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Abstract

This paper presents a novel two-step framework that combines parametric option pricing models with ma-

chine learning techniques to enhance the accuracy of predicting the implied volatility surface of individual

equity options. Using a large dataset of options from the 50 most liquid underlying stocks in the U.S. between

2014 and 2019, augmented with additional covariate data, we demonstrate the effectiveness of our approach.

Our empirical results show that the machine-corrected regression tree models, specifically XGBoost, outper-

form the parametric models in terms of IVRMSE and other performance metrics. The XGBoost combined

with the Black-Scholes parametric option pricing model performs best regarding the IVRMSE. The feature

importance and interpretability analysis reveal the significance of option-specific features, firm fundamentals,

macroeconomic variables, and volatility indices in predicting the implied volatility surface.
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1 Introduction

Options trading is a popular financial activity that involves buying and selling contracts

that give the holder the right to buy or sell an underlying asset at a specified price within a

specific time frame. One of the key factors impacting options prices is the volatility of the

underlying asset. Implied volatility (IV), derived from option prices, reflects the market’s

expectation of the underlying asset’s future volatility. The Black and Scholes model (1973)

assumes constant volatility. This assumption is, however, contradicted by the shape of the

implied volatility surface (IVS), which shows that the volatilities implicit in option contracts

differ across strike prices and time-to-maturity.

Understanding the dynamics of the IVS is crucial for option market participants, traders,

and investors, as institutional investors often use IV to manage their option positions (Carr

& Wu, 2016). In addition, the IVS offers insights into the market’s expectation for future

price movements of the underlying stock. Trading desks may be interested in estimating

the dynamic process of the IVS of individual equity options to hedge existing portfolios or

other over-the-counter derivatives. Next to this, investigating the IVS dynamics of equity

options is crucial not only for investors who need to hedge equity option positions but also for

investment decisions in other fields, where options are often used to obtain forward-looking

information on the market.

Many studies have found predictable movements in the IVS, particularly in index options

such as the S&P 500 (Skiadopoulos et al., 2000). However, the dynamics of the IVS in

individual equity options have yet to be thoroughly researched. Unfortunately, the equity

options market suffers from illiquidity and incompleteness. This illiquidity problem arises

as each trading day averages approximately only 21 equity option observations, even though

the S&P 500 index has over a thousand daily options (Freire & Kleen, 2023). As a result,

most individual equities cannot effectively utilize advanced option pricing techniques that

require extensive options data.

Due to the illiquidity problem, previous research has mainly focused on pricing index

options such as the S&P 500. As the findings on these index options show favorable results,

it is of interest to direct similar research on individual equities. In this study, we consider

daily options data on underlying stocks of the top 50 most liquid firms in the US market

that have been traded for at least one calendar year. The data ranges from January 2014 to

December 2019.

There has been lots of research on parametric option pricing models. However, they still

allow for mispricing, which reduces the prediction accuracy. Almeida et al. (2022) suggested

a two-step approach to overcome this issue, which involves training ML models on model-
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implied pricing errors to correct mispricing by various fitted parametric models. Directly

fitting a nonparametric model is equivalent to the nonparametric correction of the Black-

Scholes model, which does not yield information on the shape of the IVS (Almeida et al.,

2022). Hence, it makes sense to correct a parametric model that can capture specific patterns

in IVs because it will have a more straightforward flattened pricing errors surface, making

nonparametric estimation easier. This method introduces an easily adaptable architecture

based on improving parametric option pricing models’ accuracy. First, the observations are

fitted to any given parametric model. The difference in observed and estimated IV gives the

model implied pricing error. Second, Almeida et al. (2022) use feedforward neural networks

to predict these errors so that the models can be corrected. This paper follows this two-

step approach by first fitting a parametric model to each stock. Then, we train different

machine learning models on the combined pricing errors. Instead of fitting an ML model for

each stock or index as in Almeida et al. (2022), we jointly fit the machine learning models

across all underlying assets to leverage the information in the cross-section. To evaluate the

effectiveness of this approach, we conduct a comparative analysis using multiple ML models,

following the framework outlined by Gu et al. (2020). These ML models include Elastic

Net (ENet), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and multiple

feedforward Neural Networks (NNs). The parametric models included in this study are the

Black-Scholes (1973) model, the ad-hock Black-Scholes by Dumas et al. (1998), the Heston

(1993) structural stochastic volatility model, and the Carr & Wu (2016) model, utilizing a

parametric definition for the characteristics of the IVS.

The main objective of this research is to accurately predict the IV of options. Previous

research has shown that firm fundamentals have strong predictive power on the dynamics

of the IVS (D. Chen et al., 2023; David & Veronesi, 2000; Freire & Kleen, 2023; Rathgeber

et al., 2021). Hence, our machine learning models incorporate monthly firm fundamentals,

retrieved from D. Chen et al. (2023) as explanatory variables. Additionally, we want to

include more high-frequency data. Daily data allows for more accurate and timely estimates

of important variables, such as market prices and macroeconomic indicators. These features

capture short-term fluctuations and changes in market conditions that may be missed by

using longer-term data. In addition, using daily data can provide more information on the

distribution and volatility of the forecasted variables, which can improve the accuracy of

forecasting models. Hence, we consider daily data of variables that could have explanatory

power on the option prices. We incorporate features such as macroeconomic variables and

volatility indicators to investigate the possible correlation between the dynamics of individual

stocks’ IVS and various time series factors. Furthermore, we include data on the dynamics

of the S&P 500 options surface, as prior research has demonstrated the effectiveness of ML
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techniques in predicting the IVS of this index. More details about these variables are in the

data section (2). To prevent overfitting, we apply the Fuzzy Forests algorithm of Conn et

al. (2019) to reduce the number of features used in the ML models.

The overarching research question that we seek to answer is:

‘Can Machine Learning techniques successfully improve fitted parametric option pricing

models to predict the implied volatility surface of equity options?’

Lastly, to analyze the outcomes of the most effective ML model, this paper applies the

model fingerprint of Li et al. (2020). This method allows for an investigation of the indepen-

dent fluences of the features, aiding in identifying the most significant factors in predicting

the IV. Therefore, we will also provide an answer to the sub-question:

‘What aspects of the nonlinearity effects in our best performing Machine Learning model

improve the predictive performance of cross-sectional implied volatilities of individual equity

options?’

Our empirical findings strongly support the machine-correcting approach, outperforming

traditional parametric models. XGBoost performs best in correcting option pricing models,

especially when combined with the Black-Scholes model. However, the Heston and Carr-

Wu models exhibit poor performance as parametric models for individual equity options,

particularly for extreme time-to-maturities. The neural network architectures and elastic net

models did not offer significant improvements. Although the Carr-Wu model corrected by

the hybrid neural network with the option-specific adjustment cause a very high outperforms

rate compared to the uncorrected Carr-Wu model. Lastly, random forests performs better

than XGBoost in handling extreme values for the Heston model.

The option-specific variables show to be the most important features for nonparametric

correction. The importance of firm fundamentals, macroeconomic variables, and volatility

indices in predicting the IVS varies across different parametric and machine learning models,

indicating the diverse information captured by these models. Additionally, our interpretabil-

ity analysis highlights the nonlinear effects of features such as moneyness, time-to-maturity,

and option type on the predictions, while firm fundamental covariates exhibit a more linear

relationship with the model errors.

The paper is organized as follows: Section 2 describes the data used in the research, while

Section 3.1 explains the parametric models employed in the two-step approach. The Fuzzy

Forests algorithm for feature reduction is discussed in Section 3.2. Section 3.3 elaborates

on the machine learning models used to predict pricing errors. Empirical implications are
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presented in Section 3.4, followed by an evaluation of model performance in Section 3.5. The

importance of features over time is analyzed in Section 4, and the model fingerprint method

is explained in Section 5. Results are provided in Section 6, and the paper concludes with

the answers to the research questions in Section 7.

1.1 Related Literature

Our research is closely linked to various aspects of the option pricing literature. In this

article, we will discuss four main strands that are most relevant to our study. Firstly,

parametric models have been widely used for decades. With its assumption of constant

volatility, the classic Black and Scholes (1973) model allows for a closed-form solution to the

implied volatility of options. This model has been extensively researched and extended to

other underlying assets, as well as generalized specifications in the structural option pricing

model. The Black model (1976) remains a common choice for pricing bonds, futures, and

interest rate caps and floors. Dumas et al. (1998) presented an ad-hoc correction to the

Black-Scholes model, which effectively smoothed implied volatilities and outperformed the

local volatility models of Dupire et al. (1994) and Rubinstein (1994).

On the other hand, a large stream of literature focuses on structural continuous-time

option pricing models that fall under the family of the general affine jump-diffusion (AJD)

processes that incorporate additional sources of risk. Heston (1993) proposed a stochastic

volatility diffusion process with an analytical derivation for the option pricing formula, while

Duffie et al. (2000) priced fixed income and equity derivatives using the general family of

AJD models. Empirical findings on the affine class show mixed evidence (Chernov et al.,

2003; Dai & Singleton, 2000; Ghysels & Ng, 1998), leading to several augmentations of the

single volatility factor diffusions, including the addition of jumps (Andersen et al., 2001;

Bates, 1996; Chernov et al., 2003; Mehrdoust et al., 2017). Another significant classification

of models employs approximation theory to represent implied volatilities based on the pa-

rameters of stochastic volatility models. Notable contributions in this category include the

works of Medvedev & Scaillet (2007), Gatheral & Jacquier (2014), and Carr & Wu (2016).

Despite the numerous advancements, parametric models still show drawbacks and limita-

tions due to statistical or economic assumptions, which can lead to pricing errors. This gives

rise to the second strand of research, which explores the use of machine learning models as

an alternative to parametric models for pricing options and predicting implied volatilities.

Liu et al. (2019) applied neural networks to numerically solve option pricing models, aiming

to reduce computational costs. Buhler et al. (2019) and Ruf & Wang (2022) utilized neural

networks for option hedging. Zheng et al. (2019) developed a deep neural network prediction

4



model tailored to the implied volatilities of S&P 500 index options.

Additionally, Ivas,cu (2021) constructed nonparametric machine learning models using the

XGBoost algorithm for option pricing and demonstrated improved prediction performance.

Luo et al. (2022) compared the prediction accuracy of parametric Heston and Bi-Heston

models with the XGBoost model for ETF options. Their in-sample results favored the para-

metric models, while out-of-sample performance leaned more towards the machine learning

models, albeit with less stability. These findings show promising results in combining both

types of models. Our paper offers a flexible methodology to enhance the predictive accuracy

of any given parametric option pricing model by combining parametric and nonparametric

models, making it easily adaptable.

