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Abstract

In this study, I evaluate the impact of estimation errors on the performance of APG’s individual-stock

and multi-manager portfolio optimization by comparing their performance with optimizations that intend to

reduce the estimation errors. The empirical study entails the period October 2012 - October 2022. For the

individual-stock setting the benchmark model minimizes the tracking error and hedges the factor exposure,

while the multi-manager benchmark model maximizes the expected return for a given level of variance. The

extensions include factor, mean, linear, and non-linear shrinkage, and dynamic covariance (DCC) models.

One period out-of-sample results show that estimation errors erode the portfolio performance, and that the

dynamic-covariance estimators result overall in the highest performance gain. The DCC-Factor models

perform worse in the individual-stock setting when heavily accounted for factor exposure. Nevertheless,

these models perform best in the multi-manager setting. Overall, none of the extensions outperforms strictly

and significantly the benchmark portfolios.
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1 Introduction

APG Asset Management (APG) is globally one of the largest institutional pension investors with 562 million

euros asset under management (AUM) 1. One of the key objectives of APG is to provide a "good income for

today, tomorrow and beyond" to its 4.8 million Dutch participants. In this regard, APG invests 27% of its assets

in equities, with 116 million euros invested in developed market equities and 44 million euros in emerging

market equities. This research concentrates on optimal portfolio construction for developed market equities.

Presently, APG has instituted two distinct methods for portfolio optimization. The first approach employs a

minimum-variance optimization strategy with a large number of assets N relative to the number of observations

T , and aims to strike a balance between limiting the exposure to factor risk relative to the benchmark model

while minimizing the costs associated with hedging. This method is referred to as the best hedge model. The

second optimization technique is utilized in situations where N < T and involves an optimal mean-variance

allocation over institutional portfolio managers (Markowitz 1952).

The mean-variance portfolio, introduced by Markowitz (1952), optimally allocates wealth across risky

assets by maximizing the expected returns for a certain level of risk, referred to as the portfolio variance. The

mean-variance theory aims to construct well-balanced and robust portfolios. This indicates optimal portfolios

are determined by achieving the optimal return-risk trade-off and by their ability to keep this performance for

varying underlying parameters such as different time periods T and estimation windows M. Markowitz (1952)

constructs an optimal portfolio by maximizing the expected return minus its covariance. In order to hold this

portfolio an investor needs to estimate the mean and covariance of the individual assets resulting in estimation

errors in both variables. DeMiguel, Garlappi, and Uppal (2009) conclude that these estimation errors erode

the portfolio’s performance. As a result, the mean-variance portfolio does function as a theoretical optimal

portfolio that is a foundational concept for ongoing research to construct optimally well-balanced and robust

portfolios in practice.

DeMiguel, Garlappi, and Uppal (2009) empirically compare several portfolios among each other. Re-

markably, they conclude the naive 1/N portfolio, with N the number of assets, outperforms the out-of-sample

mean-variance optimization in almost all empirical settings. This raises the question of why a theoretical

optimal portfolio that includes the first and second moment of assets, such as the mean-variance optimization, is

outperformed by a naive portfolio. Kan and Zhou (2007) underline the results of DeMiguel, Garlappi, and Uppal

(2009) and conclude that the presence of estimation risk completely erodes the theoretical optimal performance

of the mean-variance portfolio. Jobson (1979) states, based on a simulation study, that the sensitivity of the

mean-variance portfolio can be attributed to the estimation errors in the mean and variance. Hence, they

conclude that estimated portfolios are consistently inferior to the theoretical optimal portfolio. Finally, Michaud

1Values as of September 1st 2022
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(1989) states the mean-variance method functions as an error maximizer by over-weighting stocks with large

estimated returns and small variances.

The literature has attempted to address the mean and variance estimation errors. Merton (1980) noted that

when the sample size increase, the estimation errors asymptotically decrease slower in the mean than in the

covariance. Thus an accurate mean estimator greatly influences the robustness of a portfolio, resulting in several

studies that have attempted to address this issue. For example, Jobson (1979) introduces a shrinkage estimator

based on Stein (1956) to reduce the mean estimation errors. Additionally, Pástor (2000) and Jorion (1985)

further improve this approach by applying Bayesian techniques to the shrinkage estimator. An alternative

approach is to avoid the estimation of the mean altogether by constraining the mean-variance optimization to a

minimum-variance portfolio, which was introduced by Markowitz (1952).

To address the estimation errors in the covariance matrix, Chan, Karceski, and Lakonishok (1999) introduce

factor models to capture the general covariance structure. Alternatively, Ledoit and Wolf (2004b) and Ledoit

and Wolf (2012) propose linear and non-linear shrinkage covariance estimators. These estimators involve a

convex combination of the sample covariance and a target matrix, with the non-linear shrinkage estimator

taking a more flexible approach to the shrinkage intensity. Engle (2002) introduces a time-varying estimation of

the covariance matrix in a dynamic conditional correlation (DCC) model, and Engle, Ledoit, and Wolf (2019)

further combine this approach with linear and non-linear shrinkage covariance estimators. Finally, Nard, Ledoit,

and Wolf (2021) blend the factor structure with the dynamic conditional correlation (DCC) models.

Despite the extensive research to reduce the mean and covariance estimation errors, there is still a lack of

consensus on the optimal techniques for constructing well-balanced and robust portfolios in practice. Therefore,

the primary aim of this research is to explore the consequences of sample estimation errors on the robustness

of portfolios and to identify techniques that can minimize these errors. To achieve this, the study focuses

on the two outlined portfolio settings: a high-dimensional individual-stock setting and a low-dimensional

multi-manager setting. The study seeks to gather empirical evidence from October 2012 - October 2022 by

utilizing daily individual-stock price data and monthly managed portfolio return data. The individual-stock

portfolio consists of a comprehensive universe of 1197 stocks from developed markets, and the data includes

information on the long positions of APG in 564 of the 1197 stocks. The benchmark portfolio, used at APG,

has positive weights in the 1197 stocks from the stock universe such that it simulates the MSCI World Index.

The multi-manager portfolio data consists of 8 portfolios from institutional managers active in the developed

markets. The benchmark portfolio is set to the corresponding geographical MSCI Indices used at APG.

By conducting an empirical study, I examine the performance of APG’s benchmark weights and optimization

relative to the performance of alternative portfolio optimizations that aim to reduce estimation errors. The

benchmark weights are set to the weights that APG has held over the period October 2012 - October 2022. The

5



benchmark portfolio is set to the respective benchmark portfolios of the individual-stock and multi-manager

setting, i.e., the best hedge and mean-variance model. APG’s benchmark weights and APG’s portfolio are

not strictly similar, because the portfolio managers at APG determine the weights by not only applying an

optimization model but also by studying other trends and asset characteristics. Different estimation windows

are used to calculate the one-period out-of-sample performance indicators. For the individual-stock setting,

the estimation window equals M = 250 or M = 750 days, while for the multi-manager setting the estimation

windows equal M = 12, M = 36, or M = 72 months.

Several portfolio optimizations that intend to improve the mean or covariance estimation are compared with

each other. For the mean estimation this paper studies the James-Stein and Pástor (2000) shrinkage estimator

in the mean-variance setting, and constraining the mean-variance to a minimum-variance portfolio. For the

covariance estimation, this paper studies factors models, linear and non-linear shrinkage introduced by Ledoit

and Wolf (2004b), DCC models by Engle (2002), DCC shrinkage by Engle, Ledoit, and Wolf (2019) and

DCC-Factor models by Nard, Ledoit, and Wolf (2021). These optimization methods are compared with each

other in an empirical study. In both settings, the one-period out-of-sample excess and alpha returns with their

corresponding volatility are calculated. Further performance indicators include the Sharpe and Information ratio,

the certainty equivalent (CEQ), and the turnover rate. Based on the scoring of these performance indicators,

this study intends to conclude whether estimation errors impact portfolio performance and which portfolio

optimization techniques result in better-performing and more robust portfolios.

I find that in both settings the estimation errors in the mean and covariance erode the portfolio performance.

Therefore, it is beneficial to see whether these estimation errors can be reduced by alternative optimization

techniques. In the individual-stock setting, I find that depending on the hedging coefficient, DCC estimators that

account for time variance in the individual assets outperform the alternative strategies. Moreover, accounting

for factor exposure while minimizing the tracking error in the best hedges model leads to better-performing

portfolios than simply minimizing the covariance in the minimum-variance portfolio. In the multi-manager

setting, I find that mean estimation errors increase for larger estimation windows. Similar to the individual-stock

setting, the dynamic covariance estimators outperform the alternative strategies, though the DCC-Factor models

outperform the DCC models. Therefore, I conclude that it is favorable to account for time-variance in underlying

factors in a mean-variance optimization. Nevertheless, the differences between the extensions and benchmark

models do not seem to be significant at a 5% level as the differences in returns and volatilities are small.

The paper is organized in the following way. Section 2 reviews the existing literature, followed by Section

3 discussing the data used in this research. Section 4 outlines the benchmark portfolios, optimizations that

extend these benchmark portfolios, and the performance indicators. Section 5 discusses the results, and Section

6 its conclusion followed by a discussion in Section 7.
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2 Literature review

The seminal work of Markowitz (1952) introduced the concept of mean-variance optimization as a portfolio

selection technique aimed at maximizing return for a given level of risk or minimizing risk for a given level of

return. This study is concerned with the application of mean-variance optimization in the context of common

stocks.

The empirical performance of mean-variance portfolios has been an ongoing topic of research in the

literature. Jobson and Korkie (1980) and Michaud (1989) show that the mean-variance optimization is prone

to produce volatile and inferior portfolio selections due to estimation errors in the mean and covariance.

