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Abstract

In this research, we aim to accurately estimate the components of a factor covariance matrix,

where the factors are defined as factor mimicking portfolios. We study the performance of

static shrinkage methods summarised in Ledoit & Wolf (2022a), dynamic multivariate GARCH

models, such as the Dynamic Conditional Correlation model of Engle (2002), and a combination

of the two. Their performance is assessed by adopting a portfolio management setting where the

covariance estimate is essential to form minimum variance and mean-variance efficient portfolios.

We test whether there are possibilities to improve the current covariance estimation method of

PGGM.

This paper extends the current literature in three significant ways; it is the first to combine

the new shrinkage method of Ledoit & Wolf (2022b) with dynamic models, to consider the

performance of the dynamic models in relation to factor covariances and to investigate covariance

matrices of this size. Existing literature discusses either a large set of assets or such a set modelled

under a parsimonious factor structure.

We find that the shrinkage model with constant correlation gives the best outcomes when

considering a relatively small number of factors, while the nonlinear shrinkage estimator of Ledoit

& Wolf (2022b) is the top performer in a higher dimension. The new models show improvement

possibilities compared to PGGM’s current estimator in both dimensions. The empirical findings

are supported by a simulation study.
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1 Introduction

Factor investing enhances diversification, generates above-market returns and manages risk.

Its way to do so is by targeting broad, persistent, and long-recognised drivers of returns, also

known as factor risk premia (Blitz & Vidojevic, 2019). The number of known factors nowadays

is high, ranging from factors based on the ticker sign of assets, to factors that follow the Twitter

engagement of companies. The factors are split into style and macroeconomic factors (Pagolu et

al., 2016). After decades of theoretical and empirical academic research, along with the practice

of many asset managers across different asset classes, the footprint of factor investing has grown

broader and deeper (Ma et al., 2022).

Factor portfolio research builds upon the foundations laid by Markowitz (1952), which in-

troduces the mean-variance portfolio theory and the CAPM model of Sharpe (1964). Fama

& French (1992) find empirical contradictions in the CAPM model and propose a new factor

model. This proposition resulted in one of the most well-known papers in finance, where Fama &

French suggest a three-factor model consisting of size, book-to-market and excess market return

factors to explain returns. As such, a profitable portfolio can be constructed based on return

drivers. In practice, factor portfolios that provide exposures to these return drivers/factors are

constructed by sorting stocks on certain characteristics and buying those that score high and

optionally short-selling those that score low.

The exposures to the different factors for each asset are crucial in constructing a profitable

factor portfolio. In order to accomplish this, information about the mean and covariance mat-

rix of the assets within the asset space is required. The covariance matrix serves two primary

purposes in quantitative investment management. Firstly, it predicts the covariance between

assets within a portfolio and, therefore, the risk of holding such a portfolio into the future. This

plays a central role in risk management. Secondly, we require the covariance matrix estimates

in mean-variance optimisation (MVO), one of the first well-known techniques in quantitative in-

vestment management by Markowitz (1952), which outlines a method for constructing portfolios

with maximum expected return per unit of risk.

The estimation of the covariance matrix brings quite some challenges. The most obvious

model to employ is the sample covariance which is relatively simple in construction, unbiased

and intuitively appealing. However, this method brings a dimensionality problem; a multi-

asset model can easily contain more than 2000 assets, requiring the estimation of more than 1

million independent elements. Consequently, the estimates are susceptible to noise and spurious

relations (Ledoit & Wolf, 2003). When the number of stocks is considerably large, especially

relative to the number of historical return observations, the sample covariance is estimated with

much error (Ledoit & Wolf, 2004a).

The problem with mean-variance optimisation is its vulnerability to these errors; the highest

weights are placed precisely where the covariance estimates are least reliable. This leads to out-

of-sample underperformance (Michaud, 1989). In practice, this means that a fund manager’s

realised track records will underrepresent its true stock-picking abilities. Also, the sample vari-

ance estimate is often singular, making it impossible to perform portfolio optimisation. There-

fore, financial literature starts to rely on more sophisticated statistical models and research into

this field has increased over the last few years to circumvent the aforementioned problems.
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In line with previous literature, this research assumes that the high-dimensional covariance

matrix of assets can be captured by the sum of a factor covariance matrix and an idiosyncratic

diagonal matrix (Santos & Moura, 2014). Consequently, the dimension of the covariance matrix

reduces from approximately 2000 assets to 40 factors. Nevertheless, the estimation of a factor

covariance still requires further investigation as estimating an independent factor covariance

matrix, the main interest in this research, is not discussed extensively in the existing literature.

This research aims to compare several methods of estimating the factor covariance matrix,

weigh their advantages and disadvantages, and give a recommendation of the optimal estimator

and its implementation. We do so by evaluating the accuracy of the covariance matrix by a loss

function and constructing global minimum variance (GMV) portfolios. In these portfolios, the

weights are mostly determined by the covariance matrix and the accuracy of its estimation. We

aim to find the model that gives the best portfolio performance in terms of metrics in line with

contemporary literature.

The concern with estimating large covariance matrices has been the subject of various re-

search. There are two main kinds of solutions proposed to tackle the high-dimensionality prob-

lem. Firstly, a dynamic approach by fitting multivariate GARCH models, as discussed in for

example Engle (2002). Secondly, static shrinkage methods summarised in Ledoit &Wolf (2022a).

We discuss both the dynamic and static methods and a combination of the two.

In this paper, we focus on Dynamic Conditional Correlation GARCH models, introduced by

Engle (2002) and one of its extensions, the Asymmetric Dynamic Conditional Correlation model,

that allows for series-specific news impact and symmetries in correlation dynamics (Cappiello et

al., 2006). Moreover, we study the Dynamic Equicorrelation model of Engle & Kelly (2012) that

assumes that all pairs of returns have the same correlation on a given day, but that the correlation

varies over time. The DECO model makes computations easier in higher dimensions compared

to the DCC and ADCC models. Lastly, the Generalised Orthogonal GARCH of Van der Weide

(2002) is applied that linearly transforms the observed data into a set of uncorrelated components

by an orthogonal matrix. Next to the dynamic models, we study linear and nonlinear shrinkage

methods combined with different targets, summarised in Ledoit & Wolf (2022a). We consider

the identity, one-factor and constant correlation matrix as targets. Additionally, this research

aims to apply the linear and nonlinear shrinkage methods in combination with different GARCH

models, as discussed in Engle et al. (2019).

We assess the performance of the models by conducting both a simulation study and a

backtest on an empirical dataset. We perform a direct evaluation using a loss function described

in Engle et al. (2019) and an indirect evaluation by assessing the performance of the global

minimum variance (GMV) and Sharpe ratio (SR) portfolios.

Overall, this research finds that the static estimators give better results compared to the

dynamic ones. When considering a smaller covariance dimension, linear shrinkage towards the

constant correlation matrix performs the best for both the simulation and empirical study, giving

the lowest loss function values and the lowest standard deviation for the GMV portfolios. For

a higher dimension, the nonlinear shrinkage method shows the most promising results, being

consistently the best for the different simulations and the empirical GMV portfolio. Note that

the SR portfolios show some interesting results, but are generally not insightful for determining
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the best estimator due to large estimation errors in the mean in practice.

This research is relevant because many econometric and data-science applications require a

reliable covariance matrix estimate. As already discussed before, it is of importance to portfo-

lio managers who require the covariance matrix as the input for finding optimal portfolios, for

example in Markowitz’s portfolio selection. By improving covariance matrix estimation, fund

managers can create a better risk-weighted portfolio and consequently deliver better returns to

their clients. In particular, this paper enhances the current estimation method of the factor mat-

rix of PGGM by considering different statistical models. Consequently, improving the portfolio

construction method and the performance of the resulting factor-based portfolios in practice.

Although financial professionals widely use covariance estimation in practice, there is little

published academic literature available on covariance estimation in a setting of factors and the

considered dimension size. Often papers consider a granular set of assets or only one factor, like

the CAPM. Additionally, literature discusses modelling the cross-sectional relations of factors,

while this paper uses it for portfolio optimisation. This research thus adds to the current

academic literature by filling a gap; being one of the first to discuss factor covariances in a

portfolio optimisation setting. Moreover, it is one of the first to find suitable models for a

covariance matrix of this scale. Lastly, this research is the first to consider the recently discussed

quadratic nonlinear shrinkage method of Ledoit & Wolf (2022b) combined with dynamic models.

The remainder of this paper is outlined as follows; Section 2 introduces the considered

literature, whereafter Section 3 explains the methodology. The data characteristics are described

in Section 4. Next, Sections 5 and 6 discuss the results. The paper ends with a conclusion and

discussion in Sections 7 and 8.

2 Literature

The main focus of this paper is to improve the covariance estimation method as described in

contemporary literature, as discussed below. This section first briefly introduces factor invest-

ing, the discussion about certain factors and the purpose of the covariance in this framework.

Afterwards, we dive deeper into the literature devoted to covariance estimation and research on

handling the aforementioned curse of dimensionality.

2.1 Factor discussion

This research assumes that the factors that drive asset returns are value, quality, size, mo-

mentum, low volatility and the market factor. Literature agrees on the existence of these

factors, but there is much debate about where the outperformance originates from (Fama &

French, 1992). Value and size are the two most well-known factors and are part of the Fama-

French three-factor model of Fama & French (1992). The value factor consists of buying stocks

that have relatively low prices compared to their fundamental metrics, also known as buying

relatively cheap stocks. Fama & French (1992) document this value premium, showing that

value stocks outperform growth stocks in the long run. Some papers attribute this outperform-

ance to risk. For example, Fama & French (1992) mention that value stocks are fundamentally

riskier; they have riskier (i.e. more volatile) earnings and profitability compared to growth firms.
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Therefore, the higher average returns are compensation for the higher risk.

Others support a behavioral explanation for the outperformance. Among them are Lakon-

ishok et al. (1994), who argue that value strategies yield higher returns because they exploit the

suboptimal behaviour of the typical investor. They note that both individual and institutional

investors have a preference for growth strategies and an avoidance of value strategies. Poten-

tially because most investors have shorter time horizons than required for value strategies to

pay off consistently and overestimate the growth potential of growth stocks. Individuals want

high abnormal returns within a few months rather than a slow, steady growth over the years.

The size effect refers to the tendency for small-cap stocks to outperform large-cap stocks over

the long term, as discussed by Banz (1981). Similar to value, the root of the outperformance of

small stocks has been a topic of debate. Many papers agree that it proves misspecification of

the capital asset pricing model rather than inefficient capital markets (Berk, 1995). The author

argues that the relative firm size measures risk. He states that the size factor predicts the

expected return because of the theoretical risk premium contained in the market characteristics

of assets. Namely, firms with lower market values are more likely to be riskier than firms with

high market values, indicating a negative correlation in the cross-section.

On the other hand, Stoll & Whaley (1983) refer to liquidity reasons, believing that small

caps tend to be less liquid and therefore more expensive to trade. Zhang (2006) attributes the

outperformance to information uncertainty and Chan & Chen (1991) to financial stress. Lastly,

behavioural arguments are given in Barberis et al. (1998) and Daniel et al. (1998), suggesting

that investors overvalue large stocks and undervalue small stocks due to cognitive biases.

Jegadeesh & Titman (1993) argue that strategies that buy stocks that have done well in

the past and sell stocks that have performed poorly generate positive returns. Carhart (1997)

proposes adding such a momentum factor to the three-factor model. Explanations given for the

source of the momentum premium are again risk- and behavioural-based. Risk-based explana-

tions are by Johnson (2002) and Sagi & Seasholes (2007), that argue that winners have gotten

riskier due to their past outperformance. Other research, such as Jegadeesh & Titman (2001),

suggests that momentum relates to investor herd behaviour, where investors follow trends and

buy or sell based on others.

Fama & French (2015) use a theoretical starting point of the dividend discount model and

deduce the profitability and investment factors from it. Both are referred to as quality factors.

They use theoretic reasoning to motivate the addition of the two factors and test this hypothesis

empirircally. This way of deducing the factors is different from their earlier research, Fama

& French (1992), where they use a more data-driven approach by applying data sorting and

portfolio construction. The quality factor argues that stocks with high profitability tend to have

higher returns than stocks with low profitability. Fama & French (2015) find that the five-factor

model better explains average returns associated with major anomalies that the three-factor

model does not target. Again, some attribute the outperformance to risk, while others believe

in a behavioural explanation. Moreover, a firm’s quality is difficult to determine, and there is no

consensus on the best way to measure it in literature. As such, the quality factor might be the

most controversial of the ones discussed in this literature section. In this research, the quality

factor consists of both profitability and investment metrics.
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2.2 Curse of sample covariance

A factor portfolio should seek to deliver as much exposure as possible to the targeted factors,

minimise the exposure to unwanted risk and ensure the portfolio is sufficiently liquid. To find

such a portfolio, it is important to understand how factors relate to one another (through their

covariances).

Arnott et al. (2019) mention that many investors mistakenly believe they can diversify away

most of the risks in factor investing by creating a portfolio of several factors. However, in periods

of market stress, factors begin to move in unison such that most diversification benefits possibly

disappear (Arnott et al., 2019). Therefore, understanding how covariances change over time and

how they are estimated accurately is essential.

The first option to estimate the covariance matrix is the sample covariance matrix. However,

Ledoit & Wolf (2004b) state that as the number of parameters to estimate grows, the estimation

of the sample covariance becomes inaccurate. The most extreme coefficients in the matrix then

tend to take on extreme values not because it is the population value, but because they contain an

extreme amount of error (Ledoit & Wolf, 2004a). Michaud (1989) calls this error maximisation

in a mean-variance context. A way to solve this is by shrinking the estimates towards a certain

target, summarised in Ledoit &Wolf (2022a). Moreover, the sample covariance becomes singular,

leading to a matrix that is not positive definite and non-invertible. This makes it impossible to

perform a mean-variance optimisation. Silvennoinen & Teräsvirta (2009) propose the GARCH

specifications where the model structure implies and ensures positive definiteness. Moreover, it

is important to consider multivariate GARCH (MGARCH) models as co-movements in financial

returns are inevitable in asset pricing and risk management (Silvennoinen & Teräsvirta, 2009;

Bauwens et al., 2006).

2.3 GARCH models

According to Bauwens et al. (2006), MGARCH modelling provides realistic but parsimonious

specifications of the covariance matrix, while ensuring its positive definiteness. When determin-

ing the specification for the MGARCH, there is a trade-off between flexibility and parsimony. It

should be flexible enough to be able to represent the dynamics of the conditional (co-)variances ,

but parsimonious enough to allow for relatively easy estimation and interpretation of the model

parameters (Silvennoinen & Teräsvirta, 2009).

Silvennoinen & Teräsvirta (2009) categorise the MGARCH models into classes. The first are

generalisations of the univariate GARCH model that express the conditional covariance matrix

directly, for example the BEKK model of Bollerslev et al. (1988). The second is motivated

by parsimony and contains linear combinations of univariate GARCH and factor models. The

third expresses the conditional variances and correlations in steps, instead of directly modelling

the conditional covariance matrix. This third class includes the Constant Conditional Correla-

tion (CCC) model, Dynamic Conditional Correlation (DCC) model and their extensions. Their

appeal lies in the intuitive interpretation of the correlations. Caporin & McAleer (2012) invest-

igate the differences between BEKK and DCC models in practical applications. They argue

that the DCC model is more flexible than the BEKK model because it defines the conditional

variances separately, enabling the choice for different univariate GARCH models. Silvennoinen
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& Teräsvirta (2009) add that BEKK models may have already matured and have little room for

improvement. Therefore, we focus in this research on the DCC model and its extensions.

The CCC and DCC models are based on the decomposition of the conditional covariance

matrix into conditional standard deviations and correlations (Silvennoinen & Teräsvirta, 2009).

The models are built hierarchically: one first chooses a univariate GARCH-type model for each

conditional variance, afterwards, one models the conditional correlation matrix and imposes

positive definiteness (Bauwens et al., 2006).

The simplest multivariate correlation model is the CCC of Bollerslev (1990). It assumes

that the conditional correlation matrix is time-invariant (Silvennoinen & Teräsvirta, 2009). The

estimation is computationally attractive as it reduces the number of unknown parameters. How-

ever, empirical studies have suggested that the assumption of constant conditional correlations

may be too restrictive and unrealistic (Silvennoinen & Teräsvirta, 2009; Bauwens et al., 2006).

Engle (2002) introduces the DCC model that assumes a time-dependent conditional correlation

matrix. The DCC model has the flexibility of univariate GARCH models but the parsimony

of the parametric models for the correlations. This is useful when modelling high-dimensional

datasets and ensures positive definiteness (Bauwens et al., 2006). A downside of the DCC mod-

els is that they are complex and require much computation time. The parameters are therefore

often made scalar. Later, a reformulation of the DCC is proposed by Aielli (2013), which alters

the specification of the correlation driving process. However, Engle et al. (2019), among others,

argue that the correction effects are irrelevant in empirical applications1.

In the spirit of the DCC model, Engle & Kelly (2012) propose the Dynamic Equicorrelation

(DECO) model with a similar setup. The DECO deviates from the DCC by assuming that all

pairs of returns have the same correlation on a given day, but the correlation varies over time.

This eliminates the difficulties of high-dimensional systems by having simple analytic inverses

resulting in a dramatically simplified and sped-up likelihood calculation. Engle & Kelly (2012)

argue that when the true model is DCC, DECO makes estimation feasible when the dimension

of the system would be too large for DCC to handle in terms of computation time.

Another extension is the Asymmetric Dynamic Conditional Correlation (AG-DCC) model,

which introduces asymmetry in the correlation dynamics and allows for series-specific news im-

pact (Cappiello et al., 2006). It enables the investigation of the presence of asymmetric responses

to negative returns by testing whether conditional variances, covariances and correlations of as-

sets are sensitive to the sign of past innovations. The asymmetry specification adds flexibility

but increases the number of parameters. Cappiello et al. (2006), therefore, suggest implementing

restricted versions of the AG-DCC by making the specification diagonal, scalar (ADCC model)

or symmetric. This research implements the ADCC model.