This leads us to the strand of literature that explores a similar two-step approach to

correct option pricing models. Das & Padhy (2017) employed parametric option pricing

models such as Black-Scholes, Monte Carlo, and finite difference methods, along with ma-

chine learning methods like support vector regression and extreme learning machine-based

regressions, for pricing European-style index options. More recently, Almeida et al. (2022)

explored the use of neural networks to estimate the errors implied by calibrated structural

models when predicting implied volatilities of S%P 500 index options. They covered the main

variants and extensions of structural models and adopted the neural network architectures

proposed by Gu et al. (2020) as adjustment models. Their work serves as the foundation for

our two-step framework. Rather than applying a machine learning model to each stock or

index, as in Almeida et al. (2022), we simultaneously train machine learning models across

all underlying assets, leveraging on the information present in the cross-section. Addition-

ally, we extend the neural network models by incorporating several regularization methods

and different activation functions. Furthermore, we expand the framework to include other

machine learning techniques that have demonstrated strong performance, such as Random

Forests, XGBoost, and Elastic Net (Gu et al., 2020).

Although these models have shown promising results, their empirical evidence is primarily

based on index options. We aim to expand this strand of literature by providing an empirical

analysis of individual equity options. Therefore, we also review the literature exploring pric-

ing models for individual equity options. Freire & Kleen (2023) developed an option pricing

model using local linear random forests on groups of stocks, which are selected endogenously

based on firm characteristics. D. Chen et al. (2023) combined machine learning tools with

firm fundamentals following Green et al. (2017) to explain the shape of the option implied

volatility curve. Their results show economic and statistical significance, which motivated us

to use the relationship between firm fundamentals and option prices as predictor variables in

our models. Bernales & Guidolin (2014) examined the association between macroeconomic
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factors and the dynamics of the implied volatility surface of individual equity options. They

found that information from the dynamics of the S&P 500 options surface provided influen-

tial information on the implied volatility surface of individual options. Therefore, in addition

to firm characteristics, we expanded our set of predictor variables to include macroeconomic

data, volatility indicators, the dynamics of the S&P 500 options, and other covariates with

potential predictive power on the implied volatility surface.

In summary, our paper adopts the two-step framework proposed by Almeida et al. (2022),

where we employ the same parametric models in the first step. In the second step, we jointly

fit machine learning models to the pricing errors across all stocks. We increase the number of

machine learning models to conduct a comparative analysis across different machine learning

approaches, following Gu et al. (2020). Within these machine learning models, we utilize

the predictive power of firm characteristics and macroeconomic variables, as suggested by

D. Chen et al. (2023), Freire & Kleen (2023), and Bernales & Guidolin (2014). Our analysis

focuses on individual equity options, which differentiates us from most existing papers that

primarily examine index options.

2 Data

The primary data of this research incorporates the top 50 firms in the U.S. market with the

highest average number of options per day traded between January 1, 2014, and December

31, 20191. We will first cover the options’ data and, second, the covariates data.

2.1 Option Price Data

The dataset consists of observed IVs of options on a daily frequency. Options data is sourced

from OptionMetrics through the Wharton Research Data Services (WRDS) and includes

various parameters such as end-of-day bid and ask quotes, implied volatility, volume, strike

price, open interest, and expiration date. The individual equity options are American-style

options; therefore, their price can be affected by early exercise premiums. OptionMetrics

uses the Cox-Ross-Rubinstein (CRR) binomial tree model, a commonly accepted method in

the industry, to estimate the IV of options with an American-style exercise feature. Hence,

we can treat the options in our analysis as European style (Christoffersen et al., 2018). The

option prices are calculated as the midpoint between the bid and ask quotes. The data

cleaning process involves removing zero-volume observations, null bid or ask prices, null

IV, zero bid price, violations of the no-arbitrage assumption, and option prices below 1/8.

1See Appendix A.1 for further details on the tickers.
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Second, we exclude options with an expiration period of less than seven trading days as these

contracts typically provide limited insights into the IVS (Dumas et al., 1998).

The stock prices and annualized dividend data of the options’ underlying are retrieved

from The Center for Research in Security Prices, LLC (CRSP). Lastly, we follow Freire &

Kleen (2023) and only consider options with moneyness between 0.5 and 2.0, where money-

ness is defined as the ratio between the stock and strike price, mi,j,t = Si,t/Ki,j,t for stock i,

option j, and day t.

The primary focus of this paper centers around the implied volatility of individual equity

options rather than their prices. This choice stems from the ability to make meaningful

comparisons across the options’ cross-section and the one-to-one mapping between option

prices and implied volatilities. In Table 1, we present the summary statistics of the options

grouped by time-to-maturity and moneyness. An intriguing volatility pattern, known as

the ”smile,” emerges within the short-term equity options. This distinctive pattern demon-

strates a consistent trend where average implied volatilities decrease from out-of-the-money

(OTM) calls (or in-the-money (ITM) puts) towards at-the-money (ATM) options, only to

rise once again for OTM puts (or ITM calls). A similar U-shaped pattern is also observed

among medium-term options, albeit with a flatter shape. Additionally, the average implied

volatilities exhibit a declining trend as the time-to-maturity increases within each specific

moneyness category. It is noteworthy that the majority of observations pertain to ATM

short-term options (mi,j,t ∈ [0.97 − 1.03)), while medium and long-term options primarily

fall into the deep OTM categories (mi,j,t ∈ [0.5− 0.9) ∪ [1.1− 2]).

Table 1: Summary statistics of equity options’ implied volatility

Moneyness
[0.5-0.9) [0.9-0.97) [0.97-1.03) [1.03-1.1) [1.1-2]

Time to Maturity
0.50 0.34 0.28 0.32 0.44

τ ≤ 90 [0.29, 0.76] [0.20, 0.52] [0.16, 0.43] [0.18, 0.49] [0.24, 0.67]
1,956,741 3,302,722 5,033,996 2,669,274 1,374,514

0.36 0.29 0.28 0.28 0.31
90 < τ ≤ 365 [0.25, 0.51] [0.20, 0.42] [0.19, 0.41] [0.18, 0.41] [0.19, 0.47]

1,637,017 738,200 721,641 638,431 1,244,029
0.34 0.29 0.29 0.28 0.29

τ > 365 [0.24, 0.46] [0.21, 0.41] [0.20, 0.40] [0.20, 0.40] [0.20, 0.43]
738,864 216,341 213,493 176,673 564,925

Note. This table presents summary statistics of our equity options data. Each day, we group all options into buckets by
moneyness and time-to-maturity (see the row and column names). Per bucket and day, we calculate (1) the average implied
volatility in %, (2) the 10% and 90% quantiles of implied volatilities (indicated within square brackets), and (3) the number of
observations. The table displays the time-series averages for these measurements. The sample ranges from January 2, 2014, to
December 17, 2019.

Figure 2.1 shows how the average number of options per day changes over time. The plot

reflects a mainly increasing trend from 2014 to 2020, indicating the growth in liquidity that
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the equity options market experienced during those years. Starting at around 200-250, the

average number of options gradually rises over six years, reaching approximately 400.

Figure 1: Average number of options per stock over time

2.2 Covariates Data

To benefit from additional predictive power on the IVS, we include different types of variables,

such as firm fundamentals, macroeconomic variables, volatility indices, and other covariates

that could affect the shape of the IVS. This comprehensive approach allows us to make

accurate predictions on implied volatility errors. Previous studies have demonstrated the

predictive power of firm fundamentals on the implied volatility surface (An et al., 2014;

D. Chen et al., 2023; Christoffersen et al., 2018; Dennis & Mayhew, 2002; Freire & Kleen,

2023). However, these fundamental variables are typically available at a monthly or even

quarterly frequency. Since our objective involves daily predictions, we aim to augment our

analysis by incorporating higher-frequency data, specifically daily data. This inclusion of

higher-frequency data enhances the precision of our predictions, enabling a more granular

understanding of the IV dynamics.

First, monthly firm fundamentals are retrieved from D. Chen et al. (2023), which studied

the explanatory power of firm characteristics on the shape of the IV curve. Their dataset

includes firm characteristics of all firms in the U.S. market traded between 1996 and 2019.

They follow Green et al. (2017) and Han et al. (2022) to construct 94 firm fundamentals.

The observations are standardized by the cross-sectional mean and standard deviation for
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each month’s fundamental. In cases where data is missing, we replace it with a standardized

zero value according to the fundamental’s cross-sectional mean.

Next, we leverage additional data that may have predictive power on the shape of the

IVS in addition to the options data and its firm characteristics. To achieve this, we in-

corporate daily features, such as the CBOE Volatility Index (VIX) based on the S&P 500

Index, which provides information about stock market volatility over the following 30 days

(Bernales & Guidolin, 2014), the CBOE Crude Oil ETF Volatility Index (OVX) that mea-

sures crude oil price fluctuations (Tian et al., 2021), the CBOE Gold ETF Volatility Index

(GVZ) which estimates the expected 30-day volatility of gold prices, the CBOE NASDAQ

100 Volatility Index (VXN) representing the 30-day volatility expectation of ATM options

from the NASDAQ-100, the FED Funds Rate of the U.S. Federal Reserve, Equity Market-

related Economic Uncertainty Index, the Economic Policy Uncertainty Index for the U.S.,

the 5-Year Breakeven Inflation Rate, the risk-free rate2, the credit and term spread3, and

the U.S. Dollars to Euro Spot Exchange Rate. We obtain these features from the St. Louis

Federal Reserve Economic Data (FRED) database.4 Additionally, we include the shape char-

acteristics (level, slope, and curvature) of the IVS of SPX options (following Aı̈t-Sahalia et

al. 2021), and lastly, historical data on the S&P 500 Index. For these predictor variables, we

handle missing data using forward filling. Appendix A.2 provides a comprehensive overview

of all covariates in our dataset.

3 Modeling and prediction IVS

In this section, we provide a detailed explanation of the methodology used to predict the

IVS. Our approach consists of several steps, which are outlined below.

1. Pricing models: We daily calibrate option pricing models to each stock using para-

metric models and obtain the model-implied errors.

2. Feature reduction: We apply the fuzzy forests algorithm to reduce the number of

features used in our machine learning models, thereby improving their efficiency.

3. Machine learning models: We use machine learning models to forecast the implied

errors and reconstruct the estimated implied volatilities.

2We use the 3-Month Treasury Constant Maturity U.S. Treasury Securities data to represent the risk-free
rate following Almeida et al. (2022).

3We follow Almeida et al. (2022) and define the credit spread as the Moody’s Seasoned Baa Corporate
Bond Yield Relative to Yield on 10-Year Treasury Constant Maturity and the term spread as the 10-Year
Treasury Constant Maturity Minus 3-Month Treasury Constant Maturity.

