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Abstract
Pair trading strategies have been well-documented for almost two decades. Naturally, much

of the literature has gone towards increasingly complex mathematical models. Often however,
certain parameters of the trading aspect are taken as a given, following in the footsteps of a now
17 year-old paper. The present analysis follows a different approach: I take the pair formation
methods as given, and analyze the extent to which the performance of this strategy varies with
input parameters. I find that, although the in-sample optimum of about 1.6σ for the trigger rule
is close to the canonical 2σ rule, the common reversion threshold of 0σ in the literature is a far
departure from the optimal value of above 1σ, depending on formation method.
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Introduction
Much attention has been devoted to devising many kinds of highly mathematical methods of identifying
undervalued stocks, and to the construction of sophisticated trading algorithms. However, there is a
decades-old Wall Street trading strategy which seems to produce high returns, with comparatively
little complexity or risk.

In the seminal paper by Gatev, Goetzmann, and Rouwenhorst (2006), henceforth referred to as
GGR, the authors found significant and robust positive returns to the so-called pairs trading strategy,
and the authors emphasized its simplicity and straightforward applicability. Without requiring
prohibitive computational requirements, incurring excessive trading costs, or using complicated
synthetic instruments, it was shown that one could earn significant excess returns on market-neutral
positions with a set of simple trading rules, which are as follows. Firstly, we need to identify a pair of
stocks whose prices move in unison (or at least as close as we can find). Then we observe their prices,
and once they diverge from their common trajectory, we buy the stock which has fallen, and short the
stock which has risen in price. We then wait for them to revert to their common price levels and pocket
the arbitrage profits. The main idea behind this strategy is that, if two stocks move very similarly to
one another, they represent assets which provide similar payoffs across different states of the world. If
that is indeed the case, our bet is that the divergence in prices is random in nature, and in absence of
further disruptions, the two prices should revert back to their long-term levels which are close together.

Despite its striking simplicity, this strategy has been widely corroborated by the literature
since the 2006 paper brought it into the academic spotlight, although a downward trend in
performance over time has been noted by the literature. The strategy has been expanded and
advanced in many directions, most of which tend towards complexity, and the literature has
naturally tended towards expanding the mathematical frameworks for modeling pairs rather than
examining the intricacies of the strategy in its simplest form, as it was in GGR. These include,
but are not limited to, a cointegration model with a logistic mixture auto-regressive equilibrium
error of Cheng et al., (2011), and a three-regime threshold autoregressive GARCH models of
Chen et al. (2014). The present paper aims to go the other way - to keep the strategy steps
and rules as simple as possible, but to scrutinize the particular strategy parameters which play
a key role in the realization of profits. This is an attempt to keep the pair trading strategy in
the realm of “disarmingly simple,” as described by GGR in their seminal paper, and to also scru-
tinize a side of the strategy which tends to be overlooked - return sensitivity to the trading parameters.

Specifically, in GGR they use two rules to determine the opening and closing of the appropriate
positions in any given pair: when the two stocks deviate by more than two standard deviations of their
price difference during the formation period, they enter the position by buying the falling stock and
shorting the rising stock (in equivalent amounts). Then, they unwind the positions once the stocks’
prices cross once again. Furthermore, if the prices do not cross within the trading period, then the
position is closed at the last day of said trading period. The authors do not specifically elaborate
on the reasons behind these particular thresholds. They are sensible and understandable, of course,
but there is an effectively infinite parameter space to choose from. Moreover, although whole-number
multiples of the standard deviation are very natural to humans, there is no reason to believe this
particular threshold is either more or less conducive to successful execution of this strategy than any
other. For this reason, the present analysis will look to examine the sensitivity of the pairs trading
strategy performance on variations in the strategy parameters, namely the thresholds for closing and
opening a position. Additionally, I will also analyze how the number of top pairs included in the
strategy affects the strategy profits. Lastly, I will compare different methods of obtaining pairs to one
another.

Literature
To identify the stock pairs which move along in unison, Gatev et al. (2006) calculate the sum of squared
deviations between normalized price levels of the stocks for a period of time, and choose the pairs with
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the lowest values. Then, they use a trading rule such that they open the appropriate positions in
each stock of the pair once they diverge by more than two historical standard deviations, and unwind
the positions when the prices next cross one another. They find that trading the top pairs can result
in 11% annualized return. However, they keep those trading rules constant throughout the paper,
and they do not analyze further how the performance changes depending on the trading rules. This
specifically is the area where the present paper aims to contribute to the literature - to vary the trading
strategy parameters and analyze how the profits change.

In addition to calculating the sum of squared deviations to identify pairs, another tempting
methodology is to consider stocks which have the highest return correlation between one another.
One of the benefits would be the fact that this method would identify pairs which move up or
down in unison, but to differing extents. For instance, if stock B moves 2% for each 1% of stock
A’s movement, these two would be unlikely to be identified by the SSD approach, even if they
had perfect correlation. However, due to the inherent randomness, daily return data may not
be ideal for this purpose. Rather, in the literature it is more common to use lower-frequency
data. For instance, Chen et al. (2019) use monthly return data to compute the pairwise return
correlations. They corroborate the results of GGR, and find evidence that those returns can
not be explained by common risk factors, investment based factors, liquidity risk, or leverage
factors. Rather, they find that the pair trading strategy profits are related to, and can be
partially explained by, short-term reversal and the one-month version of the industry momentum.