Michaud (1989) states a mean-variance optimizer overweights securities with large estimated returns, negative

correlations, and small variances, while it underweights securities with small estimated returns, positive

correlations, and large variances. The overweight securities are the most sensitive to estimation errors, making

mean-variance portfolios error maximizers. The estimation errors erode the out-of-sample performance of the

portfolio, making the theoretical optimal asset allocation inferior to the naive portfolios in practice (DeMiguel,

Garlappi, and Uppal 2009).

Jobson and Korkie (1980) study the effect of estimation errors on a portfolio’s performance by conducting a

Monte Carlo simulation study. They use a known multivariate normal distribution of monthly returns for N = 20

stocks to set the optimal portfolio as the maximum Sharpe ratio on the frontier. The Monte Carlo simulations

are used to calculate the expected returns and covariances. Ultimately, they compare the optimal Sharpe ratios

to the estimated ones and find the estimated portfolios are consistently inferior. Although the performance of

the estimated portfolios improves when short-sale restrictions are in place, they remain inferior. DeMiguel,

Garlappi, and Uppal (2009) further substantiate the error maximization hypothesis of the mean-variance

portfolio by demonstrating the out-of-sample mean-variance portfolio is empirically outperformed by the 1/N

portfolio for the majority of the empirical settings. On the contrary, Kirby and Ostdiek (2010) find that the

advantage of mean-variance portfolios over the 1/N portfolio is easily eroded after accounting for transaction

costs.

This research entails distinct benchmark models for individual-stock and the multi-manager setting. The

benchmark model for the individual-stock setting only involves covariance estimation, while the benchmark

model for the multi-manager setting involves mean and covariance estimation. Therefore, the previous papers

that aim to reduce mean estimation errors and use factor models are only applicable to optimizations in the

multi-manager setting. On the contrary, the papers that reduce estimation errors in the covariance matrix are

applicable to both the individual-stock and multi-manager settings.
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2.1 Estimation of the mean vector

Merton (1980) highlights the significance of accurately estimating the mean vector versus the covariance

matrix in portfolio theory. The author notes that the covariance estimator tends to have better accuracy in high-

dimensional settings compared to the mean estimator, due to its more persistent time-variation. Consequently,

various studies have sought to enhance the accuracy of mean estimation.

Stein (1956) and Pástor (2000) both introduce an estimator that shrinks the mean. Jobson (1979) introduces

a James-Stein shrinkage estimator that minimizes the expected mean squared error. Thus the estimator shrinks

the mean towards a more central vector by taking a convex combination of the sample mean µ̂ and a target

vector µy. The target vector is usually assumed to be the same for all the assets. On the contrary, Pástor (2000)

introduces a mean estimator that shrinks the sample means towards its prior variances given on the diagonal

of the covariance matrix. This results in different target mean for each asset as the variance tends to differ

across the assets. Moreover, the shrinkage estimator of Pástor (2000) involves an informative prior that allows a

Bayesian investor to incorporate prior beliefs about the mean estimation.

Jorion (1986) introduces the Bayes-Stein estimator, which incorporates a prior distribution of returns

into the target vector and computes weights from the data. Although it is biased, Jorion (1986) finds that

it outperforms the classical sample mean estimator. Moreover, Jorion (1991) concludes that the Sharpe-

Lintner CAPM outperforms the Bayes-Stein and sample mean estimators. Nevertheless, the minimum-variance

portfolio, which minimizes the portfolio’s volatility and does not involve a mean estimation, outperforms

both shrunk mean portfolios. This results in the suggestion that avoiding estimation of the mean might be

optimal (Jorion 1991). DeMiguel, Garlappi, and Uppal (2009) further support this finding by concluding that

the minimum-variance portfolio consistently outperforms the mean-variance and Bayes-Stein portfolios across

a range of empirical data sets.

2.2 Estimation of the covariance matrix

The estimation of the covariance matrix is an important aspect of portfolio optimization. Despite being unbiased,

the sample covariance matrix can lead to high estimation errors, which can be exacerbated by mean-variance

optimization. Moreover, the optimal weights in the mean-variance optimization as well as the minimum-

variance optimization are a function of the inverse covariance matrix. For that reason, one could, in contrast to

the mean, not ignore the covariance estimation by restricting a mean-variance portfolio to a minimum-variance

portfolio. Thus much research has been dedicated to improving covariance estimation, with several methods

being researched in this study.

One such method is factor models, used for covariance estimation in the paper of Chan, Karceski, and

Lakonishok (1999). In this method, a few factors are used to capture the general covariance structure, leading
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to a more robust estimation of the covariance matrix and a higher Sharpe ratio. These factors can be defined

upfront, for instance by including three Fama-French factors, but they can also be derived from the data

following a principal component analysis (PCA). Chan, Karceski, and Lakonishok (1999) empirically study

PCA for portfolio construction with domestic stocks issued on the New York Stock Exchange (NYSE) and

American Stock Exchange (AMEX). They find the first factor in PCA of Connorand and Korajczyk (1988)

already explains 75% of the variability of the assets. In general, Chan, Karceski, and Lakonishok (1999)

conclude the estimation of covariance matrices using factor models does not necessarily improve by including

more factors. Especially the market factor, equal to the "MKT-RF" in the Fama-French data library 2, explains

a large part of the co-variation in the return data.

The optimal weights of the mean-variance and minimum-variance optimization are a function of the

inverse covariance matrix. Stevens (1998) states the sample covariance matrix especially becomes unstable

in high-dimensional settings when the number of assets exceeds the moments in time, i.e., N > T . Therefore,

he characterizes the inverse covariance matrix directly, referred to as a node-wise regression in Callot et al.

(2021). Stevens (1998) regresses the asset’s excess return on a set of excess returns of other risky assets. Next,

he constructs the inverse covariance matrix with these regression coefficients and residual variances. The

residual variances are interpreted as the unhedgeable risk of the assets. Similarly, Meinshausen and Bühlmann

(2006) estimate the inverse covariance matrix by using neighborhood selection. They use a Lasso regression to

regularize the inverse covariance matrix by imposing a penalty term on the absolute value of the coefficients.

Alternatively, one could use Ridge or Elastic net regularization. Ridge regularization imposes a penalty on the

square of the coefficient. As a result, the Ridge regression shrinks the coefficients towards zero, while the Lasso

regression sets coefficients equal to zero. The latter results in variable selection. Callot et al. (2021) empirically

study the performance of node-wise regressions in comparison to factor models and shrinkage methods. They

encourage direct covariance estimation as the node-wise regression approach performs well in comparison to

the alternative methods.

Another approach to improving covariance estimation is through shrinkage, introduced by Ledoit and Wolf

(2003). Shrinkage involves taking a convex combination of the sample covariance matrix and a shrinkage

target matrix. Ledoit and Wolf (2004b) outline different target matrices, including identity, single-factor, and

second-moment matrices. Linear shrinkage of the covariance matrix involves a fixed shrinkage intensity that

determines the reliance on the target covariance matrix. Ledoit and Wolf (2003) explain that by taking a convex

combination of a sample and target covariance matrix, the impact of estimation errors on the portfolio allocation

reduces as the excessive covariance estimators are shrunk towards to the corresponding target matrix. The

2Kenneth R. French Data Library
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results in Ledoit and Wolf (2003, 2004b) show that shrunk covariance matrices can outperform traditional

sample covariance matrices, as well as factor models and covariance estimators that rely on PCA.

A challenge of linearly shrinking the covariance matrix is determining the shrinkage intensity. Ledoit and

Wolf (2004b), Ledoit and Wolf (2004a), and Ledoit and Wolf (2003) introduce distinct shrinkage intensities for

the different target matrices. Parameters such as the time period, sample and factor correlation and variance

are used for calculating the shrinkage factor. Nonetheless, the shrinkage intensity equals the same value

for all different assets. As a result, the performance gain of linearly shrunk covariance matrices erodes in

high-dimensional settings where the number of assets N is large.

Ledoit and Wolf (2012) introduce a non-linear shrinkage estimator of the covariance matrix. This covariance

estimator uses spectral decomposition of the sample covariance matrix to shrink the eigenvalues with varying

intensities. As a result, the non-linear shrinkage estimator allows the shrinkage intensity to impose individual

asset shrinkage intensities. Therefore, Ledoit and Wolf (2012) state the non-linear shrinkage estimator outper-

forms the linear shrinkage estimator in high-dimensional settings. However, non-linear shrinkage as in Ledoit

and Wolf (2012) involves numerical estimation that can be computationally intensive. To overcome this, Ledoit

and Wolf (2020) introduce an analytical method for nonlinear covariance shrinkage, which is as accurate as

numerical methods while being computationally more feasible.

Further studies of Ledoit and Wolf (2022a) derive different techniques that non-linearly shrink the co-

variance matrix. The linear-inverse shrinkage estimator applies a smoothing of the Stein shrinkage to the

eigenvectors of the sample covariance matrix. Likewise, the quadratic-inverse shrinkage estimator shrinks

the eigenvectors of the sample covariance matrix with the inverse Stein and minimum-variance loss function.

Finally, Ledoit and Wolf (2022a) introduce a geometric average of the linear- and quadratic-inverse shrinkage

covariance estimation. All these estimators are analytical solutions and are researched in this study. The

numerical estimations are not included in this study as Ledoit and Wolf (2020) find the analytical estimator is

as accurate as the numerical estimator but computationally less heavy.

Alternatively, Jagannathan and Ma (2003) show that imposing short-sale constraints on the optimal weights

is equivalent to shrinking the covariance matrix. They find that constrained portfolios perform similarly

to portfolios constructed with factor models. In this study, all the researched portfolios involve short-sale

constraints as APG only takes long positions in stocks and institutional-managed portfolios.

