
Erasmus University Rotterdam

Erasmus School of Economics

Master Thesis MSc Econometrics and Management Science

Exploring the Effectiveness of Wavelet Neural

Networks in Forecasting Daily Realized Volatility: A

Comparative Analysis.

Kylym Meirazhdinov (467160km)

Supervisor: dr. M. Grith

Second assessor: dr. A. Pick

Date final version: 14th August 2023

The content of this thesis is the sole responsibility of the author and does not reflect the view

of the supervisor, second assessor, Erasmus School of Economics or Erasmus University.

Abstract

This thesis provides a methodology on the use of Discrete Wavelet Transform to decompose

the time series into low and high frequency components that can be used as regressors for time

series models. Two different approaches are provided where the realized volatility time series

is modelled directly, and the other allows to model the dynamics of the individual components

first to then assemble them into a time series forecast. Linear regression analysis as well as deep

learning models are employed. Multiple time horizons forecasts of the models introduced in this

thesis, are compared with the popular models such as HAR model (Corsi, 2009) and Extended

Wald Decomposition model (Ortu, Severino, Tamoni & Tebaldi, 2020).

Contents

1 Introduction 2

2 Methodology 7

2.1 Data & Realized Volatility . 7

2.2 Discrete Wavelet Decomposition . 8

2.3 Direct Forecasting . 9

2.4 Multistep Forecasting . 10

2.4.1 Conditional Multistep Forecasting . 10

2.4.2 Unconditional Multistep Forecasting . 13

2.4.3 Regularization . 13

2.4.4 Adaptive Forecasting . 14

2.5 Deep Learning Model . 14

2.5.1 Artificial Neural Networks (ANNs) . 14

2.5.2 Deep Learning Training . 15

2.5.3 Hyperparameter Tuning . 16

2.5.4 Model-Validation . 16

2.6 The Diebold-Mariano Test . 17

3 Forecasting Results 18

3.1 Data: SPDR SP 500 Trust ETF . 19

3.2 Data: USD/CHF Exchange Rate . 24

4 Conclusion 27

1

Chapter 1

Introduction

Volatility is a fundamental concept in finance that measures the degree of variation or dispersion

of a financial instrument’s price or return over time. It is a critical parameter used by financial

analysts, investors, and risk managers to assess and manage investment risk. In financial mar-

kets, volatility is a key factor that can impact the performance of investment portfolios, influence

trading decisions, and affect the pricing of options and other derivative securities. Volatility de-

scribes the uncertainty and unpredictability of financial markets or specific assets. Higher levels

of volatility indicate bigger fluctuations in the data, vice versa. It is a vital input in various

financial models, such as option pricing models, value-at-risk (VaR) models, and portfolio op-

timization models. Many models rely on volatility estimates to calculate option prices, estimate

potential losses, and optimize portfolio allocations.

Financial returns often exhibit distinct volatility clustering, which is a phenomenon where peri-

ods of high or low volatility tend to persist over time. Volatility, however, cannot be directly

observed. This creates complications for accurate predictions as direct forecasting is not pos-

sible.

One branch of the research field is built upon the construction of estimators for volatility by

utilizing high-frequency data. Andersen & Bollerslev (1998) show that the use of high-frequency

data enables the creation of significantly better measurements of volatility through the accumu-

lation of squared intraday returns, with the square root of the sum of squared returns (realized

volatility) as an unbiased estimator of latent volatility.

Corsi (2009) proposed a heterogeneous autoregressive (HAR) model which is an AR-type model

for realized volatility. The model utilizes the realized volatility over different time horizon.

More specifically, the next day realized volatility is predicted using the information on the

2

previous day realized volatility, an average of the past 5 days (working days) corresponding to

a week and an average of the past 22 days (working days) corresponding to a month. Despite

the simplicity, the authors show that the model is able to outperform time series models such

as AR and ARFIMA. With the popularity of machine learning models, Reisenhofer, Bayer &

Hautsch (2022) successfully attempted to close the conceptual divide between traditional time

series methods, like the Heterogeneous Autoregressive (HAR) model introduced by Corsi (2009),

and deep neural network models. The authors present the model (HARNet) that is based on a

hierarchy of dilated convolutional layers, which can significantly enhance the predictive precision

of HAR baseline models.

With the rising popularity of wavelet transformations in image processing, due to its ability

in signal processing such as signal denoising, signal compression, and feature extraction, the

utilization of wavelet transforms in modeling financial time series data becomes more interest-

ing.

Ortu et al. (2020) proposed a method for decomposing stationary time series into orthogonal

components based on their persistence properties. The paper demonstrate the usefulness of

the proposed method by applying it to a realized volatility time series. They show that the

persistence-based decomposition provides insights into the underlying dynamics of the time

series that are not captured by the traditional Wold decomposition. More specifically, the

authors show the method to analyze a time series in terms of its persistence components.

Given the classical Wold decomposition of the time series x,

xt =
+∞∑
h=0

αhεt−h (1.1)

Theorem 1 (Ortu et al., 2020) states that if x is a zero-mean, weakly stationary purely non-

deterministic stochastic process. Then x decomposes as

xt =

+∞∑
j=1

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j
(1.2)

where for j ∈ N, the process ε(j) = {ϵ(j)t }t∈Z with

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i

 (1.3)

3

is a MA(2j − 1) with respect to the innovations of x in Eq. (1.1).

Next, for any j ∈ N, k ∈ N0, the coefficients β
(j)
k are uniquely determined via

β
(j)
k =

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 (1.4)

making the coefficients time invariant.

Combining the previous results, let

g
(j)
t =

+∞∑
k=0

β
(j)
k ε

(j)

t−k2j
(1.5)

it is important to notice that many of the assumptions and properties have not been mentioned

above as the purpose is to provide a rough idea of how the Extended Wold Decomposition

works.

Simplifying the results further by substituting the results in Eq. (1.5) into Eq. (1.2), we obtain

another representation of the extended Wold decomposition,

xt =
+∞∑
j=1

g
(j)
t (1.6)

The main object of interest is g
(j)
t , which authors refer to as persistent component at scale j,

where the scale j involves the stocks that last 2j working days. In the empirical analysis section

(Ortu et al., 2020), the authors in the linear setting, use the persistent components as regressors

and by iteratively adding components by their explained variance, noticed that after including

three scales j = 7,8,9 corresponding to 128, 256 and 512 working days, there is no significant

improvement in the forecasting performance. The authors also linked their findings to the HAR

model, mainly stating that the daily, weekly and monthly components used in HAR effectively

serve as indicators/estimates for events that take place on timescales ranging from six months

to two years.