4https://fred.stlouisfed.org/
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4. Cross-sectional Prediction: We use the empirical data to make daily cross-sectional

out-of-sample predictions.

5. Evaluation: We assess the performance of our approach using the implied volatility

root mean squared error metric, which measures the accuracy of our forecasts relative

to the actual values.

3.1 Pricing Models

The first step in our two-step approach includes fitting the observed IVs to the parametric

models such that each parametric model is calibrated daily per stock. We have implied

volatilities σi,j,t data of options j = 1, ..., J
(t)
i across different moneyness mi,j,t and time-to-

maturities τi,j,t in the cross-section for each stock i = 1, ..., N at time t = 1, ..., T . The

subscript t is added as the number of options Ji per stock varies over time due to the

unbalanced panel data. However, we will ignore this notation for a clearer overview and use

Ji.

We use the same parametric models to compare our results to those of Almeida et al.

(2022), giving us a diverse selection of option pricing models over time. The parametric

models include the Black-Scholes (1973), the ad-hock Black-Scholes by Dumas et al. (1998),

the Heston (1993) structural stochastic volatility model, and the Carr & Wu (2016) model,

utilizing a parametric specification for the characteristics of the IVS.

3.1.1 Black-Scholes Model

The Black-Scholes (BS) model of Black & Scholes (1973) assumes that stock prices follow a

Geometric Brownian Motion:

dST

St

= µdt+ σdWt. (1)

The value of the call and put options of the Black-Scholes model are defined by the

formulae:

CBS(St, K, τ, r, σ) = StΦ(d1)−Ke−rτΦ(d2), (2)

PBS(St, K, τ, r, σ) = Ke−rτΦ(−d2)− S0Φ(−d1), (3)
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where

d1 =
log(St/K) + (r + σ2/2)τ

σ
√
τ

,

d2 =
log(St/K) + (r − σ2/2)τ

σ
√
τ

= d1 − σ
√
τ .

Here, Φ(·) is the standard normal cumulative distribution function, and r is the risk-free

rate. The volatility implied by the BS model is equal to solving the inverse of the pricing

formula σi,j,t = C−1
BS(Ci;St, Ki, τi, r) for a call option and σi,j,t = P−1

BS(Pi;St, Ki, τi, r) for a

put option with Ci and Pi as the observed option price, respectively. Using these implied

volatilities, the IV predictions of the BS are equal to a simple ordinary least squares regression

of the IVs of that day on a constant:

σi,j,t = α
(0)
i,t + ϵi,j,t, j = 1, ..., Ji. (4)

The estimated IV is constant across all maturities and moneyness, namely σ̂BS
i,t = α̂

(0)
i,t .

This equates to calculating the average IV of underlying asset i observed on day t. Hence,

the shape of the IVS predictions is flat.

3.1.2 AHBS Model

As a result of the constant volatility assumption of BS, the method fails to capture the

dynamics of the IVS. The ad-hoc Black-Scholes (AHBS) model, first introduced by Dumas

et al. (1998), is used to fit the IVS such that this can be used in the BS model. The AHBS

violates the constant volatility assumption of BS and is, therefore, inconsistent with this

model. The IVS is modeled by regressing time-to-maturity τi,j,t and moneyness mi,j,t on the

implied volatility σi,j,t including second-order and interaction terms:

σi,j,t = a
(0)
i,t + a

(m)
i,t mi,j,t + a

(m2)
i,t m2

i,j,t + a
(τ)
i,t τi,j,t + a

(τ2)
i,t τ 2i,j,t + a

(mτ)
i,t mi,j,tτi,j,t + ϵi,j,t, j = 1, ..., Ji,

(5)

where ϵi,j,t is the error term for option j with underlying asset i at time t. The model is

trained using ordinary least squares regression to minimize the mean squared error (MSE)

between the observed IV and the predicted IV. This process yields a fitted vector parameter,

denoted as âi,t = (a
(0)
i,t , a

(m)
i,t , a

(m2)
i,t , a

(τ)
i,t , a

(τ2)
i,t , a

(mτ)
i,t ). Note that by restricting all parameters

to zero except the intercept a
(0)
i,t , we get the same estimate as for the BS model.
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3.1.3 Heston Model

In contrast to the BS model, the model of Heston (1993) assumes the price volatility of the

underlying stock to be a random process. Under the risk-neutral measure, the dynamics of

the underlying asset follow:

dST

St

= rdt+ σdW1,t, (6)

dVt = κ(v − Vt)dt+ σv

√
VtdW2,t, (7)

where κ is the mean-reversal rate of the long-run variance v, Vt equals the spot variance,

σv is the volatility of the volatility process and W1,t and W2,t represent Wiener processes with

correlation equal to ρ. The Heston model belongs to the affine class of parametric option

pricing models and provides a quasi-closed form solution for the price of a European option

(Appendix A.3). To derive option prices under the Heston model, we use the numerical

Fourier-cosine series expansion method introduced by Fang & Oosterlee (2009).

To achieve our objective of predicting the IVS, we utilize the Heston model and estimate

its parameters ξt = (Vt, v, κ, σv, ρ) by minimizing pricing errors in terms of the IV. This

method involves calculating the model-implied option prices, translating them to implied

volatilities5, and then minimizing the loss function given by:

1

Ji

Ji∑
j=1

[
σ(mi,j,t, τi,j,t)− σ̂i

H(ξ̂
i
t, Si,t, Ki,j,t, τi,j,t, rt)

]2
, i = 1, ..., N. (8)

Nonlinear least squares (NLS) is used for the minimization procedure each day, with the

fitted values of the Heston model being equal to σ̂i
H(ξ̂

i
t, Si,t, Ki,j,t, τi,j,t, rt) for underlying i,

option j at time t. We follow Almeida et al. (2022) and do not impose the Feller condition

during estimation, as the main goal is to make predictions.

When calibrating the Heston model on the first day, we apply the differential evolution

(DE) optimization algorithm. This algorithm enables us to find the global optimum of the

model parameters without requiring initial estimates. For subsequent iterations, we take the

fitted parameters from the previous day as the initial guess for the NLS optimization, as the

DE algorithm is computationally expensive to run daily.

5We use the implementation of Jäckel (2015) available in the Python wrapper for the Vollib library
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3.1.4 Carr-Wu Model

The model of Carr and Wu (2016) differentiates from the other models as it incorporates the

volatility smile: options with different strike prices but with the same time-to-maturity have

different IVs. The model assumes that the underlying asset’s volatility follows a deterministic

function of the stock price, distance from the strike price, and time-to-maturity, allowing for

a more accurate representation of the volatility smile.

Under the Carr-Wu (CW) model, the risk-neutral dynamics of the stock price St and the

IV of the option σt(K, τ) can be denoted as:

dST

St

=
√
vtdWt, (9)

dσt(K, τ)

σt(K, τ)
= e−ηtτ (mtdt+ wtdZt), (10)

with vt as the time-t instantaneous variance rate of the stock price process, the expo-

nential dampening parameter e−ηtτ accounts for the empirical observation that the IV for

options with high time-to-maturity tends to exhibit less movement, and mt and wt are the

drift and volatility process of the IV respectively. Additionally, ηt, mt and wt are stochastic

processes which are independent of K, τ and σt(K, τ). The Wiener processes Wt and Zt

have a correlation equal to a stochastic process ρt, which has values on the [-1, 1] interval.

After imposing no-arbitrage constraints, they demonstrate that σ2
t (k, τ) is contingent on

the underlying asset price in relation to the relative strike k = ln(K/St). This relationship

is formulated as the following quadratic equation:

1

4
e−2ηtτw2

t τ
2σ4

t + (1− 2e−ηtτmtτ − e−ηtτwtρt
√
vtτ)σ

2
t

−(vt + 2e−ηtτwtρt
√
vtk + e−2ηtτw2

t k
2) = 0.

(11)

An interesting and significant characteristic of the solution to Equation (11) is the de-

pendence of the no-arbitrage restriction on the present values of the stochastic processes

(vt,mt, wt, ηt, ρt), rather than the exact dynamics of the processes. As a result, one can treat

the values of the processes at time t as parameters when fitting the IVS on a specific day,

resulting in a parametric family σ2
CW (θt, k, τ), with θt = (vt,mt, wt, ηt, ρt). By minimizing

Equation (12) below via NLS, we can estimate the parameter θt:
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θ̂t = argmin
θt

n∑
i=1

[
1

4
e−2ηtτi,tw2

t τ
2
i,tσ

4
i,t +

(
1− 2e−ηtτi,tmtτi,t − e−ηtτi,twtρt

√
vtτi,t

)
σ2
i,t

−
(
vt + 2e−ηtτi,twtρt

√
vtki,t + e−2ηtτi,tw2

t k
2
i,t

) ]2
,

(12)

with σi,t as the observed implied volatility, and ki,t and τi,t as the respective relative

strike price and time-to-maturity of the option. Given an initial parameter estimate of

θ̂t, we iteratively apply NLS to solve for the optimal fitted parameter set. Similar to the

approach in Subsection 3.1.3, we apply DE optimization at the first iteration and use the

optimal parameters of the previous day as an initial guess in the NLS optimization for

subsequent days. The CW model’s IV predictions for a given option are obtained by solving

Equation (11) utilizing the calibrated parameters θ̂t as inputs, along with the options’ k and

τ . The implied volatility of the CW then equals the square root of the positive solution to

the quadratic equation.

3.2 Fuzzy Forests

As noted by the findings of Green et al. (2017), numerous variables in our dataset are highly

correlated. In this paper, we implement the Fuzzy Forests (FF) algorithm of Conn et al.

(2019) to control for the multicollinearity across the set of predictor variables and prevent

overfitting by reducing the number of used predictors in our ML models. Furthermore, by

decreasing the number of variables, we limit the spillover effect of noise from specific fea-

tures, such as measurement errors, into our models. This method will enable us to generate

relatively impartial rankings of variable importance measures (VIMs) based on the explana-

tion of cross-sectional variance (Conn et al., 2019). In our context, the objective of applying

FF is to select a reasonable amount of features that provide the most explanatory power on

the model-implied pricing errors. As we have four parametric models, we will apply the FF

algorithm four times and have four sets of chosen features. The dependent variable used in

the FF algorithm is the model-implied error of the parametric models across all underlying

stocks. To address computational constraints and account for features updated at a lower

frequency, we convert the daily dataset to a monthly resolution by selecting the last Wednes-

day of each month. This approach balances computational efficiency and ensures sufficient

variation in the reduced dataset for the less frequently updated features.