Krauss (2017) provides an overview of the literature on the pairs trading strategy, outlining five
general groups of methodologies of identifying pairs: distance approach, cointegration approach,
time-series approach, stochastic control approach, and other approaches. The SSD measure used in
the present analysis, as well as GGR, falls into the distance approach. The author further describes
it as follows: “In the formation period, distance metrics are leveraged to identify comoving securities.
In the trading period, simple nonparametric threshold rules are used to trigger trading signals.
The strategy is simple and transparent, allowing for large-scale empirical applications. With these
studies, pairs trading is established as profitable across different markets, assets, classes, and time
frames.” Therefore, this approach is characterized by the simplicity and transparency of both the pair
identification, and the trading stages. This is quite important, as the trading rules respond well to
simple, linear variations in the inputs, and pair identification is relatively straightforward. Moreover,
the arbitrary nature of threshold choices make the literature in this area particularly prone to selection
bias and p-hacking. Specifically, the wide range of choices for strategy parameters makes it such that
there are bound to be parameter combinations which result in high excess returns, while being outliers
in the true parameter space. This is an additional contribution of the present analysis to the literature.

Much of literature on the topic of pair trading strategies focuses mainly on one aspect of the
process - the specific mathematical methods of identifying and ranking stock pairs. Specifically,
most of the more recent attention appears to be on copula-based and cointegration methods which
employ sophisticated statistical models to identify stock pairs. In addition to finding comov-
ing prices of stocks, the additional complexity of these models is sometimes also motivated by
the goal of distinguishing between true pairs and those whose pairing is more spurious in nature.

Smith & Wu (2017) is among the few academic papers which addresses the issue of a lack of analysis
with respect to parameter-return variability. Unlike most literature which uses the standard of two
standard deviations of historic price difference as the trigger rule, they calculate the returns of their
formed pairs over a set of seven different values of the divergence threshold, and find that the 2σ trading
rule, albeit common in the literature, is not the optimal trigger value. However, they keep the reversion
threshold constant with the standard rule of closing positions when the prices cross. Moreover, they
note that the return profile of top pairs depends on the divergence threshold as a lower threshold means
more trades, but a comparatively smaller gap between the prices from which to draw profit. Con-
versely, a high trigger would cause relatively few trades to go through; however, those few trades would
be more profitable on average. Furthermore, they also attempt to tackle the important question of
how many of the top pairs it is most profitable to include in the strategy. In addition to the trigger rule
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analysyis, they also find variability of returns with respect to the trading period duration. Similarly to
Huck (2013), they find high sensitivity of the returns to changes in the timing of the formation periods.

In summary, while the formation of pairs is increasing in complexity, with some papers also employ-
ing genetic algorithms (Huang et al., 2015), in much of the literature the trading rules which govern
the opening and closing of positions in the subsequent period remain similar to, or exactly the same
as, the earliest papers on the topic (namely GGR). Specifically, the trading rule where one opens the
positions in either leg of the pairs once the difference in prices crosses two standard deviations of price
difference from the previous period, and closes the positions either when the prices cross, or when they
revert to a sufficiently low difference. This is the gap in literature which the present paper attempts
to address. Namely, I seek to explore and document the extent to which pair based trading strategy
performance depends on specific parameters, most of which tend to get overlooked by a lot of the
literature. Parameters in question would be divergence and reversion thresholds, data frequency, time
period variations, and number of top pairs traded.

Data & Methodology
The present paper is based on the CRSP Compustat merged database of US stocks between January
2010 and June 2022. For different purposes in the analysis, I will use either daily or weekly price and
return data. All of the prices are adjusted to include cash equivalent distributions, reinvestment of
dividends, and the compounding effect of dividends on reinvested dividends, as this more closely aligns
with the kinds of returns a representative trader faces in the real world.

Due to the computational requirements of calculating pairwise statistics such as sum of squared
deviations, Pearson correlations, and other, on a large number of stocks and over a long period
of time, the considered timeline is only after 2010; other concessions had to be made for the
same reason. As there are n * (n - 1) / 2 pairs of stocks for which these statistics need to
be calculated, where n is the total number of stocks considered, the complexity increases expo-
nentially with n. Ideally, there are many more dimensions of analysis which the present paper
could have explored. However, due in large part to the aforementioned computational con-
straints, these could not be included, and the analysis will take a more concise approach than optimal.

The stocks have been selected such that they are few enough for the computational requirements
to allow for extensive analysis, yet they represent the bulk of the market capitalization in the US
stock market. The stocks are selected such that at the beginning of each formation period, the
included stocks comprise 95% of the total market capitalization in the CRSP Compustat database.
This makes for an average of 1545 stocks per formation period, with 1452 in January 2010, and 1489
in January 2021. Although comparatively fewer than the set of stocks which most of the literature
on this topic takes into consideration, the fact that these stocks comprise 95% of total market
capitalization of US stocks means that these stocks represent the vast majority of trading profit
available to institutional investors. Because the market capitalization of individual stocks around the
95-percentile is relatively low compared to the larger stocks which are included, potential stock pairs
may not be of practical value for institutional investors due to the price impact of large trades for
small stocks, as well as low trading volume, and potentially high bid-ask spreads. It is worth noting
that in order for a successful trade of stock pairs, both stocks need to be sufficiently liquid, the chance
of which decreases as we start to include many more smaller stocks for marginal increases in total
considered market capitalization. Therefore, this stock selection was made as a middle ground be-
tween including as many stocks as possible, while keeping the computational requirements manageable.