In the realm of financial returns, the assumption that returns are independent and identically distributed

(i.i.d.) is often deemed inappropriate due to the inherent dependence and heterogeneity of the data. To address

this limitation, Engle (1982) propose the utilization of auto-regressive moving average (ARMA) models for

variance estimation, leading to the development of multivariate GARCH models. To further improve upon this

methodology, Bauwens, Laurent, and Rombouts (2006) introduce the Dynamic Conditional Correlation (DCC)
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models, which offer greater flexibility in modeling the correlations and constancy between variances. The DCC

model, introduced by Engle (2002), represents a multivariate extension of the GARCH model and incorporates

a large-dimensional static or time-varying covariance matrix (Ledoit and Wolf 2022b). The estimation follows

a two-step approach that first fits a GARCH model to univariate data and next estimates the covariance matrix

based on the chosen multivariate distribution.

Similar to sample covariance estimators, computational difficulties arise by estimating the dynamic condi-

tional correlation matrix in high-dimensional settings. Therefore, Engle, Ledoit, and Wolf (2019) introduce a

linear and non-linear shrinkage estimator in the DCC model. The DCC-LS and DCC-NLS estimators first fit

a univariate GARCH model. Next, linear or non-linear shrinkage is applied to the unconditional correlation

matrix. Engle, Ledoit, and Wolf (2019) find the superior performance of the DCC-LS and DCC-NLS estimators

in comparison to alternative estimators in high-dimensional settings where N = 500,1000. Hence, the DCC-

shrinkage estimation tends to improve a portfolio’s robustness when the number of assets exceeds the moments

in time, N > T . Therefore, Engle, Ledoit, and Wolf (2019) conclude dynamic covariance estimation works

especially well for daily or weekly return data.

Finally, Nard, Ledoit, and Wolf (2021) propose a covariance estimator that blends the factor structure

with the time-varying conditional heteroskedasticity of residuals in high-dimensional settings. This estimator

accounts for time-variance over the factors and/or over the residual matrix of regressing the asset returns on

the factors. Though, the residual matrix can also be set to a time-invariant residual matrix over the entire time

period. The results showed that this model outperforms a number of existing models, including the non-linear

shrinkage estimators of Ledoit and Wolf (2015) and the DCC-shrinkage estimator of Engle, Ledoit, and Wolf

(2019).

3 Data

The data employed in this research is sourced from APG and encompasses daily stock-level and monthly

multi-manager portfolio information over the 10-year time frame from October 16, 2012, to October 13, 2022.

The stock-level data includes a benchmark universe of 1410 developed market stocks with 2509 trading days of

stock price information, corresponding to 121 months. APG invests in a subset of this benchmark universe

equal to 663 stocks. Meanwhile, the multi-manager data consists of 10 portfolios managed by institutional

investors, with 121 months of portfolio return data.

The data of the individual-stock and multi-manager contain missing values which hinder optimizing over

these historical returns. Therefore, I omit the missing values from the data set. This results in a benchmark

universe of 1197 stocks and a portfolio universe of 564 stocks with 2509 trading days of stock price information.
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In order to get the daily returns, I calculate the daily returns from the daily price information. The multi-manager

data is reduced to 8 institutional-managed portfolios with 121 months of portfolio return data. The monthly

returns given in the multi-manager setting are alpha returns, which means nominal monthly returns minus the

return on a benchmark portfolio. In this study, the benchmark portfolio for the multi-manager setting equals

geographical MSCI indices used at APG.

On October 12, 2022, APG’s individual-stock portfolio comprised long positions in 1197 of the stocks

with weights ranging from 0.002% to 9.7%. This portfolio is referred to as bmk weights, as it serves as the

MSCI World Index portfolio at APG 3. The official MSCI World Index entails long positions in 1,396 stocks

with similar weight ranges, though APG excludes some stocks because of its investment beliefs. The equally

weighted (EW) portfolio considers the entire stock universe of 1197 stocks. The weights in the EW portfolio

are determined by the number of assets, N, and thus, these weights remain constant over time, T .

Similarly, the bmk weight portfolio in the multi-manager setting equals APG’s historical weights. The

weights are updated on a monthly basis and thus differ over the time period October 2012 - October 2022. The

weights range from 9% to 18% over time. Furthermore, we include the EW portfolio which equally allocates

the weights over the N assets for all the time periods T .

The daily and monthly (cumulative) returns for the individual-stock and multi-manager portfolios are

depicted in Figures 1a and 1c. For both situations, the figure shows alpha returns, which equals the nominal

returns minus the benchmark returns. For the individual-stock portfolio, this indicates I subtract the daily MSCI

World Index return. The multi-manager returns are given as alpha returns. Figures 1a and 1c show a similar

bandwidth for the daily and monthly returns, though I would expect a greater bandwidth for the monthly returns.

Moreover, I see in figures 1b and 1d the individual-stock portfolios obtain a higher cumulative return than the

multi-manager portfolios. Therefore, I state that the individual-stock setting obtains higher alpha returns than

the multi-manager setting.

Another difference that I see in figures 1b and 1d is the difference between the APG and EW portfolios.

This difference is larger in the individual-stock setting than in the multi-manager setting. This is likely caused

by the number of assets in the two different settings. For the individual-stock setting, I deal with N = 1197

assets, while in the multi-manager setting, I only deal with N = 8 assets. As a result, the difference between

APG’s portfolio and the EW portfolio enlarges in the individual-stock setting.

3https://www.msci.com/World
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(a) Daily alpha returns individual-stock portfolio (b) Cumulative daily alpha returns individual-stock portfolio

(c) Monthly alpha returns multi-manager portfolio (d) Cumulative alpha returns multi-manager portfolio

Figure 1: Alpha returns and cumulative alpha returns of the EW and APG individual-stock and multi-manager

portfolio over the period October 2012 - October 2022. The EW portfolio equally assigns weights over the

assets N which equals 1197 in the individual-stock and 8 in the multi-manager setting. The APG portfolios

equal the benchmark weight portfolios used at APG. The alpha returns equal the nominal returns minus the

MSCI World Index in the individual-stock setting, and minus the geographical MSCI Index returns used at

APG in the multi-manager setting.

Table 1 shows the APG portfolio slightly outperforms the EW portfolio indicating APG has invested in

a better-performing portfolio from October 2012 - October 2022. Notably, the Information ratio of the EW

portfolio in the individual-stock setting is much lower than the Information ratio of APG’s portfolio. This

suggests APG’s portfolio outperforms the 1/N portfolio. Moreover, table 1 shows higher alpha returns for

the individual-stock portfolio than for the multi-manager portfolio. The same results are observed in Figure 1

which shows a higher cumulative return for the individual-stock portfolio than for the multi-manager portfolio.

The Sharpe ratios of the APG and EW portfolio in the individual-stock setting are close to 1. This indicates a

portfolio obtains an excess return equal to its standard deviation and is seen as a balanced trade-off between the
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expected return and its risk level. The information ratios of the individual-stock and multi-manager portfolios

are close to 0.6, indicating a lower return for the risk taken.

Individual-stock portfolio Multi-manager portfolio

Excess return Sharpe ratio Alpha return Info ratio Alpha return Info ratio

APG (bmk weights) 0.1575 (0.1491) 1.0563 0.0401 (0.0603) 0.6645 0.0171 (0.0300) 0.5706

EW 0.1256 (0.1342) 0.9360 0.0142 (0.0732) 0.1941 0.0142 (0.0252) 0.5630

Table 1: Performance measures of APG and EW portfolios in the individual-stock and multi-manager setting

over the time period October 2012 - October 2022. The excess return equals the nominal returns minus the

risk-free rate, and the alpha return is the nominal returns minus benchmark portfolio returns. For the individual-

stock the benchmark returns equal the MSCI World Index returns, for the multi-manager setting the benchmark

returns equal the geographical MSCI Index returns used at APG. The Sharpe and Information ratio equal the

respective return over its volatility.

4 Methodology

In order to answer the research question, I evaluate the effect of estimation techniques on the robustness of

portfolios. Robustness refers to the ability of a portfolio to withstand and perform well under shocks or changes

in the underlying parameters. Therefore, this study calculates the performance measures in an empirical study.

We compare several portfolio optimization techniques to the bmk weights and benchmark portfolios. The bmk

weights equal the APG (bmk weights) from table 1. These bmk weights equal positive positions on 13 October

2022 over the 1197 stocks in the individual-stock setting, and positive positions over 8 institutional managers

that are monthly updated between October 2012 - October 2022. These allocations are used as a benchmark at

APG.

In addition to the benchmark weights, this study deals with benchmark portfolios. The benchmark portfolio

equals the model where the extensions are implemented, therefore they function as a validation to interpret the

performance gain of the respective extension. For the individual-stock setting the benchmark model equals the

best hedges optimization, while for the multi-manager setting, the benchmark model equals the mean-variance

optimization. Furthermore, I use the minimum-variance optimization as a benchmark model in the individual-

stock setting. This study compares extensions that aim to reduce estimation errors in the mean and the variance

with its respective benchmark model, by looking at the Sharpe and Information ratio, Certainty Equivalent

(CEQ), and turnover ratio.

The expected excess and alpha returns are the 1-period out-of-sample historical returns times the optimized

weight vector. The estimation window determines the number of historical returns M that are used to estimate
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the portfolio return at M+1. The total estimation period equals M+1, . . . ,T . For the individual-stock portfolio,

I want to reduce the computation time. Therefore, I calculate the daily out-of-sample returns based on the past

M days once every month, assuming each month contains 21 trading days. I assume that the investor holds the

optimized weights for the following 20 trading days. Due to changes in the stock returns, the proportion of the

weights will change as well. In order to hold the same optimized weight proportions, I assume a certain trading

volume over these 20 trading days. For the multi-manager setting, I do not make such an assumption as I deal

with monthly returns, thus I test based one-period out-of-sample monthly returns.

4.1 Benchmark models

4.1.1 Benchmark individual-stock setting

APG currently optimizes the weights w in its individual-stock portfolio by limiting the amount of factor risk

versus the benchmark model (2) and by minimizing the trading costs by imposing a turnover restriction (5).

