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1. Introduction 
 

Renewable energy is among the most discussed topics in today’s world. As documented in the 

Paris Climate Agreement, all United Nations countries have agreed upon the overarching goal 

of keeping “the increase in the global average temperature to well below two degrees celsius 

above pre-industrial levels” and pursuing efforts “to limit the temperature increase to one-and-

a-half degrees above pre-industrial levels” (United Nations Climate Change, n.d.). One of the 

key changes needed is in the way we produce our energy since we need to shift away from 

fossil fuels to renewables to achieve the CO2 reductions needed. As we make this shift towards 

renewables, we are fundamentally reshaping the energy market. This stems from the 

characteristic differences between renewable and fossil energy sources in terms of price and 

flexibility amongst others. In the wake of the COVID-19 pandemic, the European energy 

market, and the world market to a lesser extent, has been confronted by the outbreak of the war 

between Russia and Ukraine. Electricity prices skyrocketed to the point where the Dutch 

government had to introduce a multitude of new schemes to provide liquidity to consumers and 

businesses. As we are continuing the path toward a higher share of renewables, and large 

shocks toward the energy systems are likely to occur in the future, examining the effect of 

renewables on electricity prices and volatility in turbulent times is highly relevant. 

There is an extensive body of research on electricity prices and their volatility. The electricity 

market fundamentally works like other markets, though the merit order, a sequence in which 

power plants contribute energy to the market, determines power prices. The cheapest offer 

made by the power station with the smallest running costs serves as the starting point. 

Renewable power stations such as wind turbines and photovoltaic installations (solar power) 

have the lowest operating costs. Their introduction lowers the entrance price and pushes 

conventional producers down the merit order. The merit order effect describes the drop in the 

level of electricity prices with the addition of renewable electricity to the grid and is widely 

found in the literature (Gelabert, Labandeira and Linares, 2011; Woo, Horowit., Moore and 

Pacheco, 2011; Jónsson, Pinson, and Madsen, 2010; Ketterer, 2014; Forrest & MacGill, 2013; 

Brancucci Martinez-Anido et al., 2016, among others). Ketterer (2014) finds that the negative 

impact of wind power on electricity prices is more substantial during periods of high demand 

compared to low demand. Several studies also find the merit order effect to reduce over time, 

possibly due to the increasing share of solar PV feed-in (Sensfuß, 2011; Gelabert et al., 2011). 
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For the Netherlands, Mulder and Scholtens (2013) find that gas prices are the key factor 

positively influencing electricity prices. They too find the merit order effect. However, despite 

the strong growth in installed wind capacity, they have not found a more substantial effect over 

time. This result may have changed with the strong growth in installed renewable capacity over 

the last years.  

Spot price volatility is found higher during periods of high demand and vice versa for low 

demand (Knittel & Roberts, 2005; Bessembinder & Lemmon, 2002; Bowden & Payne, 2008). 

This finding is a result of the convex marginal cost structure of electricity prices. Further, in 

periods of high demand, additional generators with greater marginal costs are brought online 

to match demand, resulting in higher price volatility (Mwampashi et al., 2021). Ketterer (2014) 

and Rintämaki, Siddiqui and Salo (2017) find opposite effects for wind- and solar power on 

price volatility, where solar would decrease volatility during peak hours. Previous literature 

has not found conclusive evidence of the impact of renewables on price volatility.  

This paper aims to study the beforementioned effects during times of fallen demand and supply 

chain distortions. Consequently, we formulate the research question as “How does the 

influence of a growing share of renewable electricity generation on Dutch day-ahead electricity 

prices and their volatility evolve over periods of low demand and supply chain disruptions?”. 

We analyze this question by modeling the effect of renewables on prices and their volatility 

over the past five years. We establish 2018 and 2019 as our base case and compare periods of 

fallen demand, risen demand, and supply chain distortions against it. A base case consisting of 

two years is relatively short, but is chosen in this study such that it represents an up-to-date 

period of renewable electricity generation. With an annual growth rate of renewable energy 

production in the Netherlands of between twelve and forty-five percent over the period 2017 – 

2020 (CBS, 2023), taking a recent base case can offer interesting insights. We specifically 

define the time frame of the COVID-19 pandemic as spanning the years 2020 and 2021. 

Subsequently, we separate this into two distinct phases: a period characterized by decreased 

demand, followed by a period of recovery and rising demand. Additionally, the Russian-

Ukrainian conflict is designated to 2022. Despite the fact that Russian forces initiated an attack 

on Ukraine in February 2022, rumors regarding potential conflicts between the two nations had 

been circulating prior to this event. We assume that market players were able to anticipate the 

effects that this conflict would have on the energy supply chain, thereby necessitating the 

inclusion of the entirety of the year 2022 within the study period. To our knowledge, no 

previous research has investigated the impact of these events on the Netherlands in a single 

study. With a share of 25% in the 2021 energy grid coming from wind and solar power (CBS, 
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2023), looking into the influence these renewable energy sources have on prices in the 

Netherlands is highly relevant. The vulnerability of the global energy trade and the 

unpredictability of fossil fuel prices have raised concerns about the energy system's ability to 

withstand unforeseen shocks such as pandemics and geopolitical conflicts. Understanding the 

effects of such disruptions on the transition to low-carbon energy systems is crucial for 

developing context for legislation to address these effects. This study can yield valuable 

insights for policymakers, especially in the event of new infection waves, a new pandemic, or 

further supply chain disruptions. Additionally, it can assist market participants in explicitly 

considering changes in the global health or political landscape while forecasting appropriate 

responses to energy price shocks. 

We find that renewable electricity generation is significant in explaining price movements, 

confirming the merit order effect. Further, we find that during the rebound period right after 

the COVID-19 pandemic and the period of war, the addition of renewables in the grid impacts 

prices significantly more compared to our base case. It is well established that during periods 

of high demand, renewables influence prices more significantly. We add that in periods of low 

supply, this merit order effect is more pronounced. Though our results suggest the likeliness of 

renewables becoming more significant in explaining volatility over our samples, we cannot 

statistically prove this.  

The remainder of this paper is organized as follows. In section 2, we review previous literature 

and provide context on the electricity market and the events that occurred. In section 3, we 

discuss the data we use. Section 4 presents our model and our data’s properties. Section 5 shows 

the results of our analyses and extensions to our models. Section 6 presents our conclusions 

and implications. Finally, in section 7, we discuss this paper’s limitations and provide 

directions for future research. 

 

2. Theoretical background  
 

2.1 The energy market 

 
An extensive network of powerlines, consumers and producers ensure electricity is available 

at all times. A well-functioning electricity market is the foundation of this system. The 

following section explains some basic characteristics of the Dutch energy market. 
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2.1.1 Overview of the Dutch energy market 

 

The electricity market in the Netherlands operates similarly to other markets, in which 

producers can make their electricity available on a market platform, and consumers can acquire 

it for delivery within specific timeframes. Participants in the market, including buyers and 

sellers, are granted three fundamental freedoms (TenneT, n.d.): 

The freedom to dispatch entails that generators and consumers have the right to produce or 

consume their preferred amount of electricity within the limits of their connection agreement. 

The freedom of transaction enables market parties to enter into any form of contractual 

agreements regarding their demand and supply. Lastly, with the freedom of connectivity all 

resources can connect into the grid in a non-discriminatory manner. 

 

Though the market fundamentally works like any other, electricity is a unique good because of 

three particular characteristics (TenneT, n.d.). First, since electricity is difficult to store 

presently, its supply and demand must always be balanced. Therefore, electricity has a 

fluctuating market value throughout the day. In the longer term, electricity prices are also 

strongly dependent on fuel costs (e.g., natural gas) and CO2 prices. Moreover, market 

participation is free, but the transmission capacity is limited. Transmission System Operators 

ensure that transmission lines are operated within safe parameters to prevent the occurrence of 

cascading blackouts. As a result, the market value of electricity can vary among different load 

frequency control regions, such as in the case of the Netherlands. Lastly, demand, generation, 

and location must always match, but this becomes difficult when we are integrating more 

variable and decentral renewables into the grid. Therefore, flexibility in both time and location 

can be of great value. 

  

2.1.2 Electricity prices and the merit-order effect  

 

The electricity generated by renewable energy sources impacts the market and its prices.  

 

The merit order determines the power price. It is the sequence in which power plants contribute 

to the market. The cheapest offer made by the power station with the smallest running costs 

serves as the starting point. Power from renewable installations (wind turbines, photovoltaic 
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installations) sells on the exchange too. These suppliers have the lowest operating costs, since 

they do not need a power source (fuel) or much manpower. In turn, they lower the entrance 

price and push more expensive, conventional, producers down the merit order as shown in 

Figure 1. 

 

As in other markets, the intersection of power demand and supply determines the clearing price 

and clearing volume. All electricity generators participating in the market will receive this 

clearing price for the electricity they produce for the grid. 

 
Figure 1: Illustration of Electricity Price Fluctuations due to the Merit Order Effect 

 
Source: Clean Energy Wire CLEW, 2016 

 

The merit order explains the mechanism which determines the market price. In the energy 

market, the merit order effect describes the lowering of power prices at the electricity exchange 

due to an increased supply of renewable energies. The rise in renewable electricity generation 

displaces marginal power plants from the market, pushing the electricity supply curve to the 

right and subsequently decreasing electricity prices.  

 

The merit order effect 

Gelabert et al. (2011) found a significant drop in the level of electricity prices in Spain, as also 

found by Woo et al. (2011) for Texas, for an increasing share of wind power. This merit-order 
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effect from wind power is later confirmed by Jónsson et al., (2010), Ketterer (2014), Forrest 

and MacGill (2013), and Brancucci Martinez-Anido et al. (2016) among others. Ketterer (2014) 

adds that the negative impact on electricity prices from wind power is more substantial with 

higher levels of demand. Moreover, the paper suggests that the merit-order effect reduces over 

time, a finding that Sensfuß (2011) finds for Germany. This can partly be explained by the 

specific market design of a country’s electricity market.  

 

Würzburg et al. (2013) have conducted a study on the effect of renewables for a number of 

European countries. The study finds that the smallest merit-order effects exist in large 

European markets (such as Germany, Spain), in contrast to much higher price effects in small 

markets (Netherlands, Denmark, Ireland). Accounting for differences in market size makes for 

more similar effects. This is especially the case for electricity systems with sizeable fossil 

capacities, where fossil plants are still the price-setting marginal plant, at least during demand 

peaks, which is the case for the Netherlands.  

 

For the Netherlands, Mulder and Scholtens (2013) find that gas prices are the key factor 

positively influencing electricity prices. They too find the merit order effect. However, despite 

the strong growth in installed wind capacity, they have not found a more substantial effect over 

time, contradicting the results for Spain of Gelabert et al. (2011) and other beforementioned 

studies. Moreover, the study finds no significant relation looking at solar impact on electricity 

prices. This is likely due to its small share of electricity generation in the grid. The findings 

suggest that the intersection of the demand and supply curves in the Dutch market is hardly 

influenced by the merit-order effect. A note here is that these results may differ when 

differentiating between peak hours, when the supply curve is steeper than on average during 

the day. Moreover, this result might have changed over the last years, with the steep increase 

in renewable energy production in the Netherlands.  

 

Dillig et al (2016) finds the merit-order effect looking at renewables combined (solar and wind 

as one). The paper suggests that solar power generation is also responsible for lowering 

electricity prices in Germany. Kyritsis, Andersson and Serletis (2017) add that solar power 

generation reduces the probability of electricity price spikes while, on the other hand, wind 

power introduces electricity price spikes.  
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There are many more factors influencing electricity prices. Among others, Bulavskaya and 

Reynes (2018) suggest that renewable technologies typically require higher investments per 

unit of output than fossil fuel technologies, which can increase electricity prices. The relative 

increase in the electricity price strongly depends on the projected costs of the technologies, 

giving a high uncertainty range. Moreover, Brancucci Martinez-Anido, C., et al. (2016) in their 

paper find perfect versus operational forecasting to influence their findings as well.  

