. When this

is combined with the complexity of the DCC garch method, the realised beta has the benefit in both the

performance and simplicity.

5.4 Factor models
As mentioned in the literature review, whether the construction of the idiosyncratic momentum with

different factor models can improve the performance of the anomaly is tested. As can be seen in Table

16, there are some major differences in the outcome in the way the idiosyncratic momentum anomaly is

constructed. Focussing on the WML portfolio as this is the net zero investment portfolio. When looking
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Table 16: Different factor models for the construction of idiosyncratic momentum

This table shows a comparison of constructing the idiosyncratic momentum anomaly using
different factor models to calculate the idiosyncratic returns. The period is January 1968
until December 2016. Mean and standard deviation (sd) are in percentages. Sr stands
for the Sharpe ratio. P1 is the portfolio with the lowest idiosyncratic returns, P10 is the
portfolio with the highest idiosyncratic returns. WML is the winner minus losers portfolio.

P1 P10 WML
CAPM mean 0.234 1.400 1.170

sd 6.720 6.056 4.472
Sr 0.034 0.231 0.262

FF3 mean 0.328 1.207 0.879
sd 6.750 6.165 3.895
Sr 0.049 0.196 0.226

FF5 mean 0.337 1.194 0.857
sd 6.600 6.032 3.486
Sr 0.051 0.198 0.246

Q mean 0.339 1.383 1.044
sd 6.768 6.179 4.219
Sr 0.050 0.224 0.247

Q5 mean 0.299 1.380 1.081
sd 6.703 6.186 4.061
Sr 0.045 0.223 0.266

D mean 0.340 1.444 1.070
sd 6.532 5.935 3.965
Sr 0.052 0.243 0.270

SY mean 0.232 1.315 1.102
sd 6.697 6.024 4.033
Sr 0.035 0.218 0.273

at the mean return of the portfolios, the CAPM has the highest return. Followed by the SY model

and Q5 model. Based on the return, it can be seen that FF3 and FF5 have the lowest return by more

than 0.1 percentage points difference. Remarkable is that while the FF5 model has the lowest return,

it also achieves the lowest standard deviation. An investor looking to minimize risk might therefore be

interested in using the FF5 model when constructing an idiosyncratic momentum strategy. The CAPM,

while having the highest return, also has the highest standard deviation, emphasizing the risk-return

tradeoff. Therefore the Sharpe ratio can help in comparing the different models in their risk-return

tradeoff. Looking at the Sharpe ratio, the SY model performs best. The standard deviation of the SY

model is lower than that of the CAPM, while maintaining high returns, making it the best option in

the Sharpe ratio. The FF3 model achieves the lowest Sharpe ratio, while being the main model used

in the previous literature. This signifies the importance of the factor model used when constructing the

idiosyncratic momentum anomaly.
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6 Conclusion and Discussion
In this Section, the conclusion and discussion of this paper will be discussed. First, I will start with

highlighting the main findings in the conclusion and give an answer to the research question. After that,

in the discussion, limitations and possible continuations for future research will be addressed.

6.1 Conclusion
In the results, I have shed light on the possibilities in using the idiosyncratic momentum. First, we have

seen that, based on the Sharpe ratio and volatility, the idiosyncratic momentum anomaly outperforms

the relative momentum anomaly. While the average returns are slightly lower, the decrease in risk shows

the trade-off investors can make. The largest critique from relative momentum is crash risk. I have

shown that this risk is significantly lower for the idiosyncratic momentum anomaly.

The first decision studied in this paper is the way beta is calculated for the factor model. I tested

four methods on the CAPM to see which performed best. First, the descriptive statistics showed that the

realised beta was the best based on returns; it did, however, also have the highest returns. Second was

the method using univariate regressions. Subsequently, empirical tests were performed to see whether

the different methods are robust to other factors. Here the Realised beta method exhibit that it was

most robust, remaining statistically significant even when the relative momentum factor was added. The

contrary was true for the other methods. Therefore, the conclusion was drawn that the realised beta

showed the best characteristics in this study. Answering the first subhypothesis: ”A more accurate

method of estimating beta will increase the performance of the idiosyncratic momentum anomaly.”, this

was incorrect, as the traditional method is more accurate in estimating beta according to Hollstein and

Prokopczuk (2016), but was outperformed by the realised beta. This signals that simplicity can prevail

over sophisticated methods for the idiosyncratic momentum anomaly.

The second important decision in constructing the idiosyncratic momentum factor is which asset

model to use to construct the forecast returns. This paper sheds light on various factor models and

used those to calculate the idiosyncratic returns. Of the factor models tested, the CAPM was able to

generate the highest returns. This was accompanied by also having the highest volatility. The lowest

volatility was achieved by the FamaFrench 5 factor model, but consequently also had the lowest return.