The last multivariate GARCH model this paper considers is the Generalized Orthogonal

GARCH (GOGARCH) model of Van der Weide (2002). This model is based on the BEKK

model of Engle & Kroner (1995) and Orthogonal GARCH (OGARCH) of Alexander (2002). The

GOGARCH assumes that observed data can be linearly transformed into a set of uncorrelated

components using an invertible matrix (Van der Weide, 2002). Caporin & McAleer (2014)

compare the GOGARCH, DCC models and naive estimation methods and find that the naive

1In this empirical application, we disregard this correction
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methods generally underperform compared to the dynamic models. Moreover, they stress that

direct and indirect evaluation methods give different results, such that there is no optimal model.

Estimation of the MGARCH models can become computationally burdensome for large data-

sets and statistically overestimates the largest eigenvalues while underestimating the smallest

ones (Pakel et al., 2021). Therefore, Pakel et al. (2021) propose an estimation method that is

computationally fast; the Maximum Composite Likelihood Estimation (MCLE) approach. The

method approximates the full-dimensional joint likelihood function using combinations of lower

dimensional marginal densities. It calculates the average of bivariate log-likelihood functions for

a large selection of asset pairs as the objective function. Pakel et al. (2021) examine their theory

for the BEKK and DCC models of Engle & Kroner (1995) and Engle (2002) by comparing the

MCLE to the regular Maximum Likelihood Estimation (MLE) of the full-dimensional model.

The paper finds that the MLE suffers from bias while the MCLE does not. The MCLE is espe-

cially desirable if the full dimensional likelihood is difficult to work with or not straightforward

to specify or compute (Pakel et al., 2021). We apply the MCLE in this research because it is

faster and performs similarly to the MLE in most cases (Pakel et al., 2021).

2.4 Linear shrinkage

Another solution to improve covariance matrix estimates is to apply shrinkage. It rectifies the

in-sample bias by pushing up the eigenvalues or covariance entries that are too small while

pulling down the ones that are too large (Engle et al., 2019). One of the drawbacks of this

approach is that the estimators depend on the choice of shrinkage target, which is arbitrary

(Coqueret & Milhau, 2014).

Ledoit & Wolf (2003) and Ledoit & Wolf (2004a) are the first to introduce shrinkage. The

first paper introduces the topic theoretically, while the second focuses on how to implement the

methods to add value to active portfolio management. They propose to shrink the unbiased but

unstable sample covariance matrix towards a target to obtain a more efficient estimator. A good

target should come as close as possible to the true covariance matrix with as few parameters as

possible (Ledoit & Wolf, 2022a).

The first target introduced is the identity matrix. Ledoit & Wolf (2022a) note that variables

in many applications do not have mean zero, so it is better to base the sample covariance matrix

on the demeaned data instead. Secondly, the biased but less variable single index covariance

matrix (consisting of one factor: the market index) is introduced as a target by Ledoit & Wolf

(2003). Shrinkage takes a weighted average between the target and the sample covariance. The

assigned weight controls how much structure is imposed: the larger the weight, the stronger the

structure. In the follow-up paper, Ledoit & Wolf (2004a) choose the constant correlation matrix

as a shrinkage target.

Ledoit & Wolf (2003) measure the performance by the out-of-sample standard deviation of

the global minimum variance portfolio and show that the shrinkage method outperforms other

estimators. Ledoit & Wolf (2004a) show that shrinkage reduces tracking error and increases the

realised Sharpe ratio of the active portfolio manager compared to the sample covariance matrix.

There are also other ways to implement shrinkage. Jagannathan & Ma (2003) mention

that constraining the weights to be non-negative can be interpreted as implying some form of

9



shrinkage imposed from the weights. Constraining portfolios can reduce the risk in estimated

optimal portfolios, even when the constraints are wrong (Jagannathan & Ma, 2003).

2.5 Nonlinear shrinkage

The aforementioned papers all investigate linear shrinkage. In recent years, Ledoit & Wolf (2012)

introduce nonlinear shrinkage. Linear shrinkage is simpler to understand, derive and implement.

Nevertheless, nonlinear shrinkage can deliver another level of performance improvement, espe-

cially if overlaid with stylised facts such as time-varying co-volatility or factor models (Ledoit

& Wolf, 2022a). Nonlinear shrinkage applies individual shrinkage intensities to every entry of

the sample covariance matrix. For example, entries with relatively more sampling error should

be moved more to the shrinkage target. The downside of this method is that it is mathemat-

ically more challenging because the number of different shrinkage intensities is growing rapidly

(Ledoit & Wolf, 2022a). To perform nonlinear shrinkage, one uses a spectral decomposition

of the sample covariance and shrinks different eigenvalues with different shrinkage intensities

while keeping the eigenvectors the same (Ledoit & Wolf, 2012). There are different variants of

nonlinear shrinkage. For example, Ledoit & Wolf (2012) discuss the oracle estimator, Ledoit &

Wolf (2020) give an analytical nonlinear shrinkage method based on kernels and Ledoit & Wolf

(2022b) introduce the quadratic inverse shrinkage method (QIS). This paper implements the

QIS method because it is the optimal method among all nonlinear shrinkage formulas in terms

of accuracy, speed and scalability (Ledoit & Wolf, 2022b). Note that the nonlinear shrinkage

especially yields significant improvement compared to its linear counterpart when the dimension

size is very large compared to the sample size or the population of eigenvalues is very dispersed.

In this research, the matrix dimension is smaller than the sample size. Consequently, we consider

this strategy but do not expect a large improvement compared to linear shrinkage.

Moreover, Engle et al. (2019) introduce the possibility of applying (non)linear shrinkage

combined with a dynamic model, such as the DCC model. They aim to robustify the DCC

model against large dimensions. The most important takeaway of the paper is that it gives

superior results to apply shrinkage to the unconditional correlation matrix estimated in the

second step of the DCC model rather than to the estimated conditional covariance matrix itself.

We follow this approach.

3 Methodology

In this section, we first outline the construction of the factors that span the dataset. Then we

discuss the considered estimation methods for the factor covariance matrix with the purpose

of reducing the estimation error in high dimensions. Afterwards, we outline several shrinkage

methods and their application with different targets. This section ends with the evaluation

methods and inference.

3.1 Factor Mimicking Portfolio construction

This subsection discusses the construction of the factor mimicking portfolio (FMP) returns which

mimick the factor returns. The latter are the returns of interest for the covariance estimation.
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Factors are constructed from regular assets. For this, we first consider the division of the

returns into factor returns by an exposure matrix Xt that includes the exposures of the factors

that are seen as the drivers of return. Note that the factor returns are unobserved and need to

be constructed via FMPs. The factors that are considered are Value, Quality, Low Volatility,

Size and Momentum, following PGGM. All factors are characterised by different variables that

quantify a certain factor and are outlined in Appendix A. In the remainder of this subsection, we

address them as variables. The following factor model is used to derive the factors, as described

in academic literature,

rt = Xtft + εt, (1)

where rt is a vector (N × 1) of asset returns, Xt the (N ×K) matrix of factor exposures, ft a

K × 1 vector of factor returns and εt the (N × 1) vector of asset-specific returns. This research

aims to estimate the covariance of ft, further denoted as Σt.

Firstly, we determine the matrix Xt that consists of the exposures of the factors towards

PGGM seeks active exposure. These are also called scores because they describe how well a

certain asset scores on a specific factor.

Each factor is measured by different variables, such that we assign a score to each asset for

the variables related to a certain factor. We first transform the variables defined in Appendix

A, to a uniform distribution. We do so by ranking the assets for a certain variable j, such that

each asset gets a score for variable j. This score shows how well a certain asset performs for

a certain variable j compared to the other assets. Afterwards, they are transformed using a

normal distribution as follows:

Zj = CDF−1
normal

(rank(j)
N + 1

)
, (2)

where Zj is the normal distributed score of variable j for each asset. This way, we obtain a score

centered around zero for each asset for each variable j. Afterwards, the normal distributed score

per variable and asset is split into three different exposure components that do not overlap:

industry, region and asset specific. This split is introduced because PGGM neutralises the

factors for industry and region exposures. The exposures per component to each variable are

obtained by the following regression

Zj = 1α+DIndδInd,j +DRegδReg,j + εj , (3)

with w′
BMDIndδInd,j = 0 & w′

BMDReg,jδReg,j = 0, (4)

where D indicates a dummy matrix indicating if an asset corresponds to a certain region or

industry. Moreover, εj captures the asset-specific information for a certain variable j and is

the main point of interest. The regression is solved by constrained OLS to obtain εj , δInd,j

and δReg,j . These parameters are also called scores and determine the input of the exposure

matrix Xt. The conditions are required to prevent the multicollinearity introduced by the two

dummy matrices D. The weights wBM are the known benchmark weights of the assets where

the benchmark is the FTSE Developed Index, which is used as a market proxy. We assume that

the benchmark weighted sum of all industry effects is zero. Thus, the assumption is that there

is no industry effect on average.

11



Next, we compute the exposure for each asset to each factor from the asset exposures to each

variable. We do this for all three components. This calculation consists of a linear combination

of the variable-specific exposures for the variables belonging to a factor, as in Appendix A. We

end up with a region-, industry- and asset-specific exposure to each factor. These are then

scaled by the square root of the number of variables per factor to ensure that the standard

deviation stays relatively constant as a function of the number of subfactors. An example of

such calculation is as follows for the value exposure of the asset component ε:

εvalue =
1√
4
(εBP + εEBITDAEV + εEPNTM + εFCFY ), (5)

where BP is the Book-to-Price variable, EBITDAEV is the EBITDA-to-EV ratio, EPNTM is

the Expected Profit-to-Price ratio and FCFY is the Free Cashflow-to-Price ratio. This way,

we obtain 15 factor exposures that are asset-, industry- and region-specific for each asset. Out

of these 15, we only use the factor exposures for the 10 style factors for each asset: the five

asset-specific (ε) and the five industry scores (δInd). These are placed in the columns of Xt. The

next procedure only involves these 10 exposures.

Finally, we create Factor-Mimicking portfolios (FMPs) with the property that such a portfo-

lio has exposure 1 to its corresponding factor and exposure 0 to the other factors. The vector of

FMP returns FMPt and the FMP weights WFMPt,i for each factor i are calculated via a WLS

regression as follows:

FMPt = (X ′
tW

−1
t Xt)

−1X ′
tW

−1
t rt, (6)

WFMPt,i =WtXt(X
′
tWtXt)

−1ιK , (7)

where Xt denotes the exposure matrix, rt gives the asset returns and Wt is a diagonal matrix

with square root market caps on the diagonals, giving a higher weight to large firms. As a result

of this construction, the time-series covariances in the FMP returns are low. Also, the FMP

return (FMPt) is equal to the return of the factor (ft) when the weights of the FMP (WFMPt)

are multiplied by the total asset return matrix, hence the name factor mimicking portfolio.

In conclusion, we end up with five region and industry-neutral (”Within”) and five industry

(”Across”) FMPs. These 10 FMPs do not have any overlap and are corrected for the sensitivity

of the market, such that they can be seen as independent factor sources of return.

The returns of these 10 FMPs are what the subset of the dataset in Section 4 consists of,

together with an FMP for two Axioma factors and a constant that reflects the market FMP

without any factor influence. This gives the total subset of 13 FMPs. Moreover, the full dataset

of 42 FMP return series consists of the 13 FMPs together with 24 industry and 5 region FMPs

based on the dummies that indicate if a certain asset belongs to a certain industry or region.

To reiterate the goal of this research; the aim is to estimate the covariances between the factor

returns ft in the considered 13 and 42 FMP dimensions. Due to the construction of the FMPs,

this corresponds to estimating the covariance of the FMP returns.
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3.2 Covariance estimation methods

The first dynamic model that we implement is the Dynamic Conditional Correlation (DCC)

model of Engle (2002). The main idea is first to estimate the individual covariance and GARCH

model parameters for all the underlying assets and then use these estimates conditionally to

estimate the parameters of the dynamic model. This research follows the notation of Engle

(2002) where i ranges from 1 to K, indicating the dimension of the covariance matrix and

t ranges from 1 to T where T equals the sample size. The model assumes that the twelfth

moment is finite (Engle, 2002). The goal is to find an accurate estimate of Σt, defined as Σ̂t.

The DCC model does this as follows:

Σ̂t = DtR
DCC
t Dt, (8)

where Dt is the K × K diagonal matrix of time-varying conditional standard deviations from

a univariate GARCH model with
√
hi,t the ith diagonal element and RDCC

t the time-varying

conditional correlation matrix of the returns ft. In the first stage, the univariate GARCH model

is fit for each factor to obtain the estimates hi,t. Appendix A gives the GARCH formulation.

Afterwards, we use the standardised returns εi,t = fi,t/
√
hi,t to estimate the correlation para-

meters of Rt in line with Engle (2002). By construction, Rt is the conditional covariance matrix

of the vector of standardised returns εt. The conditional correlation model and the K × K

symmetric positive definite matrix Qt is modelled by

RDCC
t = Q

∗−1/2
t QtQ

∗−1/2
t , (9)

Qt = (1− α− β)S + α(εt−1ε
′
t−1) + βQt−1, (10)

where Qt = [qij,t], Q
∗
t = diag(q11,t . . . qKK,t) and S = [sij ] is the unconditional correlation matrix

of the returns, calculated as S = E[εtε
′
t], such that its sample analogue is S̄ = 1

T

∑T
t=1 ε

′
tεt, and

(α, β) are scalars. We require that Qt is positive definite such that RDCC
t is a correlation

matrix with ones on the diagonal and every other element smaller than 1 in absolute value

(Engle, 2002). To ensure that Qt is positive definite, Engle (2002) assumes α ≥ 0, β ≥ 0,

α + β < 1 and S is positive definite. I apply the Maximum Composite Likelihood Estimation

(MCLE) method to estimate the DCC parameters, which is described by Pakel et al. (2021)

and discussed in Appendix A. The MCLE approximates the full-dimensional joint likelihood

function using combinations of lower dimensional marginal densities (Pakel et al., 2021). We

estimate the parameters in Equation 10 via a rolling window approach and re-estimate them for

each period in time.

Furthermore, the Dynamic Equicorrelation (DECO) model of Engle & Kelly (2012) is stud-

ied. It attains simple analytic inverses and determinants such that likelihood estimation is

simplified and optimisation becomes easier (Engle & Kelly, 2012). Moreover, the DECO model

correlations of factors i and j depend on the return histories of all pairs of factors, while for

the DCC model it only depends on the return histories of the two factors concerning the cor-

relation. As a result, the DECO model draws from a broader information set that enables the

model to capture a pooling aspect (Engle & Kelly, 2012). The method attains the following

dynamics where equicorrelation matrix RDECO
t consists of K × 1 vectors of random variables
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and is positive definite if:

RDECO
t = (1− ρt)IK + ρtJK , where ρt =

1

K(K − 1)
(ι′RDCC

t ι−K), (11)

where ρt is the equicorrelation, IK denotes the K-dimensional identity matrix, JK is a K ×K

matrix of ones and RDCC
t gives the correlations of the returns under the DCC model, as in

Equation (9). Moreover, the inverse, R−1
t , only exists if ρt ̸= 1 and ρt ̸= −1

K−1 . The covariance

is estimated similarly to Equation (8),

Σ̂t = DtR
DECO
t Dt, (12)

where Dt is the diagonal matrix of conditional volatilities hi,t, R
DECO
t gives the estimate of the

equicorrelation matrix and Σ̂t gives the conditional covariance estimate. The model is estimated

by MCLE, similar to the DCC model.

Moreover, we implement the scalar Asymmetric Dynamic Conditional Correlation (ADCC)

model of Cappiello et al. (2006). The model adapts the DCC model to allow for conditional

asymmetries in correlations and accounts for series-specific news impact and smoothing para-

meters (Cappiello et al., 2006). We alter Equation (10) following Cappiello et al. (2006), where

we plug in the estimates for S and N , S̄ and N̄ respectively:

Qt = (S − α2S − β2S − g2N) + α2εt−1ε
′
t−1 + g2nt−1n

′
t−1 + β2Qt−1, (13)

where α, β and g are scalars, nt = I[εt < 0] ◦ εt with I[·] the K × 1 indicator function equalling

one if the argument is true and zero otherwise. The Hadamard product is denoted by ◦ and

N = E[ntn
′
t], such that N̄ = 1

T

∑T
t=1 n

′
tnt. The remaining parameters have the same definition

as in the DCC model. The sufficient condition to ensure Qt is positive definite is given by

α2 + β2 + δg2 < 1 where δ =maximum eigenvalue [S−1/2NS−1/2]5. This condition can be

evaluated on the sample data and is implemented during the estimation of the conditional

correlation (Cappiello et al., 2006). This model follows the same approach as the DCC model

for estimating the parameters. Afterwards, the same procedure as for the DCC model is followed

to obtain the covariance estimate. We apply the scalar version of all dynamic models to prevent

a huge number of parameters and computation time.

Lastly, this research considers the Generalized Orthogonal GARCH model (GOGARCH)

model of Van der Weide (2002), a generalisation of the OGARCH model and nested in the

more general BEKK model of Bollerslev et al. (1988). The GOGARCH implicitly assumes

that the observed data can be linearly transformed in a set of uncorrelated components by an

invertible matrix (Van der Weide, 2002). The most important assumption of the GOGARCH is

that the observed returns ft can be expressed as a linear combination of uncorrelated economic

components yt such that

ft = Zyt, (14)

where Z is a K × K non-singular matrix that links the unobserved components yt with the

observed returns ft, is constant over time and invertible. This formulation is familiar to a factor

model setup. Note that we already consider factor returns, such that we impose a factor struc-

ture on a dataset with an already existing factor dynamic. For the GOGARCH(1,1) process
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that we apply in this research, the economic components follow the distribution yt ∼ N(0, Ht).

