

ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Master Thesis Business & Economics: Data Science & Marketing Analytics

How reliable are word embedding evaluators?

 Name: Said Salman Sadjadi

Student Number: 622684

Supervisor: dr. Eran Raviv

Second Assessor: dr. Anastasija Tetereva

Date of final version: 03-03-2023

Contents

1 Introduction ... 1

2 Theoretical Concept & Research Question ... 2

3 Methodology ... 6

3.1 Word Embedding Models ... 7

3.1.1 GloVe ... 7

3.1.2 CBOW ... 8

3.1.3 NMF ... 11

3.2 Evaluation Methods .. 12

3.2.1 Intrinsic Evaluators .. 13

3.2.2 Extrinsic Evaluators ... 17

3.2.3 Significance Tests .. 17

4 Data ... 18

4.1 Training Data .. 18

4.1.1 BAWE .. 18

4.1.2 Brown .. 18

4.1.3 OANC .. 19

4.1.4 Matt Mahoney’s first 100 million bytes .. 19

4.1.5 Wikipedia ... 19

4.1.6 Final Training Dataset ... 20

4.2 Test Data ... 20

4.2.1 Intrinsic Evaluation Datasets ... 21

4.2.2 Extrinsic Evaluation Datasets .. 25

5 Analysis & Results .. 26

5.1 Analysis .. 26

5.1.1 Model Training .. 26

5.1.2 Model Evaluation & Significance Testing .. 28

5.2 Results .. 32

6 Conclusion ... 26

References .. 40

Appendix .. 45

1

1 Introduction

My work shows in an exemplary analysis, that many evaluators used for word embedding

models are outdated and their ability to reliably compare models with each other is not

guaranteed. But first, word embedding models are mathematical models trained on textual data

which can capture the semantic and syntactic structure of words from the text. These models

find a broad field of application in natural language processing (NLP) tasks, from the auto

corrector in text processing programmes to the newly developed and much discussed chatbot

ChatGPT by OpenAI. The word embedding is the vectorial expression of a word, which holds

its semantic and syntactic information as a combination of numeric values in a vector. The idea

of word embeddings bases on the distributional hypothesis of linguistics, which states that

words which often occur in same context purport similar meanings (Harris, 1954). So, for the

word embedding/vector, words with similar meaning should have similar word vectors. Over

the past decades many word embedding models were developed and with it many methods and

evaluators were also created to quantifiably compare the goodness of different models’

embeddings with each other. Evaluations are mainly done by utilizing the word embeddings

(vector representation of a word) of a model to carry out a certain task. Tasks are commonly

either extrinsic methods, which are common NLP applications like text classification or

intrinsic methods, where word vectors are directly compared with each other. A detailed

distinction between intrinsic and extrinsic methods is described in the section 3 Methodology.

Depending on how well a task is carried out, a quantifiable performance metric can be

calculated to determine the goodness of the model’s word embeddings. In this study I will use

8 different evaluation tasks on 3 different word embedding models each to measure the usability

of the used tasks. For that I will run significance analyses on the differences between the

performances of two models on a same task. The usability or rather reliability of an evaluation

task is proxied by measuring whether the difference in the performance between two models

on the task is significant on a 5% significance level. This study shows that 4 out of the 8 used

evaluation tasks are not usable to reliably compare word embedding models with each other.

Drivers for this unreliability of the evaluation tasks are either the simplicity of the tasks and/or

the small size of the underlying datasets of the evaluation tasks. My recommendation for future

research is to fall back from the usage of many smaller evaluation tasks to only a few bigger

and more sophisticated evaluation tasks to significantly measure small differences between

models. Following, Section 2 will give an overview of the scientific literature on this topic and

explain thoroughly my approach to measure the usability of certain evaluation tasks. In Section

3 the three used word embedding models and the utilized evaluation methods will be

2

introduced. In Section 4 the datasets on which the word embedding models are trained and the

8 underlying datasets for the evaluation tasks are introduced and described. Section 5 covers

the implementation and the results of my analysis. Lastly, in Section 6 I will conclude my

analysis by summarizing my approach and results and stating important limitations of my work.

2 Theoretical Concept & Research Question

The purpose of word embedding models is mostly to be used in solving practical NLP problems,

like language translation, text summarization and, etc. Because of that, evaluating word

embedding models comes mostly with the demand to measure how well a model would perform

on such a practical downstream NLP task. To do so evaluation tasks for word embedding

models are either extrinsic tasks which depict such practical downstream NLP tasks or intrinsic

tasks where word vectors are directly assessed and the performance on the intrinsic task should

proxy the potential performance on the actual downstream task. A big difference between

intrinsic and extrinsic tasks is that first intrinsic tasks are easy and fast to implement, whereas

extrinsic tasks are mostly more complex, and second intrinsic tasks try to evaluate the word

vectors directly whereas extrinsic tasks use separate models which must be trained. An example

for an extrinsic task would be a text classification task, where different texts must be categorized

into distinct groups. For that a separate classification model must be trained. A more extensive

explanation of the distinction between intrinsic and extrinsic tasks is stated in Section 3

Methodology.

In (Wang et al., 2019) the researchers listed 5 desired properties for effective word embedding

evaluators. The first property is that a variety of terms should be included in the underlying test

dataset of the evaluator and that the data should be objectively correct. Second, an evaluator

should at best test for different properties of the word embedding model and not focus only on

one feature. Third, the performance of a word embedding model on an intrinsic task should

correlate with the performance on downstream NLP tasks. Fourth, the implementation of the

evaluator should be computationally easy and time efficient. Lastly, the performance metrics

of different models on an evaluator should be statistically significantly different from each other

to reliably rank the models on their goodness of fit.

To analyse commonly used evaluators on the third and fourth property, Wang et al. (2019) ran

an extensive correlation analysis between extrinsic and intrinsic evaluation tasks to find

computationally efficient tasks which could be used to proxy a model’s performance on

3

downstream NLP tasks. Unfortunately, the researchers could not find an ultimate intrinsic

evaluator that showed a high correlation with all extrinsic evaluators. Instead, the researchers

found that some intrinsic evaluation methods show higher correlation with other specific

downstream extrinsic evaluation methods, which concludes that specific intrinsic evaluation

methods are better proxies for other specific downstream NLP tasks. In contrast to (Wang et

al., 2019), (Faruqui et al., 2016; Schnabel et al., 2015) concluded from their study that if the

goal of a word embedding model is to achieve high performances on downstream tasks, one

should test the embedding model on that specific task, since they did not find any significant

correlation between intrinsic tasks and extrinsic tasks. Another correlation analysis between

extrinsic and intrinsic evaluators for word embedding models, built on Chinese texts, (Qiu et

al., 2018) shows high correlation values, suggesting that some intrinsic evaluators are good

proxies to assess a model’s extrinsic performance, affirming the results from (Wang et al.,

2019). Again, in contrast to that stands the analysis from Chui et al. (2016) where 10 intrinsic

and 3 extrinsic tasks were used in a correlation analysis to show that no correlation between

intrinsic and extrinsic tasks existed, which affirms the conclusion from (Faruqui et al., 2016;

Schnabel et al., 2015).

Looking at the first property of evaluators as listed in (Wang et al., 2019) which emphasises on

the correctness of the underlying test datasets of the evaluators, Faruqui et al. (2016) found that

for intrinsic evaluation methods, the underlying datasets could be dependent from the

subjectivity of the creator and can even be distorted by misinterpretation. The researchers found

for two popular intrinsic tasks that even though the dataset should only be comprised of words

with a similarity relation like car and train, related words were also included in the dataset, like

cup and coffee. It is important to distinguish between similar words and related words, so that

the assessment of a model is not biased. The distortion would be that assessors, which were

used to build the test dataset by grading two words on their similarity, graded the similarity

between cup and coffee higher than for car and train, although we now know that cup and coffee

should have a lower score, since they are not similar terms but related terms. In the case of the

word analogy task, which is one of many intrinsic evaluation tasks, Wang et al. (2019) stated

that there is a difference between human reasoning, or rather logic when it comes to identifying

word analogies and the way we want a word embedding model to simulate analogical thinking,

which also distorts correctness of the evaluator.

The fifth property of evaluation tasks as listed in (Wang et al., 2019) is that to compare word

embedding models with each other, the differences in the performance metrics must be

statistically tested. Many researchers use different evaluators to measure the goodness of a

4

model, but most analyses fail to present significance tests to back up their results (Baroni et al.,

2014), making their conclusions unreliable. Shalaby & Zadrozny (2015), first implemented the

Steiger’s Z significance test to measure the statistical significance of differences in performance

measures in word similarity tasks. In word similarity tasks the human judgment and the model’s

judgment on the similarity between two words is compared. The more the model assesses the

similarity as the human the better the model. In their analysis the researchers found that even if

a model seemed to perform better than another model, if the difference in their performance

metrics is not statistically significant the researchers would assess both models’ goodness as

equal. Another example of accounting for the statistical significance between models’

performances is shown in (Rastogi et al., 2015) by introducing the minimum required difference

for significance (MRDS) statistic, which also utilizes the Steiger’s Z significance test. With the

MRDS the researchers were able to compute confidence intervals to determine if a difference

between performance metrics is statistically significant or not. Further, Antoniak & Mimno

(2018) tested the stability of word embedding models utilizing distance-based word similarity

measures. The researchers concluded that the performance of models on word similarity tasks

are heavily dependent on the used corpus on which the word embedding model is trained on.

Especially for small training corpora the researchers suggest using a bootstrapping algorithm to

evaluate a model’s performance to get reliable and consistent results. Further, Schnabel et al.

(2015) used randomized permutation tests to measure the significance of differences between

performance metrics for 2 intrinsic and 2 extrinsic tasks. To summarize the results from past

scientific works in this field and to place my analysis in the ranks of others, Table 1 in the

Appendix show a non-extensive literature overview.

The goal of my research is to give an overview about the reliability of evaluators for word

embedding models utilizing statistical significance testing. In contrast to the above-mentioned

and in Table 1 depicted applications of significance testing of performance metrics to validate

their newly developed models, I will use these significance tests to measure the usefulness of

certain evaluation tasks. The approach of my analysis is to have 3 word embedding models and

many evaluators to measure the models’ goodness. Finally, I will use significance tests to

measure whether the difference in performance metrics of two models one the same evaluator

is statistically significant or not. The main idea is to have two word embedding models which

I expect to perform similarly well on the evaluation tasks and one embedding model which I

expect to perform significantly worse. The minimum requirement for these evaluators would

then be to able to distinguish between the good models and the significantly worse model. Better

evaluators should also be able to identify significant differences in the performance metrics

5

between the 2 similarly performing models, even if these are small. A good evaluator must meet

this requirement, since with the increase in computational power, modern word embedding

models will be trained on very large textual data resulting in much more sophisticated and

precise word embeddings, so only small differences in performance will determine which

model is better or not. Nowadays highly sophisticated and complex NLP models exist, like

BERT or GPT-3, but since their complex architecture is based on modern transformer networks

and their direct usage in NLP tasks differs from common word embedding models like

word2vec I will focus on 3 simpler word embedding models, which are CBOW, GloVe and

NMF. I expect that CBOW and GloVe will outperform NMF on the evaluation tasks, since

NMF will be based on the term document matrix while GloVe and CBOW are based on the

word co-occurrences. Following the expected underperformance of NMF on the evaluation

tasks, I will use the NMF model as the lower baseline in my analysis. As shown in Figure 1,

which illustratively depicts my conceptual framework, first all 3 models will be trained on the

same text data to ensure comparability.

Conceptual Framework

Figure 1: (From left to right) Each of the 3 Word embedding model is evaluated on all 8
evaluation tasks and then differences in performance metrics are statistically tested using
either ANOVA or KS test.

6

Next each model will be evaluated, and performance metrics will be calculated using 4 different

evaluation methods, which are spread out on 8 different evaluation tasks, from which 2 are

intrinsic tasks and the remaining 6 are intrinsic tasks. An evaluation method is the concept on

how to evaluate a word embedding, for example running a classification model to cluster texts

into groups using the word embeddings as input features. The task itself is then the practical

implementation of a method using a separate dataset. For the above-mentioned example this

would be a dataset to train and test the classification model. Finally, to assess the reliability of

the evaluation tasks, I will calculate the statistical significance of the differences between the

models’ performance metrics. This is done by running either one-way ANOVA tests or a two-

sample Kolmogorov Smirnov tests, depending on the used evaluation method. Since the

significance testing can only be done between 2 models’ performance metrics I will run 3

significance tests for each evaluation task, so all 3 models’ performance metrics are once

compared with each other. The usefulness of the evaluation tasks will be based on the reliability

of the results.

