ErasMUS UNIVERSITY ROTTERDAM
ErRASMUS SCHOOL OF ECONOMICS

Master Thesis Econometrics and Management Science

Meta-Learning using Neural Networks in

Large-Scale Traveling Salesman Problems

M.B. Bossenbroek (668865)

2afuns

Supervisor: dr. O. Kuryatnikova
Second assessor: dr. MH Akyuz
Date final version: 7th August 2023

The content of this thesis is the sole responsibility of the author and does not reflect
the view of the supervisor, second assessor, Erasmus School of Economics or Erasmus

University.

Abstract

This thesis explores the application of meta-learning to the traveling salesman
problem (TSP) for large-scale instances that require low complexity methods. Tradi-
tional meta-learning models for TSP often come with increased computational time,
making them unsuitable for situations where numerous instances need to be solved
quickly. In this study, different meta-learning models are developed to predict the
performance of fast and greedy heuristics based on instance features. The study
employs three distinct techniques to address the research problem, namely a neural
network, a decision tree, and k-nearest neighbors. The research investigates the
models performance, influential features for heuristic selection, and the efficiency
improvement compared to always selecting the overall best heuristic. Furthermore,
the study introduces novel meta-features and investigates the viability of using ar-
tificial data as a replacement for real data during the models training processes.
The findings demonstrate the models’ ability to capture patterns in TSP instances
and outperform simple selection techniques, providing a promising alternative for
efficient TSP solutions on large-scale instances. The best performance is achieved
by employing the complex neural network model. However, the relatively small per-
formance differences compared to less complex models make them viable candidates,

especially when considering computational efficiency.

List of Frequently Used Abbreviations and
Symbols

Abbreviation Definition More Information

CcO Combinatorial Optimization See Section H_
DBSCAN Density-Based Spatial Clustering of Applications with Noise See Section |4.5
DFJ Dantzig—Fulkerson—Johnson formulation See Section a:
DT Decision Tree See Section (4.4
FI Farthest Insertion heuristic See Section H
GR the Greedy Algorithm See Section 4 1]
KNN K-Nearest Neighbours See Section ﬂ
ML Machine-Learning See Section [2.3
MST Minimum Spanning Tree See Section a:
MLP MultiLayer Perceptron See Section [2.4
NI Nearest Insertion heuristic See Section E
NN Nearest Neighbour heuristic See Section 4 1]
NNet Neural Network See Section 4_3
PCB Printed Circuit Board See Section ﬂ_
P Spearman’s correlation coefficient See Equation|§
TSP Traveling Salesman Problem See Section (1

Contents

(1 _Introduction|

513 ol

[7__Conclusion|
[7.1 Model performance]

(7.2 Choice of machine-learning technique|.

[7.3 Artificial data and Feature importance| L.

11
13

15

17
17
24
24
25
26
28
29

35
35
37
40

42
42
43
44
49
51

[EE Online appendix|

57

59

60

61

62

1 Introduction

In Combinatorial Optimization (CO) problems, the goal is to maximize or minimize
some objective function subject to one or more constraints over a finite number of out-
comes. These problems often represent simplified versions of real-life scenarios. One of
the most widely studied problems is the traveling salesman problem (TSP). The TSP
requires a salesman to visit a number of cities and find the optimal route in which each
city is visited exactly once. More formally, this problem can be described as the fol-
lowing graph problem [14]. Consider a graph G = (V, E), where V represents a set of
vertices and F represents the set of edges. Each edge e € E is assigned a cost c.. The
objective is to find a Hamiltonian cycle on the graph that minimizes the sum of all costs
on the cycle. The problem has been proven to be NP-complete [13], indicating that it
belongs to the most challenging problems within the class of CO problems and no known

polynomial-time algorithms exist to solve it.

The TSP has a broad range of practical applications in various domains. Primarily, it
is applied in the domain of logistics, where it finds use in scenarios such as planning of
sightseeing tours by tour operators or transportation of students by a school bus [1] , de-
livery of packages using drones [34], and order-picking scenarios [40]. However, TSP has
also been successfully implemented in other fields. Another, less apparent application
of TSP is found in the domain of DNA sequencing. Here, it is utilized to determine the
shortest sequence of DNA fragments that can assemble a complete set of genes [4]. While
the aforementioned applications of the TSP typically involve a limited number of cities

or locations, there are certain scenarios that require solving much larger instances of TSP.

In this thesis, our focus is on applications that necessitate the rapid solution of rel-
atively large instances of the TSP. We will examine two examples of such applications,
with the first one being network design [I1]. In network design, the primary objective is
to determine the most efficient route for data transmission. The vertices in this context
can represent various entities such as data centers, network hubs, or devices connected
to the network. For certain networks, the task involves connecting thousands of network
elements, and any delays caused by longer routes can adversely affect data transmission.
Given the continuous and time-sensitive nature of data transmission, the route calcula-

tions must be executed swiftly to prevent data loss or degradation in its value.

A second example of such an application can be found in the field of circuit board design
[28, 45]. A printed circuit board (PCB) is a flat surface used for mounting electrical
components in various electronic devices such as computers, smartphones, televisions,
and industrial systems. Efficiently connecting these components on the PCB is crucial
for ensuring optimal performance of the device. In this context, the PCB application can
be formulated as a TSP instance, where the vertices represent the different components,
and the edges represent the interconnections between them. The objective is to minimize
the trace length, which refers to the distance traveled by the electrical signal between
components. A shorter trace length leads to faster signal transmission and improved
device speed. In practice, there are often additional constraints imposed to avoid signal
crossovers, which can cause malfunctions in the device [28]. However, in this thesis, we
relax these constraints to focus on the broader application of solving large instances of
the TSP quickly. With advancements in technology, the number of components on PCBs
has significantly increased, with powerful computers and high-end equipment requiring
thousands of components [45]. Furthermore, there is a growing trend towards product
customization, where users can personalize the technical details of their purchases. This
shift from mass production to customized production has resulted in a large number of
unique TSP instances that need to be sequentially solved before the production process
suffers from significant delays. In this thesis, our goal is to select methods that can effi-
ciently solve these large TSP instances within seconds to prevent production delays. We
prioritize methods that can handle even the most complex PCB layouts, accommodating

the increasing number of components and the need for fast solution times.

Many heuristics are developed for TSP over the years. Though some heuristics outper-
form others [21], this often comes with the cost of a higher computational time. In some
earlier mentioned applications, a large number of instances needs to be solved within a
short period. Thus, it may not be feasible to use exact methods or complex heuristics,
as they may take too long to provide a good feasible solution. In such situations, a faster
greedy algorithm may be used to obtain a solution. While there exist a number of fast
heuristics, their performance may depend on characteristics of instance such as the level
of symmetry and density of the graph. In this thesis, a meta-learning model is created
using neural networks. Meta-learning is a subfield of machine-learning that focuses on
developing algorithms and techniques that enable models to learn to adapt to new tasks
or environments more efficiently. In the context of CO problems, meta-learning is com-
monly used to determine the most suitable methods to apply in different scenarios of the

problem. In this thesis, the model predicts the performance of different fast heuristics of

TSP based on features of the instance. Although previous successful studies are conduc-
ted using more complex or local search heuristics [24), 22], meta-learning has not been
applied to simple heuristics for large instances. Therefore, we study the possibilities for
large-scale applications where methods which require large computational time are not
suitable. For other CO problems, meta-learning models have shown promising results
even for simple heuristics [31], making the usage of meta-learning for heuristic selection

a interesting subject to apply to TSP.

This thesis addresses the following research questions:

e« How does a meta-learning model using a feed-forward neural network perform

when applied to the fast and greedy heuristics for the traveling salesman problem?

e Is the specific choice of machine-learning technique relevant for constructing the

right model?

e What are the crucial features that influence heuristic selection in the context of

the traveling salesman problem?

o Can artificial data serve as a valid substitute for real data in constructing the

meta-learning model?

e What level of tour length reduction can be achieved by utilizing different meta-

learning models instead of always selecting the overall best heuristic?

These questions will be investigated through a comprehensive analysis of existing lit-
erature, data generation techniques, and numerical experiments. By answering these
questions, this research aims to provide valuable insights and contribute to the advance-
ment of knowledge in the field of CO.

The presented thesis is structured in the following manner. Firstly, we offer a brief over-
view of the significant findings on the traveling salesman problem and the methodologies
employed in the literature review. In Chapter [3] we formally introduce TSP through
a problem statement. The methodology section (Chapter {4)) provides a comprehensive
description of the meta-learning model, including details on heuristics, meta-features,
and the neural network. In the data section (Chapter |5]), we delve into the creation of
an artificial dataset. Lastly, we report the findings in Chapter [6] and draw meaningful

conclusions in Chapter [7]

2 Literature review

2.1 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a well-known problem that has a long history
dating back to the 19th century. The first known instance of the problem was described in
a German manual in 1832, which discussed an optimal tour to visit 45 German cities but
did not contain any mathematical formulations [44]. The first mathematical formulation
of the problem appeared in the 1930s, when Karl Menger discussed the problem of
obtaining a Hamiltonian path for given points on a graph [32]. In the following years,
this problem evolved into the formulations that we know today. During this time, the
concept of a minimum spanning tree (MST) was also defined. The tree length denotes
the minimum length necessary for linking all nodes, thereby serving as a valid lower
bound, as a complete tour requires the connection of every node. Robert Clay Prim
improved upon earlier work and in 1957 defined an algorithm to obtain the MST in
polynomial time [39], while Joseph Kruskal developed a comparable algorithm for the
MST a year earlier, which has the same time-complexity O(n?) [26]. Other important
development include the work of Dantzig, Fulkerson, and Johnson (DFJ) in 1954, where
they presented the first widely adopted integer linear programming formulation [10].
This formulation enabled the optimal solution of TSP instances using the Branch and
Bound method. Subsequently, in 1960, Miller, Tucker, and Zemlin (MTZ) introduced
an alternative formulation [33] that also achieves the optimal solution. The DFJ and
MTZ formulations differ in their construction approach. The DFJ formulation employs
binary variables for each edge and incorporates specific constraints that eliminate the
presence of subtours. In contrast, the MTZ formulation enforces subtour elimination
constraints implicitly by employing variables that represent the order of vertex visits.
These constraints are incorporated into the formulation through the use of inequalities
that ensure the validity of the tour structure. While both formulations yield optimal
solutions, they vary in the number of variables and constraints involved. The DFJ
formulation generally has fewer variables but often requires more constraints compared
to MTZ. As a practical consideration, DFJ is often preferred for smaller instances, while
MTZ becomes more suitable for slightly larger ones. However, due to their exact nature,
neither formulation is well-suited for applications that demand computational efficient
solutions for large-scale instances.

In 1970, Held and Karp introduced a lower bound for the optimal solution of TSP known
as the 1-tree bound. This bound is derived by constructing a minimum spanning tree

(MST) and adding an efficient edge to create a tour [16]. However, it was discovered

that this method did not always provide the 1-tree that is closest to the optimal solution.
To address this limitation, Held and Karp developed a branch-and-bound procedure the
following year, which obtained the maximum 1-tree bound. This improved bound is often
regarded as one of the most accurate bounds for large instances of TSP. Consequently,
when the optimal value is unknown, heuristics for TSP instances are frequently compared
to the Held-Karp bound [I7] as an alternative.

2.2 Heuristics

While the exact formulations discussed earlier guarantee an optimal solution, they often
suffer from high computational time, making them impractical for large-scale problems
where the number of cities is significant. Consequently, these formulations are well-
suited for obtaining optimal tours in instances involving only a few cities. However, as
the problem size increases, their computational demands become restraining. To tackle
larger instances, a wide range of heuristics have been developed, offering different levels
of complexity and performance. These heuristics provide approximate solutions TSP,
meaning that their solution might be suboptimal. They are striking a balance between
solution quality and computational efficiency. The simplest heuristic for TSP is the
nearest neighbor heuristic (NN). In 1974, Rosenkrantz et al. proved that NN has an ap-
proximation ratio of O(log(|V]))[43]. Subsequently, due to technological advances, the
heuristic was tested on instances with up to a million cities by Johnson and McGeoch in
1995 [21]. They found that, despite the increase in size, the performance of the heuristic
is, on average, 25% higher than the Held-Karp lower bound. Another heuristic, the
Greedy heuristic (GR), was also tested in the same paper and showed somewhat better
results while only having a minor increase in polynomial complexity compared with NN
[21]. GR produces a solution that is, on average, between 15 and 20% higher than the
Held-Karp lower bound. Moreover, its performance relative to NN appears to improve
with an increase in the size of the instance [2I]. Hence, both heuristics serve as viable
alternatives when solving large instances of TSP. While they may not guarantee the op-
timal solution, they provide efficient solutions that are reasonably close to the optimal

solution.

In 1964 Clarke and Wright proposed a fast heuristic for the Vehicle Routing Prob-
lem (VRP). This problem is a more complex version of TSP as a simple polynomial
reduction from VRP to TSP is possible [6]. Clarke and Wright constructed an algorithm

that iteratively adds edges to the tour, aiming to minimize the routing cost in each

iteration. This method known as the saving algorithm [6] can easily be adapted to be
implemented in TSP. These adaptations were later defined as an insertion heuristic for
TSP. Insertion heuristics are a of class greedy algorithms that involve adding edges to a
small sub-tour iteratively until a complete tour is obtained. There exist several variants,
each with unique conditions for edge addition and different complexities [36]. Examples
of these variants include Nearest Insertion, Farthest Insertion, Convex hull Insertion,
and Cheapest Insertion. These methods offer an alternative to other greedy heuristics
commonly employed in practice. In many cases, multiple greedy heuristics are applied
to a given instance, and subsequently, the best tour among them is selected. In 1976,
Nicos Christofides developed a greedy algorithm for TSP that outperforms other greedy
heuristics [5]. His algorithm, now known as Christofides algorithm, uses a combination
of a minimum spanning tree, a minimum weight perfect matching, and short-cutting
to obtain a solution. Its worst-case performance is only 1.5 times the optimal solution
[5]. In practice, it provides a solution within 10% of the Held-Karp lower bound on
average [21]. Although, it is still a polynomial time algorithm (O(n?)), it has a higher
complexity than the previously mentioned greedy heuristics [5]. Hence, this method is
commonly applied in situations where obtaining the best possible solution is crucial, but
the size of the problem prohibits the use of exact methods. Furthermore, while it can
find solutions for instances with up to 1000 cities within minutes, the computational time
significantly increases for larger instances, reaching hours or more when the number of
cities approaches 10,000 [2I]. Therefore, this method serves as a viable alternative when
aiming for a good solution to a single instance. To better illustrate this, consider the
following scenario in the context of PCBs mentioned earlier. Suppose a factory produces
a large quantity of identical PCBs, it is advantageous to compute a solution that is close
to optimal. However, this method is not suitable when each PCB is unique, as it would

result in significant delays in the factory operations.

