

Master Thesis

MSc. Data Science and Marketing Analytics

Enhancing Tag Recommendation in Software Q&A Forums: A Comparative

Study of LDA and Doc2Vec Approaches

Author: Nicole Liao (Chia-Yi Liao)

Student number: 575586

Supervisor: Prof. Dr. (Bas). ACD Donkers

Second assessor: Dr. (Carlo) C Cavicchia

Date final version: April 14, 2023

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second

assessor, Erasmus School of Economics or Erasmus University Rotterdam.

2

Table of Content

1 INTRODUCTION .. 4

2 LITERATURE REVIEW ... 6

2.1 BACKGROUND AND MOTIVATION .. 6
2.2 TAG RECOMMENDATION ... 8
2.3 TOPIC MODELING ... 9
2.4 DOCUMENT EMBEDDING ... 11

3 DATA SETS .. 13

3.1 TAGS ... 13
3.2 QUESTIONS ... 14

4 METHODOLOGY .. 16

4.1 PRE-PROCESSING .. 16
4.2 LDA ... 18
4.2.1 Random Forest to determine the most informative words using Part-of-speech tagging 21
4.2.2 Convert clean text into numerical representation ... 22
4.2.3 Feature extraction from topic distribution ... 23

4.3 DOC2VEC ... 24
4.3.1 Word2Vec ... 24
4.3.2 Paragraph vector ... 25
4.3.3 Training Doc2vec .. 27
4.3.4 Increase efficiency .. 28

4.4 MULTI-LABEL CLASSIFICATION ... 29
4.5 EVALUATION METRIC ... 31

5 RESULTS ... 34

5.1 TEXT PRE-PROCESSING .. 34
5.2 LDA ... 35
5.2.1 Numbers of topics .. 35
5.2.2 Lemmatization on different words ... 36
5.2.3 Removing Unrelated Words with random forest ... 37
5.2.4 Hyperparameters tuning and threshold setting ... 39
5.2.5 Visualization with importance of topic keywords plots .. 40

5.3 DOC2VEC ... 41
5.3.1 Visualization with t-SNE .. 42
5.3.2 Classification report .. 43

3

5.3.3 Challenges and Limitations of Doc2vec Model .. 48
5.4 MODEL COMPARISON ... 49

6 DISCUSSION AND CONCLUSION .. 50

6.1 MAIN CONCLUSION .. 50
6.2 LIMITATIONS AND FUTURE RESEARCH ... 53

7 APPENDIX .. 54

A. WORD COUNT AND IMPORTANCE OF TOPIC KEYWORDS PLOTS .. 54
B. THE EXACT VALUES OF LDA MODEL PERFORMANCE ... 57

8 REFERENCES .. 58

4

1 Introduction

Over the recent years, software Question-Answering (Q&A) sites have become popular and

reliable avenues by software developers to ask questions, communicating new techniques, share

knowledge and receive answers to technical questions. Tagging is one of the common problems

and has been attracting much attention on software Question-Answering (Q&A) sites. Users on

software questions forum often ask complex questions related to programming. Tags are popular

as they describe the most important feature of the software objects. However, when the website is

not well-tagged, it can be difficult for developers and managers to quickly and easily gain an insight

into a certain theme. Addressing these issues can lead to improved users’ satisfaction. Tag

recommendation can help developers to better tag new content by effectively reusing existing tags

on software Question-Answering (Q&A) sites.

The tag recommendation approach presented in this research consists of several stages. The

overall architecture of tag recommendation are text pre-processing, feature extraction, and tag

classification using a multi-label classifier. We propose two methods for feature extraction: LDA

and Doc2Vec. Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is a generative probabilistic

model of a corpus to extract the hidden structure and topics, and is considered the standard topic

modeling approach widely used in NLP tasks. Doc2Vec (Le & Mikolov, 2014a) is a state of the art

neural-network-based approach for generating fixed-length vector representations of a given

document. These models have been shown to be effective in improving the accuracy of tag

recommendations by taking into account the content of the documents. By capturing the

underlying topics and semantic meaning of the documents, LDA and Doc2vec are able to provide

more relevant and specific tag recommendations. LDA has been a popular method for solving the

tagging problem in software-related domains, while there are limited research comparing LDA

and Doc2vec for tag recommendation model on Software Q&A site. This leads to the following

5

research questions: How can a tag recommendation model be built using topic modeling and word

embedding approaches to enhance tagging quality?

Sub Question 1: How can feature be extracted to automatically recommend a set of tags from

Q&A forum?

Sub Question 2: How to find interpretable insights in this analysis?

Sub Question 3: Which approach can best used for tag recommendation? Can some conclusion

be reached based on the results from different approaches?

In this research, we aim to investigate and compare LDA and Doc2vec methods to enhance

the performance of tag recommendations for Software Q&A forums. Our study will focus on

evaluating the performance of these models in providing accurate and relevant tag

recommendations for new questions in a Software Q&A forum setting. By studying the strengths

and weaknesses of different approaches and investigating how these approaches can be improved

in terms of performance, we aim to assist in choosing appropriate methods specifically for software

Q&A forum types of data.

Throughout this paper, these questions will be answered. This research will begin with

exploring the current literatures about tag recommendation on software Q&A forum (Chapter 2).

Following the literature review, an overview of the dataset is provided (Chapter 3). Chapter 4

contains the technical aspects of building the tag recommendation system, presenting the all the

stages for tag recommendation. Subsequently, Chapter 5 presents the result of model's

performance, the effects of various pre-processing methods on performance, and a discussion of

the models' interpretations for future improvement of the models. Finally, Chapter 6 concludes

the research, offering suggestions for further studies and drawing overall conclusions.

6

2 Literature Review

In this section, we begin by reviewing previous work on the importance of tags in software

developer Q&A websites and the challenges developers encounter when tagging their questions.

Subsequently, we examine the literature on the evolution of tag recommendation models utilizing

various techniques. Among these techniques, we review the literature on two popular approaches

for building content-based recommendation systems, namely topic modeling and document

embedding.

2.1 Background and motivation

The rapid growth of software technologies has led to a surge in the use of Q&A websites by

software developers. These online platforms provide developers with the ability to search, share,

and learn from the experiences of others, as well as to obtain solutions, troubleshoot errors, and

access open-source projects. As software complexity continues to grow, developers increasingly

rely on these Q&A communities to seek expert support. When faced with technical queries,

developers frequently turn to forums within these communities due to their prompt response

times and wider visibility. (Squire, 2015) With continuously increasing information and users on

online Q&A communities poses a challenge for users in quickly and efficiently obtaining the

information they need on a given topic. Software information sites rely users to classify contents

their contents with tags, for example, the programming languages or the software objects. Tags

are relevant keywords associated with a piece of information on web pages (Chirita et al., 2007),

which aid in efficient information retrieval and management. Tags are very useful for the

Community Question-Answering forum because tags can help categorizing, browsing, and

managing the questions. By facilitating the detection of similar queries, tags enable users and

community experts to conduct more efficient searches and identify questions that align with their

areas of expertise. Tags play an important role in software Q&A sites as it can bridge the gap

7

between social and technical aspects and it improves team-based software development practices

(Treude & Storey, 2009).

Figure 1. An example question in Stack Overflow and its tags

Tag recommendation suggests a group of tags for a question post, making it easier for a user

to manually tag the question. The development of such models for software Question-Answering

(Q&A) sites is motivated by three key factors. First, Inconsistency: tags are decided by users or

developers themselves and tags are not restricted to a certain vocabulary guideline. Tags can be

inconsistent and vary in frequency of use due to users’ personal terminology as well as due to the

different purposes of tags (Golder & Huberman, 2006a). Words that convey the same meaning

can differ in various ways, including the presence or absence of spaces, capitalization,

abbreviations versus their full spellings, and the presence of hyphens. These differences pose

challenges for software developers attempting to search for existing tags, leading them to resort to

their own word choices (Liu et al., 2018). Inconsistency among the terms used in tagging can make

it very difficult to make sure all the relevant subjects have been found. Synonymy or words that

have the same or similar meanings make tags tend to be noisy and sparse (Golder & Huberman,

2006b). For example, (Xia et al., 2013) noticed tags “zombie” and “zombies” both describe the

zombie process in Unix. Second, labor-intensive: tagging manually is also time-consuming and

labor-intensive. Choosing suitable tags may not be an easy task since developers might just choose

the terms that were mentioned in the question, instead of the most relevant tags that represent

the most important features. Sometime low-quality of tags are selected and they may have a

negative effect on the organization of the website. Lastly, organized and avoid duplicates: tags have

been shown to increase the capabilities of searching, organizing and managing content. If

8

recommended tags are highly relevant, it will be easier for users to search for the questions they

are looking for from tags. Additionally, the use of tags helps to prevent the occurrence of duplicate

content, thereby streamlining the organization of information within the Q&A community.

2.2 Tag recommendation

Automatic tag recommendation provides a viable solution for these challenges by suggesting

the existing high-quality tags. Many studies have been done on tag recommendation for software

Q&A sites. (He et al., 2022; Wang, S., Lo, Vasilescu, & Serebrenik, 2018a; Xia et al., 2013). Existing

tag recommendation techniques can be broadly categorized into two different categories, namely

user-centered approaches (collaborative filtering methods) and document-centered approaches

(content-based methods). User-centered approaches, rely on the past interactions and

preferences of users to recommend tags for a given document. The goal is to recommend tags to

a user based on the tagging behaviors of similar users or user groups, as well as their historical

interactions with items, such as ratings or clicks. User-centered approaches are less effective than

document-centered approaches. One of the reasons is that user-centered approaches can suffer

from the "cold start" problem, which refers to the difficulty in recommending tags for a new user

or a new document that has not yet been interacted with by any user. With content-based

approaches, tags can be treated as class labels for document, or summarizations of documents,

thus document-centered approaches are more flexible to apply any sophisticated machine

learning algorithms. Additionally, content-based approaches are more robust because of the rich

information contained in the documents (Song et al., 2011). Content-based approaches have been

widely used in the field of tag recommendation for Q&A forums. The main aim of these

approaches is to analyze the content of the questions and answers and find associations between

the themes present in the documents and their tags. These approaches are particularly useful in

cold-start settings where either the user or the content does not have any tagging history. (e.g.,

new users or new documents) (Kataria & Agarwal, 2015). Research (Xia et al., 2013) proposed

9

TagCombine, an automatic tag recommendation analyzing objects in software information sites.

The method contains three different components: multi-label ranking component by adapting

multi-label learning one-versus-rest Naive Bayes classifiers, similarity-based ranking component

by applying TD-IDF, and tag-term based ranking component.

In the field of information retrieval, content-based tag recommendation models have been

widely used to provide recommendations for documents. However, despite their benefits, these

models also have limitations such as the inability to capture the context of the document and the

relevance of tags to the document. LDA and Doc2vec are popular content-based tag

recommendation models that have been developed to overcome these limitations. LDA is a

generative probabilistic model that uses latent topics to represent the content of the document

and the tags. Doc2vec, on the other hand, is a deep learning model that uses neural networks to

capture the semantic meaning of documents. These models have been shown to be effective in

improving the accuracy of recommendation by taking into account the content of the documents.