3 Methodology

Word embeddings models are mathematical models, which use different transformation

approaches on text corpora to capture the syntactic and semantic structure of a text and save

this knowledge in word embeddings. A word embedding or rather a word vector is a is a vector

specific to a term, where the values of that vector correspond to the term’s syntactic and

semantic usage. This means that vectors of words which are similar in any sense, this could be

that they originate from the same root word or that both words share similar semantics or that

both words are from the same part of speech or etc., should have similar values in their vector,

this could be presented through same signs or the same magnitude in the vectors. To generalize

and avoid overfitting the corpus, word embedding models use vectors of far lower dimension

compared to the size of the vocabulary of a corpus, for example in (Pennington et al., 2014) the

researchers used vector dimensions in the range of 100 to 1000 for a vocabulary of 400,000

terms which is built from corpora with more than 1Bn words.

To determine a word embedding model’s goodness of fit, one can use different evaluation

methods. Evaluations are mainly executed using separate test datasets, called evaluation tasks.

In this work, I will compare three word embedding models with each other using 4 different

7

evaluation methods split up into 8 evaluation tasks. Further to measure the validity of the

evaluation tasks themselves, I will run a significance analysis on the models’ performances.

Following, I will first introduce the word embedding models used in this analysis and second,

I will introduce the used evaluation methods.

3.1 Word Embedding Models

3.1.1 GloVe

Global vectors for word representation (GloVe) is a word embedding model which was

introduced by Pennington et al. (2014) in their name giving paper. The model, as the researchers

claim, should combine the advantages of global matrix factorization models and local context

window models, by utilizing the corpus wide term co-occurrence matrix which is based on a

given context window.

The term co-occurrence matrix will be denoted as 𝑋 with 𝑋௜௝ representing the observation in

the 𝑖-th row and 𝑗-th column (co-occurrence of term 𝑖 with term 𝑗) of the term co-occurrence

matrix. Co-occurrence is based on a given context window, either symmetrical or asymmetrical

and can be weighted or not. Symmetric context windows count the co-occurrence of 𝑛 words

before and after a context word, while weighted context windows weight the co-occurrence

value higher for words which are less words apart from each other e.g., setting the co-

occurrence value for words which are next to each other to 1 and for words which are one word

apart to 0.5.

The following explanation of the GloVe model is referenced from (Pennington et al., 2014). Let

𝑃௜௝ = 𝑃(𝑗|𝑖) = 𝑋௜௝ 𝑋௜⁄ be the probability that term 𝑗 occurs in the context of word 𝑖 , and 𝑋௜ be

the total count of co-occurrences of word 𝑖 with all other terms. The idea was then to build a

model which is based on the ratio of the probabilities which should result to a better

understanding to distinguish between relevant and irrelevant words. An example the researchers

give in their paper is that
௉൫𝑠𝑜𝑙𝑖𝑑ห𝑖𝑐𝑒൯

௉൫𝑠𝑜𝑙𝑖𝑑ห𝑠𝑡𝑒𝑎𝑚൯
= 8.9 while

௉൫𝑤𝑎𝑡𝑒𝑟ห𝑖𝑐𝑒൯

௉(𝑤𝑎𝑡𝑒𝑟|𝑠𝑡𝑒𝑎𝑚)
= 1.36, this shows that

for words which have a direct link to only one word, here solid to ice but not solid to steam,

result to a high value, whereas for words which have a link to both context words result in

values near 1. This means that words which result in a value near one show irrelevant word co-

occurrences. This idea also holds for words which have no link to both context words. To now

8

link these term probability ratios with word vectors the researchers established the following

formula seen in Equation 1.

 𝐹൫𝑤௜, 𝑤௝, 𝑤෥௞൯ = 𝑃௜௞ 𝑃௝௞⁄ (1)

with 𝑤௜, 𝑤௝ and 𝑤෥௞ representing the word vectors for a word 𝑖, word 𝑗 and context word 𝑘 with

𝑖, 𝑗, 𝑘 = 1 … 𝑉, where 𝑉 is the number of unique terms in the vocabulary, and 𝐹 representing a

transformation function to transform the word vectors to a scalar. After further transformation

the term can be also written as

 𝑤௜
்𝑤௝ + 𝑏௜ + 𝑏௝ = log(𝑋௜௝) (2)

connecting the vectors with the co-occurrence matrix, with 𝑏௜ and 𝑏௝ representing bias terms

for the two co-occurring words. Finally, the researchers used a weighted least squares approach

to optimize the vectors, which finally results in cost function Equation 3.

 𝐽 = ෍ ෍ 𝑓(

௏

௝ୀଵ

௏

௜ୀଵ

𝑋௜௝)൫ 𝑤௜
்𝑤௝ + 𝑏௜ + 𝑏௝ − log 𝑋௜௝൯

ଶ
 (3)

Here 𝑓(𝑋௜௝) being a weighting function, which should be zero for word pairs which have no

co-occurrence, this should cap the weight of very frequent word co-occurrences to not bias the

model but still should give word pairs with lower frequency a smaller weight than word pairs

with higher frequency. For that the researchers gave the weighting function the following

function:

 𝑓(𝑥) = ቄ
(𝑥 𝑥௠௔௫⁄)ఈ 𝑖𝑓 𝑥 < 𝑥௠௔௫

 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4)

Finally, after the model is trained and the parameters are optimized, we obtain the word vectors

of the vocabulary 𝑉 by adding up 𝑤௝ and 𝑤௜
், where 𝑖 = 𝑗.

3.1.2 CBOW

Continuous Bag of Words (CBOW) is one of two neural network-based word embedding

models build by Google researchers in 2013, which were integrated in their word2vec toolkit.

The corresponding paper to publish their research on the two word-embedding models CBOW

and Skip-gram was the 2013 released (Mikolov et al., 2013a). CBOW is a sliding window model

which tries to predict a focus word based on its surrounding context words. For example, in the

sentence: “The office worker drives home from work every day.”, with drives as the focus word

and a symmetric window of size 2, the context words would be [office, worker, home, from].

9

So, the model would try to predict the word drives just from the context words. Since the order

of the context words is irrelevant this model is called a Bag of Words model, the prediction

only depends on the words and not on their order. Sliding window means that this symmetric

window would than shift to the next focus word, which would be home. Now the context words

are [worker, drives, from, work]. A simplified version of the CBOW model architecture is

shown in Figure 2 in the appendix. On the left side are context words, which are used as input

variables for the neural network, in the middle is a single hidden layer and the output layer

consists of the prediction of the focus word.

For the following technical explanation of the CBOW model I will refer to (Rong, 2014). First

let’s look at a little simplified CBOW model where we use an asymmetric sliding window by

only looking at the context word prior to the focus word, as shown in Figure 3.

CBOW model architecture with only one input feature

Figure 3: Input layer (left) consists only of a single one-hot encoded context word. The
hidden layer (middle) consists of N nodes, which represent the dimensions of the model.
Output layer (right) also consists only of a one-hot encoded prediction word. All adjacent
layers are fully connected with each other, by utilizing weights which are stored in the two
weight matrixes.

10

The model would then always look at a word of a sentence and try to predict the next upcoming

word. Let’s also say that the model is built on a corpus with a vocabulary of size 𝑉. In that case

the input layer of the simplified model would only consist of that one context word, which is a

one-hot encoded vector of size 𝑉, where all entries are zeros except for the entry of the

corresponding term, where it is a one. The hidden layer would then also be only a vector of size

𝑁, which represents the number of dimensions used in the word embedding. The output layer

is as the input layer a vector of size 𝑉. All adjacent layers are fully connected through two

weight matrixes, with 𝐖 being the weight matrix between input and hidden layer and 𝐖ᇱ being

the weight matrix between hidden and output layer. The hidden layer is computed by

multiplying the input vector with the corresponding weight matrix: 𝐡 = 𝐖்𝐱 ∶= 𝐯௪ூ
் , and since

we use one-hot encoded words as input variables we can also call 𝐡 as 𝐯௪ூ
் , which is nothing

else than the row of the weight matrix 𝐖, which corresponds to the one-hot encoded input word.

Since 𝐡 is a vector, the corresponding row 𝐯௪ூ needs to be transposed. For models with multiple

context words 𝐶 as input, the equation to compute 𝐡 will change to 𝐡 =
ଵ

஼
𝐖்(𝐱ଵ + 𝐱ଶ + ⋯ +

𝐱஼) ∶=
ଵ

஼
(𝐯௪ଵ + 𝐯௪ଶ + ⋯ + 𝐯௪஼)். In a situation with multiple context words the average of

the rows of the weight matrix, which corresponds to the context words, is taken. Next from the

hidden layer to the output layer we need to multiply the hidden layer vector 𝐡 with the second

weight matrix 𝐖ᇱ, which will give us 𝐮 = 𝐖ᇱ்𝐡, where 𝐮 is a 𝑉 units long vector with each

unit representing a word from the vocabulary. Finally, we use softmax function on 𝐮 and thus

calculate the probabilities of a word occurring in the context of the input context words. These

probabilities are calculated as 𝑝(𝑤௜|𝑤ூ) = 𝑦௜ =
ୣ୶୮ (௨೔)

∑ ୣ୶୮ (௨ೕ)ೇ
ೕసభ

, where 𝑝(𝑤௜|𝑤ூ) is the probability

that word 𝑤௜ appears in the context of word(s) 𝑤ூ, and 𝑦௜ being the i-th entry of the 𝑉 units long

output vector 𝐲. Finally, a prediction of the focus word is made by picking the word with the

highest probability, which is displayed in 𝑦௜. Training a CBOW model is carried out by

maximizing the conditional probability of observing the correct output word 𝑝(𝑤௜ = 𝑤ை|𝑤ூ),

by tuning the weight matrixes 𝐖 and 𝐖ᇱ.

Since training such a model on a bigger dataset with billions of words and a vocabulary of many

hundred thousand of terms will be computationally too expensive, the researchers introduce

two approximation methods for the computations of the output layer, which is hierarchical

softmax (hs) and the negative sampling (ns). Since I do not want to get too technical with the

explanations of the word embedding models, I will not further explain the technicalities of hs

11

and ns. Since models show better results for infrequent words using hs instead of ns (Mikolov et

al., 2013b), I will also use hs in the implementation of CBWO in my analysis.

After training the model and optimizing the weight matrixes, we can use the input weight matrix

𝐖 to obtain our word vectors, where each row of the matrix corresponds to a term of the

vocabulary.

3.1.3 NMF

First, matrix factorization represents a method which uses large matrixes like term-document

matrixes as input to find clusters in the data. For term-document matrixes as an example, this

would mean to cluster documents which have a similarity with each other together and to cluster

words which have a similarity with each other together. One could then use that information to

identify similar documents or similar words. Matrix factorization achieves this by splitting the

input data, here in my analysis the term-document matrix into multiple matrixes, which in that

example represent a document matrix and a term matrix. One matrix factorization method is

the non-negative matrix factorization (NMF) (Lee, Daniel D. & Seung, 1999; Paatero & Tapper,

1994). Other well-known matrix factorization techniques are PCA, SVD and even GloVe, since

GloVe does nothing else than reducing a co-occurrence matrix into two word matrixes. A big

difference for my analysis is that in contrast to the application of GloVe on the global term co-

occurring matrix for which it is specifically built, NMF which can be applied on any matrix,

will be implemented on the term document matrix.