Another area of heuristics focuses on improving suboptimal tours. These heuristics,
called local search heuristics for TSP, were introduced by G.A. Croes in 1958 [8]. The
approach involves switching two vertices in an existing tour to obtain a better solution,
and continuing the search until no further improvements are possible [§]. This method,
known as 2-opt, was later extended to a larger neighborhood in 1986 by Papadimitriou
and Yannakakis, [38], e.g. by swapping three or four vertices at the same time. This
resulted in a method which is called k-opt, where k can be any integer larger than 1. In
further research, Lin and Kernighan found that varying the value of k£ at each iteration

further enhances the algorithm’s performance [29]. The application of the Lin-Kernighan

10

algorithm, on average, yields a solution that is within 2% of the Held-Karp lower bound
[21]. Although, the algorithm has a relative low complexity O(n?2) [29], large-scale tests
by Johnson and McGeoch indicate that the computational time becomes substantial for
large instances, as the algorithm requires two sequential computations, deriving an ini-
tial path and optimizing it [2I]. One advantage of these local search heuristics is their
ability to operate within time constraints. Taking our factory example into account,
let’s consider a scenario where the calculation time per chip is limited to five minutes.

In such cases, the heuristic can provide the best solution found within that time frame.

The final category of heuristics that will be briefly discussed are meta-heuristics. Some
examples of these methods include Tabu-search, Simulated Annealing, Genetic Algorithms
and Ant Colony Optimization [36]. Meta-heuristics are distinct from traditional greedy
or local search heuristics in that they employ a different search strategy. Rather than
solely focusing on finding local optima, meta-heuristics utilize intelligent techniques to
explore a much wider range of solutions. However, as a consequence, this often res-
ults high complexity. Therefore, these methods are often not practical for applications
which require a solution within seconds even for large scale instances. Although they
do not play a direct role in this thesis, it is worth mentioning that the methods used in
this study have already been applied to these meta-heuristics for TSP. Furthermore, the

subsequent section provides an elaboration on the obtained results of these studies.

2.3 Meta-learning

Meta-learning in CO is a technique that utilizes machine-learning (ML) algorithms to
identify patterns and characteristics of problem instances and learn which algorithms are
best suited to solve them. In 2008, Smith-Miles was the first to introduce meta-learning
in optimization problems, offering a broad description of how machine-learning methods
could be used to determine which algorithm is best suited to tackle the instance of the
problem, without restricting herself to a single problem or ML method [47]. This frame-
work can be applied to a wide range of specific problems, including TSP [47].

Kanda et al. applied meta-learning to the TSP [23] and tested four ML methods: K-
Nearest Neighbors (KNN), Decision Tree (DT), Support Vector Machine (SVM), and
Naive Bayes (NB). They used these methods to select meta-heuristics, including Tabu
Search (TS), Greedy Randomized Adaptive Search Procedure (GRASP), Simulated An-
nealing (GA), and Genetic Algorithms (GA). However, the team emphasizes that the

used methods are not restricted to these complex meta-heuristics [23]. Using the frame-

11

work introduced by Smith-Miles [47], they tested their methods for instances up to 100
vertices and included twelve simple features to identify the instance. The results of their
study indicated that the selection of a particular machine-learning method did not have
a substantial impact on the performance of the meta-learning model. Specifically, when
testing the model on real data, the accuracy levels achieved by KNN, DT, and SVM were
found to be comparable, with only NB exhibiting slightly lower performance. Meaning
that all machine-learning methods have comparable predictive power in predicting the
best heuristic. However, the performance of the models was not impressive, leading re-
searchers to believe that applying different techniques and incorporating better features
could potentially improve their performance [23]. The improved models were published
in 2016 [24]. Here, Kanda et al. improved upon their earlier work by including Ant
Colony Optimization (ACO), using a technique called label ranking to train the model
to provide a performance ranking of the heuristics and creating more meta-features [24].
This time KNN, DT and a multilayer perceptor neural network (MLP) were used. Be-
sides the traditional TSP case, they trained and tested their model on instances of the
TSP that were asymmetric, weakly connected, or both. They also expanded the list of
features to include more characteristics of the graph structure, such as clustering and
network vulnerability [24]. The experiments were still limited to instances up to 100
vertices, but the results showed that the choice of ML model is not the bottleneck, as all
models seemed successful. Notably, the estimated correlation coefficients for all models
were equal to 0.93, signifying a large improvement compared to earlier work [24]. The
observed improvement, in comparison to the previous study conducted by Kanda et al.
[23] which relied on heuristic classification, can be partly attributed to the adoption of a
new model configuration. In this study, regression on label ranking was employed to pre-
dict the performance of the heuristics. As a result, a more comprehensive understanding
is attained as it obtains not only the identification of the top-performing heuristic but
also the ranking of subsequent alternatives. Finally, Smith-Miles et al. applied a meta-
learning model to TSP for variants of the Lin-Kernighan heuristic [46]. However, their
goal was not to obtain the best model but rather identify characteristics which makes
an instance difficult. According to their results, important characteristics include: the
variance of the edge’s length, the fraction of unique distances and the number of clusters
and outliers [46]. In conclusion, previous research has obtained important findings to
the development of a meta-learning model for TSP. Valuable insights from earlier studies
concerning machine-learning techniques, feature selection, and label ranking are imple-

mented into this thesis.

12

Mao et al. conducted a heuristic selection study on the variable sized bin packing problem
using a neural network and simple heuristics [3I]. They used only simple statistical
features of the items and boxes and were able to obtain promising results. Notably,
their models achieved over 70% accuracy, providing evidence that meta-learning can be
effective for such simple heuristics [31]. To the best of my knowledge, meta-learning has
not been applied to TSP using less complex heuristics and on very large instances. This

thesis contributes to closing this gap.

2.4 Neural Networks

The origin of the Neural Network (NNet) as a machine-learning model dates back to
the 1950’s when Frank Rosenblatt introduced the perceptron [42]. An electronic device
which has the ability to learn and recognize simple patterns. Years later, in the 80’s
neural networks really started to develop as the models we know it today with the intro-
duction of the Backpropagation algorithm by Paul Werbos [51]. This algorithm made
it possible to compute more complex gradients and therefore to incorporate multiple
layers in a network. Another important development followed by Hornik et. al. in 1990
with the proof of the Universal Approximation Theorem [20]. The theorem states that a
single layer feedforward neural network with a large enough finite number of neurons can
approximate any continuous function on a compact set to any desired degree of accuracy
[20]. This means that in principle, neural networks have the potential to handle various
levels of complexity in the functions they approximate. However, it’s important to note
that as the complexity of the function increases, the complexity of the network itself also
grows. Therefore, expecting a neural network to effortlessly solve extremely challenging
problems would result in an excessively complex network. Instead, we can focus on find-
ing neural network architectures that are suitable for specific problem classes or achieve
satisfactory performance, which may surpass certain heuristic approaches. While neural
networks are not a magical solution for all hard problems, they offer the potential for
effective problem-solving within certain problem domains or achieving outcomes that
are "good enough" for practical purposes. The objective of this thesis is to develop a
neural network with an appropriate level of complexity that enables the identification
of key characteristics in various instances of the TSP, such that it’s able to recommend

the best heuristics to employ.

13

Regarding CO, neural networks can be used in various ways. Besides in meta-learning
[24], neural networks are often used as a solving technique. For instance, Mansor et
al. [30] used neural networks to tackle the Satisfiability problem (SAT), which involves
finding a truth assignment for variables in a formula to satisfy the total expression eval-
uates to true. Their study incorporates a neural network to improve the computational
efficiency of complex heuristics, resulting in promising improvements to the methods.
This suggests that neural networks can serve as valuable additions to existing heuristics.
Furthermore, Hopfield and Tank [I9] introduce the Hopfield network, an unsupervised
learning neural network capable of solving various CO problems, including TSP. The
network uses different neuron states and an energy function and iterative dynamics
between these. Hopfield networks can perform tasks such as pattern recognition and op-
timization. These networks are known for their ability to rapidly compute solutions to
optimization problems based on input information. However, the scalability of Hopfield
networks poses limitations, as they encounter memory and computational issues when
handling larger problem instances, rendering them impractical for the specific applic-
ations addressed in this thesis. Nonetheless, these examples demonstrate that neural
networks can be effectively applied in different learning techniques, including supervised

learning through meta-learning and unsupervised learning through Hopfield networks.

14

3 Problem statement

The classical Euclidean Traveling Salesman Problem (TSP) is formulated as follows. We
are given a graph G = (V, E), where V represents a set of vertices, E represents the
set of edges, and each edge {i,j} € F has a cost ¢;j. We need to find the cheapest

Hamiltonian cycle. Here ¢; j represents the distance of moving from v; to v; ({i,j} € e)

and can be calculated using the Euclidean formula: ¢;; = \/ (i —xj)? + (yi — vj)>.
This formulation ensures that the distances are symmetric, i.e., ¢; ; = ¢j;. Moreover,
Fuclidean distances ensure that the triangle inequality holds, which means that it is
always faster to move directly from one city to another than via a third city i.e. ¢, , <
Czy + ¢y,.. Finally, G is complete, which means that there exist an edge between every
pair of vertices {i,j} € e,Vi,j € V.

While there exist versions of TSP for which the graph is incomplete, the distances are
non-Euclidean or asymmetric, and the triangle inequality may be relaxed, this thesis is
limited to the classical case. There exist a number of exact ILP formulations to solve
this version of TSP. The Dantzig—Fulkerson-Johnson (DFJ) formulation is as follows [9].

{ 1 :if edge e;; is used in the tour
Tij =

0 : otherwise

n n
minimize E E Ci jTij

1=1j=1,j7#i
n
subject to Z xi; =1, Vie{l,.,n} (1)
i=1,i#j
n
> owij=1, Vie {1,..,n} (2)
j=1,j#i
SN w8 —1, vSc{l,.,n}, |5]>1 (3)
i€S jE€S,jH#i
zi; € {0,1}, Vi, j € {1,..,n} (4)

The proposed model operates in the following manner. First, a binary choice variable is
established for each edge present in the graph, and set to 1 if the corresponding edge is
included in the optimal solution of the problem. The objective function aims to minimize

the total length of the tour by disregarding the distances of edges that are not part of

15

the tour. The first and second constraints guarantee that each vertex has precisely one
incoming and outgoing edge, respectively. The third constraint eliminates the existence
of subtours by ensuring that the number of edges in any given subtour is never greater
than the number of vertices in that same subtour minus one. As such, only the complete
tour is permitted. Finally, the binary nature of the choice variables is enforced to ensure
the feasibility of the model.

Given the aforementioned assumptions, it has been demonstrated that the Euclidian
Traveling Salesman Problem belongs to the class of problems that are considered NP-
Complete, as stated in [38]. This indicates that there does not exist a known algorithm
that can solve the TSP in polynomial time. The factorial of the number of cities in-
dicates the number of feasible tours, thereby rendering the computation of every tour
impossible for large instances of the problem. For example, while an instance with four
cities has only 24 possible tours, an instance with ten cities results in more than 3.5
million potential solutions. This highlights the infeasibility of a computer performing

exhaustive search of all tours for larger instances of the TSP.

16

4 Methodology

For constructing the meta-learning model, the general framework of Smith-Miles is used,
which consists of two phases [47]. In the first phase, problem instances of TSP are ob-
tained from the problem space. This means that we apply different heuristics to a lot
of instances of TSP. In our case the heuristics are: Nearest Neighbor (NN), Greedy
Algorithm (GR), Nearest Insertion (NI) and Farthest Insertion (FI), their performance
on these instances is what is considered the target values. The target values represent
the underlying concept that the model seeks to explain. Afterwards, different charac-
teristics of the instance are extracted into what are called the meta-features. Together
with the target values, these are considered the meta-data. The second phase exist of
constructing the meta-model. In this phase, a machine-learning technique is used to
model the obtained meta-data to a predictive model as a method of supervised learning.
The choice of ML technique seems to be irrelevant as different techniques have all been
proven very successful [22], 24] [3T]. In this thesis, a multilayer perceptor neural network
(MLP) is chosen as its main method, since this technique has been proven successful
with both more difficult heuristics [24] and for simple heuristics in other problems [31].
Next, we will provide a more detailed presentation of the heuristics used in this study.
Section [4.3] will describe the neural network, followed by the presentation of two altern-

ative machine-learning techniques in Section [4.4]

4.1 The Heuristics

For TSP a broad choice of different heuristics is available, from simple and fast heuristics
to complex meta-heuristics all with there own performance. The meta-learning model
described in this thesis is designed for applications which require large number of big
instances to be solved within seconds. Such speed requirements makes it not suitable
to check multiple fast heuristics and pick the best one. As a consequence, local search
algorithm also seems not useful because they require an initial solution as a starting
point, which leaves them no time to optimize in these applications. Practically, we
included heuristics with a time complexity of at most O(n?logy(n)). Therefore, also
excluding strong greedy algorithms such as Christofides [5], which outperforms some of
the heuristics used in the model [21]. Because of it higher complexity, Christofides is
not able to solve instances in seconds when the number of cities becomes larger than a
few hundred [21].

17

Nearest Neighbor (NN)

The Nearest Neighbor heuristic is the most straightforward heuristic for TSP. Starting
with a random node, the heuristic adds the nearest node of that node to the tour. In
the next steps iterative it adds the nearest unvisited node of the node which was added
last until all nodes are in the tour. Finally, the tour is finished by returning to the first
node [36]. The heuristic has a time complexity of O(n?), meaning that even for large
instances the heuristic provides a solution relatively fast. This has also been proven in
experimental settings [2I]. The provided solution is on average within, 25% of the Held-
Karp lower bound [2I]. Note that the provided solution depends on the starting node,
hence when it is chosen randomly the tour has a stochastic element. However, in practice
often the node with the lowest index is chosen as the starting node, which is also used in
this thesis. A logical improvement of this algorithm is to pick the shortest tour out of all
n starting nodes. However, this would result in a time complexity of O(n?), as it needs
to run NN for all n starting nodes. This makes it less suitable for the speed-demanding
applications where this meta-learning model is applicable. Furthermore, it would be
unfair to compare it with NN as the meta-learning model consistently performs at least

as good as NN. The pseudo-code of NN is as follows.