Bandi, Perron, Tamoni & Tebaldi (2019) as a part of their third contribution mention that

the predictability is not modeled directly on the raw time series, but rather, the dependency

is defined as a linear relation between the regressor and the regressand at individual scales,

property to which the authors refer to as scale-specific predictability. An example presented in

4

the paper is the regressions of the components of excess stock market returns on the components

of market variance.

r
(j)

k2j+2j
= βjv

(j)

k2j
+ u

(j)

k2j+2j

with j indicating a specific scale. Following section 5 (Filtering the scale-specific components) of

the paper (Bandi et al., 2019), the authors present the methodology to decompose the original

time series into ”transitory” and ”persistent” components. Let x be the time series, then for

J = 1, the following decomposition can be achieved,

xt =
xt − xt−1

2
+

xt + xt−1

2

Where on the right-hand side, the first part is the ”transitory” component that we denote as

x̂
(1)
t and the second part is the ”persistent” component π̂

(1)
t . By applying the same procedure

to the ”transitory” component we can further break down the original time series into compon-

ents corresponding to lower frequencies. Another representation of the filter uses a projection

operator, for J = 2


π̂
(2)
t

x̂
(2)
t

x̂
(1)
t

x̂
(1)
t−2

 =


1
4

1
4

1
4

1
4

1
4

1
4 −1

4 −1
4

1
2 −1

2 0 0

0 0 1
2 −1

2




xt

xt−1

xt−2

xt−3

 (1.7)

Where in the paper the matrix in Eq. (2.2) is denoted by T (2), being orthogonal and invert-

ible. The invertibility allows for signal reconstruction given the filtered components. The key

difference with the Haar transforms (matrix) lies in the basis (matrix) that is used.

H4 =
1

2


1 1 1 1

1 1 −1 −1
√
2 −

√
2 0 0

0 0
√
2 −

√
2


with the H4 subscript indicating the size of the matrix. H4 also being orthonormal, meaning

H4H
T
4 = I. As a possible extension, it might be valuable to investigate whether the predictive

power of the components can be unfolded in the non-linear setting while not being limited to

5

the individual scale.

In this thesis HAR model (Corsi, 2009) and Extended Wold Decomposition model (Ortu et

al., 2020) are the benchmark models. Research on using deep neural networks with wavelets

for realized volatility forecasting can contribute to the development of more sophisticated and

accurate models for financial forecasting and analysis. By combining deep learning techniques

with signal processing methods, such as wavelet analysis, researchers can capture nonlinear and

multiscale interactions in financial data, leading to more robust and accurate models.

6

Chapter 2

Methodology

2.1 Data & Realized Volatility

The data used in this proposal and that will further be used in the main text, is the daily time

series of USD/CHF exchange rates realized volatility built by Corsi (2009). The original time

series is the tick-by-tick series of USD/CHF exchange rates ranging from December 1989 to

December 2003. The construction of the daily realized volatility and the notation follows the

same paper (Corsi, 2009),

RV
(d)
t =

√√√√M−1∑
j=0

r2t−j·∆ (2.1)

with ∆ = 1d/M and rt−j·∆ = p(t − j · ∆) − p(t − (j + 1) · ∆), where p(t) the logarithm of

instantaneous price and M = 12 denoting the time intervals of two hours in a 24 hours trading

day. In the dataset, the logarithmic middle price is used as a proxy for the true price.

The sample size of daily realized volatility is 3599 observations and the wavelet decomposition is

only performed up to scale J = 3, due to the machine learning models requiring bigger samples

to train. Furthermore, the sample size has been extended by a single value 0, which is placed

at the end of the sample, the process is referred to as ”Zero-padding”. It’s done to make the

sample size a power of two or a multiple of the decomposition factor.

Mean Median Std. Dev. Min Max Skewness Kurtosis

RV 12.397 11.593 3.900 3.828 41.947 1.594 5.071

Table 2.1: Descriptive statistics for the series of daily realized volatility.

7

2.2 Discrete Wavelet Decomposition

Let {xt−i}i∈N be the realized volatility time series. We apply the discrete wavelet transform

(DWT), using the modified Haar matrix (Eq. 2.2) proposed by Bandi et al. (2019). For con-

venience, we start from scale j = 1. Sliding the wavelet matrix down the time series, we split

the original series into a persistent component π̂
(1)
t and a transitory component x̂

(1)
t .

 π̂
(1)
t

x̂
(1)
t

 =

 1
2

1
2

1
2 −1

2

 xt

xt−1

 (2.2)

To further obtain components at higher scales, one can further decompose the persistent com-

ponent (π̂
(1)
t) by repeating the same procedure or directly using the Haar-like matrix of higher

order on the original time series. The intuition behind the DWT is depicted in Fig. (2.1).

The persistent component represents the slowly changing or trend-like behavior of a time series.

When a low-pass filter is applied to a time series, it removes the high-frequency variations and

noise, emphasizing the lower-frequency components that change slowly over time. The transit-

ory component can be seen as innovations, it highlights the short-term fluctuations enabling the

analysis of transient effects.

Figure 2.1: The graphical representation of the wavelet transforms with π̂ the slow changing components and the
x̂ the high-frequency variations.

It is important to mention that with each scale the length of the time series shrinks by a factor

of 2, meaning that for scale j if n is the length of the original series, the amount of observations

available is ⌊ n
2j
⌋. In this research, the DWT is used due to its energy preservation and perfect

reconstruction properties.

Given the decomposition level J , applying reconstruction filters, that are specific to the wavelet

used in the DWT, to the upsampled details coefficients and upsampled level J approximation

coefficients, and then adding them together yields the reconstructed signal. In this thesis,

8

Figure 2.2: Persistent and transitory components of the realized volatility time series up to scale J = 3. The
original time series plot can be found in the appendix (Fig. 6)

discrete wavelet decomposition is taken up to level J = 2.

2.3 Direct Forecasting

The next day realized volatility will be directly modeled as a function of the lagged coefficients

and lags of the realized volatility itself. The structure of the wavelet coefficients can be seen in

Fig. 2.3, for instance, if the current day is 4 and the prediction for day 3 has to be made then

the latest wavelet coefficients available are π̂
(1)
4 , x̂

(1)
4 , π̂

(2)
4 and x̂

(2)
4 .

Figure 2.3: The axis represents the time in days, where the most right point represents older observations and
the most left point is the most recent. The table shows the time correspondence between the original time
series and wavelet coefficients. It’s important to note that the coefficients in empty cells are not defined due to
downsampling.

9

2.4 Multistep Forecasting

2.4.1 Conditional Multistep Forecasting

The following method relies on the orthogonality of the wavelet matrix. Due to the perfect

reconstruction properties, wavelet components can be estimated individually and then assembled

to obtain the forecast for the original time series.

The prediction of each scale coefficient requires the use of its own lags as well as the lags of

the other components. A visual representation of this concept is depicted in Figure 2.4, which

illustrates the time axis, and a table below it indicates the availability and order of the wavelet

coefficients.

To illustrate the forecasting process, let’s consider predicting the value of x3. The forecasted

value, denoted as x̂3, is obtained using the conditional expectation E [x3 | F3], which is the

expectation of x3 given the information available at time 3, represented by x4, x5, x6, In the

table, this corresponds to the position labeled as 4.