 

2.1.3 Renewable energy 

 

The International Energy Agency (IEA) defines renewable energy as “energy derived from 

natural processes that are replenished at a faster rate than they are consumed”, and mentions 

solar, wind, geothermal, hydro and biomass as examples of renewable energy (Harjanne and 

Korhonen, 2019). The European Union includes wind, solar, hydro and tidal power, geothermal 

energy, ambient heat from heat pumps, biofuels and the renewable part of waste as renewable 

energy in its statistical accounting (Eurostat, 2022). 

 

Countries all over the world have seen an increase in the share of renewable energy production, 

mainly due to the widely granted feed-in tariffs (Senfub, Ragwitz and Genoese 2008). These 

renewable energy sources barely use any costly inputs (fuel), which makes the marginal costs 

minimal (or even nonexistent). 

 

2.1.4 Volatility 

 

From theory and previous literature, we expect solar generation to exhibit lower variability 

than wind power generation. Consequently, due to their flexibility, power plants adjust their 

production for remaining demand efficiently. This way solar power generation manages to 

reduce electricity price volatility. Wind power has a greater generating capacity than solar and 

is expected to exhibit more variable production. As a consequence, the integration of large 

quantities of wind power into the system may result in increased price volatility due to its high 

generation variability (found by Kyritsis et al, 2017). 

 

Knittel and Roberts (2005) and Bessembinder and Lemmon (2002) find a positive skew 

contained in power spot prices that is larger (smaller) during periods of high (low) demand 
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variability. A similar pattern exists for the volatility of spot prices, which is found higher 

(lower) during periods of high (low) demand. The finding that electricity price volatility tends 

to rise more so with positive shocks than negative shocks is a result of their convex marginal 

costs, a finding later confirmed by Bowden and Payne (2008), Ketterer (2014), and 

Mwampashi et al. (2021). Mwampashi et al. (2021) add that positive shocks may represent 

unanticipated increases in demand. When coupled with convex marginal costs, this in the short 

run makes for additional generators with greater marginal costs to come online to match 

demand, resulting in higher price volatility. 

 

Brancucci Martinez-Anido et al. (2016) in their study find that wind power increases hour-to-

hour electricity price volatility as wind penetration increases, when looking at wind power 

forecasts. However, if not considering wind power forecasts, wind power decreases electricity 

price volatility. The main reason for this finding is that the mean electricity price reduces 

considerably and therefore the volatility is also reduced.  

 

Ketterer (2014) argues that the price-decreasing impact of solar power is stable during peak 

hours (as also stated by Paraschiv Erni and Pietsch, 2014). As a result, solar power decreases 

price volatility in peak hours, as also found by Rintamäki et al. (2017). Because wind and solar 

power have opposite effects on daily price volatility, results on their combined impact are 

inconclusive.  

 

Clò et al. (2015) studied the effect of increased wind and solar power on price volatility by 

looking at both daily averaged and hourly data for the Italian market. The paper finds that the 

increase in wind and solar generation amplifies wholesale electricity price volatility at around 

the same rate. Not surprisingly, the study affirms that looking at daily averaged data instead of 

hourly data smooths intra-day price volatility. This finding is later confirmed by Brancucci 

Martinez-Anido et al. (2016), comparing 5-minute to hour-to-hour data. 

 

No conclusive evidence is found on the impact of renewables on price volatility. Gelabert et 

al. (2011) found a significant drop in the volatility of electricity prices in Spain. Over the same 

period, Woo et al. (2011) found that increases in wind generation tend to enlarge spot-price 

variance, as also found by Jacobsen and Zvingilaite (2010), Green and Vasilakos (2010), and 

Jónsson et al. (2010). Rai and Nunn (2020) also find that spot price volatility has risen. They 

show that higher volatility has been due to increased instances of spot prices being in the $100-
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$500/MWh range, a range well below the historic range. Mwampashi (2021) even finds 

opposite signs for the effect of wind generation on electricity price volatility for different parts 

of Australia over the same period. A conclusion drawn from the finding is that states with high 

wind penetration are more susceptible to variation in electricity prices, as well as that the 

closure of coal-fired generators affects the markets. This may rely on the market structure of a 

region. 

 

Rintamäki et al. (2017) conducted a study on renewable energy’s influence on electricity prices 

in Denmark and Germany. The results are contradicting, as they find that in the short run, 

Danish daily price volatility is lower when there is more wind power production. By contrast, 

wind power increases the daily price volatility in Germany. 

 

2.2 Electricity prices, COVID-19, and the Russian-Ukrainian conflict 

 
The two recent disruptive events, despite being both global and startling, exhibit significant 

differences in the way they impact the global and local energy systems. The pandemic 

constitutes primarily an alteration in energy demand that has triggered a rapid, systemic, and 

global temporary change. On the other hand, the war has a direct impact on energy production, 

supply, and trade, while demand is influenced through actions and decisions by people to 

anticipate supply disruptions, impose sanctions on Russia, and decrease import dependency. 

During the pandemic, oil prices plummeted, in some instances to nearly zero or below, while 

during the war, they soared to over 100 USD/barrel. 

 

2.2.1 COVID-19’s influence on energy 

 

The demand for energy services was affected by the pandemic in many ways, mainly as a 

consequence of the related confinement measures. Working from home measures, travel 

restrictions, closure of public spaces, and access limitations to facilities and services restricted 

people’s activities to the local level. 

 

The pandemic led to a significant decrease in energy demand due to reduced mobility and 

economic activity. This resulted in a steep drop in global crude oil prices, raising concerns 

about the resilience of energy systems dependent on volatile international energy markets 
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(Kuzemko et al., 2020). Industrial disruptions and the shift towards online business further 

reduced electricity demand, while changes in lifestyle due to containment measures resulted in 

new energy consumption patterns (Zakeri et al., 2022).  

 

The energy technology supply chain, including batteries and PV panels, was also adversely 

affected by the pandemic, particularly in intercontinental trade routes from China to other 

countries (Zakeri et al., 2022). The uncertainties associated with the supply chain, coupled with 

a lack of workforce mobility, project shutdowns resulting from lockdowns, and declining 

revenues from energy sales, collectively decreased the capacity of firms and governments to 

invest in energy projects (Andrijevic et al., 2020). Furthermore, unlike metals and agricultural 

goods, the energy sector will face the most severe return shocks (Farid, Naeem, Paltrinieri and 

Nepal, 2022), raising concerns about investments in green energy (Hoang et al., 2021).  

 

After the lifting of lockdown measures in 2021, the industry resumed day-to-day activities in 

many regions of the world, leading to a surge in demand for energy carriers and consequent 

increases in energy prices. In particular, natural gas prices surged globally due to heightened 

demand in Asia and Europe, resulting in electricity and natural gas price hikes in 2021 (Zakeri 

et al., 2022). The situation became critical to low-income consumers who had already been 

negatively affected by the pandemic's economic repercussions.  

 

Green investments 

The politics of sustainable energy transitions are at a critical stage (Kuzemko et al., 2020). Due 

to confinement measures, disruptions in international trade, and reduced workforce 

availability, energy companies faced reduced investment capacity and delayed construction 

projects. As a result, there was a 10-15% decrease in new investments in clean energy projects 

in Europe compared to pre-pandemic levels (Eurelectric, 2020; Christopoulos, Kalantonis, 

Katsampoxakis and Vergos, 2021). This financial difficulty highlighted the vulnerability of 

centrally planned energy systems, and led to an increase in investment in onsite energy 

technologies post-COVID-19, such as solar-based applications in buildings and mini-grid 

systems in some developing countries (Ali, Aghaloo, Chiu and Ahmad, 2022).  

 

Volatility energy prices 

Devpura and Narayan (2020) examine oil price volatility and find a significant increase in 

volatility over the pandemic period. The paper shows that COVID-19 cases and deaths led to 
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an increase in daily oil price volatility of between eight- and twenty-two percent, and show that 

as much as twenty-two percent of daily oil price volatility during COVID-19 was a result of 

the pandemic. Christopoulos et al. (2021) later confirms these results. Zhang and Hamori 

(2021) study the return and volatility spillover relation between COVID-19, the crude oil 

market, and the stock market. Their analysis concludes that return spillover mainly exists in 

the short term while volatility spillover is mainly found in the long term. The paper even finds 

that the pandemic’s impact on oil volatility and stock market returns was more significant than 

the volatility caused by the 2008 financial crisis.  

 

2.2.2 Russian-Ukrainian conflict 

 

Russia is the world’s third-largest producer and exporter of oil, the second largest producer and 

largest exporter of natural gas, and the third-largest exporter of coal (BP, 2021). Consequently, 

the war has set off significant fluctuations and spikes in the prices of these commodities (among 

others). During the first half year of the conflict, there was a 60 percent escalation in coal prices 

and a surge of over 30 percent in European natural gas prices (Guénette, Kenworthy and 

Wheeler, 2022). Prices have exhibited large intraday variability. The rise in commodity prices 

comes on top of sharp increases since the pandemic. Moreover, production among OPEC+ 

nations has also been poorer than expected (Guénette et al., 2022). In April 2022, Russian 

exports made up over 35 percent of EU imports of natural gas, over 20 percent of oil, and 

around 40 percent of coal (Bachmann et al., 2022). Although Russia plays a crucial role as a 

global producer, the decisions made by OPEC will substantially influence the trajectory of 

prices too. 

 

Supply disruptions 

The war brought physical disruptions to the energy supply chain, which in turn activated the 

EU to focus more on green energy and energy independence. The bombing of infrastructure 

(including a nuclear power station) and the besiegement of major cities by Russian troops, 

along with the intentional sabotage of crucial assets by Ukrainian forces, have promptly caused 

substantial disruption to the energy supply chain. Ukraine operated 15 nuclear reactors at four 

distinct power plants. Between them, they provided around half of Ukraine’s electricity. Last 

April, only seven reactors in Ukraine were still operational (International Atomic Energy 

Agency, 2022). Russia continued to export gas and oil to the EU in quantities of up to 1.4 
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million barrels per day (Brower & McCormick, 2022). Private sector entities have disengaged 

from involvement with Russia as well. Various oil and gas corporations have declared to 

withdraw from their stakes in oil and gas fields or companies. These include BP’s 20 percent 

stake in Rosneft, ExxonMobil’s participation in the Sakhalin-I project in eastern Russia, Shell’s 

joint venture with Gazprom in the Sakhalin-II project, and all of Equinor’s (Norway) Russian 

ventures (Benton et al., 2022). 

 

2.3 Electricity spot market and market participants 
 

2.3.1 Spot market 

 

In the Netherlands, the day-ahead and the intraday markets together make up the electricity 

spot market. Several operators run these markets, with EPEX and NordPool being among its 

largest (TenneT, n.d.). 

 

The APX spot market comprises of two distinct market segments: the Day-Ahead Market 

(DAM) and the Intraday Market (IDM). The DAM, the larger of the two, operates as an 

auction-style market that determines the day-ahead prices for electricity for each 24 hour period 

of the following day. The IDM, on the other hand, enables participants to adjust their spot 

positions up to 5 minutes prior to the actual delivery of electricity. As of March 2013, the Dutch 

IDM is coupled with the Belgian and Nord Pool Intraday markets (Tanrisever, Derinkuyu and 

Jongen, 2015). 

 

2.3.2 The day-ahead market 

 

Most of the electricity not traded on the forward markets trades on the day-ahead market 

(Epexspot, 2021). The day-ahead market is a spot market in which participants can trade spot 

electricity for physical delivery the next day. Participants frequently use the day-ahead market 

to alter positions from the forward market due to forecasting errors. In this way the market can 

provide flexibility a day before the actual electricity is delivered and consumed (Van Hout, 

Koutstaal, Ozdemir and Seebregts, 2014). The DAM uses a two-sided, double-blind auctioning 

structure. That is, both buyers (retail companies or large consumers) and sellers (power 

generators) may place anonymous orders with different prices and quantities hourly. These 
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orders produce supply and demand curves for each hour of the following day (Swider, 2007). 