By capturing the underlying topics and semantic meaning of the documents, LDA and Doc2vec

are able to provide more relevant and specific tag recommendations.

2.3 Topic modeling

The field of information retrieval has become increasingly vital due to rapidly increasing

sources of information on the internet. Topic modeling stands out as one of the most effective

techniques for text summarization and information retrieval (Chauhan & Shah, 2021). It is a

powerful tool for identifying the key topics or themes that are discussed within a given corpus of

text, and has been applied to a wide range of applications, including sentiment analysis (Jeong et

al., 2019; Rao, 2015) and recommender systems (Ansari et al., 2018; Zhao et al., 2016; Zoghbi et

al., 2016). Topic modeling infers the underlying topics in a corpus of text documents by analyzing

the distribution of words across documents. The key idea is that words that appear together

10

frequently in documents are likely to be related, and can be used to infer the latent topics present

in the corpus. Once the topics have been identified, each document can be represented as a

probability distribution over the topics. This means that a given document may be associated with

multiple topics, each of the topic represents a different aspect or theme of the document. These

topics can be used to identify semantically similar documents and to explore the relationships

between the topics and the documents in the corpus.

The most widely used algorithm for topic modeling is Latent Dirichlet Allocation (LDA), due

to its highest performance when dealing with long documents and interpreting identified topics

(Chiru et al., 2014). LDA has been frequently implemented to extract topics and has shown to be

effective and popular method for solving software engineering problems (Asuncion et al., 2010;

Somasundaram & Murphy, 2012; Wang, T. et al., 2014). Tag recommendation using LDA is also

seen in software related website. To overcome cold start problem, (Krestel et al., 2009)

implemented LDA approach which provides a probability value for each topic and tag. The

probabilities assigned by LDA to each tag for each latent topic is used to generate a probability

value for each tag. To control the number of recommended tags, the system recommends tags

with a threshold so the system can recommend only those tags that meet a certain level of

probability, allowing for adjusting the balance between recall and precision. This approach of the

paper achieves significantly better precision and recall and more specific for a particular resource

compared to an approach using association rules. In (Ramage et al., 2009), the authors note that

traditional topic models like Latent Dirichlet Allocation (LDA) do not effectively handle labeled

data, therefore they introduce Labeled LDA (L-LDA), a supervised topic model which constrains

the topics of a document to the tags attached to that resource. Its tags are predefined and are

trained together with a set of documents, so that it will calculate the probability distribution of

topics. (Wang, S., Lo, Vasilescu, & Serebrenik, 2018b) proposed ENTAGREC++, a method for

recommending tags to software objects that are untagged. It builds on the previously proposed

11

ENTAGREC approach, which uses a probabilistic model to assign tags to software objects based

on the words that appear in them. However, the basic approach suffers from two major problems:

the presence of unrelated words and data sparsity. To address the issues of unrelated words, it

extended Labeled LDA model by removing unrelated words using Part-Of-Speech (POS) Tagger

to identify the unrelated words. Only nouns and noun phrases are retained in this study.

2.4 Document embedding

In recent years, learning embeddings that learn distributed representation of words and

documents from large text has become popular for many natural languages processing tasks,

including document tagging. Document embedding has been a very active research area in various

applications, such as sentiment analysis (Bilgin & Şentürk, 2017; Thongtan & Phienthrakul, 2019)

and identify abnormal comments (Chang et al., 2018). However, there has been limited research

on using document embeddings for multi-label learning.

Doc2Vec is sentence embedding unsupervised text learning model introduced by Google

(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). It is an extension to Word2Vec model. In

addition to learning semantic representations, the paragraph vectors also contribute to the

prediction task alongside the word vectors. Doc2vec performs really well in the case of

representing longer documents (Lau & Baldwin, 2016a). Tag recommendation model build in

(Chen et al., 2017) was the first embedding based multi-label learning approach to NLP tasks. Its

DocTag2Vec extends Doc2Vec by adding tag embedding. (Liu et al., 2018) propose a tag

recommendation model for software Q&A site. The model’s architecture is similar to continuous

bag of words model (CBOW) and it creates a look up table that only contain words that appear in

the software information site.

Recent research use Doc2Vec on other recommendation method has achieved good result.

(ZhengWei et al., 2022) use Doc2vec to represent bibliographic text. It is a new journal

12

recommendation approach combing with XGBoost algorithm to classify bibliographic information

after extracting text representation from Doc2Vec. (Nandi et al., 2018) builds a content-based

news recommendation model using Doc2vec and compare the model with LDA and LSA.

Doc2vec and LDA are two popular approaches for building content-based recommendation

system, ranging from extending the approaches by adding more components to applying the

model on larger dataset. To the best of our knowledge, there is limited research on comparing

both methods for tag recommendation models in the context of software Q&A forums. The

expected outcomes of this study include a deeper understanding of the effectiveness of Doc2Vec

and LDA for tag recommendation models in software Q&A forums. We will use pre-processed

methods and evaluation metrics that have not been studied in previous research and examine the

interpretability of the models. The study will identify the strengths and limitations of each

approach and provide recommendations for improving the performance of these models.

13

3 Data sets

To address the research questions, we compare different methods on one recent dataset. The

dataset consists of manually tagged questions from Stack Overflow, a leading community for

developers and technologists to ask and answer programming-related questions. The forum allows

app developers and experts to submit questions and answers, with multiple tags tagged to each

questions.

The dataset from Kaggle https://www.kaggle.com/datasets/imoore/60k-stack-overflow-

questions-with-quality-rate contains 60,000 Stack Overflow questions from 2016-2020. Users

submitting questions label each question with one or more tags, and platform moderators can

adjust these tags if necessary. The dataset includes the question ID, question title, question

content, tags associated with each question, creation date, and quality score of the questions. Tag,

question title and question itself are used in this research. The question title of a post summarizes

the question, while the question body offers additional details, including the question description

and code snippets. Tag, question title and question body are text data, but after pre-processing,

they will be converted to numeric values, as the models can only accept numerical inputs.

3.1 Tags

In total there are 219880 tags and 10704 unique tags. The three most popular tags are

‘javascript’, ‘python’, and ‘java’. The following figure (Figure 2.) shows distribution of the 100 most

frequent tags in this dataset. 100 most frequent tags account for 39.30% of total amount of tags.

From Figure 2 we can see that the tags are imbalanced, 10 most popular tags account for

more than 20% of total numbers of tags. In Table 1 shows the percentage of top 10 tags occurs in

total number of tags, and the percentage of top 10 tags occur within top 100 tags, and Table 2.

Shows the accumulated percentage of top 10 tags. The majority of the most frequent tags are

programming language.

14

Figure 2. Distribution of 100 most frequent tags

Tags javascript python java android php c# html c++ css c

of total tags 3.23% 3.09% 2.84% 2.20% 1.89% 1.89% 1.54% 1.37% 0.96% 0.84%

of top 100 tags 8.22% 7.87% 7.22% 5.60% 4.82% 4.81% 3.91% 3.48% 2.43% 2.14%

Table 1. The occurrence of top 10 tags

Tags javascript python java android php c# html c++ css c

of total tags 3.23% 6.32% 9.16% 11.36% 13.25% 15.14% 16.68% 18.05% 19.01% 19.85%

of top 100 tags 8.22% 16.09% 23.31% 28.91% 33.73% 38.54% 42.45% 45.93% 48.36% 50.50%

Table 2. The accumulated occurrence of top 10 tags

3.2 Questions

The majority of the word length of each question is shorter than 200 words. The average word

length is 200 and median is 184.54. (Figure 3)

Figure 3. Distribution of Question Lengths

15

There are few outliers clearly seen in boxplot (Figure 4) These outliers are removed since very

short documents may not contain enough information to be useful for training, and very long

documents may contain too much noise or irrelevant information. Therefore, 72 questions are

removed.

 Figure 4. Boxplot of Question Length

16

4 Methodology

In this section, the two tag recommendation models used in this research will be discussed in

more detailed. Besides introducing the models and their algorithms, three main stages for both

tag recommendation model will also be explained. The three stages are text-preprocessing, feature

extraction and multi-label classification. Once the features were extracted from two models, we

trained two multi-label classifiers from the extracted features then assign tags to the corresponding

questions. In the last part of this section contains evaluation metrics that are used to evaluate and

compare these models.

To evaluate the two models, the dataset is split into a training set (70%) and a testing set

(30%). The tags that occur more than 250 times are selected because the goal of the tag

recommendation model is to recommend general tag sets for new posts (questions).

4.1 Pre-processing

Before comparing methods, pre-processing need to be performed on both the question body

and tags so that the texts are in desirable format. (Lau & Baldwin, 2016b) use both the question

title and body as document content for evaluating the effectiveness of Doc2Vec on forum question

duplication. Additionally, result from (He et al., 2022) demonstrated that question title is the most

significant components for tag recommendation in Stack overflow posts. Therefore, the input text

combines both title and questions body content.

Few tags belonging to the same category are combined to avoid inconsistency problem

mentioned by (Golder & Huberman, 2006b). python-2.7, python-3.x are changed and combined

into python. c++11 is changed into c++.

17

Text preprocessing takes as raw text input and returns cleansed tokens. The approach used

for pre-processing a document for topic modeling includes the following steps:

1. Convert all letters into lowercase

2. Remove HTML formatting using Beautiful Soup library

3. Remove special characters, punctuations, and undesirable marks like

“@#$%^&*(){}:”<>?/.,’;][“ , unless they are part of tags (e.g. c#, c++)

4. Tokenize words

5. Perform lemmatization

6. Remove stop words

First, text cleaning, also called noise removal is performed. It includes remove all of the

punctuation and converting uppercase letters to lowercase. To remove punctuation, regular

expression re.compile is used to identify the targeted regular expression pattern, allowing for the

removal of the characters that are not whitespace. However, punctuations that are not related to

important tags (such as c++, c#) are remained in the text body. In an HTML web page, tags such

as <p> and </p> define paragraphs. The Beautiful Soup library can remove these tags generated

from HTML files. Some contracted forms are converted during the data cleaning process; for

example, ‘what’s’ is converted into ‘what is’ and ‘I’ve’ is converted into ‘I have’, and ‘can’t is

converted into ‘cannot’.

Next, text normalization is performed, which involves converting the text to a more

convenient, standard form. Text normalization includes tokenizing (segmenting) words and

normalizing word formats (Stemming and lemmatization) (Jurasfky & Martin, 2000).

Tokenization divides a large quantity of text into smaller parts called tokens. Stemming and

lemmatization are common pre-processing steps that generate the root form of the family word

18

into a single word. However, lemmatization process is more elaborate because replaces actual

words with dictionary words, while stemming only changes words into root forms. As a result,

lemmatization requires more resources (Jivani, 2011). Lemmatization determines words that

share the same root; for example, the words is, am, and are share the same lemma be; the word

function and functions both share the same lemma function.