Following the multistep approach, in order to predict x3, we require the coefficients π̂
(2)
0 , x̂

(2)
0 and

x̂
(1)
2 , for the reconstruction. To obtain x̂

(2)
0 , we need to consider the most recent scale coefficients

available, which are π̂
(1)
4 , x̂

(1)
4 , π̂

(2)
4 and x̂

(2)
4 .

We see that the most recent lag available for scale j = 1 is four days away. However, if we

attempt to predict x1 given information up to and including t = 2, once again requiring x̂
(2)
0 , we

now have π̂
(1)
2 and x̂

(1)
2 for scale j = 1, which are only two days away. Therefore, the temporal

structure changes, and the same model can’t be used to predict x̂
(2)
0 in these two cases.

Figure 2.4: The axis represents the time in days, where the most right point represents older observations and
the most left point is the most recent. The table is the matrix representation of the chronological order of wavelet
coefficients with timepoint correspondence. The positions depicted on the figure refer to the positions within the
cycle, in this case the maximum scale is 2, meaning that the cycle is 4 days. Depending on the positions, different
lags are available. It’s important to note that the coefficients in empty cells are not defined due to downsampling.

10

Hence, we can assign a specific modelling structure for positions 1,2 and position 3,4 within the

cycle. In order to make forecasts for the wavelet coefficients corresponding to positions 3 and 4

the following linear equations are required,

π̂(2)
t

x̂
(2)
t

 =

n∑
i=1

β(2)
i,1 γ

(2)
i,1

β
(2)
i,2 γ

(2)
i,2

π̂(2)
t+4i

x̂
(2)
t+4i

+

n∑
i=1

β(1)
i,1 γ

(1)
i,1

β
(1)
i,2 γ

(1)
i,2

π̂(1)
t+2+2i

x̂
(1)
t+2+2i

+

εt
ηt

 (2.3)

π̂(1)
t

x̂
(1)
t

 =

β(2)
1,1γ

(2)
1,1

β
(2)
1,2γ

(2)
1,2

π̂(2)
t+2

x̂
(2)
t+2

+
n∑

i=2

β(2)
i,1 γ

(2)
i,1

β
(2)
i,2 γ

(2)
i,2

π̂(2)
(t+2)+4(i−1)

x̂
(2)
(t+2)+4(i−1)

+

n∑
i=1

β(1)
i,1 γ

(1)
i,1

β
(1)
i,2 γ

(1)
i,2

π̂(1)
t+2i

x̂
(1)
t+2i

+

εt
ηt


(2.4)

If the position is 1 or 2 then,

π̂(2)
t

x̂
(2)
t

 =
n∑

i=1

β(2)
i,1 γ

(2)
i,1

β
(2)
i,2 γ

(2)
i,2

π̂(2)
t+4i

x̂
(2)
t+4i

+

n∑
i=1

β(1)
i,1 γ

(1)
i,1

β
(1)
i,2 γ

(1)
i,2

π̂(1)
t+2i

x̂
(1)
t+2i

+

εt
ηt

 (2.5)

π̂(1)
t

x̂
(1)
t

 =

n∑
i=1

β(2)
i,1 γ

(2)
i,1

β
(2)
i,2 γ

(2)
i,2

π̂(2)
t+4i

x̂
(2)
t+4i

+

n∑
i=1

β(1)
i,1 γ

(1)
i,1

β
(1)
i,2 γ

(1)
i,2

π̂(1)
t+2i

x̂
(1)
t+2i

+

εt
ηt

 (2.6)

Ignoring the fact that equations for π̂
(1)
t , x̂

(1)
t don’t look the same, the lags used in forecast are

exactly the same, implying that the model for j = 1 coefficients is independent of the positions

in the cycle. Whereas, the lags for j = 2 coefficients differ when switching from position 3 to

position 2, as the for the same wavelet coefficient j = 2 a new observation of j = 1 coefficients

becomes available as regressors. Thus, coefficients differ according to the positions.

After predicting the required wavelet coefficients, the assembly of the final forecast of the original

time series is done via,

• Position 4, x̂t = π̂
(2)
t − x̂

(2)
t − x̂

(1)
t

• Position 3, x̂t = π̂
(2)
t − x̂

(2)
t + x̂

(1)
t

• Position 2, x̂t = π̂
(2)
t + x̂

(2)
t − x̂

(1)
t

• Position 1, x̂t = π̂
(2)
t + x̂

(2)
t + x̂

(1)
t

The advantage of this method is that a clear model structure is defined when making a prediction.

However, the cost is that the number of models that need to be calibrated increases.

11

12

Algorithm 1 Conditional Multistep Forecasting Process

1: model 1 - the model that forecasts the j = 1 coefficients

2: model 2 - the model that forecasts the j = 2 coefficients for positions 1 and 2 (Eq. 2.5)

3: model 3 - the model that forecasts the j = 2 coefficients for position 3 and 4 (Eq. 2.3)

4: Predict xt given information up to and not including t.

5: Let r1 and r2 be the j = 1 and j = 2 indices of the coefficients required for the reconstruction.

6: position = t - r2

7: X1 coefficients that are used for forecasting j = 1 coefficients

8: π̂
(1)
r1 , x̂

(1)
r1 = model 1.predict(X1)

9: if position == 1 or 2 then

10: X2 observations that are used for forecasting j = 2 coefficients (Eq. 2.5).

11: π̂
(2)
r2 , x̂

(2)
r2 = model 2.predict(X2)

12: else

13: X3 observations that are used for forecasting j = 2 coefficients (Eq. 2.3).

14: π̂
(2)
r2 , x̂

(2)
r2 = model 3.predict(X3)

15: end if

16: if position == 4 then

17: xt = π̂
(2)
r2 − x̂

(2)
r2 − x̂

(1)
r1

18: else if position == 3 then

19: xt = π̂
(2)
r2 − x̂

(2)
r2 + x̂

(1)
r1

20: else if position == 2 then

21: xt = π̂
(2)
r2 + x̂

(2)
r2 − x̂

(1)
r1

22: else if position == 1 then

23: xt = π̂
(2)
r2 + x̂

(2)
r2 + x̂

(1)
r1

24: end if

2.4.2 Unconditional Multistep Forecasting

Another approach is to ignore the modelling difference between Eq. 2.5 and Eq. 2.3, and define

a linear model that uses the same coefficients unconditional of the position within the cycle (Fig.

2.4).