All parties may submit bids and offers for power delivery once the DAM opens at midnight the 

day before. Then at 11:00, the transmission system operators publish the available transmission 

capacity (ATC), which indicates how much capacity will be available during each hour of the 

delivery day. At 12:00, the auction closes and a matching algorithm, COSMOS, takes all bids 

from the participants and uses the constraints imposed by the transmission lines to come up 

with the best clearing prices that maximize social welfare (Epexspot, 2011). The auction result 

is published at 12:55 on the APX website and acts as a reference for other electricity markets 

(Tanrisever et al., 2015). APX acts as the central counterparty for all trades on its platform, 

where all contracts are executed anonymously. The contracts traded on the exchange are fully 

collateralized, as all members are mandated to provide collateral in the form of cash or a letter 

of credit that exceeds their outstanding exposures at all times. 

 

2.3.3 The intraday market 

 

After the DAM market closes it announces the hourly prices to all market participants. 

However, during the time between the determination of the day-ahead positions and the 

physical delivery of electricity, market participants may decide to update their physical 

positions. This is done through the intraday market. In recent years the trading volumes on the 

intraday market have been growing, although this amount is still small compared to traded 

volumes in the day-ahead market (Tijdink & Muller, 2020). Especially the introduction of 

renewable energy has sparked more interest in the intraday market. Since renewable power 

production is difficult to forecast ahead of time, electricity suppliers can adjust their positions 

close to delivery in the intraday market (Van der Welle, 2016). The participants in this market 

can adjust their spot positions up to five minutes before the physical delivery of electricity. 

Buying electricity in the intraday market is generally more expensive than the day-ahead 

market (Pape, Hagemann and Weber, 2016). The reason for this is that the intraday market 

allows for more flexibility in buying and selling electricity at short notice, which can come at 

a premium. In the day-ahead market, prices are set in advance through an auction process, 

while in the intraday market, prices are determined based on supply and demand in real time.  
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However, this is a relatively new market with limited data availability. This combined with the 

fact that the trading volumes are still relatively small and come at higher prices, drives us to 

exclude them from this thesis.  

 

2.4 TenneT 

 

2.4.1 Transmission System Operators (TSO) & Distribution System Operators (DSO) 

 

TSOs operate the high-voltage electricity grid. This entails fundamental system functions, 

including continuously controlling and monitoring the grid's electrical supply and demand 

balance. To ensure that that is possible, TSOs are also in charge of organizing, maintaining, 

and growing the high voltage grid (above 110kV) serving present and future market needs. 

TSOs work together to create a single European electricity market and provide the most 

effective resource allocation to enable a smoothly operating electricity market. 

The regional distribution grid, which DSOs run, distributes electricity from the high voltage 

system to final users. Just like the TSO, they are responsible for the planning, construction, 

maintenance and operation of the distribution grids (TenneT, n.d.). Among other smaller tasks, 

they add new participants to the grid and are responsible for the registration, management and 

exchange of data used by market parties (TenneT, n.d.). 

TSOs are in charge of maintaining the system’s overall stability, while DSOs and TSOs are 

jointly responsible for avoiding grid congestion.  

 

2.4.2 TenneT 

 

TenneT, a state-controlled monopoly, serves as the backbone of the Dutch electricity market 

and oversees the management of the electrical grids larger than, and including, 110kV. Through 

its network, all regional grids in the Netherlands are interconnected and connected to the 

broader European network. As a lone buyer, TenneT is assigned the responsibility of procuring 

reserve capacity from Dutch energy producers in exchange for the transmission of their 

electricity. TenneT defines this capacity as “the capacity they can produce or consume over or 

under the amount reported in their E-programme” (TenneT, n.d.). 

Before the physical delivery of electricity, TenneT requires market participants to furnish two 

sets of information, the T-prognosis and the E-program. The T-prognosis, which comprises a 
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forecast of the flow of electricity, is utilized by TenneT to guarantee the electrical grid’s 

stability. The E-program represents the net position of each market participant for every unit 

of time within the program. To guarantee the balance of demand and supply on the grid, Tennet 

must approve all E-programs. To avoid extremely high or low prices, TenneT expects its 

suppliers and extractors to participate in balancing the grid (TenneT, 2018). 

 

2.5 Energy policy and subsidy schemes in the Netherlands 

 

2.5.1 Pre-2003 

 

In the early 1990s, the government negotiated voluntary agreements with the energy 

distribution sector, which committed itself to voluntary sales targets for renewables amounting 

to 3.2% of electricity sales and 0.7% of gas sales by the year 2000 (Van Rooijen & Van Wees, 

2006). In 1996, the government introduced a regulatory energy tax, also known as the 

‘’ecotax’’ for small- and medium-scale energy users. This new tax system stimulated green 

electricity consumption. In 2002, total support for green electricity amounted to eight eurocents 

per kWh (comprised of six eurocents for consumer support and two eurocents for production 

support) (Van Rooijen & Van Wees, 2006). 

The following important phase of Dutch green electricity policy was a liberalization of the 

green consumer market in 2001. 
 

2.5.2 MEP 

 

A (new) policy, called the “environmental quality of electricity production’’ (MEP), was 

implemented in July 2003. The MEP had two main objectives: to reduce investment risk and 

to improve the cost-effectiveness of renewable electricity. MEP subsidized costs for renewable 

electricity generators through a premium on top of the electricity price for the extra “green” 

costs of renewable generation. Support is provided using a feed-in tariff, combined with a 

partial exemption from the ecotax, where an annual levy on the electricity connections of every 

household finances the tariff (Van Rooijen & Van Wees, 2006). The ecotax exemption phases 

out over two years. In effect, MEP functioned as a differentiated premium scheme; producers 

were provided a fixed subsidy per kilowatt-hour, depending on technology, earned on top of 

the revenue for the sale of electricity in the wholesale market. The subsidies in 2006 ranged 

from a low of 1.3 eurocents per kWh for landfill gas and digestion to 9.7 eurocents per kWh 
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for offshore wind, solar, PV, small biomass, hydro, and wave power (International Energy 

Agency, 2009). 
 

2.5.3 SDE 
 

In 2008, the MEP became the “Stimulation of Sustainable Energy production’’ (SDE) scheme 

(Staatscourant, 2008). The SDE scheme, implemented for a period of two years, utilized a 

compensation mechanism that calculated subsidy amounts based on the assumption that the 

production of electricity from fossil fuels was more cost-effective than the production from 

renewable energy sources. The revised scheme, known as the modified feed-in tariff scheme, 

represents a departure from the previous premium scheme. A fixed subsidy is guaranteed as a 

feed-in tariff, with an option for a higher price per kWh if the electricity price goes above the 

subsidy ceiling (International Energy Agency, 2009). The subsidy for renewable suppliers was 

dependent on the price of electricity and/or gas as a compensation, and was granted for a period 

of twelve- to fifteen years (Staatscourant, 2008). 

 

In practice, renewable energy generators received a specific price per kWh. Should the price 

of electricity fall below the established ceiling, the government compensates the generators 

with the differential. Conversely, if the market price is equal to or surpasses the established 

ceiling, the generator will not receive any subsidies from the government. In summary, the 

subsidy has a maximum threshold, and the price paid to generators has a minimum threshold; 

generators will only receive payment above the subsidy ceiling if the electricity price exceeds 

the established threshold. Figure 2 shows a schematic of the SDE’s modified feed-in tariff 

scheme. 
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Figure 2: Variability of SDE Subsidy According to Electricity Market Price 

 
Source: International Energy Agency (2009) 

 

2.5.4 SDE+ 

 

In 2011 the SDE+ program was introduced. The primary distinction between the SDE and 

SDE+ programs is that the former allocated a specific budget for each renewable energy 

technology, whereas the latter allocated a consolidated budget for all renewable energy 

technologies collectively (RVO, 2019). The implementation of feed-in tariffs and the provision 

of supplementary funding have served as catalysts for the emergence of renewable energy 

entrepreneurship in the Netherlands. This, in turn, had a significant impact on the composition 

of the country's energy mix. 

 

3. Research Question & Hypotheses  
 

As discussed in the introduction, we distinguish the following periods: 

2018-2019 Base case (benchmark of our study) 

2020-2021 COVID-19 pandemic (reduced demand) 

2022 Russian-Ukrainian conflict (supply chain distortions) 

 

From the literature we expect to find lower prices and higher volatility due to a higher amount 

of renewable electricity in the Dutch electricity grid. This paper aims to relate the effects of 

events in these periods to Dutch electricity prices and their volatility in the day-ahead market. 

This paper studies the following research question: 
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How does the influence of a growing share of renewable electricity generation on Dutch day-

ahead electricity prices and their volatility evolve over periods of low demand and supply chain 

disruptions? 

 

In the base case, we expect renewable electricity generation to grow in the grid, leading to 

lower average prices and higher volatility. We propose the following hypotheses for the base 

case: 

 

𝐻1!: In the base case, Dutch day-ahead electricity prices do no decrease due to renewable 

electricity generation. 

𝐻1": In the base case, Dutch day-ahead electricity prices decrease with the addition of 

renewable electricity generation. 

 

𝐻2!: In the base case, the contribution of renewable electricity does not influence electricity 

price volatility. 

𝐻2": In the base case, the contribution of renewable electricity positively affects electricity 

price volatility. 

 

During the COVID-19 pandemic, electricity demand and renewable investment decreased. 

Previous literature finds that the volatility of energy prices has increased. With output going 

down during the pandemic, we expect the share of renewables in the grid to rise. This together 

makes for the following hypotheses: 

 

𝐻3!: Dutch day-ahead electricity prices were not lower during the pandemic compared to the 

base case. 

𝐻3": Dutch day-ahead electricity prices were lower during the pandemic compared to the base 

case. 

 

Prices in this period are assumed to go down, which would ceteris-paribus decrease volatility 

too. At the same time, the pandemic and the uncertainty during those times raise volatility. 

Renewable output is assumed to increase compared to the base case, which would lead to 

increased volatility. Hence, we hypothesize that the relationship between the pandemic and 

electricity price volatility is positive. 
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𝐻4!: There is no difference in the impact of renewable electricity generation on Dutch day-

ahead electricity prices during the pandemic compared to the base case. 

𝐻4": Renewable electricity generation has a more substantial impact on Dutch day-ahead 

electricity prices during the pandemic compare to the base case 

 

𝐻5!: During the pandemic, the contribution of renewables to the Dutch electricity grid does 

not increase electricity price volatility compared to the base case. 

𝐻5": During the pandemic, the contribution of renewables to the Dutch electricity grid 

increases electricity price volatility compared to the base case. 

 

Lastly, during the Russian-Ukrainian conflict and all its implications for the electricity supply 

chain, the following hypotheses are proposed: 

 

𝐻6!: Dutch day-ahead electricity prices were not higher during the war compared to the base 

case. 

𝐻6": Dutch day-ahead electricity prices were higher during the war compared to the base case. 

 

𝐻7!: There is no difference in the impact of renewable electricity generation on Dutch day-

ahead electricity prices during the war compared to the base case. 

𝐻7": Renewable electricity generation has a more substantial impact on Dutch day-ahead 

electricity prices during the war compared to the base case. 

 

𝐻8!: During the war, the contribution of renewables to the Dutch electricity grid does not 

increase electricity price volatility compared to the base case. 

𝐻8": During the war, the contribution of renewables to the Dutch electricity grid increases 

electricity price volatility compared to the base case. 
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4. Data  

 

4.1 Datasets  

 

This data section provides an overview of the data used for this study, containing descriptive 

statistics and data sources. All data used are measurements of the Dutch day-ahead electricity 

market. Please note that “Dutch day-ahead electricity prices” can be referred to throughout this 

study as “electricity prices”. 

 

The dataset employed in this study includes two time series ranging from 01/01/2018 up to, 

and including, 31/12/2022, totaling 1,826 observations.  

The first time series is the Dutch APX day-ahead electricity spot price. APX power NL is an 

independent electronic exchange for the electricity market. ENTSO-E, a platform for the 

central collection and publication of electricity generation, transportation and consumption 

data for the European market, releases the data. The data is aggregated and retrieved through 

DataStream and a third-party website called Energy-Charts. The series contains the daily values 

for electricity prices in euros per megawatt hour for all days, and hourly values for weekdays.  