After lemmatizing words, we use the list of stop words (e.g., a, an, the, etc.) provided by the

NLTK library. Removing stop words should improve the model because they represent low-level

information in a document's content. By applying these pre-processing steps, the text data is

prepared for further analysis using the chosen methods.

4.2 LDA

Topic modeling is an unsupervised machine learning technique used to discover latent

themes and generate hidden topics from unstructured data. The output of this process consists of

topic vectors that can be used as feature vectors in supervised classification models to identify

"similar" documents without prior knowledge regarding their content. This approach differs from

traditional methods of manually identifying groups of interest by annotating a subset of

documents. Although topic models cannot replace human interpretation of text, they do offer a

viable means of making educated guesses about how words cohere into different latent themes by

identifying patterns in their co-occurrence within documents. However, one of the limitations of

topic modeling is its underlying assumption that each word has a singular meaning, which may

not always be accurate.

One popular technique for topic modeling is Latent Dirichlet Allocation (LDA), which is a

probabilistic soft-clustering method where clusters may overlap, it is different from hard-

clustering methods such as Hierarchical Clustering and k-means, where each element belongs to

19

one cluster. Given the software related questions do not fit only into one single category, LDA is a

preferred method for this study. The term “Latent” in LDA refers to the hidden topics present in

the data, while “Dirichlet” represents a form of probability distribution that helps to explain the

similarity of data by grouping features. “Dirichlet” is a "distribution of distributions" as it

represents the probabilities of possible outcomes of another distribution. In the context of LDA,

“Dirichlet” indicates the probability distribution of topics in documents and the probability

distribution of words in each topic.

Latent Dirichlet Allocation (LDA) is a probabilistic generative model that allows us to discover

the underlying topics in a corpus of text documents. LDA assumes that each document in the

corpus is a mixture of K latent topics, where K is a user-defined parameter. The model also

assumes that each word in a document is generated from one of the K topics, and the probability

of a word belonging to a topic is determined by the topic-word distribution and the topic

proportions in the document. LDA is guided by two fundamental principles: each document

represents a combination of topics, and every topic consists of a combination of words. Through

LDA modeling, two sets of probability distributions are produced (Figure 5):

§ The set of probability distributions of topics for each document

§ The set of probability distributions of words for each topic

Figure 5. An example of LDA probability distributions (Sam Tazzyman, 2018)

20

The learning process in LDA starts by randomly assigning each word in the corpus to one of

the K topics. Subsequently, for each word in each document, the model calculates the probability

of that word belonging to each topic, based on the current topic distribution for the document and

the topic-word distributions learned from the corpus. These probabilities are used to assign the

word to one of the topics, by sampling from the distribution over topics. The probability of words

belonging to a topic is 𝑃(𝑤!|	𝑑), the probability of the 𝑖"# word for a given document 𝑑. It is

calculated by multiplying two following probabilities.

• 𝑃(𝑤! 	|	𝑧! = 𝑗)	represents the probability of 𝑤! 	inside the topic 𝑗

• 𝑃(𝑧! = 𝑗	|	𝑑) represents the probability of the word stemming from topic 𝑗 given the

document

The latent topic 𝑧! 	is a hidden variable that represents the assigned topic for the 𝑖"# word in

the document. 𝑧! 	is inferred probabilistically based on the learned topic distributions for each

document. The probability of word 𝑤! 	belonging to any topic is the sum of these probabilities over

all possible topics. 𝑃(𝑤!|	𝑑) can be formalized as follows:

𝑃(𝑤!|	𝑑) = 	,.
$

%&'

𝑃(𝑤! 	|	𝑧! = 𝑗)	𝑃(𝑧! = 𝑗	|𝑑)

This process is repeated for all words in the document, updating the topic distribution for the

document based on the newly assigned topic for each word. The process then moves on to the

next document and repeats until we obtain a set of topic distributions that best explain the

observed word frequencies in the corpus.

In Latent Dirichlet Allocation (LDA), the parameters alpha and beta are hyperparameters

that control the sparsity of the topic distributions for the documents and the word distributions

21

for the topics, respectively. These two hyperparameters are experimented and then adjusted to fit

this data. The alpha parameter influences the topic distribution for each document by controlling

the degree to which topics are expected to be present in a document. A smaller alpha value results

in sparser topic distributions, where each document is expected to have fewer dominant topics. A

larger alpha value results in more uniform topic distributions across all documents. The beta

parameter influences the word distribution for each topic by controlling the degree to which words

are expected to be present in a topic. A smaller beta value results in sparser word distributions,

where each topic is expected to have fewer dominant words. A larger beta value results in more

uniform word distributions across all topics.

Perplexity is an intrinsic evaluation that measures of how well a probability model predicts a

sample. It indicates how well the model describes a set of documents; To compute perplexity of

LDA model, a test corpus and a trained LDA model is needed, which output is topic-word

probability and document-topic probability. The probability of each word in each test document

given the topic assignments of all the words is calculated, and then the result takes the exponential

of the negative average log-likelihood of the sample. The formula is shown as:

Perplexity	of	set	of	documents = exp	
−log	(Pr[𝑎𝑙𝑙	𝑤𝑜𝑟𝑑𝑠	𝑖𝑛	𝑑𝑜𝑐𝑠])
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟𝑠	𝑜𝑓	𝑤𝑜𝑟𝑑𝑠

4.2.1 Random Forest to determine the most informative words using Part-of-
speech tagging

In the process of text pre-processing, although stop words have been removed, many non-

stop words remain unrelated to software object tags and thus need to be eliminated. Part-of-

speech (POS) tagging is a technique that identifies and labels words as specific parts of speech,

such as nouns, verbs, adverbs, or adjectives, based on their context and definition. This enables a

deeper understanding of a sentence's grammatical structure, resulting in more accurate and

22

effective language processing. In a typical NLP pipeline, tagging is the second step after

tokenization. To determine the types of words that are informative for tag recommendation in this

specific type of task, texts are labeled using part-of-speech tagging to classify words into categories

such as nouns, verbs, adverbs, or adjectives, among others. (Wang, S. et al., 2018b) extended the

L-LDA model by employing a POS Tagger to remove unrelated words, retaining only the nouns.

In our study, we utilize the Random Forest model to analyze the most important word types. Once

the POS tags associated with each word are extracted, the importance plot generated by the

Random Forest model reveals the most informative word types.

4.2.2 Convert clean text into numerical representation

In order to run the LDA model, the next step is to convert the cleaned text into a numerical

representation. TF-IDF helps to penalize too frequent words and provide better features space.

Countvectorizer or TfidfVectorizer can be used to transform the Document Term Matrix (DTM)

into numerical arrays. According to (Blei & Lafferty, 2006) the Tf-IDF score can be useful for LDA.

TfidfVectorizer from Scikit-learn converts documents into a matrix of TF-IDF features. TD-IDF

(Term Frequency-Inverse Document Frequency) is a statistical measure that evaluates how

relevant a word is to a document within a collection of documents. These documents can be

sentences, dialogues or even long texts. Term frequency refers to the occurrence of a given word

divided by the total number of words appearing in the document, in other words, how often a

word occurs in a document. However, calculating term frequency alone is insufficient to solve our

problem, since some words may appear several times without providing meaningful insights, such

as the words "the" and "and". To identify special words in each document, Inverse Document

Frequency is calculated. This involves taking the log of the number of documents divided by the

number of documents with the term (𝑡). For example, the word “the” would appear in all

23

documents, and then value of the denominator will be the same as the number of documents.

With the log in front of the value, which is log of 1, it will turn the value to 0.

Lastly, by multiplying Term Frequency and the Inverse Document Frequency, we obtain the

TD-IDF score. The higher the score, the more relevant the word is in that document. For the

mathematical notation of TD-IDF, some notations are introduced. The corpus (𝐷) represents a

collection of documents, 𝑑 represents a document, 𝑡 represents a term (word), and N is the count

of corpus.

𝑡𝑓 − 𝑖𝑑𝑓	(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) ∗ 𝑖𝑑𝑓(𝑡, 𝐷) = 𝑡𝑓(𝑡, 𝑑) ∗ 𝑙𝑜𝑔
N

#(d ∈ D:	t ∈ d)

Within Scikit-learn's TfidfVectorizer, tokens that have less than 2 characters are removed to

exclude single characters which may not be informative enough to be useful in the analysis.

4.2.3 Feature extraction from topic distribution

Treating individual words as features yields a vast number of features set (Joachims, 1999).

One way to reduce this feature set is to use topic distributions for dimensionality reduction. After

processing the training set of documents and extract say N topics, we get the topic distribution of

N topics for all the labeled documents. We use these topic distributions to recommend tags for a

given text by identifying the most probable tags associated with those topics. Topic distribution is

a measure of the probability of each topic present in a document, representing the likelihood that

each topic generated the words in the document. After fitting the LDA model to the training data,

the topic distribution for each document is extracted. During the tags classifying phase, multi-

class classifiers are built using these vector representing topic proportions as input features, with

binarized tags serving as the target variable.

24

4.3 Doc2Vec

Doc2Vec (Mikolov, Chen et al., 2013) is an unsupervised model for learning embeddings of

documents or sentences, also known as document or sentence embeddings. It is a neural network-

based approach for representing documents in a continuous, low-dimensional vector space.

4.3.1 Word2Vec

Doc2Vec is an extension of Word2Vec that attempts to determine an adequate continuous

vector for a paragraph. Word2Vec includes two algorithms, CBOW and Skip-Gram model.

Continuous bag-of-words model (CBOW) predicts the middle word based on surrounding context

words, while Skip-Gram model predicts words within a certain range before and after current

word in the same sentence. The whole idea of the CBOW model is to maximize average log

probability of the focus word given the context words, 𝑝	(𝑓𝑜𝑐𝑢𝑠	𝑤𝑜𝑟𝑑	|	𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑤𝑜𝑟𝑑𝑠), while the

idea of Skip-Gram model is to maximize the average log-probability of predicting context words

given the focus word, 𝑝	(𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑤𝑜𝑟𝑑𝑠|	𝑓𝑜𝑐𝑢𝑠	𝑤𝑜𝑟𝑑), which is an inverse task of CBOM model.