Algorithm 1 Nearest Neighbor
Input: n nodes, m edges, All edges containing distance from one node to another

1. Add lowest index node as starting city to tour
2. Add unvisited node with smallest distance to last node to tour
if Any unvisted node left then

3. Return to step 2.

else
4. Finish the tour by adding the starting city to the tour
end if

Greedy Algorithm (GR)

The Greedy Algorithm is the second algorithm which is considered in this thesis. This
heuristic focuses on the edges instead of the nodes. First all edges are sorted and the
shortest edge is picked as a starting point. Afterwards, edges are added to the tour
as long as adding the edge does not create a node with a degree higher than two or a
subtour [36]. Compared with NN, the Greedy Algorithm has a little higher polynomial
complexity O(n?logy(n)). However, in practice for instances with up a few thousand

nodes it provides a solution in seconds [21I], making it suitable for this model. It has

18

been proven that this heuristic obtains a tour that has at most 0.5(logy(n)+1) times the
length of the optimal tour [37]. Empirically, the performance of this algorithm is slightly
better than NN with on average between 15 and 20 % higher than the Held-Karp lower
bound [21]. However, it is not consistently dominant, meaning that there are instances
in which NN obtains shorter routes than GR. GR has the following pseudo-code.

Algorithm 2 Greedy algorithm
Input: n nodes, m edges, All edges containing distance from one node to another

1. SORT all edges in non-decreasing order of distance
2. Add shortest edge as starting edge to tour
for A1l remaining ordered edges do

if Number of edges in tour < n then

if Adding edge does not create a node with a degree higher than 2 AND
Adding edge does not create a subtour then
3. Add edge to tour.
end if
else
4. end for

Nearest Insertion (NI) & Farthest Insertion (FI)

The final heuristics considered for the meta-learning model are two insertion heuristics.
The main idea behind these heuristics is that the nodes are inserted iteratively based
on some criterion and each iteration puts the node on the optimal place in the tour.
More specifically, this means the heuristic starts with a subtour of only two nodes and
adds each node at a place in tour which minimizes the length of the new subtour.
Again, the starting node is chosen to be node with the lowest index. Two different
insertion heuristics are considered. Nearest Insertion (NI) picks the node with minimal
distance from the previous node to be added next, and Farthest Insertion (FI) picks
the node with maximal distance from the previous node. Both heuristics have time
complexity O(n?) [36], however intuitively their performance depends on the structure
of the graph. NI would prefer dense graphs as the order in which the nodes are added is
less relevant in this case. In contrast, FI works better in large less dense graphs because
in these instances, the length of large edges plays an important role. It is also worth
mentioning that there exist versions of insertion heuristics which picks the node based
on minimal or maximum distance to the current subtour instead of previous node. Such

insertion heuristics can have better performance as a consequence. However, using these

19

criterion’s to determine which node to select would result in an increase of complexity
making the corresponding approaches less suitable for this thesis. The pseudo-code for

Nearest Insertion and Farthest Insertion is provided below.

Algorithm 3 Nearest/Farthest Insertion algorithm

Input: n nodes, m edges, All edges containing distance from one node to another

1. Add lowest index node as starting city to tour
2. Find unvisited node with smallest/largest distance to last node to tour > smallest
for NI/ largest for FI
3. Insert node at place which minimizes the cost of the total subtour
if Any unvisted node left then
4. Return to step 2.
else
5. Finish the tour by adding the starting city to the tour

In order to illustrate the practical performance of the heuristics, Figure [1| presents the
paths generated by the four heuristics on the €il101 instance. Upon examination, it
becomes clear that the NN heuristic exhibits a significant distance between the first
and last city in the tour, leading to the use of an inefficiently long edge spanning the
entire instance. This behavior is typically for NN, making it most suitable for dense
graphs without outliers, because here the final edge of the tour will lie close to the
first one. Moreover, GR appears to struggle as it revisits certain cities, resulting in
inefficiencies. It is important to note that GR does not actually revisit cities, but rather
encounters cities that lie on the path between two others. The insertion heuristics
demonstrate better performance when applied to instances exhibiting a circular pattern.
This advantage stems from their nature of constructing an initial circular tour and
subsequently expanding it by iteratively searching for the most efficient subtour. The
figure reveals traces of a circular pattern, supporting the suitability of these heuristics
for such instances. As a result, FI demonstrates a promising solution for this particular
instance, as it reveals few inefficient lines. The optimal solution for this instance stands
at 629 [18], leaving room for further improvement. However, considering its efficiency,
FI offers a good solution. It should be noted that for other instances, FI may produce

worse solutions compared to the other fast heuristics.

20

Figure 1: Heuristic Performances on eil101.tsp

30 40

NN, length = 825 GR, length = 795

o 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

NI, length = 767 FI, length = 712

Table [I] provides more results of the heuristics on real life instances and their optimal
solution. It is crucial to acknowledge that a few instances have been measured using
distance metrics other than Euclidean distances in their respective applications. Nev-
ertheless, in this thesis, we consistently use Euclidean distance for all instances. The
rationale behind this choice is to observe how the meta-learning model performs on
specific graph structures, rather than focusing on solving individual instances. Con-
sequently, for these instances, the optimal solution remains unknown and is denoted in
the table by "-". The instances denoted in grey represent instanced used in constructing

the training set, further elaboration is provided in Section [5.2}

21

Figure [2| presents the calculation times of the four heuristics on real-life instances. It
should be noted that these times are heavily dependent on the computational power
of the computer used. However, their relative calculation times offer valuable insights.
Notably, NN consistently achieves the quickest solutions among the four heuristics, with
the longest calculation time not exceeding a few seconds. Both NI and FI can compute
all tours within 20 seconds. On the other hand, GR exhibits outliers in computation time
as the number of vertices approaches 5000, owing to the slightly more complex nature of
the heuristic. Based on these findings, it is chosen to construct a dataset with at most

3000 vertices, as all heuristics can efficiently produce solutions within a few seconds.

100 4 o

804

60+

40 4

Computational time in seconds

204 o
e} o]
<] o)

Joo8 o 8 2
NN R N A

Figure 2: Calculation times

22

Table 1: Heuristic Performance and optimal solution TSPLIB

Instance Nearest Neighbor | Greedy Algo | Nearest Insertion | Farthest Insertion | Optimal Solution
a280.tsp 3148 2952 3107 2958 2579
ali535.tsp 2671 2403 2466 2340 -
‘ att532.tsp 112099 105864 107342 103000 27686
bier127.tsp 135751 141187 141672 132520 118282
‘ ch130.tsp 7575 7844 7372 6920 6110
ch150.tsp 8194 7704 8066 7586 6528
d1291.tsp 59941 60266 62871 62117 50801
‘ d1655.tsp 74893 72263 75669 75604 62128
d198.tsp 18620 19415 17560 16854 15780
d2103.tsp 87468 91363 87100 95527 80450
d493.tsp 43646 40838 42834 42397 35002
d657.tsp 62176 56568 61682 58658 48912
dsj1000.tsp 24630960 21703941 23231998 22737713 18659688
€il101.tsp 825 794 762 712 629
11400.tsp 26971 23587 24367 23196 20127
11577 tsp 27940 25707 25673 26313 22249
f13795.tsp 34225 32781 32596 36062 28772
fl417.tsp 15114 13360 14260 13130 11861
fnl4461.tsp 227156 210508 224369 235348 182566
gil262.tsp 3241 2686 2977 2819 2378
grl37.tsp 1022 844 850 789 -
gr202.tsp 619 595 579 541 -
gr229.tsp 2014 2068 1888 1927 -
grd31.tsp 2516 2553 2287 2272 -
gr666.tsp 4110 3642 3769 3765 -
kroA100.tsp 26856 24084 26377 24597 21282
kroA150.tsp 33609 31778 32620 29994 26524
kroA200.tsp 35798 34535 37081 33304 29368
kroB100.tsp 29155 25815 26542 24183 22141
kroB150.tsp 32825 31422 34079 29987 26130
kroB200.tsp 36981 35984 36252 35704 29437
kroC100.tsp 26327 23302 26700 22648 20749
kroD100.tsp 26950 24267 26311 23069 21294
kroE100.tsp 27587 24739 27290 23485 22068
lin105.tsp 20362 16771 18829 15849 14379
1lin318.tsp 54033 49910 52603 52419 42029
nrwl379.tsp 70015 65643 68756 71084 56638
p654.tsp 43411 40264 43293 38009 34643
pcb3038.tsp 175573 164445 168288 175760 137694
pcb1173.tsp 70277 67244 71012 73367 56892
pcb442.tsp 61984 61073 59390 61622 50778
pr1002.tsp 315596 308819 324586 323479 259045
prl07.tsp 46678 47542 53693 46867 44303
‘ pri24.tsp 69299 64997 67928 63377 59030
prl36.tsp 120777 115433 113927 105554 96772
prld4.tsp 61650 65845 73120 60922 58537
‘ prl52.tsp 85702 85272 87587 77001 73682
pr226.tsp 94685 97599 89793 82157 80369
pr2392.tsp 461207 453345 483379 485481 378032
pr264.tsp 58022 54974 56834 52429 49135
pr299.tsp 59899 63334 61317 53489 48191
pr4d39.tsp 131282 128749 133413 129040 107217
rat195.tsp 2761 2745 3033 2839 2323
‘ rat575.tsp 8449 7733 8437 8347 6773
rat783.tsp 11255 10534 10966 11138 8806
rd100.tsp 9941 9228 9897 8818 7910
‘ rd400.tsp 19168 17872 18749 18243 15281
rl1304.tsp 339797 285113 321354 323617 252948
‘ rl1323.tsp 332094 307408 351775 347172 270199
tsp225.tsp 4828 4618 4569 4604 3916
ul060.tsp 281635 277843 282440 277640 224094
ul432.tsp 188815 182137 175645 186841 152970
ul59.tsp 54669 49582 51869 52981 42080
ul817.tsp 71103 68517 70375 74192 57201
u2152.tsp 80179 75839 78725 81735 64253
u2319.tsp 278783 260570 262239 274964 234256
ub74.tsp 46881 44768 45717 45907 36905
u724.tsp 55223 49119 52812 52344 41910
vm1084.tsp 301469 286182 282531 294184 239297
vmm1748.tsp 408089 397390 412084 422840 336556

23

4.2 Performance evaluation

The quality of the model’s predicted ranking should be assessed by comparing it with the
actual ranking through measures of ranking accuracy [24]. Here, the label corresponds
to the performance of the heuristics. For more detailed information regarding the label,
please refer to the subsequent section. For this model, Spearman’s correlation coefficient
(p) is chosen as an evaluation measure [48]. For each observation i, p; can be obtained
by:

6 (P — rig)® (5)

n(n? —1))

Here L represents the number of labels, which is four in our case, 7;; the predicted rank

pi=1

for label [and r;; its true rank. Hence, a coefficient of 1 means a perfect prediction,
whereas a coefficient of -1 would mean an inverted order. Finally, p can be obtained by

averaging over all N observations:

1N
P:N;Pi- (6)

Confidence intervals for the correlation coefficient p can be computed by applying the
Fisher transformation, which is atanh in this case [I2]. This transformation causes
the sampling distribution to converge to a normal distribution [I2]. Consequently, a
confidence interval with a confidence level of (1 —«)% can be derived by multiplying the

(1 — a)-quantile of the standard normal distribution with an estimate for the standard

error. The standard error estimate can be approximated by —+— [I2]. As a result, the

VN=3
95% confidence interval can be expressed as follows.

CI = tanh[atanh(p) £1.96/V N — 3]. (7)

4.3 Neural Network

Although previous studies have demonstrated that various ML techniques produce ef-
fective meta-learning models for TSP [23] [24] [46], we use a neural network (NNet) as its
main method of choice primarily. The reason is based on the positive outcomes achieved
by a meta-learning model that used neural networks and simple heuristics in the bin
packing problem [31] and in TSP using more complex heuristics [24]. Furthermore, the

current study aims to enhance the performance of the previously designed networks.

24

4.3.1 Neural Network Architecture

The network is a multilayer perceptron (MLP), used to predict the performance of the
heuristics. Although neural networks are also applicable for unsupervised learning [35],
in this setting, it is used as a supervised learning model, specifically for providing a
ranking of heuristics from best to worst on a given instance. To accomplish this, sep-
arate neural network models are designed for each heuristic, and their performance is
predicted using a technique which is called label ranking. This technique maps an in-
stance of TSP to a finite set of method labels L = {61, ..,01}, where if 6; < 6; it means
that for this instance, method 6; is preferred to be used over 6; [50]. For this model, a
label is assigned to each heuristic, and the goal is to predict the label for each of the
four separate models. Because the regression will result in continuous predictions, the
predictions are ordered afterwards to obtain the predicted integer ranks. The advantage
over a classification model with the best performing method as the target variable is that
the resulting outcome includes the order in which the methods are preferred [24]. For
example, if the application allows, the user could test the two lowest ranked methods and
choose the best one. Furthermore, this approach has less uncertainty than predicting
the exact performance of different heuristics on an instance and building a ranking from
that. Moreover, the utilization of label-ranking in the models has demonstrated note-
worthy enhancements in accuracy when compared to traditional classification methods
[22, 24]. According to the Universal Approximation Theorem [20], a complex enough
MLP should be able to approximate the label ranking with high accuracy.