NMF works by representing an input matrix 𝑉 (term document matrix) of size 𝑛 x 𝑚 as a

product of two matrixes 𝑉 = 𝑊𝐻 of the sizes of 𝑛 x 𝑘 and 𝑘 x 𝑚 respectively for 𝑊 (word

matrix) and 𝐻 (document matrix), with the main constraints of NMF, that all values of the input

matrix must be non-negative so 𝑉௜௝ ≥ 0 and that the resulting basis matrix 𝑊 and the coefficient

matrix 𝐻 must be non-negative, too, so that 𝑊௜௣, 𝐻௤௝ ≥ 0. One way of representing the

optimization problem is by utilizing the Euclidean distance as an approach (Lee, Daniel & Seung,

2000) which results in equation (5).

 min
ௐ೔೛,ு೜ೕ ஹ ଴

‖𝑉 − 𝑊𝐻‖ଶ = 𝑑(𝑉, 𝑊𝐻)ଶ = ෍ ෍(𝑉௜௝ − (𝑊𝐻)௜௝)ଶ

௠

௝

௡

௜ୀଵ

 (5)

Since Lee & Seung (2000) show that such a global minimum cannot be found and equation (5)

is not solvable, the researcher introduced two ways to approximate the minimization problem.

The idea is to use numerical optimization so that 𝑉 ≈ 𝑊𝐻 and approach a local minimum.

12

By setting 𝑘, the dimension of the resulting word vectors can be controlled. The word vectors

can be obtained from the word matrix 𝑊, where each row of 𝑊 is a word vector corresponding

to a term of the vocabulary.

3.2 Evaluation Methods

In the taxonomy of evaluators for word embeddings, evaluators are first classified as intrinsic

or extrinsic methods, second the task is defined and lastly the underlying dataset to the task is

identified. First an evaluator is categorized as an intrinsic or extrinsic evaluator. Intrinsic

evaluators use tasks to directly compare word vectors with each other, whereas extrinsic

evaluators use word vectors as feature variables in downstream tasks like machine translation.

A big difference is that extrinsic tasks are much bigger and complex and most of the time require

extra model training/building when compared to intrinsic evaluators. Next the evaluator is

categorized into their respective task. The task specifies how the word embeddings are used to

determine the goodness of fit of a model. Finally, the evaluator’s respective test dataset is

specified. Over the time researchers developed many test datasets to run specific evaluation

tasks. These datasets mainly consist of many prompts which need to be answered utilizing word

embeddings. Figure 4 illustrates the common taxonomy of evaluation methods by the example

of two test datasets which I used in my analysis.

In (Bakarov, 2018) the author further extends the taxonomy of evaluation methods, with an

additional split of the intrinsic evaluator. In my analysis I will only focus on simple intrinsic

and extrinsic evaluators since these are the most common evaluation methods. Moreover, I will

only focus on 1 extrinsic and 3 intrinsic tasks, since a full extensive overview of the evaluation

method landscape would go beyond the scope of a master thesis analysis. Following, I will

introduce the 4 used evaluation tasks used in my analysis. The underlying datasets to the

evaluation tasks are presented in Section 4 Data.

13

Taxonomy of evaluation methods

Figure 4: Taxonomy of evaluators shown exemplary on the RW and SV word similarity
tasks.

3.2.1 Intrinsic Evaluators

Intrinsic evaluators are methods where the embedding’s judgment on word relations is

compared to human judgment (Bakarov, 2018). This way one directly evaluates the word

embeddings. Words can only be related to each other by being semantically or syntactically

similar. One can utilize these relations to measure the goodness of an embedding by using

different evaluation tasks. An example which will also be fully explained in the following

would be the word similarity task, where using a distance measure a similarity score between

two words can be computed using their respective word vectors. This similarity score is then

compared to a human judgment of the similarity between the two words. Next, I will introduce

the 3 intrinsic evaluation tasks which I used in my analysis.

WORD SIMILARITY

Vijaymeena and Kavitha (2016) say that one can represent the similarity of two words either as

character-based or term-based. For each method multiple metrics are available to calculate their

similarity. The main idea is always to quantify the difference between two words, or rather

determine the distance between both. This distance could be calculated by counting the number

14

of operations needed to transform one string into another string, which would represent the

Levenshtein distance as one example for character-based similarity or to calculate the direct

distance between two words’ vectors in a n-dimensional space, which would represent the

Euclidean-distance as an example for term-based similarity (Vijaymeena & Kavitha, 2016). After

a similarity metric between two words is calculated, the metric is then either compared to a

human judgment or the metric itself is rated by humans (Schnabel et al., 2015). The human

judgment often consists of multiple ratings where people were asked to assess the similarity

between two words.

The mostly used method to calculate the difference between two words is by computing the

cosine similarity of them. The cosine similarity is defined as the cosine of the angle between

two word vectors. Since it is the most popular method, used in (Baroni et al., 2014; Pennington et

al., 2014; Schnabel et al., 2015; Wang et al., 2019), I will also utilize it also for my analysis. Given

that, the range to which the value of the cosine similarity can fall is [1, -1] with values near 1

representing vectors pointing into similar direction, which can be translated to that both words

are very similar to each other, or 0 representing vectors which are orthogonal to each other,

which can be translated to that both words are not associated with each other, or -1 representing

vectors pointing into opposite directions, which can be translated that the two words should

have the exact opposite meanings. The formulation of the cosine similarity can be seen in

Equation (6),

 𝑐𝑜𝑠𝑖𝑛𝑒൫𝐴, 𝐵ሬ⃗ ൯ = cos(𝜃) =
𝐴 ∙ 𝐵ሬ⃗

ฮ𝐴ฮ × ฮ𝐵ሬ⃗ ฮ
 (6)

with 𝐴 and 𝐵ሬ⃗ being the words vectors for word A and B, ฮ𝐴ฮ and ฮ𝐵ሬ⃗ ฮ being the Euclidean

norm of the words vectors and 𝜃 being the angular difference between the two vectors. One can

interpret the cosine similarity as an analogous metric to the Pearson’s correlation coefficient

with positive values indicating words which have a similar meaning, are related to each other,

or occur often together. Vice versa a negative value indicates the opposite. To measure the

goodness of a word embedding standard scientific practice is to use a set of word pairs to

compute the cosine similarity between them and to get a human judgment on the similarity

between these word pairs. Finally, the correlation between the cosine similarity and the human

judgment is calculated. For that most scientists use the Spearman correlation coefficient. If the

correlation value is high the embedding captured the semantics and syntax nearly as good as

humans would do.

15

The popularity to use the cosine similarity as a similarity measure for word vectors, stems from

the very intuitive nature of the measure, which makes it very simple to understand. Further, the

word similarity task’s many accessible datasets (Bakarov, 2018) and their easy and computational

inexpensive implementations, results in that also amateurs can use it as an evaluation method

in their work. But with its very simple nature, many weak spots were detected, and its reliability

was heavily criticized, summarized in (Bakarov, 2018; Faruqui et al., 2016). One very often

mentioned problem is the frequency effect or rather hubness problem (Faruqui et al., 2016). This

problem is also depicted in (Schnabel et al., 2015), where words with similar frequency in the

training data show a higher value in the cosine similarity and that these higher values can be

traced back to the fact that both words show similar frequencies, which distorts the syntactic

and semantic similarity values.

WORD ANALOGY

Word analogy tasks mostly consist of queries like, word 𝑎 is to word 𝑏 as word 𝑐 is to word 𝑑

e.g., king is to queen as man is to woman. In this case the analogy is made by looking at the

relatedness that connects the words with each other, here it would be the sex of a person.

Analogies can also be based on syntactical relations of words like, run is to running as walk is

to walking. Here the relation is that word 𝑎 and 𝑐 is a verb in infinitive form and word 𝑏 and 𝑑

are words in the present participle form. The main idea is that we can now use mathematical

operations on words so as shown in Equation 7. Using the example from above this would look

like: king – man + woman = queen

 𝑎 − 𝑐 + 𝑑 = 𝑏෠ ≅ 𝑏 (7)

We can do these calculations with words since we use word embeddings to represent words as

a collection of values in a n-dimensional vector space.

In the scientific field there are many ways to compute this relation but most prominent one and

widely used method will be the 3CosAdd approach (Mikolov et al., 2013c), which can be

explained as a direct implementation of the mathematical operation from above seen in

Equation 7. Again, using the example from above, first the word vector for king is subtracted

by the word vector man and added to the word vector woman. The resulting word vector should

be then the word vector for queen, calling it 𝑏෠. Since the used word vectors cannot be perfect

and the calculated vector will not have the same values as the queen word vector, but should be

very similar to it, the idea is then to use the cosine similarity between the calculated vector 𝑏෠

16

and the word vectors of the vocabulary. If a word embedding is good, the word vector from the

vocabulary with the highest similarity metric should be the vector for the word queen. Another

approach to compute this analogical relation is by using the 3CosMul approach (Levy & Goldberg,

2014). Instead of taking an additive approach they took a multiplicative approach for this

method. Although this approach is the second most used method to implement the analogy task,

Wang et al. (2019) showed that, there is no significant difference between 3CosMul and

3CosAdd when used in practice.

Word analogy task datasets mostly consist of prompts containing 2 word pairs which have any

analogous relation with each other, so word 𝑎 is to word 𝑏 as word 𝑐 is to word 𝑑. Standard

practice is then to use 3CosAdd as shown in Equation 7 to compute 𝑏෠ and cosine similarity to

determine the most plausible word for vector 𝑏෠. The most common evaluation metric would be

the accuracy of how often 𝑏෠ equals 𝑏. Since my models are not very sophisticated and all would

score very low accuracy values, I do not want to have an evaluation metric which only counts

hits but also accounts for how close a hit might be. For my analysis I will use a different

evaluation metric which deviates from the standard practice in the scientific field. The approach

will be fully explained in section 5 Analysis.

SYNONYM DETECTION

The synonym detection task as the name suggests is a task where the word embedding is given

a query word and the model needs to detect the synonym for the query word out of a range of

set words. Often this range of words contains 4 words with one being the correct synonym and

3 others. For example, word 𝑎 is the query word and [𝑏ଵ, 𝑏ଶ, 𝑏ଷ, 𝑏ସ] are the given possible

synonyms to choose from. The idea is to calculate the difference between word 𝑎 and the range

of words and choose the word with the smallest distance. An example could be that the query

word is ℎ𝑢𝑔𝑒 and the given words to choose from are [𝑓𝑎𝑠𝑡, 𝑠𝑚𝑎𝑙𝑙, 𝑑𝑖𝑟𝑡𝑦, 𝑏𝑖𝑔], with 𝑏𝑖𝑔 being

the correct answer. Since a distance between word vectors must be calculated to choose the

synonym, a distance measure must be selected. In most cases the usage of the cosine similarity

as a distance measure is used. Finally, most studies use the accuracy of the word embedding

model on the task as the performance metric to determine the model’s goodness of fit (Baroni et

al., 2014; Rastogi et al., 2015). In my analysis, I will use a different evaluation metric in my

analysis for the synonym detection tasks with the same argumentation as for the word analogy

task. I will explain my approach to measure the performance in section 5 Analysis.

17

3.2.2 Extrinsic Evaluators

In contrast to intrinsic evaluators where the embeddings are directly evaluated and compared

with each other, in extrinsic evaluators the word embeddings are implemented as feature

variables in downstream tasks. These downstream tasks are mostly common NLP tasks like

part-of-speech tagging (Wang et al., 2019) where the embedding is implemented in a

classification model to identify the part of speech of a word, neural machine translation (Wang

et al., 2019) where the embeddings are used for a language translation model, and etc. The idea

of an extrinsic evaluator is to test a model’s embedding on tasks and problems which represent

possible use cases of word embedding models. The goodness of the word embedding is then

measured by looking at common performance metrics of the downstream model.

For my analysis I will run two text classifications, with the first being a multiclass topic

classification and the second a dichotomous sentiment classification as shown in (Schnabel et

al., 2015). The classification model for both tasks will be a Random Forest and performance will

be measured using Matthews Correlation Coefficient. The full implementation of the extrinsic

evaluators will be explained in section 5 Analysis.

