
Erasmus University Rotterdam

Erasmus School of Economics

Master Thesis – Data Science and Marketing Analytics

Knowledge Injection into a Transformer-
Based Recommender System: An Online

Grocery Shopping Dataset

Max van de Kamp (60112)

Supervisor:

Luuk van Maasakkers

Second Assessor:

Dr. Michiel van Crombrugge

February 6, 2023

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second
assessor, Erasmus School of Economics or Erasmus University Rotterdam.

.

Abstract

In the age of online shopping, recommender systems are an essential tool for businesses to

understand and anticipate the purchasing patterns of their customers. These systems help

customers navigate through vast product offerings and improve their shopping experience,

ultimately leading to customer loyalty and satisfaction. In this thesis, we present a novel type

of recommender system called KI-BaskERT, which is specifically designed for session-based

recommendations for basket completion. KI-BaskERT combines the state-of-the-art concept of

knowledge injection with a transformer network-based recommender system. We first review

the literature on recommender systems and describe in detail how KI-BaskERT is constructed,

including the key components of the transformer network, specifically the BERT architecture

and its attention mechanism and masked modelling training procedure. The results of this

research indicate a significant improvement in performance of our KIBaskERT model when

compared to the model that does not utilize knowledge injection.

.

Contents
1 Thank Word 2

2 Introduction 3
2.1 Problem Description . 4
2.2 Research Objective . 6

3 Literature Review 8

4 Data 14

5 Methodology 18
5.1 Training Procedure . 18
5.2 KI-BaskERT Model Architecture . 22

5.2.1 Product Embedding . 22
5.2.2 Encoder . 24

5.2.2.1 Attention Mechanism . 26
5.2.2.2 Multi-Headed Attention . 31
5.2.2.3 Feedforward Neural Network 33

5.2.3 Knowledge Injection . 35
5.2.4 Cross-Entropy Loss & Accuracy . 38

6 Results 39
6.1 Determination of the hyperparameters . 39

6.1.1 Dropout . 40
6.1.2 Layers and Heads . 40
6.1.3 Proportion of Knowledge Injection 41

6.2 Comparison of the models . 42

7 Conclusion 44

8 References 49

9 Appendix 54
9.1 Appendix 1 . 54
9.2 Appendix 2 . 55
9.3 Appendix 3: T-Tests . 55
9.4 Appendix 4: Demonstration of the KI-BaskERT recommender system 57

1

1 Thank Word

I would like to express my sincerest gratitude to my supervisor, Luuk van Maasakkers, for

his invaluable guidance and support during the process of building and training the KI-

BaskERT recommender system. His expertise as a neural network specialist from Erasmus

University Rotterdam, as well as his patience and helpfulness, made this project a success. I

have immense respect for him and without his help, this thesis would not have been possible.

Thank you, Luuk.

2

2 Introduction

The digital revolution in the last decades has altered the rules of communication, personal

relationships, businesses, and the way people occupy their time. Linked to this revolution

is electronic commerce, better known as e-commerce, which can be seen as the whole of

commercial activities carried out via the internet (Knight & Mann, 2017). E-commerce has

become an integral part of the global business environment nowadays. The increase in the

global availability of electronic equipment and the consequent technological development in

services offered via the internet have led to a trend towards more e-commerce (Jamsheer,

K., 2019).

With internet access and usage growing rapidly worldwide, the number of digital con-

sumers continues to increase every year. To get a sense of this enormous growth, e-commerce

sales in 2021 in the retail sector globally reached about 4.65 trillion euros. This figure is

expected to rise by 50% over the following four years, to approximately 7.02 trillion euros in

2025 (Pasquali, M., 2022).

The main advantages of e-commerce over ordinary commerce are the easy comparison

of products and services of competitors, the 24-hour availability and convenience, that it is

a global market, comfortability, personalisation and at least the usually lower price as pure

online providers have lower costs for buildings and employees compared to brick and mortars

(Jamsheer, K., 2019).

The advantages, opportunities and tremendous growth of this sector have created one

of the largest transformative industries on the planet, leading to a huge competitive market

in which new players are constantly entering and trying to capture a share of the market

and its growth. This competition is reflected in the growth of the number of goods and

services offered online, the fact that more and more offers and discounts are provided, the

facilitation of payment procedures, as well as the facilitation of the searching process for

goods and services for customers according to their preferences. In this work, research will

be conducted on the latter topic, the facilitation of the search process for customers.

3

2.1 Problem Description

At the end of the last century, it was realised that companies must change from a world of

mass production where the focus is on selling standardised products in homogeneous markets

to one of mass customisation and variety. At the very least, companies should be able to

offer products that meet the diverse needs of their diverse consumer base. In this sense,

e-commerce had not necessarily enabled companies to produce more products, but it has

enabled them to serve consumers with a wider range of products (Schafer et al., 2001).

Due to this explosive increase in the number of products and services offered online,

it became increasingly difficult for the customer to find the products that are relevant to

him/her. Whereas physical shops can only display part of their product range, online shops

do not face this limitation. This is both an advantage and a disadvantage because the

question that arises is which products to show to which specific customer. On the other

hand, consumers do not have the capacity or the time to browse through all the thousands

of products of an e-commerce website to search for the desired product. It was realised that

e-commerce websites must be adapted and personalised to the customer. In the late 90’s,

Jeff Bezos, Amazon’s still current CEO stated: “If I have three million customers on the

web, I should have three million stores on the web”.

Mainly due to the increasing capabilities of the Internet technology and the growing e-

commerce market, the demand for recommender systems that could recommend the most

suitable products to specific customers became more necessary than ever. In addition to just

their functionality, recommender systems have many advantages for e-commerce companies.

Three major ways in which recommender systems enhance an e-commerce system is by

assisting buyers who have no prior experience of online purchasing, by cross-selling products

to regular customers, and by creating greater customer loyalty.

In the literature, recommender systems are defined as “information filtering systems that

address the problem of information overload by filtering critical information fragments out

of a large amount of dynamically generated information based on consumers’ preferences,

interests, and past behaviour” (Isinkaye et al., 2015). An alternative definition for a recom-

mender system given by Apáthy, S. (2022) is “An information filtering system that assists the

4

consumer in a particular decision-making situation by narrowing down the range of possible

choices and prioritising related elements in the specific context”. Prioritisation can be based

on the explicit or implicit preferences expressed by the consumer as well as on the previous

behaviour of consumers with similar preferences. Explicit preferences are preferences that are

obtained via direct participation of the user. These preferences can for example be gathered

by implementing a like/dislike button in a movie recommender system. Implicit preferences

on the other hand are preferences where no specific user participation is needed. Here the

system automatically tracks the users’ preferences by observing the performed interactions

with the system such as where a user has clicked or how long they have been visiting a page

for example. In conclusion, both definitions mention the process of narrowing the number

of displayed products based on explicit or implicit behaviour and context.

As inferred, recommender systems are not a recent invention. The recommender system

was first introduced in the 90’s - in a very rudimentary form - as a novelty, but it has

become indispensable in today’s e-commerce environment. However, faster, more intelligent,

and more efficient recommender systems are constantly being developed by researchers to

anticipate customer preferences and purchase context even better as well as obtaining a

competitive advantage for companies.

These more sophisticated recommender systems result from the explosive growth of ar-

tificial intelligence and machine learning capabilities and applications over the course of the

last two decades. This work will focus on neural networks, a form of deep machine learn-

ing algorithms that are already well established in the machine learning field, but of which

constantly improved, and more intelligent modifications are being developed (Jannach, D.

et al., 2021). More specifically, the focus is on Transformer-based neural networks that were

introduced in 2017 by a team from Google Brain in the ground-breaking paper Attention is

all you need by Vaswani, A. et al. (2017). Building transformer networks presents significant

challenges, including the substantial data requirements and extensive training time even

with high-performance hardware, without guaranteeing accurate predictions. Nonetheless,

earlier studies (Sun et al., 2019; Bianchi et al., 2020) have demonstrated the potential of

transformer networks for creating effective recommender systems. This work aims to address

the issue of accuracy and endeavors to enhance the performance of these complex networks.

5

2.2 Research Objective

The objective is to construct an improved type of recommender system in an e-commerce

setting named KI-BaskERT based. The name of this model is divided into several parts,

namely the first two letters stand for novelty this work attempts to bring, namely Knowledge

Injection. Followed by the word BaskERT which refers to the BERT architecture derived

from the transformer model introduced by Google. And finally, Bask stands for the applica-

tion to the completion of baskets of products. Although there exist similar applications in

the marketing domain related to the transformer networks, the novelty brought by this work

will be the addition of the concept of Knowledge Injection. In the methodology section the

concept of Knowledge Injection will be discussed in more detail. Expressed briefly, the aim is

to inject additional knowledge about the products during the training of the model in order

to make the model more intelligent in recognising structures in the data. It is expected that

with the additional knowledge about the products in the baskets, the KI-BaskERT model

will outperform its predecessors. This brings us to the following research question with

sub-questions:

• How can theory and insights from related and prior transformer network-based rec-

ommender systems combined with the state-of-the-art concept of Knowledge Injection

be deployed to develop a novel type of recommender system in an online shopping

environment?

– To what extent can we correctly predict which products a customer will buy or

would like to buy and then recommend them based on products from the current

basket when using knowledge injection in transformer networks?

– Will Knowledge Injection in transformer networks provide increased accuracy in

predicting the next product in the basket compared to previous models without

Knowledge Injection?

This study will be carried out by first training and using a BaskERT model without

Knowledge Injection to compare it with the results of the KI-BaskERT model both applied

to the Instacart Shopping dataset. The proposed model will be, to our knowledge, the

6

first BERT-based model that uses Knowledge Injection in a recommender system related

context. This fills a gap in the literature as these transformer networks are mainly studied

in the Natural Language Processing (NLP) environment but have few applications in the

marketing field. Knowledge Injection already shows promising applications in the Natural

Language Processing field, making this a valuable study.

Following this introduction is the literature review section in which the most impor-

tant concepts in the existing literature regarding recommender systems, neural networks,

transformer networks, BERT and knowledge injection will be reviewed. The subsequent

section is the data section discussing the Instacart Shopping dataset and its characteristics.

Thereafter, in the methodology section, the complete KI-BaskERT model will be elaborated

upon in order to interpret the results in the succeeding section. Finally, the conclusion and

potential areas for improvement will be presented.