The network architecture consists of a feed-forward four-layer perceptron, comprising
an input layer for each of the utilized meta-features, two hidden layers, and an output
layer with a single neuron, which predicts the label rank. Therefore, having a more
complex network than previous studies [24], which employed a single hidden layer, while
maintaining computational feasibility. Other structures have been attempted, but they
were found to be inferior. For more context, please refer to Section The activation

function used in the output layer is an adapted Tanh activation function.
~ 3
tanh(z) = §(tanh(:n) +1)+1. (8)

This modification guarantees that the predicted rank falls within the range of 1 to 4.
It is achieved by adjusting the standard Tanh activation function, which is originally
bounded between -1 and 1. Furthermore, it has the property of monotonicity, indicating

that there exists a one-to-one correspondence between the input 2 and the output. The

25

number of neurons in each hidden layer is equal to 8 times the number of input features,
which is the same factor used in the bin packing problem model [31]. For each neuron

in the hidden layer the Relu function is used given as [35]:
Relu(z) = max{0,x}. (9)

This activation function has the advantage of faster training compared to other pop-
ular activation functions [25]. Additionally, it addresses the issue of vanishing gradients
[35], which occurs when most gradients in a neural network are very small. The back-
propagation algorithm [5I] is used to train the network, starting from the output layer
and computing the gradients backwards in the network. As mentioned before p is used
as the accuracy measure. However, it’s unwise to implement it directly as the loss func-
tion due to the construction of the four individual models. When trained individually, p
cannot be used as it would require a simultaneous training process. Therefore, the Mean
Squared Error (MSE) is chosen as the loss function for all four models, as it effectively

addresses this issue. Nevertheless, p is however used in validating and testing the models.

If we want to obtain the number of parameters in the network, we calculate these as fol-
lows. Given that each model uses 21 meta-features (detailed in the subsequent section),
we obtain 168 neurons in the first hidden layer, resulting in 168 x 2 (input neuron + bias
parameter) = 336 parameters. The second layer adds 168 x 169 (neurons first layer +
bias parameter) = 28392 additional parameters. Finally, the output layer contributes a
weight for each neuron in the second hidden layer plus a bias parameter resulting in 169
extra parameters. Therefore, in total we obtain: 336+ 283924 169 = 28, 897 parameters

in each of the four networks.

4.3.2 Neural Network Training and validation

Like several other machine-learning techniques, the neural network is susceptible to over-
fitting, particularly when the number of parameters is taken into account. To mitigate
this issue, a validation process employing k-fold cross-validation is implemented to de-
termine the optimal hyperparameters. In this process, the training data is randomly
divided into k folds. The model is then trained on all folds except one, which serves as
the validation set for evaluating the model’s performance using the metric p. This pro-

cedure is repeated until all folds have been utilized as the validation data. Subsequently,

26

the performance of the hyperparameters is assessed by computing the average of the &
values of p. The selection of an appropriate value for k is crucial to balance overfitting
and computational feasibility. In this thesis, k is set to 5 to strike a suitable comprom-
ise, resulting in around 2,400 observations per fold. From the complete trainingset 70

instances are randomly withhold and included in the testset.

Table 2: Hyperparameter grid NNet

Ridge parameter 0 0.0001 0.001 0.01
Dropout rate 0 0.1 0.3 0.5
Batch size 12 24 36
Learning rate 0.01 0.001 0.0001

Table [2] presents the hyperparameter grid employed for the 5-fold cross-validation pro-
cess. The first parameter being tuned is the Ridge regression parameter, which prevents
overfitting by penalizing the sum of squared weights in each layer, by multiplying it by
this parameter [35]. The presence of this penalty term discourages the presence of excess-
ively large coefficients, promoting a smoother and more stable solution. Consequently,
when encountering changes in the data, the model’s reaction is more tempered, thereby
preventing overfitting. The chosen options for this parameter are based on the need for
relatively small values, given the predicted a true ranks are both bounded between 1 and
4. Consequently, the model is expected to encounter only minimal discrepancies between
the predicted and true ranks due to the limited range of possible values. The second
hyperparameter also addresses overfitting and utilizes a technique called Dropout [49].
Dropout randomly removes connections in the network during training. The dropout
rate determines the probability of each neuron being dropped from the model during
each iteration of the training process. A dropout rate of 0.5, for example, results in a
model with approximately half the original number of neurons in each iteration. This
reduces reliance on specific neurons, thereby minimizing overfitting. The selected values
for this hyperparameter compare the effect of no dropout with different dropout rates.
The third tuning parameter is the batch size used in each iteration of gradient descent
optimization. After visual inspection on a subsample of the dataset, it was decided to
keep the number of epochs fixed at 500. The selected batch sizes are chosen to strike
a balance between ensuring computational feasibility during training while avoiding ex-
cessively small batch sizes. Lastly, the learning rate in gradient descent is optimized.
The selected values for this hyperparameter lie within a specific range to avoid issues

with the optimization process. Values lower than 0.0001 lead to early stabilization of

27

the loss function after only a few initial iterations, suggesting that the gradient becomes
trapped in local optima. Moreover, higher values exceeding 0.01 exhibit a similar pat-
tern, indicating that the gradient descent algorithm tends to skip over optima for such
magnitudes. Concluding that both excessively low and excessively high learning rates
result in rapid convergence towards suboptimal local minima, thereby necessitating the
selection of a rate that strikes a balance and avoids such patterns. The decision to choose
values within this range was informed by visual examination of the training process on
a smaller subset of the data. Two different benchmark models will be introduced, and

each of them will undergo a similar k-fold cross-validation process.

4.4 Benchmark models

In order to determine of a complex neural network model is the right choice for this
meta-learning model, two additional machine-learning methods are applied which are
less complex. Although, literature has shown that for other meta-learning models the
choice of the exact machine-learning approach seems insignificant [22], 24 31], it is good

to check weather this holds for fast heuristics on large instances as well.

The first alternative method which is employed is K-Nearest-Neighbour (KNN). Not to
be confused with the heuristic mentioned earlier, this machine-learning method makes
predictions by averaging the target values on the K observations whose features are
closest to that of the prediction. More specific, in this meta-learning model the pre-
dicted rank for each heuristic is determined by the K observations whose meta-features
lie closest to the observation. Representing the same structure as the neural-network
mainly, employing a different regression model for each heuristic using label ranking.
The only hyperparameter which needs to be tuned is the number of neighbours K. Of-
ten the root of the size of the trainset is used, therefore this is choice as median of the
grid. The validated parameters are: K € {9,29,49, 69,89, 109, 129, 149, 169, 189,209} .

The second alternative model is a Decision Tree (DT'). This method partitions the train-
set into different nodes, each representing a specific splitting criterion based on one of
the meta-features. For each heuristic a different tree is designed. Subsequently, the pre-
dicted rank can be obtained by examining the meta-features of the predicted observation,
starting from the top of each tree and traversing down the tree until the final prediction
is obtained. A notable advantage of this approach is that it offers valuable insights into

the significance of particular features by visualizing the decision tree. By observing the

28

tree’s structure, one can understand which features are considered more influential in
the prediction process. To address potential overfitting issues, hyperparameters, such
as the maximum depth of the trees and the number of features considered at each leaf,
are tuned. The aim is to strike a balance between model complexity and generalization
capability. By controlling the depth of the trees and limiting the number of features con-
sidered at each leaf, overfitting can be mitigated. Table |3 presents the grid search that is
conducted to find the optimal model. A depth of 40 signifies no constraints on the tree’s
depth, while the "Root" measure acts as a preventative mechanism against overfitting. It
achieves this by restricting the evaluation of a subset of possible meta-features, specific-
ally by randomly selecting only the square root of all available features for consideration
at each split. Please note that similar to the neural network, the hyperparameters for
DT and KNN models are also validated simultaneously for all four models. In other
words, the same hyperparameter values are used across all models during the validation
process. This decision is taken to ensure computational feasibility and reduce the val-
idation time. However, it is important to acknowledge that a sequential approach, in
which hyperparameters are tuned independently for each model, may potentially yield
more optimal results. The parameters are selected through cross-validation, as detailed
in Section The chosen parameters (K, Max Depth, and Features) are presented in
Section [6.2

Table 3: Decision Tree Grid

Maximum Depth | 4 8 12 16 20 24 28 32 36 40
Features All Root

4.5 Meta-features

An important aspect of the meta-learning model involves the translation of problem
characteristics into meta-features [47]. For this thesis, the selection of meta-features is
a combination of prior research studies [22] 24] [46] and original ideas. The idea of this
setup is to include sufficient features such that the characteristics are identified, but still
limit the complexity of the model. The identified characteristics must be computable
within a few seconds, even for large problem instances. Furthermore, the selected fea-

tures are categorized into three distinct groups.

29

The first group pertains to the statistical attributes of edges and vertices, including the
number of vertices and edges, average edge and vertex cost, minimum and maximum
costs, and other statistical properties. Table [] presents a comprehensive list of these
features. Within these features, the term "vertex cost" (C}') denotes the average cost

associated with all edges linked to vertex i.

Table 4: Vertex Edge meta-features

Notation Formula Description

Vumber length(V) number of vertices (n)
cr.. min{CY,...,CY} Lowest vertex cost
CY max{CY,...,CV} Highest vertex cost
Chug iy, oy Average vertex cost
cY, Ly (CY=Y,,)? Standard deviation vertex cost
cY median{CY’,...,CV} Average vertex cost

E umber length(E) number of edges (m)
ck. min{C¥,...,CE} Lowest edge cost
cEk . max{C¥,...,CE} Highest edge cost
Cﬁ)g Ly, cF Average edge cost
cE \/ L0 (CE-CE)2 Standard deviation edge cost
CE . median{C¥, ..., CE} Median edge cost

The second group focuses on the network’s structure and spatial distribution. The first
thing which is considered are the properties of the eigenvalues of the distance matrix.
The idea behind this is that when the instance contains a certain pattern or symmetry,
the eigenvalues of its distance matrix will be very similar. However, calculating the
eigenvalues for large matrices, which is often the case in most TSP instances, can be
computationally expensive. To address this, the model will utilize the value of the

condition number of the distance matrix as a feature. This can be computed relatively

30

quickly using the Lanczos algorithm [27]. The condition number is defined as:

)\max
CondNum = | | (10)

|)\mzn|

In which A4, represents the largest and A, the minimum eigenvalue of the distance

matrix.

Regarding density, the surface of the rectangle in which the points of the instances are
located is considered. If the surface of the rectangle is relatively small compared to the
number of vertices and the median edge length, it indicates a dense graph. The rectangle

can be calculated as follows:
Rect = (Xma:c - Xmin)(Ymax - szn) (11)

Here, X4, and X,,;, represents the maximum and minimum X-coordinates and Y40

and Y, represents the maximum and minimum Y-coordinates.

Density is also captured by analyzing the centroid of the instance. The feature AvgCent
represents the average Euclidean distance between all points of the instance and the
centroid. Symmetry is further addressed using the feature DistinctRatio, which exam-
ines the uniqueness of entries in the distance matrix. A low Distinct Ratio indicates that
many edges are similar. This is often the case in drilling problems that exhibit patterns

on a grid. The Distinct Ratio can be calculated as follows:

number of unique non-diagonal entries
Distinct Ratio = 4 &

Total number of non-diagonal entries - (12)
In addition to symmetry and density, clustering is a significant characteristic of graph
structures [46]. The determination of clusters and outliers plays a crucial role in selecting
the right heuristic. For example, when dealing with a large number of outliers, NN
may encounter difficulties. This is because it is highly likely that the final edges will
primarily connect to outliers, resulting in a significant increase in the tour’s length. To
find the clusters, the DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) algorithm is applied [I5]. The reason behind this choice is twofold: the algorithm
exhibits essential computational performance with a time complexity of (O(n?)) [15],
making it suitable for the meta-learning model at hand, and it is capable of identifying

more complex cluster shapes compared to alternative methods. The DBSCAN algorithm

31

operates as follows: given a distance threshold ¢ and a minimum number of points m,
it selects all points that are within a distance of € from at least m other points, referred
to as core points. Clusters are formed based on these core points. Non-core points
that are within a distance of ¢ from these core points are also assigned to the clusters.
However, they do not expand the cluster, meaning that other points that are only within
a distance of € from non-core points are not assigned to the cluster. The remaining points
are considered outliers. The number of outliers and the number of clusters are treated
as features in this model. The values of € and m are obtained using a grid search over
the possible values shown in Table[5] The evaluation score used is the Calinski-Harabasz
score, which calculates the ratio of the minimum distance within clusters to the minimum
distance between clusters [2]. The clustering with the highest score will be used to
extract the features. The validation process is conducted individually for each instance,
potentially yielding varying optimal parameters across instances. The grid is chosen
based on visual inspection, considering approximately 25 randomly selected instances.
Utilizing this grid, the algorithm consistently identifies clusters for each instance in a

manner that aligns closely with how human visual inspection would assign them.

Table 5: DSBSCAN GRID

m 3 4 5

Figure [3] shows the outcome of DBSCAN with the grid search on one of the drilling
problem instances. It can be seen that the algorithm detect six clusters and a total of

31 outliers, which is inline with human visual inspection.

DBSCAN Clustering

2000 CEEEIEBOOSDEHOHRSD COOTIID © OG0 CDOFRID
“BFY .,
17501 o . . L4
.
1500 4 . b
< . e
1250 we °© -
.

1000 - L4 .

750 cSbB e © .

500 LY .

250

OO 0G0 GHOHRSD RITTD © 0G0 RO

600 800 1000 1200 1400 1600 1800

Figure 3: DBSCAN on TSP instance

The final category pertains to the solution and involves the computation of various

bounds. The inclusion of these bounds in the model is meaningful only if they can

32

be computed efficiently. Therefore, the following three specific bounds are chosen for
consideration. Firstly, the minimum spanning tree length (M ST) is included, which is
calculated using Prim’s algorithm [39]. This metric represents the length of the min-
imum spanning tree in the graph. Secondly, the bound Ord is computed by sorting all
edges from shortest to longest and summing up the lengths of the first n edges. This
bound provides insight into the cumulative length of the shortest edges in the graph.
Lastly, the N Nbound is introduced, which sums up the lengths of the nearest neighbors
for each vertex. It is important to note that this bound differs from the nearest neighbor
heuristic, as it does not necessarily result in a connected path. The inclusion of this
bound aims to explore its relationship with the other bounds, as it may offer valuable
information. By examining the relationships among these bounds, valuable insights can
be gained. For instance, if the N Nbound is closely aligned with the length of the M ST,
it indicates that the minimum spanning tree has few branches, resulting in a more cir-
cular shortest path. This observation suggests that the insertion heuristics would likely
perform relatively well in such scenarios. Overall, the incorporation of these bounds
enables an exploration of their interrelationships and potential significance in guiding

the performance of the model.