The first step splits all features into clusters using the Weighted Gene Coexpression

Network Analysis (WGCNA) framework. This framework identifies clusters of closely in-
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terconnected features, such that the correlation within a cluster is high and between the

clusters is low. The partitioned feature set consists of P clusters such that P = {P1, ..., Pm}
with

∑m
l=1 pl = p if pl = |Pl|.

Next, we use the partitioned clusters from WGCNA and implement the FF algorithm

in two essential steps: the screening and selection steps. In the screening step, we apply

a Recursive Feature Elimination Random Forest (RFE-RF) to each cluster Pl to eliminate

irrelevant features. The selection step then executes a final RFE-RF to allow for inter-module

interactions, thus resulting in a ranking of VIMs across all clusters. For a more comprehensive

understanding of the RFE-RF applied in the WGCNA framework, the screening, and the

selection step, please refer to Appendix A.4.1. Furthermore, Appendix A.4.2 provides details

on the grid used for hyperparameter tuning, as well as an overview of other implementation

details.

3.3 Machine Learning Correction Models

Despite significant progress in the literature toward developing more comprehensive paramet-

ric models that can incorporate stylized facts in option data, they still fall short of accurately

replicating the IVS. This means that even with a model, denoted as p, there will still be a

pricing error surface represented by ϵp(m, τ) = σ(m, τ)−σp(m, τ), where σ(m, τ) is the true

implied volatility and σp(m, τ) is the implied volatility calculated by the pricing model.

To begin analyzing a collection of j = 1, ..., Ji options on day t, we start by defining a

parametric model denoted as p to fit the observed IVS represented by σ(mi,j,t, τi,j,t). This

process allows us to obtain fitted values represented by σ̂p(mi,j,t, τi,j,t), as well as model-

implied pricing errors represented by ϵ̂p(mi,j,t, τi,j,t) = σ(mi,j,t, τi,j,t) − σ̂p(mi,j,t, τi,j,t). Next,

the surface of the pricing errors denoted as ϵp(m, τ ) is estimated through minimization of

the following objective function:

1

TN

T∑
t=1

N∑
i=1

1

Ji

Ji∑
j=1

[
ϵ̂p(mi,j,t, τi,j,t)− f(x

(p)
i,j,t)

]2
, (13)

for several fitted nonparametric models f(·), where x
(p)
i,j,t is a vector of the M chosen

predictor variables by the FF for parametric model p. We aim to determine the function

f̂(x(p)) that provides the best possible approximation of the pricing error surface. Using

this approach, we calculate the IVS by combining the fitted value of the model with its

nonparametric corrections. Specifically, for parametric model p and ML model s this can be

represented as the sum: σ̂p(mi,j,t, τi,j,t) + f̂s(x
(p)
i,j,t).

The ML models include Elastic Net, Random Forest, eXtreme Gradient Boosting, and
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multiple feedforward Neural Networks.

3.3.1 Elastic Net

The Elastic Net method is a regularization technique used in regression analysis to intro-

duce sparsity in the predictor variables of an Ordinary Least Squares (OLS) regression. It

combines the characteristics of Lasso (L1) and Ridge (L2) regularization, resulting in a hy-

brid approach. By adjusting the model parameters, we can control the extent to which the

penalty term emphasizes a specific type of regularization. The objective in Equation 13 for

the ENet model becomes:

1

TN

T∑
t=1

N∑
i=1

1

Ji

Ji∑
j=1

[
ϵ̂p(mi,j,t, τi,j,t)− θ0 − θ⊤x

(p)
i,j,t

]2
+ λ(1− ρ)

M∑
m=1

|θm|+
1

2
λρ

M∑
m=1

θ2
m, (14)

where f(x
(p)
i,j,t) is replaced by an OLS regression with a constant term θ0 and a coefficient

vector θ. The model includes two hyperparameters, namely λ ≥ 0 and ρ ≥ 0, which require

tuning and serve two special cases. When ρ = 0, the penalization corresponds to the Lasso

method, which uses an absolute value penalization on the parameters. This approach serves

as a variable selection method, effectively identifying the most important predictors for the

model. On the other hand, when ρ = 1, the penalization resembles ridge regression, using

an l2 norm on the parameters. Ridge regression shrinks the estimated coefficients toward

zero but not exactly to zero, preventing them from becoming excessively large. It can be

considered as a shrinkage method. The ENet model, with values of ρ between 0 and 1,

combines the advantages of both variable selection and shrinkage. For a more detailed

description of the model and its hyperparameters, please refer to Appendix A.4.3.

Using the ENet regularization technique, we can effectively balance the sparsity of pre-

dictor variables while controlling the impact of different regularization approaches. This

flexibility makes the ENet method a valuable tool in regression analysis.

3.3.2 Random Forests and eXtreme Gradient Boosting

Regression trees serve as a nonparametric ML approach used to model interactions between

multiple predictor variables. Their objective is to identify clusters of observations with

similar behavior. Trees are built through a step-by-step construction process, each step

creating a new ”branch” to partition the remaining data from the step before based on the

value of one specific predictor variable. The prediction generated by a tree, as defined by

Gu et al. (2020), equals the average outcome within each partition.
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Figure 2 provides a straightforward illustration of the process. It shows a simple example

involving two predictor variables: ”size” and ”b/m”. The observations are initially sorted

based on their size, dividing them into two groups. Those with a size greater than 0.6 are

categorized into group 3. Subsequently, the remaining data are further sorted based on the

”b/m” variable, using a breakpoint of 0.4. Observations with a ”b/m” value below 0.4 and a

small size are assigned to Group 1, while those above the breakpoint are allocated to Group

2. The predictions for each observation within these groups are determined by taking the

average outcome variable value among the observations belonging to that particular group.

Figure 2: Graphical depiction of a regression tree

To define the predictions formally, we write the prediction of tree T with K partitions

and depth L as:

g(ϵ̂
(p)
i,j,t; θ,K, L) =

∑K
k=1 θk1{ϵ̂(p)i,j,t∈Ck(L)}

, (15)

here, Ck(L) represents the product of up to L indicator functions of the predictor vari-

ables. The θk is the sample average outcome within partition k. The process of growing

trees involves carefully selecting predictors and their corresponding values to minimize fore-

cast error. In order to approximate optimal trees, the classification and regression algorithm

(CART), as discussed by Loh (2011), is employed. As for the example in Figure 2, the

prediction formula becomes:

g(ϵ̂
(p)
i,j,t; θ, 3, 2) = θ11{sizei,j,t<0.6}1{valuei,j,t<0.4} + θ21{sizei,j,t<0.6}1{valuei,j,t≥0.4} + θ31{sizei,j,t≥0.6}.
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To enhance the out-of-sample prediction accuracy, we implement two tree structures well-

known in machine learning literature. The first is an ensemble learning method, Random

Forests (Breiman, 2001), suitable for classification and regression tasks. RF generates nu-

merous decision trees through random subset selection of the training data and combines

their predictions to generate a final output. This process effectively prevents overfitting and

enhances the overall accuracy of the model. For a detailed overview of the parameter grid

used in the hyperparameter tuning, please refer to Appendix A.4.4.

Another technique heavily relying on regression trees can be observed in gradient-boosted

regression trees. In this approach, the primary distinction from RF arises from the sequential

nature of boosted trees, where regression trees are no longer trained simultaneously on the

same dependent variable. Instead, weak decision trees are trained sequentially to correct the

residuals of the previous model, with the first tree being trained on the original dependent

variable. Additionally, incorporating randomness while fitting an individual decision tree is

now optional. The concept behind this technique is that by recursively combining predictions

made by relatively simple and shallow trees, referred to as weak learners, an overall robust

learner is achieved, leading to improved stability and a favorable impact on the bias-variance

trade-off.

The approach uses gradient descent to minimize the loss function of the model. It itera-

tively adjusts the parameters of each subsequent tree to give more weight to the observations

that were previously misclassified. Multiple boosting algorithms are available to optimize the

objective function, such as Adaptive Boosting (AdaBoost) and eXtreme Gradient Boosting,

each with its unique loss function, approximation method for optimization, and the pos-

sibility of incorporating regularization terms (e.g., the regularization term of XGBoost is

Ω(f) = γT + 1
2
λ||w||2). This research paper will focus on XGBoost due to its increasing pop-

ularity and remarkable computational efficiency (T. Chen & Guestrin, 2016). An overview

of the hyperparameter grid used for tuning XGBoost is given in Appendix A.4.5.

3.3.3 Neural Networks

We consider five feedforward neural networks as predictive models, adopting a similar archi-

tecture proposed by Gu et al. (2020). The NNs consist of three main components: an input

layer that receives the raw predictors, one or more hidden layers that use nonlinear inter-

actions to transform the predictors, and an output layer that aggregates the transformed

information from the last hidden layer into a final prediction. The number of predictors

matches the number of units in the input layer. Forecasts are generated by combining the

weighted signals in the output layer. The architectures of our NNs follow a pyramid scheme

of nodes by Masters (1993), which can be described as follows:
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• NN1: One hidden layer with 32 nodes.

• NN2: Two hidden layers with 32 and 16 nodes, respectively.

• NN3: Three hidden layers with 32, 16, and 8 nodes, respectively.

• NN4: Four hidden layers with 32, 16, 8, and 4 nodes, respectively.

• NN5: Five hidden layers with 32, 16, 8, 4, and 2 nodes, respectively.

Each neuron within a layer receives input from multiple neurons in the previous layer.

These inputs are weighted according to their importance, and the neuron applies a nonlinear

activation function to the weighted sum of the inputs. This activation function introduces

nonlinearity into the network, allowing it to capture complex relationships in the data.

Here, we use the Rectified Linear Unit (ReLU) activation function (Sussillo & Abbott, 2014)

for faster derivations. We use the He normal weight initialization method to initialize the

weights, which has proven to give robust results when combined with the ReLU activation

function (He et al., 2015). The transformed outputs from each neuron in a layer are then

passed as inputs to the neurons in the subsequent layer, and this process continues until the

output layer is reached.

During the training phase, neural networks learn to optimize their parameters through

backpropagation, an iterative process that updates the weights between the neurons to mini-

mize the loss error. This optimization is typically achieved using gradient descent algorithms

that traverse the network in the opposite direction of the data flow, updating the weights

based on the calculated gradients. Here, to reduce computational heaviness, we use the

Stochastic Gradient Descent (SGD) that computes the gradient on a small, randomly se-

lected subset of the data. This approach allows for more efficient optimization without

the need to compute gradients on the entire dataset. In this study, we employ an altered

version of gradient descent, incorporating Nesterov momentum (Nesterov, 1983). Unlike

regular SGD, prone to oscillations amidst local minima, Nesterov momentum (or Nesterov

accelerated gradient) enhances SGD’s acceleration in the appropriate direction.