 

The second time series is daily renewable electricity generation for public power supply in 

megawatts. The data is sourced from ENTSO-E and EEX and collected and published by 

Energy-Charts. We aggregated the time series into the total generation of offshore wind 

electricity, onshore wind electricity, and solar PV. The resulting dataset contains 1,826 

observations. Appendix 1 presents a table containing the variables and time periods used in this 

study, including a brief description. 

One of the advantages of working with these datasets is the quality of data. Since the values 

are all official reports from national markets, no measurement errors are found in the data 

unless reporting errors exist.  

 

4.2 Summary Statistics  

 

Several distinguishing features characterize the behavior of prices, beginning with its regular 

intraday variation. This is seen quite clearly in Figures 3 and 4. Figure 3 presents the daily 

averages of electricity prices measured in euros per megawatt hour. The prices exhibit an 
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inverted s-shaped pattern. Prices seem to follow a downward trend in the period of 2019 up to 

around June 2020, whereafter they strongly rise. As for the negative pricing characteristics of 

electricity prices: this is not recurrently seen in the plot. Over the past five years, prices have 

been relatively high, and days where the average electricity price is negative are not observed 

frequently in the data. 
 

Figure 3: Average Daily Electricity Price 2018-2022 (EUR/MWh) 

 

 

Figure 4 shows the average weekly price in euros per megawatt hour. The same pattern is 

found, but looking at weekly averages, prices exhibit less volatility. The inferences made still 

hold but are more nuanced.  
 

Figure 4: Average Weekly Electricity Price 2018-2022 (EUR/MWh) 

 
 

Figure 5 presents our sample’s weekly standard deviation. Standard deviation follows roughly 

a similar pattern as prices do. However, over the years 2018-2021, where prices were less 

extreme in value, the standard deviation shows a more consistent pattern. In 2022, when prices 

had risen sharply, standard deviation exhibited similar behavior.  
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Where in the previous figures we saw an inverted s-shaped pattern, here we can see that 

standard deviation remained relatively constant over the years 2018 to 2021, whereafter in 2022 

it rises sharply. Due to the fact that over the first years prices had gone down, but volatility had 

gone up, we believe volatility to increase over the entire duration of our sample.  
 

Figure 5: Weekly Standard Deviation 2018-2022 

 
 

Let us look at our second time series: renewable electricity generation over time. The 

exogenous variable used in the models is the number of megawatts of renewable energy1 

produced in the Netherlands. Figures 6 and 7 show the total renewable energy generated in the 

Netherlands over our sample period. Not surprisingly, the series displays a positive trend over 

our time period. Next to the rising output, we can see a seasonal pattern in the data, where more 

renewable electricity is generated in the Netherlands during the winter months.  
 

Figure 6: Daily Renewable Electricity Generation 2018-2022 

 
 

 

 

 
1 The aggregate of wind and solar power 
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Figure 7: Weekly Renewable Electricity Generation 2018-2022 

 
 

Table 1 presents the summary statistics for our sample. Negative prices were uncommon over 

the past five years. Further, the maximum price of nearly €700 per MWh is unprecedented. We 

can see that starting from the base case, the mean electricity price follows a rising trend over 

time. The maximum price over the periods follows this pattern. Moreover, the volatility of 

electricity prices significantly rises over time. Table 2 shows the weekly averages for the three 

time periods and reaffirms our findings. 
 

Table 1: Summary Statistics (EUR/MWh) 

Variable Observations Mean St. Dev. Minimum Maximum 

Price full sample 1,826 94.15 98.11 -5.45 693.83 

Price base case 730 46.86 10.88 20.90 88.98 

Price pandemic 731 67.58 60.41 -5.45 429.84 

Price war 365 241.93 113.57 16.38 693.83 

Renewablesy 1,826 27.27 21.21 0.1 105.8 

 

 

Table 2: Summary Statistics Week Averages (EUR/MWh) 

Variable Observations Mean St. Dev. Minimum Maximum 

Price full sample 261 94.13 94.93 15.85 577.27 

Price base case 104 46.89 9.73 33.29 65.89 

Price pandemic 104 67.11 58.46 15.85 312.39 

Price war 53 239.86 102.64 62.85 577.27 

Renewablesy 261 27.30 16.32 3.39 93.88 

 
y In megawatt 
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4.3 Structural break test 

  

Noticeably, this study hypothesized prices during the pandemic to decrease, but this is not 

found in our summary statistics. The pandemic came to the Netherlands around March 2020, 

and its rebound effects already showed in 2021. The steep increase in demand right when 

COVID-19 allowed businesses to start operating more freely dampens the effect of fallen 

demand during the better part of the pandemic period. To test this more formally, we conduct 

a Zivot-Andrews structural break test.  

 

A structural break occurs when there is a significant change in the behavior of the time series, 

such as sudden increases or decreases in mean values or trends. The Zivot-Andrews 

endogenous structural break test is a test which utilizes the data series and uses a different 

dummy variable for each possible break date. It tests the null hypothesis that the series has a 

unit root with a structural break. The break date is selected where the t-statistic from the test of 

a unit root is at its lowest value. Consequently a break date is chosen where the evidence is 

least favorable for the null hypothesis (John, Nelson and Reetu, 2007). The test identified a 

break in the intercept of the regression, with a minimum t-statistic of -5.81. We conclude that 

a structural break occurred in the price series at week 36 of 2021 (30/08/2021).  

 

Consequently, we redefine the periods of our study. Speculation preceded the Russian invasion 

of Ukraine which took place in February 2022, but we do not want to overestimate this 

speculation. Consequently, we define the remainder of 2021 after the structural break as the 

COVID-19 recovery period, and define the period of war as the year 2022. We split the 

pandemic period, resulting in the following four periods: 

01/01/2018 – 31/12/2019 Base case 

01/01/2020 – 05/09/2021 Pandemic 1, representing the period of fallen demand 

06/09/2021 – 31/12/2021 Pandemic 2, representing the period of rising demand  

01/01/2022 – 31/12/2022 War 

 

Table 3 shows the corresponding summary statistics. We should take into consideration that 

the sample size for the second pandemic period is relatively small. We can see that the price 

pattern now follows our hypothesized course. Interesting is how during the period of fallen 
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demand, the drop in mean prices is relatively small. We have seen that with the outbreak of 

COVID-19, prices have fallen. These drops over time likely correlate with government 

confinement measures taken against the spread of the virus. We assume that the higher the 

impact of the measure, the lower electricity demand will be. We expect that the aggregate effect 

over our time period smooths out with the aggregation of effects when measures are 

(temporarily) lifted. Studying the effects of renewables throughout the pandemic in more detail 

could be interesting, but is left for further research.  
 

Table 3: Summary Statistics Redefined Periods – Price Daily Averages (EUR/MWh) 

Variable Observations Mean St. Dev. Minimum Maximum 

Full sample 1,826 94.15 98.11 -5.45 693.83 

Base case 730 46.86 10.88 20.90 88.98 

Pandemic 1 614 45.33 22.49 -5.45 124.07 

Pandemic 2 117 184.36 62.58 74.11 429.84 

War 365 241.93 113.57 16.38 693.83 

 

Table 4: Summary Statistics Redefined Periods – Price Week Averages (EUR/MWh) 

Variable Observations Mean St. Dev. Median Minimum Maximum 

Full sample 261 94.13 94.93 51.59 15.85 577.27 

Base case 104 46.89 9.73 43.45 33.29 65.89 

Pandemic 1 88 45.30 20.73 41.07 15.85 111.44 

Pandemic 2 16 187.08 53.19 179.97 128.78 312.39 

War 53 239.86 102.65 213.39 62.85 577.27 

 

Significance sample averages 

Ideally, we would want to formally test whether our sample groups differ significantly from 

each other in their average price values. Unfortunately, our groups do not satisfy the conditions 

for either parametric- or nonparametric tests.  

Commonly used tests are the t-test or alternatively the Wilcoxon rank-sum test. An overview 

of all the suggested tests and the shortcomings of our series for their assumptions is presented 

in Appendix 2. Transforming our data to exhibit a normal distribution would enable us to test 

for differences among the sample means formally. Common transformations such as taking 
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logarithms or squaring values of our data do not yield a distribution that satisfies the necessary 

assumptions for testing. As an additional ad-hoc check, we add the median to the summary 

statistics in Table 4. We can see that both the mean and the median follow the trajectory as 

suggested by our hypotheses. The median of 41.07 in the pandemic period of fallen demand 

reaffirms the finding of the mean value, stating that over the period prices have not fallen by 

much compared to the base case. 

 

5. Methodology 
 

This study uses the family of Autoregressive Moving Average (ARMA) models. Our approach 

consists of two stages: identification of the specific ARMA model(s) and estimation and 

verification. Let us start by taking a closer look at the properties of our dataset. 

 

5.1 Distributional properties and model identification 

 

5.1.1 Price series 

 

For our study, Autoregressive (AR) Moving Average (MA) models will be used to study our 

hypotheses. Two main underlying assumptions need to be satisfied to ensure the validity of 

their use. First, for using AR models, the price series needs to exhibit stationarity. A series is 

said to be stationary if it: 

1. Exhibits mean reversion 

2. Has a finite and time-invariant variance 

3. Has a diminishing autocorrelation function as the lag length increases 

 

Second, for the use of the MA component of the model, it is essential that the invertibility 

condition is satisfied. Invertibility ensures that the model’s parameters can derive a formula 

that expresses the current observation in terms of past error terms rather than only past 

observations. This implicitly assumes that an autoregressive model can approximate the series.  

 

Given the non-storable nature of electricity, real-time matching of supply and demand is 

necessary to avoid temporary imbalances, which may result in extreme prices. However, we 

expect these prices to revert to a more stable state once supply and demand are equal. Hence, 
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when constructing price models, one should consider mean reversion as a common 

phenomenon in electricity markets (Huisman & Mahieu, 2003; Ketterer, 2014). Another 

critical characteristic of electricity prices is seasonality. The demand for electricity exhibits 

variation across different times of the day, week, and year. Therefore, seasonal fluctuations 

should be accounted for in electricity price models, as demonstrated in studies by Knittel and 

Roberts (2005), Lucia and Schwartz (2002), and Ketterer (2014). Moreover, the series must 

exhibit a constant variance. The fluctuations in the price over time should not be too extreme 

or unpredictable, but rather fluctuate within a certain band. This assumption is commonly 

satisfied in electricity prices, where we do not expect extreme, sudden changes in prices from 

one day (or week) to the next. Stationarity for our dataset will be formally tested further in this 

section. 

 

Distributional properties 

Figure 8 presents the empirical histogram for our price series overlaid with a normal density 

curve. Figure 9 presents a QQ-plot of the data. In the QQ-plot, normally distributed data will 

appear linear. Both figures illustrate the deviation from normality for our dataset. Our price 

series exhibits a (positive) right tail distribution, indicating relatively high skewness in our data.  

 
Figure 8: Empirical Histogram Price Series  Figure 9: QQ-Plot Price Series 

   
 

In the autocorrelation function (ACF) in Figure 10 we can see a diminishing trend, but likely 

not at a geometrically fast rate. The autocorrelation values remain statically significant well 

beyond 40 lags. If the values were independent of their past values, we would expect the 

autocorrelation function to decay rapidly and remain within the 95% confidence interval. The 

confidence interval defines the range of values that we expect to see 95% of the time if the time 

series is white noise. When the observed values fall outside this interval, we can conclude that 
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they are not statistically significantly equal to zero. White noise entails that we are dealing with 

a sequence of random values. If we were dealing with white noise, we would not expect to see 

any significant autocorrelation beyond some small number of lags. Since we see significant 

values well beyond 40 lags, we conclude that we are not dealing with white noise here.  