3.2.3 Significance Tests

The heart of my analysis is to measure the significance of the difference between two word

embedding models’ evaluation metrics and to infer from that the usability of the tested

evaluation tasks. The significance test will be used as a proxy to determine the

reliability/usability of the evaluation tasks. As shown in Table 1 different significance tests

were already used for different evaluation tasks. For my analysis I wanted to use a different

approach. I chose one way ANOVA (ANOVA) and two sample Kolmogorov Smirnov test (KS

test) to measure the significance of the difference between evaluation metrics. One way

ANOVA was only used for the word similarity tasks. For all other tasks I used the KS test as

significance measure. The KS test tests whether two samples come from the same distribution

whereas ANOVA tests whether the mean of two samples is significantly different from each

other. The actual implementation of the significance tests in my analysis is explained in Section

5 Analysis.

18

4 Data

The data used for my analysis is divided into a training and testing part. The training data is

used to train the models to obtain the word embeddings, while the testing data is used to evaluate

these word embeddings. The training data consists of a combination of different, freely

accessible and cleaned corpora. The testing data is split into an intrinsic and extrinsic evaluator

part. The intrinsic part consists of two datasets for each intrinsic evaluation method, of which

there are three, resulting in 6 intrinsic testing datasets in total. The extrinsic part also consists

of two datasets for the extrinsic evaluation method, resulting in 8 different test datasets in total

for the testing part.

4.1 Training Data

To obtain the desired word vectors, I trained the three word embedding models on a self-

combined corpus, containing the full BAWE (British Academic Written English) corpus, the

full Brown corpus, “Matt Mahoney’s first billion characters” corpus, parts of the OANC (Open

American National Corpus) and a small corpus of several Wikipedia articles. A detailed list of

the used corpora is shown in the Appendix Table 2.

4.1.1 BAWE

Through a collaborative project between the universities of Warwick, Reading and Oxford

Brookers, called “An investigation of genres of assessed writing in British Higher Education”

taken place between 2004 and 2007, the BAWE corpus (Nesi, 2008) was created. It consists of

2761 pieces of student writing resulting in a total of 6,506,995 words. The writings cover 4

different genres, namely Arts and Humanities, Social Science, Life Science and Physical

Science, and the study level of the students can be divided into four groups, from first year up

to master level students.

4.1.2 Brown

The Brown University Standard Corpus of Present-Day American English (Kucera et al., 1967) ,

also known as Brown Corpus, was first created in 1961 by the department of linguistics at

Brown university. The corpus was made for comparative studies of written English, thereby

consisting of a total of 500 samples of text with each sample being over 2000 words big. The

samples can be assigned to either one of 2 main groups with the first consisting of 9 genres and

the second 6 genres, ranging from financial press reports to science fiction short stories. The

19

creators of the corpus only wanted written discourse for the corpus, hence genres like drama

were left out from the corpus since most drama publications consist of dialogue or rather spoken

discourse. Overall, the corpus consists of 1,014,312 words.

4.1.3 OANC

The OANC (Ide, 2001) is a subset of the American National Corpus, which is a in 2005

provided project by the Linguistic Data Consortium, which is an open consortium of

universities, research laboratories and companies from the United States. The ANC is meant to

be a counterpart to the British National Corpus which totals around 100 million words,

compared to the 22 million words from the ANC. Since the OANC is only a subset of the ANC

it only contains 14,623,927 words, collected from spoken recordings and written discourse,

ranging from police reports and technical journals up to recorded telephone calls.

4.1.4 Matt Mahoney’s first 100 million bytes

In the official web publication of the word2vec project, the Google researchers reference their

used training data to be from several sources, for some of which they used the Wikipedia dump

pre-processing code from Matt Mahoney, a retired senior scientist at Dell, specializing at data

compression. The Google researchers also reference an already pre-processed Wikipedia

dataset from Matt Mahoney’s Large Text Compression Benchmark (Mahoney, 2011) for a

simpler implementation of the data. This dataset consists of, the alphabetically ordered, first

Wikipedia articles truncated to 100MB, resulting in a corpus of 17,005,207 words.

4.1.5 Wikipedia

The final dataset used to build my word embedding models is an accumulation of Wikipedia

articles from handpicked genres/domains. For the articles collection, I used a free to use

Wikipedia web crawler, published by data scientist Michael Hainke, on Github (Hainke, 2019).

The crawler is initialized, with a starting article, to find related articles to the initial article, and

then to find further related articles to the related articles and so on. Every time a new starting

article is used, a new dataset is created. To cover different genres, I used 16 distinct initial

articles, ranging in topic from wildlife, electronics and up to clothing. A detailed list for each

dataset is shown in Table 2 in the appendix. To limit the size of each resulting dataset the

crawler had only a runtime of 30 seconds after initializing it, resulting in datasets of ranging

size from around 500 thousand up to 2 million words, each. Taking all Wikipedia crawler

datasets together results in a corpus of 27,530,351 words in total.

20

4.1.6 Final Training Dataset

Joining all 5 datasets and cleaning it leaves a corpus with a total of 55,493,383 words. Since

the corpus cannot be cleaned perfectly and many rare non-defined terms, which can be

described as noise, are still in the corpus. To account for this noise, all terms which do not occur

more than 10 times will be dropped from the corpus. Doing this, most phrases, and terms, which

are meaningless, sparse and pollute the data are removed, which results in a corpus of

54,620,463 words and 87,390 unique terms spread over 5,583 documents. I decided on a

minimum word count threshold of 10, as a trade-off between keeping rare words and removing

non-defined terms as in (Wang et al., 2019). The cleaning process keeps plurals and declinations,

but removes symbols, numbers, punctuation, and abbreviations. This way, the word embedding

models should learn to distinguish between singular and plural, adjectives and adverbs,

adjectives, and nominalization, etc. A list of all training corpora with the most important

statistics is presented in Table 3.

Complete training dataset

Name Number of

Genres

Number of

Documents

Word Count

(Raw)

Word Count

(Cleaned) a

BAWE 4 2761 6,506,995 6,359,203

Brown 15 500 1,014,312 886,839

OANC 12 2305 14,623,927 2,605,863

Matt Mahoney’s

1st 100Mill. Bytes

- - - 17,005,207

Wikipedia 16 16 28,452,800 27,763,451

Total 47 5583 67,603,241 54,620,463

Table 3: Here the most important statistics of the training corpora are listed. Since Matt
Mahoney’s 1st 100Mill. Bytes is a fully cleaned datasets build by many Wikipedia articles,
and the author did not list the number of genres and documents covered by his dataset, their
cells were kept empty.

a After cleaning and removing all words occurring less than 10 times.

4.2 Test Data

As stated in the methodology section, the way of testing a word embedding model’s goodness

of fit can be split into two categories, which are either intrinsic, where word vectors are

21

evaluated directly, or extrinsic, where we utilize the word vectors as feature variables for

downstream tasks. In my analysis I will only focus on 6 intrinsic and 2 extrinsic evaluation

tasks. I must mention that there are many more intrinsic and extrinsic evaluation methods and

tasks, which could be used to conduct a much more extensive analysis.

4.2.1 Intrinsic Evaluation Datasets

WORD SIMILARITY

For the word similarity task, the first dataset I used was the Stanford Rare Word Similarity

(RW) dataset, which was first introduced and developed for the analysis in (Luong et al., 2013).

The dataset consists of 2034 rows, representing word similarity question prompts. Each prompt

consists of a word pair, 10 individual ratings of assessors who were asked to give a score from

a scale of [0, 10] on how similar the two words are to each other, with 0 representing the lowest

similarity and 10 the highest and an average score out of the ten.

Since the dataset should contain only rare words, word pairs were constructed by first searching

for words which have a low frequency of occurrence in Wikipedia texts (Luong et al., 2013) and

selecting a random synset of that word based on WordNet (Miller, 1995). From this synset a

range of related words is set, and one word is randomly chosen as the second word.

The dataset contains 2951 unique terms, with 50% of all terms occurring once, the mean

occurrence of a term being 1.3 and the maximum occurrence of a term being 41, while the

minimum is 1. All words in RW datasets are either nouns, verbs, adjectives, or adverbs, which

could be conjugated or declined.

The second dataset used for the word similarity task is the SimVerb-3500 (SV), which as the

name suggests only contains 3500 verb pairs. The dataset was first introduced in (Gerz et al.,

2016), as a new and superior addition to the existing word similarity datasets. As in RW each

row corresponds to a question prompt, consisting of a word pair, individual ratings and an

averaged rating score. In SV each word pair was assessed by at least 10 assessors, where the

assessors were asked to give a similarity score from the scale of [0, 6], with 0 meaning that an

assessor does not sees a similarity between the two words and 6 meaning that the assessor sees

a high similarity between the two words. For the dataset the researchers mapped all scores

linearly to a scale of [0, 10] to make the dataset more comparable to other datasets. Finally, an

averaged score over the individual ratings is also presented.

22

In total the dataset consists of 827 unique verbs, with 50% occurring at least 7 times, and the

minimum occurrence of a word being 1 and the maximum being 56 and a mean occurrence of

8.4. All verbs are in infinitive form.

WORD ANALOGY

For the word analogy task, I used 2 datasets. The first one is the Google word analogy test set,

which was first introduced in (Mikolov et al., 2013a). As many other analogy test sets, each row

of the dataset corresponds to a word analogy question prompt, consisting of 4 words, where an

analogous relationship between two word pairs is given. In total the dataset contains 19,544

prompts, whereby each prompt belongs to one of 14 unique genres. The genres can be divided

into 2 categories, where either a semantic relation or a morphological relation is presented, with

5 genres being semantic and 9 being morphological. 8,869 out of the 19,544 total prompts, so

45,38% show a semantic relation and the remaining 54,62% of all prompts have a

morphological relationship. All 14 genres together with examples are presented in Table 4 in

the appendix. It can be seen from that table that the morphological prompts are well balanced

among the genres and their relative share to all prompts. In contrast to that, we see that the genre

Capital-world has a very high relative share to the total prompts and therefore resulting in a

51% relative share to all semantic relational prompts, showing a big imbalance.

The next test set is the Bigger Analogy Test Set (BATS), which was first introduced in

(Gladkova et al., 2016), as a bigger and better structured analogy test set compared to the common

ones to that time. The whole dataset is split into 4 main categories, which represent distinct

word relations and each main category is then also split into different subcategories. Each main

category consists of 10 datafiles, which then contain 50 word pairs, whereby each word pair

shows a word relation. An overview of the dataset is shown in Table 5 in the appendix. The

first main category contains inflectional word relations, split up for nouns, verbs, and adjectives.

Inflectional relations of words are for example declination of nouns and adjectives. The second

main category is comprised of derivational word relations, divided into stem word changes and

no stem word changes. One example for no stem change would be the relation between life and

lifeless. The next main category contains lexicographic word relations. These relations can be

hypernyms, hyponyms, meronyms, synonyms, and antonyms. The final main category contains

encyclopediatic word relations. These relations could be the colour of things like water to blue

or sounds of things like dog to bark. In contrast to inflectional and derivational relations which

are morphological word relations, lexicographic and encyclopediatic relations, which are

23

semantic world relations are given multiple correct words for the analogy task (e.g., cat to

meow/ meu/ purr/ caterwaul). Since the dataset only provides word pairs with their relations,

one has built a usable word analogy dataset with question prompts by themselves. Building

combinations of two word pairs without repetition and by taking the order into account, the

maximum count of unique word analogy question prompts, which can be built is 98,000,

resulting in one of the biggest word analogy test datasets.

For my analysis, I only used word relations which have unique answers, resulting in utilizing

only the semantic word relations and the capitals relations file from the encyclopediatic

category, containing word relations like Athens to Greece. Finally, I built a dataset in the size

of 25,725 analogy question prompts consisting only of word pair combinations without

repetition and order. An example would be that the test data contains an analogy question like

arm is to armless like art is to artless. Since the order is not taken into account, the other way

around (art is to artless like arm is to armless) is not in the dataset. In total, my built dataset

contains 790 unique word pairs and is mainly comprised of morphological analogy questions.

SYNONYM DETECTION

Lastly, as stated I also used two common test datasets for the synonym detection task. Both

datasets are built the same way, where each row represents a synonym question prompt. Each

prompt gives a query word and 4 possible answer words, from which only one is the correct

synonym to the query word.

The first dataset is the English as a Second Language (ESL) test set, which originates from

the Basic 2000 words – Synonym Match 1 internet quiz made by Donna Tatsuki (Tatsuki,

1998). The quiz is part of many other activities presented by The Internet TESL Journal, which

is an international organization of teachers to help people learn English. The dataset was first

used as a test dataset for a synonym detection task in (Turney, 2001). In total the dataset consists

of 50 questions, covering 206 unique words which are nouns, verbs, adjectives, and adverbs,

whereby the maximum occurrence of a term is 5. All words are not declined or conjugated.