This translates into the best hedge function given by the objective

min (w−wp)
′
Σ̂(w−wp) (1)

s.t. (w−wb)
′B′

Σ f B(w−wb)≤ σ
2, (2)

w ≥ 0, (3)

ι
′w = 1, (4)

ι
′|w−wp| ≤ τ, (5)

where w are the weights in the constructed portfolio, wp in APG’s current portfolio, and wb in the benchmark

portfolio, referred to as bmk weights. APG’s current portfolio consists of positive positions in 564 assets. The

benchmark portfolio consists of positive positions in 1197 assets. Both portfolios sum up to one, meaning the

full-investment constraint holds. Further, Σ̂ is the sample covariance matrix of returns, Σ f the covariance matrix

of factors, B a matrix of factor exposures to these factors. Finally, σ2 stands for the maximum amount of factor

risk and ι is a vector of ones.

Equation 1 contains a covariance matrix Σ that combines factors and stock returns such that Σ = B′Σ f B+Σε

where Σε is the covariance matrix of the residuals. This matrix is a diagonal matrix with the residuals on its

diagonal. The first restriction in equation 2 restricts the constructed portfolio weights on deviating too much

from the benchmark. Equation 3 imposes a non-negativity constraint that hinders short-selling. Equation 4

ensures the weights sum op to 1 such that all the capital is invested in stocks and equation 5 restricts on the

trading volume relative to the portfolio in place at APG. In this research the maximal turnover is set to 1. This

can be interpreted as a maximum trading volume of 100% to obtain the weights w compared to the current

weight allocation wp.

15



The output of the best hedges optimization gives a weight vector with the same dimensions as the wp vector,

thus 1×564. Hence, the optimization can only re-allocate the over APG’s weights but not allocate to assets

that are in the benchmark portfolio and not in the portfolio of APG. Note that the APG’s portfolio is a subset of

the benchmark portfolio bmk weights. As a result, the effective assets space equals N = 564 assets.

I can rewrite the best hedges function to the objective:

min (1−ν)(w−wp)
′
Σ̂(w−wp)+ν(w−wb)

′B′
Σ f B(w−wb) (6)

s.t. w ≥ 0, (7)

ι
′w = 1, (8)

ι
′|w−wp| ≤ τ. (9)

The variables and restrictions are defined similarly as in equation 1, though now I account for the tracking

error by defining a hedging parameter ν . This parameter measures the relative importance that is attached to

the hedging objective which equals the factor exposure. When ν = 0.8 imposes factor hedging with a weight

of 0.8 and a current portfolio with a weight of 0.2. Shifting the hedging parameter towards zero, I allow for a

larger deviation of the current portfolio and for lower factor hedging. In this study, I set ν = 0.8 and ν = 0.4.

The hedging parameter is set to ν = 0.8 in the default setting at APG. Nonetheless, the portfolio managers are

assumed to have a view on their wanted hedging level and thus can change the hedging parameter accordingly.

In addition to the best hedge function, I use the minimum-variance model as a benchmark model in the

individual-stock setting. The minimum-variance optimization is further explained in equation 17. Inserting

extensions in the best hedge model leads to a comparison in a setting that surely incorporates factor exposure

in its optimization which might impact the results. Therefore, I test the same extensions also in a minimum-

variance model that simply minimizes the portfolio variance.

4.1.2 Benchmark multi-manager setting

For the multi-manager portfolio, I study a portfolio w following the mean-variance optimization introduced by

Markowitz (1952). This translates into the following objective

max w′
µ̂ −0.5γw′

Σ̂w (10)

s. t. w ≥ 0, (11)

ι
′w = 1, (12)

where w are the weights in the constructed portfolio, µ̂ a vector of expected returns of the assets, Σ̂ the

corresponding sample covariance matrix and γ the investor’s level of risk aversion. Similar to equation 3 and 4,

equation 11 and 12 ensure the weights sum up to one and prohibit short-selling.
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I calculate the level of risk-aversion γ by considering historical returns such that

γ =
w′

mµ̂

w′
mΣ̂wm

, (13)

with wm APG’s portfolio weights in the multi-manager setting, µ̂ and Σ̂ the sample mean and covariance.

However, calculating the implied level of risk aversion γ for the monthly multi-manager returns, the risk-

aversion should be set γ ≃ 22. An investor with a risk-aversion of γ = 1 is considered risk-neutral. For larger

values of γ , the investor is considered more risk-averse. Previous papers (DeMiguel, Garlappi, and Uppal 2009)

tend to use a γ = 2, ...,10. Therefore, γ ≃ 22 is considered extreme risk-averse. In this study, I include the

settings γ = 2,7,22, where the latter equals the implied risk-aversion from equation 13.

Altogether, the optimizations for the individual-stock and multi-manager settings contain similarities

and differences. They similarly intend to maximize the expected returns given a predetermined level of risk,

constrain short-selling and sum the weights to one. The individual-stock differs from the multi-manager model

in constraining the mean-variance to minimum-variance setting. Additionally, the individual-stock optimization

imposes a limitation on the quantity of factor risk relative to the benchmark model and it restricts the turnover

relative to the portfolio in place at APG. These additional restrictions are not enforced in the multi-manager

setting.

4.2 Portfolio optimization techniques

4.2.1 Mean estimation techniques

The estimation of the mean can be improved by shrinking the sample mean to a target mean vector. Stein (1956)

proposes to shrink the mean towards a target vector µy with a shrinkage factor δ such that

µ = µ̂ +δ (µy − µ̂) = (1−δ )µ̂ +δ µy, (14)

δ
∗
js = min

(
1,

(N −2)/T
(µ̂ −µy)′Σ̂−1(µ̂ −µy)

)
, (15)

where µ̂ equals the sample mean estimations, µy the target mean vector and δ the shrinkage factor. This study

sets the target mean vector µy to the average sample mean. As a result, the volatility in the mean estimation

will decline. For the shrinkage factor holds 0 < δ < 1. Following Brandt (2010), δ ∗
js is the optimal shrinkage

factor for the James-Stein estimator with N the number of assets, T the time period and Σ̂−1 the inverse sample

covariance matrix.

Another method to shrink the mean estimation is using Bayesian methods. Bayesian shrinkage estimators

incorporate a prior distribution of the return to determine the target mean vector. They involve an informative

prior that can be based on the data or an expert belief. Pástor (2000) explains that it is likely that for smaller

sample sizes the sample mean estimates obtain a higher variability. Therefore, shrinking the sample mean
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estimates has more effect in small sample sizes. He uses the information prior p(α)∼ N(0,σ2
α IN) with σ2

α IN

covariance matrix of the miss-pricing.

In this study, I assume α follows a normal distribution around α = 0 and with σα = 1%. This results in a

target mean vector equal to E(α|Y ) = (1−δ )α̂OLS, where δ again equals the proportion of wealth invested in

riskless assets which can be interpreted as the shrinkage factor. The optimal shrinkage factor δ ∗
p is given by

δ
∗
p = 1− λσ̂2

1
N ∑

N
i=1 σ̂i + µ̂2

with λ = 1− N −2

∑
N
i=1 µ̂2

i
, (16)

with N the number of assets, µ̂ and σ̂2 the sample mean and variance of the returns, and µ̂i the sample mean of

asset i.

Instead of shrinking the mean estimation, one can restrict the mean-variance optimization to minimum-

variance optimization. Markowitz (1952) first introduced the minimum-variance portfolio. Further research,

including DeMiguel, Garlappi, and Uppal (2009), shows the minimum-variance portfolio outperforms the

mean-variance portfolios in empirical studies. The minimum-variance model is formulated as a quadratic

optimization problem subject to constraints that ensure long positions in the stocks and that the sum of the

weights equal one such that

min w′
Σ̂w (17)

s.t. w ≥ 0, (18)

ι
′w = 1, (19)

with Σ̂ the sample covariance matrix and w the portfolio weights. Because the minimum-variance portfolio

minimizes the portfolio variance it does not require a level of risk-aversion γ .

4.2.2 Factor models

Sharpe (1963) follows the Capital Asset Pricing Model (CAPM) to explain the variation in the assets. They

regress the asset returns on just the market risk premium, while other papers include a range of factors. The

idea is that many individual assets entail similar variations coming from certain factors, for example the market

factor. Explaining this common variation by the corresponding factors could improve the mean and covariance

estimation. The resulting estimation is given by

µ = a+Bµ f and Σ = BΣ f B′+Σε , (20)

where B equals the factor loadings, µ f and Σ f the estimated factor mean and covariance, and Σε the residual

covariance matrix. This study considers the 1-Factor and 3-Factor model introduced by Fama and French (1993).

The 1-Factor model entails the market (MKT-RF) factor. The 3-Factor model entails the market (MKT-RF), size
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(SMB), and value (HML) factors 4. The market factor equals the excess return of the overall market portfolio.

The size factor subtracts the returns of large-cap stocks from the returns of small-cap stocks. The value factor

subtracts returns from low-value stocks from the returns of high-value stocks (Fama and French 1993).

4.2.3 Linear covariance shrinkage

Covariance estimation is sensitive to estimation errors, especially in high dimensional settings where N/T

is larger than or close to one. Ledoit and Wolf (2003) employ several shrinkage methods for the covariance

matrix. Inspired by Stein (1956)’s shrunk mean estimator, Ledoit and Wolf (2003) take a convex combination

of the sample covariance estimator and a target matrix. Therefore, depending on the covariance target matrix,

the covariance estimation equals

Σ = (1−δ )Σ̂+δΣy, (21)

with Σ̂ the sample covariance matrix, Σy the target covariance matrix and δ the shrinkage factor. Ledoit and

Wolf (2003) explore several target matrices. In this study I include five of them: 1) one-parameter (cov1Para),

2) two-parameter (cov2Para), 3) constant correlation (covCor), 4) diagonal correlation (covDiag), and 5)

one-factor covariance matrix that the single-index covariance matrix (covMarket).