The definition of Ht is defined in Equation (17). In order to achieve identification and find the

linkage Z, we require the matrices P and Λ that give the orthonormal eigenvectors and the

eigenvalues of the unconditional covariance matrix ZZ ′. The orthogonal matrix P is only guar-

anteed to coincide with Z when the diagonal elements of Ht are all distinct. Thus, identification

problems arise when some of the uncorrelated components have similar unconditional variance

(Van der Weide, 2002). The linkage Z is well identified when conditional information is taken

into account. If Z links the uncorrelated components yt with the factor returns ft, then there

exists an orthogonal matrix U such that:

Z = PΛ1/2U, (15)

where P is the orthogonal matrix of eigenvectors and Λ is the matrix of eigenvalues of Σ = ZZ ′

(Van der Weide, 2002). The factor components are then specified as

yt = H
1/2
t ut, (16)

where ut is a random vector process with the characteristics E[ut] = 0 and E[u2t ] = 1. Then Ht

is defined as

Ht = diag(h1,t, . . . , hK,t), (17)

where h1,t, . . . hK,t are described by a GARCH(1,1) process, as given in Appendix A, and H0 =

IK equals the unconditional covariance matrix of the components. This implies that yt is a

covariance-stationary process with mean zero and unconditional variance IK . The conditional

covariance matrix of the factor returns ft is given by

Σ̂t = ZHtZ
′. (18)

The model applies the Maximum Likelihood Estimation (MLE) method with a two-step ap-

proach, described in Appendix A, following Van der Weide (2002).

3.3 Shrinkage methods

The goal of shrinkage is to shift an unbiased covariance estimator with much variance, towards

an estimator with a nonzero bias, but little variance, known as the shrinkage target (Coqueret

& Milhau, 2014). In this research, we combine linear and nonlinear shrinkage with simple

targets and the dynamic modelling specification. We first introduce the linear shrinkage method

for which we follow a similar approach to Ledoit & Wolf (2003) and Ledoit & Wolf (2004a)

among others, where they shrink the sample covariance matrix or exponentially weighted moving

average covariance matrix Σ̄t towards a target. The true unobserved covariance is denoted by

Σt and assumed to be positive definite. We aim to find the shrunk estimate Σ̃t. The general

form for linear shrinkage is given by

Σ̃t = ψtFt + (1− ψt)Σ̄t, (19)

where Ft is the shrinkage target and ψt ∈ [0, 1] gives the shrinkage intensity. As shrinkage targets

we consider the identity matrix, one-factor market model and the constant correlation matrix.
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The one-factor model is defined as the cross-sectional average of all the random variables. In the

constant correlation matrix, the variances are kept the same, while the off-diagonal covariances

are adjusted by ϱ̄
√
σiiσjj , where ϱ̄ gives the average correlation. The shrinkage intensity is

calculated by minimising the Frobenius loss function between the true covariance matrix and

the shrinkage estimator Σ̃t (Ledoit & Wolf, 2003). The shrinkage intensity is calculated by

ψ∗
t = 1

T
π−ρ
γ + O( 1

T 2 ), where π is the sum of asymptotic variances of the entries of the sample

covariance sij scaled by
√
T : π =

∑K
i=1

∑K
j=1AsyCov[

√
Tsij ] for each time period (Ledoit

& Wolf, 2003). Furthermore, ρ denotes the sum of asymptotic covariances of entries of the

sample covariance matrix sij with entries of the single-index covariance matrix fij scaled by√
T : ρ =

∑K
i=1

∑K
j=1AsyCov[

√
Tfij ,

√
Tsij ]] (Ledoit & Wolf, 2003). Finally, let γ measure

the misspecification of the single-index model: γ =
∑K

i=1

∑K
j=1(ϕij − σij)

2 where ϕij indicates

elements of the target covariance matrix and σij of the true covariance matrix (Ledoit & Wolf,

2003).

Moreover, it is possible to apply nonlinear shrinkage and implement shrinkage together with

the DCC models. For both, we require the spectral decomposition of the covariance matrix,

given by Σt = UtΛtUt, in more detail:

Σt =
K∑
i=1

λt,i · ut,iu′t,i, (20)

where Λt = diag(λt,1 . . . λt,K) is a diagonal matrix whose diagonal entries are the sample eigenval-

ues sorted in descending order and Un = (ut,1, . . . , ut,K) is an orthogonal matrix of eigenvectors

(Ledoit & Wolf, 2022a).

The nonlinear shrinkage method we consider, the quadratic inverse shrinkage method (QIS),

is introduced in Ledoit & Wolf (2022b). This research follows their notation.

First of all, this method takes a couple of assumptions that are outlined in Ledoit &

Wolf (2022b). The specifications of these assumptions are given in Appendix A. Moreover,

Ledoit & Wolf assume that the covariance matrix estimator is part of the rotation class,

meaning that it adheres to Σ̂t = Ut∆̃tU
′
t , where ∆̃t is a diagonal matrix whose elements,

∆̃t = Diag
(
δ̃t(λt,1), . . . δ̃t(λt,K)

)
, are a function of the eigenvalues λt. Moreover, ∆̃t is a real

univariate shrinkage function that can depend on Σt. For any covariance matrix estimator Σ̂t

in the rotation-equivariant class, the Frobenius loss LFR
t (Σt, Σ̂t) converges in probability to a

nonrandom limit as t goes to infinity. This limit is minimised if δ̃t(λt,i) = δ̂t,i with δ̂t,i satisfying:

δ̂−1
t,i = (1− K

t
)2λ−1

t,i + 2
K

t
(1− K

t
)λ−1

t,i θ̂t(λ
−1
t,i ) + (

K

t
)2λ−1

t,i A
2
θ̂t
(λ−1

t,i ) where (21)

θ̂t(x) =
1

k

K∑
j=1

λ−1
t,j

λ−1
t,j − x

(λ−1
t,j − x)2 + h2tλ

−2
t,j

and (22)

A2
θ̂t
(x) =

[
1

K

K∑
j=1

λ−1
t,j

λ−1
t,j − x

(λ−1
t,j − x)2 + h2tλ

−2
t,j

]2
+

[
1

K

K∑
j=1

λ−1
t,j

htλ
−1
t,j

(λ−1
t,j − x)2 + h2tλ

−2
t,j

]
, (23)

where Equation (21) is the quadratic shrinkage of the inverse sample covariance matrix eigenval-

ues, λt,i indicates the eigenvalue of the ith factor at time t and ht gives the smoothing parameter,

also known as the bandwidth formula and is calculated as ht = min(K
2

t2
, t2

K2 )
0.35×K−0.35 (Ledoit
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& Wolf, 2022b). Equations (22) and (23) are used to calculate the two shrinkage targets, θ̂t(λ
−1
t,i )

and A2
θ̂t
(λ−1

t,i ), respectively. These are plugged into Equation (21).

Afterwards, we calculate the shrunk covariance matrix by Σ̃t = Ut∆̂tUt where for ∆̂t we use

the following definition: ∆̂t = diag
(
δ̂t(λt,1)). We plug in the quadratic shrinkage estimator δ̂t,i

from Equation (21) to finally get a value for the shrunk covariance Σ̃t.

Lastly, it is possible to combine shrinkage methods with the DCC models, as discussed in

Engle et al. (2019). The shrinkage is then applied to the correlation matrix of the returns S,

used in Equation (10). First of all, we require the sample covariance matrix of the devolatilised

returns, earlier specified as Ŝ = 1
T

∑T
t=1 ε

′
tεt. Then, S is decomposed into eigenvalues and

eigenvectors, following Equation (20). For linear shrinkage, We follow Ledoit & Wolf (2004a)

where the cross-sectional average of the sample eigenvalues is determined as λ̄ = 1
K

∑K
i=1 λi.

Then the linear shrinkage estimator is expressed as:

S̃ =
K∑
i=1

[ψλ̄+ (1− ψ)λi] · uiu′i, (24)

where ψ gives the optimal shrinkage intensity, indicating how fast the sample eigenvalues are

pulled towards their cross-sectional average. Afterwards we plug the shrunk S̃ into Equation

(10) and continue the estimation via one of the dynamic models for every t.

We follow a similar approach for nonlinear shrinkage combined with the DCC models. Again

the shrinkage is applied to the unconditional correlation matrix of the returns, S. Note that the

eigenvectors do not change when applying shrinkage.

We can summarise the estimation of the DCC models combined with (non)linear shrinkage

by following the three steps discussed in Ledoit & Wolf (2022a):

1. Fit a univariate GARCH(1,1) model and use the fitted models to devolatise the return

series ft to obtain the estimated series of {εt}.

2. Estimate the unconditional correlation matrix S by applying (non)linear shrinkage to the

series {εt} and use the resulting S̃ for correlation targeting via Equation (10).

3. Maximise the MCLE, as discussed in Appendix A, to estimate the two DCC parameters

(α, β).

4. Use the obtained DCC parameters combined with the shrunk S̃ to calculate the covariance

estimate Σ̂t via Equations (8) and (9).

3.4 Evaluation

To compare the outcomes of various models, we add benchmark models for the factor covariance

matrix to the analysis. The first benchmark is the sample covariance matrix. Secondly, we

consider the current estimation method by PGGM, that is the exponentially weighted moving

average (EWM) model of Axioma combined with linear shrinkage towards the identity matrix.

As such, we take the EWM and the shrunk EWM models as the other two benchmarks. The

EWM benchmark is discussed in more detail in Appendix A.

Assessing whether the results based on real financial data are accurate out-of-sample is dif-

ficult because volatility is an unobservable variable, even ex-post. As such, a direct evaluation
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involves finding a proxy related to the latent variable. The indirect approach tries to overcome

the nature of this variable by comparing forecasts of the minimum variance portfolio. As volat-

ility proxies are often inaccurate, we focus on the indirect evaluation approach for the empirical

backtest. For the simulations, we can directly evaluate the results via a mean-variance loss

function, discussed in Engle et al. (2019) and described in Equation (A.7).

In order to perform an indirect performance analysis, we consider the global minimum vari-

ance (GMV) portfolio of Markowitz (1952). This portfolio only requires the input of the cov-

ariance matrix and is therefore a ”clean” problem and a good indicator for the accuracy of the

covariance matrix (Michaud, 1989). This portfolio is popular due to its simplicity and independ-

ence of the expected return Michaud (1989). Additionally, empirical research has shown that

stocks with low variances tend to obtain higher (risk-adjusted) returns than more volatile equit-

ies (DeMiguel et al., 2009). Therefore, the GMV portfolio is useful for investors that want to

lower their risks and those that aim for high returns. We use the out-of-sample covariance fore-

casts as input. For the simulation, we add the ”real” covariance matrix from which we simulate.

Without short-selling constraints, the minimum variance problem is defined as follows:

min
Wt

W ′
tΣtWt (25)

s.t. W ′
t ι = 1,

where for Σt the covariance estimate Σ̂t is plugged in and the portfolio weights are the K × 1

vector of weights in the underlying factors. The analytical solution of this is given by:

Wt =
Σ−1

t ι

ι′Σ−1
t ι

. (26)

For both the simulation and empirical study, we consider a weekly re-balancing approach, where

new GMV portfolios are constructed every week. If short-selling is not allowed, we add the

constraint Wt ∈ (0, 1), ∀t.
Next to that, we consider an optimal Sharpe ratio (SR) portfolio to determine whether taking

into account the expected returns in the optimisation influences the relative performance of the

models.

3.5 Inference

We evaluate the characteristics of the portfolios by the mean, standard deviation (SD), inform-

ation ratio (IR), Sharpe ratio (SR) and turnover. The turnover is especially important when

determining the feasibility of holding a portfolio and its formula is given in Equation (A.9). We

include the 1/N portfolio because it often gives robust and difficult-to-beat results in practice

(DeMiguel et al., 2009).

Moreover, Ledoit & Wolf (2011) show that it is possible to test for the significance of the

difference in variance of two portfolios. One of the methods the paper suggests is constructing

a HAC inference based on the Quadratic Spectral (QS) kernel. Assume that there are two

investment strategies j and n whose returns at time t are rtj and rtn, respectively (Ledoit &

Wolf, 2011). Then it is assumed that the T return pairs (r1j , r1n)
′, . . . , (rTj , rTn)

′ are from
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strictly stationary time series, meaning that bivariate return distributions do not change over

time. The distribution has mean µ and covariance matrix Σ, given by µ =
( µj
µn

)
and covariance

Σ =
( σ2

j σjn

σjn σ2
n

)
. The hypothesis uses the ratio of the two variances, given by Θ =

σ2
j

σ2
n

with

estimator Θ̂ =
σ̂2
j

σ̂2
n
. The hypothesis follows Ledoit & Wolf (2008), where the log-transformation

results in better finite-sample properties,

∆ = log(Θ) = log(σ2j )− log(σ2n) (27)

H0 : ∆ = 0 vs. H1 : ∆ ̸= 0. (28)

Furthermore, in order to construct a confidence interval and calculate the p-values, we require

the standard errors for ∆̂,

s(∆̂) =

√
∇′f(v̂)Ψ̂∇f(v̂

T
, (29)

where ∆ = f(v) with v = (µj , µn, γj , γn)
′, γi = E(r21i) and f(a, b, c, d) = a√

c−a2
− b√

d−b2
(Le-

doit & Wolf, 2008). The sample counterparts are denoted by ·̂. We assume
√
T (v̂ − v) →

N(0;∇′f(v)Ψ∇f(v)) where Ψ is an unknown symmetric positive semi-definite matrix (Ledoit &

Wolf, 2008). This relation holds under mild regularity conditions: finite 4+ δ moments where δ

is a small positive constant, together with appropriate mixing conditions (Ledoit & Wolf, 2008).

It is possible to consistently estimate Ψ by heteroskedasticity and autocorrelation consistent

(HAC) kernel methods. Appendix A gives the details of the HAC inference.

After we estimate and obtain Ψ̂ , it is possible to construct the standard errors s(∆̂) by

Equation (29). A two-sided p-value for the null hypothesis H0 : ∆ = 0 is given by

p̂ = 2Φ

(
− |∆̂|
s(∆̂)

)
. (30)

where Φ(·) denotes the c.d.f. of the standard normal distribution. One of the drawbacks is that

the HAC inference is often liberal when sample sizes are small to moderate (Ledoit & Wolf,

2011). Meaning that hypothesis tests tend to reject a true null hypothesis too often compared

to the nominal significance level. Similarly to Ledoit & Péché (2011), we use a Parzen kernel

instead of the Quadratic Spectral kernel because of computation time. A similar approach can be

conducted to verify whether the difference between the Sharpe ratios of portfolios is significantly

different from zero which is discussed in Ledoit & Wolf (2008). The hypothesis then becomes

∆ = SRj − SRn = µi

σj
− µn

σn
, whereafter a similar procedure is conducted.

As a robustness check, we investigate the impact of different estimation windows for the sim-

ulations. Also, the consequences of implementing a short-selling constraint on the performance

of the different models are examined for the GMV portfolios. This constraint is applicable for

PGGM and therefore relevant to incorporate into this paper. Lastly, we conduct a high- versus

low-volatility period analysis to assess the performance of GMV portfolios for the considered

estimators in different economic circumstances. Their outcomes are given in Appendix E.
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4 Data

In this research, we consider a universe consisting of the 2171 constituents of the FTSE Developed

Index. This index contains stocks from developed markets worldwide and covers most of the

investable market capitalisation containing large and mid-sized companies. However, due to

regulations within PGGM, stocks related to controversial weapons and tobacco are excluded or

if certain criteria are not met concerning human rights, social circumstances and environment.

Additionally, we remove stocks if they do not meet the liquidity requirements or if the company

is involved in a merger or being acquired by another firm. Lastly, if the stock is available on

different listings, the one that provides the most liquidity is used. Note that the number of

assets that adhere to these rules and stay within the investment universe can change over time.

We use weekly data for the period of 4 February 1997 until 27 April 2021, consisting of 1265

datapoints. The sample period contains several events causing spikes of high volatility, namely

the burst of the internet bubble (2000-2002), 9/11 (2001), the financial crisis of 2007-2008 and

the COVID-19 crisis. As such, the various models are tested during both low- and high-volatility

periods. We consider weekly data due to the results of Merton (1980), that argues that weekly

estimation is more accurate than monthly.

As we are interested in estimating the factor covariance matrix, we directly use factor-specific

return data. This implies that the total returns of the assets are formed into returns per factor.

The dataset consists of 42 factor mimicking portfolio (FMP) returns, where the factors are

orthogonalised and neutral cross-sectionally towards the other factors.

We describe the characteristics of the 13 most important FMPs in this section and give

the characteristics of the whole dataset of 42 FMPs, including country and industry FMPs, in

Appendix B. The 13 considered FMPs are Market, Within Axioma Liquidity, Within Axioma

Market Sensitivity, Within Value, Within Momentum, Within Size, Within Quality, Within

LowVol, Across Value, Across Momentum, Across Size, Across Quality and Across LowVol.

The Market FMP characterises the market without the influence of any factor. The next two

FMPs are given by Axioma, while the others are constructed based on the characteristics in

Appendix A.

The ”Within” factors are asset-specific, such that their exposure to different industries and

regions is neutral. The ”Across” factors capture the part of the factor return that is industry-

specific. Observe that especially the Market and the Within Market Sensitivity attain large

positive and negative weekly return values, indicating that the variances of these FMPs are likely

to be the highest. Note that the Within and Across FMPs rebalance every week, depending on

the scores of the variables per factor for each asset. Therefore, the risk of an FMP depends on

the asset decomposition within the FMP, which changes every week. This weekly change results

in differing FMP characteristics and causes the volatility of the FMPs to be more dynamic

over time. These 10 FMPs are thus not comparable to a regular asset which attains the same

characteristics each period. The industry and country FMPs are constructed by dummies that

indicate whether a certain asset belongs to a specific industry or country. The weights of the

assets within these FMPs do not change. As such these behave more like regular assets.