In total, the model utilizes 21 different features. For a comprehensive overview of all
the features, please refer to table in appendix Additional features that have been
suggested in the literature include the exact coordinates of the centroid [46] and clus-
tering coefficients [7]. However, validation on smaller data sets has indicated that these
features do not contribute to the overall performance of the model. One possible ex-
planation is that the clustering coefficient exhibits a nearly perfect correlation with the
average clustering coefficient (C(X]g) feature. Therefore, including both features does not
provide any additional information. Furthermore, regarding the centroid feature, many
instances in the training data are shifted such that the centroid coincides with the origin,
resulting in a low variance for this feature. Consequently, it has been decided to exclude
these features from the model, as they do not contribute significantly to its performance.
Some features for the two benchmark models (KNN and DT) are standardized based on
size. To be more precise, the bound features and Rect are divided by E,umper, While
the number of outliers and clusters are divided by V,umper. This was also tested on a
small scale for the neural network, but the results were somewhat inferior due to the
standardization, in contrast to KNN and DT.

33

Correlation Matrix

10
- . IO.B
|| 06

|

Vnumber
Vcost_min -
Vcost_max -
Vcost_med —
Veost_avg -
Vcost_std -
Enumber
Ecost_min -
Ecost_max -
Ecost_med -
Ecost_avg -
Ecost_sd -
CondNum -
Rect -
AvgCent -
DistinctRatio 5
Num_outliers 5
Num_clusters -
MST -
OrdBound -
NNBound =

Features

g

Vcost_std
g

Ecost_sd
MST

Rect -
AvgCent -
OrdBound

DistinctRatio -

Vnumber -
Vcost_aw

Enumber -
Ecost_med
CondNum -
NNBound

Num_clusters |

Vcost_min
Vecost_max
Vcost_med
Ecost_min -
Ecost_max
Ecost_awv
Num_outliers -

Figure 4: Correlation Matrix

When analyzing the correlations among the various features, distinct patterns emerge,
revealing logical relationships. Figure [4] illustrates these patterns through a heatmap
of the correlation matrix. Notably, two distinct correlation blocks can be identified.
The first correlation block encompasses all the vertex and edge features, which exhibit
correlations with one another. This observation aligns with our intuition, as larger graphs
tend to have more vertices and longer edges. Additionally, this correlation extends to
the group of features related to bounds. It is expected that these bounds would exhibit
correlations among themselves, as they are constructed in a way that often involves
shared edges. Despite the presence of clear correlations between certain features, it
has been determined to include these features in the model. This decision is based on
two primary reasons. Firstly, some of these features have been established as valuable in
existing literature. Secondly, although multicollinearity often leads to increased variances
in models, the relationship between certain features may hold significance for heuristic
selection. For instance, the relation between the bounds contains vital information
pertaining to the performance of specific heuristics. For further elaboration, please refer
to Section

34

5 Data

The nature of the applications necessitates the use of artificial data, as a significant
amount of large instances is necessary to obtain sufficient training and testing data for
the model. In contrast to prior studies, relying on subgraphs of existing instances of TSP
is not feasible due to the majority of these instances being smaller than the required size
for this application. As a result, the decision was made to generate artificial instances of
TSP. Two different methods are used mainly, complete random instances and modified

instances using data augmentation.

5.1 Randomly generated instances

The objective of constructing the data is to ensure that the generated instances exhibit a
certain degree of symmetry, patterns, and density. To achieve this, the following design
is proposed. Initially, the size of the instance is determined by the number of nodes,
denoted by n, which is drawn from a discrete uniform distribution over the interval [100,
3000]. Subsequently, the density parameter A is determined, with a uniform probability
distribution across three levels: "Sparse," "Medium," or "Dense." Based on these para-

meters, two distinct sets of nodes are constructed.

Dataset A & B

Set A exist of n coordinates which are drawn from a bivariate normal distribution. This

10° 0
10°|

Here s € {1,2,3} and depends on A. Note that the density of the graph decreases in s,

distribution has the origin as mean and covariance matrix ». With: ¥ =

because the variance of the samples increases. This effect can be seen in figure |5} This
data construction method yields random point placement in a circular pattern, thereby
simplifying the representation of a city with a densely populated city center and sparsely
populated suburbs at the outskirts of the city.

Set A does not incorporate any discernible patterns, distinguishing it from structured
applications such as the circuit board example. Therefore, another n coordinates are

created in set B.

In this set a complete grid is constructed starting from the origin and with equal step
size h in both vertical as horizontal direction till point (n,n) is reached. Afterwards

the grid is shifted such that the center lies in the origin. This results in a total of (})?

35

Figure 5: Set A, Left: s=1. Right: s =3.

points. Here, h is determined by density level A. Afterwards, the final n points are
drawn randomly out of the constructed grid. Note that we should have h > [{/n], to
be able to draw n nodes. Define this as h*. If h = h*, we obtain a almost perfect
grid which is not a typical TSP case. Therefore, it is chosen that h € {%h*, %h*, %h*}.
Note that when the h is increasing the graph becomes more dense and as a result the
pattern becomes more clear, which is illustrated by figure [6] The final coordinates for
the instance are obtained based on mixing parameter ¢, which is drawn uniform on the
unit interval. Then [n¢| nodes are picked randomly out of set A and [n(1 — ¢)] nodes
are picked randomly out of set B. The idea is that ¢ determines the level of symmetry

in the graph, with low levels of ¢ indicating a lot of patterns in the instance.

400 .-"‘.:.i.;h‘:.:: ﬁ:{ 400
W

.,,.'3';'3‘ %*3 2%
S ° A% #o..'

0 ‘.. At }?" ,o “ 0

L BN
oo 257 K .é“"*:.’ LS

T ETA RS Soa T
o a L

-600 -400 -200 0 200 400 600 -600 -400 200 0 200 400 600

Figure 6: Set B, Left: h = %h. Right: h = %h.

36

5.2 Modified instances

While it is challenging to replicate real-life scenarios accurately using artificial data, re-
searchers have found success in literature by employing data augmentation techniques on
real instances [24], [52]. These techniques have proven effective in simulating real-world
variations. Some commonly used data augmentation techniques include edge and ver-
tex dropping, vertex rotation/flipping, scaling of edges or vertices, and noise injection
[52]. The underlying principle behind these techniques is to generate a diverse set of
augmented data without introducing imbalances in the dataset. For the meta-learning
model at hand, the objective is to modify instances in a way that induces variations in
the heuristic performances. The model aims to learn the relationship between specific
changes in instance characteristics and the resulting variations in heuristic performance.
To facilitate this learning process, two additional sets of augmented data are created
specifically for training purposes. These augmented datasets enable the model to cap-

ture a broader range of scenarios and enhance its ability to generalize to unseen instances.

Dataset C

Set C is comprised of exceptionally large instances of TSP, consisting of over 18,000
nodes. These instances are exclusively utilized for training purposes. Set C encom-
passes six distinct instances, namely: brd14051, d15112, d18512, pla7397, r111849, and
usal3509. These instances serve as benchmarks for various applications and incorpor-
ate real-life scenarios involving cities in the United States and Germany, as well as the
drilling sequence problem [4I]. To generate the instances in set C, the parameter n is
randomly selected from the interval [100, 3000]. Subsequently, n random vertices are
chosen from the original instance, resulting in the creation of a new instance. This

process is repeated 1000 times for each of the six instances within set C.

Dataset D

The final dataset, denoted as D, consists of smaller instances of TSP that are derived
from real-life applications. These instances are used both for training and testing pur-
poses. However, applying data augmentation techniques directly on the test instances,
and then using the augmented instances for training, introduces a bias, as the test data
would still contain traces of the training data. To address this issue, a random selection
of 26 test is made out of the test instances. The instances themselves will not be used for

training; rather, only their augmented versions will be utilized. The data augmentation

37

process is as follows. Firstly, each instance is shifted such that its centroid becomes
the origin. Next, the originality parameter, denoted as o, determines the fraction of
vertices in the instance that will remain unaltered. Specifically, three values are chosen
for o € {0.1,0.25,0.5}, resulting in enough mutations consider it a new instance. This
ensures a sufficient number of mutations to consider them as new instances. For the

remaining fraction of vertices (1 - o), two different techniques are employed.

The first technique involves rotating the instance 90 degrees counter-clockwise using
0 —
the rotation matrix: L 0] This technique aims to preserve the structure, density,

and clustering characteristics of the original vertices while introducing new elements.
The second technique, called scaling, shifts the instances randomly in both the hori-
zontal and vertical directions. The shift magnitude is determined by the mean distance
from the centroid. The direction of the shift (north/south and east/west) is chosen
randomly with equal probability. This technique maintains the instance structure while
introducing variations in the position. Therefore, the size of the shift is not random but
fixed. Finally, a small random expect is added using noise generation. Noise parameter
e is used to determine the level of noise. It is chosen that e € {0.05,0.1,0.25}, leaving
the noise minimal compared with the random generated instances. For the new gener-
ated instance which exist of the fraction original and altered instances. A fraction of e
extra vertices are randomly created on the rectangle on which these point lie. To allow
for outliers an extra 10% outlier margin is taken inconsideration. To elaborate, the X
coordinate is drawn uniformly on the interval [1.1X,,in, 1.1X42], and the Y-coordinate

is independently drawn in the same manner for the Y-coordinates.

Finally, four different combinations of configurations are utilized to create a wide variety
of data. In the first combination, the entire fraction of 1 — o vertices is dropped, and
noise is introduced as a replacement. In the second combination, half of the altered set is
dropped, and the remaining vertices undergo rotation, followed by the addition of noise.
In the third combination, half of the altered set is dropped, and a shift is applied to the
remaining vertices, followed by the addition of noise. In the fourth combination, a third
of the altered set is dropped, rotation is applied to another third, a shift is applied to
the final third, and noise is added. To account for the random effect of choosing which
technique is applied to each vertex, for each combination of instance, parameter, and
technique, five new instances are created. This results in over 4600 new instances. In

total, the four trainsets combined result in over 12,000 observations, which are used for

38

training and validating the models.
To demonstrate the effect of these data augmentations, consider Figure[7] which depicts

one of the original instances before the data augmentation process is applied.

T17] ®
e e o0
3000
.:-: .:l:
2000 4
esse ssee
e e e
10007 eeee ssoe
e e e
> 0 eesee esee
e e
esse ssee
—1000 A [] [
eges eges
—2000
o0 o9,
geg g3
—3000 4 .’.’ .:.’
T r r r
—4000 —2000 0 2000 4000

Figure 7: Instance Pr107.tsp original

Visual inspection identifies a clear pattern in this instance with two large clusters or
multiple smaller ones. Figure [§] presents the four different combinations of the data
augmentation are applied on this instance using o = 0.5 and e = 0.1. It becomes
clear that each technique changes different characteristics of the instances. For example
shifting creates additional clusters, whereas rotation seems to widen the cluster in a
L-shape. Adding noise results in outliers and dropping observations slightly adjusts the

pattern of the instance.

39

Figure 8: Data augmentation on pr107.tsp

P 1 ® Original eee geoe e Original [1]
3000 Added 3000 - o Fotated
s g H Added [ad
2000
2000 { .
2 s s
1000 4
10001 o ‘s had
. H
0 (1] '“
> o] >
R 2
~10001 *8 o ooe
~1000{ ®e®® b s Laad
. . o ~2000 ®
'.. L Y
~2000
oo o -30001{ gee .
.
L] L] L] L]
—3000 1 L] e o L] L] o o
b 3ad ®s —4000 ! % o o0 o o0 ' o o
4000 2000 0 2000 2000 —a000 2000 0 2000 4000
x x
Drop, Noise Drop, Rotate , Noise
L] -»
0007 4000 4 o]
L] L) o0
e o hd o O ‘ cl.
b)) - D
2000 o ° . "o]
s . e 2000 4
° ° ¢ ® 3 s
-” . r X . s
> 0{ o® ° Se H > 1 1] . 2 4
® . 04 . o, oo
o % e] e
~2000 4 .' . B) ° -, .
% % N had -
ey s . we 0T g » o original
_40004 ® Original . .: oo e Fotated
o Shifted . - ® ® . . o Shifted
Added o ~4000 4 e Added
—a000 -2000 0 2000 4000 6000 8000 —a000 —2000 o 2000 4000 6000 8000
X x
Drop, Shift, Noise Drop, Shift, Rotate, Noise

5.3 Test dataset

For the test dataset a selection of instances from the TSPLIB library [41] is used. The
library instances are a combination of network wiring, drilling and classical TSP prob-
lems. Figure [0 illustrates a histogram depicting the performance ranks of four heuristics
on the these test instances. The histogram demonstrates that none of the heuristics
exhibit strict dominance over the others. However, on average, GR and FI outperform
NN and NI. A complete list of all of these instance and the corresponding performance

of the heuristics on these instance is provided in Table [T, which can be found in Section

41

40

41
40 + [8
31 32

30 29 27 e
g
2 2| i
O 1616 16 14 14

11
100 | |8 D 8 5 9)
d|) 1
Oji L _D !

T T T T
Rank 1 Rank 2 Rank 3 Rank4
[INNIIGRIONIIBFT |

Figure 9: Histogram of Algorithm Performance on TSPLIB

Table [6] presents the mean rank of the heuristics on the test set. The "Grey" set com-
prises instances used to construct dataset D, these instances themselves are only used
for testing, these are the grey instances in Table Whereas, the "White" instances
represent the set of instances not used for constructing dataset D. A slight variation
in heuristic performance is observed between the two sets. However, since the grey in-
stances were randomly selected, it is expected that this would not significantly affect the

model’s performance. On average, GR outperforms the other heuristics.

Testset NN GR NI FI
Grey 3.25 2.08 250 217
White 341 1.76 2.85 198

Total 3.36 1.87 2.73 2.04

Table 6: Mean Ranks Testset

To assess the different models performances, it is compared to a alternative method
where the model with the lowest mean rank is selected for each instance. As mentioned
in Table [6 this method would select GR for all instances. The evaluation is conducted
on a test set consisting of the 26 grey instances used for constructing dataset D and the
44 white instances which were left untouched in the data generation process, along with
an additional 70 instances extracted randomly from the test dataset prior to training.
This number results in a balanced testset. Therefore, the predicted best rank for these

140 instances is compared against the performance of the GR.