7

3 Literature Review

The invention of the traditional recommender systems dates to 1992, back when e-mail

was becoming popular. People were flooded with emails and could not distinguish between

relevant and irrelevant emails. This gave rise to a novel filtering system called Taperstry

invented by the Xerox Palo Alto Research Center that worked based on a technique called

collaborative filtering (Goldberg, Nichols, Oki, & Terry, 1992). This technique was also

applied to build the first recommender systems and was soon followed by the second most

important filtering technique named content-based filtering. These two techniques are still

used in many applications today and dominated the landscape for many years. Collaborative

filtering and content-based filtering recommender systems both base their recommendations

on historical interactions and user/item characteristics. Content-based recommendations

are primarily based on the specific item and profile characteristics of the user, whereas

collaborative filtering systems look for the preferences of a similar audience (Sciforce, 2022).

Matrix factorisation has been the most widely adopted method for constructing recom-

mender systems among all collaborative filtering techniques. This approach involves project-

ing customers and products into the same vector space and maximizing their inner product

(Koren, Y. & Bell, R., 2011; Salakhutdinov, R. & Mnih, A., 2007). However, despite its years

of success, researchers gradually realised that with the increasing complexity of the problem

setting, such as the surge in the number of variables and product sequence length, these

techniques led to reduced accuracy in many cases. A significant limitation was observed in

their performance with session-based data, where the model relies on information from a

brief period, such as a customer’s short visit to a website. (Hidasi, B. et al., 2015).

Later with the emergence of deep machine learning algorithms, stimulated by the broad

success in other application areas including speech and image recognition (Russakovsky et al.,

2014; Hinton et al., 2012), neural networks were also applied to build recommender systems.

Many different types of neural networks such as feedforward neural networks, convolutional

neural networks, recurrent neural networks, and combinations such as recurrent convolutional

networks were proposed and tested. As recently as 2015, recurrent neural networks were

used to develop recommender systems as a solution for session-based data and to consider

8

the sequence of clients’ purchases, as previous techniques were unable to do so (Hidasi, B.

et al., 2015; Donkers, T. et al., 2017).

The standard paradigm of recurrent neural networks was to encode a client’s historical

interactions in a vector using a left-to-right sequential model. Products were presented in

a sequence and the model used the information about the products at that step to predict

the next product in the sequence. Despite being prevalent and efficient, left-to-right unidi-

rectional models have been criticized for their inadequacy in learning and modeling optimal

representations for clients’ behavioral sequences. The main drawback of such recurrent neu-

ral networks is that each item in the sequence can only encode the information of previous

items and cannot grasp the full historical sequence of products (Lipton, Z. et al., 2015; Sun,

F. et al., 2019).

From that moment on, numerous attempts have been made to increase the capabilities

of recurrent neural networks and encoder-decoder architectures (Jozefowicz R. et al 2016;

Wu, Y. et al, 2016). These networks confronted severe limitations when working with long

sequences, as their ability to retain information from the first inputs was lost when new

inputs were added to the sequence.

The real breakthrough came in 2017 through a work by Vaswani, A. et al. in the paper

Attention is all you need (2017). The authors proposed a simple but powerful network

architecture for automatic multilingual translation, named the transformer network. Like

most competing neural sequence translation models (Bahdanau, D. et al., 2014; Cho, K.

et al., 2014), the transformer network utilises an encoder-decoder architecture. However,

the major innovation brought by their work is the attention mechanism. The attention

mechanism enables the encoder to process the input text sequence by seeking out important

parts and generating a word embedding for each word depending on its relevance to other

words in the sentence. To clarify, a word embedding is the numerical representation of a word

determined in a vector that the model employs to identify a word. After the encoder has

processed the sequence, the decoder leverages the output of the encoder, i.e. the embeddings,

and converts those embeddings back into a text output in a different language. The attention

mechanism enabled the encoder to focus, i.e. draw attention, to certain parts of the sequence

to understand context while ignoring irrelevant parts of the input sequence. The transformer

9

architecture made training the network significantly faster due to parallelisation and showed

increased accuracy in translation tasks compared to previously discussed neural network

architectures.

It was quickly realised by researchers that this type of attention mechanism could have

many promising applications beyond text translation. It would not take long until Devlin,

J. et al. published another important work named BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding (2018) in which the authors proposed a new ar-

chitecture derived from the previously described transformer networks for Natural Language

Processing (NLP). As its name suggests, the aim of this model was not to translate, but to

understand and represent language in the most accurate way by using the attention mecha-

nism to comprehend the context of the input sequences.

The decoder side of the original transformer network architecture was discarded, and

BERT was constructed using a multi-layer encoder architecture which is no different from

stacking multiple transformer encoders. The purpose of the encoders is to process the input

sequence and encode, compress, and summarise the information with the help of the attention

mechanism to generate improved embeddings that result in more accurate text representa-

tions. The novelty brought by this work was the use of a “Masked Language Model” (MLM)

training objective also referred to as the Cloze task (Taylor, W.,1953), making the model

bidirectional. This technique involves randomly masking words from the input sentences

during the training phase of the language model and having the model predict these masked

words. By masking just a few words and allowing the model to look at the rest of the

sentence, the authors obtained bidirectionality. This bidirectionality was a big improvement

since previous transformer-based architectures such as OpenAI’s GPT did not allow this,

which constrained the choice of architectures at the training phase.

In 2019, researchers from Alibaba Group implemented the BERT architecture for an

in-session recommender system in their work BERT4Rec: Sequential Recommendation with

Bidirectional Encoder Representations from Transformer (Sun, F. et al., 2019). The authors

argue that the BERT architecture is more suitable than unidirectional models as they can

only process the sequence of products from left to right. Such left-to-right encoding limits the

model to comprehend the full sequence of products in the basket, i.e. the context they appear

10

in, as each product can only encode the information of the previous products in the sequence.

Sun, F. et al (2019) mention two important disadvantages of such left-to-right architecture:

“unidirectional architectures limit the power of hidden representation in users’ purchase

sequences, and they often assume a strictly ordered purchase sequence, which is often not

the case in practice”. An additional disadvantage of unidirectional architectures is that they

impede parallelisation since one must “wait” for the entire sequence to be processed one by

one. To overcome these shortcomings, the authors designed a bidirectional recommender

system for modelling customer behavioural sequences that can exploit the contexts of both

the left and right parts of the sequence of products to base its predictions on.

A similar study by Bianchi, F.et al. (2020) compared the accuracy of product embed-

dings produced by BERT and the embeddings of the prod2vec method through comprehensive

experiments on different commercial datasets (Grbovic, M. et al., 2015). Product embed-

dings, like word embeddings, are the numerical representation of a product in a vector of

a predetermined size. The authors found that the product embeddings produced by BERT

showed significantly higher accuracy and improved contextual comprehension. Compared to

the study on BERT4Rec that uses academic datasets, in this research datasets of existing

anonymous companies are used. However, a critical note is made by the autors that for

accurate product embeddings generated by the BERT architecture, there is a need for a sig-

nificantly large number of training data observations, making such an implementation only

valuable for large companies with a lot of data.

The original BERT model from Devlin, J. et al. (2018) was designed for Natural Language

Processing (NLP) tasks and is therefore trained on large-scale open-domain textual corpora

including the full corpus of Wikipedia to acquire general language representations. After

the pre-training phase comes the fine-tuning phase where the language model is adapted for

downstream tasks, e.g. question answering, classification, named-entity recognition. This

can lead to a discrepancy between the general knowledge that the model possesses and the

domain-specific downstream tasks for which it is tailored. For instance, BERT, which is

pre-trained on Wikipedia, cannot fully live up to its value when it comes to tasks in the

medical world, such as medical records analysis.

To overcome this, Liu, W. et al. (2020) propose K-BERT to enable language representa-

11

tion with Knowledge Graphs for BERT, thereby achieving the possibility of common-sense

or domain knowledge in a Natural Language Processing setting. This research is very much

in line with the research proposed in this work as the authors inject knowledge into the

model using Knowledge Graphs. This is done by adding domain-specific words to each word

in a sentence, by using triples of words, to create sentence trees that make the embeddings

of the words more meaningful for that specific domain.

In their research, domain knowledge from three Chinese Knowledge Graphs (CN-

DBpedia, HowNet and MedicalKG) was injected into sentences as they perform various

NLP tasks, while using the pre-trained parameters from the original BERT model. In this

way, the researchers try to mimic the way human experts make inferences regarding relevant

knowledge. For instance, a doctor reading a medical text will recognise and understand

certain medical terms that an average reader will not. By knowing those particular words,

the doctor can make inferences to understand the text. In the setting of BERT, the

pre-trained BERT is the average reader and Knowledge Graphs can help BERT to make

inferences to words in order to possess domain knowledge.

Previous resarch has proven that incorporating additional information of products in

models like recurrent neural networks and convolutional neural networks can increase the

performance of recommender systems. In 2016, Hidasi, B. et al. proposed a parallel recurrent

neural network that consists of multiple recurrent neural networks, one for every represen-

tation/aspect of the product to be predicted including one for the product ID, the product

image and one for the textual information. Afterwards, the hidden states of each network

are aggregated to obtain the scores for the most likely products to be recommended.

On the other hand, Tuan, T. X., and Phuong, T. M.(2017) present a different approach.

In their work they propose an 3D convolutional neural network to predict the next item to

be added to an online shopping cart by allowing to combine different product information,

e.g. product ID, product name and other relevant metadata. All the additional information

is incorporated by using one character-level encoded matrix where the aggregate information

is contained in a concatenated matrix. This concatenated matrix is then fed to the neural

network.

One can say that different ways of adding additional information are still being explored.

12

However, to our knowledge, this has not yet been applied in a recommender system setting to

the new BERT architecture. The novelty brought by this work is the concept of Knowledge

Injection for a BERT architecture recommender system. The extra knowledge/information

that is injected, is the aisle or department information to which the products belong to

allow the network to better understand the context of the baskets. To give a practical

example, imagine a customer wants to bake a cake and therefore needs ingredients such as

flour, sugar, eggs, chocolate baking chips etc. Flour and sugar are two products from the

“baking ingredients” aisle. Including that both of those products belong to the same aisle as

supplementary information to the recommender system, the system will better understand

how the products flour and sugar relate to each other. We expect the model to become better

at understanding the relationships between products by including the aisle or department

information and therefore making better recommendations based on which products are in

the in-session based basket of the customer.

Important to mention here is that whereas the literature usually speaks of sequential

recommendation, i.e. taking into account the order and time in which a customer purchases

a certain product, this work does not take into account the order in which the products are

placed in the basket. In an e-commerce setting like Sun, F. et al. (2019), it is argued that

it is important that when one has bought an iPhone for example, that one offers a charger

afterwards. In this work however, the in-session based recommender system that is built does

not attempt to capture such patterns. The focus here is more on the context of the goods

purchased together and to better predict the next product based on that context. The order

in which the products are added to a basket is therefore irrelevant in this application. In

addition, this recommender system is for session-based basket recommendation and therefore

does not take into account a stretched time period in which different products are bought,

unlike the iPhone example.