Figure 1a shows the weekly returns of the 13 factors in percentages and Figure 1b depicts

the cumulative returns. The first shows the spikes and clustering in the returns, indicating that
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they are dependent over time and that their dependence can change during certain stages in

the economy. This implies that the volatilities are time-varying, making it important to apply

a covariance model that considers past information, such as a DCC model. High volatility is

visible during the financial crisis and internet bubble burst periods as returns alternate strongly

between high and low values. The latter figure shows that especially the Market FMP has had

high positive returns over the last few years. Moreover, observe that the Across Momentum FMP

performs badly during the financial crisis while performing well in times of a stable economy.

This shows that the Across Momentum FMP follows the sentiment of the market.

(a) Weekly FMP returns in percentages. (b) Geometric cumulative FMP returns.

Figure 1: Weekly FMP returns over time period of 4 February 1997 up until 27 April 2021 for 13 FMPs.

The characteristics of the 13 FMP returns are shown in Table 1. First of all, the mean

returns are all relatively close to zero. We observe some small differences between the factors.

For example, the Across Value FMP attains a small negative average weekly return, while the

Across Momentum has a small positive average weekly return. Overall, the differences between

the average weekly FMP returns are not significant and close to zero. However, the standard

deviations differ quite a lot for the various FMPs. Note that the most volatile FMPs are the

Across FMPs, particularly Across Momentum, Across LowVol and Across Size. The kurtosis

is larger than three for all FMPs, especially for the Within Axioma market Sensitivity, with a

kurtosis value of 14.204. This shows that the FMPs are not normally distributed but follow a

heavy-tailed distribution, signalling the need for the DCC models. Furthermore, the skewness

is negative for most factors, indicating that declines more often occur than increases. Table B2

shows the statistics of the correlations of the FMP returns. The mean and median are relatively

low, as high minimum and maximum values appear to cancel each other out. Do note that

the mean and median are slightly negative, indicating that the FMPs are more often negatively

correlated. Additionally, the high min and max values imply that correlations between FMPs

can not be ignored and shows the need for multivariate models.
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Table 1: Descriptive statistics of the FMP return for period 4 February 1997 until 27 April 2021.

Mean SD SR Kurtosis Skewness

Market 0.183 2.365 0.077 5.914 -0.371

Within Value 0.021 0.272 0.077 5.849 0.418

Within Quality 0.020 0.180 0.112 7.504 0.312

Within Momentum 0.021 0.360 0.058 8.389 -1.108

Within Size 0.020 0.326 0.063 3.366 -0.268

Within LowVol 0.016 0.520 0.031 5.253 -0.082

Within Axioma Market Sensitivity 0.015 0.649 0.024 14.161 -0.038

Within Axioma Liquidity 0.019 0.276 0.070 5.273 -0.020

Across Value -0.009 0.868 -0.010 6.884 0.071

Across LowVol 0.010 1.697 0.006 6.460 0.283

Across Quality 0.053 0.675 0.078 6.765 -0.220

Across Momentum 0.065 1.280 0.051 6.918 -0.338

Across Size 0.007 1.294 0.005 5.689 -0.144

Note. This table gives the statistical characteristics of the 13 most important FMPs in the dataset in percentages (Mean and SD).

5 Simulation

We follow a simulation approach to evaluate and test the covariance models in a controlled

setting. The main goal is to examine the statistical behaviour of the estimators, assess the

performance of various methods and test robustness by the impact of different covariance dis-

tributions on the accuracy of the methods. We first discuss the simulation setup in more detail.

The results of the simulations are given in the following two subsections where S indicates the

linear shrinkage towards the identity matrix, the CC model shrinks the estimate towards the

constant correlation matrix and the 1F linearly shrinks the covariance estimate towards the

one-factor model. Lastly, NL depicts the QIS method of Ledoit & Wolf (2022b). For shrinkage

without the DCC models, we use the EWM as the covariance estimate, in line with PGGM. The

parameters of the DCC models in the estimation of the simulated data are stated in Appendix

C.

5.1 Simulation setup

In this simulation setup, we use Monte-Carlo simulations and generate paths for factor returns

with a covariance defined beforehand such that the characteristics of the returns are known

ex-ante. As simulation models, we consider the EWM and DCC models combined with a

normal or t-distribution to obtain, what we assume to be, the real covariance of the simulation.

Afterwards, we apply the estimation models discussed in Section 3: the sample covariance,

EWM, DCC, DECO, ADCC, GOGARCH, and the linearly and nonlinearly shrunk versions,

to fit the simulated factor returns. This verifies whether models perform well under a ”false”

distribution for the covariance matrix. The simulation is based on the factor return data of

PGGM discussed in Section 4. We follow the approach of Fan et al. (2013) that split the

procedure into a calibration and simulation part.
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Calibration part

1. We consider the first 550 weekly observations {ft}550t=1 of the K factors. This spans the

period 4 February 1997 until 14 August 2007.

2. The calibrations are slightly different for the EWM and DCC models. For the EWM

simulation model:

(a) Estimate the mean µF of the factor returns over time. This results in a K×1 vector.

(b) Estimate the covariance of the weekly factor return data Σ0,F . This K×K covariance

matrix is the starting point of the iterative procedure we conduct for the EWM

covariances.

3. For the DCC simulations, we follow the structure outlined in Equations (8), (9) and (10).

We require estimating some parameters first:

(a) Estimate the covariance of the weekly return data. This K × K covariance matrix

Σ0,F is the starting point of the iterative procedure of the covariance matrix Σt,F .

(b) Fit the DCC model for the 550 observations to obtain an estimate for the DCC

parameters (α, β).

(c) We estimate the mean µε, covariance Σ0,ε and unconditional correlation matrix S =
1
T

∑T
t−1 ε

′
tεt of the standardised returns εt over the 550 observations.

Simulation part

For each factor k = 1, . . .K, we generate T sim returns per factor by applying the iterative nature

of both models. We rerun the simulation 100 times to provide reliable simulation results.

1. If simulating from an EWM model, we assume that the covariance follows Σt,F = λΣt−1+

(1− λ)ft−1f
′
t−1:

(a) Generate the first return series f0 by the normal distribution NK(µF , Σ0,F ) or stu-

dent’s t-distribution tK(µF , Σ0,F , 5).

(b) Initialise the iterative procedure by Σ0 and f0 to obtain the covariance Σt for t = 1.

We set λ to obtain a half-life of 52 weeks for the covariances.

(c) Simulate the factor returns ft independently from NK(µ,Σt,F ) or tK(µ,Σt,F , 5) for

t = 1.

(d) Repeat the iterative procedure for t = 1, ..., T sim.

2. If simulating from a DCC model, we utilise its iterative nature, described in Section 3.2:

(a) Generate the standardised returns εt by the normal distribution as NK(µε, Σ0,ε).

(b) Take the calibrated values of S, α and β together with the standardised returns to

initialise Equation (10) and obtain Qt for t = 1. Then calculate Σt,F via Equations

(8) and (9). For Q0 we use the covariance matrix Σ0,F as initialisation.

(c) Repeat steps a) and b) to obtain covariance estimates Σt,F for t = 1, . . . , T sim.

23



(d) Simulate the factor returns ft independently from NK(µ,Σt,F ) or tK(µ,Σt,F , 5) for

t = 1, . . . , T sim.

Afterwards, we estimate the simulated data with the considered estimation models. To evaluate

small and large sample properties and check for robustness, we evaluate the performance for

different rolling window sizes, namely 150, 300 and 2000 datapoints. We aim to obtain 250

covariance estimates for each rolling window, so when taking into account the different estimation

windows, we simulate T sim = {300, 550, 2250} weekly returns. In the remaining sections, we

consider a rolling window of 150 weeks. Appendix E discusses the other two windows.

5.2 Direct evaluation

We conduct a direct evaluation by calculating the mean-variance loss function of Engle et al.

(2019), described in Equation (A.7). The results for the normal simulation with EMW covariance

for K = 13 and K = 42 are shown in Figures 2a and 2b for a loss averaged over 100 iterations.

Both figures show that the DECO estimators perform the worst, while the shrinkage methods

for the EWM model perform the best, with all average losses relatively close together. Moreover,

it is striking that the DCC model also performs well, while the related DECO model does not.

The loss over time is larger for K = 42, confirming that the accuracy of the models diminishes

and estimation becomes more difficult and noisy as K increases.

For K = 42, we observe more spikes in the loss over time and alternating optimal estimators.

This indicates that capturing the covariance of 42 FMPs is not straightforward. The large

average loss during most of the simulation period for the DECO models is potentially caused

by the estimation window being too short and therefore not capturing enough information.

Another reason could be model misspecification. Specifically, that the assumption of constant

correlations over time that the DECO model imposes is not fitting for this dataset. We have

conducted similar analyses for the t-distribution with EWM covariance and the normal and

t-distributions with DCC covariance. The figures are stated in Appendix C and show similar

outcomes.
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(a) 13 FMPs (b) 42 FMPs

Figure 2: Average mean-variance loss function of Engle et al. (2019) of the 250 simulated covariances
for the estimation models for a rolling window of 150 weekly observations with simulation data by the
normal distribution of the EWM covariance for 100 iterations.

We compare the loss averaged over the number of simulations and over time. Table 2 shows

the outcomes for K = 13 where the best-performing model, which gives the lowest loss value, is

indicated in bold. We observe that the CC model performs best for all simulations, indicating

its robustness to misspecification. The DCC models perform worse than the static shrinkage

estimators, especially the DECO models perform poorly. The best dynamic model is the DCC

S, being the most accurate in three out of four simulations. Note that the DCC estimators

perform better for the DCC than the EWM simulations, but still do not outperform most EWM

shrinkage methods.

Moreover, Table 2 shows that the shrinkage methods are effective and reduce the loss com-

pared to their non-shrunk counterparts. The only exception is the S model, which performs

worse than the EWM model for all simulations. This signals that for shrinking to the identity

matrix, the increase in bias outweighs the decrease in variance. Strikingly, shrinking linearly

yields slightly better outcomes than nonlinearly in all cases. A reason could be that the di-

mension of the covariances is not large enough and the differences between eigenvalues are not

dispersed enough such that assigning different weights to each eigenvalue does not add value. A

nonlinear structure would in that case only increase complexity and noise.

Next to that, Table C3 in Appendix C shows the improvement in percentages of the loss func-

tion compared to the current method of PGGM, the EWM with linear shrinkage (S). This table

confirms earlier observations and indicates room for improvement in the covariance estimation

compared to the current method.
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Table 2: Average loss for four simulation setups for a rolling window of 150 weeks and 13 FMPs.

Benchmarks EWM shrinkage DCC models

Sample EWM S CC 1F NL DCC DCC S DCC NL DECO DECO S DECO NL ADCC GOGARCH

EWM normal 0.024 0.017 0.023 0.015 0.016 0.017 0.025 0.022 0.023 0.052 0.052 0.051 0.024 0.025

EWM t-dist 0.030 0.022 0.035 0.019 0.019 0.021 0.032 0.026 0.029 0.055 0.054 0.054 0.030 0.030

DCC normal 0.029 0.024 0.030 0.022 0.022 0.023 0.029 0.028 0.028 0.053 0.053 0.052 0.028 0.031

DCC t-dist 0.034 0.028 0.040 0.025 0.025 0.027 0.034 0.029 0.032 0.054 0.054 0.054 0.033 0.035

Note. Lowest average loss defined by the loss function of Engle et al. (2019) is indicated in bold.

The loss is averaged over the 250 losses from the covariance estimates and 100 simulations for each estimator. The different simulation

setups are combinations of the EWM and DCC covariance estimate with a normal or t-distribution for the returns.

Table 3 gives the average losses for the covariance estimates for 42 FMPs. We observe a shift

in the best-performing model from CC to NL consistent over all simulations. The bad perform-

ance of S, especially its underperformance compared to the EWM and the sample covariance, is

in line with K = 13. Similarly to K = 13, the best dynamic model depends on the simulation;

the GOGARCH estimator performs the most accurately for the EWM simulations, while the

DCC NL is the best when considering a DCC covariance simulation.

Compared to K = 13, we now find that nonlinear shrinkage leads to more accurate results

than its linear counterparts for both EWM and DCC. This is in line with literature, where Ledoit

& Wolf (2022b) state that nonlinear shrinkage outperforms linear shrinkage when K becomes

large compared to the sample size. The PRIAL results are given in Table C4 and are again in

line with the average loss discussed in Table 3. It shows that even bigger improvements can be

made compared to K = 13.

Table 3: Average loss for four simulation setups for a rolling window of 150 weeks and 42 FMPs.

Benchmarks EWM shrinkage DCC models

Sample EWM S CC 1F NL DCC DCC S DCC NL DECO DECO S DECO NL ADCC GOGARCH

EWM normal 0.127 0.067 0.191 0.121 0.122 0.065 0.121 0.137 0.124 0.240 0.240 0.240 0.109 0.071

EWM t-dist 0.131 0.087 0.262 0.136 0.138 0.084 0.128 0.155 0.132 0.246 0.244 0.246 0.120 0.104

DCC normal 0.123 0.106 0.198 0.111 0.114 0.102 0.124 0.117 0.117 0.203 0.203 0.203 0.120 0.127

DCC t-dist 0.146 0.119 0.269 0.122 0.126 0.114 0.143 0.134 0.130 0.213 0.212 0.213 0.138 0.143

Note. Lowest average loss defined by the loss function of Engle et al. (2019) is indicated in bold.

The loss is averaged over the 250 losses from the covariance estimates and 100 simulations for each estimator. The different simulation

setups are combinations of the EWM and DCC covariance estimate with a normal or t-distribution for the returns.

5.3 Indirect evaluation

5.3.1 Global minimum variance portfolio

Next to the direct evaluation, we perform an indirect evaluation of the conditional covariance

estimates by forming global minimum variance (GMV) portfolios. Firstly, we determine the

optimal weights for each estimation method that minimises the risk of the portfolio for each time

period. We show the realised volatility over time averaged over the simulations and evaluate

the performance of the different GMV portfolios based on their average annualised standard

deviation (SD), Sharpe ratio (SR), information ratio (IR) and turnover. The SDs of the GMV

portfolios over time are calculated as SD =
√
W ′

tΣtWt, and the SR is defined as SR =
W ′

tµ√
W ′

tΣtWt
.

We plug in the population covariance of the simulation for Σt, for µ we use the mean we have

simulated from, and we consider the portfolio weights obtained by the portfolio optimisation for

the different covariance estimators. Note that the turnover is defined as the weight changes in

the different FMPs within the portfolios and not of the assets used to construct the FMPs.

26



Figures 3a and 3b show the average realised volatility of the GMV portfolios over time for

the normal distribution with EWM covariance simulation for K = 13 and K = 42, respectively.

The results are in line with the direct evaluation. Logically, the GMV portfolio based on the

real covariance gives the best results, whereafter the linear shrinkage models appear to perform

the best for K = 13 and the static nonlinear shrinkage and GOGARCH for K = 42. The DECO

models perform the worst in both dimensions.

The differences between the real standard deviation and those produced by the estimation

models are larger for K = 42 than for K = 13. This higher inaccuracy in larger dimensions is

consistent with the direct evaluation method and literature. Note that the standard deviation

is higher for K = 13, on average in the range of 0.09 and 0.12, while the standard deviation

for K = 42 is between 0.04 and 0.07. This can be explained by the fact that more FMPs allow

the implementation of more diversification by choosing between more investment options. This

diversification leads to a risk reduction, causing the lower standard deviation. The results for

the normal and t-distribution with the DCC covariance and t-distribution with EWM covariance

are stated in Appendix C. We find similar patterns for all of them; the DECO models perform

poorly, and the EWM shrinkage models work relatively well.

(a) 13 FMPs (b) 42 FMPs

Figure 3: Average volatility of the GMV portfolios based on simulation data of 250 weekly returns and
100 iterations by the normal distribution simulation of the EWM covariance for a rolling window of 150
weekly observations.

The results for the average annualised portfolio performance are given in Table 4 for K = 13

and Table 5 for K = 42. The lowest SD is indicated in bold.

Overall, the results are consistent with the direct evaluation in both dimensions. The results

indicate that the simpler static models perform better compared to the dynamic models, for

both K = 13 and K = 42.

Next to that, we note that the 1/N portfolio performs significantly worse compared to the

other portfolios, attaining an SD value at least three times as large as the real GMV portfolio

and a lower SR. These observations are in line with Engle et al. (2019) and Jagannathan & Ma

(2003). The latter argue that GMV portfolios have desirable properties, not only in terms of

risk but also reward-to-risk (SR).

In more detail, we find that the CC performs the best in most cases for 13 FMPs, in line
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with Table 2. Note that for the t-dist EWM simulation, the 1F model performs the best in the

indirect evaluation, while the CC model attains the lowest loss in the direct approach. This

suggests that the accuracy of the covariance estimator is not the only factor that influences

portfolio performance.

Moreover, Table 4 shows that the static models widely outperform the best dynamic estim-

ator, the DCC S. We also observe that the DECO model performs the worst in all simulations.

This suggests that the assumption of equal pairwise correlations used to convert the DCC model

into the DECO is not beneficial (Engle & Kelly, 2012). In terms of turnover, the static models

attain lower turnover than the dynamic models. This indicates that the positions are adjusted

much smoother.

Table 5 shows the performance of the GMV portfolios in a 42 FMP dimension. The results

are again in line with the direct evaluation; the NL model performs the best and DECO the

worst in terms of SD.

The performance of the dynamic models attains a similar behaviour as for the direct analysis.