41

6 Results

6.1 Data properties

This section focuses on the evaluation of the data. Table [7] presents the mean ranks
of the four heuristics on the randomly generated instances at different density levels.
It is evident that NI performs relatively well performs relatively well on average when
applied to dense graphs with limited structure, as observed in dataset A. This advantage
arises from the many favorable insertion points around the vertices due to the high
density. Conversely, in dataset B, where close neighbors are less common, the insertion
heuristics has access to fewer advantageous insertion points. However, this advantage
of NI diminishes as the graph density decreases, which likely impacts the ranks of NN
as well. As for sparse instances, the performance of both insertion heuristics becomes
similar on both datasets, while GR emerges as the dominant heuristic. In dataset B, GR
outperforms the other heuristics in 95% of the cases, which results in low mean ranks.
Nonetheless, since dataset B only contributes 8% of the total dataset, the observed

dominance of GR does not appear to create a significant class imbalance.

Table 7: Mean Ranks Set A Set B

SET A NN GR NI FI SET B NN GR NI FI
Dense 3.90 3.00 1.25 1.85 Dense 2.60 1.08 3.15 3.17
Medium 273 1.06 290 3.32 Medium 264 1.06 3.19 3.10
Sparse 2.71 110 295 3.24 Sparse 2.59 1.07 3.16 3.18

Total set A 3.11 1.74 2.37 2.81 Total set B 2.61 1.07 3.17 3.15

GR is the dominant heuristic in dataset C, as shown in Table |8} However, this dataset
presents an interesting observation where the other three heuristics achieve similar mean
ranks. It is desirable for the model to identify the specific characteristics that lead to
better performance for each heuristic, especially considering the high similarity among
these original instances.

Finally, the impact of data augmentations is also presented in Table 8| Comparing these
results with Table [6] we observe that the data augmentations have only a slight effect
on the mean ranks. Specifically, NI shows an average increase of half a rank, while both
GR and FI experience a slight decrease in rank. Interestingly, in more than half of the
cases, the best performing heuristic shifts from one to another. This indicates that data
augmentation does have an influence on the characteristics of the instances. Notably,

rotation appears to result in the most significant rank change among the four augment-

42

SET C NN GR NI FI

brd14051 293 112 278 3.7 SET D NN GR NI F1
d15112 285 108 288 3.19 Drop, Noise 3.47 2.02 3.01 1.50
d18512 2.80 1.08 290 3.22 Drop, Noise, Rotation 3.40 1.72 3.00 1.87
pla7397 385 1.15 321 2.06 Drop, Noise, Shift 3.29 1.80 3.15 1.75
r111849 283 1.11 3.09 297 Drop, Noise, Rotation, Shift 3.30 1.74 3.06 1.90
usal3so9 3.50 147 3.06 1.96 Total set D 3.35 1.80 3.06 1.78

Total set C 3.10 1.18 2.96 2.76

Table 8: Mean Ranks Set C & Set D

ation techniques.

Dataset NN GR NI FI
Test 3.36 1.87 2.73 2.04
Train 3.15 143 297 245

Table 9: Mean Ranks Test Trainset

The mean ranks of the total training set exhibit slight differences compared to the
test set, as can be found in Table[9] These differences indicate an imbalance between the
two datasets, which may negatively impact the performance of the prediction models on
the testing set. Such discrepancies between the training and testing sets arise from the

challenges associated with simulating real data using artificial data.

6.2 Model validation

The performed cross-validation provided valuable insights into the optimal hyperpara-
meter configuration. The bivariate heat plots in Figure in appendix [C] depict the
results from the complete search grid, highlighting the key findings during the cross-
validation process. One of the main observations is that measures designed to prevent
overfitting play a crucial role in the model’s performance. Specifically, a low dropout
rate and a low ridge parameter consistently lead to poorer model performance, irre-
spective of the other parameters. This emphasizes the need to maintain an appropriate
level of network density and utilize regularization methods. The best hyperparameter
configuration, as shown in Table is used to train the neural network. Additionally,
the table presents the performance of the worst configuration, demonstrating a substan-
tial difference in performance and underscoring the importance of validating the model.

Recall that p is the Spearman’s correlation coefficient introduced in equation [6]

43

Table 10: Optimal hyperparameters

Batch size Dropout rate Ridge parameter Learning rate P
Best 36 0.3 0.001 0.001 0.770
Worst 36 0 0 0.0001 0.508

In addition to the tested configurations mentioned above, several other experiments were
conducted on a smaller scale. These experiments involved exploring different network
structures. For instance, the effect of using a classification network versus a regression
network was examined. Furthermore, instead of training separate networks for each
heuristic, a single comprehensive network was trained. Additionally, alternative loss
functions, such as ListNet Loss [3], which prioritize the overall accuracy of all four ranks
rather than individual rank accuracy, were investigated. However, all of these alternat-
ive approaches yielded similar results, primarily indicating that the network consistently
predicts values close to the mean ranks for each instance and heuristic. This suggests
that the network is unable to capture the data’s variance and therefore prone to un-
derfitting. Consequently, the employed network structure, which consists of separate
regression networks using Mean Squared Error (MSE) loss, emerges as the only viable

structure for this meta-learning model.

When conducting cross-validation on the two benchmark models (KNN and DT'), some
further evidence of overfitting can be observed. Figure [10]illustrates that these models
exhibit better performance when employing measures that mitigate overfitting. Specific-
ally, limiting the depth of the tree and constraining the number of features in DT obtain
favorable results. However, for shallow tree depths, solely restricting the depth proves
to be sufficient. On the other hand, in the case of KNN, overfitting can be mitigated by
limiting the number of neighbors. The optimal hyperparameters determined for these
models are as follows: a tree depth of 8 without restricting the number of features for
DT, and the optimal number of neighbors for KNN is 69.

6.3 Model comparison

To assess whether the models exhibit differences in performance, we compute the correla-
tion coefficients and their corresponding confidence intervals using the methods described
in Section Table[IT] presents the Spearman estimate of p, along with the lower bound
(LB) and upper bound (UB) of the 95% confidence interval. Prior studies have sugges-

ted that these models should demonstrate similar performance when applied to more

44

0.75

0.74 . .
- 0.74
Z 073 g
i = 0.73
= 0T T © om
g E 072
2 068} 4 8
o (=N
o
0.72 .
0-65 =177 16 20 21 25 32 36 10 0.71 L L
8 -) b b o 9 29 49 G692 89 109 129 149 169 189 209
Depth K

—a— All .
- st

Figure 10: k-fold Validation for DT and KNN

complex heuristics [23] 24]. Therefore, it is crucial to test whether this hypothesis holds
for the fast greedy heuristics employed in this thesis. Upon analyzing Table [T1] we
observe that the majority of the intervals overlap with each other. However, the NNet
consistently exhibits higher upper and lower bounds. While the confidence intervals
suggest a slightly superior performance for the NNet, formal tests for the difference of
the mean performances would be needed to obtain more statistical evidence. The table
distinguishes between "Train', representing the 70 instances taken from the complete
trainset, and "Test", comprising the 70 instances from the library [41]. Although the
model’s correlation coefficients are slightly lower compared to those of models involving
more complex heuristics [24], it demonstrates a clear correlation between the predictions

and the true ranks.

Table 11: Correlation Coefficients for the Models

NNet KNN DT
LB p UB | LB p UB | LB p UB

Train 0.651 0.769 0.850 | 0.607 0.737 0.829 | 0.603 0.734 0.827
Test 0.499 0.657 0.773 | 0.410 0.589 0.723 | 0.440 0.611 0.740

Further evidence of the superior performance of the neural network is apparent when
considering the second evaluation measure. Table presents the accuracies of the
different models as a ratio of correctly predicted ranks to the total number of predicted

ranks. In the table, the "Correct" column represents the fraction of instances where

45

the complete ranking of the four heuristics is predicted correctly out of the 24 possible
rankings. Remarkably, the neural network is able to correctly predict the complete
ranking in more than a third of the instances, while the other models achieve far fewer
successes. However, in practical applications, this level of accuracy may be less significant
because of time limitations, allowing only a few heuristics to be tried before deciding
on a method to use. The other columns represents the ratio of instances in which the
best performing heuristics is given label at most m. For example, most applications,
only a single heuristic can be calculated within some given time constraints. In this
context, the column "m = 1" represents the fraction of instances for which the model
correctly identifies the best-performing heuristic out of the four options. Here, we observe
that all models are able to correctly predict the best heuristic in the vast majority of
cases. Nonetheless, the neural network outperforms the other models by accurately
predicting the best heuristic in 10% more cases. If the application’s time constraints
permit the exploration of two heuristics, we can observe column "m = 2". All models
are almost always able to identify the best performing heuristic in this case. In other
words, if the true rank is equal to 1, the models almost always predict either rank 1 or
rank 2. However, when the application allows the exploration of three out of the four
heuristics, the neural network consistently identifies the best performing one accurately,
while the other two models still encounter difficulties in some situations. Overall, it
can be concluded that the neural network demonstrates the highest accuracy among the

three models, making it a promising approach for ranking heuristics.

Table 12: Accuracy of Different Models

Accuracy

Correct m—1 m=2 m=3

Train 0.390 0.857 0.970 1.000

NRet Test 0.343 0.729 0.886 1.000
KNN Train 0.214 0.757 0.957 0.971
Test 0.186 0.657 0.843 0.986

DT Train 0.314 0.743 0971 0.986

Test 0.200 0.657 0.857 0.986

The performance measures provide valuable insights into the predictive capabilities of
the different models, but they do not account for their computational complexity. It is
equally important to understand the efficiency gains achieved when comparing more com-

plex models with simpler alternatives. Consequently, a tradeoff must be made between

46

the time consumed by training, validating, and testing the models and the time saved
by obtaining more efficient tours. The significance of the models lies in their ability to
achieve a substantial reduction in tour length. If the reduction in tour length is not
considerable, the computational cost of calculating the features and making predictions
may outweigh the benefits. Therefore, it is essential to assess the tradeoff between com-
putational cost and efficiency gains. To address this, a fourth alternative approach is
considered, which involves the simple method of selecting the overall best heuristic for
each instance, which, in this case, is GR. This approach serves as a benchmark to com-
pare the performance of the more complex models. By comparing the efficiency gains
of the complex models with the straightforward GR method, we can determine whether
the additional computational cost of the complex models is justified by the significant

reductions in tour length they achieve.

The neural network requires the most time for training and validation, estimated between
15 to 45 minutes for training and several days for validation, depending on the CPU’s
processing power. In this thesis, the computational environment utilized is Google Colab,
which employs a 64-bit Intel x86 CPU with 12 GB of RAM. The estimates presented
in this work are based on computations performed within this specified hardware con-
figuration. The decision tree model takes a comparatively shorter time, approximately
3 to 5 minutes for training and around an hour for validation. KNN, on the other
hand, requires no training time and only a few minutes for validation. Once trained and
validated, all models can make predictions almost instantly. Obviously, the alternative

method of always selecting GR has close to zero training, validation and prediction times.

The boxplots presented in Figure illustrate the temporal savings achieved by util-
izing different models concerning the lengths of the acquired tours. The blue bars in the
visual representation illustrate the efficiency of the tours achieved by each heuristic. This
efficiency is quantified by the ratio of the difference between the length of the obtained
tour and the length of the optimal tour, in comparison to the length of the best tour
attained by any of the four heuristics. The red bars use a different metric to evaluate the
efficiency of the methods. The metric is defined as the ratio of the difference between
the length of the obtained tour and the best-known length for each instance, divided by
the best-known length. These optimal solutions were derived from the TSPLIB library
[41] for the real-life test instances and are acknowledged as the optimal solutions for this
thesis. Instances for which their optimal solution using Euclidean Distance is unknown

are excluded from this analysis.

47

H Best heuristic O
030 1 mmm Best known solution o
0.25 A
w 0.20 4
v
] 8
0.15
Qo
e, o) o
& o o
0.10 -) 4
o
8 8 g
0.05 A
E 2 ° o
0.0p - ==
T T T T T T T T
GR NMet KNN DT GR NNet KMN DT

Figure 11: Models performances against GR

In our comparative analysis of the blue bars, it is evident that all models demonstrate
superior performance when compared to the GR heuristic. On average, the neural net-
work model suggests a heuristic that exhibits approximately 2.4% greater efficiency than
GR. Similarly, the other two models perform slightly less efficiently than NNet, but still
achieve a remarkable efficiency gain of over 2% compared to GR. Moreover, relying
solely on GR as the default choice proves to be accurate in only 44% of the instances. In
contrast, as depicted in Table the models can accurately predict the optimal choice
in the vast majority of cases. Furthermore, an exclusive reliance on GR would lead to
outliers with an efficiency loss of nearly 20%, while the neural network model’s extreme
cases only result in a maximum efficiency loss of 12%. Analyzing the red bars illustrates
that all the models still experience considerable efficiency loss compared to the optimal
solutions, this is a consequence of the inherent greedy nature of the four heuristics em-
ployed. Nonetheless, all models outperform the use of GR alone. They consistently
remain within 25% of the optimal solution, with a median efficiency of approximately
15%, representing a 2% increase in efficiency compared to GR. These results indicate that
the model holds significant potential as a valuable improvement for various applications,

offering a more favorable trade-off between efficiency and computational complexity than

48

a single heuristic approach. Upon comparing the three models, we observe similar tour
efficiencies. The NNet exhibits a slightly more efficient median, while the other two
models achieve more efficient outliers. DT ranks as the second-best option in terms of
prediction quality indicators. However, when considering both the computation times
and the ability to determine feature importance, the efficiency loss in DT compared
to NNet might not be of significant concern. Consequently, for applications where the
time or computational resources required to train the NNet become prohibitive or when

a thorough understanding of influential features is crucial, DT emerges as the best choice.