Algorithm 2 Unconditional Multistep Forecasting Process

1: model 1 - the model that forecasts the j = 1 coefficients

2: model 2 - the model that forecasts the j = 2 coefficients

3: Predict xt given information up to and not including t

4: Let r1 and r2 be the j = 1 and j = 2 indices of the coefficients required for the reconstruction

5: position = t - r2

6: X1 coefficients that are used for forecasting j = 1 coefficients

7: π̂
(1)
r1 , x̂

(1)
r1 = model 1.predict(X1)

8: X2 observations that are used for forecasting j = 2 coefficients

9: π̂
(2)
r2 , x̂

(2)
r2 = model 2.predict(X2)

10: if position == 4 then

11: xt = π̂
(2)
r2 − x̂

(2)
r2 − x̂

(1)
r1

12: else if position == 3 then

13: xt = π̂
(2)
r2 − x̂

(2)
r2 + x̂

(1)
r1

14: else if position == 2 then

15: xt = π̂
(2)
r2 + x̂

(2)
r2 − x̂

(1)
r1

16: else if position == 1 then

17: xt = π̂
(2)
r2 + x̂

(2)
r2 + x̂

(1)
r1

18: end if

2.4.3 Regularization

Regularization techniques play an important role in addressing issues such as multicollinearity

and overfitting. Three widely employed regularization methods are Ridge, Lasso, and ElasticNet.

Ridge regularization, also known as L2 regularization, introduces a penalty term to the model’s

objective function that constrains the magnitude of regression coefficients. This helps prevent

excessive coefficient inflation and mitigates multicollinearity effects. Lasso regularization, or

L1 regularization, enforces sparsity by adding the absolute values of coefficients to the loss

function. Lasso regularization set certain coefficients to be exactly zero, leading to feature

selection. ElasticNet combines both L2 and L1 penalties, providing a balance between the

strengths of Ridge and Lasso regularization. In regards to the two approaches, direct and

13

multistep, the former exhibited superior performance with Lasso regularization. Conversely, for

the multistep approach, Ridge regularization yielded the most favorable results, suggesting that

it effectively countered multicollinearity issues.

2.4.4 Adaptive Forecasting

Due to changing economic conditions, coefficients re-estimation would let models adapt accord-

ingly. Hence, with a specific pereodicity regularization coefficient is re-tuned and weights are

recalibrated.

• In the direct forecasting methodology (section 2.3) the models are re-tuned and updated

everyday.

• In the multistep forecasting methodology (section 2.4) the models are re-tuned and updated

every 22 days (one month).

2.5 Deep Learning Model

The next natural step is to introduce nonlinearity, a powerful approach to capturing complex

nonlinear relationships are deep learning models. The advantages of using NNs lie in their

flexibility and capacity to handle complex data. Their ability to learn from data allows them to

uncover underlying patterns and relationships that may not be apparent using traditional linear

models.

2.5.1 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are the fundamental building blocks of deep learning models.

They are computational models inspired by the structure and functioning of biological neurons.

ANNs consist of interconnected layers of artificial neurons called ”nodes” or ”hidden units”.

Each node receives input signals, processes them through activation functions, and produces

output signals. ANNs can learn and make predictions by adjusting the weights and biases

associated with the connections between nodes.

The output of a neuron in an ANN is computed using an activation function. Commonly used

activation functions include the sigmoid function, the rectified linear unit (ReLU), and/or the

hyperbolic tangent function. The choice of activation function depends on the nature of the

problem and the desired properties of the model.

Mathematically, the output of a neuron can be represented as follows:

14

y = f(
n∑

i=1

wixi + b) (2.7)

where y is the output, f is the activation function, wi and xi are the weights and inputs

respectively, and b is the bias.

Neural networks can become more complex by adding more hyperparameters, which are ad-

justable settings that affect the behavior and performance of the model during training. By

increasing the number of hyperparameters, such as the number of hidden layers, the number of

neurons in each layer, the learning rate, the regularization strength, and the activation func-

tions, neural networks gain additional flexibility and capacity to capture intricate patterns in

the data.

However, with increased complexity, there are challenges in finding the optimal combination of

hyperparameters that strike the right balance between model expressiveness and generalization

ability. Proper hyperparameter tuning techniques, such as grid search, random search, or more

advanced optimization algorithms, are necessary to explore the vast space of possibilities and

maximize the neural network’s performance.

Additionally, as neural networks become more complex, they may require larger amounts of

computational resources, longer training times, and careful handling to prevent overfitting or

underfitting. Careful regularization techniques, such as dropout or L1/L2 regularization, can

help mitigate overfitting by adding constraints to the model’s parameters.

Neural networks have shown remarkable success in various domains, including image recognition,

natural language processing, and time series forecasting. Their ability to learn complex patterns

and make accurate predictions has made them a powerful tool in the field of deep learning.

2.5.2 Deep Learning Training

Training deep learning models involves an iterative process of forward propagation, loss com-

putation, and backpropagation. During forward propagation, inputs are passed through the

network, and predictions are generated. The loss function measures the dissimilarity between

the predicted outputs and the true targets. Backpropagation calculates the gradients of the loss

with respect to the model’s parameters, allowing the optimization algorithm (e.g., stochastic

gradient descent) to update the weights and biases.

The choice of loss function depends on the task at hand. The most popular and standard loss

15

function used for regression problems is a mean squared error (MSE), which is used in this

thesis.

2.5.3 Hyperparameter Tuning

Finding the right set of hyperparameters is an important task that differentiates a good-

performing model from a bad-performing model. Multiple optimization algorithms exist and

the choice can heavily depend on the circumstance. Hyperparameter tuning is a computation-

ally expensive task, there are tuning algorithms that do a thorough check of the search space

such as grid search, which goes through every combination of hyperparameters inside the search

space, however, it also leads to a combinatorial explosion in the number of model trainings. Two

more tuning algorithms that attracted attention and have proven themselves are,

• Random Search, is a hyperparameter optimization technique commonly used in machine

learning to find the optimal combination of hyperparameters for a model. Unlike grid

search, which exhaustively explores all possible hyperparameter combinations in a pre-

defined grid, random search randomly selects hyperparameter values from a given search

space. The main idea behind random search is that the performance of a model is not

solely determined by the values of its hyperparameters but also by the interactions between

them. By randomly sampling hyperparameter values, random search allows for a broader

exploration of the hyperparameter space, potentially uncovering superior combinations

that may not be discovered through a grid search approach.

• Bayesian Optimization, is a powerful technique for hyperparameter optimization that uses

probabilistic models to intelligently search the hyperparameter space. It combines the

strengths of both random search and model-based optimization, allowing for efficient ex-

ploration and exploitation of the search space. The key idea behind Bayesian optimization

is to construct a surrogate model, often a Gaussian process (GP), that approximates the

unknown performance function mapping hyperparameters to model performance. The

GP model provides a probabilistic representation of the objective function, allowing for

uncertainty quantification.

2.5.4 Model-Validation

The forecasting methodology incorporates an iterative procedure to tune hyperparameters while

efficiently utilizing available data. Initially, the time series is partitioned into a training set and

a test set. The test set is never used in the optimization of the neural networks. In attempt to

16

ensure enough generalization of the models, 30% of the training data is used for hyperparameter

validation. Following this, the tuned and trained neural network is used to make n number

of predictions in the test set. The true data that is obtained after the predictions for them

have been made are subsequently integrated into the training data to create an augmented

training dataset. The process is repeated to make the next set of predictions for the test set.