Given a sequence of training words 𝑤', 𝑤(, 𝑤)…..𝑤* , where 𝑡 is the position and k represents the

window size. The size of the window can affect the training accuracy and computation time. Larger

size of windows leads to higher accuracy but higher computational cost as the model has more

information about the words in the context. The average log probability is written as

'
*
∑ log 	𝑝	(𝑤"|𝑤"+, , … , 𝑤"-,)	*+,
"&,

In the first layer, each word within the window will be encoded into one-hot vector

representations. Then this one hot encoding input vector is fed into the simple neural network

that has only one hidden layer and one output layer. (Figure 6.) The hidden layer constitutes a

lookup matrix, containing weights for the word vector. The weights in the lookup matrix determine

the strength of the connections between the neurons and the importance of the features captured

by the word vectors. In the output layer, the word 𝑤" can be predicted using multiclass classifier

25

Softmax function, where the terms 𝑦. , is the unnormalized log-probability for each output

word 𝑤! . 𝑤! captures the similarity between two-word vectors. The higher the similarity, the

higher the probability. If the words do not appear in each other's context, the resulting

representations of the words will be distinct, leading to a small value in the numerator of the

probability calculation. Denominator normalizes and the values of probability obtained in the

output layer to one. The equation is written as:

𝑝(𝑤"|𝑤"+, , … , 𝑤"-,;𝑊) =
/!"#
∑ /!$$

Figure 6. the global overview of Word2vec Skip-Gram model architectures (McCormick, 2016)

4.3.2 Feature extraction from paragraph vector

The motivation behind Doc2Vec was to better understand the unstructured document as a

whole, comparing to individual words. Unlike Word2Vec, Doc2vec is trained to represent the

meaning of entire sequences of sentences. This is achieved through joint training with the word

vectors during the language modeling process. Instead of using words to predict the next word

compare to Word2Vec, there is another document token, paragraph vector, added to the training

set. The paragraph vector is unique among the documents, while the word vectors are used among

all the documents. There are two algorithms, the first algorithm is Distributed Memory Model of

Paragraph Vectors (PV-DM), which is similar to CBOW in Word2Vec. The training is done by

26

passing a sliding window over the sentence, trying to predict the next word based on the previous

words in the context and the paragraph vector (or the Document ID in Figure 7). The second

algorithm is Distributed Bag of Words version of Paragraph Vector (PV-DBOW), which is similar

to Skip-Gram in word2vec model. It is a simpler model that ignores word order. The model only

requires to store the Softmax weights, instead of both Softmax weights and word vectors.

Figure 7. Distributed Memory (PV-DM) and Distributed bag of words (PV-DBoW) (Bilgin & Şentürk,

2017)

The difference between the DM model and DBOW model is that the DM model takes into

account the word order, while the DBOW model does not. The DBOW model does not preserved

the semantics of the words because it does not use word vectors, therefore, it is harder to detect

similarities between words. The PV-DBOW model captures the most important features of a

document, including its overall content and meaning, and represents them in a condensed and

efficient form. Meanwhile, the PV-DM model focuses on the meaning or the context of the

document, using the hidden layer to encode the context information. In this study, we

experimented with both and PV-DBOW and PV-DM. The results revealed that PV-DBOW has

poor performance compared to PV-DM. These results are consistent with the outcomes reported

in the paper (Le & Mikolov, 2014b), where PV-DM consistently performed better than PV-DBOW.

Consequently, the PV-DM model was adopted for the analyses in this study.

27

Doc2Vec is especially useful when trying to determine similarity of content based on the

entire content and not only the hot spot or the focus words. The method is based on the

assumption that more frequent co-occurrence of two words in a small neighborhood of a

document implies higher semantic similarity between them. The paragraph vectors are updated

by learning the vector representation of each word and a vector representation of each document.

Doc2Vec is trained on the pre-processed question text. The training process begins by converting

each sentence and word in the corpus of text to a one-hot representation. The model then selects

a random window of words around a specific word from the corpus on each iteration. The center

word in the window is the target word that the model attempts to predict, based on the context of

the surrounding words. The model computes a feature vector for every document in the corpus.

After completing the training process, Doc2Vec generates a vector representation for new

documents. The resulting vector, referred to as the paragraph vector (or document vector), serves

as an embedding for the new document, which can then be used as input for a supervised classifier

to predict the recommended tags. All the weights of the model are fixed except for the weights of

the document vector, which are updated at every step.

4.3.3 Training Doc2vec

In the final step of training a Doc2Vec model, the predicted probabilities from the Softmax

function are compared with the actual words from the selected context words. This comparison

is done using a cross-entropy loss function, which sums up the products of the actual one-hot

encoded vector (𝑡) and the predicted probability vector (�̂�) obtained from the Softmax function.

The loss function only takes into account the prediction error for the words in the context, and

stochastic gradient descent (SGD) is used to minimize the loss function by updating the model's

parameters. The objective of the SGD is to gradually reduce the loss function, minimizing the

resulting difference with every iteration. The SGD algorithm achieves this by computing the

28

gradients of the loss function on the matrices D (document vectors) and U (word vectors).

These gradients indicate how much we need to adjust the weights that connect the neurons in

the model to reduce the loss function. The gradients are obtained by taking the derivative of the

loss function with respect to the components of matrices D and U. To update the weights, we

pass the prediction error (subtract the actual one-hot encoded vector (𝑡) from the predicted

probability vector (�̂�) obtained from the Softmax function) back through the network, which

involves computing the output prediction error o and the embedding layer error h.

cross	entropy	loss	function = 𝐸	(
"
→ ,

"
→d) = 	−,𝑡% 	𝑙𝑜𝑔	𝑡1d

2

%

The gradient of the loss function is computed for each of the words in the context and

summed up before being passed back through the network. We then use the sum of gradients of

the loss function to obtain the update values for D and U, which are multiplied by a learning rate

alpha to limit the size of the weight adjustments. A common choice is to start with alpha=0.025,

and then gradually reducing it to 0.001. Finally, we repeat these steps for all the documents in the

corpus to complete one epoch of the training process.

4.3.4 Increase efficiency

However, Softmax is computationally very expensive. Computing the denominator of the

probability distribution, which serves as a normalizing factor over the entire vocabulary, poses a

significant computational challenge since the size of the vocabulary can comprise hundreds of

thousands or even millions of words and has a tremendous number of weights. To address this

challenge, two popular techniques, negative sampling (Mikolov et al., 2013) and hierarchical

softmax (HS) (Morin & Bengio, 2005) are employed instead of using the naive softmax to make

the computation feasible.

29

Negative sampling addresses this by having each training sample only modify a small

percentage of the weights. Instead of minimizing the similarity for every word in the vocabulary

that is not a context word, negative sampling utilizes a randomly selected subset of words, which

are also samples of words that are not neighbors. The negative term is one that the output of

network is 0 in this context. The negative samples are chosen using a unigram word distribution,

with more frequent words being more likely to be chosen as negative samples. In each training

step, one positive example and its associated negative examples is taken and the dot products of

the input embedding with its context embeddings are calculated. The result of the scores is

processed using sigmoid operations to turn all values between zero and one. The errors are

calculated by subtracting the sigmoid scores from the target labels. Then theses errors are used to

update the model parameters so that the result would be closer to the target scores in the next

calculation.

Hierarchical Softmax is performed by representing the Softmax layer as a binary tree where

the words are leaf nodes of the tree, and the calculation of probabilities is performed by navigating

from the root of the tree to the relevant leaf.

4.4 Multi-label Classification

The third stage of the tag recommendation model is to classify all the features or topics

generated by two models. Since a Stack Overflow question can belong to multiple tags or topics at

the same time, we consider the task as a multi-label learning problem.

One-vs-Rest (OvR) is a common strategy for multi-label classification problems, where the

goal is to predict the label for each sample. In OvR, a separate classifier is trained for each class,

with the samples from that class as positive samples and all other samples as negative samples.

During prediction, each classifier makes a prediction for a sample and the class with the highest

predicted probability is chosen as the final prediction. It allows the model to predict multiple tags

30

for a given input text, instead only predicting one single tag. OvR is used with algorithms that do

not natively support multi-class classification, in this analysis logistic regression and support

vector machines are used.

Logistic regression is often used for classification problem and it is a statistical method for

modeling the probability of a binary outcome. When the model that uses logistic regression for

tag prediction, the model trains a separate logistic regression classifier for each tag in our dataset.

Instead of regular y= {0,1}, in multi-class classification, the description is extended to y= {0,1…n},

where y is the tag. It considers one class as 1 and the rest as 0. With one-vs-Rest, it creates the

same number of models as the number of tags, with each classifier inside each model is a classifier

that separates tags into binary classifier. After models are created, the testing input pass into each

model to receive output scores that give different possibility of each model. The final output of

the model will be the model that gives the highest score for this input.

A Support Vector Machine is a class of supervised learning algorithms that can be used for

classification task. Among supervised classification models like Bayesian classifier, logit model,

SVM (support vector machine), k-nearest-neighbor, decision trees and neural networks, SVM is

better for Doc2vec model due to its flexibility and its robustness against errors (Truşcă, 2019).

Support Vector Machine uses kernel functions that handle non-linear separable data to find the

optimal hyperplane in a high-dimensional feature space that maximize and separate two classes.

In this analysis, the two classes would be the relevant and non-relevant tags. SVM finds the best

hyperplane by looking for the maximum margin between the data points and the hyperplane. The

hyperplane depends only on the support vectors, which are the closest data points to the

hyperplane and can influence the hyperplane’s position. Consider a random point (x) vector and

a vector (w) that is perpendicular to the hyperplane. The optimal hyperplane is calculated as

31

𝑤.x+b=0, meaning that if the result is large then 0 or smaller 0, the point fall into the side of either

relevant tags or non-relevant tags. The hard margin can be formulated as:

Margin = (
||.||

Since the SVM are designed to perform binary classification, it is not able to perform

multiclass and multilabel classification natively and efficiently as a multilabel model does. This is

because hyperplane must be an equidistant from the classes to ensure the margin is maximum.

4.5 Evaluation Metric

To evaluate previously described methods, evaluation metric is an important method to

structurally comparing the different models in an appropriate manner so that fair conclusion can

be made. Popular evaluation metrics for evaluate the models are Precision, Recall, and F-measure

(F1-score), and Average predicted probability. Precision, Recall, and F-measure (F1-score)

evaluation metrics are widely used in in previous researches on Software Q&A site for evaluating

and comparing with previous tag recommendation models. (He et al., 2022; Khezrian et al., 2020;

Liu et al., 2018; Xia et al., 2013)

Accuracy measures the number of correct classifications, which are true positive and true

negative, in relation to the total number of all observations. The metrics is calculated as follows:

Accuracy = *45/	789!"!:/	-	*45/	;/<2"!:/
*45/	789!"!:/	-=2>9/	789!"!:/-	*45/	;/<2"!:/-	=2>9/	;/<2"!:/

However, accuracy is not a good measure in some cases, it is not an ideal metric especially

for imbalanced data because it does not take into account the distribution of classes. For example,

consider a binary classification problem where 95% of the samples belong to class A and only 5%

of the samples belong to class B. If the classifier always predicts class A, it would still achieve an

32

accuracy of 95%. However, this accuracy would not reflect the fact that the classifier is not doing

a good job of identifying class B. In common practical scenario example would be credit card

fraud detection. Fraud transaction are typically a small minority of all transactions. A model that

has high accuracy will not actually be effective on preventing fraud. The dataset in this study may

be the case since certain tags are much more common than others.

Precision calculates the number of observations that are correctly classified divided by the

total number of observations that are predicted as positive. A high precision means that the

classifier is making very few false positive predictions, meaning that the model is predicting a

small number of irrelevant tags.