13

4 Data

This section discusses all the important aspects of the publicly available Instacart Online

Grocery Shopping dataset (Instacart Market Basket Analysis | Kaggle, 2017) that will be

used to train and test the recommender system.

Instacart is a American company established in 2012 that specializes in offering a pick-up

service for groceries across the United States and Canada. Its services are available through

both a website and mobile application. Customers can place an order for groceries through

the platform, and a personal shopper is then assigned to collect the items from participating

retailers and deliver them directly to the customer. The dataset comprises information on

which products are purchased in a single purchase transaction, these purchased products are

also called a basket of products. The term basket will come up a lot in this work. A basket

consists of the selection of products a customer has picked via the Instacart app during a

session. As a result, Instacart has an enormous amount of data on what products are in the

baskets of its customers. The dataset was published in 2017 in an anonymised way to be

used for a competition to improve Instacart’s recommender system.

As widely recognized in the literature, training neural networks requires a large amount

of data to produce dependable outcomes. In line with this, the dataset used in this study is

suitable, as it contains over 3.2 million baskets collected from Instacart’s customers. However,

prior to feeding the KI-BaskERT model, the dataset needs to be cleaned and prepared.

To this end, products that were purchased infrequently were eliminated from the dataset.

Specifically, all products that were purchased less than 300 times throughout the dataset

(38, 251 products) were removed, resulting in a product range of 11, 426 products. This step

is critical, as the model’s ability to recognize structures in the dataset could be hampered

if many products in the dataset are purchased infrequently. Furthermore, this could lead to

the identification of insignificant relationships between products, ultimately resulting in an

inaccurate model.

In addition to reducing the product assortment, the dataset only includes baskets that

contain two or more products but less than or equal to 50 products. Baskets that contain

a single product are not useful for training the recommender system as no information is

14

available for the system to base its predictions on. Additionally, baskets with more than

50 products are considered oversized, as they inundate the model with excessive informa-

tion, reducing the coherence of products and creating inconsistencies and computational

power difficulties during the model’s training process. In addition, we do not observe

many baskets in the dataset with more than 50 products. Following the data cleaning

process, the dataset consists of a total of 3, 014, 658 baskets. In Figure 1, a histogram of

the basket sizes is presented, revealing that the majority of baskets contain less than 15

products, with an average of 10 products per basket and a standard deviation of 7.2 products.

0

50000

100000

150000

200000

250000

0 10 20 30 40 50
Number of products

F
re

qu
en

cy

Figure 1: Distribution of Basket Sizes among Customers

Figure 2 depicts a significant graph that showcases the most frequently purchased prod-

ucts. The graph displays the top 30 products sold along with their respective quantities, as

a proportion of the total number of baskets. Notably, the most popular products sold are

bananas, followed by organic bananas, which amount to 852, 015 purchases out of 3, 014, 658

baskets. Thus, on average, 28.26% of the baskets contain bananas. It is worth mentioning

that fresh fruits and vegetables dominate the top 30 most purchased products.

This examination of the most commonly purchased products is essential as it serves as

a benchmark for our trained model, both with and without knowledge injection. It enables

us to evaluate the model’s predictive value by comparing the accuracy of the model against

the benchmark model, which suggests the top 100 best-selling products for each product

15

recommended. The benchmark model will be elaborated on later in this work.

Carrots
Organic Gala Apples

Yellow Onions
Organic Large Extra Fancy Fuji Apple

Organic Half & Half
Sparkling Water Grapefruit

Organic Baby Carrots
Honeycrisp Apple

Organic Cucumber
Seedless Red Grapes

Organic Grape Tomatoes
Apple Honeycrisp Organic

Organic Lemon
Organic Fuji Apple

Cucumber Kirby
Organic Blueberries

Organic Zucchini
Organic Garlic

Organic Yellow Onion
Organic Raspberries
Organic Whole Milk

Limes
Strawberries

Large Lemon
Organic Avocado

Organic Hass Avocado
Organic Baby Spinach
Organic Strawberries

Bag of Organic Bananas
Banana

0e+00 1e+05 2e+05 3e+05 4e+05
Frequency

P
ro

du
ct

 N
am

e

Figure 2: 30 Most Frequently Purchased Products

The final step of the data preparation phase is to divide the dataset into a training

set, test set and validation set to evaluate the model efficiency. The training dataset is

used, as the name suggests, for training the model. It is used to fit the internal model

parameters. After this, the fitted model is used to make predictions on the observations in

the validation dataset to obtain a first unbiased evaluation on observations unseen by the

model. Different values for the hyperparameters are also examined on the validation set to

obtain the final model. Finally, the test dataset is a dataset used to conduct an unbiased

evaluation of the final model. Due to the large number of total observations, an 80 − 10 − 10

split was opted for, with 80% of the total observations, i.e. 2, 411, 727 baskets, composing

the training dataset, and the validation set and test set each consisting of 10% (301, 465

baskets) of the total number of observations. Thereby, all baskets were distributed in a

randomised manner across the training, validation, and test set. The literature frequently

mentions a method for enhancing the robustness of results, known as cross-validation, where

16

the data is iteratively divided into train, validation, and test sets through different splits,

and the performance measures are averaged over these splits. Unfortunately, implementing

this approach was not feasible within the constraints of time and computational resources of

this work. In Appendix 1, a representation of the data after data preparation can be found.

In order to incorporate additional knowledge into the model, we will utilise two datasets

in addition to the basket datasets described above. These datasets provide information

regarding the products’ corresponding aisle and department. During the training phase,

this information will be incorporated into the model by injecting it to the corresponding

products in the basket. The aisle dataset includes a total of 134 different aisles, such as

prepared meals, soap, coffee, and pasta sauces. The department dataset represents a higher

level of subdivision, with only 20 different departments such as beverages, bakery, frozen, and

breakfast. A depiction of the dataset that shows to which aisle and department a product

belongs can be found in Appendix 2.

17

5 Methodology

Previous research has shown that several neural network architectures, such as recurrent and

convolutional neural networks, have been successfully applied in the context of recommender

systems. However, these unidirectional architectures suffer from limitations, including the

inability to perform parallel computation and the restriction of encoding historical purchasing

interactions from left to right only. To address these deficiencies, this work proposes the use

of a bidirectional sequence model based on the BERT architecture. This architecture allows

the model to simultaneously view and process the entire sequence of products in a basket,

both left and right, to generate more contextualised product embeddings that result in

improved predictions. Sun, F. et al. (2019) and Bianchi, F. et al. (2020) previously showed

that recommendation systems applications based on the BERT architecture demonstrate

improvements over predecessors and are therefore suitable methods for modelling clients’

interests accurately.

The KI-BaskERT model that we introduce in this work is largely built upon the deep

bidirectional self-attention model BERT from the work from Devlin, J. et al. (2018) but

taken one step further with the novelty of Knowledge Injection. The inclusion of knowledge

injection is an attempt to improve the just-mentioned BERT-based recommender systems.

In the further course of the methodology section, the specific training procedure will be

explained as a starting point as it can be seen as a prediction task itself. Then, the inner

working of the BERT architecture including the ubiquitous method of self-attention (Vaswani

A. et al., 2017) will be demonstrated that helped improve the performance of neural machine

translation applications enormously. Afterwards, the explanation of the diverse methods for

integrating knowledge into the KI-BaskERT model will be examined. Lastly, the measures

for calculating our model performance will be elaborated upon.

5.1 Training Procedure

To effectively learn word characteristics and relations, the authors of BERT proposed a

training objective named Masked Language Modelling (Devlin, J. et al., 2018) inspired by

the Cloze task (Taylor, W.,1953). The Cloze task is often applied in primary schools to test

18

children their ability to understand context and vocabulary. Children are given a portion

of language where certain words are removed, and they are asked to complete the missing

words. Devlin, J. et al. (2018) replicated this task during the training phase of their language

model by simply masking some percentage of the tokens from the input sequence at random

and let the model predict those masked tokens, hence the name Masked Language Modelling.

The meaning of a token depends on the application, e.g. in natural language processing a

sequence of tokens may represent the words in a sentence, as opposed to in a recommendation

system where a sequence of tokens represents a basket of products. The authors would thus

feed the model with sentences where a percentage of the words are left out and let the model

predict these words. In our recommender system setting this means randomly masking a

product from a basket and letting the model predict that masked product. The training

objective can therefore intuitively be seen as a product prediction task itself. Since the

baskets of products from our dataset contain at most 50 products, and are therefore not

excessively large sequences, to train the KI-BaskERT model one random product from each

basket/sequence will be masked during training.

In practice we start with the complete training data containing 2, 411, 727 baskets in

total. A random selection of 128 baskets from the full training dataset is sampled, referred

to as a batch. This is because the training procedure is an iterative process in which small

pieces of data are processed by the model. The literature mentions taking a batch as a

fraction of the training dataset between 64 and 512 observations (Keskar, N. S. et al., 2016).

An excessive batch size may lead to a weaker ability of the model to generalise, which is why

128 was decided as the batch size in this work. In the subsequent step, the model randomly

replaces one product from each basket from the batch with the mask token. This masked

batch is fed to the KI-BaskERT model that computes probabilities per masked product per

basket based on the information about the composition and context of the basket. These

probabilities per masked product are determined in a vector in which each product of the

total product assortment is assigned a probability defining how likely it is that a product is

the masked product of that basket.

Subsequently, the performance of the model is calculated on the predictions of the batch.

To measure the performance, or rather the loss of the predictions accompanied with the cur-

19

rent internal parameter values, Cross-Entropy Loss (De Boer, P. T. et al., 2005) is used in this

work. Cross-entropy loss is widely used as a loss measure when optimising neural networks

that involve binary target values. It quantifies the error between the predicted values, i.e. the

outcome probabilities of the masked products, with the actual values and expresses this in

a single real number. The smaller the loss, the better our model performs. The computa-

tion of Cross Entropy Loss is formulated by: LCE = − 1
N

∑N
i=1 log(Prob(maskedproducti))

(Equation 1), where Prob(maskedproducti) represents the probability the model outputs for

the masked product of basket i. Thereafter, the logarithm is taken to project the probability

on a number between minus infinity and zero. Taking the logarithm is advantageous since

poor predictions, characterised by probabilities close to zero, result in a large negative value

after taking the logarithm, thus resulting in a high positive loss due to the minus sign in

the formula. Conversely, good predictions made by the model, i.e. probabilities close to one,

provide small negative values after logarithm and thus result in a low loss. The total loss is

calculated by averaging the loss values for all masked products of one batch. Since we have

a batch of 128 randomly selected baskets of which one product each is masked, N is 128 in

this application.