 

The partial autocorrelation function (PACF) shows the partial correlation of a time series with 

its own lagged values. The PACF differs from the ACF in that it only measures the correlation 

between the time series and its past values at a certain lag after removing the effects of 

intervening lags. In Figure 11 we can see that the first lag has a considerably high value, which 

suggests a strong correlation between the first and second observations after accounting for the 

influence of intervening lags. This reaffirms our use of an AR model. We can see a steep drop 

to a value within the confidence interval in lag 2. Values within the confidence interval suggest 

no significant correlation between the observations. Here for, the figure suggests that the time 

series does not significantly exhibit memory beyond one lag. Additionally, a seasonal pattern 

is deducted from the figure. Most noticeable are the negative values at lags 8, 15, 22, …, which 

refer to the lower demand over the weekend compared to weekdays. This is a widely found 

phenomenon in the literature (among many others found by Knittel & Roberts, 2005; 

Rintamäki et al., 2017; Mauritzen, 2010). In conclusion, the PACF, exhibiting a strong 

correlation at the first lag and a weekly seasonality pattern, suggests that an AR(1) model with 

weekly seasonality effects and a weekly moving average term can describe the data well.  

 
Figure 10: Autocorrelation Function Price Series  Figure 11: Partial Autocorrelation Function 

      Price Series 

   
 

To further test how autocorrelation decays over time, we consider the following simplified 

model for the price-generating process: 
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𝑃! = 𝛼 + 𝛽𝑃!"# + 𝜂! 
(1) 

𝜂! = 𝛾𝜂!"# + 𝜀! 
(2) 

Where 𝑃! is the price at time 𝑡, 𝛼, 𝛽, and 𝛾 are unknown coefficients, and 𝜀! is a white noise 

process with variance 𝜎$%. If serially correlated errors are present, Phillips and Perron (1988) 

show that the price process parameters can be estimated by ordinary least squares regression. 

First, a Durbin-Watson test2 is performed, which yields a d-statistic of 2.04. Hence, we can 

safely conclude on our data not exhibiting first-order serial correlation. To further inspect 

stationarity, a unit root test is performed. The presence of a unit root entails that the data has a 

systematic tendency to follow some path over time (for instance, rising over time). This tells 

us that the data in the series is not stationary. The unit root test formally checks whether a time 

series is stationary. We have stated earlier that when dealing with autocorrelation, values in a 

time series and their past values correlate. Hence, the assumption of independence errors, 

required for the unit root test, does not hold in the presence of autocorrelation. To test this, we 

can use the Newey-West corrected t-statistic. This value takes autocorrelation into account and 

adjusts the test accordingly. The Newey-West corrected t-statistic under the null hypothesis of 

a unit root is 68.99, and we reject the null hypothesis that the time series has a unit root at the 

1% significance level. We can conclude that the data is stationary and has “clean” white noise 

errors.  

 

5.1.2 Renewable electricity generation 

 

Figures 12 and 13 plot the ACF and PACF of the renewables data. We see similar patterns as 

in the price series. The ACF displays dissipating autocorrelations, this time with a steeper drop 

after the first lag. The PACF shows a drop after the first lag, whereafter, the values (nearly) fall 

within the confidence interval. As seen in the price series PACF, a weekly seasonal pattern is 

again found. Again, the figures suggest that an AR(1) representation may adequately describe 

the autocorrelation structure of the data.  

  

 
2 Widely used test in econometrics to check for first-order autocorrelation; see Durbin and Watson (1950) 
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Figure 12: Autocorrelation Function Renewables Figure 13: Partial Autocorrelation Function 
Renewables 

   
 

When adding renewable electricity generation, the resulting dataset must satisfy two 

assumptions. First, both the price series and the exogenous series must be stationary. We have 

proved the price series to be stationary. We take similar steps to arrive at stationarity for the 

renewables data. First, we yield a Durbin-Watson test statistic of 2.04 for the renewable 

generation data. We then run an Augmented Dicky-Fuller (ADF) test with one lag. The test 

statistic is -15.55, and we can reject the null hypothesis of at least one unit root at the 1% 

significance level. We chose an ADF test here since we expect serial correlation to be less 

likely in the series. This motivates our choice of the ADF test because the test takes into account 

the potential for serial correlation in the residuals. To verify stationarity, we check the results 

with a Newey-West test which, with a t-statistic of 42.02, rejects the null at the 1% level. Based 

on the observed patterns of the ACF and PACF and applying the same logic used for the time 

series analysis, we can conclude that an ARMAX model is appropriate. Again, we should take 

weekly seasonality into account. We observe a similar pattern as seen in the price series, which 

we expect given the influence of past weather on current weather conditions. For instance, the 

weather being windy today makes it likely for the weather to be windy tomorrow as well.  

 

For the use of ARMA models, two conditions must be satisfied. We have shown that the 

stationarity and invertibility assumptions are satisfied for our data set. For the extension to an 

ARMAX model that includes renewable generation as a variable, we must show that renewable 

electricity generation is an exogenous variable.  

 

An advantage of renewable electricity generation as a variable is that it is a passive form of 

generation (Mauritzen, 2010). The production of solar PV and wind energy is contingent upon 

the availability of said factors. Since the marginal costs of production are nearly zero, producers 
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do not have much incentive to limit production due to price signals. Hence, we conclude that 

the renewable electricity generation is highly likely to be exogenous to prices.  

 

The literature mentions two possible exceptions to the assumption of exogeneity. Firstly, there 

is a possibility that the system operator could order renewable energy offline due to balancing 

considerations, which may influence the price. This is likely a minor factor as Mauritzen (2010) 

shows. Second is the possibility that market power is exercised. A large energy producer that 

utilizes a diverse array of generation technologies, including significant solar PV and wind 

power components, may be incentivized to curtail renewable electricity output to benefit from 

higher prices. In the Dutch energy market, Tennet has the role of market maker and the Dutch 

government regulates Tennet in a public-private partnership where the state owns 100% of the 

shares. Tennet closely monitors its TSOs and has the power to penalize players that do not act 

in the market’s best interest. Additionally, it is less likely to exercise market power over 

extended periods of time. Here for, the risk of market manipulation occurring reduces when 

looking at weekly aggregated data instead of daily data. Henceforth, this paper assumes that 

the risk of exercising market power is neglectable and we conclude that renewable electricity 

generation is exogenous. 

 

5.1.3 Data aggregation 

 

The presence of seasonality in our data has become evident. Though a consistent yearly price 

pattern is not apparent, we observe a weekly pattern. Some studies remove weekend 

observations to mitigate the effects of this weekly seasonality. Other studies add dummy 

variables for weekdays to investigate the weekday versus weekend effects. In our study, we 

aim to observe what happens with prices and price volatility over a period of five years, 

including the effects of renewable electricity generation. We argue that the movements in these 

parameters shown over the years do not change when using weekly aggregated data instead of 

daily data.  

One could argue that our statistical inference is less powerful because our observation count is 

reduced by a factor seven. However, many previous studies find similar trends when extending 

daily data regressions with weekly aggregated data regressions (see for instance Maurtizen, 

2010).  
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Using weekly data offers our study benefits that motivate our choice to use it. First, by using 

weekly averaged data, the weekly seasonal effect found is accounted for in the dataset without 

removing observations. Moreover, outliers are smoothed out by aggregating the data, which 

decreases the need for data cleaning for our sample. Second, one might argue that our study 

could benefit from extending our study by adding AR(2), or MA(2) factors to our models, 

thereby removing noise in the data. Looking at daily data, one could potentially substantiate 

this argument. It is, however, unlikely that it adds explanatory power when adding factors that 

state that results from a seven-day period relate to periods of fourteen days earlier, let alone 

higher-order lags. This is firstly the case for the price series, but arguably even more so for the 

renewable generation series. We have seen the steep drop in its PACF going from one lag to 

two lags, and we know that weather conditions on day 𝑡 strongly correlate with weather 

conditions on day 𝑡 + 1. When it is sunny or windy today, chances are that the forecast for 

tomorrow is similar. By aggregating the data at a weekly level, we can more accurately capture 

the longer-term trends and patterns in the data, which the variability of daily data can obscure. 

Many factors can cause daily fluctuations in renewable generation. Averaging out these 

fluctuations over a week reduces the noise in the data, making the underlying trend more 

apparent. This is especially useful for long-term trend analysis, where the main focus is on the 

overall pattern over time rather than short-term fluctuations (Haug, 2002). Lastly, for our 

ARMAX model, the renewables variable must be exogenous, and we have shown that using 

weekly data lowers the chances of validating this assumption. 

 

We transform the data by arithmetically averaging seven daily observations, resulting in 261 

observations. Our weeks range from Monday to Sunday, and only 2022 has 53 weeks3. This is 

because out of this 53rd week, six days fall within the year 2022. 

 

5.2 Models 

 

Simultaneity  

In our models, regressions involve both price and quantity variables. Consequently, 

simultaneity becomes a potential problem when making our inferences. Moreover, using 

weather variables that affect consumption (such as temperature) as instruments for the quantity 

variables is not appropriate as those are likely to be correlated with renewable energy 

 
3 With the last week consisting of six days 
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generation. Though let us think about how simultaneity affects our variables. Various factors 

influence the quantity of electricity demanded, including the price of electricity, weather 

conditions, and the time of day. When electricity prices increase, consumers may reduce their 

electricity demand, which particularly occurs during periods of peak demand when prices are 

highest. Conversely, when electricity prices decrease, demand may increase. Therefore, the 

quantity of electricity demanded is a function of price and other exogenous factors, such as 

weather and time of day. Electricity demand is, however, known to be highly inelastic in the 

short run, especially for end consumers. Moreover, independence of weather conditions from 

demand-side factors is not a necessary condition to get valid inferences, as long as we treat 

renewables as an exogenous variable. For these reasons, we assume simultaneity will not 

reduce the significance of our results or their interpretations.  

 

Models   

This section presents the models used in our study of electricity prices. We estimate the models 

for five samples: the full sample and the four subsamples, as defined in this paper’s data section.  

 

Autoregressive Moving Average Models are a common way to describe time series. The 

ARMA(𝑝, 𝑞) model consists of autoregressive terms, 𝑝, and moving average terms, 𝑞. The 

orders of the model describe how many past values explain the movement in the explanatory 

variable.  

 

The first term refers to the autoregressive model of order 𝑝. The model AR(𝑝) is given by: 

 

𝑋! =	𝜀! +1𝜑&𝑋!"&

'

&"#

 

(3)  

Where 𝜑#, … 𝜑' are parameters and the random variable 𝜀! is the white noise4.  

The second term refers to the moving average model of order 𝑞. The model MA(𝑞) is given 

by: 

 

 
4 Independent and identically distributed normal random variables 
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𝑋! = 	𝜇 + 𝜀! +1𝜃&𝜀!"&

(

&"#

 

(4)  

Where the 𝜃#, … 𝜃( are parameters, 𝜇 is the expectation of 𝑋!, and the 𝜀!, 𝜀!"#, … are again 

white noise error terms. 

 

The ARMA(𝑝, 𝑞) model in its general form is then given by: 

 

𝑋! =	𝜀! +1𝜑&𝑋!"& +	1𝜃&𝜀!"&

(

&"#

'

&"#

 

(5)  

Choosing values for p and q 

In section 4.1.1, we have shown from the ACF and PACF that choosing an autoregressive term 

of value 𝑝 = 1 fits our data well, especially when looking at weekly aggregated data. Secondly, 

we must choose the value of our moving average term. Based on our analysis in section 4.1.2, 

we have determined that an MA(1) model is appropriate since weekly data tends to exhibit 

short-term fluctuations or noise that can be captured well by a first-order moving average term. 

Generally, higher-order MA models may be appropriate if the data has more persistent noise 

(in our case over multiple weeks). While higher-order MA models may be appropriate for data 

with more persistent noise, we assume that short-term fluctuations dominate the variability in 

our data. 

We use an ARMA(1,1) model for our analysis. This incorporates both the autoregressive and 

moving average terms and is consistent with the principle of parsimony, stating that generally 

one should prefer simpler models over more complex models that can also be used for adequate 

data explanation. The idea is that we generally prefer simpler models because they are easier 

to understand, interpret, and statistically apply.  