Precision = *45/	789!":/
*45/	789!"!:/-=2>9/	789!"!:/	

 = *45/	789!"!:/
*8"2>	74/?!@"/?	789!"!:/

Recall measures the samples that were correctly predicted by the model divided by the sum

of true positive predictions and false negative. In this study, it measures the proportion of relevant

tags that were correctly recommended by the model. A high recall means that the model is

predicting a large number of relevant tags. In other words, the tags that the user is interested in

are likely to be included in the list of predicted tags. This is more useful in the tag recommendation

context because if the model misses relevant tags, the user may not see the results they were

looking for.

Recall = *45/	789!"!:/	
*45/	789!"!:/-=2>9/	;/<2"!:/

 = *45/	789!"!:/
*8"2>	A@"52>	789!"!:/

F-score represents a summarization of both two measures. With F1 measure, a high F1 score

has both a high precision and high recall. Therefore, it can give a more accurate result of how well

the models perform. When the classes in a dataset are imbalanced, precision and recall can be

misleading. Since some tags occur much more frequently than others, we also evaluate Micro F1

33

score. Micro F1-score is calculated by counting the total number of true positives, false positives,

and false negatives across all classes and then calculating the F1-score based on those counts.

F1= (×4/@2>>	×.D4/@!9!8E
4/@2>>-D4/@!9!8E

However, precision, recall, and F1 score measures depend only on the tag that receives the

highest probability, and therefore, do not reflect the quality of predictions for tags that do not

receive the highest probability. For example, suppose a question has two relevant tags: ‘python’

and ‘pandas’. If the model predicts ‘python’ with a probability of 0.8 and ‘pandas’ with a probability

of 0.2, the precision, recall, and F1 score will be based only on the prediction of "python", and the

prediction of ‘pandas’ will be considered a false negative. In contrast, average predicted probability

provides information on how high the probability of the outcome is when it is not highest. It takes

into account the probabilities of all the predicted tags, not just the one with the highest probability.

The benefits of using average predicted probability as a performance measure is that it provides a

more nuanced view of model performance than previous measures such as precision, recall, and

F1 score.

Unlike the outputs of logistic regression can be interpreted as probabilities, SVM (support

vector machine) does not provide probabilistic outputs directly. To address this limitation, a

technique called Calibrated Classification classifier model is used to obtain probability estimates

from the SVM classifier. Calibrated predicted probabilities are probabilities that have been

adjusted or transformed to better match the expected distribution of probabilities for each class.

In this study, we utilize Platt scaling, a method that fits a logistic regression model (sigmoid

function) to the output of the SVM classifier to map the SVM outputs to calibrated probabilities.

Platt scaling is trained on the decision function values produced by the SVM classifier,

transforming the SVM outputs into representations of the true class probabilities. Average

predicted probabilities are calculated by taking the mean of the calibrated probabilities.

34

5 Results

In this chapter, the results of the analysis are presented. In the first sections, the result of text

pre-processing is presented. In the second and the third sections present the result of building

each model, including model interpretability. These two sections focus on achieving the highest

accuracy by identifying the best performance of the models and examining the results of

employing different multi-label classifiers. In the final section, we compare two models by

different performance metrics.

5.1 Text pre-processing

To verify the text pre-processing procedure, word cloud (Figure 8.) is used to get a visual

representation of most common words across all the documents.

Figure 8. Word cloud after text pre-processing

The Table 3. below provides an example of the title and question before and after text-

preprocessing phase. The table present the 20th question in the dataset, which the question is

tagged with ‘php’ and 'mysql'.

35

Before text preprocessing After text pre-processing
I cant UPDATE datetime to MySQL
<p>I need a little help. I'm try to UPDATE a datetime to MySQL, but it didn't
work.</p>
<p>The declaration is like this:</p>
<pre><code> $startDate = time();
 $time = date("Y-m-d H:i:s", strtotime('+7 days', $startDate));
</code></pre> <p>After this i want to UPDATE, but in MySQL is still blank
always.</p>
<p>UPDATE:</p>
<pre><code>mtquery("UPDATE table SET end_time = ".$time." WHERE id
= ".$table['id']."");
</code></pre>
<p>If i use NOW() instead of ".$time.", it works perfectly.</p>
<p>If someone can help, please write the solution.</p>
<p>Thanks,</p>
<p>KoLi</p>

update datetime mysql need
help try update datetime
mysql work declaration
startdate time time date day
startdate want update mysql
still always update update
table set end time time
table use instead time work
perfectly help write solution
thank koli

Table 3. An example of original text and pre-processed text

5.2 LDA

In this section, the results of the LDA-based tag recommendation model are presented. The

LDA model with 90 topics was trained on the term frequency-inverse document frequency (TF-

IDF) representation of the training data. To achieve the best performance, several pre-processing

steps were undertaken, including the selection of an optimal number of topics, lemmatization,

and removal of unrelated words using Part-of-Speech (POS) tags. Then we utilize multi-label

classification task and classifiers were trained using the topic distributions from the training set

and their corresponding multi-label binarized tags. The performance of the model was assessed

using micro-averaged precision, recall, and F1 scores. Furthermore, the average predicted

probability was calculated. The following sections will detail the pre-processing steps taken to

achieve the best performance before the training process, the tuning process and the

determination of an optimal threshold.

5.2.1 Numbers of topics

36

For determining the numbers of topics for LDA model, initially, we considered using

perplexity as an evaluation metric to determine the best number of topics. However, the perplexity

scores increase as the number of topics increases. This result prompted us to use alternative

evaluation metrics for selecting numbers of topics. We decided to consider the balance between

F1 score and average predicted probability. This will help ensuring the model is both accurate and

confident in its predictions, which should lead to better performance when applied to predicting

new tags. The chart in Figure 9 presents the number of topics in an LDA model and its

corresponding F1 score (black line) and average predicted probability (dark blue line). The

numbers of topics where both F1 score and average predicted probability are relatively high is at

topics 90, yielding an F1 score of 0.3855979 and an average predicted probability of 0.0198371.

The exact value of Figure 9 is shown in Figure 13 (Appendix).

Figure 9. LDA model performance: F1 Score and average predicted probability vs. number of Topics

5.2.2 Lemmatization on different words

Lemmatizing only specific parts of speech, such as nouns and verbs, yielded different results

compared to lemmatizing all parts of speech. In particular, we discovered that when lemmatizing

only a subset of words, the model might not capture the full context of the text, leading to less

accurate results. Conversely, when we lemmatized all words, the model was better able to

37

comprehend the context and thus produced more accurate results. Based on these results, we

decided to lemmatize nouns, verbs, adverbs, and adjectives for further analysis.

Lemmatization is a process of reducing words to their base or root form, often referred to as

the lemma. The lemma is the word that appears in the dictionary, and it can be a noun, verb,

adjective, or adverb. Lemmatizing only specific word types such as nouns and verbs, yielded

different results compared to lemmatizing all word types. When lemmatizing all four common

word types, the model was better able to comprehend the context and thus produced more

accurate results. These findings provide insights into the importance of pre-processing techniques

in natural language processing and their potential impact on model performance. Based on these

results (Table 4.), we decided to lemmatize nouns, verbs, adverbs, and adjectives for further

analysis. The highest result for each performance metric is indicated in bold.

Table 4. Comparison of Lemmatization by Parts of Speech on model's Performance

5.2.3 Removing Unrelated Words with random forest

After text pre-processing, including lemmatization on noun, verb, adverb, and adjective,

there are still many unrelated words to the topics. To investigate what types of words are more

informative, this study chooses to remove unrelated words with random forest and POS Tagger.

We start with converting all words from the questions text into the word-vector format with

binary values, as well as their corresponding tags. Subsequently, these columns are trained using

Numbers of most
informative word
types

Multi-label Classifier Precision Recall Micro F1 Average
predicted
probability

Noun, Verb LDA + Logistic Regression 0.31407 0.48109 0.38004 0.01983
LDA + SVM 0.38671 0.47592 0.42670 0.02412

Noun, Verb, Adverb LDA + Logistic Regression 0.29801 0.46907 0.36447 0.01981
LDA + SVM 0.37938 0.45701 0.41459 0.02362

Noun, Verb, Adverb,
Adjective

LDA + Logistic Regression 0.31783 0.47925 0.38220 0.01985
LDA + SVM 0.38885 0.48128 0.43016 0.02426

38

the OneVsRestClassifier combing with a Random Forest model. Random forest models are well-

suited for feature selection, which can be used to identify the most informative POS tags in this

case. Random forest models use an ensemble of decision trees to make predictions, which can

improve the stability and generalizability of the model. From the Random Forest model, we extract

feature importance and associate them with their respective feature names (words). Next, we

classify words into their respective parts of speech (nouns, adjectives, verbs, and adverbs). Finally,

to find what word types are more important, we compute the sum of each word type by summing

their importance values (Table 5.)

nouns 0.652844
verbs 0.146715
adjectives 0.137607
adverbs 0.026481

Table 5. Importance of word type from random forest

In Table 6 below, the performance metrics of the model are presented while retaining varying

combinations of the most informative word types, ranging from the most important to the least

important (noun, verb, adjective, adverb). The highest score for each performance metric is

highlighted in bold. The optimal performance is achieved by retaining nouns, verbs, and

adjectives in the text, while removing other word types.

Table 6. Comparison of informative words on model's Performance

Keeping the top
most informative
word types

Multi-label Classifier Precision Recall Micro F1 Average
predicted
probability

Only noun LDA + Logistic Regression 0.363600 0.357764 0.360658 0.019834
LDA + SVM 0.361034 0.426239 0.390937 0.023144

Noun and verb LDA + Logistic Regression 0.3623054 0.367199 0.364736 0.019809
LDA + SVM 0.359467 0.412497 0.384161 0.022496

Noun, verb and
adjective

LDA + Logistic Regression 0.378879 0.413398 0.395387 0.019819
LDA + SVM 0.385115 0.468013 0.422537 0.023824

Noun, verb,
adjective and adverb

LDA + Logistic Regression 0.369840 0.392529 0.380847 0.019788
LDA + SVM 0.387406 0.464137 0.422314 0.023487

39

5.2.4 Hyperparameters tuning and threshold setting

After text- preprocessing and removing unrelated words, next step of the model was to extract

feature from LDA and use these features in the classification task. Topic distribution tells us how

much each topic was presented in the document. Each question receives a topic distribution for

the number of 90 topics which are used as features in the classification task.

From the result of Table 7, we can see that the highest topic distribution is 0.1367993 at topic

40, indicating that the 20th question is significantly associated with this topic. A few other topics,

such as 0.09325721, 0.05174439, 0.0342548, and 0.02415846, also have higher proportions than

the rest, suggesting that the question may be related to these topics as well.