After the model has processed a batch, the resulting predictions are compared with the

true masked products by calculating the cross-entropy loss that examines “how far” the

predictions are from the real values. From this error, an update algorithm is used to adjust

the learnable parameters of the model to conceivably improve the model before the next batch

is processed. What these learnable parameters entail will be discussed later. This explains

why we feed only small, masked batches of training data to the KI-BaskERT model, as it is

an iterative optimisation process that updates the learnable parameters after each batch.

Upon completion of processing a batch, the internal model parameter values are updated

by calculating the gradients of the loss function with respect to the model parameters.

The update algorithm then attempts to find the optimal parameter values by examining

local minima of the loss function with respect to the model parameters. The gradients

of the loss function are used to guide the update algorithm in the direction of decreasing

loss. In the literature, examining these local minima is referred to as descending along the

gradient for finding the optimal values for a parameter, hence the name Gradient Descent

20

(Ruder, S. 2016). Stated otherwise, gradient descent aims to discover a set of internal model

parameter values that excel in accordance with our performance measure, cross-entropy loss.

More specifically, to build our KI-BaskERT model, we use the Adam optimiser algorithm, a

special gradient descent approach that is said in the literature to provide faster convergence

of model parameters. The exact internal workings of the Adam optimiser algorithm are not

part of this work, for which we refer to the literature (Kingma, D. P., & Ba, J., 2014).

When all observations from the full training dataset, drawn at random, have been pro-

cessed once by the model, this is referred to as an epoch. This means that each observation,

i.e. basket from the training dataset, has had an opportunity to exert its influence on the

internal model parameters. The complete training procedure consists of multiple epochs

until model convergence and all learnable parameters are optimised. By model convergence

we mean that the loss and accuracy of the model on the training dataset do not improve

significantly anymore by updating the model parameters. Considering the computational

resources available for this work, we take the cut-off of ten epochs, i.e. if over the most

recent ten epochs the loss and accuracy do not improve significantly anymore, the model has

converged and with a maximum of 70 epochs.

On figure 3 the training procedure is visualised for an example of one basket. In practice,

this procedure is performed on the whole batch at once. The way in which the model arrives

at these probabilities will be clarified later when we unravel the KI-BaskERT model.

Figure 3: Training Procedure for one basket

21

5.2 KI-BaskERT Model Architecture

The KI-BaskERT model architecture is predominantly derived from the BERT architecture

(Devlin, J. et al., 2018). BERT, in turn, is a derivative of the Transformer network. In-

spired by the success of the BERT architecture in understanding and representing text, this

architecture is adopted in this work to model sequential product recommendation. The fol-

lowing section will provide a more in-depth explanation of the product embeddings, a crucial

component of the model for understanding products. This will be preceded by a depiction

of the encoder and its various components including the self-attention mechanism and the

feedforward neural network.

5.2.1 Product Embedding

As briefly touched upon in the literature review, product embeddings are the numerical

representation of products in a vector. The model uses these vectors to identify and compre-

hend products. Product embeddings are one of the learnable parameters of the KI-BaskERT

model, i.e. they are updated after a batch is processed. Based on these product embeddings,

the model understands the composition of the baskets and leverages this information to make

predictions about the masked products.

At the end of the training process, we expect the model to have learned the similarities

and differences between products. These similarities and differences are reflected in the

product embeddings. By “similar”, we mean that certain values in the product embedding

vectors are the same or at least in the same direction (positive or negative). This can be

interpreted as a high-dimensional vector space, in which the embedding vectors represent

the products and similar products are close together in this high-dimensional vector space.

To illustrate this concept, consider the following example with four products: gouda cheese,

parmesan cheese, spaghetti, and toilet paper. It is expected that the product embeddings of

parmesan cheese and gouda cheese are very similar because they are both types of cheese.

In addition, the product embeddings of parmesan cheese and spaghetti are also likely to be

related because they are often used together in pasta recipes. On the other hand, toilet

paper is not related to the other products and is therefore expected to have a completely

22

different product embedding.

Determining the length of the embedding vector is an important architectural choice. A

trade-off must be made between the size of the embedding vector itself, the size of the product

assortment, the duration of the training phase and model performance. An embedding

vector that is too small may prevent the model from adequately encompassing the products,

resulting in low model performance. Conversely, larger product embeddings do provide

improved performance, but are accompanied by longer computation time during the training

phase. Additionally, larger product embeddings only provide enhanced model performance

to a certain extent, as embedding vectors that are too large can furnish the model with an

excess of information, hindering model convergence. A further disadvantage of excessively

large embeddings is the risk of overfitting, which is when a model performs well on the

training data but poorly on new data. This is because large word embeddings can contain

a vast amount of information and can be highly detailed, which can make it easier for a

model to memorise the training data rather than generalise to new data. To take all these

considerations into account while remaining in line with the work of Devlin et al. (2018), we

use the same ratio of embedding size to assortment size in this work. The implementation

of BERT utilised a vocabulary of 30, 000 distinct words associated with a word embedding

vector of size 768, hence a product embedding vector of size 294 is used in this work for a

product range of 11, 426 products.

When the model is invoked for the first time, the product embeddings are Xavier uniform

initialised. This means that the initial values of the product embedding vectors are set

randomly to values drawn from a Xavier uniform distribution in such a way that the variance

across all parameters is the same. These values are thus assigned in a random manner after

which they are updated after each batch processing. The following step the model is invoked,

the updated product embeddings are selected and further updated until model convergence.

23

5.2.2 Encoder

The encoders mainly define the architecture of the KI-BaskERT model. The purpose of the

encoders is to encode and process the information from the baskets by constantly producing

improved product embeddings that yield more accurate predictions. As can be observed

from figure 4, each encoder consists of two sublayers, namely a multi-head self-attention

mechanism and secondly a fully connected feedforward network which will be both outlined

in the subsequent sections.

Around every sublayer, a residual connection is employed to allow a smooth gradient

flow through the model. Residual connections are separate paths for the data to reach latter

parts of network by skipping some computations. In our model this means that the outcome

resulted from the previous sublayer is added back to the next sublayer outcome. In the

literature, it is claimed that the model converges faster with the use of a residual connection

(He, K. et al., 2016). Furthermore, Figure 4 demonstrates that before the masked baskets

are fed to the encoder, they are first converted to their corresponding product embeddings.

Lastly, the “x N” on Figure 4 refers to stacking multiple encoders on top of each other,

named layers, where the output of the prior encoder is the input of the subsequent encoder.

24

Figure 4: KI-BaskERT Architecture

25

5.2.2.1 Attention Mechanism The biggest novelty introduced in the Transformer net-

work is the addition of the concept attention. For a moment, consider the definition of the

word attention in psychology. Attention stands for the ability to actively process specific

information in the environment while ignoring other details. A neural network is considered

an attempt to mimic the human brain actions in a facilitated way. Similarly, the attention

mechanism is an attempt to implement the same action of selective concentration on relevant

parts of the basket while ignoring others. More specifically, the paper by Devlin, J. et al

(2018) refers to the concept of self-attention which comes down to allowing a token to look at

itself and the relation with other tokens in the sequence to enrich the embedding of the token

in question. Briefly applying this to our recommender system setting, self-attention allows a

product to look at or pay attention to the product itself and how it relates to other products

contained in the basket. The objective is to better understand the context in which products

are bought together and consequently enhance product embeddings with this information to

yield better model performance.

Remember the pasta recipe example, where spaghetti and Parmesan cheese are likely to

be frequently purchased together. If these products frequently appear together in the baskets

in the training data, the attention mechanism will will attach importance to this relation-

ship. Moreover, it will focus on this relationship while disregarding less important product

associations in the basket, such as the co-occurrence of pasta and toilet paper, which are not

typically related. The objective is to concentrate on the smaller yet meaningful segments

of the product sequence and ignore other parts. In practice, the model obtains this form

of attention by computing similarity scores between products. The advantage of the BERT

architecture demonstrated here is the bidirectionality that allows the model to immediately

capture significant relationships along both sides of the basket, which was not possible with

unidirectional architectures. In addition, it does not matter how far these products are apart

from each other in the basket, where recurrent neural network architectures did encounter

difficulties handling long sequences.

26

Attention is computed using an attention function that calculates for all tokens in a

sequence how relevant the token itself is and, the relationships with other tokens are in the

form of a similarity score. Devlin, J. et al (2018) define the attention function as:

Mapping a query and a set of key-value pairs to an output, where the query,

keys, values, and output are all vectors. The output is computed as a weighted

sum of the values, where the weight assigned to each value is computed by a

compatibility function of the query with the corresponding key.

This definition refers to queries, keys and values that are matrices obtained by multiplying

the product embedding by three different learnable parameter matrices. These learnable

parameter matrices, like the product embeddings, are parameters of the model that are

initialised at the beginning of the training phase to be updated during the training phase.

At first glance, the definition of attention and the meaning of the query, key and value

vectors seem opaque. An analogy can be made with the functioning of a search system such

as YouTube, for example. This search engine will match the search term entered, the query,

against the set of keys, which in this example are the names of the videos in the database.

To finally recommend a list, the values, of videos that best match the request. In our

recommender system setting this means matching a product name (the query) against all the

products in the product assortment (the keys) to suggest a list of best matching products (the

values). In practice, these are matrices filled with values on which mathematical operations

are performed. Therefore, let us see how this process works mathematically in the context

of a recommender system.

In the following example illustrated on Figure 5 the attention is computed for the second

product p2 in a single basket containing n products (maximum 50) where the sequence of

products is fed simultaneously to the attention mechanism. As can be observed on Figure

5, the first step considers the product embeddings of the different products in the basket

(p1, p2, . . . , pn). In what follows, all steps must be carried out on a product-by-product

basis. In the second step, the product embedding vectors are multiplied by their learnable

product-specific weights vectors W q, W k and W v to obtain the queries, keys, and values

vectors for each product.

27

Figure 5: Calculation of Attention for second product in a basket of n products

The third step is very important as the dot product is performed between the queries vector

(q2) of the product of which we are calculating the attention for, here the second product p2,

and the transposed keys vectors of the all the corresponding products in the basket. This step

is also called multiplicative attention which computes a form of similarity or compatibility

measure. Note that by this multiplication with the transposed keys vector, the resulting

similarity score is a real number. This real number is subsequently divided by the root of

the dimension of the keys vector to prevent the values from becoming too large to ensure more

stable gradients. All the outcomes resulting from step three are passed through a SoftMax

function. The SoftMax function, represented by σ(zi) = ezi∑K

j=1 ezj
for i = 1, 2, . . . , K

(Equation 2) is a normalisation function that transforms a sequence z of K real values into

a probability distribution with the property that all probabilities in that sequence sum up

to one. The SoftMax function hereby forces low or negative values to convert to very small

probabilities and high values to higher probabilities. This SoftMax outcome per product

28

indicates a score that expresses how much attention is paid at each product from the basket

and the product itself. Intuitively, a higher score indicates greater focus on the product itself

or other products in the basket.