In addition to the standard architecture of the NNs, we propose a modification to the

output layer by adding a linear combination of input variables directly into the output

layer (following the hybrid structure of Bianchi et al. 2021). We do this to exploit possible

linear relations between the covariates and the output while still using the nonparametric

architecture for the other features. The variables that are directly added to the output

layer will not be included as initial input variables in the neural network. We split the

input variables into option-specific and fuzzy forests covariates. This hybrid approach will
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be performed twice, once where the option-specific features will be reserved to be directly

inserted in the model (the exogenous regressors), and the input variables only consist of the

fuzzy forests covariates, and visa versa. The number of layers and nodes, along with the

other hyperparameters, will follow the same rules as the previous NN structure. We will

refer to this type of architecture as a hybrid neural network.

In Figure 3, we present a graphical illustration of a hybrid NN model with two hidden

layers, four nodes in the first hidden layer and two nodes in the second hidden layer, where

the option-specific variables are included at the output layer as exogenous predictors. Here,

the variables x
(j)
t,i , for i = 1, ..., n, indicate the input features selected by the FF algorithm

at time t for option j. In our example, the number of features n equals 20. Moving to

the first hidden layer, a
(1)
j = f (

∑n
i=1 wi,jxt,i + bj) represents a node with activation function

f(·), weights wi,j, and bias bj. Each arrow contains a weight that indicates the connection

between the input feature and that node. As mentioned earlier, we consider the ReLU

activation function at each hidden layer, which is given by f(x) = max(0, x). After the

second layer, we include a linear combination of the option-specific features in the output

layer, and we end up with one node in the output layer, which is our prediction of the implied

error for option j at time t. This process is done for the whole test set.

Figure 3: Graphical illustration of a hybrid neural network with two hidden layers

Note. This figure provides a graphical illustration of the hybrid neural network with a direct linear combination of the option-

specific variables, b′x
(OS)
t , which is included as exogenous regressors.
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Next, we have adapted the architectures (including the regular NN) to implement four

regularization techniques to prevent overfitting the training data. Firstly, after each layer,

except for the output layer, we apply dropout, which randomly sets neurons to zero during

training, where the dropout rate controls the exclusion probability. Secondly, after each

hidden layer, we employ batch normalization to normalize neuron activations, improving

training stability and speeding up convergence. Thirdly, we add ridge regularization (L2)

as penalty term in the objective loss function for each hidden layer. Lastly, we apply the

early stopping procedure during fitting, which halts the training if there is no significant loss

decrease after a defined number of successive iterations on the validation set. We set the

two hyperparameter values of this regularization equal to the ones used in Gu et al. (2020).

For further information on the hyperparameter tuning grids, please refer to Appendix A.4.6.

For the NNs, all features are scaled to the [-1, +1] interval over time, following Kelly et al.

(2019).

3.4 Cross-sectional Prediction

For our prediction exercise, we split our data into a train, validation, and test set. Our

machine learning models need a large training set to learn the misspecification tendencies

across the whole cross-section of options over time. Hence, the train and validation set

cover 60% (in-sample), while the test set covers the last 40% (out-of-sample). We split

the in-sample data into train and validation sets according to an 80% - 20% splitting rule,

respectively. The training set is used to tune the ML models’ hyperparameters, where each

hyperparameter set’s performance is assessed in the validation set. We split the validation

and test set each day randomly, such that half of the options for a stock on a given day are

used to fit the parametric models, and the other half is used to make same-day cross-sectional

predictions.

Figure 4 gives an overview of how the data is split and used during the cross-sectional

predictions. First, the parametric models are calibrated daily per stock on the entire training

data (section A), and the combined cross-sectional residuals of the fitted models give the

dependent variables to train the fuzzy forests and the ML models. Next, we use the first half

of the option data in the validation set (section B) to calibrate the parametric models again

and make predictions on the second half of the option data on that day (section C). We

use the predictor variables in section C to make predictions on the model-implied errors and

combine these with the predictions of the parametric models to construct the total estimated

implied volatilities. Using a specific metric, we select the best hyperparameters based on the

performance of the total predictions in section C. Next, we use the whole in-sample dataset

21



to jointly fit the ML models (section A + B + C). Lastly, the test set is again split into two

parts, half of the options data of a stock is used to fit the parametric models (section D),

and the other half is used to make out-of-sample predictions on the same day (section E).

Figure 4: Train-Validation-Test split for cross-sectional predictions

Note. Figure 4 presents the data splits where the hyperparameters of the FF and ML models are tuned on the training set,

using the validation set as a performance measure. The models are then fitted on the training + validation set, and the test

set is used to make out-of-sample predictions. For the validation and test set, the option data is split in half, where the first

half is used to fit the parametric models daily, and the second half is used as a holdout to make out-of-sample predictions.

3.5 Evaluation

We follow Almeida et al. (2022) and use the implied volatility root mean squared error

(IVRMSE) to evaluate the accuracy of the daily out-of-sample predictions for each individ-

ual stock, corresponding to the loss function minimized by the considered models during

estimation. To aggregate performance across stocks, we summarize the IVRMSEs by taking

the average IVRMSE across the stocks. However, only taking the average would overlook

the varying IV levels in the cross-section. Therefore, we also compare the results of our

machine-corrected models to their respective parametric models to provide context. This

approach allows us to determine whether the machine learning models effectively correct the

option pricing models.

First, we average the frequency of instances where a given model outperforms the bench-

mark model based on the IVRSME metric. For this, we use the outperformance rate (OR),

which can be computed using the following formula:
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ORj
t =

1

N

N∑
i=1

1

[
IVRMSEj

i,t < IVRMSE
Pj

i,t

]
, (16)

where IVRMSEj
i,t indicates the IVRMSE of stock i on day t using model j and IVRMSE

Pj

i,t

is the IVRMSE of the stock-specific parametric model P corresponding to model j model for

stock i at day t. Next to this, we compare the models based on the median and mean loss

ratio:

MedLRj
t = median

i=1,...,N

IVRMSEj
i,t

IVRMSE
Pj

i,t

, (17)

MeanLRj
t =

1

N

N∑
i=1

IVRMSEj
i,t

IVRMSE
Pj

i,t

. (18)

Finally, instead of evaluating the IVRMSE of each model against their respective para-

metric model, we employ the same three metrics to assess the models compared to the

uncorrected stock-specific AHBS model, our primary benchmark model. This allows us to

compare the various models in the cross-section. We replace IVRMSE
Pj

i,t with the IVRMSE

of the stock-specific AHBS model for stock i at day t, IVRMSEAHBS
i,t .

4 Feature Importance over Time

To better understand the contribution of features in our prediction exercise, we adopt the

framework of Daul et al. (2022). They use the reduction in MSE as a performance metric

to determine feature importance over time. An advantage of this method is that it is not

dependent on the model type, in contrast to, for example, the mean decrease in impurity

for trees of Hastie et al. (2009), which is dependent on the given machine learning model.

First, the model is fit on the training data. Then iteratively, the values of one feature in

the whole sample are set to its mean, keeping the other feature values unchanged; the MSE

is then calculated again using the new dataset. We do this each day to compare the MSE

using the actual data with the MSE of the adjusted data over time. The feature importance

is proportional to the increase in MSE. We do this for each parametric model in combination

with its best-performing correction model.

An increase in MSE indicates that the model relied on variations from that specific

feature to make accurate predictions. When the feature was adjusted to its average value,

23



the accuracy of the model’s predictions decreased. On the other hand, if the MSE decreases

upon fixing the feature to its mean, it suggests that the feature is not as crucial for the

model’s prediction performance. In such cases, we assign a feature importance of zero to

that particular feature. We normalize all feature importances to add up to 1 to ensure a

consistent scale. Lastly, we have categorized features with similar characteristics into groups

to comprehend the results better. Details on the definition of these groups are provided in

Appendix A.5.

5 Interpretability

To evaluate each feature’s independent influence in the model, we perform the model finger-

print method of Li et al. (2020). They provide an extension to the partial dependence, which

was introduced by Friedman (2001). The fingerprint method enables us to open the ’black

box’ known as ML models and decompose the prediction power into linear and nonlinear

components. We measure the change in the predicted values caused by changes in each

input variable while keeping all other features constant. The prediction function of a model

is defined as the model fitted to the training data:

γ̂ = f̂(x1, x2, ..., xm). (19)

The prediction relies on all M input features, but the partial dependence function γ̂k only

relies on one input variable, xk. The partial dependence function in Equation (20) estimates

the predicted outcome for a specific value of xk by taking into account all potential values

of the other predictors, which are denoted as xk−:

γ̂k = f̂k(xk) = Exk− [f̂(x1, x2, ..., xm)]. (20)

Below, we outline the steps to compute the partial dependence function in practice using

empirical data:

1. Select a permissible value xk for feature k.

2. Produce a new prediction with xk and actual input vector xk− using Equation 19.

3. Iterate step 2 for each input vector of xk− while keeping xk constant, and save the

predictions.

4. Attain the partial prediction γ̂k of the fixed xk by taking the average of all the predic-

tions for that value.
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5. Iterate steps 1 to 4 for any possible value of xk, and graph the resulting partial depen-

dence function.

The partial dependence function will show large deviations if a feature significantly influ-

ences the model’s predictions. To reduce the computational expensiveness of iterating over

all possible values of xk in step 5, we adopt the approach proposed by Daul et al. (2022),

which involves limiting the range of values to 50 observations that are equally spaced between

the minimum and maximum of xk.

Next, we define the linear effect of the features as the average absolute deviation between

the linear predictions and the mean marginal dependence:

Linear effect (xk) =
1

N

N∑
i=1

abs

(
l̂k[xk,i]−

1

N

N∑
j=1

f̂k[xk,j]

)
. (21)

The linear fit l̂k[xk,i] is the least squares fit of xk on the partial predictions γ̂k, the

subscript i denotes the ith value in the data. The nonlinear effect can be seen as the mean

absolute difference between the partial and linear predictions:

Nonlinear effect (xk) =
1

N

N∑
i=1

abs
(
f̂k[xk,i]− l̂k[xk,i]

)
. (22)

Note that this value equals zero if the model used to calculate the marginal dependence is

an ordinary linear regression model, as it should be. Figure 5 presents the contrasting effects

of linear and nonlinear predictions. The shaded areas represent their magnitudes, revealing

that the linear effect predominantly explains the prediction, with the nonlinear effect playing

a lesser role in the partial prediction in relation to the IR feature.