Topic 1 Topic 2 Topic 3 […] Topic 40 […] Topic 89 Topic 90

0.02023364 0.00965164 0.00965016 […] 0.1367993 […] 0.00964976 0.00964926

Table 7. An example of a topic distribution for 20th question

Before tuning the hyperparameters, the majority of the topic proportions are around the same

numbers, meaning that the LDA model is not capturing distinct topics effectively or that the

document is not strongly associated with these topics. We examine topic distribution of each

document and discovered that when the alpha and beta were set to default, topic distribution

present almost the same score across all the topics. After experimenting the hyperparameters we

set alpha =0.1 and beta =0.01. We set beta lower than default to avoid not overly focused on

specific words. While experimenting, we discovered that higher alpha leads to higher precision

but lower recall. This means that when alpha is higher, each question is more likely to contain a

more diverse mixture of topics, leading to a more uniform distribution of topic probabilities across

documents. However, the model may not be able to capture the specific nuances of each topic

and may not assign high probability to a relevant topic if it is not a dominant theme in the

document. By setting the hyperparameters lower, it increases sparsity and it makes the model

more interpretable by identifying the most important topics and words for each document.

40

In the context of tag recommendation models, it is common to establish a threshold for

determining which tags should be recommended for a given document. Setting an appropriate

threshold leads to a higher F1-score, which represents the harmonic mean of precision and recall.

The threshold that yields the highest F1-score is selected as the optimal value for recommending

tags in both the LDA and Doc2Vec models. This approach ensures that the recommendations

provided by the models are as accurate and relevant as possible, and finds an appropriate balance

between false positives and false negatives. For LDA model, the threshold value of SVM is set to

0.1, and logistic regression is set to 0.13, meaning that if the predicted probability of a tag being

associated with a question is greater than or equal to 0.1, that tag will be assigned to the question.

5.2.5 Visualization with importance of topic keywords plots

In the Word Count and Importance of Topic Keywords plots (Figure 11.) in Appendix, word

count refers to the frequency of each word in the entire dataset (light blue). A high word count

indicates that a word appears often in the dataset. Weights (blue) represent the importance or

contribution of each word within a specific topic. A high weight for a word in a topic indicates that

the word is more significant in defining that topic. Topic 4 is related to programming in C and

C++ languages, and the important words in this topic include common elements of C and C++

code, such as ‘cout’ and ‘printf’. Topic 10 is associated with JavaScript and jQuery, while Topic 12

appears to be related to error handling, debugging, and task management in programming. The

important words, such as "message," "task," "letter," "structure," "invalid," and "error," suggest that

this topic focuses on issues that arise during the development process. Topic 19 appears to be

related to data manipulation and organization, specifically focusing on array and string operations,

sorting, and indexing. From the inspection of these topics, most of the topics seem to make sense,

and there are only a few overlapping or redundant topics. Moreover, words with high word counts

41

but low weights, which might be common across multiple topics and can potentially be added to

the stop words list to refine the LDA model, such as words ‘use’, ‘user’, ‘get’, and ‘file’.

5.3 Doc2Vec

After the same text pre-processing step as LDA, except for removing POS tag, the pre-

processed texts are fed into Doc2Vec model. The model is fine-tuned by trying different

combinations of hyperparameters. The vector space is set to a dimension of 300, and it is trained

for 20 epochs with a window size of 5. The learning rate decreases by 0.002 for each epoch. The

adjustment to vectors become smaller and smaller with each epoch. Negative sampling (the

parameters hs=0 and negative is tuned to 5) is compared with hierarchical Softmax (hs=1).

Negative sampling has a slightly higher precision, 0.0067 higher with logistic regression, but has

slightly lower precision, 0.0027 higher with SVM. The performance of negative sampling and

hierarchical Softmax does not differ significantly. Negative sampling is chosen due to its lower

computational complexity. Additionally, since the tags are imbalanced, negative sampling may be

more effective in addressing this issue.

The optimal threshold that yields the highest F1 score for Logistic regression and SVM differ.

For Logistic Regression, the threshold value was set to 0.09, while for SVM, it was set at 0.06.

When the predicted probability of a tag being associated with a question is greater than or equal

to these respective thresholds, the tag will be assigned to the question. Setting different threshold

ensures that the most appropriate tags are selected for each question based on the performance

of the individual classifiers.

Table 8. The performance of Doc2Vec model

 Precision Recall Micro F1 Average predicted
probability

Doc2Vec+ Logistic Regression 0.13196 0.25602 0.17415 0.01977
Doc2Vec + SVM 0.18070 0.268130 0.18070 0.01235

42

5.3.1 Visualization with t-SNE

To examine the model, we use t-SNE (Figure 10.) to fit multiple dimensions of the model

into a simple plot. t-SNE (t-Distributed Stochastic Neighbor Embedding) is a dimensionality

reduction technique that is often used to visualize high-dimensional data visualize the vector

representations adjust earlier in the Doc2Vec model. It can help understanding which words are

most similar to a given tag and insights into the relationships between different tags. The main

parameter controlling the fitting is perplexity. A low perplexity value (e.g. 5) will result in a t-SNE

that mainly preserves the local structure of the data, and therefore will tend to produce clusters

or tight groups of similar data points. A high perplexity value (e.g. 50) will result in a t-SNE that

mainly preserves the global structure of the data and will tend to produce a more dispersed or

evenly distributed visualization. We set the perplexity value to a low number (perplexity =5) to

help identify clusters of similar questions. We have annotated the plot with the tag names and

used as label to give a sense of what type of questions are clustered together. The position of each

question in the plot is determined by the similarity of its content to other questions. If two

questions are close together in the plot, it means they have similar content, and if they are far

apart, their content is dissimilar. For instance, in the plot, we observe that the ‘mysql’, ‘sql’ and

‘sql-server ’ tag names are close together, suggesting that questions the contents are similar.

However, in some cases both words are related, but they have different usage patterns and

are used differently in a sentence, which are reflected in their embeddings. As a result, the t-SNE

plot may place them in different regions of the space, depending on their specific patterns of co-

occurrence and usage. For instance, the tags names ‘ios’ and ‘xcode’ are far, but the tag ‘ios’ is

closed to ‘android’, although xcode is more related to iOS. This means that the model has

identified document similarities between iOS and Android, such as both being mobile operating

systems, sharing app development concepts, or having a more significant number of questions

43

and discussions around them. iOS is an operating system used in Apple devices, and Xcode is an

integrated development environment used for developing applications for iOS, macOS, and other

Apple platforms. Although they are closely related, questions around iOS might focus more on its

features, and user experience, while discussions about Xcode might focus on its tools and

debugging. Similarly happens to ‘javascript’. ‘javascript’ is closer to its popular library ‘jQuery’ and

far from ‘typescript’. TypeScript is a superset of JavaScript, meaning that it extends JavaScript by

adding optional static typing and other features. The discussions around TypeScript might focus

more on its unique features, such as type checking, interfaces, and classes. In contrast, questions

about JavaScript might be more focused on its core features, libraries, and frameworks.

re

Figure 10. t-SNE plot of perplexity =5 and perplexity =20

5.3.2 Classification report

The classification report (Table 8.) provides an overview of how well the model in assigning

tags to the questions. Tags are listed in descending order according to their frequency presented

in the dataset. The results demonstrate that the model is more accurate in predicting tags with

higher frequency, while its performance diminishes for tags with lower frequency. The table also

44

reveals that categories associated with data structures, algorithms, and general programming

constructs generally exhibit poor performance. For instance, data structures and operations such

as 'string' (F1 score: 0.0000), 'dictionary' (F1 score: 0.0000), 'list' (F1 score: 0.0200), 'arrays' (F1

score: 0.0251), and 'dataframe' (F1 score: 0.0000) demonstrate low F1 scores. Similarly, general

programming constructs like 'if-statement' (F1 score: 0.0000), 'for-loop' (F1 score: 0.0000), 'loops'

(F1 score: 0.0000), and 'function' (F1 score: 0.0155) also underperform. Finally, algorithm and

technique-related tags such as 'sorting' (F1 score: 0.0000), 'algorithm' (F1 score: 0.0157), 'regex'

(F1 score: 0.0051), and 'pointers' (F1 score: 0.0000) yield low performances. These categories may

struggle due to their broad applicability across multiple programming languages, which can make

it challenging for the model to predict them accurately based on context.

SVM can predict more tags that have smaller size, or less popular, for example, xml (470 tags)

and windows (357tags), with F1 score 0.0230 and 0.0923 respectively, while logistic regression

performed 0.000. Logistic regression is a linear model, and it may not be able to fully capture the

complex relationships between the dense, high-dimensional document vectors produced by

Doc2Vec.

Precision, Recall and F1 score require a predicted probability for the actual tag to be the

highest. To determine whether the models are capable of highlighting that a tag is more likely in

one document compared to the average document, we compare the average predicted probability

for each tag with the average presence of each tag across all the tags selected in this tag

recommendation model (tags appear more than 250 times). Average predicted probability for a

tag can be retrieved by averaging the predicted probabilities of that tag across all the documents

in the test set. If the average predicted probability is higher than the average presence, it means

that the model is able to identify tags that are more likely in one document compared to the

average document. The average predicted probabilities and average presence shown in Table 8.

45

Since the average predicted probabilities of all the tags are lower than the average presence, it

suggests that the model is not making confident predictions for these tags. The tags that have low

performance, such as 'string', '.net', 'react-native', 'angularjs', 'vue.js', 'wordpress', 'oracle', 'loops',

'dictionary', 'ajax', 'visual-studio-code', 'asp.net-mvc', 'sorting', 'for-loop', 'pointers', and 'dataframe'

exhibit low F1 scores (0.0000), and their average predicted probabilities are considerably lower

than their average presence.