The best-performing dynamic estimator in all simulations is the GOGARCH. However, the

dynamic models still underperform compared to the static estimators similarly to the results for

13 FMPs. Note that the turnover of the GOGARCH estimator is relatively high, indicating that

the weights between time periods change a lot. This is unattractive, as most portfolio managers

are restricted to a certain percentage of turnover per year.

Additionally, the results in Tables 4 and 5 suggest that the shrinkage methods, especially

linear shrinkage, help lower the standard deviation and often lead to lower turnover compared

to the versions without shrinkage.

We find that by increasing the dimensionK, the optimal standard deviation lowers. However,

the estimates are further away from the optimum, indicating the difficulty of forecasting the

covariance for large K. Moreover, the results show that in larger dimensions, more complex

models such as the NL, ADCC and GOGARCH become necessary to capture relevant covariance

dynamics and perform better than linear shrinkage and the sample covariance. The latter

performs poorly because the quality of the sample covariance matrix rapidly deteriorates as the

concentration ratio K/T rises (Ledoit & Wolf, 2004a). Note that the NL model also performs

relatively well in the smaller dimension.
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5.3.2 Sharpe ratio portfolios

Next to the performance of the GMV portfolios, we evaluate how the models perform when the

aim is to maximise the Sharpe ratio (SR). The SR portfolios try to find the highest expected

return combined with the lowest standard deviation possible. Such application is important to

consider as portfolio managers aim to find the maximum return for a predetermined amount of

risk. We calculate the performance measures similarly as for the GMV portfolios. The mean

is calculated by W ′
tµ, SDs as SD =

√
W ′

tΣtWt, and the SR is defined as SR =
W ′

tµ√
W ′

tΣtWt
.

We plug in the population covariance of the simulation for Σt, for µ we use the mean we have

simulated from, and we consider the portfolio weights obtained by the portfolio optimisation

using the different covariance estimators. We use the population mean in the optimisation to

avoid optimising over an inaccurate sample mean. Especially Jagannathan & Ma (2003) notes

that as dimensions grow, the sample mean is often estimated with much error, such that these

outcomes can not be trusted. This is also why we only consider the SR portfolios in a simulation

setting where the sample mean is known and not an empirical backtest.

Figures 4a and 4b show the SR over time for K = 13 and K = 42, respectively. First of all,

one can observe that the DECO models attain the lowest SRs for both dimensions. Additionally,

the S estimator does not seem to perform very well for K = 42, showing low SRs. Many models

move closely together, such that we require further analysis to determine the best-performing

model. Do note that the difference between the optimal SR, derived by the real covariance, and

those from the models are significantly closer for K = 13 than K = 42. This again signals the

difficulty of estimating the covariance matrix in larger dimensions. Moreover, the SR values are

almost twice as high when considering more FMPs, showing the diversification opportunities

that lower the standard deviation when enlarging the number of FMPs.

(a) 13 FMPs (b) 42 FMPs

Figure 4: Average Sharpe ratio of the SR portfolios based on simulation data of 250 weekly returns and
100 iterations by the normal distribution simulation and the EWM covariance for a rolling window of
150 weekly observations.

Tables 6 and 7 show the SR portfolio performance for both covariance dimensions where the

lowest Sharpe ratios are made bold. The tables aim to give a clearer image of the best- and

worst-performing models concerning the figures above.
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We find that the best-performing model in both dimensions is the CC model. Worth to

consider is that the SR portfolios do not necessarily produce this kind of performance in practice

due to the additional estimation error in the expected returns that is not taken into account in

this simulation approach.

Table 6 considers the evaluation of the SR portfolios for 13 FMPs. The top performance

of the CC estimator is similar to the GMV results for K = 13, where the CC model performs

best in three out of four simulations. The best-performing dynamic estimator depends on the

simulation. For example, the GOGARCH performs well for the normal distribution simulations.

This is unexpected, as the GOGARCH was not among the top performers for the direct and

GMV evaluation.

We find that the SRs of the SR portfolios are higher than for the GMV portfolios, indicating

that adding the mean in the optimisation adds value. The mean should thus be considered in

theory when finding the best risk-return trade-off. Observe that the improvements in SR are

often small.

Table 7 gives the results for the dimension of K = 42. The top estimators differ greatly when

comparing them to the GMV outcomes. Similarly to K = 13, the best model in terms of SR is

the CC in three of the four simulations. Strikingly, the NL method that is the most accurate

in the GMV portfolio and direct evaluation is never the best in this setup. Moreover, the linear

shrinkage methods now perform better than the nonlinear and dynamic models, in contrast to

the GMV portfolio results. The best dynamic model is the DCC S in all simulations, while the

GOGARCH had the best results for the GMV evaluation.

A possible explanation for the deviations when comparing GMV to SR optimal portfolios is

that the SR portfolios not only consider low risk measured by the covariance matrix but also want

high returns expressed by the expected returns. As such, more weight is put on the assets with

higher expected returns, lowering the focus on the risks involved. This reduces the sensitivity

to the accuracy of the covariance matrix and could lead to different optimal estimators.

Lastly, we again observe that estimators are further away from the optimal SR when moving

to the larger dimension of 42 FMPs. This observation again signals the difficulties that arise

when moving to a high-dimensional dataset.
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6 Empirical results

This section discusses the performance and the summary statistics of the weights of the global

minimum variance (GMV) portfolio and the GMV portfolio including short-selling constraints.

The weight statistics indicate how realistic constructed portfolios are in practice. We do not

consider the maximum Sharpe ratio (SR) portfolios because the literature shows that the results

in practice are not accurate and reliable due estimation error in the average returns (Jagannathan

& Ma, 2003).

We consider a rolling window of 150 weekly observations and use a weekly rebalancing,

consistent with the simulation study. We assess the performance of the GMV portfolios by

the mean, standard deviation (SD), Sharpe ratio (SR) and turnover of the portfolio returns.

Note that for the empirical analysis, we can only calculate the mean, SD and SR in practice by

taking the statistics of the obtained portfolio returns rather than in theory like the formulations

described in Section 5. The parameters of the estimation models are given in Appendix D.

Next to the GMV portfolio analyses, we conduct a high- versus low-volatility period com-

parison of which Appendix E gives the setup and outcomes. We find that the best estimators

of the high- and low-volatility period GMV portfolios are consistent with the results for the

complete dataset and that short-selling constraints are particularly beneficial in low-volatility

periods. Returns are often positive and stable in these periods, such that positive weights are

favourable. In high-volatility periods, which indicate periods of crisis, short-selling would be

helpful to hedge against the risk of negative returns.

6.1 Global minimum variance portfolio

The performance metrics for the GMV portfolios are given in Table 8 for 13 and 42 FMPs,

respectively. The results are consistent with the simulations; for K = 13, the CC model shows

the best results, while the NL estimator attains the lowest SD for the dimension of 42 FMPs.

Table 8 shows that for K = 13, the best-performing model in terms of SD is the CC. The

outperformance of the CC compared to S is significant. Strikingly, the S estimator performs

worse than the EWM and the sample covariance models. Thus, applying shrinkage to the

identity matrix only adds bias without resulting in lower variance.

In terms of dynamic model performance, we find that the ADCCmodel is the best-performing

dynamic estimator, in contradiction to the simulation results where the DCC S model is the

most accurate. This shows that the simulations can indicate the performance of the models, but

can only partly imitate the real data and thus predict their results. The GOGARCH model is

the worst performer in the 13-FMP dimension. This could be because the GOGARCH model

creates a factor structure of the dataset, but in this case, we are already considering an FMP

dataset instead of a large dataset of assets. As such, there is no room for additional factorisation

of the FMPs and imposing a factor structure on the FMP return dataset only results in more

noise, loss of important information and a higher SD.

When considering the full dimension of the dataset (K = 42), Table 8 shows that the NL

model gives the lowest SD. Surprisingly, the second-best model is the EWM model. Moreover,

we observe that the GOGARCH has the lowest SD of all the dynamic models, consistent with
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the outcomes for the simulations. Similarly to the simulations, the dynamic models attain higher

turnover values in both covariance dimensions.

Table D2 shows the characteristics (max, min, median, SD) of the average weights of the

GMV portfolios for both 13 and 42 dimensions. These characteristics can be used to explain

turnover values in more detail. In the dimension of 13 FMPs, the high maximum and low

minimum weights of the sample covariance and dynamic models indicate instability and imply

that investors have to take large long and short positions in the 13 FMPs. This is undesirable

because of transaction costs. The SD indicates how much the weights differentiate over the

considered time horizon. We find that the dynamic models, such as the GOGARCH, and the

sample covariance have the highest SD. This is again undesirable as it leads to much turnover

and thus high transaction costs to attain the optimal GMV portfolio weights over time. The

high min and max values, combined with the high SD, result in the high turnover values in

Table 8 for the dynamic models.

For 42 FMPs, Table D2 shows lower max values and SDs, and higher min values. This

because increasing the dimension causes the weights to be spread among more factors, resulting

in a lower weight per factor on average. These observations can also be deducted from the

turnover, as for most estimators, the dimension of 13 FMPs attains higher turnover compared

to the 42-FMP dimension. Altogether, it signals the increase in diversification possibilities when

the factor space grows. Similarly to the smaller dimension, we observe higher SD values for the

dynamic models than the static methods, consistent with the higher turnover values. Strikingly,

the DECO models attain the highest SDs, but do not show the highest turnover in Table 8.

6.2 Short-selling constraints

Since negative portfolio weights are difficult to implement in practice, most investors, including

PGGM, impose the constraint that portfolio weights should be non-negative when construct-

ing portfolios (Jagannathan & Ma, 2003). We investigate whether the short-selling constraint

alters the performance of the GMV portfolios dramatically and if it results in different relative

performance amongst models. Table 8 shows the constrained GMV portfolio results of the em-

pirical backtest. The simulation results are given in Appendix E and are similar to the outcomes

discussed in this subsection.

We find that the optimal estimator for K = 13 is consistent with the unconstrained results.

However, in the 42-factor dimension, the EWM is the best model in the constrained case, while

the NL estimator attains the lowest SD for the unconstrained portfolios. The best dynamic

model is consistent with the unconstrained outcomes in both dimensions. All estimators show

lower SDs for the constrained GMV portfolios compared to the unconstrained ones. This shows

that the additional shrinkage due to the short-selling constraint is effective and could be an

attractive instrument for investors.

Table 8 shows that models that have not implemented some form of shrinkage yet improve

the most in terms of SD, for both dimensions. Models such as CC and 1F do not show much

better outcomes by adding the short-selling constraint, while the EWM and DCC models show

improved SDs. This is especially the case for K = 42, where the EWM model overtakes the NL

model as the best-performing model due to the additional shrinkage imposed. Note that the
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difference between the EWM and NL is minimal.

Comparing the constrained versus the unconstrained portfolios for the simulations, Tables

E5 and E6 show that the real SD is higher in the constrained case. A reason for this is that

the constrained portfolio has a smaller range of weights, so there are fewer hedging possibilities

to lower the SD in recession periods. However, similarly to the empirical results, we obtain

that the SDs in the restricted case are equal to or lower than their unconstrained counterparts.

This illustrates again the additional shrinkage effect of imposing weight constraints. The con-

straints reduce sampling error while specification error increases relatively less, as illustrated by

Jagannathan & Ma (2003).

Lastly, we observe in Table 8 that the improvement in the GMV portfolios in terms of SD is

larger in a higher dimension (K = 42). This again illustrates the difficulty of high-dimensional

estimation and the usefulness of shrinkage methods when there is a lot of estimation uncertainty.

Additionally, the turnover is lower than for the unconstrained portfolios in both dimensions. This

is due to the smaller range of values the weights can take on.

The weights of the constrained GMV portfolios are shown in Table D2. The minimum

weights are equal to zero, resulting from the short-selling constraint that does not allow for

negative weights. The maximum weights are also often lower compared to the unconstrained

GMV portfolios. These two observations together cause the lower SD in the constrained case.

This supports the observation that the turnover in Table 8 decreases when switching from un-

constrained to constrained portfolios. These outcomes are beneficial in practice and incentivize

implementing short-selling constraints. The results hold for both the 13- and 42-FMP dimension.

From the aforementioned observations, we can deduce that imposing a short-selling con-

straint is beneficial for the performance of GMV portfolios, especially when the dimension in-

creases. Lastly, note that especially the improved performance of the GOGARCH for K = 42

gives an incentive to investigate the performance of the GOGARCH combined with shrinkage

methods in future research.
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7 Conclusion

We consider the large-dimension covariance estimation problem and deviate from the approach

in literature such as Engle et al. (2019) by not considering an individual asset-based covariance

matrix but instead consider the covariance matrix of FMP returns. An FMP entails a period-

ically rebalanced basket of assets, weighted based on their exposure to a certain factor. The

main difference between FMP and asset returns is that FMP returns have different character-

istics than stock returns, as discussed in Section 4. FMP returns attain a dynamic structure

with time-varying characteristics due to the rebalancing within the FMPs over time, while stock

returns keep the same interpretation.

Also, we consider a factor matrix of a size that falls between the sizes often discussed in

literature for factors (fairly small dimensions) and those for assets (often a few hundred assets).

We are therefore interested in finding if the considered numbers of variables exhibit the high-

dimensional estimation problem as well. In particular, this research aims to find the best model

in terms of covariance estimation accuracy and portfolio performance for the dimensions of 13

and 42 FMPs. We assess and compare the estimation performance of static shrinkage methods,

dynamic models, and a combination of the two. The combination of the dynamic models with

the relatively new QIS method of Ledoit & Wolf (2022b) also adds to the current literature.

In sum, we recommend implementing the CC and NL estimator for a dimension of 13 and

42 FMPs, respectively. The superior performance of these two models compared to PGGM’s

current estimator (S) is consistent over multiple analyses. They attain the lowest SD values

for the GMV and constrained GMV portfolios for the empirical backtest and simulation study.

The outcomes are supported by the direct analysis of the simulations, where the CC and NL

estimators give the highest accuracy when comparing the real covariance and the estimator via

the mean-variance loss function of Engle et al. (2019). Note that the only contradicting result is

the outperformance of the EWM model compared to NL for the constrained GMV portfolio in a

dimension of 42 FMPs. However, as the differences are minimal, we would still recommend the

NL model. Lastly, we want to stress the importance of short-selling constraints because they

improve the estimators in terms of SD in both dimensions.

It is also important to note that the SR portfolios are not reliable in practice because they

are extremely cumbersome to obtain accurately due to inaccuracy in estimating the expected

returns, leading to much estimation error in the mean estimates (Jagannathan & Ma, 2003). We

therefore ignore these results when making this recommendation. Further research is required

to determine which models perform best for mean-variance optimisation.

In more detail, we find for the dynamic models that the ADCC estimator is the best for

the empirical analysis of the smaller dimension, showing that some additional asymmetric in-

formation can be captured. The best dynamic estimator for the dimension of 42 FMPs is the

GOGARCH, indicating that imposing a factor structure on the FMP dataset leads to beneficial

outcomes in the setting as presented in this paper. Nevertheless, both dynamic top performers

still underperform compared to their static counterparts.

For the simulations, the direct and indirect results confirm the outcomes of the empirical

analysis. We conclude that the best-performing models, CC and NL, are robust against fat-

tailedness and misspecification of the covariance dynamics. In detail, the deviations between
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the simulations are minimal and there is no discernible pattern in the rank of best- and worst-

performing models. It is important to consider that the best dynamic model is the DCC S for

K = 13, in contrast to the empirical GMV portfolios where the ADCC estimator is the top

performer. This is due to the additional asymmetry in the market that the simulations do not

account for.

Next, we consider the performance of GMV portfolios combined with a short-selling con-

straint. We conclude that the best estimators are consistent with the empirical and simulation

results without restriction for K = 13. For K = 42, the best model is the EWM for the empirical

dataset, but the difference with the NL model, the top performer in all other evaluations, is min-

imal. More importantly, we find that portfolios with short-selling constraints generally perform

much better. Especially the improvement in performance for the larger dimension is substan-

tial and is most effective for models that have not yet implemented some form of shrinkage.

This confirms the hypothesis that large dimensions are more difficult to estimate accurately and

therefore require more shrinkage. The additional shrinkage by the portfolio constraints alleviates

the extreme portfolio weights, which would otherwise have caused extreme portfolio returns.

8 Discussion

In this section, we discuss some striking results that deviate from existing literature and ac-

knowledge where this paper is in line with earlier research.

Firstly, in contrast to Engle et al. (2019), we find that the DCC NL model is not always

the top performer. Specifically, this research finds that in smaller dimensions, the DCC S

outperforms the DCC NL estimator. A possible explanation for the difference between the two

could be the size and type of the considered dataset. Engle et al. (2019) analyse a dataset of 100

assets, whereas we use an FMP dataset of dimension 13. Especially the characteristics of the

FMPs, which rebalance weekly, differ from those of the assets that do not change in composition

over time. Moreover, Ledoit & Wolf (2022b) argue that nonlinear shrinkage specifically yields

significant improvement compared to its linear counterparts when the dimension size is very

large compared to the sample size. Thus, we might not consider a large enough dimension to

benefit from the nonlinear structure of the shrinkage.

Secondly, we observe that the DECO models perform poorly for the simulations and the

empirical study. It is never among the top-performing models, while the related DCC models

perform significantly better. This contrasts the results of Engle & Kelly (2012), who argue that

the DECO model outperforms the DCC model regarding portfolio selection when considering

out-of-sample forecasts. Engle & Kelly (2012) evaluate a dataset of daily asset returns, whereas

we consider weekly factor returns. A possible explanation would be that the constant correlation

assumption of the DECO model is not realistic for this dataset.

Thirdly, we can deduce that the diversification benefits grow larger moving from a K =

13 towards K = 42 dimension, resulting in a lower SD of the GMV portfolios. However,

this reduction in SD is paired with an increase in estimation inaccuracy, confirming the high-

dimensionality problem discussed in Ledoit & Wolf (2003), among others.