Figure 5: Decomposition of the partial prediction for the feature IR
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6 Empirical Results

In this section, we first cover the results of the FF algorithm, which determines the features

used in our ML models. Second, we discuss the results of the cross-sectional predictions

exercise and conduct a comparative analysis of our models. Thirdly, we review the feature

importance of the best machine-corrected models over time per parametric model. Lastly,

we review the interpretability results of our best-performing model.

6.1 Fuzzy Forests

We have implemented the FF algorithm to our in-sample model-implied error dataset to

address feature correlation and overfitting. Figure 6 displays the normalized output of this

algorithm for each parametric model, with the vertical red line indicating the feature cut-

off point and the black line representing the cumulative percentage of feature importance.

Notably, we have excluded option-specific variables such as time-to-maturity, moneyness,

strike price, and the put/call dummy from this graph, as they are included in the feature

set regardless. Since no general rule dictates the number of features to be included in the

reduced model, we opt to include enough features to account for at least 60% of the cumula-

tive feature importance across all four data sets. In our specific case, this entailed selecting

20 features.

The distribution of feature importance varies across the different parametric models. In

the BS model, the closing price of the underlying equity stands out as the most significant,

followed by the OVX and the term spread. Next, the AHBS model displays a more balanced

feature importance. Its top five features include dispersion in forecasted earnings per share

(disp), OVX, illiquidity (ill), industry-adjusted size (mve ia), and the underlying’s closing

price. Moving on to the FF result of the CW model, it is noteworthy that the most important

feature, the federal funds rate (DFF), is not among the selected variables in the other models.

The percentage change in the underlying’s closing price, OVX, return volatility (retvol), and

industry momentum (indmom) are also influential.

Lastly, the five features with the highest VIM for the errors of the Heston model are the

risk-free rate, the S&P 500 index closing price, OVX, the closing price of the underlying,

and the term spread. Among the selected features, 26 firm fundamental variables are chosen

across all four parametric models, with twelve overlapping features, of which retvol and

idiovol are in the chosen feature set of all four models. Interestingly, the shape characteristics

of the S&P 500 index options are not selected, however, the S&P 500 index closing price is

included in the CW and Heston model’s chosen feature set.
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Figure 6: Ranked feature importance of the fuzzy forests algorithm

(a) BS (b) AHBS

(c) CW (d) Heston

Note. Figure 6 presents the VIMs values generated by the FF algorithm. The solid line represents the normalized cumulative VIM for the features plotted in our graph, while
the red-dotted line represents the threshold for selecting variables for further analysis.
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6.2 Cross-sectional Prediction

The cross-sectional prediction exercise involved calibrating the parametric models each day

per underlying asset and fitting the secondary models on the model-implied errors over the

whole set of underlying assets. The results of the IVRMSE for each model combination are

shown in Table 2. The exact hyperparameter set of all models chosen during calibration can

be found in Appendix A.4.

Table 2: Out-of-sample IVRMSE (%) of the cross-sectional prediction exercise

No ML ENet RF XGB NN NN-OS NN-FF
BS 6.913 6.262 4.077 3.973 6.848 6.740 6.817
AHBS 5.360 5.360 4.230 4.209 5.360 5.357 5.357
Heston 8.158 7.677 5.999 5.953 8.060 7.933 8.002
CW 21.122 18.949 18.009 18.354 20.409 20.078 19.981
Note. This table presents the average IVRMSE (in %) across the stocks of each day for the same-day predictions of each
model. Each row represents a parametric model, and the columns indicate the applied machine learning correction model
(Elastic Net (ENet), Random Forests (RF), XGBoost (XGB), and NN, NN-OS, and NN-FF refer to the neural network
architectures without, with option-specific and with fuzzy forests direct input layer, respectively) or, in the case of no
correction model (No ML). The bold values indicate the best-performing correction model, while the underscored value
represents the best-performing model based on the IVRMSE. The test sample ranges from June 1st, 2017, to December 18th,
2019.

The results presented in Table 2 highlight the dominance of regression trees over the

other considered models. XGBoost emerges as the best-performing secondary model for the

BS, AHBS, and Heston models, while RF performs best for the CW model. Among all

the models, the combination of the Black-Scholes option pricing model and XGBoost yields

the most favorable outcomes, achieving an average IVRMSE of 3.973%. Interestingly, the

neural network architectures (NN, NN-OS, and NN-FF) and the elastic net models do not

exhibit significant improvements compared to the other models. Moreover, there appears

to be minimal variation in performance among the different neural network architectures.

These findings suggest that the neural networks do not provide substantial advantages over

the other models examined for this dataset. Notably, the parametric model BS shows the

highest degree of correctability. When left uncorrected, the AHBS model performs the best

among the parametric models. Meanwhile, the CW model seems to be a poor fit for the

data, as is evident from its relatively higher IVRMSE than the other models.

To analyze why the CW model, and to a lesser extent the Heston model, perform worse

than the AHBS, we examine the average absolute error per time-to-maturity (see Figure 7).

Initially, all models exhibit higher errors for shorter time-to-maturities, which decrease as

time-to-maturity increases. However, beyond approximately 400 days to maturity, the CW

model’s average absolute error sharply increases and remains high for longer maturities, while

the other models exhibit more convergence. It is worth noting that including extreme time-
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to-maturities in the model fitting process can introduce noise to predictions for the other

maturities. However, eliminating these extreme cases could lead to sample illiquidity, which

mainly affects the Heston and CW models as they rely on a larger dataset for parameter

estimation due to their model complexity.

Figure 7: Average out-of-sample absolute error of the parametric models per
time-to-maturity

As mentioned before, by only considering the average IVRMSE, we will overlook the

varying IV levels across options. Hence, we consider three additional metrics: the outper-

formance rate, the median loss ratio, and the mean loss ratio. Compared to their respective

parametric model, the results of these metrics are presented in Table 3 to assess the effec-

tiveness of machine-corrected models. Consistent with previous findings, the regression tree

models outperform the other models across all parametric combinations. The performance

levels of the RF and XGBoost models lie close to each other. Among all the models, the

RF model emerges as the superior correction model for the BS, AHBS, and Heston mod-

els regarding the outperformance rate. This suggests that the RF model notably improves

predictions for these parametric models.
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Interestingly, when the CW model is corrected using the hybrid NN-OS architecture,

it reaches the highest outperformance rate across the other ML models, whereas the other

NN architectures do not exhibit similar results. This unexpected result may indicate that

the option-specific features have a linear relation to the CW errors. The NN-OS also shows

potential as a corrective measure for the BS model, given the outperformance rate. For the

Heston and AHBS, the NN-FF model performs best across the neural network architectures.

Table 3: Out-of-sample performance of the machine-corrected cross-sectional prediction of
equity options compared to the parametric models

ENet RF XGB NN NN-OS NN-FF

Panel A: OR

BS 0.875 0.981 0.976 0.687 0.957 0.899

AHBS 0.553 0.929 0.926 0.514 0.514 0.673

Heston 0.778 0.932 0.912 0.822 0.833 0.859

CW 0.687 0.745 0.804 0.744 0.950 0.680

Panel B: MedLR

BS 0.864 0.575 0.571 0.989 0.965 0.977

AHBS 1.000 0.822 0.812 1.000 0.991 0.993

Heston 0.910 0.713 0.706 0.980 0.958 0.970

CW 0.877 0.789 0.726 0.966 0.875 0.945

Panel C: Mean LR

BS 0.876 0.594 0.590 0.989 0.963 0.976

AHBS 1.000 0.806 0.799 1.000 1.000 0.991

Heston 0.931 0.720 0.729 0.978 0.955 0.967

CW 1.004 0.898 0.808 0.973 0.878 0.999

Note. This table presents the performance metrics of the cross-sectional prediction of each machine-corrected model against

their respective parametric model. Panel A reports the time-series average of the outperformance rate (the number of times

the IVRMSE was lower than that of the parametric model), Panel B reports the time-series averages of the daily median loss

ratios, and Panel C shows the time-series averages of the daily mean loss ratios. Each row represents a parametric model, and

the columns indicate the applied machine learning correction model (Elastic Net (ENet), Random Forests (RF), XGBoost

(XGB), and NN, NN-OS, and NN-FF refer to the neural network architectures without, with option-specific and with fuzzy

forests direct input layer, respectively). The bold values indicate the best-performing correction model for that parametric

model, while the underscored value represents the best-performing model based on all the models. The test sample ranges

from June 1st, 2017, to December 18th, 2019.

Panel B and C of Table 3 present the median and mean loss ratios, respectively, providing

insights into the distribution of loss ratios and their average values. Panel B shows that

the XGBoost consistently performs well across all parametric models. This consistency

underscores the robustness and reliability of XGBoost as a corrective model in capturing the
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median values of loss ratios. Similarly, in Panel C XGBoost outperforms other ML correction

models across most parametric models. However, an exception arises with the Heston model,

where the RF correction model exhibits a lower MeanLR than XGBoost. This suggests that

the RF model shows particular proficiency in addressing extreme values within the loss ratio

distribution for the Heston model.

Lastly, to perform a cross-comparison on our models, we focus on the performance metrics

with the AHBS model as benchmark instead of their parametric model. The comparative

analysis is presented in Table 4. The observed pattern of best-performing model combinations

aligns closely with the findings in Table 3. Notably, the combination of AHBS with RF stands

out as the best-performing model, achieving an outperformance rate of 0.929.

Next, we turn our attention to Panels B and C. Consistent with our expectations, when

the AHBS model is corrected using the NNs, the MedLR and MeanLR values converge

to approximately 1. This suggests that the NNs have a limited impact on improving the

predictions, as they do not significantly alter the distribution of loss ratios. Examining the

performance across all parametric models, XGBoost consistently delivers the best MedLR.