Tags Number of
tags Precision Recall F1 score Average

presence
Average
predicted
probability

python 8517 0.1400 0.9617 0.2444 0.1347 0.08498

javascript 7106 0.1391 0.9707 0.2434 0.1335 0.08535

java 6242 0.1207 0.9494 0.2141 0.1179 0.07143

android 4838 0.2155 0.2015 0.2082 0.0919 0.05408

php 4161 0.1024 0.0621 0.0773 0.0771 0.05075

c# 4154 0.1527 0.0965 0.1183 0.0773 0.04808

html 3376 0.1266 0.0489 0.0705 0.0610 0.04188

c++ 3003 0.1769 0.0808 0.1109 0.0531 0.03553

css 2104 0.1310 0.0325 0.0521 0.0363 0.02675

c 1845 0.1610 0.0352 0.0578 0.0335 0.02210

arrays 1835 0.1127 0.0141 0.0251 0.0353 0.02140

jquery 1831 0.1111 0.0116 0.0211 0.0373 0.02113

ios 1809 0.2938 0.0882 0.1356 0.0331 0.02060

sql 1670 0.1462 0.0363 0.0582 0.0325 0.01894

mysql 1582 0.0896 0.0133 0.0232 0.0279 0.01903

swift 1562 0.3304 0.0787 0.1271 0.0292 0.01765

angular 1510 0.2903 0.0612 0.1011 0.0274 0.01732

reactjs 1169 0.2619 0.0324 0.0577 0.0210 0.01351

r 1145 0.2623 0.0455 0.0775 0.0218 0.01340

46

regex 1118 0.0278 0.0028 0.0051 0.0222 0.01307

node.js 1064 0.0811 0.0101 0.0180 0.0184 0.01279

sql-server 1063 0.1373 0.0211 0.0366 0.0206 0.01197

json 971 0.0417 0.0034 0.0063 0.0183 0.01067

string 962 0.0000 0.0000 0.0000 0.0187 0.01115

typescript 875 0.1667 0.0197 0.0352 0.0157 0.01014

linux 653 0.0909 0.0116 0.0205 0.0107 0.00803

excel 630 0.1667 0.0099 0.0186 0.0126 0.00723

docker 618 0.2000 0.0372 0.0628 0.0116 0.00725

pandas 585 0.2222 0.0112 0.0214 0.0110 0.00671

list 578 0.2000 0.0105 0.0200 0.0118 0.00662

.net 568 0.0000 0.0000 0.0000 0.0096 0.00658

android-studio 550 0.1176 0.0110 0.0201 0.0113 0.00600

react-native 531 0.0000 0.0000 0.0000 0.0105 0.00589

ruby 506 0.2353 0.0242 0.0440 0.0102 0.00573

vba 496 0.1250 0.0066 0.0126 0.0094 0.00570

laravel 483 0.3077 0.0267 0.0491 0.0093 0.00568

asp.net 471 0.0714 0.0062 0.0114 0.0100 0.00497

xcode 470 0.2000 0.0205 0.0373 0.0090 0.00524

flutter 464 0.2500 0.0496 0.0828 0.0087 0.00527

go 451 0.0000 0.0000 0.0000 0.0079 0.00532

firebase 450 0.1364 0.0229 0.0392 0.0081 0.00507

git 448 0.0000 0.0000 0.0000 0.0073 0.00561

database 445 0.0000 0.0000 0.0000 0.0073 0.00548

amazon-web-services 427 0.0909 0.0156 0.0267 0.0079 0.00483

kotlin 418 0.1429 0.0155 0.0280 0.0080 0.00467

bash 408 0.0870 0.0169 0.0284 0.0073 0.00480

visual-studio 388 0.0714 0.0087 0.0155 0.0071 0.00118

angularjs 386 0.0000 0.0000 0.0000 0.0069 0.00458

47

function 380 0.1000 0.0084 0.0155 0.0073 0.00452

algorithm 378 0.0526 0.0093 0.0157 0.0067 0.00488

django 367 0.1250 0.0081 0.0152 0.0077 0.00407

vue.js 362 0.0000 0.0000 0.0000 0.0061 0.00446

windows 357 0.2143 0.0508 0.0923 0.0073 0.00390

wordpress 346 0.0000 0.0000 0.0000 0.0070 0.00402

oracle 340 0.0000 0.0000 0.0000 0.0057 0.00388

loops 338 0.0000 0.0000 0.0000 0.0057 0.00409

spring 329 0.2353 0.0435 0.0734 0.0057 0.00351

asp.net-core 327 0.0417 0.0102 0.0164 0.0060 0.00358

ruby-on-rails 324 0.1818 0.0189 0.0342 0.0065 0.00355

dictionary 324 0.0000 0.0000 0.0000 0.0064 0.00360

objective-c 308 0.1333 0.0233 0.0396 0.0053 0.00341

tensorflow 306 0.2857 0.0952 0.1429 0.0052 0.00361

ajax 302 0.0000 0.0000 0.0000 0.0061 0.00337

date 302 0.0000 0.0000 0.0000 0.0059 0.00358

visual-studio-code 293 0.0000 0.0000 0.0000 0.0060 0.00333

if-statement 289 0.0000 0.0000 0.0000 0.0047 0.00365

asp.net-mvc 288 0.0000 0.0000 0.0000 0.0049 0.00331

sorting 277 0.0000 0.0000 0.0000 0.0051 0.00313

spring-boot 276 0.4167 0.0625 0.1087 0.0049 0.00296

xml 275 0.1429 0.0125 0.0230 0.0049 0.00317

for-loop 274 0.0000 0.0000 0.0000 0.0055 0.00316

dart 271 0.3000 0.0353 0.0632 0.0052 0.00299

pointers 268 0.0000 0.0000 0.0000 0.0051 0.00325

selenium 268 0.1429 0.0244 0.0417 0.0051 0.00309

numpy 267 0.1875 0.0375 0.0625 0.0049 0.00303

dataframe 266 0.0000 0.0000 0.0000 0.0059 0.00282

webpack 260 0.1538 0.0263 0.0449 0.0047 0.00297

48

macos 257 0.1000 0.0141 0.0247 0.0044 0.00302

vb.net 256 0.0714 0.0143 0.0238 0.0043 0.00290

Table 8. Classification report of the best tuned Doc2Vec model

5.3.3 Challenges and Limitations of Doc2vec Model

Contextual variations can impact the performance of a model, as the usage of a tag may differ

depending on the context of the question or answer. For instance, the tag 'loops' depends on the

context in which it appears, as different types of loops, such as 'for-loops,' may be mentioned. If

the text preprocessing step removes the word ‘for’ as a stopword, it can make it more difficult for

the model to learn associations with the ‘loops’ tag. Another example is the tag ‘sorting’, which

might be used in various contexts, such as sorting a list of numbers or a table of data, but the exact

implementation might be different in each programming languages. The tag ‘date’ might be used

in the context of parsing or formatting dates in different programming languages, this could make

it more difficult for the model to learn a consistent association with the ‘date’ tag.

Moreover, the cleaning and pre-processing steps can affect the quality of the model. Several

function names and programming terms that might be removed when using the NLTK library's

built-in English stopword list. Removing certain words (e.g. ‘if’, ‘else’, ‘while’, ‘for’, ‘return’, ‘from’)

can make it more difficult for the model to learn associations with certain tags, for example the

tag ‘if-statement’ , ‘loops’ and ‘for-loop’

49

5.4 Model Comparison

Table 9. Performance Comparison of the best LDA and Doc2Vec

Table 9. shows that the LDA + SVM model demonstrates the best overall performance in

terms of precision, recall, Micro F1 score and average predicted probability. The LDA + Logistic

Regression model shows moderate performance, while the Doc2Vec-based models (Doc2Vec +

Logistic Regression and Doc2Vec + SVM) exhibit relatively weaker performance in the given tag

recommendation task.

 Precision Recall Micro F1 Average predicted
probability

LDA + Logistic Regression 0.378879 0.413398 0.395387 0.019819
LDA + SVM 0.385115 0.468013 0.422537 0.023824
Doc2Vec+ Logistic Regression 0.13196 0.25602 0.17415 0.01977
Doc2Vec + SVM 0.18070 0.26813 0.18070 0.01235

50

6 Discussion and Conclusion

6.1 Main conclusion

Tag recommendation in software Question-Answering (Q&A) forums is crucial for organizing

questions and enhancing user engagement. This study compares the performance of Latent

Dirichlet Allocation (LDA) and Doc2Vec methods to improve tag recommendations for Software

Q&A forums. The research aims to answer the main question: How can a tag recommendation

model be built using topic modeling and word embedding approaches to enhance tagging quality?

The methodology consists of text preprocessing, feature extraction, and multi-label

classification using Support Vector Machines (SVM) and Logistic Regression. The performance of

both methods is evaluated based on precision, recall, F1-score, and average predicted probability.

Results show that LDA combined with SVM outperforms the Doc2Vec model with an F1 score of

0.422537. The finding emphasizes the importance of pre-processing stage and the need for a

customized stop word list. This main research question was explored through the following sub-

question:

Sub Question 1: How can feature be extracted to automatically recommend a set of tags from

Q&A forum?

In Chapter 4 methodology section, how two models extracted their features are explained.

To extract features for automatically recommending a set of tags from Q&A forums, the text of

questions and their titles should be preprocessed. The next step is to convert clean text into

numerical representation. Additionally, before extracting features for LDA, the model was

extended by removing unrelated words types using POS tagging and random forest for

determining the importance of the word types. LDA calculates the probability of a word belonging

51

to a topic. Topics are defined as probability distributions over the vocabulary. The generated topic

vectors are then used as feature vectors in supervised classification models.

Feature extraction in Doc2Vec was achieved by training the model on the pre-processed

questions text, which allows the model to learn the patterns and relationships between the

documents and their tags. In the final step of training a Doc2Vec model, the predicted

probabilities are compared with the actual words from the selected context words using a cross-

entropy loss function. The resulting document vector generated by the model is serve as an

embedding for the new document, which was then used as input to a multi-label classifier to

predict the recommended tags.

Sub Question 2: How to find interpretable insights in this analysis?

To find interpretable insights in this analysis for LDA, we focus on the LDA model and its

performance with different preprocessing techniques and visualizations. The study investigated

the impact of lemmatizing different word types on the performance of the LDA model and found

that lemmatizing all type of word types (Noun, Verb, Adverb, Adjective) produced more accurate

results. Additionally, we used random forest to visualize the importance of each POS Tagger then

remove the less important word types to improve the performance of the LDA model. By adjusting

the alpha and beta values, we have enhanced the model's ability to identify distinct and

meaningful topics associated with each document. The optimal hyperparameter settings allowed

for a sparser topic distribution, resulting in facilitating the identification of the most important

topics and words for each question. Topics distributions can be extracted to examine whether the

model is tuned well. Additionally, selecting an appropriate threshold for recommending tags is

essential to ensure that the tag recommendations provided by the models are accurate and

relevant. The Word Count and Importance of Topic Keywords plots offers interpretable insights

52

by identifying significant words that define each topic. To further refine the LDA model, we

suggested to add the words with high word counts but low weights to the stop words list.

For interpreting Doc2Vec, we use t-SNE plot to gain insights different usage patterns and are

used differently in a sentence when mentioning certain tags. The classification report provides a

comprehensive evaluation in analyzing the limitations and strengths of the model by providing

insights into the model's performance on different tags. The model also has low performance on

some library-related tags and programming logic and objects. The comparison of multi-label

classifier shows that the Doc2vec model may not be well-suited for linear models like logistic

regression. Then we address the limitation of Doc2vec model including difficulty in capturing the

context of specific terms in the text, sensitivity to contextual variations, and the preprocessing

steps. Removing certain stop words in the text during preprocessing, such as common

programming terms and function names, can limit the model's ability to learn associations with

certain tags.

Finally, considering the design of the tag recommendation model in this study, which allows

users to manually choose tags from the recommended tags after typing their questions, and our

main goal is to avoid tag inconsistency and tag synonymy, we want the model to identify as many

relevant tags as possible even if it means including some irrelevant tags. Irrelevant tags will be

filtered out by users, but it would be helpful if the more relevant tags are shown to the users.

Therefore, Recall is more important than Precision since we care about more relevant tags to be

suggested so that so each question is well-organized.

Sub Question 3: Which approach can best used for tag recommendation? Can some conclusion

be reached based on the results from different approaches?