 

We further elaborate our study by including renewable generation as an exogenous variable 

(following Knittel and Roberts, 2005; Rintämaki et al., 2017; Mauritzen, 2010; Weron and 

Misiorek, 2008). We do so by setting up an ARMAX model. The resulting model (𝑝, 𝑞, 𝑏) adds 

𝑏 exogenous variables to the described ARMA model. The 𝑏 term is a linear combination of a 

known and external time series 𝑑!.  
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Adding the exogenous variable allows us to examine the relationship between renewable 

energy generation and electricity prices while accounting for any autocorrelation or moving 

average effects present in the data. By including renewable energy generation as an exogenous 

variable in our ARMAX model, we can gain insight into how this variable affects our 

dependent variable over time. 

 

Volatility models 

Our study aims to see how electricity price volatility has been affected over time by demand 

shocks, supply shocks, and renewable energy generation over the past five years.  

Following, among others, Rintämaki et al. (2017) and Mauritzen (2010), we compute our 

primary measure of price volatility for day 𝑑 from daily average prices 𝑝) and weekly average 

prices 𝑃* =
#
+
∑ 𝑃)+
),# . 

 

Consequently, we calculate volatility as the standard deviation of prices: 

 

𝑣* = 9
1
71(𝑃) − 𝑃*)%

+

),#

 

(6) 

To see how volatility is affected in the three time periods, we run the same ARMA(X) 

regressions as for the price series. We now define the dependent variable and its lagged term 

as the standard deviation of electricity prices. This allows us to find the influence of last week’s 

price volatility and renewable energy generation on this week’s price volatility.  
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6. Results 
 

The results section presents the findings of the study, highlighting the outcomes of the data 

analysis and answering the stated hypotheses. We provide an objective and comprehensive 

overview of the analyzed data, detailing the key findings and their significance. 

First, we analyze the findings for our price models, whereafter we discuss the volatility models’ 

results. We end the section with model extensions and the testing of significant coefficient 

differences. 

 

6.1 Price models 

 

To gauge the predictive power of prices, we use specification (7): 

 

𝑃! = 𝛽- + 𝛽#𝑃!"# + 𝛽%𝜀!"# + 𝜀! 
(7) 

Where 𝑃! is the electricity price at time 𝑡 and 𝜀! is the white noise error term. Table 5 shows 

the estimation results for the ARMA(1,1) model with price as the dependent variable. We can 

see throughout our sample periods that the lagged price coefficient is highly significant. For 

the full sample, the coefficient of nearly 0.93 indicates a strong dependency for prices on their 

lagged terms. We can see that over our periods this dependency drops. Most noticeable is how 

during the later stage of the pandemic and during war times, the coefficient drops by around 

twenty percent compared to its values in the first two periods. We can conclude that during the 

steep demand increase in the post-COVID-19 period and the unpredictability of supply during 

the war, prices from one period earlier carry less explanatory power than before. It is interesting 

though, that during the period of low demand lagged prices seem to hold relatively much 

explanatory power, regardless of the uncertainty caused by COVID-19 and the government’s 

measures. 

Past periods’ error terms do not hold much significant explanatory power. For the full sample, 

past error terms do improve electricity price forecasting. This may be due to the sample size 

being larger than for the individual samples. Further, lagged errors influenced prices during the 

first pandemic period. We find a negative relation between past residuals and current prices. If 

there was more randomness for our model in the previous period, i.e., lagged prices held less 

explanatory power, current prices decrease. This finding suggests that the model may not fully 
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capture the underlying factors of current price movements. This finding is not surprising, as we 

only use lagged prices and error terms as explanatory variables.  

The sigma parameter represents the standard deviation of the model’s error term. Essentially, 

it measures how well the model fits the data, with smaller values indicating a better fit. We find 

that the first pandemic period fits our model best out of the three specified time periods after 

the base case.  

 
Table 5: Estimation Results for ARMA(1,1) Price Regression 

 Full sample  Base case Pandemic 1 Pandemic 2 War 

𝑃!"# 0.926*** 

(0.024) 

0.948*** 

(0.038) 

0.989*** 

(0.024) 

0.695** 

(0.321) 

0.748*** 

(0.123) 

𝜀!"# 0.139*** 

(0.037) 

-0.325 

(0.073) 

-0.227* 

(0.117) 

0.692 

(0.435) 

0.262 

(0.180) 

𝑆𝑖𝑔𝑚𝑎 31.153*** 

(0.573) 

4.500*** 

(0.223) 

6.171*** 

(0.456) 

26.333*** 

(4.868) 

58.255*** 

(5.349) 

Constant  89.532 

(62.000) 

44.030*** 

(6.012) 

62.798** 

(31.863) 

194.810*** 

(42.974) 

221.863*** 

(44.528) 

Observations  261 104 88 16 53 

  ***=1% significance, ** = 5%, *=10%, robust standard errors are found in brackets 

 

We add renewables to our price model. The corresponding ARMAX(1,1,1) is given in 

specification (8). Note that for renewable electricity generation we take the sum of offshore 

wind, onshore wind, and Solar PV. From the literature, we expect all three variables to have a 

negative effect on prices, hence aggregating them is appropriate. 

 

𝑃! = 𝛽- + 𝛽#𝑃!"# + 𝛽%𝜀!"# + 𝛽.𝑅! + 𝜀! 
(8) 

Where 𝑅! represents renewable electricity generation. We present the results for the price 

model in Table 6. We can see that for every sample set of our study, adding renewables 

generation data adds explanatory power to our price model at the 1% significance level.  
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The negative coefficients for the renewables variable show that the day-ahead price decreases 

with the generation of renewable energy. This confirms findings by Jónsson et al., (2010), 

Ketterer (2014), Forrest and MacGill (2013), and Brancucci Martinez-Anido et al., (2016) 

among others. Noticeable is how strongly its influence rises over our sample periods. During 

the pandemic period of fallen demand, we see a relatively small increase in the coefficient for 

renewables. Subsequently, the coefficient increases by a factor four and seven, respectively, 

indicating a significant increase in the influence of renewables on prices. We see that the 

coefficient surpasses the value of -1, so its effect on prices is larger than the added capacity. In 

line with the literature, prices during periods of high demand tend to be influenced more 

strongly by renewable generation due to their low variable costs. Moreover, we find the same 

effect during periods of low supply. Renewable electricity generation has consistently grown 

over the years, making their share in the electricity grid larger, assuming no change in the 

quantities of demand and supply. We confirm the finding that when renewable electricity has 

a significant (rising) share in the generation portfolio, substantial short-term changes in the 

supply function arise from variations in renewables generation (Jónsson et al., 2010). 

The market has experienced surging prices during the Russian-Ukrainian conflict. The 

restricted energy supply, bombing of critical infrastructure and besiegement and sabotage of 

energy assets all made energy supply both smaller and more uncertain in its output. Electricity 

supplied by renewables in such times is relatively more certain than it is typically. This effect, 

coupled with the growing output of renewable electricity could, to some extent, explain the rise 

in renewables’ regressed coefficient. 

Again, we find a relatively low sigma for the first pandemic period.  
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Table 6: Estimation Results for ARMAX(1,1,1) Price Regression 

 Full sample  Base case Pandemic 1 Pandemic 2 War 

𝑃!"# 0.944*** 

(0.018) 

0.949*** 

(0.041) 

0.988*** 

(0.274) 

0.951*** 

(0.193) 

0.696*** 

(0.131) 

𝜀!"# 0.149*** 

(0.038) 

-0.300*** 

(0.061) 

0.0732 

(0.100) 

0.537 

(0.332) 

0.432* 

(0.227) 

𝑅! -0.925*** 

(0.100) 

-0.192*** 

(0.060) 

-0.239*** 

(0.029) 

-1.044*** 

(0.214) 

-1.840*** 

(0.318) 

𝑆𝑖𝑔𝑚𝑎 27.739*** 

(0.681) 

4.303 

(0.209) 

4.799*** 

(0.368) 

17.630*** 

(3.952) 

45.570*** 

(3.796) 

Constant  116.998* 

(63.027) 

47.52*** 

(6.387) 

70.660** 

(32.239) 

239.742*** 

(80.522) 

302.925*** 

(40.073) 

Observations  261 104 88 16 53 

  ***=1% significance, ** = 5%, *=10%, robust standard errors are found in brackets 

 

6.2 Volatility models 

 

To gauge the effects of our volatility model, specification (9) is used. Note that renewables 

generation is the sum of offshore wind, onshore wind, and solar power. From the literature, we 

expect solar PV to exhibit a negative relationship with price volatility and wind generation to 

exhibit a positive one. As is shown earlier, solar power likely increases volatility during hours 

of high demand (Clò et al., 2015). During these peak hours, the total electricity supply goes up. 

Peak hours smooth out over daily averages, since there is no distinction between peak- and off-

peak hours. Going one step further and aggregating these daily values to weekly values fortifies 

this effect. We assume that when looking at weekly volatility, solar and wind both exhibit a 

positive effect on volatility, hence aggregating them as a single variable does not change the 

inferences made.   

 

𝑣! = 𝛽- + 𝛽#𝑣!"# + 𝛽%𝜀!"# + 𝜀! 
(9) 
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Table 7 reports the regression results for our ARMA(1,1) volatility model. For the full sample, 

we find that lagged volatility and the model’s lagged error term add significant explanatory 

power to this period’s price volatility. The coefficient of lagged weekly volatility approaches 

a value of 1, indicating the high explanatory value past volatility holds in our model. The past 

period’s error term negatively effects this period’s price volatility, meaning that when our 

model yields a better prediction at time 𝑡, it finds more volatility in period 𝑡 + 1. A possible 

explanation is that unexpected events or changes in the market are not fully captured by the 

model, leading to higher price volatility in the current period. 

For the base case no significant results are found, which makes comparisons to this time period 

insignificant. In our sample, lagged volatility does not explain volatility for the next period. 

Again, we find significant results and a relatively low sigma for the first pandemic period. 

Lagged volatility has a coefficient of over 0.7, significant at the 1% level. Clearly, in this period 

volatility can partly be explained by past week’s volatility.  

The second pandemic period yields a value of precisely -1 for the lagged error term. In other 

words, when the error term was larger in the previous period, volatility in the current period is 

smaller by the same magnitude.  

We find significant results for the war period. Volatility is explained well by both lagged 

volatility values and the error term.  

From these results, we conclude that when volatility increases, either due to distortions in 

demand or supply, looking at past price volatility can partly explain volatility in the next period.  
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Table 7: Estimation Results for ARMA(1,1) Volatility Regression 

 Full sample  Base case Pandemic 1 Pandemic 2 War 

𝑣!"# 0.971*** 

(0.016) 

0.167 

(0.517) 

0.727*** 

(0.186) 

0.851 

(0.676) 

0.757*** 

(0.172) 

𝜀!"# -0.675*** 

(0.032) 

0.024 

(0.531) 

-0.412* 

(0.246) 

-1.00** 

(0.443) 

-0.498** 

(0.226) 

𝑆𝑖𝑔𝑚𝑎 14.099*** 

(0.276) 

2.293*** 

(0.128) 

4.751*** 

(0.318) 
20.05Y 27.010*** 

(2.520) 

Constant  17.551 

(18.495) 

4.807*** 

(0.357) 

7.931*** 

(1.447) 

30.325*** 

(7.834) 

46.372*** 

(11.479) 

Observations  261 104 88 16 53 

  ***=1% significance, ** = 5%, *=10%, robust standard errors are found in brackets 

 

The corresponding ARMAX(1,1,1) is given by: 

 

𝑣! = 𝛽- + 𝛽#𝑣!"# + 𝛽%𝜀!"# + 𝛽.𝑅! + 𝜀! 
(10) 

Table 8 shows the results of our volatility model, including renewable energy generation as an 

explanatory variable. Adding renewable generation adds little explanatory power to our model. 

Again, the first pandemic period fits the model best and yields a significant coefficient for 

renewable generation. To some extent, renewable energy generation explains volatility within 

the period. Moreover, lagged prices and error terms hold explanatory power to price volatility 

in the period.  