For the formation and trading of pairs, I follow the approach by GGR and much of the subsequent
literature - first, there is a 12-month formation period in which stock pairs with the lowest (highest)
sum of squared deviations (correlations or cross count) are identified. Then, there is the 6-month
trading period, during which the identified pairs are traded according to the strategy rules. In the
present analysis, there are 23 such formation-trading periods beginning with January 2010 and ending
with June 2022, staggered by 6 months. This is done such that the 6-month trading periods are
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followed end-to-end by one another, with sequential 12-month formation periods overlapping each
other by 6 months. For instance, the first formation period is during the whole calendar year of
2010, with its corresponding trading period being in the following 6 months, that is January to June
(inclusive) of 2011, while the second formation period is staggered by 6 months, such that it takes
place between July 2010 and June 2011 (inclusive), with the corresponding trading period taking
place between July and December 2011 (inclusive). For each such formation period, I take the price
data (adjusted for reinvested dividends) on all stocks in the sample, and exclude stocks which record
any missing observations. Then, I normalize all stock prices such that the starting price for that
period equals 1. Finally, I compute the sum of squared deviations for each of the n*(n-1)/2 pairs
in the sample, and rank the pairs by SSD (cross count) in ascending (descending) order. For the
pairs formed on correlation, no normalization is necessary, and the coefficients are computed on
the basic adjusted daily and weekly return data, after which I rank the pairs in descending order.

Pearson correlations are calculated on weekly, as well as daily, return data, because this measure
perhaps does not benefit from as high frequency data as the sum of squared deviations. Small pertur-
bations on a short-term scale can significantly change how this metric evaluates pairs of stocks, even if
they tend to move alike over a longer timeline. With this line of reasoning, it may be possible that cor-
relations based on lower-frequency data could produce better pairs, because they capture pairs which
have a stronger long-run correlation, rather than those which exhibit similar day-to-day idiosyncrasies.
Many academic papers on pair trading do use correlation based on high frequency data to identify
pairs, though. The difference is that in those papers, their trading windows are proportionally brief
(e.g. Kim, 2011). In the present paper, however, both the formation and the trading windows could be
too long for high-frequency correlation to be particularly useful. Therefore, I use weekly return data
to identify Pearson correlation-based pairs in addition to the daily return data, in order to compare
the two approaches.

The last method is based on a simple measure which to the best of my knowledge has not
been included in the literature on pair trading. This is simply a count of how many times two
stocks cross each other during the formation period, also referred to in the following analysis as
“cross count”. These are the methods which will result in four different sets of identified pairs
for each considered time period. These four methods of identifying pairs will henceforth be re-
ferred to as formation methods, with their respective statistics (SSD, cross count, and Pearson
correlation) being referred to as formation statistics. Although these sets of pairs are obtained by
different means, the subsequent analysis of how these pairs perform will be the same across all methods.

The next step is applying the trading strategy on the identified pairs in the subsequent 6
months of price data. The trigger rules are simply a set of thresholds which, if reached, result in
us opening or closing a position. They are expressed as a multiple of the standard deviation of the
difference in the normalized prices during the formation period. Then, the prices are calculated
given these rules for opening and closing the positions. Specifically, once the divergence threshold
is met, I calculate as if one unit of currency was invested in a long position of the fallen stock, and
as if one unit of currency worth of the rising stock was shorted. Once the positions are closed,
I add up the return of the long leg and the short leg to get the return for that position. Note
that I do not make any adjustments to the strategy profit for the cost of transaction or shorting.
The analysis is instead focused on the theoretical variability in performance, and accurate details
of a real-world application of the pair trading strategy is out of the scope of the present paper.

During a trading period, there may be multiple occasions on which the positions open and close -
in that case, the total profit for a traded pair is simply the sum of all such positions. This may result
in positions which are open throughout the trading period, or positions which are traded for only a
few days, or none at all. Therefore, this measure of profit would evaluate equally a pair which yields
return r during only a single day of trading as a pair which yields an identical return r over the full 6
months of trading. This could be seen as a flaw of the measure because intuitively, one would much
prefer for the same return to be realized over a shorter period of time. Due to the fact that the long
leg and the short leg of the trades offset each other in terms of expected return and risk, this measure
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of profit is interpreted as excess return (GGR). In fact, literature shows that risk-adjusted returns
of this strategy tend to be very close to raw returns, as most of the excess return is market neutral
(Smith and Wu, 2017); still, the positions are not risk-free because their return variance is non-zero.
Furthermore, because the short leg of the position fully finances the long leg (at least in theory), the
capital requirements for this trading strategy are low, and the duration of the positions is less of a
factor than it would be in traditional stock trading due to the lower capital employment. Nevertheless,
realizing the same return in a shorter time span is strictly preferred to realizing it over a longer time
span. For this reason, in addition to the simple return which was explained earlier in this paragraph, I
will also include the annualized return in the analysis and discussion of the results. This is calculated
simply by dividing the total return of the strategy by the proportion of total trading days in a year
during which the position was open (e.g. if the trade lasted 50 trading days, the adjustment factor would
equal 50 / 252). This calculation is based on an arithmetic, rather than a geometric, annualization
because the latter has a tendency to disproportionately inflate the positive returns compared to the
negative returns, which results in an inaccurate skewing of the return distribution and an erroneous
increase in the mean return. Still, this annualized return value should not be taken as a representative
measure for the actual realizable yearly return. The returns from this strategy are highly opportunistic,
and are therefore not realistically scalable to their mathematical yearly return. Rather, this is more
of an informative measure meant to assist us in comparing between different formation methods.

While GGR use two standard deviations of historical price difference as the trigger to open
the positions and the prices crossing as trigger to close the positions, the point of the present
analysis lies in not conforming to one single strategy set. Rather, I iterate over a range of
values both for the opening, and for the closing of positions. Specifically, the range is ex-
pressed in multiples of the standard deviation which is taken as the deviation/reversion threshold.