Ledoit and Wolf (2004a) introduce a one-parameter matrix as covariance target matrix referred to as

cov1Para. This target matrix assumes the variances of the assets are the same and the covariances are zero. As a

result, the diagonal elements of the target matrix equal the common variance, and the off-diagonal elements are

set to zero. The shrinkage factor equals

δ
∗
para = max

(
0,min

(
1,

κ

T

))
, (22)

where κ equals the tuning parameter and determines the extent of shrinkage applied to the sample covariance

matrix Σ̂. Furthermore, T equals the sample size. Instead of shrinking towards zero covariances in cov1Para,

cov2Para shrinks the covariance matrix towards a matrix with constant variances and covariances. Thus, the

shrinkage target Σy has one value for the variances on the diagonal and one value for the covariances on the

off-diagonal.

In further studies, Ledoit and Wolf (2004b) introduce a constant-correlation matrix as shrinkage target

Σy. The shrinkage target Σy has sample variances on its diagonal elements and constant correlations on its

off-diagonal elements such that the asset’s variances equal their sample variances σ̂2 and the asset’s covariances

equal a common correlation coefficient ρ̂i j. The shrinkage intensity equals

δ
∗
cor = max

(
0,min

(
1,

∑i ̸= j ρ̂2
i j)/σ̂2

T

))
, (23)

4Kenneth R. French - Data Library
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where ρ̂i j is an estimator of the population correlation coefficient between assets i and j, σ̂2 is an estimator of

the sample variance, and T is the time period. The population correlation estimator ρ̂i j is given by:

ρ̂i j =
∑

T
t=1(rti − µ̂i)(rt j − µ̂ j)√

∑
T
t=1(rti − µ̂i)2

√
∑

T
t=1(rt j − µ̂ j)2

, (24)

where rti is the return of the ith asset at time t, µ̂i is the sample mean of the ith asset, and T equals the time

period.

Similarly to the covCor method, the covDiag shrinkage target contains the sample variances on the diagonal

and zeros on the off-diagonal elements of the shrinkage target Σy. Thus, the covDiag method shrinks the sample

covariance matrix to a diagonal matrix with sample variances on the diagonal, while the covCor additionally

entails constant correlations on the off-diagonal elements of the target matrix Σy.

Finally, Ledoit and Wolf (2003) introduce a one-factor covariance estimator as target matrix Σy, given by

the single-index covariance matrix. The estimator is referred to as covMarket. The shrinkage estimator can

be interpreted as a way to account for market exposure without the need to specify an arbitrary multi-factor

structure. By following Sharpe (1963)’s single-index model, Ledoit and Wolf (2003) define the covariance

matrix of the stock returns as:

Φ = σ
2
mktββ

′+Π, (25)

where σ2
mkt equals the variance of the market returns, β the coefficient of regressing the returns on the market

factor, and Π the diagonal matrix of the residuals. The estimation of Φ by running the regression of the returns

on the market factor results in the estimated covariance matrix of the stock returns Φ̂. Ledoit and Wolf (2003)

assume Φ differs from the true covariance matrix Σ.

Next, Ledoit and Wolf (2003) consider the Frobenius norm of the difference between the shrinkage estimator

and the true covariance matrix, with Φ the covariance matrix of the stock returns as in equation 25, Σ the

true covariance matrix, and Φ̂ and Σ̂ their respective estimates. By taking the derivative, they find the optimal

shrinkage intensity δ ∗
mkt. The covariance estimation and its shrinkage factor are given by

Σ = (1−δ )Σ̂+δ Φ̂ =
N

∑
i=1

N

∑
j=1

(1−δ )σ̂i j +δ φ̂i j, (26)

δ
∗
mkt =

∑
N
i=1 ∑

N
j=1
[
Var(σ̂i j)−Cov

(
φ̂i j, σ̂i j

)]
∑

N
i=1 ∑

N
j=1
[
Var
(
φ̂i j − σ̂i j

)
+(φi j −σi j)

] , (27)

where Σ̂ equals the sample covariance matrix and σ̂i j its elements, Φ̂ the sample one-factor target covariance

matrix and φ̂i j its elements, Φ the implied one-factor covariance matrix and φi j its elements, and finally Σ the

covariance matrix with its elements σi j.
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4.2.4 Non-linear covariance shrinkage

Ledoit and Wolf (2020) propose a non-linear shrinkage estimator for the covariance matrix. They show that the

non-linear shrinkage is an improvement over the linear shrinkage method introduced by Ledoit and Wolf (2003).

While the linear shrinkage method requires careful selection of the optimal shrinkage target, the non-linear

shrinkage method uses the spectral decomposition of the sample covariance matrix to shrink the eigenvalues,

λi, with varying intensities:

Σ̃ =U∆U ′, where ∆ := Diag(ζ1, ....,ζN),ζ
∗
i := δ

∗
µ̂ +(1−δ

∗)λi (28)

with Σ̃ the non-linear shrunk covariance matrix, U the matrix of eigenvectors ui, ∆ the diagonal matrix whose

elements ζi are a function of the i-the sample eigenvalue λi, sorted in non-decreasing order. Equation 21 and

28 both intend to shrink the covariance matrix towards its grand mean, but the first with a linear and the

second with a non-linear shrinkage technique. The linear shrinkage technique in equation 21 imposes a convex

combination between the sample and the target matrix, while the non-linear shrinkage technique in equation 28

implies the convex relation on the eigenvalues of the covariance matrix. As a result, the non-linear shrinkage

technique imposes an individual shrinkage intensity, in contrast to the general shrinkage intensity in the linear

shrinkage estimator. The individual shrinkage factor increases the shrinkage for small eigenvalues and reduces

it for large eigenvalues. This makes non-linear covariance shrinkage especially useful for large-dimensional

covariance matrices where N/T is close to one or even larger than one because the eigenvalues are expected to

diverge more in that case. The paper of Ledoit and Wolf (2020) outlines an analytical solution for the non-linear

shrinkage which makes the optimization computationally more convenient.

Ledoit and Wolf (2022a) deduce the non-linear shrinkage estimators from the Stein (1956) loss function.

The resulting optimization is given by

argmin
∆̃ diagonal

L
(
Σ,U∆U ′) (29)

with Stein’s Loss function L S
(

Σ, Σ̃
)

:=
1
N

Tr
(

Σ
−1

Σ̃

)
− 1

N
logdet

(
Σ
−1

Σ̃

)
−1, (30)

where Σ equals the true covariance matrix and Σ̃ = U∆U ′ the non-linear shrunk covariance matrix. From

equation 28 I derive Σ̃ = ∑
N
i=1 ζiuiu′i. Therefore, the solution of the optimization problem is given by

∆ := Diag
(

ζ̃1, . . . ,ζN

)
where ζ̃i :=

1
u′iΣ−1ui

for i = 1, . . . ,N, (31)

with ui the eigenvector corresponding to asset i. Nonetheless, this solution is not observable as the true

covariance and its inverse Σ−1 are not observable. As a result, the elements ζi are estimated with a bona fide

estimator. The linear-, quadratic- and geometric-inverse shrinkage estimators follow from Stein’s loss function

as formulated in equation 30, but have their distinct bona fide estimator for ζi.
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Ledoit and Wolf (2022a) introduce a linear-inverse shrinkage (LIS) estimator. This estimator is a simple

smoothing of the Stein shrinker that linearly shrinks the eigenvalues of the covariance matrix. The shrinkage

factor ζi for i = 1 . . .N equals

(
ζ̂

LIS
i

)−1
:= max

λ
−1
N ,

1
N

N

∑
j=1

λ
−1
j

λ
−1
j − x(

λ
−1
j − x

)2
+h2λ

−2
j

 and ∆̂
LIS :=

N

∑
i=1

ζ̂
LIS
i ·uiu′i, (32)

with h the regularization parameter which controls the degree of smoothing. I require h to be strictly positive as

for h = 0 the fraction equals 1
λ
−1
i −x

. The maximum function in 32 implies all ζ̂ LIS
i should be greater than or

equal to λ
−1
N = mini=1,...,N(λi) which is strictly positive. Moreover, the local shrinkage works by attracting the

inverse eigenvalues toward each other. If λ
−1
i < 1, λ

−1
i is slightly below λ

−1
j for i ̸= j. As a result, ζ̂

−1
i tends

to go up. In the opposite way, ζ̂
−1
i tends to go down if λ

−1
i > 1. Altogether, the LIS estimator combines linear

and non-linear shrinkage optimization techniques. The sample covariance is scaled with an identity matrix,

resulting in linearly shrunk diagonal elements in the estimated covariance matrix. The off-diagonal elements

are estimated with non-linear shrinkage and varying shrinkage intensities.

Section 4 of Ledoit and Wolf (2022a) introduces the quadratic-inverse shrinkage (QIS) estimator. The QIS

estimator assumes the covariance matrix is a weighted combination of the sample covariance matrix and a

target covariance matrix. The optimal weights are determined by minimizing the quadratic loss function. Ledoit

and Wolf (2022a) state the QIS estimator can be seen as a more advanced version of the LIS estimator because

it incorporates the estimated covariance structure by estimating the off-diagonal elements of the covariance

matrix.