We can model electricity price volatility during the war by using lagged volatility and the 

lagged error term.  

Interestingly, no significant coefficient for renewable electricity generation is found in the base 

case. This result suggests that weekly price volatility is not explained by renewable electricity 

generation. Though the literature is not conclusive on the effects of renewables on volatility, 

we would expect volatility to increase when renewable electricity is added to the grid. This is 

due to the relatively large share of wind power in the Netherlands, which would increase 

 
Y No standard error, P-value, or confidence interval found 
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volatility (e.g., Clò et al., 2015; Woo et al., 2011; Jónsson et al., 2010). Our results cannot 

confirm this expectation. It is possible that mean electricity prices are considerably reduced 

with the addition of renewable electricity, which in turn reduces their volatility, in line with 

findings of Brancucci Martinez-Anido et al. (2016) and Gelabert et al. (2011). Note that this is 

the case when not distinguishing between peak- and non-peak hours. 

 
Table 8: Estimation Results for ARMAX(1,1,1) Volatility Regression 

 Full sample  Base case Pandemic 1 Pandemic 2 War 

𝑣!"# 0.965*** 

(0.185) 

0.165 

(0.547) 

0.752*** 

(0.141) 

0.558 

(1.040) 

0.766*** 

(0.165) 

𝜀!"# -0.656*** 

(0.034) 

0.027 

(0.561) 

-0.406** 

(0.201) 

-0.100 

(2071.449) 

-0.479** 

(0.227) 

𝑅! 0.119 

(0.078) 

0.003 

(0.038) 

0.075** 

(0.037) 

0.421 

(0.667) 

0.152 

(0.362) 

𝑆𝑖𝑔𝑚𝑎 14.027*** 

(0.304) 

2.293*** 

(0.130) 

4.645*** 

(0.296) 

18.799 

(19466.9) 

26.890*** 

(2.975) 

Constant  13.868 

(16.680) 

4.762*** 

(0.746) 

5.601** 

(2.391) 

12.516 

(25.752) 

40.192** 

(16.420) 

Observations  261 104 88 16 53 

  ***=1% significance, ** = 5%, *=10%, robust standard errors are found in brackets 

 

The significant values observed for the lagged error terms in our models lead us to draw two 

conclusions. First, including the lagged error term as a predictor in ARMA(X) models improves 

the accuracy of both electricity price and volatility forecasts. The error term captures 

randomness in the variables that is not accounted for by the model. By including the lagged 

error term, we are learning from past errors and using this information to improve the model’s 

accuracy. Second, analyzing the relation between past error terms and current electricity prices 

and their volatility can provide insight into underlying drivers of price movements and 

volatility in the electricity market. Say that one finds the error terms to correlate with other 

factors (e.g., oil prices, wind velocity, or the closing of coal-fired generators), extensions to the 

models described in this study could be identified.  
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6.3 Model extensions 

 

We ran the regressions with separated values for wind- and solar generation to see whether this 

yielded significance for their coefficients. The resulting models did not yield significance for 

the exogenous variables. We conclude that relaxing our assumption of aggregated renewable 

generation sources does not add explanatory power to our models.  

 

We must acknowledge that price volatility is influenced not only by the supply side, but 

demand plays an important role too. We know that in winter months, demand is greater than in 

summer months (e.g., Hekkenberg, Benders, Moll and Schoot Uiterkamp 2009). The literature 

suggests that when demand is lower, electricity facilities can manage it well, so renewables’ 

influence on volatility is weaker than during periods of high demand. Higher demand leads to 

the addition of active generators to match it. This, coupled with their convex marginal cost 

structure, results in higher price volatility (Mwampashi et al., 2021). We extend our model with 

a dummy variable that takes on the value of 1 for the months of December, January, and 

February to investigate whether, during winter, renewables generation yields a significant 

effect on volatility. We add the term in our volatility models as an exogenous variable resulting 

in the following specification: 

 

𝑣! = 𝛽- + 𝛽#𝑣!"# + 𝛽%𝜀!"# + 𝛽.𝑅! + 𝛽/𝑊 + 𝜀! 
(11) 

The results for the corresponding models are found in Appendix 3. Adding the winter dummy 

variable yields insignificant results for all of our samples. The higher output levels of 

renewables during winter months could explain this finding. Recent literature suggests that 

similar periods of high demand in the Netherlands occur more often in summer due to the rising 

temperatures and hence the increased use of air conditions and other devices. Adding the 

summer dummy for the months of June, July, and August does not add explanatory power 

either.  

 

We also added the winter dummy to our price regression. Its results are found Appendix 4. 

Only for the base case, this leads to a significant result at the 1% level. The negative value of 

nearly -5 for the winter dummy indicates that prices during winter weeks are lower on average. 

This contradicts our expectations but it is possible. We have seen that during the winter months, 
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renewable electricity output in the Netherlands is relatively high. This, in turn, expands supply 

and could result in negative pressure on prices. Another possible explanation could be that 

during the winter months of 2018 and 2019, prices of other fuel types were relatively low, 

influencing electricity prices indirectly. 

 

We conclude that weekly price volatility over the last five years as a whole and during the 

specified periods cannot be (partially) explained by renewable electricity generation, except in 

the first pandemic period. Looking at periods of high- versus low demand does not add 

explanatory power to its coefficient.  

The events of the last five years may have distorted the market in a way that overshadows the 

effects the literature suggested we would find. Noticeable is how during the base case, no 

significant effect is found. There are likely other factors that dissipate the effect we expected 

to find for the years 2018 and 2019. A possible explanation is that the addition of renewable 

electricity considerably reduces the mean of electricity prices, which reduces their volatility. 

 

6.4 Statistical differences coefficients  

 

Having estimated our models for two different samples, we obtained the coefficients of the 

renewable energy variable. To answer whether this influence was larger during our sample 

periods compared to the base case, we must investigate whether the coefficients between the 

samples are significantly different from each other. The t-value of the difference measures the 

difference between two coefficients relative to their standard error, and is used to test whether 

the difference is statistically significant. In this section, we present the results of the tests and 

discuss their implications for the stated hypotheses. 

 

We define the difference between two coefficients as: 

 

𝑥& = 𝑐# − 𝑐% 
(12) 

Then the standard error of the difference is given by:  

 

𝑠𝑒0 = D(𝑠𝑒#)% + (𝑠𝑒%)% 
(13) 
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Consequently, the t-value of the difference is given by: 

 

𝑡& =	
𝑥
𝑠𝑒0

 

(14) 

We define the corresponding significance with degrees of freedom 𝑑𝑓 = 𝑛# + 𝑛% − 2, except 

for the second pandemic period. Since the 𝑛 is relatively small compared to the sample sizes 

of the others periods, we use a more robust degree of freedom of 𝑑𝑓 = 16 − 2 = 14. 

 

We test the null hypothesis that our coefficients are equal with a one-sided test. We perform a 

one-sided test since we stated directional hypotheses. For example, hypothesis 4 states that the 

coefficient for renewable electricity generation in the price model for the pandemic period is 

larger than its coefficient in the base case.  

 

Table 9 presents an overview of the differences between coefficients, the corresponding 

standard errors, and the significance levels of the differences. Please note that the periods are 

compared against the base case, as stated in our hypotheses. For the price model without 

renewable electricity generation, we find a significant coefficient of the difference between the 

coefficients of lagged prices during the war and lagged prices of the base case. Though we find 

significant coefficients for the variable among the different samples, we conclude that, 

statistically, the influence of lagged prices is larger in the base case than in the war period. This 

paper finds that during times of war (supply chain distortions), the predictability of weekly 

prices by their lagged values is lower than during “normal” times. The results of the price 

model including renewables confirm this finding. 

 

The values for the price model including renewables yield significant results for two periods. 

From Table 6, we know that the coefficients of renewables were more negative for the last two 

periods of the study. The results presented below provide evidence that during the recovery 

period of the pandemic and during the war, the impact of renewable electricity generation on 

prices is larger than in the base case. The magnitude of the effect during the war is the largest, 

with a value of 1.648, nearly twice the magnitude for the second pandemic period. We can see 

that, though not significant, comparing the first pandemic period and the base case yields a 

minor difference in coefficients when adding renewables. 
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Table 9: Coefficient Differences Compared to Base Case Price Regression 

 ARMA(1,1) ARMAX(1,1,1) 

𝑃!"# Pandemic 1 -0.041 

(0.045) 

-0.039 

(0.277) 

𝑃!"# Pandemic 2 0.253 

(0.323) 

-0.002 

(0.197) 

𝑃!"# War 0.200* 

(0.129) 

0.253** 

(0.137) 

𝑅! Pandemic 1  0.047 

(0.067) 

𝑅! Pandemic 2  0.852*** 

(0.222) 

𝑅! War  1.648*** 

0.324) 

***=1% significance, ** = 5%, *=10%, standard errors of the difference are found in brackets 

 

Table 10 presents an overview of the differences between coefficients for the volatility models. 

We find no significance for the coefficient differences. We do see negative difference 

coefficients in values ranging between -0.5 and -0.7 for our first model. We know that during 

the first pandemic period and the war, coefficients for lagged volatility are significant. These 

findings suggest that the effect of lagged volatility on weekly volatility is likely larger in 

periods with more price volatility.   

 

For the volatility model including renewables, we again find negative coefficient differences. 

This finding suggests that during these periods, it is likely that renewable electricity generation 

has a more significant effect on price volatility, though we cannot confirm this statistically.  
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Table 10: Coefficient Differences Compared to Base Case Volatility Regression 

 ARMA(1,1) ARMAX(1,1,1) 

𝑣!"# Pandemic 1 -0.560 

(0.549) 

-0.587 

(0.565) 

𝑣!"# Pandemic 2 -0.684 

(0.851) 

-0.393 

(1.175) 

𝑣!"# War -0.590 

(0.545) 

-0.601 

(0.571) 

𝑅! Pandemic 1  -0.072 

(0.053) 

𝑅! Pandemic 2  -0.418 

(0.668) 

𝑅! War  -0.149 

(0.364) 

    ***=1% significance, ** = 5%, *=10%, standard errors of the difference are found in 

brackets 

 

Appendix 5 presents an overview of the hypotheses studied in this paper, indicating whether 

our study provides evidence to confirm them and at what significance level. 

 

7. Conclusion and implications 
 

Conclusion 

The scope of this paper is to review how the influence of renewable electricity generation 

evolved over times of fallen demand and supply chain distortions. By using ARMA and 

ARMAX models, we have assessed whether renewables influenced Dutch day-ahead prices 

and their volatility during uncertain times and compared the outcomes against an up-to-date 

base case.  

 

We conclude that for every sample, lagged weekly prices hold explanatory power for electricity 

prices. Further, renewable electricity generation can partly explain price movements. We have 
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found that prices decrease with the addition of renewables in the grid. As a result, we confirm 

the merit order effect for our sample. We found that in our model, this negative relationship 

has grown stronger over the past five years. Consequently, we tested whether the coefficients 

significantly differ compared to our base case. Past price values better explained prices during 

the war compared to the base case. Further, during the recovery period after the COVID-19 

pandemic and the period of war, the merit order effect in the Netherlands is stronger. Not only 

periods of high demand are affected more strongly, but the same holds for periods of low supply 

in even greater magnitude. Electricity supplied by renewables in times of low, uncertain supply 

is relatively more certain than it is typically. This effect, coupled with the growing output of 

renewable electricity could, to some extent, explain this finding. Distinguishing periods of high 

demand (winter months) yielded significant results for our price model, strengthening our 

results. Ultimately, we conclude that periods of high demand and periods of low supply are 

affected most significantly by the addition on renewable electricity to the grid. 