The second dataset is the Test of English as a Foreign Language (TOEFL) synonym test set,

which was first publicized from Test of English as a Foreign Language by the Educational

Testing Service. In (Landauer & Dumais, 1997) the dataset was first used for a synonym detection

task to measure the goodness of their newly developed word embedding model. Following their

work, many scientists used the dataset to evaluate new word embedding models. The dataset

24

itself consists of 80 synonym question prompts, covering 391 unique words, ranging from

nouns to verbs, adjectives, and adverbs. Nouns are in singular or plural form, while verbs are

in infinitive or past participle form. Adjectives and adverbs are not declined. The maximum

occurrence of a term is 2, which means that almost all terms occur only once in the dataset.

Finally, since the models are only trained on a specific set of corpora, which only covers a

specific number of terms (the vocabulary), it may happen in the analysis that certain prompts

in some tasks cannot be processed by the models because query words do not occur in the

models’ vocabulary. An example would be, if for a word similarity task one prompt would be

to calculate the cosine similarity between the word vectors of the words squishing and

squeezing. If a model does not have the word squishing and/or squeezing in their vocabulary,

because it maybe never occurred in any of the training corpora or it was excluded due to its lack

of occurrence, the model has then no word vector for that specific word and cannot run the

calculation. When I encountered this problem in any tasks, I skipped the prompt, resulting in

not fully utilized testing datasets. Below Table 6 presents for each task how much of the test

datasets were used due to this problem.

Composition of the used test datasets

Datasets … out of … % of missing prompts

 Word Similarity

RW 1209 2034 40.5%

SV 3375 3500 3.5%

 Word Analogy

GOOGLE 17,569 19,544 10.1%

BATS 19,917 25,725 22.6%

 Synonym Detection

ESL 48 50 4%

TOEFL 76 80 5%

Table 6: The table shows how many prompts of each test dataset were used for the analysis
out of the actual number of prompts given by each dataset. On the left all 6 intrinsic
evaluation tasks are listed. From the middle of the table on the left side the number of used
prompts is presented while on the right side the potential number of prompts is listed. On the
right side of the table the percentage of missing observations to the original count of
observations is depicted.

25

Of course, this phenomenon had a bigger impact in my analysis since I could not use much

larger and more varied training corpora, due to my computational limitation to train the models

on big datasets and the monetary limitations since many sophisticated and professional training

corpora are behind very expensive paywalls.

4.2.2 Extrinsic Evaluation Datasets

TEXT CLASSIFICATION

The BBC text classification (BBC) test set is a collection of BBC news articles from the BBC

news website. All rights, including copyright, in the content of the original articles are owned

by the BBC. The dataset was first introduced in (2006) by Derek Greene & Pádraig Cunningham

as part of an empirical evaluation of a model. The dataset consists of 2225 individual news

articles from 2004 and 2005, grouped into 5 distinct genres. Each article is comprised of a title

and the main text. A descriptive summary of the BBC dataset is presented in Table 7.

BBC dataset composition

Genre Document count Avg. word count Min to max word count

Business 510 337 142 to 915

Entertainment 386 340 143 to 3564

Politics 417 461 91 to 4486

Sport 511 337 117 to 1721

Tech 401 513 163 to 2994

Table 7: Here important statistics for each genre of the BBC dataset are listed. The last
column shows the smallest and largest word count of all articles from a specific genre.

The mean word count of an article is 393, while the median value stands at 340 words, showing

that all genres are well represented by the articles. To train the classification model, which will

be used to run the extrinsic tasks, I will use the first 350 articles from each genre as training

data while the remaining articles are used as testing data, resulting in a 80/20 training to testing

split with 160 business, 36 entertainment, 67 politics, 161 sport and 51 tech articles as test

articles.

The last testing dataset is the IMDb film review dataset (Maas et al., 2011), which was used for

sentiment analysis by the Stanford researchers and will also be used in my analysis for

26

sentiment classification. The original dataset consists of 50,000 individual movie reviews and

their corresponding ratings, which were collected from the internet movie database (IMDb).

Original movie ratings, which were given as star ratings in a scale of 1 to 10 stars were mapped

linearly by the researchers to a binary scale [0 ,1] with 0 meaning that the review has a negative

sentiment and 1 that the revies has a positive sentiment. The data set is perfectly balanced with

25,000 positive and 25,000 negative movie ratings. The used dataset itself was downloaded

from Kaggle, which is a data science and machine learning online community platform.

For my analysis I only used 10% of the original dataset, resulting in a balanced dataset of 5,000

movie reviews and their ratings. I only used a fraction of the original dataset since the

computational effort of preparing the data for the analysis was not feasible. Each review only

consists of a plain text, with the shortest review only being comprised of 14 words, and the

longest review text being over 1500 words long. For training and testing the cropped dataset

was divided into an 80/20 split, where a sample of 4000 randomly chosen, reviews were used

to train the classification model and the remaining 1000 reviews were used as testing set to

measure the performance of the model.

5 Analysis & Results

5.1 Analysis

The whole analysis in this thesis can be broken down into 4 steps. First, the chosen word

embedding models are trained and the word vectors are extracted. Second, these extracted

embeddings are then tested on different kinds of evaluation tasks. Third the significance of the

difference between the evaluation metrics is calculated. Lastly, these significance values are

used to infer the usability and reliability of the evaluation tasks. Following, the first 3 steps will

be presented and explained.

5.1.1 Model Training

The aim of the analysis is to assess the reliability of different evaluators, by looking at the

performance of word embedding models, which are applied on these evaluators. I chose GloVe

and CBOW as word embedding models since these two are the most prominent word

embedding methods in the NLP community, excluding pre-trained models based on a

transformer architecture like BERT. GloVe was utilized in many analyses, from papers

27

presenting the most prominent evaluation methods (Schnabel et al., 2015), to analyses studying

the relationship between intrinsic and extrinsic evaluators (Wang et al., 2019).

Conforming with my conceptual framework I wanted to use word2vec as the second better

performing model. From the word2vec toolkit I chose CBOW over Skip-gram since CBOW is

computationally more time efficient (Mikolov et al., 2013a). As the third and final model I

selected NMF, which was also implemented in (Baroni et al., 2014). Since the basis of the

analysis is to have 2 competing models which are similar in performance and one model which

should be significantly worse, I chose to implement NMF on a term document matrix, whereas

GloVe was built on a term co-occurrence matrix and CBOW was built directly on the corpus.

All three models were then trained on the total and cleaned training data as shown in the last

cell from Table 3. Since I had to rely on freely accessible data to train the models, I used a

combination of different corpora. The Brown and BAWE corpora were utilized in their full

extend. From the OANC I had to remove some parts since it also consists of police reports and

telephone recordings, resulting in spoken discourse containing colloquial language and

abbreviated sentences, which is not optimal for training a word embedding model, which will

be tested on written discourse. To increase the word count, I also included the first 100

megabyte of cleaned Wikipedia articles, from Matt Mahoney’s website, which was also

presented in the word2vec toolkit website from Google. Finally, to broaden the spectrum of

different topics in my combined corpus, I also implemented Wikipedia articles from handpicked

topics, using a web crawler.

Since in (Mikolov et al., 2013a) the researchers used 50 dimensions for their word vectors and

Schnabel et al. (2015) also used 50 dimensions on a 100K term vocabulary, I will also use 50

dimensions for my models, since my vocabulary amounts to around 87K unique terms. Higher

dimensions would only make sense for greater training datasets, with higher word count and

much bigger vocabulary. A too high dimension for my model could result in less generalization

and maybe overfitting. Next, GloVe and CBOW were built on a 5-word symmetric window,

meaning that for each focus word, 5 prior and 5 subsequent words will be taken into account

when training the word vectors. A too low window size would result in word vectors mainly

capturing words’ syntax in sentences, while a too high window size would result in word vectors

being biased in capturing mostly word semantics. I took a window size of 5 since it was

recommended by Mikolov et al. (2013b). Since NMF bases on the term-document matrix the

window size depends on each document, meaning that the window size is variable. This will

ultimately result in more generalized word vectors capturing general semantics. All other

28

hyperparameters of all word embedding models are set to default, as given in their respective

packages1 in R. Default values are based on the recommendations of the models’ creators,

which are mostly from the origin papers of the models. As shown in the section 3Methodology,

the word vectors used for the analysis are the word matrix for the NMF model, the input weight

matrix for the CBOW model and the summation of the two weight matrixes for the GloVe

model.

5.1.2 Model Evaluation & Significance Testing

For my analysis, I mainly chose popular and straightforward evaluation methods to keep the

analysis simple. Since the most prominent evaluators are mainly intrinsic tasks, and I wanted

to broaden the scope of my analysis I will also look at extrinsic tasks. Following, I will explain

step-by-step how all evaluation tasks are executed and how the significance tests are carried

out.

For the intrinsic word similarity evaluation task, I chose the RW and the SV datasets. First for

each word pair in the datasets the cosine similarity is calculated using the word vectors from

each embedding model. Next, for each embedding model the Pearson correlation coefficient

between the cosine similarity values and the average human judgments is calculated to measure

the goodness of the models’ embeddings. Finally, to calculate the significance of differences

between the models’ evaluation scores I implemented a one-way ANOVA test. For each dataset

(RW & SV) three ANOVA tests were made to determine if, for example the cosine similarity

values calculated by the GloVe model are significantly different from the CBOW model. In this

case for example, the input values would be the calculated cosine similarity values using the

GloVe word vectors and the calculated cosine similarity values using the CBOW word vectors.

The significance testing is executed using a 95% confidence interval.

The word analogy task will be executed on the Google and the BATS dataset as shown in Table

6. Further, only the 3CosAdd approach will be considered since it is the most intuitive and the

most widely used approach. For each analogy question in the dataset the cosine similarity

between 𝑏෠, form Equation 7 and each word from the vocabulary will be calculated. Next, all

words from the vocabulary will be then ordered by their cosine similarity value from highest to

lowest and the rank of the correct word 𝑏 will be written down. To then measure the goodness

of an embedding model I will look at the distribution of the ranks of word 𝑏 and calculate a

weighted score out of it. Since, the rank could potentially range from 1 to 54,620,463, because

𝑏෠ is compared with all words from the vocabulary, I will only look at the distribution of the

ranks from 1 to 10. A score is calculated by first weighting counts of a rank, and then adding

29

these up. The higher the value of that score the better the model. The weighting is linearly in

0.1 increments, so the first rank is weighted with 1 and the second rank is weighted with 0.9

until the 10th rank is weighted with 0.1. To illustrate the evaluation process, I will demonstrate

it on the GloVe word embedding evaluation on the BATS dataset. The distribution of ranks

from 1 to 10 looks like this [1877, 2239, 1010, 614, 424, 335, 242, 197, 165, 157]. This would

mean that 1877 times the nearest word to the word vector 𝑏෠ is the searched word 𝑏, this is the

hit rate. 2239 times the searched word 𝑏 is the second nearest word to the calculated word vector

𝑏෠, and so on till the 10th rank. Next the 10 numbers are weighted. The first number is taken as

it is and weighted with a 1 resulting in 1877. The 2239 is multiplied with 0.9 and the 1010 is

multiplied with 0.8 and so on until the 157 is multiplied with 0.1. After that the weighted values

are summed up and divided by the total count of observations in the dataset. This way we

computed a weighted accuracy score which not only counts the hit rate, where the nearest word

vector to 𝑏෠ is 𝑏 but also instances where 𝑏 was close to 𝑏෠. Since all 3 models were not

sophisticated and resulted in low accuracies for the word analogy tasks, I chose this way of

computing the evaluation metric so a bigger picture of the embeddings performance can be

seen. For the above example of the GloVe evaluation the evaluation metric on the BATS dataset

would be 0.289. Finally, I will run a Two Sample Kolmogorov-Smirnov test (KS-test) to

determine if the distributions of ranks from model 1 to model 2 are statistically significantly

different from each other or not. The KS-test compares two distributions and tests if both come

from the same population. The used distributions are the distributions of the ranks from 1 to 10

for each embedding model on both datasets. This means that for each dataset (Google & BATS)

I will run three different KS tests, namely GloVe to CBOW, GloVe to NMF and CBOW to

NMF.

As the final intrinsic evaluation method, I chose the synonym detection task, since it is very

simple and was also used in influential scientific papers (Baroni et al., 2014; Schnabel et al., 2015).