Lastly, the outperformance of the constrained GMV portfolio estimators compared to its

unconstrained counterparts is confirmed by the findings of Jagannathan & Ma (2003) and in
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line with Brandt (2010). The latter states that imposing portfolio constraints is effective. This

argument is based on Frost & Savarino (1988), who discuss that portfolio restrictions truncate

the most extreme portfolio weights and reduce the estimation error of the covariance matrix

based on sample moments. This is consistent with Michaud (1989), who states that the largest

estimation errors cause the most extreme weights.

The inaccuracy in the mean of the SR portfolios makes it difficult to apply these portfolios

in an empirical setting. Jobson & Korkie (1980) also discuss this, stating that the sample

moments result in extreme and unstable portfolios. Also, Jagannathan & Ma (2003) mention

that the estimation error in the sample mean is often so large that little is lost in ignoring the

mean altogether. Chopra & Ziemba (2013) support this, stating that the estimation error in the

mean affects the portfolio weights ten times more than errors in the covariances and variances

combined.

This is an important result for portfolio managers who not only consider a certain level of

risk, but also want to obtain the highest return paired with it. In this research, we focus solely

on estimating the covariance matrix, while estimating the average return accurately is also vital

when considering mean-variance portfolios. The latter is still a relatively underrepresented topic

in finance and beyond and allows further investigation. Some examples of research that could

be considered when assessing the accuracy of the sample mean are the ones by James & Stein

(1992) and Black & Litterman (1992). The first applies shrinkage to the sample mean, while

the latter uses a mixed estimation approach, starting from an equilibrium model.

The following additional recommended directions can be pursued to improve and expand this

research. First of all, we suggest exploring different dynamic models. The most obvious ones

are the ADCC and GOGARCH models combined with the shrinkage methods discussed in this

paper. Especially the GOGARCH model performs quite well in high dimensions, particularly

with the short-selling constraint. This shows that adding shrinkage to the GOGARCH model

has beneficial consequences. We are thus curious how linear and nonlinear shrinkage methods

would influence the outcomes of the GOGARCH model.

Other models we would recommend looking into are the Rotated ARCH (RARCH) and Ro-

tated DCC (RDCC) of Noureldin et al. (2014). Noureldin et al. (2014) rotate the raw returns,

extending the idea of variance targeting to covariance targeting in multivariate models in any

dimension. Compared to the GOGARCH, the RARCH also captures the dynamics of the cov-

ariances of the rotated returns which improves the prediction of the conditional correlations of

the unrotated returns (Noureldin et al., 2014). By applying such rotation to the devolatilised

returns of the DCC, Noureldin et al. (2014) obtain the RDCC model. They conclude that the

RDCC model performs better than the regular DCC, given its flexibility.

Lastly, one could consider high-frequency data. Andersen et al. (2003) show that high-

frequency-based covariance predictions yield significantly lower portfolio volatility than meth-

ods employing daily returns, especially during periods of turbulence. Moreover, Bollerslev et

al. (2020) propose a new asymmetric multivariate volatility (GARCH) model that exploits the

estimates of variances and covariances based on the signs of high-frequency returns. The res-

ulting realised semivariances allow for more nuanced responses to positive and negative shocks

than threshold terms, which are modelled in the ADCC model. Another option is to apply the
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DCC and DECO-HEAVY models of Bauwens & Xu (2023), which are also based on measures

of realised variances and correlations built from intra-day data. Bauwens & Xu (2023) find that

the scalar HEAVY models outperform the DCC and DECO models, which are based on a lower

frequency, such as daily or weekly data.
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A Appendix: Methodology

A.1 FMP construction

First of all, to determine the exposures per factor, it is important to note that the five different

factors consist of the following characteristics as variables. The variables are obtained using

various data sources. For value:

1. Book-to-Price ratio

2. Expected Profit-to-Price ratio

3. Free Cashflow-to-Price ratio

4. EBITDA-to-EV ratio

For Quality:

1. Profit-to-Assets ratio

2. Return on investments

3. Growth return on investments

4. Growth on assets

For Low Volatility only 1-year volatility is used, while for Size the investible market capitalisation

is used. Lastly, for Momentum the following variables are considered:

1. 1-year return

2. 6-month return

3. Profit adjustments by analysts

A.2 GARCH model

For the DCC, DECO and ADCC models, we require a univariate GARCH model to describe

the covariance of the factors. This paper follows the notation in Cappiello et al. (2006) and

considers the GARCH model,

hi,t = (1− ai − bi) + aiε
2
i,t−1 + bkhi,t−1, (A.1)

where hi,t is the conditional variance for factor i at time t, εi,t−1 gives the standardised residuals

and the parameters (ai, bi) are calculated by maximum likelihood and required that ai + bi < 1

to ensure consistency and stationarity. For the GOGARCH model, we use the returns of the

factor components yi,t instead of the standardized residuals. We re-estimate the parameters in

the GARCH model for each new rolling window.

47



A.3 Estimation

For the DCC models, we assume the following specifications, as discussed in more detail in the

methodology:

ft|t−1 ∼ N(0, Σt),

hi,t = (1− ai − bi) + aiε
2
i,t−1 + bihi,t−1,

εi,t = fi,t/
√
hi,t

S =
T∑
t=1

1

T
ε′tεt

Qt = (1− α− β)S + α
{
εt−1ε

′
t−1

}
+ βQt−1

Σt = DtRtDt

where for hi,t the regular univariate GARCH is considered. The same holds for the specifications

for the DECO and ADCC models.

For these models, the Composite Likelihood (MCLE) method of Pakel et al. (2021) is imple-

mented. It approximates the full log-likelihood by the sum of marginal univariate likelihoods.

The MCLE is often used when the MLE is too difficult to estimate, which can be the case for

the complex models considered in this research. It assumes the DCC model pairs are used to

obtain pair-wise log-likelihoods that finally result in the full log-likelihood. This is summarised

by the following assumptions defined in Pakel et al. (2021): let hj1,t(ηj1) and hj2,t(ηj2) be the

univariate volatility models for assets j1 and j2, where ηj1 and ηj2 are the model parameters. Let

εjt(θj) = (εj1,t(ηj1), εj2,t(ηj2))
′ where θj = (η′j1 , η

′
j2
)′, εj1,t(ηj1) = rj1,th

−1/2
j1,t

(ηj1) and similarly for

εj2,t(ηj2). Let ϕ = (α, β)′, then the DCC model for the jth pair is given by:

Hjt(θj , Sj(θj , ϕ), ϕ) = Djt(θj)Rjt(θj , Sj(θj , ϕ), ϕ)Djt(θj),

Rjt(θj , R̄j(θj , ϕ), ϕ) = (Q
∗−1/2
jt (θj , ϕ)Qjt)(θj , R̄j(θj , ϕ), ϕ)(Q

∗−1/2
jt (θj , ϕ)),

Qjt(θj , R̄j(θj , ϕ), ϕ) = (1− α− β)S(θj , ϕ) + α{Q∗−1/2
j,t−1 (θj , ϕ)εj,t−1(θj)ε

′
j,t−1(θj)Q

∗−1/2
j,t−1 (θj , ϕ)}

+ βQj,t−1(θj , ϕ),

Sj(θj , ϕ) = E[εjt(θj)
′εjt(θj)]

where Djt(θj) is a (2× 2) diagonal matrix with the diagonal entries
√
hj1,t(ηj1) and

√
hj2,t(ηj2)

and Q∗
jt(θj , ϕ) is a (2 × 2) matrix consisting of the diagonal entries of Q∗

jt(θj , Sj , ϕ). Then, we

follow Pakel et al. (2021), who first target the intercept, conditional on the correlation dynamics.

Firstly, we obtain the estimator for the volatility part:

θ̂j = argmaxηj1ηj2
(lj1T (ηj1), lj2T (ηj2))

′, (A.2)

where liT (·) is the log-likelihood for asset i and defined as ljT (θj , Sj , ϕ) = T−1
∑T

t=1 ljt(θj , Sj , ϕ),

where ljt(θj , Sj , ϕ) = − log |Hjt(θj , Sj , θ)| − X ′
jtH

−1
jt (θj , Sj , ϕ)Xjt. The composite likelihood
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estimator or ϕ is then given by

ϕ̂ = argmaxϕ
1

K

K∑
j=1

ljT (θ̂j , Ŝj(θ̂j , ϕ), ϕ), (A.3)

where Ŝj(θ̂j , ϕ) = T−1
∑T

t=1Q
∗1/2
jt (θj , ϕ)εjt(θj)ε

′
jt(θj)Q

∗1/2
jt (θj , ϕ). Note that we have used the

earlier obtained estimator θ̂.

For the GOGARCH model we apply an MLE, as defined in Van der Weide (2002). The

log-likelihood is expressed as

L = −1

2

T∑
t=1

(K log(2π) + log |ZθHtZ
′
θ|+ y′tZ

′
θ(ZθHtZ

′
θ)

−1Zθyt, (A.4)

L = −1

2

T∑
t=1

(K log(2π) + log |ZθZ
′
θ|+ log |Ht|+ y′tH

−1
t yt, (A.5)

where ZθZ
′
θ = PΛP ′ is independent of θ. Thus, in the first step P and Λ matrices are es-

timated using unconditional information. In the second step, the rotation coefficients U and

the parameters of the component univariate GARCH models are estimated using conditional

information.

A.4 Nonlinear shrinkage assumptions

The nonlinear shrinkage method of Ledoit & Wolf (2022b) uses the following assumptions:

1. (Assumption 3.1) Let T denote the sample size and K the number of variables. It is

assumed that the concentration ratio (c = K/T ) converges to a limit c ∈ (0, 1). There also

exists a compact interval included in (0, 1) that contains K/T for all T large enough.

2. (Assumption 3.2) Assumptions on the covariance matrix

(a) The population covariance matrix Σ is a nonrandom symmetric positive-definite mat-

rix of dimension K ×K.

(b) Xt is an T ×K matrix of i.i.d. random variables with mean zero, variance one and

finite 16th moment. The matrix of observations is Yt = Xt ×
√
Σt where only Y is

observed.

(c) Let τt = (τt,1, . . . , τt,k)
′ denote the system of eigenvalues of Σt and Ht the c.d.f of

population eigenvalues. It is assumed that Ht converges weakly to a limit law H

called the limiting spectral distribution.

(d) Supp(H), the support ofH, is the union of a finite number of closed intervals bounded

away from zero and infinity. Also, there exists a compact interval [T , T ] ⊂ (0, inf)

that contains {τt,1, . . . τt,K} for all t large enough.

3. (Assumption 3.3) There exists a nonrandom real univariate function δ̃ defined on Supp(F )

and continuously differentiable such that δ̃t(x) → δ̃(x), for all x ∈ Supp(F ). Furthermore,

this convergence is uniform over x ∈ ∪ν
j=1[aj + η, bj − η], for any small η > 0. Finally for
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any small η > 0, there exists a finite nonrandom constant Ĵ such that almost surely, over

the set x ∈ ∪ν
j=1[aj − η, bj + η], δ̃t(x) is uniformly bounded by Ĵ from above and by 1/Ĵ

from below, for t large enough.

A.4 EWM benchmark

We consider the exponentially weighted moving average (EWM) model as one of our benchmarks.

The exponential decay of the covariance matrix uses a half-life, τ equal to 52 weeks and the

idiosyncratic volatilities have a half-life of 26 weeks, following Axioma. The EWM model is

defined as follows:

Σt = λΣt−1 + (1− λ)ft−1f
′
t−1, (A.6)

where Σt is the covariance at day t, λ is the decay factor set such that λ = 1 − e
− ln (2)

τ which

differs for volatilities and covariances. For Σt−1, we use the estimate obtained for the previous

iteration because the ”real” covariance can not even be determined ex-post.

A.5 Covariance evaluation

The loss function described by Engle et al. (2019) investigates the efficiency of the covariance

around different alternatives. The loss function is called the minimum variance loss function

and is defined as follows:

L(Σ̂t, Σt) =
Tr(Σ̂−1

t ΣtΣ̂
−1
t )/K

[Tr(Σ̂−1
t )/K]2

− 1

Tr(Σ−1
t )/K

, (A.7)

where K gives the dimension of the covariance matrix, Σt gives the real covariance at time

t measured by the covariance value used to simulate or an unbiased proxy and Σ̂t gives the

estimated covariance. After defining the loss for each time period t, we determine the average

loss by averaging over the total sample size T .

Afterwards, it is possible to derive the improvement in accuracy of the covariance estimation

compared to a benchmark or the current method, the EWM with linear shrinkage. We follow

Engle et al. (2019) that proposes a percentage relative improvement in average loss (PRIAL).

For example, the PRIAL of the DCC NL with respect to the S estimator is defined as:

100×

{
1− E[L̂DCCNLNL]

E[L̂S]

}
%, (A.8)

where the loss L̂ for each estimator is calculated by the aforementioned loss function and the

expectation is taken over time and across Monte Carlo simulations. By construction, the PRIAL

of the true conditional covariance matrix with respect to any other estimator is 100%, which is

the maximum attainable, while 0% means no improvement (Engle et al., 2019). A large negative

number indicates models that show worse performance than the EWM S estimator.
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A.6 Inference

We compute the turnover as the difference in the weights of the factors that are implemented

in the portfolio at rebalancing dates. Note that we are not considering the rebalancing of the

assets within the factors, but only of the factors themselves. Turnover is calculated as

Turnover =
1

T −RW − 1

T−1∑
t=1

K∑
k=1

(|wj,k,t+1 − wj,k,t+|), (A.9)

where T is the total sample size, RW is the rolling window used for construction and wj,k,t+1 is

the desired factor weight for strategy j, factor k at t+1. The weight wj,k,t+ is the weight of the

factor k before rebalancing at the beginning of the new period. Turnover proxies transaction

costs and indicate whether the weights in factors deviate a lot over the investment period.

For the HAC inference we follow Ledoit & Wolf (2008). The limiting covariance matrix , Ψ

is given by

Ψ = lim
T→∞

1

T

T∑
s=1

T∑
t=1

E[ysyt] with y′t = (rti − µ1, rtn − µn, r
2
ti − γi, r

2
tn − γn). (A.10)

By change of variables, the limit can be alternatively expressed as

Ψ = lim
T→∞

ΨT , with ΨT =
T−1∑

j=−T+1

ΓT (j), where (A.11)

ΓT (j) =

 1
T

∑T
t=j+1 E[yty

′
t−j ] for j ≥ 0

1
T

∑T
t=−j+1 E[yt+jy

′] for j < 0.
(A.12)

The standard method uses heteroskedasticity and autocorrelation robust (HAC) kernel estim-

ation to obtain a consistent estimator Ψ̂ = Ψ̂T , for example as in Andrews (1991). This re-

quires choosing a kernel function k(·). The kernel function needs to adhere to three conditions:

k(0) = 1, k(·) is continuous at 0 and limx→±∞ k(x) = 0 (Ledoit & Wolf, 2008). The kernel

estimate for Ψ is then given by

Ψ̂ = Ψ̂T
T

T − 4

T−1∑
l=−T+1

k
( j

ST

)
Γ̂T (j), where (A.13)

Γ̂T (l) =

 1
T

∑T
t=l+1 E[yty

′
t−l] for j ≥ 0

1
T

∑T
t=−l+1 E[yt+ly

′] for j < 0
, with (A.14)

ŷ′t = (rtj − µ̂1, rtn − µ̂n, r
2
tn − γ̂n). (A.15)

The bandwidth is denoted by ST , rtj indicates the return of portfolio j at time t, T/(T − 4) is

a small-sample degrees of freedom adjustment introduced to offset the effect of the estimation

of the 4-vector v in the computation of the Γ̂T (j) (Ledoit & Wolf, 2008). For the kernel k(·),
one often opts for one with q = 2, where 1 ≤ q ≤ ∞ determines the smoothness of the kernel at

the origin (Ledoit & Wolf, 2008). We use the Parzen kernel. For the bandwidth ST we use the
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automatic bandwidth selection of Andrews (1991).
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B Appendix: Data

Table B1 describes the complete dataset, consisting of 42 FMPs for the time period of 4 February

1997 until 27 April 2021. The country-specific FMPs are the Indo-Asia Pacific Region (AP),

the European Union (EU), Japan (JP), North America (NA) and the United Kingdom (UK).

The sector-specific FMPs are the remaining FMPs that are not part of the 13-FMP dataset.

Especially the country FMPs JP and AP hold a higher standard deviation, indicating a more

volatile market than other countries. Moreover, especially the energy and telecommunication

sectors seem more volatile. All the FMPs are non-normal distributed due to a kurtosis deviating

largely from 3 and skewness unequal to zero.
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Table B1: Descriptive statistics of the FMP return for period 4 February 1997 until 27 April 2021.