This finding indicates that XGBoost offers a superior balance between predictive accuracy

and the spread of loss ratios. Furthermore, in terms of both metrics, the combination of

XGBoost with the AHBS model results in the highest performance among all the examined

combinations. This reinforces the effectiveness of XGBoost as a corrective model when

applied in conjunction with the AHBS framework. The MeanLR is more sensitive to extreme

values in the loss ratio distribution. In this regard, the RF model outperforms XGBoost only

for the Heston model. This result implies that the RF model exhibits better resilience against

extreme loss ratio values, leading to a more favorable average loss ratio for the Heston model

compared to XGBoost.
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Table 4: Out-of-sample performance of the cross-sectional prediction of equity options
compared to the AHBS model

No ML ENet RF XGB NN NN-OS NN-FF

Panel A: OR

BS 0.073 0.107 0.718 0.715 0.077 0.084 0.083

AHBS - 0.553 0.929 0.926 0.514 0.514 0.673

Heston 0.056 0.070 0.432 0.442 0.060 0.067 0.064

CW 0.016 0.014 0.043 0.106 0.017 0.027 0.013

Panel B: MedLR

BS 1.431 1.249 0.843 0.828 1.414 1.379 1.401

AHBS - 1.000 0.822 0.812 1.000 0.991 0.993

Heston 1.578 1.435 1.084 1.080 1.541 1.498 1.523

CW 2.607 2.397 2.087 1.852 2.501 2.223 2.534

Panel C: MeanLR

BS 1.493 1.277 0.859 0.853 1.473 1.433 1.453

AHBS - 1.000 0.806 0.799 1.000 1.000 0.991

Heston 1.846 1.688 1.362 1.376 1.805 1.759 1.780

CW 3.201 2.928 2.642 2.452 3.086 2.826 3.085

Note. This table presents the performance metrics of the cross-sectional prediction of each model against the AHBS model

without ML correction. Panel A reports the time-series average of the outperformance rate (the number of times the IVRMSE

was lower than that of the AHBS model), Panel B reports the time-series averages of the daily median loss ratios, and Panel

C shows the time-series averages of the daily mean loss ratios. Each row represents a parametric model, and the columns

indicate the applied machine learning correction model (Elastic Net (ENet), Random Forests (RF), XGBoost (XGB), and

NN, NN-OS, and NN-FF refer to the neural network architectures without, with option-specific and with fuzzy forests direct

input layer, respectively) or, in the case of no correction model (No ML). The bold values indicate the best-performing

correction model for that parametric model, while the underscored value represents the best-performing model based on all

the models. The test sample ranges from June 1st, 2017, to December 18th, 2019.

6.3 Feature Importance

By analyzing the temporal variation of feature importance, we can gain insights into the

differing information sets of our best-performing machine learning models across the para-

metric models. To assess feature importance over time, we employ an iterative approach

where we fix features to their mean values and measure the resulting influence on the mean

squared error. The outcome of this analysis for our best ML models is presented in Figure 8.

Note, the option-specific features are excluded from this evaluation due to their high feature

importance, which could hinder meaningful comparisons with other feature groups6. How-

ever, for a comprehensive examination of feature importance, including the option-specific

6The grouping of features is detailed in Table A9 of Appendix A.5.
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features, please refer to Appendix A.5, Figure A1.

Upon observation, we see that the feature importance across different groups within

the CW + RF model exhibits less homogeneity compared to the BS + XGB model. This

disparity suggests that the relative importance of individual features varies significantly

between models. However, it is crucial to note that these models operate with different

features. Therefore, a more meaningful exercise would involve comparing the feature impor-

tance within a specific model.

In Figure 8d, we observe considerable variation in feature importance across the different

groups, particularly between the macroeconomic variables and the volatility indices. Notably,

the volatility indices features demonstrate a heightened influence between October 2018 and

February 2019 for models (a) and (d). This increase in importance could be attributed to

the escalating trade tensions between the United States and China, which contributed to

increased market volatility. Furthermore, Figures 8a and 8b highlight the consistent signifi-

cance of the firm fundamentals group across the entire sample period. Additionally, Figure

8c reveals a substantial feature importance for the firm fundamental features concerning

volatility.

Interestingly, graph (c) exhibits frequent spikes where macroeconomic features and volatil-

ity indices assume a more influential role, indicating a relatively varied distribution of im-

portance across feature groups. Regarding the AHBS + XGB model, the volatility indices

appear less crucial than the other feature groups. There, the importance of features is largely

divided into three groups: covariates regarding the underlying asset, firm fundamentals, and

covariates of firm fundamentals regarding volatility. In contrast, external information from

macroeconomic variables and volatility indices are more important for the Heston model.
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Figure 8: Feature importance over time for the best-performing machine-corrected model
per option pricing model, excluding the option-specific features

6.4 Interpretability

To improve interpretability, we computed partial predictions for each feature in our BS +

XGBoost model and decomposed them into linear and nonlinear. Figure 9 presents the

outcomes of the decomposition.

From Figure 9, we see a strong nonlinear effect of moneyness on the partial predictions,

clearly carrying the largest effect. Next to this feature, the option-specific variables time-

to-maturity and the dummy for call/put option are among the features with the highest

predictions effects along with the percentage in price change.
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Figure 9: Decompositions of the linear and nonlinear effect for the out-of-sample partial
predictions from the BS + XGBoost model

Due to the large effect of moneyness, the effects of the other features become less visible.

To increase visibility, we exclude moneyness from the figure. The new figure can be seen in

Figure 10. The nonlinear effect is most prominent in 13 out of the 24 features. If we look

at the covariates apart from the first four option-specific variables, we see that the linear

effect mostly dominates the total prediction effect implying a more linear relation with the

residuals of the BS model.
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Figure 10: Decompositions of the linear and nonlinear effect for the out-of-sample partial
predictions from the BS + XGBoost model without the moneyness feature

7 Conclusion

In this paper, we present an adaptable method to enhance the accuracy of parametric op-

tion pricing models using machine learning models inspired by the framework introduced by

Almeida et al. (2022). Our main objective is to accurately predict the implied volatility sur-

face of individual equity options. The approach involves two steps: calibrating a parametric

model to align with the observed IVS and training a secondary model based on the pricing

errors derived from the pricing model. The effectiveness of the nonparametric correction

is evaluated using a large dataset containing options from the 50 most liquid underlying

stocks in the U.S. between 2014 and 2019. This dataset is expanded with various covariate

data, including firm fundamentals, macroeconomic indicators, and shape characteristics of

the S&P 500 index options.

The empirical results demonstrate that the machine-corrected regression tree models per-

form favorably in improving option pricing models. Specifically, the XGBoost combined with

the BS model results in the most accurate predictions of the IVS. The comparative analysis
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of the machine-corrected models against the respective parametric models and a benchmark

model (AHBS) indicates the approach’s efficacy in improving option pricing. The machine-

corrected models consistently outperform the parametric models regarding IVRMSE and

other performance metrics, such as outperformance rate, median loss ratio, and mean loss

ratio.

Furthermore, the feature importance and interpretability analysis reveal the importance

of option-specific features, implying that the parametric models do not optimally extract all

information from these features. Additionally, the analysis shows that firm fundamentals,

macroeconomic variables, and volatility indices played significant roles in predicting the IVS.

The specific importance of features varies across different parametric and machine learning

models, highlighting the diversity of information captured by these models.

Additionally, the interpretability analysis provides insights into the linear and nonlinear

effects of features on the predictions of the machine-corrected Black-Scholes model. The

nonlinearity effects, particularly in features like moneyness, time-to-maturity, and option

type, substantially influence the predictions. The firm fundamental covariates show a more

linear relation to the model errors.

Although the machine-corrected models perform well, it is important to acknowledge the

limitations of this study. Firstly, the CW and Heston models perform poorly as parametric

models, which may be attributed to the illiquidity of individual equity options and their

sensitivity to extreme time-to-maturities. The limited availability of data points for individ-

ual equities and the challenges in accurately estimating parameters for these models might

contribute to their underperformance.

Secondly, the methodology employed in this study is computationally heavy, requiring

significant computational resources and processing time. This computational complexity

could present practical challenges and limit the scalability of the approach. Additionally,

the lack of computational power restricts us to using one fixed test set.

In light of these limitations, future research could explore alternative parametric models

that address the illiquidity and extreme time-to-maturity issues when predicting individual

equity options. Additionally, investigating different machine learning models or ensembles

of models could further enhance predictive accuracy. Furthermore, while computationally

demanding, expanding or moving window analysis may provide valuable insights into the

model’s performance over time and predictive accuracy. Lastly, varying the train and test

split in the dataset would contribute to more robust results and a more concise conclusion.

Despite these limitations, our research demonstrates that machine learning techniques can

successfully improve the accuracy of parametric option pricing models to predict the IVS of

equity options. The findings contribute to a better understanding of the dynamics of IVS and
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provide valuable insights for market participants, traders, and investors in managing option

positions and making informed investment decisions. Additionally, this paper contributes

to the currently shallow body of literature on the predictability of individual equity options

and can be seen as a stepping stone for further research.
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A Appendix

A.1 Options Data

The 50 tickers included in our dataset are displayed in Table A1. These specific stocks are

chosen based on the stocks from the dataset provided by D. Chen et al. (2023) in their study.

After applying the filters described in Section 2.1, we identify the top 50 stocks with the

greatest average options liquidity between January 1, 2014, and December 31, 2019.

Table A1: Tickers of 50 most liquid stocks included in the dataset

Tickers

AAL C HD NFLX TWRT

AAPL CAT IBM NKE UAL

ABBV CMG INTC NVDA V

ADBE COST ISRG QCOM VLO

AMD CRM JPM REGN WDC

AMZN CVX LRCX SBUX WFC

BA DAL LULU SLB WMT

BAC DIS MA SWKS WYNN

BIIB GILD MSFT TGT X

BKNG GS MU TSLA XOM

A.2 Covariate Data

Table A2 provides a full description of the variables in addition to the firm characteristics.

For an overview of the firm fundamentals, please refer to the paper of D. Chen et al. (2023).
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Table A2: Covariate descriptions and abbreviations of the additional predictor variables

Variable Description

CREDIT
Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield

on 10-Year Treasury Constant Maturity

daily vol Daily volume of S&P 500 index options

DFF Federal Funds Rate

dvi Annualized dividend

EPUI Economic Policy Uncertainty Index

EUI Economic Uncertainty Index

EXCH U.S. Dollars to Euro Spot Exchange Rate

GVZ CBOE Gold ETF Volatility Index

IR 5 Year Break-even Inflation

level Level of IVS of SP500 index options

OVX Crude Oil Volatility Index

pct change closeprice % change in closing price of underlying asset

prccd Close price of underlying

risk free Risk free rate

slope Slope of IVS SP500 index options

SP500 Close price of SP500 index

TERM
10-Year Treasury Constant Maturity Minus 3-Month Treasury

Constant Maturity

term structure Term structure of IVS of SP500 index options

VIX CBOE Volatility Index

VXN CBOE Nasdaq 100 Volatility Index

A.3 Heston Pricing Solution

Albrecher et al. (2007) provided proof of the instability of the original Heston formulation

under certain conditions. To overcome this issue of discontinuity formulation, we use the

alternative formulation from Gatheral (2011). The quasi-closed form solution of the Heston

model for pricing European options, as defined by Gatheral (2011), becomes:

C(St, K, V0, τ) = P (τ) ·
[
1

2
(F −K) +

1

π

∫ ∞

0

(Ff1 −Kf2)du

]
, (23)
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with f1 and f2,

f1 = Re

(
e−iu lnKφ(u− i)

iuF

)
andf2 = Re

(
e−iu lnKφ(u)

iu

)
, (24)

where F = Seµτ and P (τ) = e−rτ as the discount factor to the expiry date of the option.