To better understand the interplay between deviation and reversion thresholds with the strategy
performance, below is Figure 1 which plots one example pair between United Dominion Realty Trust
and AvalonBay Communities Inc. The top figure plots the normalized price levels of the two stocks
for the period of Jan 2016 to June 2017, with the vertical dashed line signifying the cutoff point
between the formation period, which is the calendar year of 2016, and the trading period, which
is the first six months of the following year, 2017. The bottom figure plots the absolute value of
the difference in the stock prices, as measured in standard deviations of the historical difference
during the formation year. Lastly, the shaded area in the top figure denotes the period during which
the positions are open with the ex-post optimal combination of deviation and reversion thresholds,
while the points highlighted in green (red) denote the points at which we open (close) the positions.

Looking at just the line denoting the price difference in terms of our trading strategy, we
can tell that we should be looking at points of opening and closing the trades with the largest
vertical drop. With this simple interpretation in mind, we would ideally want to open the position
at the topmost inflection point (marked by the blue dot), and continue until the same point
at which we close the first position. However, it so happens that setting this high threshold
would result in us missing out on the profit which we realize during the subsequent two positions.
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To visualize the relationship between these thresholds and the total profit during the trading period,
I iterate over 1500 parameter sets to populate the heatmap in Figure 2. Note that the top-left corner
is whited-out for all y > x, as a strategy where the reversion threshold is lower than the divergence
threshold is not logically consistent with our strategy.

The single bright yellow point at x = 1.36σ and y = 0.37σ is the optimal combination of trading
thresholds. Even the slightest nudge to the right, to the adjacent node representing (x, y) = (1.41,
0.37), the return drops from 6.49% to just 2.15%. From there, we can see that a further increase of the
divergence decreases the profit, although we allow the trade to kick in at a higher difference between
the prices. Looking back at Figure 1, this would be equivalent to pushing the position opening towards
the highest point in the difference graph. Increasing further, the profit increases until we surpass the
point of the largest price difference, after which no positions would be opened, and we would realize
zero profit. The variation in total return relative to the reversion threshold is not so clear. There is a
tendency for lower thresholds to perform better, as it allows the prices to revert as much as possible
before we close the position, realizing a higher profit; however, higher thresholds tend to result in
lower losses, since the probability of closing the positions on an above-zero profit is lower. It is not
immediately clear which of these two effects prevails over a sample of many pairs.

It is important to note, however, that the characteristics of the pair trajectory which result in this
heatmap are highly particular to the specific price trajectories which were recorded during this period.
As such, the insights gained from this specific pair analysis are not meant to guide our overall trading
strategy. Rather, the figure is here to visualize one example of how the divergence and reversion
thresholds may impact the total realized profit of the pair trading strategy during one trading period.
In this particular example, the optimum would be impossible to precisely guess ex-ante, and the
analysis is merely an ex-post consideration. However, the value of this example comes from showing
how the specific stock movements can create intriguing relationships in the payoff structure. Much
of the analysis in the present paper, therefore, will aim to investigate whether there exist patterns in
these relationships which we can use to tune our trading rules in order to maximize the performance
of the pair trading strategy.

Results
To summarize, the results in this section are obtained from the top 100 pairs identified in each of the 23
time periods from January 2010 until December 2021. Therefore, the periods during which the stocks
are traded range between January 2011 to June 2022. There are four methods of identifying pairs. The
first one is the sum of squared deviations (SSD), second is the number of times the stock prices cross
during the period (cross count), and last are two Pearson correlation coefficients, one based on daily
return data, and the other on weekly return data. The following results, unless specified otherwise,
will always be based on the simple threshold rules as in GGR (enter at two standard deviations of
divergence and exit at price crossing), and will cite the simple (non-annualized) pair return. Still,
in some of the following analysis I will vary these thresholds systematically to better understand the
relationship between strategy parameters and strategy return. I will analyze pair trading performance
for a spectrum of values both for the divergence, and for the reversion thresholds.
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Parameter Sensitivity Analysis
Following the computation of all n∗(n−1)/2 pairwise formation statistics, for each of the 23 formation-
trading periods, I take the 25 pairs with the lowest (highest) SSD (correlation or cross count) for each
period, and compute the trading profit over 1500 different sets of strategy parameters for each pair
during the trading period, to obtain sufficient data points to populate the heatmap (50 different values
of divergence threshold between 0.5σ and 3.5σ, and 30 different values of the reversion threshold
between 0σ and 1.75σ. I then average over all of the 575 considered pairs (25 pairs for each of the 23
periods) to obtain the aggregate heatmap for each of the four methods of obtaining pairs. Therefore,
the heatmaps in Figures 3 to 6 represent the total aggregate profit one would have realized, were they
to trade the 25 top pairs in each formation-trading period, conditional on the trigger rules (divergence
and reversion thresholds) used in the trading strategy. The four separate heatmaps represent pairs
obtained from the four considered pair formation methods.

This is done with the intention of being able to visualize how the profit of the pair trading strategy
is related to the specific parameters which we use as part of the trading trigger rules. With the purpose
of it being that if we can identify certain kinds of patterns in the relationship, we can make better
decisions with regards to setting the trigger parameters which we employ as part of the trading rules.