6.4 Effect of artificial data

In this thesis, a substantial set of artificial instances of the Traveling Salesman Problem
(TSP) is employed. It is crucial to analyze the implications of using these instances.
Hence, this section conducts a detailed examination of the results obtained from the
best-performing model, which utilizes a neural network. Table [13| expands upon previ-
ous tables by dividing the "Test" instances into two distinct groups. The "Grey" instances
consist of real data instances used to generate dataset D (referred to as the grey instances
in Table |1 in the section , while the "White" instances are those that were not util-
ized in the generation of dataset D. The analysis reveals that the performance difference
between the "Train" and "White" instances is relatively small. This suggests that the
artificial data of the form presented in this thesis, effectively simulates the real data,
and the model’s performance generalizes well to unseen data. However, a substantially
larger performance difference is observed for the "Grey" instances. This outcome may
seem counterintuitive since these instances should bear greater resemblance to a portion
of the training data compared to the "White" instances. One potential explanation for
this disparity could be the difference in mean ranks (as demonstrated in Table @, in con-
junction with the relatively small size of the "Grey" set. Consequently, these instances
may present a more challenging prediction task due to the limited representation in the
training data. Alternatively, it is plausible that data augmentation techniques applied
during the creation of dataset D transform these "Grey" instances to a degree that has
a deceiving effect on the predictions. This hypothesis is reinforced by the observed dif-
ference in mean ranks when comparing Table [6] to Table [§] Such transformations may
have an impact on the model’s ability to generalize effectively to these instances, thus

influencing its predictive performance.

49

Table 13: NNet Model performance

Dataset p Correct One Two Three
Train 0.769 0.386 0.857 0.971 1.000
Grey 0.569 0.308 0.577 0.808 1.000
White 0.709 0.364 0.818 0.955 1.000

In order to investigate this phenomenon further, a detailed analysis of the impact of data
augmentation is presented in Table The table displays the in-sample p values for
each instance of dataset D. It is evident that none of the data augmentation techniques
yield a lower coefficient; instead, all techniques exhibit significantly lower correlation
coefficients compared to the overall in-sample coefficient of 0.789. This observation sug-
gests that dataset D possesses distinctive characteristics that differ significantly from
the other datasets.

Data Augmentation)

Drop, Noise, Rotation, Shift 0.57
Drop, Noise 0.41
Drop, Noise, Rotation 0.55
Drop, Noise, Shift 0.54

Table 14: Data augmentation effects on dataset D

Finally, it is important to test diversification of the model on the different datasets and
heuristics. For example, when the artificial data is unable to capture features present
in the real-life instances which are important to certain heuristics the model might face
challenges in predicting the ranks for these heuristics. Table [15] presents the results in
terms of the ratio of correctly predicted ranks by the NNet model, indicating its predict-
ive power on each heuristic. The analysis reveals that the performance differences among
the heuristics are not large, with GR being the easiest to predict and NI being the most
challenging. GR tends to have a higher frequency of rank 1, whereas NI displays more
variability across ranks. Despite this variation, the model demonstrates the capability
to predict ranks for each heuristic. Furthermore, when considering the artificial data,
we observe a similar pattern to that in Table Specifically, the instances used in con-
structing dataset D exhibit an overall lower accuracy across all heuristics. This finding
further supports the previous claims that dataset D possesses unique characteristics that
are challenging for the model to capture, potentially due to the data augmentation tech-

niques and the relatively small sample size of only 26 instances in this set. Consequently,

50

the model’s average predictions for this set are not as accurate. Importantly, the results
do not indicate any evidence that the use of artificial data biases the model towards
favoring a specific heuristic. In conclusion, the NNet model demonstrates a reasonable
level of diversification in predicting ranks for different heuristics. While dataset D poses
challenges for the model, it does not indicate any inherent bias towards a particular
heuristic. The model’s performance variations across the heuristics are more likely influ-
enced by the nature of the heuristics themselves and the characteristics of the datasets

rather than any systematic bias introduced by the artificial data.

Table 15: Accuracy predicted ranks NNet Testset

NN GR NI FI
Train 0.586 0.729 0.543 0.671
Grey 0.500 0.462 0.423 0.615
White 0.545 0.795 0.500 0.636

6.5 Features importance

In order to identify the most significant features, an analysis is conducted on the initial
three layers of the decision tree. The corresponding figures, namely [12] and
are provided in appendix [A] Please recall that certain features, such as the number of
outliers and number of clusters, are divided by the size of the dataset, as elaborated
in Section Additionally, as previously mentioned, the entire dataset underwent
standardization. However, for the sake of enhancing interpretability, the standardization
process is reversed for the threshold values depicted in the figures. Nevertheless, it is
important to note that the thresholds pertaining to the number of clusters and outliers
remain divided by the number of vertices in the dataset. It is evident that these four
trees exhibit distinct structural variations. In the case of NN and FI, the initial split
is influenced by the number of edges, whereas GR relies on the number of vertices as
a crucial factor. On the other hand, NI employs the distinct ratio for its splits. It
is worth noting that the condition number appears within the first three layers in all
heuristics, emphasizing its significance as a feature. For NN, features associated with
clusters appear to play a significant role. Specifically, a lower number of clusters and
reduced presence of outliers contribute to an improved heuristic ranking. This is due
to the heuristic performing well within clusters, while being penalized for transitions

between clusters or outlying vertices, as described in Section [.1]

o1

7 Conclusion

This thesis explores the opportunities to use meta-learning for the traveling salesman
problem applications which require low complexity methods on large scale instances.
Therefore, fast heuristics are applied on a set of meta-features which capture essential
characteristic of the instances such as density, spatial distribution and clustering. These
features have the property that they can be calculated fast and include properties related
to the edges and vertices, graph structure and performance bounds. The heuristics best
suited for such applications and used in this study are: Nearest Neighbor, Greedy Al-
gorithm, Nearest Insertion and Farthest Insertion. The performance of these heuristics
are ranked and obtained on a large dataset. This dataset is created using a combination
of random generated instances and instances obtained based on real life cases using data
augmentation techniques. Three models are built around a regression machine-learning
techniques and make use of label ranking and different techniques to prevent overfitting.
The used ML techniques are a simple K-nearest neighbour model as well as more com-

plex decision trees and neural networks.

7.1 Model performance

We successfully conducted training and validation for all models within a reasonable
temporal framework, bearing in mind the one-time nature of the training process. Not-
ably, the neural network’s training phase exhibited the most significant temporal and
computational resource consumption. To address this, we used the computational cap-
abilities of Google Colab, deploying a computing setup featuring a 64-bit Intel x86 CPU
equipped with 12 GB of RAM. The process of identifying optimal parameters for the
neural network demanded several days of validation efforts. In contrast, the training
and validation processes for the alternative models demonstrated comparably shorter
temporal demands, typically spanning minutes. Evaluating the ranking using each of
the obtained model takes less than a seconds. The performance of the models indicates
indicate that models are able to identify patterns in the extracted characteristics of the
instances. Different aspects, such as the number of clusters, the condition number, and
spatial distribution properties, exhibit correlations with the heuristics selection. Con-
sequently, these factors play a crucial role in constructing the meta-learning model. It
is essential to employ cross-validation during model training, as hyperparameters have a

significant impact on the predictive power of the models, thereby revealing their suscept-

52

ibility to overfitting. The best-performing model out of the three tested is the neural
network, the performance of the DT is only slightly lower, and the KNN shows the
worst performance. The NNet exhibits remarkable proficiency in identifying the best-
performing heuristic in the vast majority of cases and virtually always suggests one of
the two best heuristics. Based on the Spearman correlation coefficient, it is evident that
all three models establish clear correlations between the test predictions and the true
heuristic performances. The best model achieves estimated correlation coefficients of ap-
proximately 0.75. While these results are slightly lower than the correlation coefficients
obtained by models from the literature, that utilizing more complex heuristics, they still
highlight the predictive power of meta-learning models, particularly for greedy and fast

heuristics on large instances.

to time constraints and the practical requirements of applications, a straightforward
alternative approach might involve selecting the best performing heuristic on average.
However, this thesis demonstrates that adopting such an approach leads to a loss of
efficiency, where efficiency is defined as the ratios of the obtained tour length using the
model to the optimal and best available tour length or best heuristic. On average, tours
constructed using one of the meta-learning models exhibit a 2% efficiency gain com-
pared to this simple alternative. Remarkably, this efficiency gain persists even for DT
and KNN, indicating the dominance of the meta-learning model over this alternative

strategy.

7.2 Choice of machine-learning technique

Based on literature, it appears that for some meta-learning models, the specific choice of
machine-learning technique may not be critical, as multiple techniques can yield good-
quality results. The results of this study provide evidence to support this claim. Al-
though the more complex neural network model achieves the best overall mean perform-
ance, these results do not show substantial differences in terms of correlation coefficients
when based on the confidence intervals. Nevertheless, the bounds on correlation in
the confidence intervals are consistently higher for the neural network. With respect
to predictive accuracy, measured as the ratio of instances in which the best-performing
heuristic is among the first m predicted labels, the dominance of the neural network over
the decision tree and K-nearest neighbour seems to be larger. Regarding predictive ac-
curacy, the neural network demonstrates a more dominant performance over the decision

tree and K-nearest neighbor models. However, in real-life scenarios, the training and

93

validation times may become important factors in choosing the appropriate technique.
The complex structure of the neural network leads to significantly longer training and
validation times compared to the other two models. Therefore, it is sensible to apply the
neural network in static scenarios where the model does not require frequent modifica-
tion once constructed. In such cases, the longer training and validation times are not a
major concern as the model remains relatively unchanged over time. On the other hand,
the decision tree and K-nearest neighbor models may be preferred in more dynamic scen-
arios where the use of the model requires frequent updates or modifications, and faster
training and validation times are critical. Moreover, DT provides slightly better results

and more interpretability and may therefore be the better choice between the two.

7.3 Artificial data and Feature importance

The results obtained from the comparison between artificial and real instances indicate
that the methods used for generating artificial data successfully simulate the patterns
observed in real instances. This is evidenced by the small difference in results between
the artificial and real instances. As a result, we can conclude that even in cases where
the TSP application lacks sufficient data to construct a large training dataset required
for meta-learning, artificial data can serve as a viable substitute. The augmentation
techniques that have been demonstrated to be successful in this thesis encompass shift-
ing, rotating, introducing noise, and node elimination.

As previously mentioned, the characteristics related to the spatial distribution and dens-
ity of the graphs play a significant role in determining the best heuristics for solving
instances of the TSP. Among these features, one key finding is the notable influence of
the condition number of the distance matrix on heuristic performance. The condition
number attempts to identify patterns in the graph of the instance, making it an import-
ant feature for predicting the effectiveness of each of the four heuristics. Additionally,
features related to clustering and the distinct ratio of edge lengths emerge as crucial in
the predictive modeling process. These characteristics provide valuable insights into the
structure and topology of the TSP instances, contributing to the meta-learning model’s
ability to accurately discern the most appropriate heuristic for solving each specific in-
stance. By understanding the importance of these spatial distribution-related features,
it becomes possible to develop more effective meta-learning models for TSP, as these
features offer valuable clues about the inherent complexities and characteristics of the
instances. Despite the presence of substantial correlations among certain features, their

relationships retain vital information concerning the graph’s attributes.

54

7.4 Model limitations and future research.

Interesting follow up steps for this study can include the extension to more complex
versions of the traveling salesman problem. Some relevant applications might require
adaptations from the classical Euclidean TSP case. For example, the PCB applications
may require a incomplete network, while other applications might experience an asym-
metric case. The current model structure will most likely still provide good results.
However, the list of features should be extended as the current features don’t obtain any
information regarding the connectivity of the graph, therefore missing potential crucial
information. Moreover, the heuristics should be adapted to these new settings. A second
extension to the classical TSP case could be the SET TSP problem. In this variation,
the vertices are assigned to sets, and the objective is to visit all sets instead of visiting all
individual vertices. To illustrate this problem, we can translate the traditional problem
to a scenario where a salesman has multiple potential locations to meet his potential
buyer who works in a certain subregion. The salesman’s goal is to efficiently meet every
buyer by planning a route that excludes unnecessary locations. An illustrative example
relevant to this thesis is the data network design example mentioned in the introduction.
Here the challenge lies in connecting numerous network elements, some of which may be-
long to the same data center or network hub. In such cases, optimizing the route between
elements within the same set may be unnecessary. Due to the nature of this problem, the
differences in performance between the heuristics are often more pronounced compared
to the classical case, as illustrated by Figure[I7]in appendix [D] Early experiments apply-
ing the meta-learning model to this problem have yielded promising results, as the mean
ranks of the four heuristics are closer to each other than in the traditional case. Hence,
consistently favoring the option with the best average performance will result in more
efficiency loss. This suggests that the meta-learning model can effectively leverage the
characteristics of the instances to make more balanced and informed heuristic choices.
However, a potential challenge arises from the time constraints of the applications. In
particular, the greedy heuristic, which was previously able to provide solutions within
seconds for large instances, now requires minutes to complete its computations. This in-
creased computation time may not be feasible in time-critical scenarios, necessitating the

consideration of alternative problem-specific heuristics that can compute solutions faster.