In order to derive a shrinkage estimator that depends on observable return data, I need two concepts: the

conjugate and the amplitude. The conjugate, derived by Gabor (1946), is anti-involutive. This means that the

conjugate of the conjugate is simply the original function. For the QIS function Ledoit and Wolf (2022a) derive

the conjugate of the smoothed Stein shrinker. The smoothed Stein shrinker θ̂(x) and its conjugate θ̂ ∗(x) equal:

θ̂(x) :=
1
N

N

∑
j=1

λ
−1
j

λ
−1
j − x(

λ
−1
j − x

)2
+h2λ

−2
j

, (33)

θ̂
∗(x) :=

1
N

N

∑
j=1

λ
−1
j

hλ
−1
j(

λ
−1
j − x

)2
+h2λ

−2
j

, (34)

with h the bandwidth parameter that controls for the degree of smoothing. Gabor (1946) defines the amplitude

A 2
θ̂
(x) by combining the smoothed Stein shrinker with its conjugate in a quadratic way resulting in

A 2
θ̂
(x) =

 1
N

N

∑
j=1

λ
−1
j

λ
−1
j − x(

λ
−1
j − x

)2
+h2λ

−2
j


2

+

 1
N

N

∑
j=1

λ
−1
j

hλ
−1
j(

λ
−1
j − x

)2
+h2λ

−2
j


2

. (35)
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The quadratic loss functions can be derived from Frobenius, Inverse Stein’s, and Minimum-variance loss

functions. This study focuses on the Inverse Stein’s L IS
t loss function given by

L IS
(

Σ, Σ̃
)

:=
1
N

Tr
(

ΣΣ̃
−1
)
− 1

N
logdet

(
ΣΣ̃

−1
)
−1, (36)

with Σ and Σ̃ the true and non-linear shrunk covariance matrix, respectively. To estimate the QIS estimator, I

make use of the convergence in probability to a nonrandom limit as the number of assets N goes to infinity.

This limit is minimized if ζ̃n(λn,i) = ζ̂i. The estimated shrinkage factor ζi for i = 1, . . . ,N equals

(
ζ̂

QIS
i

)−1
=

(
1− N

T

)2

λ
−1
i +2

N
T

(
1− N

T

)
λ
−1
i θ̂t

(
λ
−1
i

)
+

(
N
T

)2

λ
−1
i A 2

θ̂

(
λ
−1
i

)
, (37)

with T the moments in time, N the number of assets with i = 1, ...,N, θ̂(x) the smoothed Stein shrinker, and

A 2
θ̂
(x) the squared amplitude.

Ledoit and Wolf (2022a) define the concentration ratio as N/T . They state that the LIS estimator assumes

the concentration converges to a limit c ∈ (0,1), indicating the number of assets N cannot exceed the number

of periods in time T . On the contrary, the QIS estimator is defined for settings where N > T . They show

graphically that the Stein shrinker works on the mid range target and the amplitude on the high range target.

Therefore, the quadratic weights in the QIS estimator function well in high-dimensional settings where the

number of assets equals or is larger than the moments in time.

The final non-linear shrinkage covariance estimator is derived under the Symmetrized Kullback-Leibler

loss function. It can be viewed as geometrically averaging linear-inverse shrinkage (LIS) with quadratic-inverse

shrinkage (QIS) which results in

Σ̂
GIS :=

N

∑
i=1

√
Σ̂LIS × Σ̂QIS ·ut,iu′t,i, (38)

with Σ̂LIS and Σ̂QIS the linear and quadratic inverse shrinkage estimator, respectively.

Section 5 in Ledoit and Wolf (2022a) explains the LIS and GIS function only functions in settings where

N < T . For N > T one needs to estimate the sample eigenvalues which is only feasible through a numerical

approach (O. Ledoit and Péché 2011). The study explains that if N > T the first N −T null sample eigenvalues

are undetectable. These eigenvalues are only detectable if there are N −T +1 null sample eigenvalues which is

not the case. As a result, the estimator of ζi for the first N −T eigenvalues is undetectable.

ζ̂
−1
i =


(N

T −1
)
× 1

n ∑
N
j=(N−T+1) λ

−1
j for i = 1, . . . ,N −T

λ
−1
j A 2

θ̂
(λ−1

j ) for i = N −T +1, . . . ,N
(39)

The problem arises for i = 1, . . . ,N −T as ζ̂
−1
i is a linear function function λ

−1
j . The QIS estimator is not a

linear function in λ
−1
j , therefore able to shrink matrices for N > T .
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4.2.5 Dynamic models

So far the covariance estimators assume constant estimation over time. However, constant covariance estimation

might be a too strong assumption, especially for weekly or daily returns. Engle (2002) studies the dynamic

conditional correlation (DCC) model as a covariance estimator. The DCC model is a generalization of the

constant conditional correlation (CCC) model introduced by Bollerslev (1990). He defines the CCC estimator

as

rt |Ft−1 ∼ N(0,Σt), (40)

Σt = DtRDt , (41)

where Σt equals the conditional covariance matrix, R a correlation matrix containing the conditional correlations,

and Dt a diagonal matrix containing the asset’s volatility. Both Σt and Dt are time-variant. Engle (2002)

generalizes equation 40 by allowing the correlation matrix Rt to vary over time. This means the DCC model is

given by

Σt = DtRtDt , (42)

Dt = diag(ωi)+diag(υi)rt−1r′t−1 +diag(D2
t−1), (43)

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2, (44)

Qt =C(1−α −β )+αst−1s′t−1 +βQt−1, (45)

st = D−1
t rt (46)

where C equals the covariance matrix of st , the unconditional correlation matrix of the returns rt . Moreover, (α ,

β ) are the DCC parameters that are related to the univariate GARCH(1,1) model. The DCC model is estimated

in three steps. First, the vector st−1 is estimated by dividing the individual asset returns at time t −1 by their

estimated conditional standard deviations. Secondly, the correlation matrix C is estimated. In the third and final

step, the DCC parameters (α,β ) are estimated following equation 45.

An occurring problem in the DCC model of Engle (2002) is the curse of dimensionality that arise in steps 2

and 3, because C is a large-dimensional N ×N matrix. Therefore, shrinkage is applied to the unconditional

correlation matrix C in step 2 of the DCC estimation. Ledoit, Wolf, and Zhao (2019) apply the linear shrinkage

estimator of Ledoit and Wolf (2004a) to the unconditional correlation matrix C.

Ĉ :=
N

∑
i=1

[
δ λ̄ +(1−δ )λi

]
uiu′i with λ̄ :=

1
N

N

∑
i=1

λi, (47)

where λi equals the eigenvalue of asset i = 1, . . . ,N, and δ the shrinkage factor. Similar to the covariance

estimator, the shrinkage intensity δ is constant over all the assets for the linear shrinkage estimators.
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On the contrary, the non-linear shrinkage estimator uses different shrinkage intensities for all the assets.

Ledoit, Wolf, and Zhao (2019) study the dynamic constant correlation non-linear shrinkage (DCC-NLS)

covariance estimator.

Ĉ =
N

∑
i=1

λ̃i(τ̃)uiu′i, (48)

where I follow Ledoit and Wolf (2020) to compute the shrunk eigenvalues λ̃ (τ̃) = (λ̃1(τ̃), ..., λ̃N(τ̃)), where

τ̃ = argmint∈[0,∞)
1
N ∑

N
i−1[q

i
N,T (t)−λi]

2. Two important advantages of the DCC-NLS model are (1) it does not

require a normality condition and (2) it can estimate covariance matrices for N > T .

Estimating time-variant covariance matrices for portfolios that contain many assets N becomes computa-

tionally heavy. Nard, Ledoit, and Wolf (2021) blend the time-varying covariance estimation with a factor model

to reduce this computation time. Taking the same setting as equation 20, the factor model explains the variation

in returns with the three Fama-French factors. The factor exposure B and the covariance matrices Σε are both

time-invariant. The dynamic conditional correlation factor (DCC-FF) model starts by calculating the factor

exposures B and the corresponding residual matrix Σε such that

Σt = B′
Σ f B+Σε,t , (49)

with Σε,t a diagonal time-invariant covariance matrix of the residuals. Nard, Ledoit, and Wolf (2021) assume

a time-variant residual matrix by calculating Σt , though I assume a constant covariance matrix of residuals

Σε . Nard, Ledoit, and Wolf (2021) even implement time-varying factor exposure, though they find that this

implementation does not improve the estimation performance.

This study applies the factor models in the DCC models by first estimating the exposure of the individual-

stock returns to the three Fama and French factors. The factor exposure and the residuals are assumed to be

constant over the time period T . Next, the DCC model is used to estimate the time-varying covariance matrix

of the three factors which yields a 3×3×N dynamic covariance matrix. The return data accounts for these

dynamics by multiplying the DCC-FF covariance matrix by the time-invariant factor exposure B and by adding

the time-invariant residual matrix. The dynamic conditional correlation models used to estimate the time-variant

covariance matrix of the factors use no, linear or non-linear shrinkage. This results in the DCC-FF, DCC-FF-LS,

and DCC-FF-NLS estimators.
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# Method Description

Benchmark models

Both benchmark models use the sample mean µ̂ and covariance matrix Σ̂

1 Best hedges Minimizes the tracking error while accounting for factor risk and restricting the turnover

2 Mean-variance Maximizes the expected return, while reducing the portfolio variance for a given level of risk-aversion

Mean shrinkage

3 Minimum-variance Minimizes the portfolio variance

4 James-Stein Shrinks sample means to target mean µy given by the mean of the sample means

5 Pastor Shrinks sample means using an informative prior that entails a level of misspricing α

Factor model

6 1FF Estimates the mean and covariance by regressing the returns on the Fama-French MKT-RF factor

7 3FF Estimates the mean and covariance by regressing the returns on the 3 Fama-French factors (MKT-RF, SMB, HML)

Linear shrinkage

8 cov1Para Shrinks towards matrix with constant variances on the diagonal and zero covariances on the off-diagonal

9 cov2Para Shrinks towards matrix with constant variances on the diagonal and constant covariances on the off-diagonal

10 covCor Shrinks towards matrix with sample variances on diagonal and constant covariances on the off-diagonal

11 covDiag Shrinks towards matrix with sample variances on diagonal and zero covariances on the off-diagonal

12 covMarket Shrinks towards single-index covariance matrix

Non-linear shrinkage

13 LIS Linear-inverse shrinkage estimator using Stein’s loss function

14 QIS Quadratic-inverse shrinkage estimator using the Inverse Stein’s loss function

13 GIS Geometric average of the LIS and QIS shrinkage estimators

Dynamic models

16 DCC Dynamic covariance estimation with sample correlation estimation

17 DCC-LS Dynamic covariance estimation with linear shrinkage correlation estimation

18 DCC-NLS Dynamic covariance estimation with non-linear shrinkage correlation estimation

19 DCC-3FF Dynamic 3-Factor model with sample correlation estimation

20 DCC-3FF-LS Dynamic 3-Factor model with linear shrinkage correlation estimation

21 DCC-3FF-NLS Dynamic 3-Factor model with non-linear shrinkage correlation estimation

Table 2: Overview of the benchmark models and the optimization models that aim to reduce the mean and

covariance estimation errors. All the portfolios incorporate the full-investment and non-negativity constraint.