Subsequently, in step four, these weighted SoftMax scores are multiplied by the value vec-

tors of the corresponding products. The intuition is to keep the value vectors of the product

or products we want to focus on intact and diminish irrelevant product value vectors. After

multiplication with the SoftMax score, more attention is given to high-scoring products and

conversely less attention to low-scoring products. Ultimately, the outcome of the attention

layer for the second product is obtained in step five by summing all the resulting value vec-

tors from step four. This amounts to a weighted average of all the value vectors based the

normalised SoftMax scores. This vector is added back to the original product embedding of

the second product of the specific basket by means of the residual connection to eventually

be fed to the feed-forward network, the second sublayer in the encoder block.

Retake the example basket consisting of the products pasta, parmesan cheese, and toilet

paper. We demonstrate the computation of attention for the product pasta. Remember

that pasta and parmesan cheese have some form of relationship as they are both ingredients

of a pasta recipe. Therefore, it is expected that pasta and parmesan cheese often appear

together in baskets as opposed to with toilet paper. In step three when computing the

similarity scores, the largest dot product value will be that of the pasta query with the

pasta key vector itself. Subsequently, it is expected that the dot product between the pasta

query and parmesan cheese key vector will provide a much higher value compared to the

dot product between pasta with toilet paper due to their relationship. Therefore, after the

SoftMax function, this low dot product value will be converted to a very low similarity

score. As a result, the values of the toilet paper value vector will almost be vanished after

multiplication with the low similarity score. This is important as we do not want to give

attention to this product. We eventually obtain the attention vector for the product pasta

as the weighted sum of the value vectors of all three products in the basket. The resulting

attention vector contains information about pasta itself but also about its relationship with

the product cheese, while omitting the association with toilet paper for that basket. The

attention mechanism thus implements the action of selective concentration on a few relevant

29

aspects of products while ignoring others by mathematical operations.

In practice, however, attention is not calculated for one product at a time with product-

level vectors but for all products in the basket together, using matrix operations to make this

process faster and computationally more efficient. In the original BERT paper this is referred

to as Scaled Dot-Product Attention (Devlin, J. et al., 2018). The first step in calculating

attention using matrix operations is depicted in Figure 6. Here, the product matrix P with

the rows representing the products in the basket and the number of columns being the size

of the product embedding, is multiplied by three learnable weight matrices W Q, W K and

W V to produce the queries, keys, and values matrices of a basket.

Figure 6: Calculation of Queries, Keys and Values matrices

The dimensions of the weight matrices are equal to the size of the product embedding

for both the number of rows and columns. In the next step, shown on Figure 7, the queries

matrix is multiplied by the transposed keys matrix to then be divided by the square root

of the dimension of the keys matrix dk. Thereafter, the entire matrix passes through the

SoftMax function with respect to the rows to become all the similarity scores for a basket.

This result is multiplied by the values matrix of the basket before arriving at the attention

matrix of that specific basket. Each row from the attention matrix A can be seen as the

30

weighted sum of the values vectors of all the other products weighted by the similarity

score determined by the SoftMax function. Consequently, information about the context of

the products in the basket and their relationships is stored in the attention matrix. The

attention matrix is added to the output of the residual connection to be fed to the feed

forward network in the subsequent sublayer as shown in Figure 4. Important to notice,

during the implementation of the KI-BaskERT model, a third dimension comes into play,

namely a dimension for the batch. This enables us to efficiently calculate attention for all

products in the basket, and for all baskets in our batch at the same time.

Figure 7: Scaled Dot-Product Attention

Mathematically the computation of the attention for one basket using matrix multipli-

cation is described as: Attention (Q, K, V) = softmax
(

QKT
√

dk

)
V (Equation 3) where Q, K

and V are the queries, keys, and values matrices of a specific basket, displayed in Figure 7.

5.2.2.2 Multi-Headed Attention The computation of attention is taken one step fur-

ther to what is called Multi-Headed Attention. This is a very clever and advantageous

extension of attention. It comes down to running the attention mechanism part as shown in

Figure 4 in parallel in the so-called heads, hence the multiple arrows on the figure leading

to the multi-headed attention mechanism. In other words, for each head, separate queries,

keys, and values weight matrices are initialised, which in turn provide different queries, keys,

and values matrices. This set of different queries, keys and values matrices is also referred

to as creating different “representation subspaces”. Attention with multiple heads allows

the model to simultaneously attend to information from various representation subspaces at

different positions. When there is only a single attention head, this is obstructed by averag-

31

ing. This has the great advantage for our recommender system that it allows the attention

mechanism to pay attention to different relationships or aspects of the sequence of products

in the basket.

Consider another example with a basket containing the products milk, bread, butter,

and eggs, and the goal of the recommender system is to make recommendations based on

these items. The recommender system in this example features a multi-headed attention

mechanism with two heads, which means that it can consider two different aspects of the

basket at the same time. The first head of the multi-headed attention mechanism will be

focusing on the relationships between milk and butter, and eggs and butter. These products

are often used together in cooking and baking recipes, so the model is considering the pos-

sibility that the client might be interested in baking recipes that include these ingredients.

The second head of the multi-headed attention mechanism is focusing on the relationships

between milk and bread, and eggs and bread. These products are often consumed together

as a breakfast meals or snacks, so the model is considering the possibility that the client

might be interested in breakfast recipes. By considering both relationships and aspects of

the input basket simultaneously, the model can make more accurate and personalised rec-

ommendations based on the specific context of the items in the shopping basket. In this

example, the model might recommend products related to a recipe for scrambled eggs and

toast, or a recipe for a milk-based smoothie to go with the bread.

Figure 8: Multi-Headed Attention

32

However, initialising separate queries, keys, and values weight matrices creates a compli-

cation, namely the feedforward network expects only a single matrix to process. If we work

with e.g. six heads, we will have six output matrices at the end of the computation of the

multiheaded attention. For this reason, the number of output matrices, depending on how

many heads there are, are concatenated and multiplied by another additional weight matrix

W O. This weight matrix is another learnable parameter of the model and therefore likewise

updated during the training phase. Because we get a large, concatenated matrix due to our

different layers, multiplying by W O ensures that the final output matrix of the multi-headed

attention mechanism achieves the desired dimensions for the feedforward neural network.

The resulting matrix F (shown in Figure 8) is essentially the product embedding matrix for

all the baskets in the batch but now added with attention, or in other words weighted by

the similarity scores determined by the attention mechanism. F is ultimately added to the

residual connection output to be sent through the feed forward network.

5.2.2.3 Feedforward Neural Network The feedforward neural network is the second

important sublayer (see Figure 4) of the encoder block. The output of the multi-headed

attention mechanism, i.e. the product embeddings of the baskets combined with the atten-

tion matrix, is used as input to the feedforward network to compute contextualised and

knowledge-enriched product embeddings. To do this, the feedforward network first unpacks

and expands the information from the product embeddings by incorporating non-linearity

into the model, and then repackages it to its original size. With the use of the update algo-

rithm, the feedforward neural network learns to map the input data to the desired output

by adjusting the weights and biases of the connections between the nodes. The feedforward

neural network is an essential component of the architecture because it enables the model

to learn complex relationships between the baskets with a masked product and the masked

product itself, and to make intelligent decisions based on those relationships. The result-

ing contextualised product embeddings are then used to produce scores about the masked

products, which are eventually converted into the final outcome probabilities.

The feedforward neural network is a type of neural network that is the earliest and

simplest form of a deep learning architecture. It is called “feedforward” because the data

33

flows only in one direction through the network, from the input nodes through any hidden

layers (which may consist of multiple layers) and finally to the output nodes. In contrast

to other types of neural networks, such as recurrent neural networks, feedforward neural

networks do not have feedback connections that allow data to flow in both directions. Each

layer of a feedforward neural network consists of nodes, and each node in a given layer

receives input from every node of the previous layer and sends output to every node in the

subsequent layer. This is known as being “fully connected”.

As for the size of the feedforward neural network for the KI-BaskERT model, there is

opted for a single hidden layer as this is sufficient for the majority of problems trying to solve

with a feedforward neural network. Regarding the size of the hidden layer, i.e. the number

of nodes in the hidden layer, the same proportion as in the original BERT paper is used.

Namely, the size of the hidden layer is set at four times the size of the embedding. A visual

representation of the network can be found on Figure 9.

Figure 9: Feedforward Neural Network

The mathematical representation of the implemented feedforward neural network in this

34

work is described as FFN (x) = max (0, xW1 + b1)W2 + b2 (Equation 4). In this equation,

x is the input of the network and consists of the output of the multi-headed attention

mechanism (see matrix F from figure 8) added with the output of the residual connection,

i.e. the baskets represented by their corresponding product embeddings. W1, W2, b1 and b2

are the learnable parameters of the feedforward network. The weights (W1, W2) regulate

the signal or strength of the connection between two layers in the network. In other words,

the weights determine how much influence the input (of that layer) has on that layer. More

specifically, they convey the importance of an input on the output. The biases (b1, b2), which

are constants, are an additional value to be added to the input of a layer after multiplication

with the weights. They can shift the input of the activation function or the final output.

The max-function in the formula is the Rectified Linear Unit (ReLU) activation function of

the hidden layer. It is a function that will output the inputs of the hidden layer directly if

the output is positive and will output zero otherwise. The main purpose of the activation

function is to introduce position-wise non-linearity into the output of a node, and it decides

whether a node will be activated or not. Notice that there are as many distinctive W1, W2,

b1 and b2 matrices as there are layers, i.e. encoders, in our model architecture.

To prevent overfitting, a computationally cheap and remarkably effective regularisation

technique named dropout (Srivastava, N. et al., 2014) is applied to our feedforward network.

Overfitting means that the model learns the statistical noise of the training data and therefore

performs poor on the unseen validation dataset. With dropout, randomly selected nodes

from the hidden layer are disabled making the training phase noisy on purpose, forcing the

remaining nodes in the hidden layer to probabilistically take on greater or lesser responsibility

in calculating the output. The reasoning behind this is that by dropping nodes randomly, one

can turn a single neural network into many different network architectures that function as

an ensemble of networks, thereby reducing overfitting. Different dropout rates are validated

in the results section to determine the optimal dropout rate.

5.2.3 Knowledge Injection

As discussed in the literature review, similar applications of the BERT architecture with its

multi-headed attention mechanism have already been investigated in a recommender system

35

setting and showed promising results. A successful implementation is the BERT4Rec model

proposed by Sun, F. et al. (2019). However, this model solely relies on product identifiers and

co-occurrences of products in the baskets and ignores other possible sources of information.