53

The result of this study demonstrated that the combination of LDA with SVM is the most

effective approach for tag recommendation as it has higher Precision, Recall, Micro F1 score, and

Average predicted probability. Furthermore, SVM has outperformed Logistic Regression for both

models, suggesting that it is better suited to handle the complexity of the problem. Due to model

complexity, such as the neural network architecture, stochastic gradient descent for optimization

and more hyperparameters, Doc2vec has longer training and prediction times than LDA.

6.2 Limitations and future research

Both LDA and Doc2Vec have their own strengths and limitations. In the case of Doc2Vec, the

limitations stem from contextual variations. For both models, the cleaning and pre-processing

steps impact on the model's quality, and therefore in the future research, the stop word list of both

models needs to be customized.

The presence of code snippets in the dataset may favor LDA's ability to capture word co-

occurrence patterns as code snippets might contain tokens that frequently co-occur with certain

programming concepts or tags. While Doc2Vec attempts to capture the meaning of the entire text,

including title, question descriptions, and code snippets. This can be challenging as code snippets

may have different characteristics, which could impact the model's ability to learn meaningful

associations with tags. Future research could explore separating the code snippets and other text

or eliminating them. Since code snippets are an essential component of software Q&A questions,

future research could also investigate the effectiveness of specialized code representation methods

for tag recommendation, such as pre-trained language model codeBERT.

 Additionally, this study focused on a single dataset. To obtain more robust and reliable

results, we are interested in conducting using various datasets and different software Q&A site.

Addressing this issue is an essential aspect of future research.

54

7 Appendix

A. Word Count and Importance of Topic Keywords plots

55

56

Figure 11. Example of LDA topics (Word Count and Importance of Topic Keywords plots)

57

B. The exact values of LDA model performance

Number of topics F1 score Average predicted probability

30 0.354355172789708 0.0197681562390663

35 0.350048190190619 0.0197221543033582

40 0.366758107863478 0.0197997488380264

45 0.365744675018503 0.0196634697028316

50 0.375730045425048 0.0197664754722426

55 0.370736350021694 0.0198229539558468

60 0.383739789448851 0.0198092187506876

65 0.370498992009653 0.0198070268209410

70 0.379036760600628 0.0198111432275565

75 0.387184751631783 0.0197985222110629

80 0.377747584541062 0.0198108116932629

85 0.367248843110912 0.0198252278502389

90 0.385597923799696 0.0198371289571306

95 0.382865241309946 0.0198039415219056

100 0.373611568046873 0.0198188114255589

105 0.380253905628559 0.0198390500537000

110 0.372612545897744 0.0198473636291307

Figure 12. The exact values of LDA model performance from Figure 9

58

8 References

Ansari, A., Li, Y., & Zhang, J. Z. (2018). Probabilistic topic model for hybrid recommender

systems: A stochastic variational bayesian approach. Marketing Science, 37(6), 987-1008.

Asuncion, H. U., Asuncion, A. U., & Taylor, R. N. (2010). Software traceability with topic

modeling. Paper presented at the 2010 ACM/IEEE 32nd International Conference on

Software Engineering, , 1 95-104.

Bilgin, M., & Şentürk, İ F. (2017). Sentiment analysis on twitter data with semi-supervised

Doc2Vec. Paper presented at the 2017 International Conference on Computer Science and

Engineering (UBMK), 661-666.

Blei, D. M., & Lafferty, J. D. (2006). Dynamic topic models. Paper presented at the Proceedings

of the 23rd International Conference on Machine Learning, 113-120.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine

Learning Research, 3(Jan), 993-1022.

Chang, W., Xu, Z., Zhou, S., & Cao, W. (2018). Research on detection methods based on

Doc2vec abnormal comments. Future Generation Computer Systems, 86, 656-662.

Chauhan, U., & Shah, A. (2021). Topic modeling using latent dirichlet allocation: A survey.

ACM Computing Surveys (CSUR), 54(7), 1-35.

Chen, S., Soni, A., Pappu, A., & Mehdad, Y. (2017). Doctag2vec: An embedding based multi-

label learning approach for document tagging. arXiv Preprint arXiv:1707.04596,

59

Chirita, P., Costache, S., Nejdl, W., & Handschuh, S. (2007). P-tag: Large scale automatic

generation of personalized annotation tags for the web. Paper presented at the Proceedings

of the 16th International Conference on World Wide Web, 845-854.

Chiru, C., Rebedea, T., & Ciotec, S. (2014). Comparison between LSA-LDA-lexical chains. Paper

presented at the Webist (2), 255-262.

Golder, S. A., & Huberman, B. A. (2006a). Usage patterns of collaborative tagging systems.

Journal of Information Science, 32(2), 198-208.

Golder, S. A., & Huberman, B. A. (2006b). Usage patterns of collaborative tagging systems.

Journal of Information Science, 32(2), 198-208.

He, J., Xu, B., Yang, Z., Han, D., Yang, C., & Lo, D. (2022). PTM4Tag: Sharpening tag

recommendation of stack overflow posts with pre-trained models. arXiv Preprint

arXiv:2203.10965,

Jeong, B., Yoon, J., & Lee, J. (2019). Social media mining for product planning: A product

opportunity mining approach based on topic modeling and sentiment analysis.

International Journal of Information Management, 48, 280-290.

Jivani, A. G. (2011). A comparative study of stemming algorithms. Int.J.Comp.Tech.Appl, 2(6),

1930-1938.

Joachims, T. (1999). Transductive inference for text classification using support vector

machines. Paper presented at the Icml, , 99 200-209.

Jurasfky, D., & Martin, J. H. (2000). An introduction to natural language processing,

computational linguistics, and speech recognition.

60

Kataria, S., & Agarwal, A. (2015). Distributed representations for content-based and

personalized tag recommendation. Paper presented at the 2015 IEEE International

Conference on Data Mining Workshop (ICDMW), 1388-1395.

Khezrian, N., Habibi, J., & Annamoradnejad, I. (2020). Tag recommendation for online Q&A

communities based on BERT pre-training technique. arXiv Preprint arXiv:2010.04971,

Krestel, R., Fankhauser, P., & Nejdl, W. (2009). Latent dirichlet allocation for tag

recommendation. Paper presented at the Proceedings of the Third ACM Conference on

Recommender Systems, 61-68.

Lau, J. H., & Baldwin, T. (2016a). An empirical evaluation of doc2vec with practical insights into

document embedding generation. arXiv Preprint arXiv:1607.05368,

Lau, J. H., & Baldwin, T. (2016b). An empirical evaluation of doc2vec with practical insights into

document embedding generation. arXiv Preprint arXiv:1607.05368,

Le, Q., & Mikolov, T. (2014a). Distributed representations of sentences and documents. Paper

presented at the International Conference on Machine Learning, 1188-1196.

Le, Q., & Mikolov, T. (2014b). Distributed representations of sentences and documents. Paper

presented at the International Conference on Machine Learning, 1188-1196.

Liu, J., Zhou, P., Yang, Z., Liu, X., & Grundy, J. (2018). FastTagRec: Fast tag recommendation

for software information sites. Automated Software Engineering, 25, 675-701.

McCormick, C. (2016). Word2vec tutorial-the skip-gram model. Apr-2016.[Online].Available:

Http://Mccormickml.Com/2016/04/19/Word2vec-Tutorial-the-Skip-Gram-Model,

61

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv Preprint arXiv:1301.3781,

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. Advances in Neural

Information Processing Systems, 26

Morin, F., & Bengio, Y. (2005). Hierarchical probabilistic neural network language model. Paper

presented at the International Workshop on Artificial Intelligence and Statistics, 246-252.

Nandi, R. N., Zaman, M. A., Al Muntasir, T., Sumit, S. H., Sourov, T., & Rahman, M. J. (2018).

Bangla news recommendation using doc2vec. Paper presented at the 2018 International

Conference on Bangla Speech and Language Processing (ICBSLP), 1-5.

Ramage, D., Hall, D., Nallapati, R., & Manning, C. D. (2009). Labeled LDA: A supervised topic

model for credit attribution in multi-labeled corpora. Paper presented at the Proceedings of

the 2009 Conference on Empirical Methods in Natural Language Processing, 248-256.

Rao, Y. (2015). Contextual sentiment topic model for adaptive social emotion classification.

IEEE Intelligent Systems, 31(1), 41-47.

Somasundaram, K., & Murphy, G. C. (2012). Automatic categorization of bug reports using

latent dirichlet allocation. Paper presented at the Proceedings of the 5th India Software

Engineering Conference, 125-130.

Song, Y., Zhang, L., & Giles, C. L. (2011). Automatic tag recommendation algorithms for social

recommender systems. ACM Transactions on the Web (TWEB), 5(1), 1-31.

62

Squire, M. (2015). " Should we move to stack overflow?" measuring the utility of social media for

developer support. Paper presented at the 2015 IEEE/ACM 37th IEEE International

Conference on Software Engineering, , 2 219-228.

Thongtan, T., & Phienthrakul, T. (2019). Sentiment classification using document embeddings

trained with cosine similarity. Paper presented at the Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics: Student Research Workshop,

407-414.

Treude, C., & Storey, M. (2009). How tagging helps bridge the gap between social and technical

aspects in software development. Paper presented at the 2009 IEEE 31st International

Conference on Software Engineering, 12-22.

Truşcă, M. M. (2019). Efficiency of SVM classifier with Word2Vec and Doc2Vec models. Paper

presented at the Proceedings of the International Conference on Applied Statistics, , 1(1)

496-503.

Wang, S., Lo, D., Vasilescu, B., & Serebrenik, A. (2018a). EnTagRec : An enhanced tag

recommendation system for software information sites. Empirical Software Engineering, 23,

800-832.

Wang, S., Lo, D., Vasilescu, B., & Serebrenik, A. (2018b). EnTagRec : An enhanced tag

recommendation system for software information sites. Empirical Software Engineering, 23,

800-832.

Wang, T., Wang, H., Yin, G., Ling, C. X., Li, X., & Zou, P. (2014). Tag recommendation for open

source software. Frontiers of Computer Science, 8(1), 69-82.

63

Xia, X., Lo, D., Wang, X., & Zhou, B. (2013). Tag recommendation in software information sites.

Paper presented at the 2013 10th Working Conference on Mining Software Repositories

(MSR), 287-296.

Zhao, F., Zhu, Y., Jin, H., & Yang, L. T. (2016). A personalized hashtag recommendation

approach using LDA-based topic model in microblog environment. Future Generation

Computer Systems, 65, 196-206.

ZhengWei, H., JinTao, M., YanNi, Y., Jin, H., & Ye, T. (2022). Recommendation method for

academic journal submission based on doc2vec and XGBoost. Scientometrics, 127(5), 2381-

2394.

Zoghbi, S., Vulić, I., & Moens, M. (2016). Latent dirichlet allocation for linking user-generated

content and e-commerce data. Information Sciences, 367, 573-599.