This iterative procedure of dataset expansion enables the model to assimilate and adapt to

previously unaccounted patterns in the time series data.

Figure 2.5: Iterative model adjusting procedure.

2.6 The Diebold-Mariano Test

The Diebold-Mariano (DM) test is used to compare the forecast accuracy of two sets of predic-

tions. In this context, the hypothesis being tested is about whether one forecasting model is

significantly more accurate than the other.

Let e
(A)
t = yt − ŷ

(A)
t and e

(B)
t = yt − ŷ

(B)
t be the residuals of the models A and B. We define a

loss function g(.) that can be a square, an absolute value of the residual or of any other more

sophisticated form. Define a loss differential, d
(AB)
t = g(e

(A)
t)− g(e

(B)
t).

The null hypothesis H0 : E[d
(AB)
t] = 0, the alternative depends on whether one sided or two

sided test is performed. Given the forecasted values of model A and model B.

• Two sided - Ha : E[d
(AB)
t] ̸= 0.

• One sided - Ha : E[d
(AB)
t] > 0.

In this manner, the Diebold-Mariano test aids in decision-making, confidently adopting predict-

ive methodologies.

17

Chapter 3

Forecasting Results

This section provides a comparative analysis of several methodologies discussed above. The

NNs have been tuned using the Bayesian Optimization method and sliding window CV. The

following models are mentioned in the tables,

• HAR - Heterogeneous Autoregressive model by Corsi (2009).

• EW(9) - Extended Wald Decomposition with 9 components by Ortu et al. (2020).

• CMWLM - Conditional Multistep Wavelet Linear Model (Section 2.4.1).

• UMWLM - Unconditional Multistep Wavelet Linear Model (Section 2.4.2).

• DWLM - Direct Wavelet Linear Model (Section 2.3).

• DWNN - Direct Wavelet Neural Network (Section 2.3).

• UMWNN - Unconditional Multistep Wavelet Neural Network (Section 2.4.2).

The selection of the number of lags in the linear models for approximation and detail coefficients

for both scales, as well as the number of lags of realized volatility is done via Bayesian Information

Criterion (BIC). The model that has the lowest BIC is selected. Using random search, the

selection of the variables can be significantly sped up.

For the deep learning models, Table 3.1 contains the possible values for the hyperparamet-

ers.

18

Table 3.1: Hyperparameter Ranges. Due to data limitation, via trial and error having more than a single hidden
layer only worsens the performance as the model becomes more complex, same applies to the number of hidden
neurons, which increases the performance within each CV set, however, the final model struggles to generalize.
Furthermore, the regularization type used is the kernel regularizer with l1 and l2 regularizations combined.

Hyperparameter Value Range

Number of Hidden Layers 1

Number of Neurons per Layer [10, 200]

Optimizer Adam

Activation Function {ReLU, tanh, sigmoid}

Learning Rate [0.1, 0.01, 0.001, 0.00001, 0.05, 0.005, 0.00005]

Weight Decay [0.005, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]

L1 Regularization (0, 0.3)

L2 Regularization (0, 0.3)

Normalization Batch

Multiple forecasting horizons will be presented, as some performances of the models can differ

depending on how far into the future we are predicting. The first and potentially most interesting

is how good are the models in terms of predicting the next day realized volatility.

For the results section, two different datasets are considered

• SPDR SP 500 Trust ETF (SPY)

• USD/CHF Exchange Rate

3.1 Data: SPDR SP 500 Trust ETF

The sample size of daily realized volatility is 5247 observations and the wavelet decomposition is

only performed up to scale J = 2, due to the machine learning models requiring bigger samples

to train.

Mean Median Std. Dev. Min Max Skewness Kurtosis

RV 4.69 4.01 3.05 1e-21 32.23 2.91 18.28

Table 3.2: Descriptive statistics. The original dataset has been scaled by 1000 for both visual and methodological
convenience.

19

Model MSE MAE R2(%)

HAR 4.27 1.22 71.29

EW(9) 6.71 1.8 54.88

CMWLM 4.8 1.3 67.68

UMWLM 4.86 1.33 67.31

DWLM 4.19 1.22 71.79

DWNN 5.17 1.32 65.22

UMWNN 5.07 1.35 65.91

Table 3.3: The next day out-of-sample forecasting performance. MSE, MAE, and R2 denote root mean square
error, mean absolute error, and the coefficient of determination. The size of the testing set is 1500, which roughly
corresponds to 5-6 years of daily observations. Lower MSE values indicate better predictive accuracy.

The updating frequency of the neural networks and the lags of the models can be found in

appendix, Table 1.

From the models that were introduced in this study, the Direct Wavelet Linear Model is perform-

ing best in terms of predicting next-day realized volatility. In comparison to the HAR model,

a slight improvement can be observed in terms of mean squared error (MSE). However, both

models perform on par in terms of mean absolute error (MAE). Between the conditional and

unconditional multistep methods, both models’ performances are relatively close, both having

the coefficient of determination (R2) coefficient roughly 67% in the linear context and about

65% in the non-linear context.

Judging purely based on the results presented in Table 3.3, one can conclude that the DWT

approaches, better unfold the dynamics behind the time series than the EW(9) (Extended Wald

Decomposition model with 9 components) (Ortu et al., 2020).

As for the deep learning models, a Conditional Multistep Wavelet Neural Network wasn’t added

in the analysis, due to the failed convergence of the third model, which corresponds to modeling

j = 2 wavelet coefficients at positions 3 and 4 (Fig. 2.4). The rate and overall trend of the

training loss curve and validation loss curve can tell a lot about the generalization ability and

stability of the model. Fig. 3.1 shows the convergence plots for 3 models that had to be

tuned and trained. We observe a stable convergence in the first and the second graphs, but not

the third (most right figure). Therefore, only the UMWNN (Unconditional Multistep Wavelet

Neural Network) is evaluated. The introduction of the non-linearity via neural networks only

outperforms the EW(9) and not the other benchmark HAR model.

20

Figure 3.1: Convergence plots of the Conditional Multistep Wavelet Neural Network. The left plot is for the first
regression that models the j = 1 coefficients, and the plot in the middle is for the second regression that models
j = 2 coefficients corresponding to positions 1 and 2. The most right graph models j = 2 coefficients for positions
3 and 4.

The forecasting results are also evaluated across three distinct time horizons: 5 days, 20 days,

and 60 days. Table 3.4 and Table 3.5 present the performance metrics, specifically MSE, MAE,

and R2. Table 3.4 compares the h-step ahead forecast with the actual value of the time series

at that future time point. While Table 3.5 instead compares a forecast at a specific future time

point with the average of the past few days leading up to that time point. The direct forecast is

important as it measures the accuracy of the model in capturing the exact future values of the

time series. Whereas rolling average focuses on assessing the trend and overall movement of the

time series. It helps with understanding how well the forecasted values of the model align with

the general behavior of the data over a given time horizon.