Here we propose four different approaches to incorporate additional information by including

the aisle or department information of the products into the model. We expect the model

to become smarter in recognising structures of the baskets. Retake the cake recipe example

where a client would like to bake a cake and therefore needs products including flour, sugar,

eggs, chocolate baking chips etc. Adding the aisle information to these products, we expect

the model to recognise that flour and sugar are related to each other as they belong to the

same aisle. We therefore expect that adding this additional information will provide more

accurate predictions on masked products.

Four different approaches of Knowledge Injection will be elaborated and tested to ul-

timately be compared with each other. The first approach is to reserve a percentage of

the embedding for aisle information. This is done by training a supplementary embedding,

namely the aisle embedding, in addition to the product embedding. These are merged into

the so-called total embedding just before going through the KI-BaskERT model. Different

percentages of allocation of aisle information from the total embedding are tested ranging

from 20% to 40%. If the total embedding for one product consists of a vector of length 294,

the first positions in this vector are filled with values from our known product embedding

and the last e.g. 20% of the positions in this vector are reserved and filled with data from

the corresponding aisle embedding values. The aisle information is pasted behind the prod-

uct embedding, so to speak. Since many products belong to a particular aisle, all products

belonging to the same aisle will show the same values for their last percentage of positions

of their total embedding. Since products become intuitively more similar in the high dimen-

sional vector space by allocating positions of the total embedding to the aisle information,

we hope that the model can now understand relationships between products more effectively.

The second approach is to train an aisle embedding alongside the product embedding that

is of the same length as the product embedding itself. The total embedding is then obtained

by adding the aisle embedding per product to the corresponding product embedding. As

a result, we are not bound by the number of positions of the vector representing the total

36

embedding that we must allocate to product information and aisle information. Note that

in previous approach we had to reserve a percentage of the positions of the vector for aisle

information by “pasting” it behind the product information. Now both product embedding

and aisle embedding are of size 294 and are added together before proceeding the attention

mechanism. This allows them both to possess and add the same amount of information

to the attention mechanism. If for each product the same values are subtracted or added

to its associated product embedding, determined by the values of the accompanying aisle

embedding, we expect that the model has received additional information and can therefore

make better predictions. In the literature, it is believed that summing the two embeddings

provides more desirable results since we are not bound by dimension differences (ENCCS,

2022). On top of that, one could also think of the concatenation of the previous approach

as an addition of the two embedding matrices where they contain zeros for the places where

they exclude each other.

The third approach is a variant of the first approach, now adding information is taken

one step further by adding the department information of the product on top of the aisle

information. There are even fewer departments than there are aisles so the total embedding

matrix will show a kind of cascading pattern of information. Namely, the first positions in

the product embedding vector are allocated to the product information values, followed by

a proportion of the positions allocated to the aisle information and department information.

Again, different proportions of allocation to aisle and department information will be tested.

We expect that this will further improve the model’s ability to recognise product subdivi-

sions. We make the analogy with a physical store, take the product Blueberry Muffins as

an example. If were go to a physical store and would search for it, we first need to go the

bakery department, then to the breakfast bakery department to find the muffins there. We

want to implement this same way of reasoning in the model via knowledge injection by first

including the department information and thereafter the aisle information.

A latter evident approach is to add the product, aisle, and department embeddings of the

same size for the corresponding products in the basket. We depart from the same reasoning

of adding embeddings as in the second approach. Now, three different types of information

are added together with the expectation of even better model performance.

37

5.2.4 Cross-Entropy Loss & Accuracy

To evaluate the performance of our models, we report the cross-entropy loss and accuracy.

The cross-entropy loss is the average loss over all predictions made in one epoch and is

defined in Equation 1 in the methodology section. Accuracy is defined in this work as the

ratio of the number of times the model correctly recommends the masked product in an

epoch to the total number of predictions made in that epoch. The models are allowed to

recommend the top hundred most probable products for each basket. If the masked product

is in this top hundred for that specific basket, the prediction is considered correct. If the

masked product is not in the list, the prediction is considered incorrect. We chose to allow

the model to recommend the top hundred products because it is unlikely that the model

will be able to predict the exact masked product from a product assortment of 11, 426 items

with a high probability. By allowing the model to recommend the top hundred products,

we give the model the opportunity to suggest its top 1% most probable products (0.875% in

reality). Additionally, it is more realistic for a recommendation system on a website or app

to suggest multiple products based on the composition of the basket instead of just one.

38

6 Results

In this section, we assess the ability of our Transformer-based recommender systems to

predict the masked product for a given basket. We also investigate whether the different

configurations of Knowledge Injection improve model performance by providing additional

information to the model.

Initially, various architectural choices must be made prior to arriving at the final models.

Consequently, we first validate various hyperparameters on the BaskERT model to subse-

quently implement them in our KI-BaskERT models. Thereafter, we present the results of six

different models. In addition to the results from the four configurations of the KI-BaskERT

model, we also report the results from two additional models: a BaskERT model without the

use of Knowledge Injection, and a benchmark model. The BaskERT model serves as a point

of comparison to assess whether the models with Knowledge Injection outperform the same

model without Knowledge Injection. Secondly, the benchmark model always recommends

the top hundred most purchased products for each masked product and does not rely on a

neural network or any learning process. Note, as a result this model does not produce any

loss values. We use the results of the benchmark model to determine whether our BaskERT

and KI-BaskERT models have explanatory value and learn meaningful structures in the

data.

6.1 Determination of the hyperparameters

Before we can assess our KI-BaskERT models on the test dataset, decisions must be made

about various hyperparameters, including the number of layers in the architecture, the num-

ber of heads in the multi-headed attention mechanism, the dropout rate, and the proportion

of Knowledge Injection (for the first and third approach). We report the results of different

model configurations of the BaskERT model without knowledge injection and use the opti-

mal hyperparameter values to evaluate our KI-BaskERT models. In what follows, the size

of the embedding will always be 294, as previously determined in the methodology section.

39

Table 1
Dropout

Model Dropout
Rate

Training
Cross-

Entropy
Loss

Training
Accuracy
(Top 100)

Validation
Cross-

Entropy
Loss

Validation
Accuracy
(Top 100)

BaskERT 0.00 6.983 0.413 7.024 0.408
BaskERT 0.10 7.090 0.398 7.115 0.393
BaskERT 0.25 7.199 0.379 7.205 0.378
BaskERT 0.50 7.401 0.346 7.402 0.346

6.1.1 Dropout

The BaskERT model with a product embedding of size 294 and 2 layers was tested with dif-

ferent levels of dropout to determine the optimal rate. The rates tested were: 0.00, 0.10, 0.25,

and 0.50, representing the proportion of random nodes in the hidden layer that are disabled

when the feedforward network is invoked. The results in Table 1 show that as the dropout

rate increases, loss increases and accuracy decreases. This suggests that higher dropout

rates cause the feedforward network to underfit the data, leading to a decrease in model

performance. Therefore, a dropout rate of 0.00 was chosen as there were no indications of

overfitting, which suggests that the model generalises well.

6.1.2 Layers and Heads

To determine the optimal number of layers and heads in the multi-headed attention of the

BaskERT model, we incrementally increased the number of layers and heads from 1 to

3. The results in Table 2 show that increasing the number of layers and heads improves

model performance. However, this improvement comes at the cost of an increase in the

average epoch duration. The average time per epoch increases significantly when going

from one layer and head to two. Specifically, the average epoch time increases by 15.82%.

Adding another layer and head results in another increase of 14.98% in the average epoch

time, but the improvement in model performance is lower in the latter case. We conclude

a diminishing marginal increase in model performance as the number of layers and heads

increase. Considering the limited improvement in performance and the substantial increase

40

Table 2
Layers and heads

Number of
layers and
heads

Average time
per epoch (in

seconds)

Training
Cross-

Entropy Loss

Training
Accuracy
(Top 100)

Validation
Cross-

Entropy Loss

Validation
Accuracy
(Top 100)

1 196 7.035 0.405 7.052 0.403
2 227 6.983 0.413 7.024 0.408
3 251 6.956 0.418 6.995 0.413

in training time, the final model chosen has 2 layers and heads, which provides sufficient

flexibility for the recommendation task.

6.1.3 Proportion of Knowledge Injection

The final decision to be made concerns the proportion of Knowledge Injection for the KI-

BaskERT models that allocate a part of their total embedding to aisle and/or department

information. These models concatenate the aisle and/or department embedding behind

the product embedding to become the total embedding. For the KI-BaskERT model that

concatenates the aisle embedding to the product embedding (first approach), different pro-

portions of Knowledge Injection are evaluated in Table 3 to determine their impact on the

model’s performance. To clarify, a proportion of 20% implies that the last 59 places of the

total embedding vector are reserved for values of aisle embedding. For propotions 30% and

40%, these are 88 and 118 places respectively.

According to Table 3, the most favorable result is obtained when 30% of the total embed-

ding is allocated to aisle information. Furthermore, it can be observed that both insufficient

and excessive allocation of aisle information can negatively affect the model’s performance,

although the differences in performance are minor. Therefore, in the subsequent comparison

of the models, we choose to allocate 30% of the total embedding to Knowledge Injection

for the models that concatenates aisle and/or department. For the KI-BaskERT model that

concatenates both the aisle and department information, this 30% is further divided with

half being assigned to aisle information and the other half to department information.

41

Table 3
Proportion of Knowledge Injection for KI-BaskERT that concatenates product and aisle

embedding

Proportion of
Knowledge
Injection

Training
Cross-Entropy

Loss

Training
Accuracy (Top

100)

Validation
Cross-Entropy

Loss

Validation
Accuracy (Top

100)
0.2 7.062 0.402 7.063 0.402
0.3 6.954 0.418 6.990 0.414
0.4 6.977 0.417 7.014 0.411

6.2 Comparison of the models

After determining the hyperparameters, we can evaluate the performance of our six mod-

els by comparing their cross-entropy loss and accuracy on the test dataset. As previously

mentioned, all of our models (except the benchmark model) have a two-layer architecture

and utilise a multi-headed attention mechanism with two heads, a feedforward neural net-

work with 1176 hidden nodes, a product embedding of size 294, and a dropout rate of 0.00.

Lastly, it was decided to allocate 30% of the total embedding to aisle and/or department

information for the KI-BaskERT models that assign a portion of their total embedding to

aisle and/or department information (first and third approach of Knowledge Injection).

The outcomes of this comparison are presented in Table 4, where the performance on the

test dataset is reported. It is crucial to evaluate the models on the test dataset, as this data

has not been utilised during the training and validation phase and provides the most reliable

indication of the models’ ability to generalise to previously unseen data. Table 4 reveals a

large, significant difference in accuracy between the benchmark model and the other models

(p < 0.05). See Appendix 3 for a more detailed description of the performed T-tests. This

indicates that our Transformer-based recommender systems have effectively learned valuable

structures from the data and, as a result, have provided improved product recommendations.