Figure 3: Top 25 Pairs From Each Period: SSD
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Figure 4: Top 25 Pairs From Each Period: Cross Count
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Figure 5: Top 25 Pairs From Each Period: Daily Correlation
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Figure 6: Top 25 Pairs From Each Period: Weekly Correlation
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Perhaps the most noticeable pattern in the figures is that across all of the four formation methods,
the highest profits tend to lie relatively far towards the upper parts of the graph. That is, it appears
that higher reversion thresholds result in better performance of the pair trading strategy. The in-
sample uptimal reversion threshold values are 1.68σ, 1.68σ, 1.37σ, and 1.62σ for pairs formed on SSD,
cross count, weekly return correlations, and daily return correlations, respectively. For one, this is
somewhat unexpected because nearly all of the literature on the topic uses the rule of closing positions
once the prices cross one another, following in the footsteps of GGR. This strategy is in the middle
of the bottom-most row of the heatmaps, as it is de facto represented by a reversion threshold of 0.
Furthermore, most of the highest performing points tend to be close to the top-left edge, after which
lies the area where the divergence thresholds are lower than the reversion thresholds. This means that
the highest performing strategies are those where the divergence and reversion thresholds are very close
to one another in magnitude, which tends to result in many brief trades, each of which presumably
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only realizes a small amount of profit. Moreover, these kinds of trades tend to be relatively safe in
that a small divergence naturally has a larger probability of reversion than a large divergence.

As for the divergence threshold, the optimal value tends to be below the generally accepted
two standard deviations; however, there is somewhat more variation across formation methods than
there is for the reversion threshold. Nevertheless, the local optima of the four figures all lie around
the value of 1.5, which is reasonably close to the literature standard. Specifically, these are 1.7σ,
1.76σ, 1.4σ, and 1.64σ for pairs formed on SSD, cross count, weekly return correlations, and daily
return correlations, respectively. Therefore, the evidence suggests that the canonical trigger value
of two standard deviations is not far from the optimum. However, considering the two-dimensional
parameter space, getting one of the two parameters right does not necessarily lead to the strategy as
a whole being close to the optimum.

Looking back at the example in Figure 1, we know that from the profit side of things, we would
ideally open the position at maximum divergence, and close as late as possible upon reversion, in
order to maximize the vertical distance which we cover in terms of the bottom graph, representing the
difference in prices. The downside, however, is that an exceedingly high divergence threshold results
in the strategy missing out on smaller, safer profits. In case of a loss, we would again want to open at
maximum divergence, but close as early as possible, to conversely minimize the exact same calculation.
Furthermore, the lower our reversion threshold, the more likely that an open position in a pair will not
reach the threshold, and will instead diverge until the end of the period when we close all positions.
Therefore, we can think of the tradeoff in trigger rules as managing the two ends of the spectrum -
maximizing profit in case of reversion, and minimizing losses in case of divergence. To visualize this
relationship, I dissect Figure 3 representing the SSD pairs into two figures: one which only includes
ex-post profitable pairs, and one which only includes ex-post unprofitable pairs.

Figure 7: Only Positive Return Pairs (SSD)
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Figure 8: Only Negative Return Pairs (SSD)
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We get two clear pictures in Figures 7 & 8 which quite well match our expectations with one
important observation: while the unprofitable figure exhibits a smoothly monotone gradient towards
larger threshold values on either axis, the figure which includes only profitable paris exhibits its local
maximum at a divergence threshold of 1.35 standard deviations and reversion threshold of 1 standard
deviation. This indicates that there is more to capturing the profit of a successful pair than is imme-
diately obvious. Smith and Wu (2017) put forward an interpretation of this relationship between the
trigger rule and pair profit. As they find a hump-shaped relationship between the two, they explain
it by pointing out that although higher trigger values result in profit increases of pairs which diverge
by a greater amount, this comes at the cost of foregoing trading the pairs which would not diverge
by that much. Therefore, a high trigger value produces relatively few highly profitable trades, while
a low trigger value produces a larger number of moderately profitable trades, and it is not always
clear which effect is more powerful. It is worth noting that, because the present analysis lacks the
adjustments for transaction cost, the optimal strategy as currently identified is likely biased towards
the lower end of the divergence threshold, as it ignores the increased cost of higher frequency trading,
which the literature has found to impact pair trading strategies (Do & Faff, 2012).
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Portfolio Size
Perhaps the second most important factor in the construction of a robust pair trading strategy
is one relating to the scalability of this approach to trading. Namely, depending on the market
capitalization and liquidity of the top stock pairs, there is limited profit to be made from such a
strategy. While for a retail investor, an investment of a few tens or hundreds of thousands of dollars
is perfectly acceptable, institutional investors which are the most likely entities to perform these
strategies tend to look for greater earning potential. This issue is further exacerbated by the fact
that the potential of any individual pair is constrained by the component with the lowest liquidity
or market capitalization out of the two stocks, and that both stocks of the pair should ideally be
highly liquid, medium to large-cap stocks for the strategy to be at its most profitable. The most
obvious solution to this constraint is to increase the number of pairs which we consider for trading.
However, the farther down we go the list of top pairs, the less we should be confident that the
considered stocks do in fact act as true pairs, and the more likely it is that their correlation is instead
spurious. This brings up one of the issues which come up in the practical application of the pair
trading strategy - determining ex-ante how many of the top pairs we should choose to open positions in.

Table 1 presents the overall mean returns across all considered years of the top pairs in each
period, for a total of 2300 pairs for each formation method. The rows signify how many of each
period’s top pairs were considered in the calculation of the mean - top 5, top 10, top 50, and top 100
pairs. It is important to note that, as previously discussed, the annualized returns in this calculation
are deceptively high because of the difference in trade duration between profitable and unprofitable
pairs. Due to the nature of the strategy, some of the positive trades are very brief, as low as one
trading day, whereas the only way an unprofitable pair can be that brief is if the position opens very
close to the end of the period. Therefore, the distribution of trade duration means that brief profitable
positions are unproportionately inflated, while the unprofitable pairs are adjusted by a lower factor
on average. Therefore, the annualized returns are not meant to represent a realizable return of
scaling the strategy; they are presented because they add another dimension of comparison between
formation methods, as they represent an imprefect measure of return which takes into account total
trade length as well as the simple trade profits.