Metric Horizon HAR EW(9) CMWLM UMWLM DWLM DWNN UMWNN

MSE

5-day 6.95* 9.06 6.99 7.23 7.59 8.37 7.71

20-day 10.15 11.7 9.91* 10.17 15.28 12.26 12.17

60-day 14.70 15.99 13.67* 13.8 15.51 15.02 16.62

MAE

5-day 1.53* 2.01 1.53* 1.57 1.59 1.67 1.6

20-day 1.84 2.17 1.76* 1.83 2.29 1.96 1.98

60-day 2.30 2.43 2.02* 2.13 2.3 2.19 2.4

R2

5-day 53.35* 39.25 53.05 51.48 49.03 43.79 48.27

20-day 32.37 22.08 33.92* 32.22 -1.85 18.31 18.87

60-day 3.32 -5.2 10.09* 9.27 -2.02 1.23 -9.34

Table 3.4: The table displays the performance metrics values obtained from forecasting [5/20/60]-days ahead. A
direct comparison to the true values is performed. The performance metrics are MSE, MAE, and R2. The values
with an asterisk next to them indicate the model with the best performance per each metric per horizon.

When forecasting longer horizons, we observe a decrease in the performance of the DWLM

21

(Direct Wavelet Linear Model) which performed well in forecasting next-day realized volatility.

An interesting observation is that the predictive ability of CMWLM (Conditional Multistep

Wavelet Linear Model) increases the longer the forecasting horizon is, with CMWLM taking

over the place of the best-performing model as soon as the horizon is longer than 5 days when

comparing MSEs. The other metrics also follow the previous statement.

The performances of DWNN and UMWNN when compared to the EW(9) vary a lot when

comparing MSEs and R2s, but not MAE, where we see that both models that use neural networks

outperform EW(9). Therefore, no concise conclusion can be drawn.

Metric Horizon HAR EW(9) CMWLM UMWLM DWLM DWNN UMWNN

MSE

5-day 3.29* 5.59 3.69 3.81 4.4 5.26 4.33

20-day 3.46* 5.44 3.64 3.65 10.71 6.91 5.24

60-day 5.05 7.09 5.51 5.02* 8.93 7.48 7.01

MAE

5-day 1.02* 1.63 1.07 1.11 1.18 1.28 1.15

20-day 1.07 1.63 1.05* 1.11 1.96 1.45 1.28

60-day 1.32 1.79 1.28* 1.29 1.84 1.63 1.47

R2

5-day 73.23* 54.6 70.02 69.02 64.22 57.21 64.81

20-day 66.87* 47.87 65.13 65.0 -2.64 33.71 49.77

60-day 40.98 17.17 35.67 41.31* -4.31 12.58 18.13

Table 3.5: The table displays the performance metrics values obtained from forecasting [5/20/60]-days ahead.
The rolling average comparison is performed. The performance metrics are MSE, MAE and R2. The values with
an asterisk next to them indicate the model with the best performance per each metric per horizon.

As for the rolling average comparison (Table 3.5), the picture changes. With HAR model con-

tinues to dominate in terms of MSE for 5 days and 20 days ahead forecast and is slightly

outperformed by the UMWLM (Unconditional Multistep Wavelet Linear Model) when forecast-

ing 60 days ahead. Another observation is the improving performance of the UMWLM, being

almost as good as CMWLM when forecasting 20 days ahead, and better when forecasting 60

days ahead in terms of MSE and R2. This could be explained by the model’s complexity, the con-

ditional model involves more complexity with three linear models, and the unconditional model,

with only two linear models, may be more robust and better at generalizing, leading to better

performance in the rolling average comparison. We also observe that UMWNN outperforms the

EW(9) in terms of all metrics.

It’s important to test if the forecasted values provided by UMWNN model are significantly

22

better than the other predictions. The results of the two-sided Diebold-Mariano test show no

significant difference between the predictions of DWLM being more accurate than HAR when

forecasting next day realized volatility. With regards to the CMWLM which outperformed the

HAR in longer horizons (direct comparison), the test only supports the claim that CMWLM

beats HAR when horizon is 60 days. As for the rolling average comparison, there’s not enough

evidence to state UMWLM outperforms HAR when forecasting 60 days ahead.

(a) Direct comparison

Models / Horizon 1 5 20 60

HAR/EW(9) 0.000 0.000 0.000 0.000

HAR/CMWLM 0.000 0.806 0.240 0.000

HAR/UMWLM 0.003 0.074 0.875 0.000

HAR/DWLM 0.271 0.074 0.000 0.011

HAR/DWNN 0.001 0.002 0.001 0.271

HAR/UMWNN 0.000 0.002 0.000 0.000

EW(9)/CMWLM 0.000 0.000 0.000 0.000

EW(9)/UMWLM 0.000 0.000 0.000 0.000

EW(9)/DWLM 0.000 0.000 0.000 0.150

EW(9)/DWNN 0.000 0.140 0.359 0.001

EW(9)/UMWNN 0.000 0.000 0.252 0.145

CMWLM/UMWLM 0.777 0.041 0.087 0.156

CMWLM/DWLM 0.000 0.011 0.000 0.000

CMWLM/DWNN 0.166 0.000 0.000 0.000

CMWLM/UMWNN 0.204 0.000 0.000 0.000

UMWLM/DWLM 0.001 0.238 0.000 0.000

UMWLM/DWNN 0.337 0.006 0.000 0.000

UMWLM/UMWNN 0.087 0.022 0.000 0.000

DWLM/DWNN 0.000 0.000 0.000 0.000

DWLM/UMWNN 0.000 0.718 0.000 0.004

DWNN/UMWNN 0.724 0.077 0.869 0.000

(b) Rolling average comparison

1 5 20 60

0.000 0.000 0.000 0.000

0.000 0.004 0.126 0.006

0.003 0.000 0.029 0.807

0.271 0.000 0.000 0.000

0.001 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.388 0.002 0.182

0.000 0.000 0.471 0.771

0.777 0.230 0.871 0.000

0.000 0.000 0.000 0.000

0.166 0.000 0.000 0.000

0.204 0.000 0.000 0.000

0.001 0.024 0.000 0.000

0.337 0.000 0.000 0.000

0.087 0.003 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.758 0.000 0.000

0.724 0.001 0.000 0.028

Table 3.6: The results of the Diebold-Mariano Test. For a more convenient visualisation of the results, the values
presented in the table are the probability values (p-value). Two-sided Diebold-Mariano Test has been performed
to check if every combination of the models is significantly different from one another. The underlined values in
the table are the tests with no rejection of the H0 targeting the benchmarks as one of the models that is compared.

23

3.2 Data: USD/CHF Exchange Rate

The sample size of daily realized volatility created by Corsi (2009) contains 3599 observations

and the wavelet decomposition is only performed up to scale J = 2, due to the machine learning

models requiring bigger samples to train.

Mean Median Std. Dev. Min Max Skewness Kurtosis

RV 12.397 11.593 3.900 3.828 41.947 1.594 5.071

Table 3.7: Descriptive statistics for the USD/CHF time series of daily realized volatility.