I will use the TOEFL, and the ESL datasets as presented in Table 6 to run the synonym detection

task. In both datasets, each row consists of a query word and 4 given words from which the

synonym of the query word must be found. First, the similarities between the query word and

the 4 given words are calculated using the cosine similarity measure. Then, as in the word

analogy task, for each synonym question the similarity scores are ranked, and the rank of the

correct synonym is written down. Since each row consists only of 4 words the ranks can only

be 1, 2, 3 or 4, with 1 meaning that the model correctly identified the synonym. To measure the

goodness of the model using this task, I will look at a weighted score just as in the word analogy

task. Since, it only consists of 4 ranks the weights are [1, 0.75, 0.5, 0.25]. For example, the

30

ranking distribution of the GloVe embedding on the ESL dataset looks like this [16, 9, 14, 9].

This would mean that the 16 is multiplied by 1, the 9 is multiplied by 0.75, the 14 is multiplied

by 0.5 and the last 9 is multiplied by 0.25. Next, the weighted values are summed up and divided

by the total count of used observations from the dataset. The resulting evaluation metric would

then be 0.6667.

Just as in the word analogy task I will run a total of 6 KS-test for the synonym detection tasks

to determine the statistical significance between differences in performance metrics. The

distributions to run the significance tests are the ranking distributions of each embedding model

for both datasets.

To further broaden the focus of the analysis I also incorporated 2 extrinsic text classification

evaluation tasks for which I used two test datasets. For the first dataset (BBC dataset) the task

is to make a multiclass classification, where articles from different genres need to be correctly

classified. For the second dataset (IMDb dataset) a two-class classification must be made, where

IMDb movie reviews need to be correctly assigned a positive or negative sentiment. Both tasks

are very common and simple NLP tasks and were used and analysed by other researchers before

(Lai et al., 2015; Wang et al., 2019). For both tasks I used the same training algorithm, where first

the datasets (articles and movie reviews) are cleaned and stopwords are removed. For the IMDb

dataset I kept words of negation [not, cannot, etc.] since these are important to correctly assign

a sentiment of a review. Next, each article, or rather movie review is reduced to the average

word vector of all words in that article or movie review. This pre-processing step is also

illustrated in Figure 5. These averaged word vectors are then used as the input data for the

classification model, for which I chose a random forest model where each entry of a word vector

represents one input feature, resulting into a random forest model with 𝑉 (size of vocabulary)

input variables. As stated in the Section 4 Data the datasets were divided into a training and

testing dataset with an 80/20 split.

31

Text vectorization process

Figure 5: The figure shows exemplary how a single text is reduced to a single vector. From
left to right, first the text is deconstructed into its single words (unnesting). Next, the word
vectors from all single words from the text are averaged into a single vector. Doing this for all
movie reviews and news articles, then these vectors are implemented in the text classification
models.

Hyperparameters of the random forest model are set to default values which are pre-set in the

utilized package (“randomForest”), which was used to implement the model. All final random

forest models consist of 500 individual classification trees, where for each tree only a third of

the input features were used and all trees were built to the fullest with the size of a leaf being

one. Performance of a model is measured by looking at the Matthew’s Correlation Coefficient

(MCC), which is a performance metric to assess the performance of binary classification

models. The score ranges from [-1, 1], with a score of 1 indicating perfect successful prediction

performance and -1 indicating perfectly failing prediction performance of a model. Since for

the sentiment analysis task only a binary classification must be made, I used the standard MCC

score as performance metric. For the multiclass text classification task using the BBC dataset,

I used a macro averaged MCC score to measure the performances. Finally, to measure the

significance of the differences between models’ performances, I ran multiple KS-tests using the

32

distribution of the resulting confusion matrixes of the classification models. All KS-tests are

calculated with a 95% confidence interval.

Finally, all implemented tasks, used test datasets, used performance metrics and what

significance tests were applied are summarized in Table 8 to give an overall view of my analysis

before I go into the results.

Evaluation task overview

Dataset Task Metric Significance Tests Dataset Source

RW Word similarity Pearson one way ANOVA Luong et al. (2013)

SV Word similarity Pearson one way ANOVA Gerz et al. (2016)

ESL Synonym detection Weighted score 2 sample KS-test Turney (2001)

TOEFL Synonym detection Weighted score 2 sample KS-test Landauer & Dumais

(1997)

BATS Word analogy Weighted score 2 sample KS-test Gladkova et al. (2016)

GOOGLE Word analogy Weighted score 2 sample KS-test Mikolov et al. (2013a)

BBC Text classification Weighted MCC 2 sample KS-test Greene & Cunningham

(2006)

IMDb Text classification MCC 2 sample KS-test Maas et al. (2011)

Table 8: From left to right are the abbreviated names of the datasets, the type of task for each
dataset, the performance metric used for that task, the consistency metric to determine the
significance between performances of models and the origin and/or first appearance of the
dataset in scientific literature.

5.2 Results

Before I showcase the performances of the different models on the tasks, I will first present the

nearest neighbouring words of different query words, so a first impression of the models’

embedding quality is given. For the query words I will look at 2 nouns, verbs, and adjectives

each, where one is a more common and the other a relative rarer word. In Table 9 the 8 nearest

neighbouring words to the 6 query words are presented for all 3 word embedding models.

Neighbouring words are determined using cosine similarity on the whole vocabulary of the

model.

33

Closest surrounding words

Table 9: On the left 6 query words are listed, 2 nouns, 2 verbs, and 2 adjectives, respectively,
with the first 3 being relatively fewer common words. The next columns, present the 8 nearest
neighbouring words for each query word per word embedding model. The neighbouring
words are all selected using cosine similarity to measure the distance.

For all nearest neighbours the nearest word is always the word itself since it will automatically

have a perfect similarity score. Looking at the query word piano one can see that GloVe and

CBOW embedded the word in a similar environment resulting in reoccurring neighbouring

words like violin and cello. Looking at the query word run we see that GloVe conjugates the

word while CBOW lists verbs which have a similar meaning or are related to run. Overall,

Table 9 demonstrates that GloVe and CBOW show plausible neighbouring words which are

either related or similar with the query words. But looking at the neighbouring words generated

Query Word GloVe CBOW NMF

piano piano, violin, solo,

harpsichord, trio,

trumpet, orchestra,

cello

piano, violin, cello,

sonata, orchestral,

sonatas, quartet,

concertos,

piano, dune, golan,

beethoven, yahweh, jedi,

browns, rock

rust rust, tar, grease,

biomarkers, tubing,

pineapple, tobacco,

foam

rust, rusting,

corrosion, spray,

abrasion, stains,

corrosive, coating,

rust, fluorinated, jars, yb,

lamellae, nucleation,

halogens, wreck

Shine shine, shines, insulate,

bite, emit, stray,

absorb, shining

shine, glow shining,

sky, clouds, light,

rainbows, shadows

shine auditory bonobo

pausing kymlicka

westgate reciting suckle

police police, officers,

officer, officials,

guard, personnel,

secret, army,

police, prosecutors,

officers, policemen,

unarmed, personnel,

civilians, omon

police, easton, offence,

imaginings, depriving,

advice, sultry, matrimony

big big, little, bang, game,

played, like, playing,

boy

big, coens, crazy,

terrific, weird,

hollywood, lebowski,

scary

big, belgica, padres,

inbreeding, sneak,

largest, fest, redneck

run run, running, runs, ran,

up, out, home, off

run, running, shoot,

stand, move, go, walk,

catch

run, rate, stable, supply,

imperfect, decreased,

stickiness, steady

34

by NMF the model mostly presents words which have no semantic or syntactic connection to

each other. This could be since the word matrix is built from the term-document matrix,

resulting in word vectors which are similar when the words occur in the same documents. The

model does not fail completely, since it can still link words like largest to big, offence to police,

piano to beethoven or rust to wreck. Further, one can see that non-defined terms are still in the

vocabulary, like yb and omon, which do not carry any meaning and distort the models. The

table should demonstrate that in the case of my analysis the NMF embeddings captured the

syntax and semantics of words worse than compared to the other 2 models.

Finally, Table 10 showcases the performances of the 3 word embedding models on the 8

previously mentioned evaluation tasks. All scores are scaled to a range of [-1, 1], so values can

be compared with each other although different performance measures are used. Since Pearson

correlation coefficient and Matthew’s correlation coefficient are already on a scale of [-1, 1],

only the weighted scores from the synonym detection and the word analogy tasks are scaled

from a range of [0, 1] to [-1, 1]. Further, bold written scores represent the best performing model

out of the 3.

Model performances on evaluation tasks

Datasets GloVe CBOW NMF

RW 0.1870 0.3540 0.1048

SV 0.0919 0.1476 0.0094

ESL 0.1112 0.3195 0.0693

TOEFL 0.5701 0.6141 0.0877

BATS -0.4220 -0.2886 -0.9860

GOOGLE -0.3298 -0.3110 -0.9878

BBC 0.8949 0.9161 0.8392

IMDb 0.3405 0.3810 0.3110

Table 10: This table shows the performance of each word embedding model on the 8
different evaluation tasks. Since different evaluation metrics were used among the tasks, all
performance metrics were scaled to a constant range of [-1, 1]. Values near 0 represent
models which have no prediction power and could be seen analogous to random guessing.
Values near -1 represent models which choose mostly the worst outcome, while values near 1
represent models which’s predictions are mostly correct.

35

As it can be seen CBOW performs best in all tasks. The reason for the dominance of CBOW

over the other models could be that either CBOW is the superior model, as also shown in

(Schnabel et al. 2015) or that the hyperparameters are set better for CBOW compared to GloVe

and NMF, since Levy et al. (2015) even have shown that traditional simple matrix factorization

techniques like SVD could outperform novel models like GloVe and Skip-Gram if tweaked

correctly. For my analysis I did not emphasize on tweaking the hyperparameters and keeping

most of them at default values and certain hyperparameters like dimensions and minimum word

count constant over all models. Further, in Table 10 highlighted cells represent performances

of models which are not statistically significantly different to each other on a 95% confidence

level, in contrast to that not highlighted cells represents performances which are statistically

significantly different from the other performances. Since the KS-test was used to assess the

significance of differences in scores, a high observation count and a high difference between

scores contributed to the significance of the values. Since the ESL and TOEFL datasets only

consist of 50 and 80 observations, respectively, also bigger differences in the scores are not

statistically significant from each other. On the other hand, the small difference between CBOW

and GloVe in the GOOGLE word analogy task is still significant, which is mostly contributed

by the size of the dataset of around 19K analogy questions. Additionally, to the significance

testing using ANOVA for the word similarity tasks, correlation tests were also carried out,

which showed that all scores are statistically significantly different from 0, even though the

value for NMF at the SV dataset is very close to 0.

For most tasks all models perform either statistically significantly different from each other or

the opposite, expect for the TOEFL synonym detection task. Here the low count of observations

and the small difference between scores of CBOW and GloVe result in a statistical

insignificance of the two performances, while NMF performed so bad at the task that despite

the low observation count the score from NMF is statistically significantly different from

CBOW and GloVe.

Further, for the intrinsic tasks it was expected that NMF underperforms compared to CBOW

and GloVe, since we saw in Table 9 that for NMF neighbouring words of query words were

mostly not semantically or syntactically related with each other. Even though NMF performs

observably worse than the other two models on the intrinsic tasks, for the extrinsic tasks all 3

models perform on a similar level. The reasons why two models could perform similarly well

on a task is either that the two models’ embeddings are similarly good or that the underlying

task is so easy to perform that even with a bad embedding one can achieve high performance.

Judging from this observation I conclude that, either the chosen extrinsic evaluators are not

36

reliable evaluators, meaning that the tasks themselves were too easy resulting in that a bad word

embedding model (NMF) performs relatively well, or that the intrinsic evaluation tasks are not

good proxies to assess the quality of a word embedding model used for extrinsic downstream

problems.