Table 1: Summary of Top Pair Mean Performance: Simple & An-
nualized Returns

Top n
Pairs SSD

Cross
Count

Corr
Weekly

Corr
Daily

SSD
ann.

Cross
Count ann.

Corr
Weekly

ann.
Corr Daily

ann.
Top 5 0.0172 0.0115 0.0136 0.0100 0.2811 0.2730 0.2190 0.0947
Top 10 0.0130 -0.0029 0.0110 0.0100 0.1963 0.1813 0.1621 0.0844
Top 50 0.0031 0.0087 0.0061 0.0089 0.1138 0.2648 0.1446 0.1145
Top 100 0.0090 0.0022 0.0045 0.0070 0.1298 0.2385 0.1344 0.1082

The first notable observation is that, as one would expect, the average profit per pair tends to
go down as we trade more and more of the top pairs. The intuitive explanation would be that the
top-ranking pairs are also of highest quality, so to speak, and are therefore the most viable options
for a profitable pair trade, while the lower we go on the list of top pairs, the more idiosyncratic the
relationships become, and therefore the lower the mean return. Secondly, despite the previously
discussed criticism of the difference method of obtaining pairs, it appears to be the top performing
pair formation method. Although, its performance does drop off relatively steeply as we begin to
trade more and more pairs. Furthermore, comparing the performance between the correlation method
based on daily and weekly data, it appears that weekly data does indeed offer some advantage over
daily data. As mentioned previously, daily returns are highly random, and one ought not to expect
similar stocks to necessarily behave similarly over a period of time as short as one trading day. Rather,
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similar stocks tend to move alike one another over slightly longer periods of time. Taking weekly
data also seems to be a good middle ground between taking a period of time longer than a day, while
also providing enough data points during a formation period (52 weekly returns in a typical year)
compared to monthly returns (12 data points in a year).

Moreover, the annualized return of weekly correlation exceeds the return of the daily pairs to an
even greater extent. Although the average returns are very similar at 1.36% and 1.00% respectively, it
happens to be the case that pairs formed on weekly return correlation have shorter trade windows on
average, which makes for an annualized return which is over twice as large as that of the daily return
pairs in some brackets. Another interaction which could be at play is the fact that pair trades with
negative returns tend to have their positions open for a longer amount of time. This comes about as
a direct consequence of the trading strategy - the only time we choose to close a position is when the
stocks decrease in their divergence from one another (which results in a positive return by definition);
conversely, negative return trades come about only when the trade period expires before the stocks
revert back over a given threshold. This is evidenced by the fact that, on average, pairs which result
in a negative return have around a 30-40% longer total time of positions being opened than pairs that
result in a positive return. For instance, among the top 100 pairs ranked on their respective formation
statistics, profitable pairs ranked on daily return correlations exhibit 28% higher position durations,
while those ranked on SSD exhibit 43% higher position durations than unprofitable pairs across all 23
periods.
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To get a more fine-grained understanding of the specifics of the relationship between portfolio size
and overall strategy performance, I examine how the strategy’s cumulative return varies with the
number of pairs we decide to execute the trades on. Figures 9 to 12 plot the cumulative mean return
of the trading strategy for each year on the y-axis, with the x-axis being the total number of top
pairs included in the trades; the four figures represent the sets of pairs obtained by the four different
formation methods. Importantly, the year signifies the start of the trading window for that period.
For instance, the highest performing year was 2020, which was due to the profit gained during the first
months of 2020 with pairs which were formed during the whole of 2019. As it is generally regarded
that periods of high turbulence allow for high arbitrage profits (Do and Faff, 2010; Bowen et al. 2010),
the pair trading strategy is no exception. It is further notable that by the end of the graph at the
100th pair, there are usually only about half of the years which end in a positive return.

The cumulative mean trajectories are about as we would expect - large returns at the beginning of
the graph, and gradually converging to a mean as we add additional pairs. However, it is difficult to
say whether the average marginal return to each additional pair increases or decreases with n - while
there tends to be a downward trajectory to most of the lines in these figures, there are also periods
which exhibit upward trajectories. For this reason, I plot the marginal return to each additional pair
in Figures 13 to 16. The plotted lines most resemble a random walk, and do not appear to exhibit any
clear trends or patterns. A potential explanation could be that, through the erosion of arbitrage profits
over time, the performance of this strategy has become less robust, and more random. However, the
speculation on the causes of such a trend and the evaluation of standalone performance is beyond the
scope of the present paper, and we shall turn again towards examining the parameter variability.
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Figure 14: Cross Count
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Figure 15: Weekly Correlation
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Figure 16: Daily Correlation

What is potentially muddying the clarity which these figures could ideally provide, is the fact that
we are taking an aggregate look, averaged over 23 periods, despite the fact that it is unlikely for
all years to be alike in the number of tradeable true pairs. That is, since the strategy is based on
capitalizing on a divergence which is random in nature, and that the specific price movements which
allow the strategy to realize a positive return are in turn random themselves, we should therefore not
expect that the distribution of profits across the top pairs to be the same in every year (for instance,
in year t the optimum may be 50 pairs, while in year t+1 it may be 75 pairs), and these effects could
average out over time.
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Figure 17: SSD
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Figure 19: Weekly Correlation
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Therefore, I calculate the values as shown in Table 1 (cumulative return based on portfolio size),
but stratified based on trading period, and plot the resulting time series in Figures 17 to 20. First
off, these figures clearly corroborate what has come to be widely accepted in the literature - that pair
trading strategies perform best in times of market turbulence, with the convincingly best-performing
period being during the pandemic-induced crisis of early 2020. Further, it is worth noting that the

13



year 2020 also exhibits the most well-defined performance order of portfolio sizes - that is, with only
a few exceptions, the smallest portfolios tend to also be the best performing. This is in contrast with
other years, where the order appears to be somewhat more random. The outlier out of the four figures
appears to be that for cross count - while the other three figures exhibit similar structures, Figure 18
appears rather random in comparison. This could be an indication that cross count, as a formation
method, is not as accurate as the other three in identifying what would traditionally be considered
“true” pairs. Regardless, it still performs comparatively well, so it is difficult to rule it out completely.