Model MSE MAE R2(%)

HAR 3.23 1.36 74.87

EW(9) 4.91 1.73 61.81

CMWLM 3.61 1.45 71.91

UMWLM 4.11 1.5 68.0

DWLM 3.36 1.39 73.83

DWNN 3.44 1.42 73.21

UMWNN 4.01 1.49 68.79

Table 3.8: The next day out-of-sample forecasting performance. MSE, MAE, and R2 denote root mean square
error, mean absolute error, and R2. The size of the testing set is 520, which roughly corresponds to 2 years of
daily observations. Lower MSE values indicate better predictive accuracy.

The lags of the models can be found in appendix, Table 2.

The first benchmark (HAR) outperforms all the other models with DWLM and DWNN being

the closest when comparing all metrics. For the DWLM, similar behavior has been observed

previously (SPDR SP 500 Trust ETF), which somewhat points out the stability of the direct

forecasting methodology across datasets. The DWNN model demonstrates a notably superior

predictive performance when applied to the exchange rate dataset, as compared to its perform-

ance on the SP500 dataset. As for the UMWNN model, the performance is relatively consistent.

Lastly, based on the next-day forecasting results, both linear and non-linear methods are superior

to the EW(9) model.

When looking at longer time horizons, comparing predictions directly to the true values at those

time points (Table 3.9), the analysis yields compelling evidence of the UMWNN (Unconditional

Multistep Wavelet Neural Network) model’s superiority over established benchmarks and other

24

wavelet-based models. The multistep approach offers a nuanced advantage by affording the

ability to capture and model the distinct characteristics of individual wavelet coefficients. By

focusing on each coefficient individually, it’s possible to capture the specific patterns thereby ac-

commodating a more accurate representation of longer-term realized volatility dynamics.

Metric Horizon HAR EW(9) CMWLM UMWLM DWLM DWNN UMWNN

MSE

5-day 4.85 6.54 5.29 4.97 8.7 6.46 4.61*

20-day 7.11 9.17 8.62 7.78 15.5 10.73 6.77*

60-day 12.08 14.89 15.77 13.78 17.14 13.77 10.92*

MAE

5-day 1.69 2.04 1.8 1.7 2.44 2.0 1.64*

20-day 2.14 2.49 2.42 2.26 3.34 2.62 2.04*

60-day 2.85 3.24 3.37 3.13 3.51 3.13 2.56*

R2

5-day 62.05 48.82 58.59 61.09 31.87 49.44 63.89*

20-day 43.0 26.48 30.89 37.65 -24.18 13.99 45.73*

60-day -11.11 -37.05 -45.13 -26.77 -57.74 -26.73 -0.48*

Table 3.9: The table displays the performance metrics values obtained from forecasting [5/20/60]-day ahead. A
direct comparison to the true values is performed. The performance metrics are MSE, MAE, and R2. The values
with an asterisk next to them indicate the model with the best performance per each metric per horizon.

Metric Horizon HAR EW(9) CMWLM UMWLM DWLM DWNN UMWNN

MSE

5-day 2.2* 4.01 2.85 2.41 6.41 4.18 2.21

20-day 2.81 5.0 4.54 3.58 11.91 6.99 2.45*

60-day 5.1 7.65 9.36 7.43 11.53 8.29 4.01*

MAE

5-day 1.19* 1.64 1.39 1.25 2.13 1.61 1.21

20-day 1.41 1.91 1.85 1.63 3.02 2.11 1.23*

60-day 1.95 2.37 2.66 2.38 2.96 2.57 1.55*

R2

5-day 79.73* 63.09 73.71 77.77 40.91 61.53 79.62

20-day 70.44 47.37 52.23 62.37 -25.22 26.52 74.2*

60-day 32.38 -1.49 -24.06 1.44 -52.93 -9.95 46.76*

Table 3.10: The table displays the performance metrics values obtained from forecasting [5/20/60]-day ahead.
The rolling average comparison is performed. The performance metrics are MSE, MAE and R2. The values with
an asterisk next to them indicate the model with the best performance per each metric per horizon.

The results of hypothesis testing, indicate there’s enough statistical evidence to signify the

performance of the UMWNN over HAR, in forecasting 60 days ahead when making direct com-

parison of the forecasts with the true values of that day. As for the rolling average comparison,

25

there’s significant difference when making 20 and 60 days ahead predictions.

The results support the claim that the UMWNN better accomodates a more accurate repres-

entation of longer-term realized volatility dynamics.

(a) Direct comparison

Models / Horizon 1 5 20 60

HAR/EW(9) 0.000 0.000 0.000 0.000

HAR/CMWLM 0.001 0.000 0.000 0.000

HAR/UMWLM 0.000 0.188 0.000 0.000

HAR/DWLM 0.001 0.000 0.000 0.000

HAR/DWNN 0.009 0.000 0.000 0.000

HAR/UMWNN 0.000 0.063 0.064 0.000

EW(9)/CMWLM 0.000 0.000 0.000 0.000

EW(9)/UMWLM 0.007 0.000 0.000 0.000

EW(9)/DWLM 0.000 0.000 0.000 0.000

EW(9)/DWNN 0.000 0.756 0.000 0.002

EW(9)/UMWNN 0.003 0.000 0.000 0.000

CMWLM/UMWLM 0.012 0.000 0.000 0.000

CMWLM/DWLM 0.018 0.000 0.000 0.000

CMWLM/DWNN 0.196 0.000 0.000 0.000

CMWLM/UMWNN 0.033 0.000 0.000 0.000

UMWLM/DWLM 0.001 0.000 0.000 0.000

UMWLM/DWNN 0.003 0.000 0.000 0.985

UMWLM/UMWNN 0.241 0.001 0.000 0.000

DWLM/DWNN 0.368 0.000 0.000 0.000

DWLM/UMWNN 0.002 0.000 0.000 0.000

DWNN/UMWNN 0.008 0.000 0.000 0.000

(b) Rolling average comparison

1 5 20 60

0.000 0.000 0.000 0.000

0.001 0.000 0.000 0.000

0.000 0.001 0.000 0.000

0.001 0.000 0.000 0.000

0.009 0.000 0.000 0.000

0.000 0.884 0.000 0.000

0.000 0.000 0.000 0.000

0.007 0.000 0.000 0.060

0.000 0.000 0.000 0.000

0.000 0.449 0.000 0.012

0.003 0.000 0.000 0.000

0.012 0.000 0.000 0.000

0.018 0.000 0.000 0.000

0.196 0.000 0.000 0.000

0.033 0.000 0.000 0.000

0.001 0.000 0.000 0.000

0.003 0.000 0.000 0.000

0.241 0.010 0.000 0.000

0.368 0.000 0.000 0.000

0.002 0.000 0.000 0.000

0.008 0.000 0.000 0.000

Table 3.11: The results of the Diebold-Mariano Test. For a more convenient visualisation of the results, the values
presented in the table are the probability values (p-value). Two-sided Diebold-Mariano Test has been performed
to check if every combination of the models is significantly different from one another. The underlined values in
the table are the tests with no rejection of the H0 targeting the benchmarks as one of the models that is compared.