4.3 Portfolio performance

The goal of this study is to assess the performance of each of the discussed portfolio optimization techniques

in an empirical setting. From the several optimization techniques, I obtain optimal weight matrices with the

dimensions (T −M)×N. I calculate the portfolio returns by multiplying the weight matrix by the historical

returns such that I obtain a (T −M)×1 vector of expected portfolio returns. In the individual-stock setting I

obtain daily portfolio returns and in the multi-manager setting monthly portfolio returns. Both are annualized

by multiplying the mean return by 250 or 12, respectively. I use the assumption that one year contains 250
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tradings days and 12 months. The annualized return is used to calculate the excess and alpha returns of the

portfolios with their corresponding volatility. To compare the models among each other, four performance

indicators are studied.

First, the Sharpe ratio is a widely used performance measure in portfolio theory. It is defined as the mean of

excess portfolio returns divided by its standard deviation. The excess return is calculated by taking the risk-free

rate from the Kenneth French Data Library 5. To compare to investment strategies, this study considers the

difference between the Sharpe ratio of the optimized portfolio and the Sharpe ratio of APG’s asset allocation,

referred to as bmk weights. The difference is defined as

∆̂ = ŜRk − ŜRl with ˆSRi =
µ∗

i

σ∗
i
, (50)

with ŜRk and ŜRl the Sharpe ratios of investment strategy k and l, respectively. The Sharpe ratio of portfolio i is

defined as the excess return µ∗
i over its standard deviation σ∗

i .

Ledoit and Wolf (2008) propose a method to improve the traditional Sharpe ratio calculation for high-

dimensional data, by introducing a heteroskedasticity and autocorrelation consistent (HAC) kernel estimator.

They start by assuming that the observed portfolio return series constitute a strictly stationary time series such

that the bivariate return distribution does not change over time. This distribution has mean vector µHAC and

covariance matrix ΣHAC for portfolio k and l given by

µ
HAC =

 µ∗
k

µ∗
l

 and Σ
HAC =

 σ∗2
k σ∗

kl

σ∗
lk σ∗2

l

 . (51)

The sample estimators of the mean and variance are given by µ̂∗
k, µ̂∗

l , σ̂∗2
k , and σ̂∗2

l .

Ledoit and Wolf (2008) define u = (µ∗
k ,µ

∗
l ,ξk,ξl)‘ and û = (µ̂∗

k, µ̂∗
l , ξ̂k, ξ̂l)‘. The second moments of the

excess returns of the assets equal ξi = E[r∗2
1i] for asset i with i = 1, . . . ,N. I can write the difference in Sharpe

ratio as ∆ = f (u) and ∆̂ = f (û), where

f (a,b,c,d) =
a√

c−a2
− b√

d −a2
. (52)

They assume the data to be i.i.d. implying

√
T
(
∆̂−∆

) d−→ N
(
0,∇′ f (v)Ψ∇ f (v)

)
(53)

with Ψ an unknown symmetric positive semi-definite matrix and T the time period. The gradient function

∇′ f (v) equals

∇
′ f (v) =

(
c

(c−a2)1.5 ,−
d

(d −b2)1.5 ,−
1
2

a
(c−a2)1.5 ,

1
2

b
(d −b2)1.5

)
. (54)

5https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html
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Now I can define the standard error of ∆̂, if a consistent estimator Ψ̂ is available, given by

s
(
∆̂
)
=

√
∇′ f (v)Ψ̂∇ f (v)

T
. (55)

Andrews (1991) uses heteroskedasticity and autocorrelation robust (HAC) kernel estimation to obtain a

consistent estimator Ψ̂ such that

Ψ̂ = Ψ̂T =
T

T −4

T−1

∑
j=−T+1

k
(

j
ST

)
Γ̂T ( j), (56)

where k() equals the kernel function, ST the bandwidth, and Γ̂T ( j) a limiting covariance matrix that is given by

ΓT ( j) =


1
T ∑

T
t= j+1 E

[
yty′t− j

]
for j ≥ 0

1
T ∑

T
t=− j+1 E [yt+ jy′t ] for j < 0

with y′t = (rti −µ
∗
1 ,rtn −µ

∗
n ,r

2
ti −ξi,r2

tn −ξn). (57)

Though several kernels can be applied, this study utilizes the pre-whitened Parzen kernel as proposed by

Andrews (1991). Several kernels automatically pick the bandwidth ST . When the kernel and bandwidth are in

place, a two-sided p-value for the null hypothesis H0 : ∆ = 0 is given by

p̂ = 2Φ

(
− |∆̂|

s(∆̂)

)
. (58)

Next to the Sharpe ratio, this study also researches the Information ratio. This performance measure

subtracts the benchmark portfolio returns from the portfolio returns. This gives us the alpha returns such that

Î =
αi

σi,α
with αi = µ

∗
i −µ

∗
b . (59)

with µ∗
i and µ∗

b the excess returns of portfolio i and the benchmark portfolio. The volatility of the alpha

returns is captured by σi,α . In the individual-stock setting, the benchmark portfolio equals the allocation over

the 1197 assets. In the multi-manager setting, the returns are alpha returns meaning APG already subtracts

the geographical MSCI Index from the institutional-managed portfolio returns. In summary, the Sharpe and

Information ratios are both calculated following the HAC inference estimator with a Parzen kernel.

In addition, this study uses certainty-equivalent (CEQ) returns to compare different investment strategies.

The CEQ return equals the risk-free rate an investor is willing to accept rather than adopting a particular risky

portfolio strategy. Specifically, for strategy i, the CEQ is defined as:

ĈEQi = µ̂
∗
i −

γ

2
(σ̂∗

i )
2, (60)

where µ̂∗
i and σ̂∗

i the sample mean and standard deviation of the portfolio excess returns for investment strategy

i, and γ the level of risk-aversion. This study uses the implied level of risk-aversion γ to calculate the CEQ in

the individual-stock setting. In the multi-manager setting, I use the risk-aversion levels 2, 7, and the implied
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level of risk-aversion γ ≃ 22. To test whether the CEQ is significantly different from the bmk weight portfolio I

simulate 10.000 CEQ calculations. The p-value is calculated by taking the sum of differences that is larger than

the sample difference of the respective CEQ. This approach is consistent with that of DeMiguel, Garlappi, and

Uppal (2009).

A higher CEQ means an investor demands a higher return on a risk-free asset. Thus a strategy with a lower

CEQ is considered inferior to a strategy with a higher CEQ. This makes the CEQ a performance indicator

especially relevant for pension funds as their overall aim is to pay a certain return to their participants by

retirement.

Fourthly, the turnover ratio is a relevant performance metric to assess the efficiency of portfolio construction

strategies. The turnover ratio is defined as the sum of absolute differences between the portfolio weight under

strategy j at time t +1 versus the portfolio weight at time t, i.e.,

Turnover =
1

T −M

T−M

∑
t=1

N

∑
j=1

(
∣∣ŵ j, t +1− ŵ j, t+|

)
, (61)

where N is the number of assets and t the moment in time M+1, . . . ,T . The turnover ratio can be interpreted

as the percentage of wealth that is traded in each period. Thus the percentage of wealth that is traded per day

in the individual-stock setting, and per month in the multi-manager setting. Altogether, this results in four

performance measures: 1) the Sharpe ratio with HAC inference, 2) the Information ratio with HAC inference,

3) the CEQ, and 4) the turnover ratio

5 Results

This section presents the empirical results of portfolio optimization techniques applied in the individual-stock

and multi-manager settings. Both settings are evaluated empirically over a time period from October 2012 to

October 2022. The returns in the individual-stock setting are based on a daily frequency, while the returns in

the multi-manager setting are based on a monthly frequency. The four performance indicators for the different

portfolio optimizations are presented in tables 3, 4, 5, 6, and tables 7, 8 in appendices A and C, respectively.

The extensions that aim to improve mean or covariance estimation are inserted in the benchmark model. For

the individual-stock setting, the best hedge model (as in equation 1) and the minimum-variance function are

used, while the mean-variance portfolio is used for the multi-manager setting. All the benchmark optimizations

entail a sample mean and covariance estimation. The tables also show the bmk weights, which represent the

weights that APG holds over the time period October 2012 to October 2022.

In addition, I present information ratios and CEQ in figures 2, 3, and figures 4 and 5 in appendices B and D,

respectively. The information ratio is a widely used metric in the industry to evaluate a portfolio’s additional

return compared to the benchmark portfolio over its volatility. The CEQ is a frequently used metric for pension
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funds as they are interested in the risk-free return that simulates the portfolio’s return. Therefore, these two

performance indicators are not only given in tables but also visualized in figures.

5.1 Individual-stock setting

Tables 3 and 7 give the results of the best hedge models for the hedging coefficients ν = 0.8 and ν = 0.4,

respectively. Moreover, table 4 shows the results of the minimum-variance model. The p-values of the Sharpe

ratio, Info ratio, and CEQ test whether the alternative portfolios obtain a value significantly different from

APG’s benchmark portfolio, the bmk weights. Owing to the overall small differences between the various

optimization techniques, only a few p-values are significant at a 10% level.