Another phenomenon is that for the first three intrinsic evaluation tasks, CBOW performs

relatively better than GloVe, with a ~100%, ~50% and ~200% increase in the scores of the first,

second and third task respectively. While for the last three intrinsic evaluation tasks CBOW

only merely outperforms GloVe if looked at the relative increase in the scores. A reason for

these differences can be seen if the structures of the datasets are considered. Although the

original GOOGLE dataset contains 19,544 observations it is only built of 551 unique word pairs

which are intertwined, the same holds for the original BATS dataset which is 25,725

observations big but is only based of 790 unique word pairs. In contrast to that the RW dataset

is 2034 observations big but consists of 2951 unique words, and the SV dataset is 3500

observations big and consists of 827 unique words. So, this intertwining of word pairs with

other word pairs to increase the observation count may be a reason why CBOW and GloVe

perform more similar. If the embeddings of a model are good for on one word pair, then this

will result in situations where the model performs also good on all observations where this

particular word pair was used. This would mean that the effective observation count GOOGLE

and BATS would not be the actual count of around ~20k and ~25k observations but rather the

unique word pairs count which is under 1K for both datasets. Comparing that to the word

similarity datasets, the relative share of words which only occur once in the word similarity

dataset is much higher than in the word analogy datasets. But I could not find a plausible reason

why the difference between scores of CBOW and GloVe are so dramatic for the ESL dataset

compared to the TOEFL dataset.

Since the TOEFL task is at least able to distinguish between good and very bad performing

models, resulting in significantly different scores for NMF compared to GloVe & CBOW, it

meets the minimum requirements for an evaluation method, which the ESL task does not even

reach. Still, the TOEFL task was not sophisticated enough to detect statistically significant

differences in performances between CBOW and GloVe. From these results and until a more

sophisticated dataset for synonym detection tasks is developed, since the ESL and TOEFL

dataset are until now the only commonly known synonym detection tasks, I would rate the

synonym detection task to be not suited to assess the quality of a word embedding model. The

low count of observations will most likely result in insignificant results, especially when the

37

compared word embedding models are much more sophisticated and the hyperparameters are

correctly tweaked.

Next, when looking at the text classification tasks, we saw that NMF performed relatively well

compared to the intrinsic tasks, although the model was meant to function as a lower

benchmark. As mentioned, this could either be reason to a bad dataset, which is not

sophisticated enough or an unsophisticated approach from my side to solve the classification

problems. Further, all scores from both classification tasks were not statistically significantly

different from each other. The insignificance of the scores is either based on the low observation

count in the test set, or due to the small differences in scores. The BBC dataset was only 2,225

observations big and with its imbalance in the labels only a small testing test of 475 observations

was possible to be built. The original IMDb dataset is 50K observations big which would be

more than enough to run a sophisticated analysis, but due to the computationally expensive and

time extensive process to run the extrinsic classification tasks, I was bound to only use 5,000

observations from which 1,000 were in the test set. Although a test set of 1,000 observations

should also be enough to run a sophisticated analysis, the small differences between scores still

resulted in insignificant performance metrics. For my analysis not only was I constrained in the

size of the test sets of the classification tasks, due to lack of observations or lack of time and

computational power, I was also constrained in the adequacy of the classification models due

to the complexity and the computational costs of running the classification tasks. From these

results I would conclude that text classification tasks are not suited to measure the goodness of

a word embedding model, since an adequately classification model with a large enough test set

is necessary to get meaningful and significant results. And still a correlation with the

performances in intrinsic tasks is not guaranteed (Schnabel et al., 2015). I only recommend

extrinsic evaluation methods if the needed resources like computational power and expertise

are guaranteed. Further, as Schnabel at al. (2015) also stated, extrinsic evaluators are the best

fitting evaluators when the purpose of the evaluated word embedding is an implementation in

a downstream model of same task as the evaluator.

Finally, the word similarity and the word analogy tasks resulted in statistically significantly

different performance metrics for the word embedding models, even though some differences

were minimal. Of course, the sizes of the datasets had a big contribution to the significance of

the results, but in the same manner did the sophistication of the datasets, especially for the RW

word similarity dataset. Despite the small difference between scores of GloVe and CBOW in

the word analogy tasks, due to the statistical significance the order of the best performing

models stays the same, with GloVe as second and NMF as least best performing model. Also,

38

as said earlier above, that this intertwining of word pairs to increase the observation count of

the word analogy tasks, could lead to a decrease in the complexity of the tasks. From this

perspective, the presented word analogy tasks are still a reliable measure to assess the goodness

of a word embedding model, but the two presented word similarity tasks seem more

sophisticated. On the other hand, Wang et al. (2019) showed that word analogy tasks had the

highest correlation with extrinsic evaluation tasks and therefore function as the best proxies to

determine the goodness of a word embedding model on real world problems. Overall, the RW

& SV datasets and the BATS & GOOGLE datasets were reliable evaluation datasets to measure

the goodness of the word embedding models.

Ultimately, some evaluation tasks, many of which were used in former studies show

insignificant results, mostly driven by the small size of the datasets. From that it can be derived

that it may be more progressive for future analyses to drop not sophisticated enough tasks and

datasets and to concentrate on more sophisticated and bigger datasets and tasks to measure the

goodness of a word embedding model. Especially with time passing by and the quality of word

embedding models increasing, more sophisticated evaluation models and tasks are needed to

significantly measure small differences between models, which small datasets are mostly not

capable to do. The idea I present for future analyses is to shift from using many different

evaluation tasks for measuring the goodness of word embedding models to only a handful of

tasks which should be much more mature and sophisticated, leading to significant and reliable

results.

As a final addition I must mention that the choice of using the KS-test and ANOVA-test as

significance tests of course has influenced the results, and that the usage other significance tests

may lead to other results.

6 Conclusion

My work answers the question of which evaluators are reliable for comparing and evaluating

word embeddings, through an exemplary analysis of 6 intrinsic and 2 extrinsic evaluators. From

the analysed tasks, which were word similarity, word analogy, synonym detection and text

classification tasks, the text classification and especially the synonym detection tasks produced

unreliable results. Drivers for this unreliability of the evaluators were either their simplicity of

the tasks and/or the small size of the tasks’ datasets.

39

The concept of this analysis was to have two qualitatively similar word embeddings and one

that is visibly worse, for which I chose CBOW, GloVe and NMF as embedding models

respectively. All models were built on the same 54 million word count corpus and their word

embeddings’ quality was tested on the same exemplary set of 8 evaluators. Finally, I used

ANOVA and Kolmogorov-Smirnov tests to measure the significance of the difference in

performance metrics of different models’ embeddings. The statistical significance is used as

proxy for the evaluator’s ability to significantly distinguish between better and worse

performing embeddings. The minimum requirement would be to distinguish between the 2 good

and the bad model. Further a good evaluator should be able to significantly distinguish

differences in performance metrics between the 2 similarly performing models. Many studies

only relied on the quantity of used evaluators to present the quality of their newly developed

word embedding models while the quality of the evaluators was never taken into account. My

recommendation is to shift from focussing on the quantity of used evaluators to the quality and

only use evaluators which are bigger, more sophisticated and cover a broader spectrum of word

relations to get reliable results. If computational resources and expertise are given I would

recommend to evaluate embeddings on specific extrinsic tasks fitting to the real world NLP

problem.

Lastly, I need to clearly state that my analysis, and with that my results are bound to certain

limitations. For my work I had to train my word embedding models on freely accessible texts

since much more sophisticated and better cleaned corpora are behind very expensive paywalls.

Further with the computational limitations of my personal desktop computer, which I used to

run my analysis, I was not able to use bigger training corpora and with that, higher dimensions

for the embedding space. Further constrained by my computational limitations I could only use

a fraction of the IMDb text classification dataset for the extrinsic task. Second, even beyond

my limitations it was not feasible for me to run my analysis on a wider spectrum of embedding

models and evaluators to further strengthen my results, since this analysis is only built for a

master thesis. So, I recommend for future research on this topic to also account for the

mentioned limitations of mine.

40

References

Antoniak, M., & Mimno, D. (2018). Evaluating the stability of embedding-based word

similarities. Transactions of the Association for Computational Linguistics, 6, 107-119.

Bakarov, A. (2018). A survey of word embeddings evaluation methods. arXiv Preprint

arXiv:1801.09536,

Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! a systematic

comparison of context-counting vs. context-predicting semantic vectors. Paper presented

at the Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), 238-247.

Chiu, B., Korhonen, A., & Pyysalo, S. (2016). Intrinsic evaluation of word vectors fails to

predict extrinsic performance. Paper presented at the Proceedings of the 1st Workshop on

Evaluating Vector-Space Representations for NLP, 1-6.

Faruqui, M., Tsvetkov, Y., Rastogi, P., & Dyer, C. (2016). Problems with evaluation of word

embeddings using word similarity tasks. arXiv Preprint arXiv:1605.02276,

Gerz, D., Vulić, I., Hill, F., Reichart, R., & Korhonen, A. (2016). Simverb-3500: A large-

scale evaluation set of verb similarity [Data set]. Association for Computational

Linguistics. http://doi.org/10.18653/v1/D16-1235

Gladkova, A., Drozd, A., & Matsuoka, S. (2016). Analogy-based detection of morphological

and semantic relations with word embeddings: What works and what doesn’t [Data set].

Paper presented at the Proceedings of the NAACL Student Research Workshop, 8-15.

https://vecto.space/projects/BATS/

41

Greene, D., & Cunningham, P. (2006). Practical solutions to the problem of diagonal

dominance in kernel document clustering [Data set]. Paper presented at the Proceedings

of the 23rd International Conference on Machine Learning, 377-384.

https://www.kaggle.com /c/learn-ai-bbc

Hainke, M. (2019). Wikipedia_API [Computer Software]. https://github.com/michael-

hainke/Wikipedia_API

Harris, Z. S. (1954). Distributional structure. Word, 10(2-3), 146-162.

Ide, N., & Macleod, C. (2001). The american national corpus: A standardized resource of

american english [Data set]. In Proceedings of corpus linguistics (Vol. 3, pp. 1-7).

Lancaster, UK: Lancaster University Centre for Computer Corpus Research on

Language. https://anc.org/data/oanc/download/

Kučera, H., & Francis, W. N. (1967). Computational analysis of present-day american

english[Data set]. Brown university press.

Lai, S., Xu, L., Liu, K., & Zhao, J. (2015). Recurrent convolutional neural networks for text

classification. Paper presented at the Twenty-Ninth AAAI Conference on Artificial

Intelligence,

Landauer, T. K., & Dumais, S. T. (1997). A solution to plato's problem: The latent semantic

analysis theory of acquisition, induction, and representation of knowledge [Data set].

Psychological Review, 104(2), 211.

Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755), 788-791.

42

Lee, D., & Seung, H. S. (2000). Algorithms for non-negative matrix factorization. Advances

in Neural Information Processing Systems, 13

Levy, O., & Goldberg, Y. (2014). Linguistic regularities in sparse and explicit word

representations. Paper presented at the Proceedings of the Eighteenth Conference on

Computational Natural Language Learning, 171-180.

Levy, O., Goldberg, Y., & Dagan, I. (2015). Improving distributional similarity with lessons

learned from word embeddings. Transactions of the Association for Computational

Linguistics, 3, 211-225.

Luong, M., Socher, R., & Manning, C. D. (2013). Better word representations with recursive

neural networks for morphology [Data set]. Paper presented at the Proceedings of the

Seventeenth Conference on Computational Natural Language Learning, 104-113.

https://nlp.stanford.edu/~lmthang/morphoNLM/

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word

vectors for sentiment analysis [Data set]. Paper presented at the Proceedings of the 49th

Annual Meeting of the Association for Computational Linguistics: Human Language

Technologies, 142-150. https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-

of-50k-movie-reviews

Mahoney, M. (2011). Large text compression benchmark [Data set]. http://mattmahoney.net

/dc/text8.zip

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word

representations in vector space [Data set]. arXiv Preprint arXiv:1301.3781.

http://download.tensorflow.org/data/questions-words.txt

43

Mikolov, T., Yih, W., & Zweig, G. (2013b). Linguistic regularities in continuous space word

representations. Paper presented at the Proceedings of the 2013 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, 746-751.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013c). Distributed

representations of words and phrases and their compositionality. Advances in Neural

Information Processing Systems, 26

Miller, G. A. (1995). WordNet: A lexical database for english. Communications of the ACM,

38(11), 39-41.