26

Chapter 4

Conclusion

The analysis performed in this thesis, revolves around using Discrete Wavelet Transform, with

the choice of the wavelet being inspired by Bandi et al. (2019). The orthogonality property of

the wavelet matrix (Eq. 1.7) allows to perfectly reconstruct the time series using the wavelet

coefficients. This gives rise to two methodologies introduced in this thesis, being the direct

approach (section 2.3) and the multistep approach (section 2.4).

The direct approach regresses the realized volatility time series directly on the lags of the wavelet

coefficients and the lags of the realized volatility itself. While the multistep approach allows to

model the dynamics of the individual components that can then be assembled to make provide

a forecast of the time series. Two branches of the multistep methodology are created with

the first being the conditional multistep model and the unconditional multistep model. The

former utilizes the cycle structure of the components, using two separate models that estimate

j = 2 coefficients depending on the positions within the cycles. While the ladder relaxing the

cycle structure idea and simply uses the same coefficients/weights to forecast j = 2 coefficients

independent of the position.

The empirical application favors the multistep approach when forecasting longer time horizons.

In the first dataset, exploration with linear regression unveiled the prowess of the multistep

approach, as it efficiently estimated wavelet coefficients and adeptly assembled them to produce

accurate forecasts. In the exchange rate dataset, the neural network-powered multistep approach

outperformed other methods indicating its ability to capture nonlinear dynamics in the realized

volatility time series.

This outcome underscores the adaptability of the multistep technique, which, when coupled with

different modeling methods, showcases a capability to unravel individual component dynamics

27

and forecast volatility.

Further research could expand upon the current study by exploring the application of more

advanced and complex machine learning models to further enhance the predictive prowess of

the proposed multistep and direct approaches for realized volatility forecasting.

References

Andersen, T. G. & Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility models

do provide accurate forecasts. International Economic Review , 39 (4), 885–905. Retrieved

2023-04-14, from http://www.jstor.org/stable/2527343

Bandi, F., Perron, B., Tamoni, A. & Tebaldi, C. (2019). The scale of predictability. Journal of

Econometrics, 208 (1), 120-140. Retrieved from https://www.sciencedirect.com/science/

article/pii/S0304407618301738 (Special Issue on Financial Engineering and Risk Man-

agement) doi: https://doi.org/10.1016/j.jeconom.2018.09.008

Corsi, F. (2009). A simple approximate long-memory model of realized volatility. The Journal

of Financial Econometrics, 7 (2), 174-196. Retrieved from https://EconPapers.repec.org/

RePEc:oup:jfinec:v:7:y:2009:i:2:p:174-196

Ortu, F., Severino, F., Tamoni, A. & Tebaldi, C. (2020). A persistence-based wold-type de-

composition for stationary time series. Quantitative Economics, 11 (1), 203-230. Retrieved

from https://onlinelibrary.wiley.com/doi/abs/10.3982/QE994 doi: https://doi.org/

10.3982/QE994

Reisenhofer, R., Bayer, X. & Hautsch, N. (2022). Harnet: A convolutional neural network for

realized volatility forecasting.

28

http://www.jstor.org/stable/2527343
https://www.sciencedirect.com/science/article/pii/S0304407618301738
https://www.sciencedirect.com/science/article/pii/S0304407618301738
https://EconPapers.repec.org/RePEc:oup:jfinec:v:7:y:2009:i:2:p:174-196
https://EconPapers.repec.org/RePEc:oup:jfinec:v:7:y:2009:i:2:p:174-196
https://onlinelibrary.wiley.com/doi/abs/10.3982/QE994

Appendix

Appendix A: Data: SPDR SP 500 Trust ETF

Model π̂(1) x̂(1) π̂(2)
a x̂(2)

a π̂
(2)
b x̂

(2)
b x

CMWLM 1 4 1 5 1 4

UMWLM 1 4 1 5 1 4

DWLM 7 3 2 50 2

DWNN 30 30 30 30 30

UMWNN 30 30 30 30

Table 1: The lag structure of the models. The values in the table are the number of lags per each component
and the number of lags of the original time series. The columns π̂

(2)
a and x̂

(2)
b are the number of lags in the

conditional multistep approach where two separate models are used to forecast j = 2 coefficients. Subscript a is
for the wavelet coefficients in position 1 and 2, subscript b is for the wavelet coefficients in position 3 and 4.

Updating frequencies,

• DWNN: 66 days

• UMWNN: 44 days

Figure 1: Time series plot.

29

(a) MSE comparison bar plot for horizon = 1 (b) MSE comparison bar plot for horizon = 5

(c) MSE comparison bar plot for horizon = 20 (d) MSE comparison bar plot for horizon = 60

Data: USD/CHF Exchange Rate

Model π̂(1) x̂(1) π̂(2)
a x̂(2)

a π̂
(2)
b x̂

(2)
b x

CMWLM 1 3 1 2 1 5

UMWLM 1 3 1 2 1 5

DWLM 1 50 9 4 2

DWNN 30 30 30 30 30

UMWNN 30 30 30 30

Table 2: The lag structure of the models. The values in the table are the number of lags per each component
and the number of lags of the original time series. The columns π̂

(2)
a and x̂

(2)
b are the number of lags in the

conditional multistep approach where two separate models are used to forecast j = 2 coefficients. Subscript a is
for the wavelet coefficients in position 1 and 2, subscript b is for the wavelet coefficients in position 3 and 4.

Updating frequencies,

• DWNN: 44 days

• UMWNN: 44 days

30

31

(a) Plot of the forecasts. Horizon = 1

(b) Plot of the forecasts. Horizon = 5

(c) Plot of the forecasts. Horizon = 20

(d) Plot of the forecasts. Horizon = 60

32

(a) MSE comparison bar plot for horizon = 1

(b) MSE comparison bar plot for horizon = 5

(c) MSE comparison bar plot for horizon = 20

(d) MSE comparison bar plot for horizon = 60

33

(a) Plot of the forecasts. Horizon = 1

(b) Plot of the forecasts. Horizon = 5

(c) Plot of the forecasts. Horizon = 20

(d) Plot of the forecasts. Horizon = 60

34

Figure 6: The original time series of daily realized volatility.

	Introduction
	Methodology
	Data & Realized Volatility
	Discrete Wavelet Decomposition
	Direct Forecasting
	Multistep Forecasting
	Conditional Multistep Forecasting
	Unconditional Multistep Forecasting
	Regularization
	Adaptive Forecasting

	Deep Learning Model
	Artificial Neural Networks (ANNs)
	Deep Learning Training
	Hyperparameter Tuning
	Model-Validation

	The Diebold-Mariano Test

	Forecasting Results
	Data: SPDR SP 500 Trust ETF
	Data: USD/CHF Exchange Rate

	Conclusion