The lack of a clear order of portfolio sizes with respect to their performance indicates that there
is not a strong relationship between pair ranking and pair return. Rather, pairs even in the top 100
can potentially provide results comparable to the very top pairs. After all, even the largest considered
category of 100 pairs is small compared to the total number of possible stock pairs. With an average
1545 stocks per period in the sample, there exist close to 1.2 million possible pairs of stocks, which
makes the top 100th pair sit right above the 99.99th percentile.

With the observation in mind that there is time-variation in pair quality, perhaps there is a way
of judging a pair by its formation statistic, rather than simply by its ranking compared to other pairs
in the same period. The most straightforward of these would be to analyze whether there is perhaps
a threshold, or a range of values, of the SSD or correlation coefficient, after which pairs tend to drop
off in performance. This analysis will take place in the following section.

Evaluating Pair Formation Methods
As was noted by Krauss (2017), the method of identifying stock pairs used by GGR is not without its
shortcomings. While simple, easy to check and implement, and intuitively clear, the sum of squared
deviations has one distinct drawback. This is that, by its very nature, it “punishes” stocks which
deviate significantly from each other. Mathematically, the ideal pair according to the sum of squared
deviations criterion is one where the component stocks do not deviate from each other at all. Clearly,
this would allow no profit to be made from cleverly trading such a pair of stocks. Moreover, the
squared term in the formula disadvantages pairs of volatile securities. This is unfortunate for our
specific application because the potential profit which can be made from trading one pair of stocks is
directly proportional to the deviation which the stocks’ prices make in relation to one another.

Some evidence to corroborate this hypothesis comes from observing the return distributions of
traded pairs. Figure 21 plots the density distribution of the four employed pair formation methods
overlaid over one another. Specifically, it plots the distribution of top 100 pairs identified in each
formation-trading period, for a total of 2300 pairs of stocks over the considered time period. What we
can clearly see is that the distribution of returns of pairs obtained by the sum of standard deviations
(SSD) exhibits the lowest kurtosis among the four distributions. This provides evidence that this
measure of pair likeness does indeed suffer from the side-effect of identifying low-volatility pairs which
lack the capacity to be a highly profitable trade. Although this lack of potential upside is a shortcoming
of the measure, the same appears to be the case on the negative side of the return distribution, meaning
that it only results in lower variance of pair returns, while still potentially providing good returns on
average. Therefore, it is possible that the low-variance pairs which tend to result from the difference
approach are a feature, rather than a drawback of this strategy. Figure 22 plots the same relationship,
but with annualized returns instead. For the most part, this figure is very similar to the previous
one - with only SSD distribution being the outlier in terms of shape. However, the remaining three
distributions appear to align more closely than in Figure 21.
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Figures 23 to 26 plot the relationship between the pair formation measures and the return
of all pairs in the top 100 of each period in the sample. Each point represents one pair, which
corresponds to a combination of its formation statistic (i.e. SSD, cross count, or correlation) and
the return of the pair. Furthermore, pairs where the stocks belong to the same industry are colored
blue, while those where that is not the case are colored red. This is determined by whether the
stocks in a pair share the same Standard Industrial Classification, better known as the SIC code.
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As mentioned previously, one of the (negative) features of the sum of squared deviations is that it
tends to prefer pairs which shouldn’t be very lucrative by virtue of their tendency to not diverge from
one another. If this is indeed the case, we should see a positive relationship between SSD and pair
return - since we would expect low-SSD pairs to provide a proportionally low return from the pair
trading strategy. However, looking at Figure 23, there does not appear to be a clear relationship be-
tween the values, much less a positive one. For a more rigorous test, however, I a run simple univariate
regression of pair return to its respective SSD, and the slope is not found to be statistically significant.
Moreover, while GGR find that pairs which belong to the same industry result in higher returns than
those which do not, the present analysis finds little evidence to support this. While the average return
is indeed slightly higher (1.52% compared to 0.41 %), the difference is not found to be statistically
significant (p-value = 0.21). The significance of the difference in means here and in the following
discussion is computed using Welch’s t-test, as these two groups do not have the same variance.

Figure 24 plots the same relationship, but for pairs formed on the cross count method. What
is immediately striking is that this method appears to produce a far lower proportion of pairs
which belong to the same industry. This could be an indication that the method tends to pick up
more on random fluctuations than stocks which share fundamental attributes. That is, assuming
that pairs which share industries tend to be similar in more fundamental ways than those which
do not. Either way, the difference in returns between pairs of the same and different industries
is not statistically significant, likely due to the small sample size of industry-sharing pairs (n
= 66). Combined with the insights gathered from Figure 18, this method again appears to be
the outlier among the four, seemingly identifying more spurious cases of stock likeness than the
other ones, and missing those pairs which do possess a higher degree of similarity in their fundamentals.