The log-characteristic function φ(·) is defined as as a function of the underlying value Sτ at

expiration, such that φ(0) = 1 and φ(−i) = F :

φ(u) = E
[
e−iu lnSτ

]
. (25)

For the Heston model, this equation can be written as:

φ(u) = eC(τ,u)+D(τ,u)V0+iu lnF . (26)

The new formulation of the coefficients C and D and their auxiliary functions read:

C(τ, u) =
κv

σ2
v

(
(κ− ρσvui− d(u))τ − 2 ln

(
1− c(u)e−d(u)τ

1− c(u)

))
, (27)

D(τ, u) =
κ− ρσvui− d(u)

σ2
v

(
1− e−d(u)τ

1− c(u)e−d(u)τ

)
, (28)

c(u) =
κ− ρσvui− d(u)

κ− ρσvui+ d(u)
, (29)

d(u) =
√
(ρσvui− κ)2 + iuσ2

v + σ2
vu

2. (30)

Lastly, we apply Fast Fourier Transform method from the SciPy library to reduce com-

putational costs (Carr & Madan, 1999).
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A.4 Hyperparameter tuning

We define a grid of hyperparameters for all models to iterate over and select the optimal

model. These hyperparameters, which can take on multiple values as described below, will

be evaluated against the mean squared error to determine the model with minimal error.

A.4.1 WGCNA

For both the WGCNA and the FF, we evaluate the MSE of the models at the last RF

iteration. For the WGCNA framework, we only tune the number of clusters and the min-

imum size of each cluster. To identify appropriate hyperparameters, we initially examine

a correlation heatmap displaying the cross-correlations among the predictor variables. We

observe around ten distinct groups of features with strong correlations, each containing more

than two variables. Therefore, we set the minimum cluster size to three and explored ten

potential clusters. For further computational details, we refer to Appendix A.6.

A.4.2 FF

Table A3 provides an overview of the hyperparameters tuned to identify the optimal fea-

ture reduction model using the FF algorithm. Due to the computational heaviness of the

algorithm, we only use the model implied errors of the BS model to tune the parameters.

The chosen parameter values are in bold in Table A3. First, the drop fraction indicates

the proportion of features that will be eliminated after each RFE-RF step, which filters out

insignificant variables as part of the screening step. Starting with all predictor variables

in the partition Pl, a random forest model is fitted, and the least important variables are

subsequently removed. We repeat this process iteratively using the reduced set P
(1)
l until

the specified number of features determined by the keep fraction is reached. We use a wide

range of possible values to tune the drop fraction. For further details on the FF algorithm

and the RFE-RF procedure, we refer to Section 2.4 in the paper of Conn et al. (2019).

As mentioned above, the keep fraction represents the number of features to keep after

the final FF iteration. We set this fraction at 45%, providing a broad range of potentially

interesting features. From the VIM plot in Figure 6 from Section 6.1, we select the number

of features that collectively account for two-thirds of the overall variable importance.

Lastly, after completing each FF algorithm, we plot the MSE as a function of the number

of iterations. The MSE starts to marginally decline between 25 and 75 iterations. Therefore,

we decided to consider the final number of trees equal to 25, 50, or 75 iterations. It is

unlikely that the MSE would significantly improve across all other hyperparameters beyond

75 iterations, as the RF may start overfitting. Additionally, we set the minimum number of
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trees for each RF at 100, not too large, as it would be too computationally expensive.

Table A3: Hyperparameter grid for WGCNA and FF

Method Hyperparameter Parameter Grid

WGCNA #Clusters {10}
Min Cluster Size {3}

Fuzzy Forests Drop Fraction {0.05, 0.15, 0.25, 0.5}
Keep Fraction {0.45}
Final # Trees {25, 50, 75}
Min # Trees {100}

A.4.3 ENet

In Table A4, we provide the tuning grid of the ENet method. We consider two hyper-

parameters, as mentioned in Section 3.3.1. The first hyperparameter, λ, determines the

regularization in the model. The second parameter, ρ, determines the shift between the two

regularization methods Lasso and ridge regression.

For λ, we focus on relatively small values as we already implement the FF algorithm to

reduce the dimension of predictor variables. We consider 1000 values between the logspace

starting from 10-100 to 10-1.

To control for overfitting, we do not consider values of ρ that are too heavy on one side

of the regularization methods. Hence, we take three values around 0.5.

Table A4: Hyperparameter grid for ENet

Hyperparameter Parameter Grid BS AHBS Heston CW

λ {min=1e-100, max=1e-01, steps=1000} 1e-12 0.1 1e-12 0.4571

ρ {0.3, 0.5, 0.7} 0.5 0.5 0.3 0.7

A.4.4 RF

Table A5 displays the main hyperparameters for RF that require tuning. First, we adjust the

number of decision trees (estimators) to control the ensemble’s size and improve accuracy.

Generally, higher estimator values enhance prediction accuracy. However, computational

costs increase, and a point of convergence is reached where additional trees offer limited

accuracy improvement. Next, we optimize the maximum depth to increase model complexity
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by allowing more splits in each tree. We use a grid with a wide range of potential maximum

depths. Lastly, we fine-tune the maximum number of randomly selected features used at

each node split to mitigate overfitting. Our hyperparameter grid for the last parameter

is narrower than Gu et al. (2020) due to the implementation of the FF feature reduction

technique, which already reduces the number of predictor variables in our models.

Table A5: Hyperparameter grid for RF

Hyperparameter Parameter Grid BS AHBS Heston CW

Max # of Trees {100, 200, 500} 500 500 500 100

Max Depth {6, 8, 10, 12} 12 12 10 8

Max Features {3, 5, 10} 10 10 10 10

A.4.5 XGBoost

For XGBoost, the hyperparameter grid we use is shown in Table A6. First, the number of es-

timators D determines the number of trees in the ensemble. Second, we tune η, the learning

rate parameter, which shrinks the weighting of new features added to our model, making the

process more conservative. In their study, Friedman (2001) discovered that lower learning

rates result in improved test errors, albeit requiring a larger number of estimators. Conse-

quently, a trade-off exists between the learning rate and the number of estimators. Given

the substantial size of our estimator grid, we suggest using two relatively smaller learning

rate values (0.01 and 0.1). Third and last, we tune the maximum depth of the regression

trees. The maximum depth and number of estimators determine the model’s complexity

and flexibility. It is crucial to strike a balance when selecting the depth parameter to avoid

overfitting the algorithm. Therefore, in our grid, we align with the approach of Breiman

(2001) and Gu et al. (2020), who use boosted regression trees to analyze US government

bonds and US equities, respectively.

Table A6: Hyperparameter grid for XGBoost

Hyperparameter Parameter Grid BS AHBS Heston CW

# estimators {25, 50, 100, 200} 100 100 50 25

Learning Rate {0.01, 0.1, 0.3} 0.1 0.1 0.1 0.1

Maximum Depth {6, 12} 6 6 6 6

Subsample Size {1, 0.75, 1} 1 1 1 0.5
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A.4.6 NN

Table A7 displays the comprehensive grid used for selecting hyperparameters for our neu-

ral networks, along with the optimal combinations for each parametric model. We have a

collection of optimal parameters (L1L2 Penal, Dropout, Batch Size, Learning Rate) specific

to each architecture NN1 to NN5. These hyperparameters are chosen within the framework

of a normal NN (i.e., without an additional input layer to the output layer). As previously

mentioned, the hyperparameters for NN-OS and NN-FF consist of the optimal results ob-

tained from all five structures. The chosen architectures for NN-OS and NN-FF are outlined

in Table A8.

Table A7: Hyperparameter grid for NN

Hyperparameter Parameter Grid BS AHBS Heston CW

L1L2 Penal {1e-14, 1e-18, 1e-20} 1e-14 1e-20 1e-14 1e-14
Dropout {0.4, 0.5, 0.6, 0.7} 0.6 0.6 0.4 0.4
Batch Size {128, 256} 128 256 128 256
Learning Rate {0.001, 0.01} 0.001 0.001 0.001 0.001
Architecture {NN1, NN2, NN3, NN4, NN5} NN3 NN4 NN1 NN1

Table A8: Optimal neural network architecture per adjusted structure

Structure BS AHBS Heston CW

NN-OS NN1 NN5 NN2 NN1
NN-FF NN1 NN1 NN1 NN1

Tables A7 and A8 reveal the selection of relatively simple neural network architectures for

the BS, Heston, and CW models, primarily consisting of a single hidden layer. In contrast,

the AHBS model demonstrates the lowest MSE on the validation set with more complex

architectures, indicating the preference for a more intricate structure.

A.5 Feature Importance

We have grouped the predictor variables based on their similar type to improve interpreta-

tions of the results from the feature importance over time. The groups are in Table A9.

Next to the results in Section 6.3, we present the feature importance over time, including

the option-specific variables. Figure A1 shows that the option-specific group holds a consid-

erably large share in feature importance. This is expected given the varying levels of implied

volatility across the option cross-section.
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Table A9: Groups of variables formed for the feature importance

Group Features

Underlying prccd

pct change close

Firm Fundamentals acc

betasq

chfeps

fgr5yr

ill

indmom

mom12m

mve

mve ia

roeq

sfe

turn

zerotrade

Option Specific cp dummy

moneyness

strike price

time

Volatility Indices OVX

SP500

VIX

VXN

Fed Rate DFF

Macro CREDIT

IR

risk free

TERM

Volatility Firm Fundamentals ba spread

idiovol

retvol

roavol

std turn
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Figure A1: Feature importance over time for the best-performing machine-corrected
model per option pricing model, including option-specific features

A.6 Computational details

For the implementation of the fuzzy forests algorithm, we use the R-packages WGCNA for the

WGCNA framework (Langfelder & Horvath, 2008) and fuzzyforests (Conn et al., n.d.).

We use the Python package Scikit-Learn to process the data, split our data randomly,

and standardize/scale our input variables. This package also includes the LinearRegression()

function needed for AHBS, ElasticNet() for ENet, and the RandomForestRegressor() en-

semble model for the Random Forests. For the optimization of the parametric models Heston

and CW, we use the scipy package in Python, which includes both differential evolution()

and least squares() functions. The Python wrapper for the Vollib library calculates the

implied volatility in the Heston model.

To implement the other machine-learning models, we use the following Python packages:
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xgboost, TensorFlow 2, and Keras. The NNs are trained and fitted using the high-level

API called Keras from the TensorFlow library. The Keras wrapper provides various regu-

larization techniques used in our paper (i.e., batch normalization, dropout, early stopping).
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