Mean SD SR Kurtosis Skewness

Market 0.183 2.365 0.077 5.914 -0.371
Within Value 0.021 0.272 0.077 5.849 0.418
Within Quality 0.020 0.180 0.112 7.504 0.312
Within Momentum 0.021 0.360 0.058 8.389 -1.108
Within Size 0.020 0.326 0.063 7.366 -0.268
Within LowVol 0.016 0.520 0.031 5.253 -0.082
Within Axioma Market Sensitivity 0.015 0.649 0.024 14.161 -0.038
Within Axioma Liquidity 0.019 0.276 0.070 5.273 -0.020
AP 0.017 1.896 0.009 8.616 -0.289
EU -0.006 1.309 -0.004 7.106 0.280
JP -0.065 2.411 -0.027 5.500 0.170
NA 0.025 0.759 0.033 8.155 0.123
UK -0.024 1.380 -0.017 7.923 0.074
Automobiles & Components 0.009 1.195 0.008 11.917 0.177
Banks -0.033 0.987 -0.034 9.143 -0.027
Capital Goods 0.013 0.702 0.019 5.264 -0.124
Commercial & Professional Services -0.034 0.832 -0.041 4.930 -0.104
Consumer Durables & Apparel -0.027 0.808 -0.034 3.867 0.016
Consumer Services -0.016 0.978 -0.016 18.759 -0.803
Diversified Financials 0.007 0.954 0.008 6.038 -0.037
Energy -0.049 1.453 -0.034 5.997 -0.207
Food & Staples Retailing 0.000 0.955 0.000 11.054 0.706
Food, Beverage & Tobacco -0.007 0.752 -0.009 5.132 0.347
Health Care Equipment & Services 0.039 1.125 0.035 6.220 -0.017
Household & Personal Products 0.001 1.003 0.001 6.906 -0.066
Insurance -0.011 0.875 -0.012 7.297 0.019
Materials 0.008 0.945 0.009 5.714 0.147
Media 0.003 0.965 0.004 5.578 -0.017
Pharmaceuticals, Biotechnology & Life Sciences 0.039 0.987 0.039 5.448 0.191
Real Estate 0.015 0.931 0.016 7.656 -0.437
Retailing 0.027 1.006 0.027 5.491 0.264
Semiconductors & Semiconductor Equipment 0.024 1.435 0.017 5.403 0.106
Software & Services 0.045 1.022 0.044 5.156 -0.130
Technology Hardware & Equipment 0.020 0.984 0.020 4.614 0.017
Telecommunication Services 0.004 1.138 0.004 5.904 0.022
Transportation -0.013 0.859 -0.016 5.722 -0.072
Utilities 0.019 1.088 0.018 5.962 -0.163
Across Value -0.009 0.868 -0.010 6.884 0.071
Across LowVol 0.010 1.697 0.006 6.460 0.283
Across Quality 0.053 0.675 0.078 6.765 -0.220
Across Momentum 0.065 1.280 0.051 6.918 -0.338
Across Size 0.007 1.294 0.005 5.689 -0.144

Note. This table gives the statistical characteristics of full dataset of 42 FMPs in percentages (Mean and SD).
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Table B2: Correlation characteristics of the FMP return for period 4 February 1997 until 27 April 2021.

Mean Median Min Max

K=13 -0.004 -0.009 -0.625 0.643

K=42 -0.012 -0.010 -0.674 0.633

Note. K indicates the FMP dimension.
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C Appendix: Simulation results

C.1 Parameters

Tables C1 and C2 contain the parameter estimates of the different dynamic models, except

the GOGARCH that uses matrices as parameters and are therefore not possible to show in

this paper. To quantify time-variation, we also present the average min-max ranges of the

parameter estimates. We find that the average parameter estimates α̂, β̂ and ĝ are in line with

other research; the values for α̂ and ĝ are small and for β̂ are large where they sum up close

to one. We find that the estimates of the shrunk models attain similar parameter values and

that the ADCC model has a lower average parameter value for β̂ than the other DCC models.

This is in line with the findings of Cappiello et al. (2006). The min-max range indicates that

the parameter estimates depend on time-variation. Note that especially β̂ has a wide range,

indicating that the parameters change a lot over time. Moreover, the average ĝ estimate is

fairly small, indicating that the asymmetric information that can be captured is limited for the

considered simulations.

Table C1: Average parameter estimates for the DCC models for different simulations with 13 FMPs.

Normal EWM DCC DCC S DCC NL DECO DECO S DECO NL ADCC

α̂
0.004

[0.000, 0.031]

0.007

[0.000, 0.056]

0.005

[0.000, 0.038]

0.004

[0.000, 0.031]

0.007

[0.000, 0.056]

0.005

[0.000, 0.038]

0.000

[0.000, 0.000]

β̂
0.943

[ 0.796, 0.997]

0.956

[0.827, 0.997]

0.949

[0.737, 0.997]

0.943

[0.796, 0.997]

0.956

[0.827, 0.997]

0.949

[0.737, 0.997]

0.929

[0.000, 1.000]

ĝ
0.002

[0.000, 0.040]

t-dist EWM DCC DCC S DCC NL DECO DECO S DECO NL ADCC

α̂
0.006

[0.000, 0.072]

0.006

[0.000, 0.066]

0.006

[0.000, 0.071]

0.006

[0.000, 0.072]

0.006

[0.000, 0.066]

0.006

[0.000, 0.071]

0.002

[0.000, 0.024]

β̂
0.926

[0.040, 0.999]

0.940

[0.633, 0.996]

0.933

[0.526, 0.9960.526, ]

0.926

[0.040, 0.999]

0.940

[0.633, 0.996]

0.933

[0.526, 0.996]

0.708

[0.000, 1.000]

ĝ
0.007

[0.000, 0.039]

Normal DCC DCC DCC S DCC NL DECO DECO S DECO NL ADCC

α̂
0.026

[0.000, 0.164]

0.021

[0.000, 0.156]

0.025

[0.000, 0.153]

0.026

[0.000, 0.164]

0.021

[0.000, 0.156]

0.025

[0.000, 0.153]

0.005

[0.000, 0.024]

β̂
0.928

[0.716, 0.997]

0.948

[0.786, 0.997]

0.937

[0.773, 0.998]

0.928

[0.716, 0.997]

0.948

[0.786, 0.997]

0.937

[0.773, 0.998]

0.906

[0.289, 1.000]

ĝ
0.001

[0.000, 0.012]

t-dist DCC DCC DCC S DCC NL DECO DECO S DECO NL ADCC

α̂
0.001

[0.000, 0.067]

0.002

[0.000, 0.019]

0.001

[0.000, 0.070]

0.001

[0.000, 0.067]

0.002

[0.000, 0.019]

0.001

[0.000, 0.070]

0.002

[0.000, 0.018]

β̂
0.949

[0.315, 0.989]

0.944

[0.710, 0.989]

0.949

[0.315, 0.989]

0.949

[0.315, 0.989]

0.944

[0.710, 0.989]

0.949

[0.315, 0.989]

0.689

[0.000, 1.000]

ĝ
0.010

[0.000, 0.030]

Note. The minimum and maximum parameter estimates are displayed in brackets below the average parameter estimates. The average

estimates are close to zero, but never exactly zero. The average parameters are based on 250 simulated covariances for 100 iterations.

The different simulation setups are combinations of the EWM and DCC covariance estimate with a normal or t-distribution for the

returns. The simulations are based on the first 550 weeks from 4 February 1997 until 14 August 2007.
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Table C2: Average parameter estimates for the DCC models for different simulations with 42 FMPs.

Normal EWM DCC DCC S DCC NL DECO DECO S DECO NL ADCC

α̂
0.000

[0.000, 0.001]

0.001

[0.000, 0.013]

0.001

[0.000, 0.015]

0.000

[0.000, 0.001]

0.001

[0.000, 0.013]

0.001

[0.000, 0.015]

0.001

[0.000, 0.006]

β̂
0.953

[0.911, 0.986]

0.950

[ 0.910, 1.000]

0.953

[0.911, 0.986]

0.953

[0.911, 0.986]

0.950

[0.910, 1.000]

0.953

[0.911, 0.986]

0.518

[0.963, 1.000]

ĝ
0.000

[0.000, 0.001]

t-dist EWM DCC DCC S DCC NL DECO DECO S DECO NL ADCC

α̂
0.000

[0.000, 0.000]

0.000

[0.000, 0.000]

0.000

[0.000, 0.000]

0.000

[0.000, 0.000]

0.000

[0.000, 0.000]

0.000

[0.000, 0.000]

0.000

[0.000, 0.000]

β̂
0.966

[0.912, 0.987]

0.964

[0.918, 0.988]

0.963

[0.916, 0.987]

0.966

[0.912, 0.987]

0.964

[0.918, 0.988]

0.963

[0.916, 0.987]

0.888

[0.102, 0.999]

ĝ
0.000

[0.000, 0.001]

Normal DCC DCC DCC S DCC NL DECO DECO S DECO NL ADCC

α̂
0.006

[0.000, 0.094]

0.012

[0.000, 0.097]

0.012

[0.000, 0.100]

0.006

[0.000, 0.094]

0.012

[0.000, 0.097]

0.012

[0.000, 0.100]

0.000

[0.000, 0.004]

β̂
0.892

[0.000, 0.985]

0.859

[0.000, 1.000]

0.854

[0.000, 0.999]

0.892

[0.000, 0.985]

0.859

[0.000, 1.000]

0.854

[0.000, 0.999]

0.582

[0.000, 1.000]

ĝ
0.000

[0.000, 0.001]

t-dist DCC DCC DCC S DCC NL DECO DECO S DECO NL ADCC

α̂
0.000

[0.000, 0.000]

0.000

[0.000, 0.000]

0.000

[0.000, 0.000]

0.000

[0.000, 0.000]

0.000

[0.000, 0.000]

0.000

[0.000, 0.000]

0.000

[0.000, 0.000]

β̂
0.964

[0.914, 0.989]

0.968

[0.912, 0.995]

0.964

[0.913, 0.988]

0.964

[0.914, 0.989]

0.968

[0.912, 0.995]

0.964

[0.913, 0.988]

0.652

[0.000, 0.999]

ĝ
0.000

[0.000, 0.003]

Note. The minimum and maximum parameter estimates are displayed in brackets below the average parameter estimates. The average

estimates are close to zero, but never exactly zero. The average parameters are based on the 250 simulated covariances for 100

iterations. The different simulation setups are combinations of the EWM and DCC covariance estimate with a normal or t-distribution

for the returns. The simulations are based on the first 550 weeks from 4 February 1997 until 14 August 2007.

C.2 Direct evaluation

The following figures give the performance of the Engle et al. (2019) loss function over time for

the dataset consisting of 13 FMPs and rolling window of 150 weeks. The simulation is based on

the first 550 weekly datapoints, from 4 February 1997 until 14 August 2007. The simulation is

reiterated for 100 times to provide reliable results.
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(a) 13 FMPs (b) 42 FMPs

Figure C1: Average mean-variance loss function of Engle et al. (2019) of the 250 simulated covariances
for the estimation models for a rolling window of 150 weekly observations with simulation data by the
t-distribution of the EWM covariance for 100 iterations.

(a) 13 FMPs (b) 42 FMPs

Figure C2: Average mean-variance loss function of Engle et al. (2019) of the 250 simulated covariances
for the estimation models for rolling window of 150 weekly observations with simulation data by the
normal distribution of the DCC covariance for 100 iterations.
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(a) 13 FMPs (b) 42 FMPs

Figure C3: Average mean-variance loss function of Engle et al. (2019) of the 250 simulated covariances
for the estimation models for a rolling window of 150 weekly observations with simulation data by the
t-distribution of the DCC covariance for 100 iterations.

Table C3: PRIAL of the mean-variance loss for estimation window of 150 weeks and 13 FMPs with the
S model as benchmark. Values are given in percentages.

Benchmarks EWM Shrinkage DCC models

Sample EWM CC 1F NL DCC DCC S DCC NL DECO DECO S DECO NL ADCC GOGARCH

EWM normal -14.146 21.150 27.479 26.743 21.224 -25.118 -13.484 -18.919 -149.171 -148.843 -147.538 -19.867 -7.169

EWM t-dist -6.040 21.113 28.193 27.561 23.817 -4.851 9.588 2.107 -129.416 -128.030 -128.169 0.937 -8.271

DCC normal -5.836 13.343 20.888 18.864 15.397 -4.846 1.675 -1.490 -83.171 -83.240 -82.908 2.173 -11.072

DCC t-dist -6.106 11.661 21.477 19.401 13.708 -5.022 10.797 2.512 -80.704 -80.128 -80.665 -1.984 -8.832

Note. Highest value is indicated in bold. The loss used to calculate the PRIAL is averaged over the 250 losses from the covariance

estimates and 100 simulations for each estimator. PRIAL gives the percentage relative improvement in average loss compared to the S

model. The different simulation setups are combinations of the EWM and DCC covariance estimate with a normal or t-distribution for

the returns. The simulations are based on the first 550 weeks from 4 February 1997 until 14 August 2007.

Table C4: PRIAL of the LW loss for estimation window of 150 weeks and 42 FMPs with the LW as
benchmark. Values are given in percentages.

Benchmarks EWM Shrinkage DCC models

Sample EWM CC 1F NL DCC DCC S DCC NL DECO DECO S DECO NL ADCC GOGARCH

EWM normal 33.469 64.973 36.647 36.222 65.750 36.795 28.396 31.226 -25.545 -25.456 -25.725 42.721 63.019

EWM t-dist 50.103 66.686 48.175 47.092 67.788 51.073 40.819 49.745 5.927 6.634 5.844 54.073 60.284

DCC normal 37.742 46.388 43.846 42.444 48.524 37.032 40.765 40.910 -2.855 -2.669 -2.933 39.348 35.993

DCC t-dist 45.534 54.653 54.250 53.246 57.471 46.929 50.049 51.801 20.700 21.000 20.626 48.507 46.732

Note. Highest value is indicated in bold. The loss used to calculate the PRIAL is averaged over the 250 losses from the covariance

estimates and 100 simulations for each estimator. PRIAL gives the percentage relative improvement in average loss compared to the S

model. The different simulation setups are combinations of the EWM and DCC covariance estimate with a normal or t-distribution for

the returns. The simulations are based on the first 550 weeks from 4 February 1997 until 14 August 2007.

C.3 Indirect evaluation

C.3.1 Global minimum variance portfolio

The following figures give the standard deviation of the GMV portfolios over time, for a rolling

window of 150 weeks. The simulation is based on the first 550 weekly datapoints, from 4 February

1997 until 14 August 2007. The simulation is reiterated for 100 times to provide reliable results.
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(a) 13 FMPs (b) 42 FMPs

Figure C4: Average volatility of the GMV portfolios based on simulation data of 250 weekly returns
and 100 iterations by the t-distribution simulation of the EWM covariance for a rolling window of 150
weekly observations.

(a) 13 FMPs (b) 42 FMPs

Figure C5: Average volatility of the GMV portfolios based on simulation data of 250 weekly returns
and 100 iterations by the normal distribution simulation of the DCC covariance for a rolling window of
150 weekly observations.
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(a) 13 FMPs (b) 42 FMPs

Figure C6: Average volatility of the GMV portfolios based on simulation data of 250 weekly returns
and 100 iterations by the t-distribution simulation of the DCC covariance for a rolling window of 150
weekly observations.

C.3.2 Sharpe ratio portfolio

The simulation is based on the first 550 weekly datapoints, from 4 February 1997 until 14 August

2007. The simulation is reiterated for 100 times to provide reliable results.

(a) 13 FMPs (b) 42 FMPs

Figure C7: Average Sharpe ratio of the SR portfolios based on simulation data of 250 weekly returns
and 100 iterations by the t-distribution simulation and the EWM covariance for a rolling window of 150
weekly observations.
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(a) 13 FMPs (b) 42 FMPs

Figure C8: Average Sharpe ratio of the SR portfolios based on simulation data of 250 weekly returns
and 100 iterations by the normal distribution simulation and the DCC covariance for a rolling window of
150 weekly observations.

(a) 13 FMPs (b) 42 FMPs

Figure C9: Average Sharpe ratio of the SR portfolios based on simulation data of 250 weekly returns
and 100 iterations by the t-distribution simulation and the DCC covariance for a rolling window of 150
weekly observations.
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D Appendix: Empirical results

Table D1 contains the parameter estimates of the different dynamic models for the empirical

study for both K = 13 and K = 42. To quantify time-variation, we also present the min-

max ranges of the parameter estimates. We find similar outcomes compared to the simulation

results. We observe again that average parameter estimates α̂, β̂ and ĝ attain values in line

with the outcomes of Engle (2002), Cappiello et al. (2006) and Engle & Kelly (2012). Moreover,

the average ĝ estimate is fairly small, indicating that the asymmetric information that can

be captured is limited for the considered simulations. The min-max range indicates that the

parameter estimates depend on time-variation. Note that the range for β̂ widens when K

becomes larger, indicating that the dispersion between observations over time is large.

Table D1: Average parameter estimates for the different DCC models for 4 February 1997 until 27 April
2021.

K = 13 DCC DCC S DCC NL DECO DECO S DECO NL ADCC

α̂
0.070

[0.000, 0.348]

0.070

[0.000, 0.331]

0.071

[0.000, 0.328]

0.070

[0.000, 0.348]

0.070

[0.000, 0.331]

0.071

[0.000, 0.328]

0.020

[0.000, 0.054]

β̂
0.789

[0.003, 0.973]

0.807

[0.041, 0.974]

0.795

[0.040, 0.969]

0.789

[0.003, 0.973]

0.807

[0.041, 0.974]

0.795

[0.040, 0.969]

0.770

[0.381, 1.000]

ĝ
0.003

[0.000, 0.028]

K = 42 DCC DCC S DCC NL DECO DECO S DECO NL ADCC

α̂
0.019

[0.000, 0.068]

0.024

[0.000, 0.055]

0.024

[0.000, 0.083]

0.019

[0.000, 0.068]

0.024

[0.000, 0.055]

0.024

[0.000, 0.083]

0.008

[0.000, 0.025]

β̂
0.805

[0.000, 0.985]

0.836

[0.000, 0.998]

0.804

[0.000, 0.988]

0.805

[0.000, 0.985]

0.836

[0.000, 0.998]

0.804

[0.000, 0.988]

0.400

[0.000, 1.000]

ĝ
0.000

[0.000, 0.002]

Note. The minimum and maximum parameter estimates are displayed in brackets below the average parameter estimates. The average

estimates are close to zero but never exactly zero. The parameters are based on full dataset of 13 and 42 FMPs for 4 February 1997

until 27 April 2021.
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E Appendix: Robustness analysis

E.1 Moving window

We perform the same approach for the simulations as before to check for the robustness of

the simulation results in Section 5 and its dependence on the estimation window. However,

with estimation windows RW = 300 and RW = 2000. We discuss only the direct and indirect

evaluation results of K = 13 for simplicity. Further details on how the simulations are conducted

are discussed in Section 3. For all estimation windows, we end up with 250 covariance estimates.