Our results thus demonstrate that the use of a Transformer-based recommender system leads

to a 68.91% increase in model accuracy compared to the benchmark model.

The second and most important finding related to our research question is that we find

a highly significant difference in terms of performance between the BaskERT model and the

KI-BaskERT models (p < 0.05) except for the KI-BaskERT model that adds the product,

42

aisle and department embedding (last approach). Again, we refer to Appendix 3 for the T-

test statistics. Almost all our attempts to incorporate additional knowledge have significantly

improved the performance of the recommender system. The KI-BaskERT model that add

the product and aisle embeddings to create a total embedding demonstrated the lowest

cross-entropy loss and highest accuracy on the test dataset. This is consistent with previous

research which suggests that adding embedding vectors is more effective than concatenating

them (ENCCS, 2022). More specifically, we see an increase in accuracy of 4.01% of the

KI-BaskERT model that adds the product and aisle embedding versus the BaskERT model.

Furthermore, our findings reveal that the incorporation of department information in the

latter approaches resulted in a slight decrease in performance compared to the KI-BaskERT

models that only inject aisle information. Adding the product, aisle and department embed-

dings even leads to an insignificant difference in performance (p > 0.05) compared to the

BaskERT model. This is likely due to the excess of information being added, as the model

performance decreased. Our hypothesis that incorporating department information in ad-

dition to aisle information would result in a finer subdivision of information and therefore

improved model performance has not been confirmed. The models that incorporate or add

solely aisle information resulted in the highest accuracy compared to the other models, indi-

cating that in this application the recommender system does not benefit from the additional

source of department information.

43

Table 4
Comparison of the models

Model Test
Cross-Entropy

Loss

Test Accuracy
(Top 100)

Accuracy
Standard
Deviation

Benchmark / 0.243 0.038
BaskERT 7.01 0.409 0.043
KI-BaskERT: concatenating
product and aisle embedding

6.99 0.415 0.043

KI-BaskERT: adding product
and aisle embedding

6.926 0.426 0.044

KI-BaskERT: concatenating
product, aisle and department
embedding

7.009 0.412 0.045

KI-BaskERT: adding product,
aisle and department embedding

7.016 0.411 0.043

7 Conclusion

In today’s digital age, the interaction between humans and machines has become increas-

ingly prevalent and complex. As technology continues to advance, machines will play an

increasingly important role in shaping human online behaviour and decision-making. In the

business context, recommender systems are becoming increasingly important as they help

guide clients through the vast array of products and services offered online. These systems

are expected to becoming even more crucial in the future as the number of products and

services offered online continues to grow and therefore the need for personalised recommen-

dations becomes more urgent. For this reason, it is essential that improved recommender

systems are constantly being developed, ensuring to respond appropriately to this increas-

ingly complex task. In this thesis, the aim is to contribute to this effort by conducting a

study on the bidirectional KI-BaskERT model, a recommender system that leverages the

encoders of the transformer network and incorporates the state-of-the-art concept of Knowl-

edge Injection with the expectation to improve the accuracy of product recommendations in

a session-based recommendation setting. After providing an introduction and a literature re-

view on the history and development of recommender systems, we extensively described the

44

methodology behind the KI-BaskERT model and our different approaches to inject knowl-

edge. In the following conclusion, we will summarise the main findings and contributions

of this work, and discuss the implications of our results and potential avenues for future

research.

The first important finding is that our transformer-based recommender system, BaskERT,

demonstrates a substantial and statistically significant improvement over the benchmark

model. Despite the benchmark model’s simplicity and low likelihood of practical application,

this highly significant (p < 0.05) increase of 68.91% in accuracy illustrates the capability of

transformer-based recommender systems in learning valuable structures regarding basket

composition, thereby allowing for more informed and calculated product recommendations.

This finding aligns with the results of previous studies, such as Sun et al. (2019) and Bianchi

et al. (2020), which also concluded that the development of a transformer-based recommender

system leads to an increase in accurate predictions and customer satisfaction.

Although the accuracy of the BaskERT model may seem relatively low at first glance,

it is important to note that the recommendations made by these transformer-based recom-

mender systems are still valuable for customers. Although the masked product only appears

among the top hundred predicted products 41% of the time in the test dataset, this does

not necessarily indicate that the model is not providing beneficial product recommenda-

tions for clients. As illustrated in Appendix 4, even when the model’s prediction is deemed

inaccurate, the top hundred recommendations still comprise products that are closely re-

lated to the masked product or alternative products that could easily be selected by the

customer. An additional argument for the value of the product recommendations provided

by the BaskERT model is that the reported accuracy does not account for the likelihood of

customers purchasing multiple products from the recommended top hundred product list.

This added value is not captured by our simple accuracy measure. Despite the relatively

low accuracy, these models proved that they are still able to learn valuable structures in the

data and make valuable recommendations that are useful for clients and companies.

One potential explanation for the relatively low accuracy of the model is the sheer size of

the product range. The model must recommend a mere fraction of 100 products from a total

of 11, 426, based solely on a limited number of products in a given basket. Furthermore,

45

there are specific products that are purchased only 300 times across the entire datasets,

resulting in a scarcity of co-occurrences for the model to learn during the training phase.

As a result, the model may struggle to provide well-informed recommendations about these

products as they are not purchased very often.

Another factor that may have contributed to the relatively low accuracy of the model is

the large number of baskets containing a small number of products. For these baskets, the

recommender system may have had insufficient information, making it more challenging to

produce accurate predictions. This is especially true if the masked product is unrelated to

the other products in the basket, as it can lead the model to form an incorrect understanding

of the context of the basket and therefore makes totally different recommendations. This

fact is also substantiated by Figure 1, which demonstrates that 25% of all baskets consist of

only five products. If one product of these is already masked, the recommendation system

has only four products to base its prediction on with a total product assortment of 11, 426

products to choose from.

The second important finding addresses the final sub-question of our research question,

which assesses whether knowledge injection leads to increased accuracy in predicting the next

product in the basket compared to the BaskERT model. The majority of our approaches

to inject additional knowledge into the BaskERT model were successful in achieving a sig-

nificant improvement in model performance (p < 0.05). Only the latter approach to inject

knowledge by adding the product, aisle and department embedding did not significantly

outperform the BaskERT model (p > 0.05). The KI-BaskERT model that adds the product

and aisle embedding shows the highest accuracy and shows a 4.01% increase in accuracy

compared to the BaskERT model. This is a substantial increase, especially if one deploys

this recommender system on a large scale. Given the large number of customers being

served by the company Instacart, this increase in performance is extremely valuable, as it

has the potential to result in a corresponding increase in customer satisfaction and sales of

the company.

We argue that the improvement in the model performance of the KI-BaskERT model

compared to the BaskERT model can be attributed to the enhanced representation of prod-

ucts in the high-dimensional vector space of the product embeddings through the injection of

46

aisle information. The embeddings of the products resulting from training the KI-BaskERT

model become richer and more diverse, which can capture more complex relationships be-

tween products. This is especially true for less frequently purchased products. When the

co-occurrence data is sparse, the aisle information provides additional information beyond

the co-occurrence data, which can help the model understand these less frequently purchased

products better and make more informed predictions about these products.

It is also worth noting that adding additional sources of information, in this case depart-

ment information, may not always lead to improved model performance. Our results show

that models that incorporate department information perform worse than the KI-BaskERT

models that only incorporate aisle information. This suggests that not all sources of infor-

mation contribute equally to significantly improved product recommendations. This finding

highlights the importance of selecting the most appropriate source of information to inject

into the recommender system. Further research into knowledge injection in transformer-

based recommender systems could explore the potential of other sources of information,

such as product ratings, prices, nutritional value, or ingredients, for example.

As another potential direction for future research, an extension of this study could involve

exploring the impact of product assortment size on the model’s performance. The current

study utilised a product assortment of 11,426 products and found that baskets were primarily

composed of fresh vegetables and fruit. As a result, it is possible that the model struggles to

accurately predict infrequently purchased products. To address this issue, one option could

be to gather additional basket data that includes a greater number of baskets containing

these less frequently bought products in order to achieve a more balanced distribution of

products in the basket data.

In conclusion, our study has achieved its objective of constructing and implementing a

transformer-based recommender system, drawing on the theories and insights of preceding

works in the field. By injecting aisle information into the BaskERT model, we have signifi-

cantly improved the performance of the KI-BaskERT model, with a substantial increase of

4.01% in accuracy as compared to the BaskERT model. This demonstrates the potential in-

jecting knowledge in recommender systems, but also knowledge injection in general in neural

network-based models. With the continuous advancement of technology and the discovery of

47

more sophisticated recommender systems and methods of injecting knowledge, we anticipate

that they will continue to improve, becoming even faster, more effective, and applicable to

an increasing range of use cases. These developments hold immense promise for the future

and will undoubtedly benefit the field of recommendation systems in many exciting ways.

48

8 References

Apáthy, S. (2022). History of recommender systems: overview of information

filtering solutions. Onespire Ltd. - SAP and Management Consulting. https:

//www.onespire.net/news/history-of-recommender-systems/

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473.

Bianchi, F., Yu, B., & Tagliabue, J. (2020). BERT goes shopping: Comparing distribu-

tional models for product representations. arXiv preprint arXiv:2012.09807.

De Boer, P. T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2005). A tutorial on

the cross-entropy method. Annals of operations research, 134(1), 19-67.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Donkers, T., Loepp, B., & Ziegler, J. (2017). Sequential user-based recurrent neural

network recommendations. In Proceedings of the eleventh ACM conference on recommender

systems (pp. 152-160).

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for

statistical machine translation. arXiv preprint arXiv:1406.1078.

Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering

to weave an information tapestry. Communications of the ACM, 35(12), 61-70.

Grbovic, M., Radosavljevic, V., Djuric, N., Bhamidipati, N., Savla, J., Bhagwan, V.,

49

https://www.onespire.net/news/history-of-recommender-systems/
https://www.onespire.net/news/history-of-recommender-systems/

& Sharp, D. (2015). E-commerce in your inbox: Product recommendations at scale. In

Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery

and data mining (pp. 1809-1818).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recogni-

tion. In Proceedings of the IEEE conference on computer vision and pattern recognition

(pp. 770-778).

Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2015). Session-based recommen-

dations with recurrent neural networks. arXiv preprint arXiv:1511.06939.

Hidasi, B., Quadrana, M., Karatzoglou, A., & Tikk, D. (2016). Parallel recurrent neural

network architectures for feature-rich session-based recommendations. In Proceedings of the

10th ACM conference on recommender systems (pp. 241-248).