95

Other future research could explore the potential effect of certain features, such as the
condition number, on improving meta-learning models that incorporate more complex
heuristics. Specifically, investigating whether the condition number can enhance the
predictive capabilities of such models is of interest. Lastly, some application may require
a trade-off between more complex heuristics and computational complexity. Meaning
that some application may budget extra computational time if this results in substantial
efficiency gain in the tours length. In relation with PCB example, this could occur if the
price tags of more high-end products allow for some delay. Therefore, a meta-learning
model can be developed which predicts some weighted objective function between the
computational and operational efficiency. Based on findings in this study, artificial data
using augmentation techniques used in this thesis, could extract valuable information
of instances which are essential for this objective. Particularly in these scenarios where
large datasets are required but often unavailable, artificial data serves as a valuable

substitute for training the models.

o6

A Decision Trees

Figure 12: DT NN

Enum == 826650
samples = 12229
X7 o

Enum <= 209407 Condition == 2.415

samples = 5073

samples = 7156

samples = 4512 samples = 2644 samples =147 samples = 3926

/N LN TN

Tabel=3.46 Label = 3.08 Label = 3.43 Label = 314 Label = 3.71 Label = 3.47 Label = 3.92 Label = 258
samples =4398 samples =114 samples =739 samples 1505 samples =570 samples =577 samples =175 samples =3751

Figure 13: DT GR

Vnum == 353
samples = 12229
A

num_clusters Condition == 2.656 num _outliers DistinctRatio==
<= (0135 = 0274 0.001

e DistinctRatio =
Condition == 2.674 0.002
samples = 3256 samples = 8973
o A
K \/ \,
Vnum== 247 Vum ==196 Condition Vnum <= 735
<= 43519
samples = 1172 samples = 2084 samples = 298 samples = 8675

/N 2NN 7

Label = 2.52 Label = 2.08 Label = 214 Label =1.74 Label = 3.0 Label = 4.0 Label = 1.34 Label =1.04
sampbs 1010 samples =162 ples =1531 ples =553 ples =257 samples =1

samples =1565 samples =7T10

o7

Figure 14: DT NI

DistinctRatio <
0.003
samples = 12229

DistinctRatio <= Enum ==1098290
0.0001
. samples = 1191

samples = 1211

Num_outliers == Vnum ==1298 Enum== 30555 Condition == 2.408
0001 les = 147
samples = 171 samples = samples = 7740 samples = 4171

Label = 2.00 Label = 299 Label = 319

samples =3179

Label =1.40 Label =130
samples =15 samples =143 samples =&

FAWAWAWAY

Label = 1.09
samples ‘930 samples =992

samples =156

samples 2810

Figure 15: DT FI

Enum == 353296
samples =12229
%

Condition == 2.418

Enum == 74932

samples = 5342 samples = 6887

Condition == 2676 Condition == 2.425 Enum Enum <= 1090222
== 1266384
samples = 3397 samples =1945 samples = 1475 samples = 5412

/N 2N TN 7

Label = .46 Label = 1.60 Label = 2.26] Label =1.86 Label = 2.42][Label = 279 Label = 3.61

Label =1.22
samples =530 samples =945 samples =1937 samples =3475

samples =1223

samples 2]'?-’. samples =424 samples =1521

o8

B Overview meta-features

1500 98po URIPAIN

150D 98Po UOIIRIADD PIRPURIS 9]
1500 23po oFeIoAy w\%b
1500 93P 1SoYSIH o
1802 93Po 1SoMOT O
S98Pe JO Iequunu Tequint
[GT] NVDOSaQ Sursn pourey
-0 ‘SISO JO IoquUNN SI9)SN[DWMN 150D X03I0A URIPIIN Vo)
[gT] NVOSEQ Susn pourey
-q0 ‘SI9IINO JO IoqUINN SIDIINOUWNYN | 150D X9}I9A UOIIBIADD PIEpPURIS o)
XLIJeT 9OUR)SIP) Ul
SOLIYUS JOUIISIP JO UOIPORI OIRYIIUNISI(] 150D X01I0A 93RIOAY w\vmo
SINOQUSIOU }S9Ie9U 9Y) proxjuad oYy oy jurod
Sururejuod punoq Iomo] PUNOGNN | [[6 WOI} 9duRISIP URDN) 3AY 1500 X91I0A 1SOUSIH e,
so3po }s9110YSs oY) SOI[90U®)S
Sururejuod punoq oMo punoqpi() | -Ur oy} YOIm Ul 9[3uriday] 199y 150D XO1I0A 1SOMOT Ve,
[6¢]
W)LIoS[e S WL Sursn [27] wyjtiodre sozoue] £q
poureyqo ‘ea1) Suruueds poure)jqo ‘XLIjeuwl 9dUuR}SIP
WNWIUTW 97} JO YIsuo| ISIN oY) JO IdquINu UOI)IPUO)) W N Puo)) (u)s901110A JO ToqUUNU Toquunu 4
uor}dridse(UOIJRION] vorjdrmse(uOoIjejoN uonydriose(q uorye)joN
spunog aanjonalg ydein 98P 73 X9)I9A

Batch

Dropout

Dropout

k-fold validation NNet

Figure 16:

0.800
0.775
0.750
0.725

-0.700
0.675
0.650
0.625

0.600

. \
0.0001 0.001
Learning

Batch size - Learning rate

0.800

> 0775

0.750

4 0725
s

-0.700

- 0.675

0.650

) 0625

l . 0.600

12 24 36

Batch

Batch size - Dropout rate

0.800

> 0.775

0.750

- 0725
o

0.0

0.700
m - 0.675
S
0.650
n 0625
B
! . | 0.600
0.0 0.0001 0.001 001
Ridge

Dropout rate - Ridge parameter

60

5-fold cross-validation results

0.800
0.775

0.750

0.725

-0.700

0.675

=
ER]
0650
™
” 0.625
| ' | 0.600
0.0 0.0001 0.001 0.01
Ridge

Batch size - Ridge parameter

0.800

> 0775

0.750

a 0725
=

0.0

5
2 0.700
g
g
m- 0.675
3
0.650
n 0.625
E
i ' i 0.600
0.0001 0.001 0.01
Learning
Dropout rate - Learning rate
0.800
o 0775
E
0.750
- 0.725
z
8
%‘ ° -0.700
g
- 0.675
2
=
g
0.650
g _ "
<
E
i 0.600
0.0001 0.001 0.01
Learning

Learning rate - Ridge parameter

SET TSP

Figure 17: Set Heuristic Performances on fl417.tsp

IO OB

A

NI, length = 8054

61

FI, length = 7562

E Online appendix

All the heuristics, models, features, and the data generation process are implemented in

Python and are accessible in the online appendix at the following link:
https://github.com/668865MB /Meta-Learning-using-Neural-Networks-in-Large-Scale-Traveling-
Salesman-Problems. The online appendix includes supplementary code that contains
heuristics and models not included in the final version of this thesis for various reasons.
Additionally, extensions of the heuristics from the traditional TSP case to the SET TSP

and Bottleneck TSP are also provided. These extensions may prove useful in future

studies.

62

References

1]

[2]

RD Angel, WL Caudle, R Noonan, and ANDA Whinston. Computer-assisted school
bus scheduling. Management Science, 18(6):B-279, 1972.

Tadeusz Calinski and Jerzy Harabasz. A dendrite method for cluster analysis.
Communications in Statistics-theory and Methods, 3(1):1-27, 1974.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank:
from pairwise approach to listwise approach. In Proceedings of the 2/th international

conference on Machine learning, pages 129-136, 2007.

Marco Caserta and Stefan VoB8. A hybrid algorithm for the dna sequencing problem.
Discrete Applied Mathematics, 163:87-99, 2014.

Nicos Christofides. Worst-case analysis of a new heuristic for the travelling sales-
man problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management

Sciences Research Group, 1976.

Geoff Clarke and John W Wright. Scheduling of vehicles from a central depot to a
number of delivery points. Operations research, 12(4):568-581, 1964.

L da F Costa, Francisco A Rodrigues, Gonzalo Travieso, and Paulino Ribeiro Vil-
las Boas. Characterization of complex networks: A survey of measurements. Ad-
vances in physics, 56(1):167-242, 2007.

Georges A Croes. A method for solving traveling-salesman problems. Operations
research, 6(6):791-812, 1958.

George Dantzig. Linear programming and extensions. Princeton university press,
1963.

George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale
traveling-salesman problem. Journal of the operations research society of America,
2(4):393-410, 1954.

Corinne Feremans, Martine Labbé, and Gilbert Laporte. Generalized network

design problems. Furopean Journal of Operational Research, 148(1):1-13, 2003.

Edgar C Fieller, Herman O Hartley, and Egon S Pearson. Tests for rank correlation
coefficients. i. Biometrika, 44(3/4):470-481, 1957.

63

[13]

[14]

Michael R Garey, David S. Johnson, and R Endre Tarjan. The planar hamiltonian
circuit problem is NP-complete. SIAM Journal on Computing, 5(4):704-714, 1976.

Gregory Gutin and Abraham P Punnen. The traveling salesman problem and its

variations, volume 12. Springer Science & Business Media, 2006.

Michael Hahsler, Matthew Piekenbrock, and Derek Doran. dbscan: Fast density-
based clustering with r. Journal of Statistical Software, 91:1-30, 2019.

Michael Held and Richard M Karp. The traveling-salesman problem and minimum
spanning trees. Operations Research, 18(6):1138-1162, 1970.

Michael Held and Richard M Karp. The traveling-salesman problem and minimum

spanning trees: Part ii. Mathematical Programming, 1(1):6-25, 1971.

Laurent Herault. Rescaled simulated annealing—accelerating convergence of simu-
lated annealing by rescaling the states energies. Journal of Heuristics, 6:215-252,
06 2000.

John J Hopfield and David W Tank. “neural” computation of decisions in optimiz-
ation problems. Biological cybernetics, 52(3):141-152, 1985.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approximation
of an unknown mapping and its derivatives using multilayer feedforward networks.
Neural networks, 3(5):551-560, 1990.

David S Johnson and Lyle A McGeoch. The traveling salesman problem: A case
study in local optimization. Local search in combinatorial optimization, 1(1):215—
310, 1997.

Jorge Kanda, Andre Carvalho, Eduardo Hruschka, and Carlos Soares. Using meta-

learning to classify traveling salesman problems. pages 73-78, 2010.

Jorge Kanda, Andre Carvalho, Eduardo Hruschka, and Carlos Soares. Selection of
algorithms to solve traveling salesman problems using meta-learning. International
Journal of Hybrid Intelligent Systems, 8(3):117-128, 2011.

Jorge Kanda, Andre De Carvalho, Eduardo Hruschka, Carlos Soares, and Pavel
Brazdil. Meta-learning to select the best meta-heuristic for the traveling salesman

problem: A comparison of meta-features. Neurocomputing, 205:393-406, 2016.

64

[25]

[26]

[27]

[28]

31]

[34]

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Communications of the ACM, 60(6):84—
90, 2017.

Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society, 7(1):48-50,
1956.

Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem

of linear differential and integral operators. 1950.

Jan Karel Lenstra and AHG Rinnooy Kan. Some simple applications of the travel-
ling salesman problem. Journal of the Operational Research Society, 26(4):717-733,
1975.

Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations research, 21(2):498-516, 1973.

Mohd Asyraf Mansor, Siti Zulaikha Mohd Jamaludin, Mohd Shareduwan
Mohd Kasihmuddin, Shehab Abdulhabib Alzaeemi, Md Faisal Md Basir, and
Saratha Sathasivam. Systematic boolean satisfiability programming in radial basis

function neural network. Processes, 8(2):214, 2020.

Feng Mao, Edgar Blanco, Mingang Fu, Rohit Jain, Anurag Gupta, Sebastien
Mancel, Rong Yuan, Stephen Guo, Sai Kumar, and Yayang Tian. Small boxes
big data: A deep learning approach to optimize variable sized bin packing. In
2017 IEEE Third International Conference on Big Data Computing Service and
Applications (BigDataService), pages 80-89. IEEE, 2017.

Karl Menger. Untersuchungen iiber allgemeine Metrik. Vierte Untersuchung. Zur
Metrik der Kurven. In Selecta Mathematica: Volume 1, pages 333-368. Springer,
2011.

Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer programming
formulation of traveling salesman problems. Journal of the ACM (JACM), 7(4):326—
329, 1960.

Chase C Murray and Amanda G Chu. The flying sidekick traveling salesman prob-
lem: Optimization of drone-assisted parcel delivery. Transportation Research Part
C: Emerging Technologies, 54:86-109, 2015.

65

[35]

[36]

[39]

[40]

[44]

[45]

Michael A Nielsen. Neural Networks and Deep Learning, volume 25. Determination
Press, San Francisco, CA, USA, 2015. Pages 3-10, 77-79, 80-88, 154-163.

Christian Nilsson. Heuristics for the traveling salesman problem. Linkoping Uni-
versity, 38:00085-9, 2003.

Hoon Liong Ong and JB Moore. Worst-case analysis of two travelling salesman
heuristics. Operations Research Letters, 2(6):273-277, 1984.

Christos H Papadimitriou. The euclidean travelling salesman problem is NP-
complete. Theoretical computer science, 4(3):237-244, 1977.

Robert Clay Prim. Shortest connection networks and some generalizations. The
Bell System Technical Journal, 36(6):1389-1401, 1957.

H Donald Ratliff and Arnon S Rosenthal. Order-picking in a rectangular warehouse:
a solvable case of the traveling salesman problem. Operations research, 31(3):507—
521, 1983.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on
computing, 3(4):376-384, 1991.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386, 1958.

Daniel J Rosenkrantz, Richard Edwin Stearns, and Philip M Lewis. Approximate
algorithms for the traveling salesperson problem. In 15th Annual Symposium on
Switching and Automata Theory (swat 1974), pages 33—42. IEEE, 1974.

Alexander Schrijver. On the history of combinatorial optimization (till 1960). Hand-

books in operations research and management science, 12:1-68, 2005.

siemensnixdorf / Tilburg University. Optimale besturing van de boormachine bij
de productie van printkaarten bij siemens nixdorf. Unpublished, 2021. Case study
designed by Tilburg University.

Kate Smith-Miles, Jano Van Hemert, and Xin Yu Lim. Understanding tsp difficulty
by learning from evolved instances. In Learning and Intelligent Optimization: 4th
International Conference, LION 4, Venice, Italy, January 18-22, 2010. Selected
Papers 4, pages 266—280. Springer, 2010.

66

[47]

[48]

[49]

Kate A Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Computing Surveys (CSUR), 41(1):1-25, 2009.

Charles Spearman. The proof and measurement of association between two things.
The American journal of psychology, 100(3/4):441-471, 1987.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929-1958, 2014.

Shankar Vembu and Thomas Gértner. Label ranking algorithms: A survey. In

Preference learning, pages 45—64. Springer, 2010.

Paul J Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550-1560, 1990.

Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu, Stephan Giinnemann,
Neil Shah, and Meng Jiang. Graph data augmentation for graph machine learning:
A survey. arXiv preprint arXiv:2202.08871, 2022.

67

	Introduction
	Literature review
	The Traveling Salesman Problem
	Heuristics
	Meta-learning
	Neural Networks
	Problem statement
	Methodology
	The Heuristics
	Performance evaluation
	Neural Network
	Neural Network Architecture
	Neural Network Training and validation
	Benchmark models
	Meta-features
	Data
	Randomly generated instances
	Modified instances
	Test dataset
	Results
	Data properties
	Model validation
	Model comparison
	Effect of artificial data
	Features importance
	Conclusion
	Model performance
	Choice of machine-learning technique
	Artificial data and Feature importance
	Model limitations and future research.
	Decision Trees
	Overview meta-features
	k-fold validation NNet
	SET TSP
	Online appendix