Nesi, H., Gardener, S., Thompson, P., & Wickens, P. (2008). British Academic Written

English Corpus [Data set]. Oxford Text Archive. http://hdl.handle.net/20.500.12024/

2539

Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A non‐negative factor model

with optimal utilization of error estimates of data values. Environmetrics, 5(2), 111-126.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word

representation. Paper presented at the Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), 1532-1543.

Qiu, Y., Li, H., Li, S., Jiang, Y., Hu, R., & Yang, L. (2018). Revisiting correlations between

intrinsic and extrinsic evaluations of word embeddings. Chinese computational

linguistics and natural language processing based on naturally annotated big data (pp.

209-221). Springer.

44

Rastogi, P., Van Durme, B., & Arora, R. (2015). Multiview LSA: Representation learning via

generalized CCA. Paper presented at the Proceedings of the 2015 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, 556-566.

Rong, X. (2014). Word2vec parameter learning explained. arXiv Preprint arXiv:1411.2738,

Schnabel, T., Labutov, I., Mimno, D., & Joachims, T. (2015). Evaluation methods for

unsupervised word embeddings. Paper presented at the Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing, 298-307.

Shalaby, W., & Zadrozny, W. (2015). Measuring semantic relatedness using mined semantic

analysis. arXiv Preprint arXiv:1512.03465,

Tatsuki, D. (1998). Basic 2000 words – Synonym Match 1 [Data set]. http://a4esl.org/q/j/dt

/mc-2000-01syn.html

Turney, P. D. (2001). Mining the web for synonyms: PMI-IR versus LSA on TOEFL. Paper

presented at the European Conference on Machine Learning, 491-502.

Vijaymeena, M. K., & Kavitha, K. (2016). A survey on similarity measures in text mining.

Machine Learning and Applications: An International Journal, 3(2), 19-28.

Wang, B., Wang, A., Chen, F., Wang, Y., & Kuo, C. J. (2019). Evaluating word embedding

models: Methods and experimental results. APSIPA Transactions on Signal and

Information Processing, 8

45

Appendix

Literature overview table

Study Main Findings Training Data Word-
embedding

Models

Evaluation
Methods

Consistency
Measures

Schnabel T. et
al. (2015)

Embeddings
should be
compared with
respect to the
given task.

Frequency
effects shed
doubt on the
utility of cosine
similarity as
similarity
measure.

All models are
built on a 103K
Terms 2007
Wikipedia
dump

Usage of the 6
different
embedding
models

Intrinsic:
6 word-
similarity tasks

4 categorizing
tasks

2 preference
selection tasks

3 word-analogy
tasks

1 comparative
intrinsic
evaluation task
Extrinsic:
1 coherence
analysis

1 sentiment
classification

1 noun phrase
chunking task

Using random
permutation
test for
comparative
intrinsic
evaluation,
coherence
analysis,
sentiment
classification
and noun
phrase
chunking to
measure the
significance of
resulting
metrics

Antoniak M.
et al. (2018)

Corpora’s
content has
significant
influence on the
model’s
performance in
similarity tasks.

Bootstrapping
allows to
compare models
while accounting
for the
significant
influence of the
composition of
the corpus

6 Different
corpora with
varying sizes
from 2 million
up to 20 million
words,
resulting in a
total of 59
million words

PPMI,
SGNS,
GloVe,
LSA

Intrinsic:
Only focus on
one word
similarity tasks

Measuring the
stability of
word
similarity task
performances,
against
different
training corpora
using
bootstrapping
to create
multiple
training corpora

46

Literature overview table continued

Study Main Findings Training Data Word-

embedding

Models

Evaluation

Methods

Consistency

Measures

Shalaby &

Zadrozny

(2015)

Introduction of
a novel
distributional
semantics
model MSA,
which holds up
in performance
to state-of-the-
art models.

52GB 2015
Wikipedia
Dump

Total of 13
different word
embedding
models

Intrinsic:
6 word-
similarity
tasks

First time
implemented the
Steiger’s Z
score to measure
difference
between
different
Pearson
correlation
coefficients in
word similarity
tasks

Wang B. et al.

(2019)

Giving
practical
guidance in
choosing the
optimal word
embedding
evaluation
methods for
specific
extrinsic tasks.

Semantic word
analogy tasks
result in the
overall highest
correlation with
extrinsic
evaluators.

10 GB
wiki2010
corpus

6 unique WE
methods

16 models in
total

Intrinsic:
13 word-
similarity
tasks

2 word-
analogy tasks

3 concept
categorization
tasks

2 outlier
detection
tasks

1 QVEC task

Extrinsic:
1 POS
tagging

1 chunking
task

1 NER task

2 sentiment-
analysis tasks

1 neural
machine
translation
task

Measuring
consistency of
evaluation
methods by
calculating
correlation
between
intrinsic and
extrinsic
evaluation
metrics

47

Literature overview table continued

Table 1: The table gives an overview of how previous scientific work used significance
testing for word embedding models, and how my work is to be classified compared to
previous work.

Study Main Findings Training Data Word-

embedding

Models

Evaluation

Methods

Consistency

Measures

Chiu et al.
(2016)

No and even
negative
correlation
between
intrinsic
evaluators and
extrinsic
evaluators.

Suggestion to
implement
extrinsic
evaluators
when assessing
quality of
embeddings.

Combination of
different
English corpora

Total of 3.8
billion tokens

Usage of only
Skip-gram but
with varying
window sizes

Intrinsic:
10 word-
similarity
tasks

Extrinsic:
1 POS
tagging

1 chunking

1 NER task

Calculation of
Pearson’s
correlation
coefficient
between intrinsic
and extrinsic
task
performances
over different
window sizes

Rastogi et al.
(2015)

Introduction of
a new word
embedding
model MVLSA
with a fast
scalable
algorithm

Introduction of
MRDS to
measure
significance
between
correlation
values

Combination of
different
training corpora

Comparison of
MVLSA with
GloVe and
Skip-gram

Intrinsic:
13 word-
similarity
tasks

Computation of a
MRDS using
Steiger’s Z
score, to
calculate
significance
between
correlation
values and
determine the
best performing
models

My Work
(2023)

Many
evaluators for
word
embeddings,
used in
previous
scientific works
are outdated
and mostly
result
unreliable
findings

Combination of
different
training corpora

CBOW
GloVe
NMF (lower
benchmark)

Intrinsic:
2 word-
similarity
tasks

2 word-
analogy tasks

2 synonym
detection
tasks

Extrinsic:
2 text
classification
tasks

Usage of
ANOVA for
word similarity
tasks and KS-test
for remaining
intrinsic and
extrinsic tasks

48

Depiction of a simple neural network model

Figure 2: Depiction of a simple neural network model, (from left to right) with multiple
inputs, a single hidden layer, and a single output.

49

Detailed list of the composition of training corpora

BAWE word count

Genre Year 1 Year 2 Year 3 Master Total

Arts and Humanities 468,353 583,617 427,942 234,206 1,714,118

Life Science 299,370 408,070 263,668 441,283 1,412,391

Physical Science 300,989 314,331 426,431 339,605 1,381,356

Social Science 371,473 475,668 440,674 688,921 1,999,130

Total Word Count 1,440,185 1,781,686 1,558,715 1,704,015 6,506,995

Brown document count

Informative Prose

Reportage

Political Sport Society Spot News Financial Cultural Total

14 7 3 9 4 7 44

Editorial

Institutional Personal Letters to the Editor Total

10 10 7 27

Reviews

Total

17

Religion

Books Periodical Tracts Total

7 6 4 17

 Books Periodicals Total

Skills & Hobbies 2 34 36

Lore 23 25 48

Belles Letteres,

Biography,

Memoirs, etc.

38 37 75

Miscellaneous

Government

Documents

Foundation

Reports

Industry

Reports

College

Catalogue

Industry House

Organ

Total

24 2 2 1 1 30

50

Detailed list of the composition of training corpora continued

Learned

Natural

Science

Medicine Mathematics Social

Science

Political

Science

Humanities Technology Total

12 5 4 14 15 18 12 80

Imaginative Prose

 Novels Short Stories & Essays Total

General Fiction 20 9 29

Mystery 20 4 24

Science Fiction 3 3 6

Adventures 15 14 29

Romance 14 15 29

Humour 3 6 9

OANC word count

Spoken

Name Domain Word Count

Charlotte Face to Face 198,295

Switchboard Telephone 3,019,477

Total - 3,217,772

Written

Name Domain Word Count

911 Reports Government 281,093

Berlitz Travel Guide 1,012,496

Biomed Technical 3,349,714

Eggan Fiction 61,746

ICIC Letters 91,318

OUP Non-Fiction 330,524

PLOS Technical 409,280

Slate Journal 4,238,808

Verbatim Journal 582,384

Web Data Government 1,048,792

Total - 11,406,155

Corpus Total - 14,623,927

51

Detailed list of the composition of training corpora continued

Wikipedia word count

Domain Word Count

Politics 1,780,960

Wildlife 570,703

Materials 1,844,023

Physics 1,517,040

Clothing 781,867

Electronics 1,259,865

Fashion 954,265

Literature 885,906

Paper 1,335,596

Safety 2,823,224

Agriculture 2,269,449

Nutrition 2,979,198

Philosophy 2,048,109

Psychology 5,902,674

Rubber 906,576

Water 1,308,787

Total 28,452,800

Table 2: The table shows how the different corpora used for my model training are structured. The
“Matt Mahoney’s first 100 Million bytes” corpus is not listed in this table, since it only consists of the
first 100 million bytes of Wikipedia text and it is not disclosed which genres were looked at. The listed
corpora are mainly divided into different genres, domains, points in time, etc. Further, I need to
highlight that for all listed corpora in the table, only for the Brown corpus the composition of texts is
depicted in document count whereas for the rest it is depicted in word count.

52

GOOGLE dataset composition

Genre Example % To total questions Unique words pairs

Capital-common-country Athens : Greece;

Baghdad : Iraq

2.58% 23

Capital-world Abuja : Nigeria;

Accra : Ghana

23.14% 116

Currency Algeria : Dinar;

Europe : Euro

4.31% 29

City-in-state Huston : Texas;

Tampa : Florida

12.62% 47

Family Dad : mom;

He : She

2.58% 23

Adjective-adverb Calm : Calmly;

Lucky : Luckily

5.07% 32

Opposite Clear : Unclear;

Logical : Illogical

4.15% 29

Comparative Big : Bigger;

Short : Shorter

6.81% 37

Superlative Big : Biggest;

Tall : Tallest

5.74% 34

Present participle Dance : Dancing;

Play : Playing

5.40% 33

Nationality-adjective Albania : Albanian;

France : French

8.18% 41

Past tense Knowing : Knew;

Moving : Moved

7.98% 40

Plural-nouns Bird : Birds;

Onion : Onions

6.81% 37

Plural-verbs Eat : Eats;

Walk : Walks

4.45% 30

Table 4: The table shows the structure and important statistics of the GOOGLE word analogy
test set. The first column shows the different genre of analogy questions, with the first 5 rows
being semantic questions and the rest morphological. Next, example questions from the
dataset are shown. In the last two columns the relative share of the questions to all questions
and the number of unique word pairs are presented.

53

BATS dataset composition

Main Category Subcategories Examples

Inflectional

Morphology

Nouns student:students, wife:wives

Adjectives strong:stronger, strong:strongest

Verbs follow:follows, follow:following, follow:followed,

following:follows, following:followed, follows:followed

Derivational

Morphology

Stem Change

bake:baker, edit:editable, continue:continuation,

argue:argument

No Stem

Change

create:recreate, home:homeless, mad:madness, able:unable,

usual:usually, used:overused

Lexicographic

Semantics

Hypernyms turtle:reptile, peach:fruit

Hyponyms color:white

Meronyms car:engine, sea:water, player:team

Antonyms up:down, clean:dirty

Synonyms sofa:couch, cry:scream

Encyclopedic

Semantics

Animals cat:kitten, dog:bark, fox:den

Geography Athens:Greece, Peru:Spanish, York:Yorkshire

People Lincoln:president, Lincoln:American

Other blood:red, actor:actress

Table 5: Adapted from “Analogy-based detection of morphological and semantic relations
with word embeddings: What works and what doesn’t.,” by A. Gladkova, A. Drozd, and S.
Matsuoka, 2016, Proceedings of the NAACL Student Research Workshop, p. 10. Copyright
2016 by Association for Computational Linguistics.