Table E1 gives the direct evaluation results quantified by the loss function discussed in Engle

et al. (2019). Table E2 shows the indirect GMV portfolio results. Overall, the outcomes are

consistent with the outcomes of RW = 150 and signal robustness of the CC estimator.

The direct results in Table E1 shows that the best-performing model is dependent on the

type of simulation. For the EWM-based simulations, we find that the static CC model is the

most accurate in estimating the covariance matrix, similar to RW = 150. On the other hand,

we observe that the dynamic models, the ADCC and DCC S, perform the best for the DCC-

based simulations. Note that the static models are the second- or third-best model after these

dynamic model. Overall, we find that the average losses for RW = 150 are smaller compared

to RW = 300, indicating that implementing a window of 150 might give more beneficial sample

properties.

Table E1: Average loss for different simulations for a rolling window of 300 weeks and 13 FMPs.

Benchmarks EWM shrinkage DCC models

Sample EWM S CC 1F NL DCC DCC S DCC NL DECO DECO S DECO NL ADCC GOGARCH

EWM normal 0.031 0.028 0.032 0.027 0.027 0.028 0.034 0.033 0.033 0.079 0.079 0.079 0.039 0.040

EWM t-dist 0.031 0.028 0.032 0.026 0.027 0.027 0.034 0.035 0.034 0.076 0.076 0.076 0.038 0.038

DCC normal 0.058 0.055 0.058 0.050 0.052 0.054 0.053 0.053 0.053 0.073 0.073 0.073 0.048 0.066

DCC t-dist 0.063 0.056 0.082 0.052 0.053 0.056 0.051 0.048 0.050 0.070 0.070 0.070 0.049 0.069

Note. Lowest average loss defined by the loss function of Engle et al. (2019) is indicated in bold. The loss is averaged over the 250 losses

from the covariance estimates and 100 simulations for each estimator. The different simulation setups are combinations of the EWM

and DCC covariance estimate with a normal or t-distribution for the returns. The simulations are based on the first 550 weeks from 4

February 1997 until 14 August 2007.
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Tables E3 and E4 give the direct and indirect evaluation results for RW = 2000. Overall, we

observe a shift in the best-performing models. We now find that the dynamic models outperform

the static estimators. It indicates that the static models are better at capturing small sample

properties while the dynamic ones would benefit from a larger sample.

For RW = 2000, average mean-variance losses per model are depicted in Table E3. The

results show that the ADCC estimator is the clear winner. In contrast to the two smaller

estimation windows, most of the dynamic models show higher accuracy than the static ones.

We find that the average losses of the dynamic models for RW = 2000 are smaller than for

RW = 150 and RW = 300, but the static estimators have no clear trend. This indicates that

the large estimation window might only be useful for dynamic models while adding limited value

for the static ones.

Table E3: Average loss for different simulations for a rolling window of 2000 weeks and 13 FMPs.

Benchmarks EWM shrinkage DCC models

Sample EWM S CC 1F NL DCC DCC S DCC NL DECO DECO S DECO NL ADCC GOGARCH

EWM normal 0.017 0.013 0.022 0.013 0.012 0.013 0.009 0.009 0.009 0.087 0.087 0.087 0.008 0.009

EWM t-dist 0.037 0.028 0.083 0.037 0.035 0.027 0.020 0.020 0.020 0.156 0.156 0.156 0.018 0.021

DCC normal 0.017 0.010 0.020 0.009 0.009 0.010 0.003 0.003 0.003 0.027 0.027 0.027 0.003 0.176

DCC t-dist 0.004 0.002 0.003 0.002 0.002 0.002 0.012 0.012 0.012 0.010 0.010 0.010 0.001 0.002

Note. Lowest average loss defined by the loss function of Engle et al. (2019) is indicated in bold. The loss averaged over the 250 losses

from the covariance estimates and 100 simulations for each estimator. The different simulation setups are combinations of the EWM

and DCC covariance estimate with a normal or t-distribution for the returns. The simulations are based on the first 550 weeks from 4

February 1997 until 14 August 2007.

Table E4 shows the performance of the GMV portfolio for each covariance estimator for

RW = 2000. The results differ from the ones in Table E3. The leading model is the GOGARCH;

it is the best in three out of four simulations. Note that the ADCC is never the winner, while it

attains the most accurate covariance estimates according to the average loss outcomes in Table

E3. We observe that the dynamic models perform better than the static ones, in line with the

direct evaluation. As such, applying a static model might be the best when working with a

dataset with a rather short history and a long rolling window is not possible. Based on the

simulation results, the performance of a dynamic model could be improved by enlarging the

estimation window, using the large sample properties. Note that an estimation window of 2000

is difficult to realise in practice because many datasets do not have that much history in weeks.
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E.2 Short-selling constraints

Table E5 shows the constrained GMV portfolio performance in terms of various statistics for

simulations with K = 13. The lowest SD is indicated in bold. We find that the results are

consistent with the unconstrained GMV portfolios.

When comparing the results with the ones in Table 4, we find that the SD of the optimal

GMV portfolio, based on the real covariance, is higher due to the addition of the constraints. The

best-performing model is still the CC, being the top performer in three out of four simulations

in terms of SD, consistent with the unconstrained results.

The standard deviations of the sample, EWM and unconstrained dynamic models are closer

to the standard deviation based on the real GMV portfolio, suggesting better performance

compared to the unconstrained case. However, their performance is still inferior to two of the

shrinkage methods in all simulations. Note that in some cases, the improvement is even absolute,

giving a lower SD for the constrained compared to the unconstrained portfolios. Especially the

ADCC model shows improvement as it now often outperforms the DCC S model, which is the

best estimator for the unrestricted GMV portfolios. Moreover, the turnover is lower for the

constrained case as weights are no longer allowed to take on extreme values. This is beneficial

for portfolio managers that have to adhere to a certain turnover maximum.

The results for the constrained GMV portfolio for K = 42 are given in Table E6. The leading

estimator is still the NL model, equal to the outcomes of the unrestricted GMV portfolios in

Table 5. Similarly to the outcomes for K = 13, we find that implementing the constraint has a

shrinkage effect on most models and that the turnover decreases compared to the unconstrained

case. Both are considered beneficial.

Also, we again observe that the SD of some models has decreased for the constrained op-

timisation and these estimators now attain lower SDs than for the GMV portfolios without

short-selling constraints. For example, the sample, EWM, NL and GOGARCH estimation mod-

els where the constrained portfolios show a relatively large improvement compared to their

unconstrained counterparts. This again signifies that the short-selling constraint works as a

shrinkage mechanism and confirms the findings of Jagannathan & Ma (2003).

We find that the short-selling constraints are more effective for K = 42 than K = 13, leading

to lower standard deviations for the estimated GMV portfolios. This signals that estimating a

large dimension is more prone to error, such that shrinkage techniques can have a larger positive

impact.
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E.3 Subperiod analysis

In the subperiod portfolio analysis, we evaluate the performance of the covariance estimators

in a low- and high-volatility period. The low-volatility period represents a period of expansion,

while the high-volatility period corresponds to a recession period. We use the empirical dataset

and base the split on the weekly returns in Figure 1a, where the economic event of the burst

of the internet bubble in 2000-2002 causes a lot of uncertainty and a large deviation in the

returns. This leads in high volatility. Therefore, we take the period from 6 January 1998 until

30 December 2003 as the high-volatility period. For the low-volatility period, we again base

the split on Figure 1a. The period where the returns appear to deviate the least indicates low

volatility, corresponding to data from 6 January 2010 until 30 December 2015. Both periods

contain 313 observations and we apply a moving window of 150 weekly observations. We consider

both FMP dimensions. We test whether the performance of the models deviates compared to

the full dataset by constructing the GMV and constrained GMV portfolios. We consider the

same performance measures as for the full empirical analysis.

The descriptive statistics for both periods are given in Tables E7 and E8 for K = 13 and

K = 42, respectively. One can observe that the standard deviation in the high-volatility period

is higher for all FMPs. Additionally, we find that the average returns are not following a certain

trend for the two volatility period, but depend on the FMP.

Table E7: Descriptive statistics of the 13 FMP returns in percentages for a high-volatility and low-
volatility period.

High-volatility period Low-volatility period

Mean SD SR Kurtosis Skewness Mean SD SR Kurtosis Skewness

Market 0.115 2.977 0.039 3.799 0.044 0.265 2.087 0.127 7.517 -1.019

Within Value 0.062 0.332 0.186 3.843 0.316 0.010 0.178 0.059 3.280 0.170

Within Quality 0.030 0.251 0.121 3.783 0.182 0.019 0.120 0.161 3.725 0.186

Within Momentum 0.029 0.442 0.065 4.935 -0.732 0.041 0.249 0.163 3.387 -0.499

Within Size 0.051 0.492 0.104 4.850 -0.330 0.023 0.206 0.112 3.091 -0.257

Within LowVol 0.009 0.665 0.014 3.598 0.055 0.032 0.406 0.079 3.584 0.212

Within Axioma Market Sensitivity 0.022 0.646 0.034 3.428 0.073 -0.005 0.641 -0.007 5.253 0.098

Within Axioma Liquidity 0.015 0.322 0.046 4.183 0.165 0.029 0.224 0.130 3.178 -0.188

Across Value 0.030 1.107 0.027 5.098 0.053 -0.021 0.530 -0.040 3.263 -0.030

Across LowVol 0.019 2.426 0.008 4.252 0.339 0.049 1.133 0.043 3.863 0.301

Across Quality 0.110 0.917 0.119 4.212 -0.425 0.069 0.436 0.159 3.130 0.127

Across Momentum 0.108 1.516 0.071 5.953 0.040 0.109 0.907 0.120 5.073 0.109

Across Size 0.039 1.444 0.027 4.234 0.050 0.012 1.005 0.012 3.418 -0.256

Note. This table gives the statistical characteristics of the high- and low-volatility periods for 13 FMPs in percentages (Mean and SD).

The high-volatility period is from 6 January 1998 until 30 December 2003 and the low-volatility period is from 6 January 2010 until 30

December 2015.
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Table E8: Descriptive statistics of the 42 FMP returns in percentages for a high-volatility and low-
volatility period.

High-volatility period Low-volatility period

Mean SD SR Kurtosis Skewness Mean SD SR Kurtosis Skewness

Market 0.115 2.977 0.039 3.799 0.044 0.265 2.087 0.127 7.517 -1.019
Within Value 0.062 0.332 0.186 3.843 0.316 0.010 0.178 0.059 3.280 0.170
Within Quality 0.030 0.251 0.121 3.783 0.182 0.019 0.120 0.161 3.725 0.186
Within Momentum 0.029 0.442 0.065 4.935 -0.732 0.041 0.249 0.163 3.387 -0.499
Within Size 0.051 0.492 0.104 4.850 -0.330 0.023 0.206 0.112 3.091 -0.257
Within LowVol 0.009 0.665 0.014 3.598 0.055 0.032 0.406 0.079 3.584 0.212
Within Axioma Market Sensitivity 0.022 0.646 0.034 3.428 0.073 -0.005 0.641 -0.007 5.253 0.098
Within Axioma Liquidity 0.015 0.322 0.046 4.183 0.165 0.029 0.224 0.130 3.178 -0.188
AP 0.098 2.347 0.042 5.372 -0.126 -0.094 1.396 -0.068 4.428 -0.139
EU -0.008 1.449 -0.005 3.759 -0.043 -0.080 1.373 -0.058 4.120 0.236
JP 0.037 2.991 0.012 4.366 0.233 -0.011 2.188 -0.005 6.545 -0.225
NA 0.011 0.870 0.013 4.848 0.456 0.054 0.634 0.085 4.472 -0.201
UK -0.053 1.519 -0.035 3.706 -0.121 -0.017 1.106 -0.015 5.662 0.422
Automobiles & Components -0.072 1.321 -0.054 10.481 -0.577 0.148 0.895 0.165 3.923 0.449
Banks 0.002 1.131 0.002 3.444 0.096 -0.054 0.674 -0.080 4.730 0.263
Capital Goods 0.019 0.728 0.026 3.638 0.102 0.009 0.571 0.015 3.854 -0.082
Commercial & Professional Services -0.085 1.132 -0.075 3.904 -0.042 -0.053 0.596 -0.088 2.792 -0.188
Consumer Durables & Apparel -0.059 0.945 -0.063 3.578 0.182 0.013 0.689 0.019 3.319 0.080
Consumer Services -0.036 1.112 -0.033 4.748 -0.055 0.038 0.748 0.051 3.343 -0.026
Diversified Financials 0.034 1.201 0.028 3.609 -0.124 0.013 0.685 0.019 3.229 0.357
Energy -0.002 1.967 -0.001 4.129 -0.006 -0.084 0.969 -0.086 5.783 -0.429
Food & Staples Retailing -0.003 1.155 -0.003 3.334 -0.086 0.000 0.678 0.001 2.974 -0.045
Food, Beverage & Tobacco -0.051 0.974 -0.052 3.568 0.308 0.001 0.547 0.001 2.828 0.101
Health Care Equipment & Services 0.116 1.529 0.076 4.515 0.120 0.006 0.775 0.007 4.804 -0.703
Household & Personal Products 0.027 1.404 0.019 5.269 -0.003 -0.042 0.675 -0.062 5.194 -0.074
Insurance -0.010 1.058 -0.010 4.382 0.570 0.011 0.548 0.021 3.387 -0.170
Materials -0.011 1.056 -0.010 5.459 -0.035 -0.065 0.740 -0.087 3.771 -0.199
Media 0.043 1.316 0.033 4.083 0.035 0.045 0.695 0.065 5.863 -0.641
Pharmaceuticals, Biotechnology & Life Sciences 0.064 1.298 0.049 4.396 0.107 0.113 0.612 0.185 3.551 -0.231
Real Estate 0.013 1.134 0.011 3.554 0.368 0.076 0.608 0.124 3.376 0.011
Retailing -0.006 1.338 -0.005 3.480 0.148 0.058 0.685 0.085 2.889 0.075
Semiconductors & Semiconductor Equipment 0.134 2.055 0.065 3.660 0.119 -0.022 0.985 -0.023 4.075 0.173
Software & Services -0.021 1.479 -0.014 3.469 -0.151 0.046 0.693 0.067 4.416 0.513
Technology Hardware & Equipment 0.076 1.289 0.059 3.608 0.018 -0.057 0.716 -0.080 3.526 -0.270
Telecommunication Services -0.040 1.578 -0.025 3.752 0.089 -0.007 0.709 -0.010 3.662 -0.245
Transportation -0.065 0.932 -0.070 5.832 -0.283 -0.013 0.661 -0.020 3.183 -0.064
Utilities 0.007 1.538 0.005 4.295 -0.246 0.011 0.716 0.015 5.116 0.253
Across Value 0.030 1.107 0.027 5.098 0.053 -0.021 0.530 -0.040 3.263 -0.030
Across LowVol 0.019 2.426 0.008 4.252 0.339 0.049 1.133 0.043 3.863 0.301
Across Quality 0.110 0.917 0.119 4.212 -0.425 0.069 0.436 0.159 3.130 0.127
Across Momentum 0.108 1.516 0.071 5.953 0.040 0.109 0.907 0.120 5.073 0.109
Across Size 0.039 1.444 0.027 4.234 0.050 0.012 1.005 0.012 3.418 -0.256

Note. This table gives the statistical characteristics of the high- and low-volatility periods for 42 FMPs in percentages (Mean and SD).
The high-volatility period is from 6 January 1998 until 30 December 2003 and the low-volatility period is from 6 January 2010 until 30
December 2015.

The results of the GMV and constrained GMV portfolios for both periods and dimensions

are given in Tables E9 and E10. We find that the optimal model for the GMV portfolio is the

same for the high- and low-volatility period and consistent with the outcomes of the full dataset

in Table 8. The CC estimator is the best for K = 13 and the NL model is the optimal one for

the K = 42 dimension.

In terms of dynamic models for 13 FMPs, the results show that the DCC S is the most

accurate in a high-volatility period and the ADCC estimator is the best in a low-volatility

period. These outcomes are inconsistent with the full dataset results and indicate that the

dynamic models are not robust for changing economic circumstances in this dimension. For

K = 42, the best estimator is the GOGARCH in both periods. This is consistent with the

results of the full dataset in Table 8.

Logically, we observe that SDs are higher for the high-volatility period compared to the

low-volatility period in both dimensions. Moreover, the SRs attain higher values for the high-
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volatility period for most of the models. This holds for both dimensions. This could be because

high volatility is often paired with high return. This comes from the risk-reward theory, which

states that there is no return without risk.

For the constrained GMV portfolio, we find a deviation in the top estimator for the low-

volatility period compared to the full dataset for K = 13. It gives the 1F estimator as the best

instead of the CC. We also observe a deviating best model for K = 42, but for the high-volatility

period. The optimal dynamic estimators are consistent with the results for the subperiod GMV

portfolios for both K = 13 and K = 42.

A potential explanation for the differences for the two volatility periods could be that models

react differently to constraints in low-volatility periods compared to high-volatility periods. This

could result in another optimal model when splitting the two.

Lastly, when comparing the constrained and unconstrained portfolios, we find that the con-

strained portfolios outperform the unconstrained ones in the low-volatility period for all estim-

ators. In such a period of expansion, most factors are doing well, such that non-negative weights

are favorable. However, in high-volatility periods, we observe the reverse. The unconstrained

GMV portfolios show lower SDs compared to the constrained portfolios for all estimators. This

because in high-volatility periods, indicating periods of crisis, constraints limit the performance

of the portfolios. Due to the bad performance of many factors, it would be more beneficial to

go short. This is however not possible due to the constraints.
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