  

We followed by estimating our volatility models. For the first pandemic period and the war, 

we found that lagged volatility values hold explanatory power over weekly electricity price 

volatility. Adding renewable electricity generation to our model yielded a significant 

coefficient for the first pandemic period only. This relationship was positive, meaning that with 

the addition of renewable electricity to the grid, volatility increased during the first pandemic 

period. However, during our base case, high demand, and low supply periods, renewable 

electricity generation does not influence weekly price volatility. A possible explanation for this 

finding is that with the addition of renewable electricity generation, mean prices are 

considerably reduced, in turn reducing their volatility. Also, our model extensions, controlling 

for periods of high demand (winter months) or separating solar and wind, did not yield 

significant results for the renewables variable. We continued by testing the differences between 

the coefficients against the base case, but this yielded no significant results. The resulting 

values are all negative, suggesting that it is likely that renewable electricity generation has a 

more significant effect on price volatility when moving up over our samples. 

 

Implications 

The findings of this paper provide insights into how renewable electricity generation influences 

prices.  
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The extrapolation of our findings can yield valuable insights into the behavior of electricity 

prices and their volatility in times of uncertainty. It is well established that the first phase of 

the pandemic experienced a decline in demand and heightened uncertainty regarding its future 

growth trajectories. Conversely, the second pandemic period witnessed strongly growing 

demand and a corresponding rebound effect. The outcomes observed during the war can have 

relevance to the event of supply chain disruptions, which may arise during similar events in the 

future. A note here is that the Russian-Ukrainian conflict has had an unprecedently large impact 

on the energy supply chain. Extrapolation of these results should therefore be done carefully.  

 

Risk- and asset-pricing managers have already factored in the pandemic and the Russian-

Ukrainian conflict in their short and medium-term decision-making process for the 

development of business plans. This study provides particularly insightful considerations for 

energy companies that are affected substantially by fluctuations in energy prices. It is evident 

that, in times of uncertainty, the integration of renewable energy into the electricity grid has a 

more adverse effect on electricity prices, resulting in a combination of uncertainty in supply 

and decreasing prices. Especially for conventional energy producers, it is critical to have a 

contingency plan in place to handle similar events in the future. Meanwhile, individual 

investors must also consider COVID-19 and supply chain uncertainty in their investment 

agendas. Further, integrating more renewables in the grid may result in conventional power 

plants serving more in the role of balancer for fluctuations in renewable generation and 

therefore operating fewer full-load hours. As a consequence, recovering the investment costs 

for flexible conventional units during operating hours will become more challenging. The peak-

price periods will be the revenue-generating hours, but the predictability and certainty of these 

hours may decline with the addition of renewable power. The increased refinancing risk 

described here raises concerns about the feasibility of investing in flexible (conventional) 

plants, and the market price may not provide sufficient investment opportunities.  

 

This study highlights the importance of necessitating appropriate regulatory- and policy 

frameworks to address the challenges arising from further decarbonization of the electricity 

market. One of the key challenges is to manage price uncertainty, as the high penetration of 

wind and solar generation potentially threatens the system’s security and reliability. For 

policymakers it is equally important to update pricing models, especially for the determination 

of long-term subsidy schemes. We expect subsidies to continue to play a crucial role in 

mitigating payment deficiencies throughout the transition period and potentially beyond. For 



T.J. Delodder / Msc. Thesis Financial Economics 
 

 53 

example, policies should consider the potential divergence of spot prices in the design of 

subsidy policies (such as contract-for-difference reference prices) as renewable capacity 

expands. We provide estimations on how renewable generation’s impact depends on varying 

market characteristics which are useful for updating pricing- and subsidy models. Finally, our 

findings demonstrate that the impact of renewables on reducing electricity prices is particularly 

significant during periods where end-consumers are adversely affected by high prices. 

Policymakers must meticulously balance the impacts on operators, consumers and the 

environment and form their policies accordingly. 

 

8. Limitations and further research 
 

Limitations 

This paper aims to improve the existing knowledge and provide quantified results for the 

impact of renewables on electricity prices and their volatility. We must acknowledge some 

factors limit our research and its findings. 

First, even though this study argues its choice of using weekly aggregated data, we must 

recognize its impact on our findings. The use of weekly data smooths out effects over periods, 

especially the variability of both electricity prices and renewable electricity generation. The 

use of data at smaller intervals may yield significant results for the volatility models. We 

recommend carefully considering the selection of input data to ensure that it is optimally 

suitable for answering the research question.  

Second, this study uses weekly price data gathered for 24-hour periods of a day, calculated as 

its arithmetic mean. Basic economic theory tells us that with higher prices, lower quantities are 

sold per hour, which also holds in the day-ahead auction process. Hence, by not using the 

geometric mean, our daily prices may contain an upwards bias. This would result in 

overestimation of our regression coefficients. We assume this influence to be relatively small, 

especially given the inelasticity of electricity demand, but it is a limitation nonetheless. Let us 

explain this in more detail. In the electricity market, short-term demand is assumed inelastic, 

so one could argue that daily demand is given. Because of the hourly intersections of demand 

and supply, no significant difference is expected by comparing arithmetic and geometric daily 

means. Though since electricity cannot be stored, hourly prices can differ significantly. This 

means that with high prices, buyers may postpone the purchase of electricity, since they have 

the option to balance out the amount of electricity in the intraday market. Postponing purchase 
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poses a risk for market players since the intraday market sells at a premium. Hence, we assume 

the potential overestimations to be small, but they should still be mentioned.   

Lastly, we aggregate the effects of COVID-19 by setting the time periods as outlined. We 

performed a structural break test, splitting the pandemic period into a period of fallen demand 

and a recovery period. The recovery period, with a small sample size, likely defines the period 

of rising demand relatively well without including many other fluctuations in the market or 

regulatory field. Meanwhile, the first pandemic period is more prone to the inclusion of other 

such factors. When aiming to gain a deeper understanding of how exactly the pandemic 

affected electricity prices and the influence of renewables over time, it may be prudent to split 

the pandemic period up in more detail. Such a study may find more significant results for 

periods with less restrictive measures compared to lockdown periods.  

 

Further research 

This study provides a foundation for studying electricity price dynamics over different periods. 

Further research could extend the findings of this paper in multiple ways. 

First, this study investigated price patterns over time in a robust method, using only two 

variables. Further advanced models could improve our results by capturing aspects which our 

models do not fully explain. Variables that future studies could incorporate are for instance 

(variability in) wind velocity or sunshine, oil price movements, or the closing of coal-fired 

generators. One could identify variables of interest by finding correlations between our models’ 

error terms and potential variables. Second, extending this research with daily or hourly data 

to study the short-term implications of renewables on prices and their volatility provides 

insights into the short-term dynamics of the electricity market. Further, to enhance our 

knowledge of electricity price behavior during the pandemic looking into the price dynamics 

of more detailed periods is interesting. Such a study could, for instance, define periods by 

looking at strict lockdowns, partial lockdowns, and no-lockdown restrictive measures and 

compare these against a base case. Lastly, this study confirms the merit order effect, where 

adding renewable electricity sources lowers prices. Suppose the government will not subsidize 

all of the investment costs for renewables, and renewables make up the largest part of power 

generation, then where does this merit order effect come to a halt? Looking into this question 

would provide interesting findings for governments, market participants, investors and end-

consumers.  
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APPENDIX 
 

A1: Variable Table 

 

Variable Description 

 

𝑃! Dutch day-ahead APX electricity price in period 𝑡.	Daily and values are collected, 

calculated as arithmetic means of 24-hour periods. Price is measured in euro per 

megawatt hour. 

𝑅! Renewable electricity generation in the Netherlands in period 𝑡. Values are 

aggregated values of offshore wind, onshore wind, and solar PV. Renewables are 

measured in megawatt. 

𝑣! Volatility in time period 𝑡. Volatility is calculated as the standard deviation of 

electricity prices. 

𝑊 The dummy variable for winter weeks. The dummy variable equals 1 for weeks of 

December, January, and February, and 0 otherwise.  

Base case The reference period used in this study. The period ranges from 01/01/2018 – 

31/12/2019. 

Pandemic 1 The first pandemic period, representing a time of fallen demand for electricity due 

to restrictive measures. The period ranges from 01/01/2020 – 05/09/2021. 

Pandemic 2 The second pandemic period, representing a time of recovery and rising demand 

for electricity. The period ranges from 06/09/2021 – 31/12/2022. 

War The period representing energy supply chain distortions due to the Russian-

Ukrainian geopolitical conflict. Takes into account anticipation effects of January 

and early February 2022. The period ranges from 01/01/2022 – 31/12/2022. 
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A2: Attempted Tests Criteria 

 

Test        Criteria not met 

T-test • Random sampling 

• Normally distributed data 

• Homogeneity of variances 

Wilcoxon rank-sum test • Normally distributed populations 

Kruskal-Wallis test • Random sampling 

• Independence among observations 

One-way ANOVA • Normal distribution 

• Independence among observations 

Repeated measures ANOVA • Normal distribution 

• Independence among observations 

Friedman test • Random sampling 

Mixed effects model • Normally distributed errors 

• Independence among errors 
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A3: Estimation Results Volatility Model Including Winter Dummy 

 

 Full sample  Base case Pandemic 1 Pandemic 2 War 

𝑣!"# 0.965*** 

(0.019) 

0.198 

(0.647) 

0.641*** 

(0.214) 

0.171 

(0.759) 

0.735*** 

(0.200) 

𝜀!"# -0.656*** 

(0.034) 

-0.002 

(0.662) 

-0.307 

(0.278) 

-1.00 

(4059.468) 

-0.462* 

(0.257) 

𝑅! 0.119 

(0.078) 

0.011 

(0.038) 

0.084** 

(0.038) 

0.371 

(0.477) 

0.175 

(0.389) 

𝑊 -0.199 

(0.078) 

-0.498 

(0.688) 

-2.800 

(2.378) 

14.897 

(0.477) 

-9.922 

(19.606) 

𝑆𝑖𝑔𝑚𝑎 14.027 

(0.304) 

2.287*** 

(0.130) 

4.606*** 

(0.323) 

14.690 

(29817.56) 

26.770*** 

(3.002) 

Constant  13.920 

(16.82) 

4.728*** 

(0.746) 

6.011*** 

(2.200) 

11.250 

(19.113) 

42.309** 

(16.528) 

Observations  261 104 88 16 53 

  ***=1% significance, ** = 5%, *=10%, robust standard errors are found in brackets 
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A4: Estimation Results Price Model Including Winter Dummy 

 

 Full sample  Base case 

 

Pandemic 1 Pandemic 2 War 

𝑃!"# 0.945*** 

(0.0178) 

0.946*** 

(0.041) 

0.990*** 

(0.259) 

0.967*** 

(0.158) 

0.703*** 

(0.129) 

𝜀!"# 0.147*** 

(0.037) 

-0.263*** 

(0.080) 

0.034 

(0.102) 

-465.036 

(77309.02) 

0.437** 

(0.222) 

𝑅! -0.939*** 

(0.101) 

-0.185*** 

(0.057) 

-2.50*** 

(0.030) 

-1.207*** 

(0.290) 

-1.828*** 

(0.316) 

𝑊 11.679 

(7.576) 

-4.948*** 

(1.355) 

5.211 

(5.207) 

23.615 

(144.234) 

14.378 

(38.509) 

𝑆𝑖𝑔𝑚𝑎 27.647*** 

(0.673) 

4.188*** 

(0.230) 

4.706*** 

(0.356) 

-0.043 

(7.222) 

45.467*** 

(3.820) 

Constant  113.634* 

(61.160) 

49.505*** 

(6.648) 

69.921** 

(33.943) 

236.012*** 

(84.112) 

297.686*** 

(45.042) 

Observations  261 104 88 16 53 

  ***=1% significance, ** = 5%, *=10%, robust standard errors are found in brackets 
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A5: Overview of Hypothesis Outcomes 

 

Hypothesis 

 

Verified (Yes/No) Significance level 

𝐻1# Yes 1%  

𝐻2# No  

𝐻3# Yes n/a 

𝐻4#.#5 

𝐻4#.% 

No 

Yes 

 

1% 

𝐻5# No  

𝐻6# Yes n/a 

𝐻7# Yes 1%  

𝐻8# No  

   

 
5 Where 1.1 represents the first pandemic periods and 1.2 represents the second pandemic period 