The factor model that exhibited the best risk return trade-off, translated into the highest Sharpe ratio,

was the Daniel et al. model. Answering the second subhypothesis: ”The most accurate factor models

are better suited for the idiosyncratic momentum anomaly, as they predict stock returns better.”, here

there is no clear answer. While Daniel et al. performed best, second place was obtained by the CAPM,

which is not the most accurate according to Hou et al. (2021), signalling the exact opposite.

In conclusion, there are many ways to construct the Idiosyncratic momentum anomaly. Thus, the

study has attempted to shed light on a couple of these possibilities; however, the possibilities are endless.

This study concluded that, of the factor models tested, the Stambaugh and Yuan model performed best

and of the beta estimation techniques, the performance of the realised beta was most promising. To

answer the research question of this thesis: ”The most accurate calculation of the expected return will
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lead to the best performance of the idiosyncratic momentum anomaly.”, was seemed not true, there is a

strong pattern in simplistic models having a great performance on the idiosyncratic momentum anomaly.

In conclusion, this study advises using a realised beta for beta estimation and the Daniel et al. model

as a factor model.

6.2 Discussion
This paper has some limitations that will be discussed in this section. I will start with limitations to the

beta method model segment. Then I will follow up with a discussion on the factor model segment.

First, the beta-forming segment, the amount of beta-formations studied. The Hollstein and Prokopczuk

paper showed beta estimation methods that outperformed the beta estimation methods studied in this

paper. These methods use daily data and are more sophisticated. Additionally, these methods use

advanced econometric methods which are out of my league of expertise. My suggestion for future re-

search would be to test whether these methods could help increase the performance of the idiosyncratic

momentum anomaly.

To add to the use of daily data, the limitation of DCC GARCH is that it also performs better using

more observations. I used a windows of 5 years, however that is only 60 observations. For the DCC

GARCH often a year of daily data is used which is roughly 250 observations, making the chance of

convergence through iteration significantly higher. In my sample, it was often the case that convergence

was not achieved, resulting in unusable betas. For future research, I would suggest using a smaller

dataset to combine this with daily data. Time-wise this was not achieveable to me due to time it took

for the model to run. With only 60 observations, due to the size of my sample, it took approximately

40 hours. Add in the fact that you would sometimes have to make an adjustment and you are looking

at weeks when using daily data. This was an oversight in planning. Therefore reducing the amount of

assets in your sample, or shortening the studied period could allow for use of daily.

Third, the time period studied is shorter than the entire period that was studied for the descriptive

statistics of the idiosyncratic and relative momentum anomaly. This is due to the availability of factors

provided by the authors. There is the possibility to construct the factors yourself; however, this was

beyond the scope of this thesis due to many factors being dependent on accounting data, which is more

complex. This made it so that the most recent 4 years were not studied, which might be most important

to investors. While the period of approximately 40 years that were studied should give a general picture,

this should be seen as a limitation to recent years.

Fourth, we have the factor models studied. A study by Hou et al. (2017) tested 437 different

anomalies. That shows how large the universe of different factors in investing is. While it must be noted

that not all survived the different tests of the authors, there are many who did. Of these factors, there

are a lot of different factor models that are not studied in this thesis. In addition, as time progresses, new

factor models are likely to emerge. This makes that the idiosyncratic momentum might be estimated

more accurately in the future and the possibilities of the idiosyncratic momentum anomaly are constantly

expanding.
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As described above, there are still improvements that can be made, as well as expanding the research

into new topics. Which will be interesting to follow closely as time progresses.
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Appendices

Appendix A:
Table 17: Comparison relative momentum anomaly standardization

This table shows the influence of standardization of the relative momentum factor on portfolio
performance.

(Not standardized) (Standardized)

mean sd mean sd
P1 0.031 10.265 0.127 8.557
P2 0.506 8.336 0.450 8.271
P3 0.649 7.441 0.585 7.755
P4 0.717 6.887 0.674 7.401
P5 0.803 6.503 0.837 7.150
P6 0.919 6.327 0.953 7.006
P7 0.959 6.039 1.079 6.790
P8 1.109 6.221 1.128 6.567
P9 1.272 6.462 1.276 6.268
P10 1.492 7.6096 1.442 5.895
WML 1.460 7.007 1.315 5.682
N 1141 1141

Table 18: Comparison idiosyncratic momentum anomaly standardization

This table shows the influence of standardization of the idiosyncratic momentum factor on
portfolio performance.

(Not standardized) (Standardized)

mean sd mean sd
P1 0.263 8.776 0.396 7.899
P2 0.602 7.099 0.552 7.230
P3 0.727 6.680 0.688 7.136
P4 0.670 6.725 0.779 6.888
P5 0.911 6.387 0.897 6.940
P6 0.957 6.557 0.954 7.033
P7 1.047 6.564 1.038 6.875
P8 1.034 6.479 1.163 6.977
P9 1.156 6.932 1.237 7.121
P10 1.383 8.247 1.429 6.719
WML 1.161 4.535 1.033 4.555
N 1115 1105
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