Hinton, Geoffrey, Deng, Li, Yu, Dong, Dahl, George E, Mohamed, Abdel-rahman,

Jaitly, Navdeep, Senior, Andrew, Vanhoucke, Vincent, Nguyen, Patrick, Sainath, Tara N,

et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of

four research groups. Signal Processing Magazine, IEEE, 29(6):82–97, 2012.

Instacart Market Basket Analysis | Kaggle. (2017, May). Retrieved May 2, 2022, from

https://www.kaggle.com/c/instacart-market-basket-analysis

Isinkaye, F., Folajimi, Y., & Ojokoh, B. (2015). Recommendation systems:

Principles, methods and evaluation. Egyptian Informatics Journal, 16(3), 261–273.

https://doi.org/10.1016/j.eij.2015.06.005

Jamsheer, K., (2019, August 27). Impact of e-Commerce On Society: Advantages and

Disadvantages. Woocommerce Product Addons. https://acowebs.com/impact-ecommerce-

society/

50

https://www.kaggle.com/c/instacart-market-basket-analysis
https://doi.org/10.1016/j.eij.2015.06.005
https://acowebs.com/impact-ecommerce-society/
https://acowebs.com/impact-ecommerce-society/

Jannach, D., Pu, P., Ricci, F., & Zanker, M. (2021). Recommender systems: Past,

present, future. Ai Magazine, 42(3), 3-6.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2016).

On large-batch training for deep learning: Generalization gap and sharp minima. arXiv

preprint arXiv:1609.04836.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Knight, S., & Mann, C. Electronic Commerce. Oxford Research Encyclopedia of Inter-

national Studies. Retrieved 3 May. 2022, from https://oxfordre.com/internationalstudies/

view/10.1093/acrefore/9780190846626.001.0001/acrefore-9780190846626-e-85.

Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural

networks for sequence learning. arXiv preprint arXiv:1506.00019.

Liu, W., Zhou, P., Zhao, Z., Wang, Z., Ju, Q., Deng, H., & Wang, P. (2020). K-bert:

Enabling language representation with knowledge graph. In Proceedings of the AAAI

Conference on Artificial Intelligence (Vol. 34, No. 03, pp. 2901-2908).

OECD (1999-01-01), Economic and Social Impact of E- commerce: Preliminary Findings

and Research Agenda, OECD Digital Economy Papers, No. 40, OECD Publishing, Paris.

http://dx.doi.org/10.1787/236588526334

Pasquali, M. (2022, November 17). E-commerce worldwide - statistics & facts. Statista.

https://www.statista.com/topics/871/online-shopping/

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.

51

https://oxfordre.com/internationalstudies/view/10.1093/acrefore/9780190846626.001.0001/acrefore-9780190846626-e-85
https://oxfordre.com/internationalstudies/view/10.1093/acrefore/9780190846626.001.0001/acrefore-9780190846626-e-85
http://dx.doi.org/10.1787/236588526334
https://www.statista.com/topics/871/online-shopping/

Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747.

Ruslan Salakhutdinov and Andriy Mnih. 2007. Probabilistic Matrix Factorization. In

Proceedings of NIPS. Curran Associates Inc., USA, 1257–1264.

Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan, Satheesh, Sanjeev, Ma, Sean,

Huang, Zhiheng, Karpathy, Andrej, Khosla, Aditya, Bernstein, Michael S., Berg, Alexander

C., and Li, Fei-Fei. Imagenet large scale visual recognition challenge. CoRR, abs/1409.0575,

2014. URL http://arxiv.org/abs/1409.0575.

Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-Commerce Recommendation Applica-

tions. Data Mining and Knowledge Discovery, 5(1/2), 115–153. https://doi.org/10.1023/a:

1009804230409

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: a simple way to prevent neural networks from overfitting. The journal of machine

learning research, 15(1), 1929-1958.

EuroCC National Competence Centre Sweden [ENCCS]. (2022). Summing or con-

catenating embeddings? — Graph Neural Networks and Transformers documentation.

https://enccs.github.io/gnn_transformers/notebooks/session_1/1b_vector_sums_vs_

concatenation/

Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., Jiang, P.: BERT4Rec: sequential rec-

ommendation with bidirectional encoder representations from transformer. In: Proceedings

of the 28th ACM International Conference on Information and Knowledge Management -

CIKM 2019. ACM Press (2019). https://doi.org/10. 1145/3357384.3357895

52

http://arxiv.org/abs/1409.0575
https://doi.org/10.1023/a:1009804230409
https://doi.org/10.1023/a:1009804230409
https://enccs.github.io/gnn_transformers/notebooks/session_1/1b_vector_sums_vs_concatenation/
https://enccs.github.io/gnn_transformers/notebooks/session_1/1b_vector_sums_vs_concatenation/
https://doi.org/10

Sciforce. (2022, February 2). Deep Learning Based Recommender Systems - Sciforce.

Medium. Retrieved August 17, 2022, from https://medium.com/sciforce/deep-learning-

based-recommender-systems-b61a5ddd5456

Taylor, W. L. (1953). “Cloze procedure”: A new tool for measuring readability.

Journalism quarterly, 30(4), 415-433.

Tuan, T. X., & Phuong, T. M. (2017, August). 3D convolutional networks for session-

based recommendation with content features. In Proceedings of the eleventh ACM conference

on recommender systems (pp. 138-146).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . &

Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing

systems, 30.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., . . . & Dean, J.

(2016). Google’s neural machine translation system: Bridging the gap between human and

machine translation. arXiv preprint arXiv:1609.08144.

Yehuda Koren and Robert Bell. 2011. Advances in Collaborative Filtering. In Recom-

mender Systems Handbook. Springer US, Boston, MA, 145–186.

53

https://medium.com/sciforce/deep-learning-based-recommender-systems-b61a5ddd5456
https://medium.com/sciforce/deep-learning-based-recommender-systems-b61a5ddd5456

9 Appendix

9.1 Appendix 1

Figure 10: Representation of basket data (each row represents a basket from which a
product is masked)

54

9.2 Appendix 2

Figure 11: Representation of data used for Knowledge Injection

9.3 Appendix 3: T-Tests

The Welch t-test was performed to compare the accuracy of the different models. The null

hypothesis was that there was no difference in accuracy between the reference model and

the compared model in Table 5. The alternative hypothesis was that compared model had a

higher accuracy than the reference model. The t-statistic was calculated using the formula

t = x̄1−x̄2√
s2

1
n1

+
s2

2
n2

. Where x̄1,s2
1 and x̄2,s2

1 are the accuracies and the standard deviations of the

reference model and compared model respectively. These values can all be retrieved from

Table 4. The number of observations (n) is equal to the number of baskets in the test dataset

(301, 465).

55

Table 5
Results of Welch’s t-test Comparing Accuracies. Note: (*) indicate the level of statistical

significance, where p < 0.01 (***), p < 0.05 (**), and p < 0.10 (*)

Reference
Model

Compared Model T-value Degrees of
Freedom

p-value Significance

Benchmark BaskERT 140.857 4618.893 0.000 ***
Benchmark KI-BaskERT

(concatenating product and
aisle embedding)

144.984 4615.120 0.000 ***

Benchmark KI-BaskERT (adding
product and aisle
embedding)

153.557 4601.324 0.000 ***

Benchmark KI-BaskERT
(concatenating product,
aisle and department
embedding)

140.401 4569.118 0.000 ***

Benchmark KI-BaskERT (adding
concatenating product,
aisle and department
embedding)

143.683 4640.529 0.000 ***

BaskERT KI-BaskERT
(concatenating product and
aisle embedding)

4.091 4709.958 0.000 ***

BaskERT KI-BaskERT (adding
product and aisle
embedding)

12.924 4709.128 0.000 ***

BaskERT KI-BaskERT
(concatenating product,
aisle and department
embedding)

2.303 4703.891 0.011 **

BaskERT KI-BaskERT (adding
concatenating product,
aisle and department
embedding)

1.264 4708.405 0.103

56

9.4 Appendix 4: Demonstration of the KI-BaskERT recom-

mender system

The functioning of the KI-BaskERT (addition of product and aisle embedding) is shown here.

Although the masked product was not among the top hundred recommended products, we

demonstrate here that the recommender system still provides added value, as we see that

many highly related products are recommended that could equally lead to purchase. Note

that the full top hundred recommended products is not shown here.

Original basket:

• Whipped Cream Cheese

• 100% Whole Wheat Bread

• Organic Whole Wheat Fusilli

• Cheese Puffs Original

• Organic Reduced Fat Milk

• MASK

• Cheddar Bunnies Snack Crackers

• White Corn

• Organic Yokids Lemonade/Blueberry Variety Pack Yogurt Squeezers Tubes

Masked product:

• Organic Mixed Berry Yogurt & Fruit Snack

Is masked product among recommendations:

• False

The recommendations (ranked):

• Bananas

• Organic Strawberry Grassfed Whole Milk Yogurt

• Organic Cashew Nondairy Vanilla Yogurt

• Grassfed Whole Milk Strawberry Yogurt

57

• Organic Mango Yogurt

• Organic Cashew Nondairy Blueberry Yogurt

• Half & Half

• Organic Nondairy Lemon Cashew Yogurt

• 100% Raw Coconut Water

• Bag of Organic Bananas

• Grassfed Whole Milk Blueberry Yogurt

• Organic Whole Milk Washington Black Cherry Yogurt

• Organic Coconut Yogurt

• Coconut Almond Unsweetened Creamer Blend

• Dairy Free Coconut Milk Chocolate Yogurt Alternative

• Dairy Free Coconut Milk Vanilla Yogurt Alternative

• Almond Milk Peach Yogurt

• Organic Strawberries

• Unsweetened Whole Milk Blueberry Greek Yogurt

• Whole Milk Yogurt Organic Indonesian Vanilla Bean

• Organic Banana

• Organic Whole Milk

• Cream Top Smooth & Creamy Maple Yogurt

• Almond Milk Blueberry Yogurt

• Coconut Yogurt

• Organic Lowfat Mango Kefir

• French Vanilla Yogurt Vanilla

• Organic Plain Unsweetened Nondairy Cashew Yogurt

58

	Thank Word
	Introduction
	Problem Description
	Research Objective

	Literature Review
	Data
	Methodology
	Training Procedure
	KI-BaskERT Model Architecture
	Product Embedding
	Encoder
	Attention Mechanism
	Multi-Headed Attention
	Feedforward Neural Network

	Knowledge Injection
	Cross-Entropy Loss & Accuracy

	Results
	Determination of the hyperparameters
	Dropout
	Layers and Heads
	Proportion of Knowledge Injection

	Comparison of the models

	Conclusion
	References
	Appendix
	Appendix 1
	Appendix 2
	Appendix 3: T-Tests
	Appendix 4: Demonstration of the KI-BaskERT recommender system