Lastly, the two scatter plots in Figures 25 and 26 picture again the same relationships, but
now with pairs formed on Pearson correlation, one using weekly return data, and the other us-
ing daily return data. Counter to the previous figure of the cross count pairs, the correlation
method of pair formation appears to identify a far higher proportion of industry-sharing pairs.
83% of pairs across the whole sample identified by the weekly return correlation share industries
with one another, while the same is true for 86.5% for those based on daily return correlations.
Although I have previously hypothesized that weekly return correlations may do a better job of
identifying true stock pairs, this observation does not corroborate this idea. Moreover, out of the
four methods, pairs from daily return correlations are the only group which exhibits the return of
same-industry pairs to be statistically significantly higher than those of pairs which do not share
industries, with a p-value of 0.0059 (p-value for the same statistic of weekly return pairs is 0.39).

All in all, this section has shown little indication of patterns between the statistics which we use to
measure the likeness of pairs, and the return of those same pairs, at least when restricted to the top
100 pairs per period. Perhaps this is too stringent of a restriction, and we ought to look at a larger
number of top pairs to spot any meaningful patterns. Whether or not this is the case, we have seen
little evidence to suggest that these measures can be used to aid us in determining desirable portfolio
sizes for the pair trading strategy

Conclusion
Throughout the analysis of the present paper, I have taken a deeper look at the parameter-
dependent variability of the pair trading strategy. While the trend in the literature is to mostly
focus on one main aspect, which is how best to mathematically model pair-like price move-
ments, and how best to statistically deduce which pairs of stocks behave like one another, I
have kept the formation and strategy rules simple, and more deeply scrutinized the specific
details. Although that aspect of the literature is certainly important, I have taken a different
approach by analyzing, given simple formation methods, to what extent the profit of trading
the resulting set of pairs changes by altering the trading rules which govern the mechanisms of
opening and closing the positions in either leg of the trade, along with other elements of the strategy.
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While the accepted trading rule in pair trading literature is entering the positions once the stocks
diverge past two standard deviations of normalized-price deviation during the formation period, and
exiting the positions once the prices cross one another, in the present paper I systematically iterate
over a set of 1500 parameter sets to analyze the relationship between trigger rules and pair profit.
What I find is that, although the standard trigger rules work reasonably well in some situations, they
are not optimal in most cases, which is in line with the findings of Smith and Wu (2017). Although,
one of the main shortcomings of the analysis is the lack of an adjustment for transaction cost, which
could lead to a bias towards lower thresholds because the increased cost of higher frequency trading is
not accounted for. While the common divergence threshold of 2σ is close to the in-sample optimum of
around 1.6σ (depending on formation method), the reversion threshold of price crossing appears too
stringent. In fact, the widely accepted reversion threshold of 0 is a far departure from the apparent
optimum. Further, there does not appear to be a statistically driven motivation for the literature-
adopted thresholds; rather, they are likely just rules of thumb which are based on a statistical tradition
of sorts, where the measure of two standard deviations is often taken as a heuristic for a statistically
significant deviation from the mean. Although intuitive and not incorrect per se, I conclude that the
literature accepted the common rules without taking a more objective approach to the issue.

Aside from trigger rules for the trading itself, perhaps the second most important element of a
successful practical implementation of pair trading is the number of top pairs one chooses to include
in the trades. While this part of the strategy would in principle most likely include input from
the trader, relying on human subjectivity steers the strategy more towards informed stock picking,
and away from the ideal of a simple, quantifiable, and practical trading strategy which pair trading
has earned a reputation for in the literature. In that regard, one ought to have a solid idea of
how far down the list of top pairs to go in order to maximize volume and investable capital, while
still making a profit from the trades. What I find is that, although profits tend to decrease as one
includes more of the top pairs in the strategy, there is too much pair-to-pair and year-to-year vari-
ability to make conclusive statements about the optimal number of pairs one should trade per period.

One of the findings which corroborates previous literature is the fact that the sum of standard
deviations measure does indeed tend to identify pairs with low volatility and, in turn, low earning
potential. However, it is not as clear whether this is strictly a downside, because the negative end
of the return spectrum is similarly constrained. What results is a portfolio of pairs which realizes a
return of lower variance, but similar mean, compared to other methods. Moreover, I provide further
evidence to solidify what is generally accepted in the literature, that pair trading is most lucrative in
times of market turbulence. Specifically, considering the lack of recent publications, what the present
paper contributes to the literature is application of the strategy during the pandemic-induced market
crisis of early 2020.

Lastly, I introduce a so-far unrepresented formation method to the literature, cross count.
Although it provides returns of comparable magnitude to the other methods, it exhibits some peculiar
features which I point out in the analysis - for instance, the time-series of top pair brackets appears
wholly unstructured and somewhat random when compared to all three other methods. It also does
not appear to identify almost any pairs which belong to the same industry, which brings questions
to how “true” the pair-like behaviour of its identified pairs really is at a more fundamental level.

The analysis has brought up some further questions which could be worthwhile considerations in
future literature. Firstly, the variation in strategy performance across parameter sets is significant
enough to warrant further analysis. Perhaps what could be the case is that we should not treat all
stock pairs equally. Rather, we should identify key attributes of the component stocks in order to
fine-tune the trading rules accordingly, along the lines of Papadakis & Wysocki (2007). Secondly,
when deciding on portfolio size, it would be worth investigating how liquid the top pairs tend to be,
and specifically how this would impact the scaling of this strategy in a real-world application. This is
most important for institutional investors, as they are the most likely to invest amounts which would
be problematic in case of small-cap or illiquid stocks. Therefore, in order to expand the strategy to a
larger number of pairs, it would pay to have an idea of the scalability of this strategy. Lastly, a more
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thorough analysis of the part played by the formation statistic, as well as other determinants of pair
performance, should be considered. This relates in part to the aforementioned scalability issue - that
is, having a solid ex-ante idea of what kinds of pairs we would or would not like to commit to trading
could pay dividends to the overall performance of the pair trading strategy.
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