First, I compare the best hedge models to the minimum-variance models. Tables 3, 4, 7 show that the

best hedge models outperform the minimum-variance models for both hedging coefficients. The best hedge

optimizations obtain higher Sharpe and Information ratios, CEQ, and lower turnover ratios. This indicates that

accounting for minimizing the tracking error relative to the benchmark weights, while accounting for factor

risk leads to better investments than simply minimizing the volatility of the portfolio. I see a similar result

when I compare the best hedge and minimum-variance models to the benchmark weights, referred to as bmk

weights. The best hedge optimizations perform similarly or outperform the benchmark weights, while the

minimum-variance portfolios are outperformed by the benchmark weights. This indicates APG is better off

by investing in the benchmark portfolio or optimizing according to the best hedge model than following the

minimum-variance portfolio.

Table 4 shows that not only the minimum-variance portfolio with the sample estimates is outperformed by

the benchmark weight portfolio, but also the extensions that entail factor, linear shrinkage, non-linear shrinkage,

and dynamic factor models are outperformed. Only the dynamic models outperform the benchmark weights.

When I compare the benchmark weights to the best hedge models, I see that dynamic-factor models obtain

lower Sharpe ratios than the benchmark weights. On the contrary, the linear and non-linear shrinkage estimators

obtain higher Sharpe ratios than the benchmark weights. These results indicate that the benchmark weights

outperform most of the optimizations in the minimum-variance model, while the opposite is the case for the

best hedge models. This further underlines the result that the best hedges model is beneficial compared to the

minimum-variance optimization.
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Next, I evaluate the impact of lowering the hedging coefficient ν from 0.8 to 0.4. Overall, the results in

table 3 and 7 do not show large differences, indicating changing the hedging coefficient only slightly impacts

the performance of the best hedge models. Considering the Information ratio, I see that the portfolios with the

lower hedging coefficient outperform the portfolios with the higher hedging coefficient. This result is intuitive,

as a milder hedging restriction gives space to invest more risky in order to obtain higher returns. Despite the

dynamic-factor models, I obtain higher volatilities for the lower hedging coefficient ν = 0.4. This underlines

the idea that an investor with a lower hedging coefficient starts to invest more risky. I further see that the CEQ

is positively dependent on the hedging coefficient, thus CEQs for ν = 0.8 are higher than for ν = 0.4. Finally, I

observe slightly higher turnover ratios for ν = 0.8 than for ν = 0.4. Both results are in line with our hypothesis,

as hedging more heavily for factor risk is likely to lead to a higher risk-free return, and a higher trading volume

to preserve the hedge.

The best hedge models with dynamic-factor covariance estimators account twice for factor exposure to the

3 Fama-French factors making it a special case. Table 3 shows that the best hedge model with sample estimates

strictly outperforms the best hedge model with the dynamic-factor covariance estimates. Therefore, I find that

accounting for factor exposure twice does not improve portfolio performance. Moreover, the results in table

7 indicate the dynamic-factor models for lower hedging coefficients perform better than for higher hedging

coefficients relative to alternative optimization techniques. This result is intuitive as a lower hedging coefficient

means the optimizations assign less weight to hedge the factor exposure. Therefore, the models entail a lower

factor exposure in the best hedge function, resulting in relatively better performance of the dynamic-factor

estimators. To summarize, accounting for factor exposure twice in the dynamic-factor best hedge models is not

beneficial, though the negative impact erodes lower hedging coefficients.

Furthermore, tables 3 and 7 show that the results of the dynamic-factor models are almost identical. Only

the DCC-3FF deviates from the DCC-3FF-LS and DCC-3FF-NLS models for ν = 0.8 and M = 750. I presume

this is caused by how I define the dynamic-factor models in this study. I allow the factor covariance matrix to be

time-variant but assume the factor-exposure and residual covariance matrix to be time-invariant. Not allowing

for time variance in the residual covariance matrix reduces the dynamic element of the covariance estimation,

and likely results in identical output over different estimation windows. Moreover, Ledoit and Wolf (2022b)

stated that allowing for time-variance in the residual covariance matrix improves the dynamic-factor estimation.

Comparing the alternative optimization techniques in the best hedge model, I see in table 3 that linearly or

non-linearly shrinking the covariance matrix improves the sample covariance estimator. This is in line with our

hypothesis, as previous papers by Ledoit and Wolf (2004b, 2022b) state shrinking the covariance matrix in

high-dimensional settings lead to better-performing portfolios. Table 7 shows that the linear and non-linear

shrinkage estimators even further improve the best hedge estimator for ν = 0.4. This result is intuitive as
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reducing the weight to the factor exposure reduces the ’shrinking’ in the best hedge function. As a result,

shrinking the covariance matrix results in larger gains for the best hedge models. Therefore, I conclude that

shrinking the covariance matrix with a large weight to the factor exposure results in better-performing portfolios.

The turnover ratio stresses this conclusion as the best hedge model with the sample covariance matrix attains

higher trading volumes than the linear and non-linear shrinkage estimators.

Figure 2 shows the Information ratios of the dynamic covariance estimators outperform the alternative

optimizations. Also, they obtain the lowest turnover ratios. I see in table 7 and figure 4 that changing the

hedging coefficient does not affect this result. The results indicate different optimal portfolios for the Sharpe

and Information ratios. An investor that intends to attain the highest Sharpe ratio benefits from shrinking the

covariance matrix, while one that intends to attain the highest Information ratio benefits from accounting for

time-variance in the covariance estimation.

Despite the turnover ratios of the best hedge model with the sample covariance matrix, the results show

that the estimation window does not largely impact the trading volume as the turnover ratios remain roughly

consistent between M = 250 and M = 750. I obtain larger differences in trading volume between the different

optimizations. The dynamic covariance estimators obtain the lowest turnover ratios. This result is intuitive as

updating the covariance estimation on a daily basis results in more naturally updating the covariance estimator

on market conditions (Engle 2002). Therefore, holding a portfolio with a time-variant covariance estimator

results in lower trading volumes.

In order to assess whether the same results for the best hedge models are observed in a more simple setting,

I test similar extensions in a minimum-variance model. I already found that switching to a minimum-variance

model erodes the portfolio performance. Furthermore, I see in Table 4 that the dynamic-covariance estimators

outperform the alternative optimizations for both the Sharpe and Information ratio, similar to the result I

obtained for Information ratios of the best hedge models. Moreover, the dynamic-factor covariance estimators

obtain higher Information ratios than the linear and non-linear shrinkage estimators and the minimum-variance

portfolio. Therefore, I conclude that accounting for time-variance in the covariance estimator is beneficial

in the individual-stock setting (N = 564, T = 2509), though incorporating factors in the dynamic-covariance

estimator is not.

Notably, table 4 shows estimating the covariance matrix with factor models or linearly shrinkage does not

strictly outperform the sample estimator, except for the LS cov1Para and LScov2Para estimators. The cov1Para

uses a matrix with constant variances on the diagonal and cov2Para constant variances on the diagonal and

constant correlations on the off-diagonal. Moreover, I find that non-linearly shrinking the covariance results in

a portfolio that outperforms the sample covariance estimator. This result underlines the conclusion of Ledoit
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and Wolf (2012) that non-linearly shrinking the covariance matrix leads to better-performing portfolios than

linearly shrinking the covariance matrix in high-dimensional settings.

(a) Best hedges models with M = 250 (b) Best hedges models with M = 750

(c) Minimum-variance models with M = 250 (d) Minimum-variance models with M = 750

Figure 2: Empirically obtained Information ratios and CEQs from tables 3 and 4 of the one-period out-of-sample

daily returns over the time period October 2012 - October 2022. The portfolios are sorted on the x-axis on

descending order of the Information ratio. The Information ratios are on the left y-axis, and the CEQ on the

right y-axis.

34



Ta
bl

e
4:

A
nn

ua
liz

ed
em

pi
ri

ca
le

xc
es

s
an

d
al

ph
a

re
tu

rn
s

of
th

e
m

in
im

um
-v

ar
ia

nc
e

m
od

el
(e

qu
at

io
n

17
)f

ro
m

O
ct

20
12

-O
ct

20
22

su
ch

th
at

T
=

25
09

da
ys

.T
he

nu
m

be
ro

f

as
se

ts
eq

ua
ls

56
4.

T
he

es
tim

at
io

n
w

in
do

w
s

di
ff

er
be

tw
ee

n
M

=
25

0
an

d
M

=
75

0
da

ys
.T

he
re

tu
rn

s
ar

e
th

e
on

e-
pe

ri
od

ou
t-

of
-s

am
pl

e
re

tu
rn

s,
an

d
th

e
op

tim
al

w
ei

gh
ts

ar
e

up
da

te
d

on
ce

ev
er

y
21

tra
di

ng
da

ys
.F

or
th

e
ex

ce
ss

re
tu

rn
s

Is
ub

tra
ct

th
e

ris
k-

fr
ee

ra
te

,a
nd

fo
ra

lp
ha

re
tu

rn
s

th
e

bm
k

w
ei

gh
tr

et
ur

ns
.A

ll
th

e
m

od
el

s
ar

e
di

ff
er

en
te

st
im

at
io

ns

of
th

e
co

va
ri

an
ce

m
at

ri
x

in
th

e
m

in
im

um
-v

ar
ia

nc
e

m
od

el
,w

he
re

’m
in

-v
ar

’
us

es
th

e
sa

m
pl

e
co

va
ri

an
ce

m
at

ri
x.

If
C

E
Q

eq
ua

ls
0.

01
,i

ti
nd

ic
at

es
an

in
ve

st
or

va
lu

es
th

e

po
rt

fo
lio

at
a

1%
ri

sk
-f

re
e

re
tu

rn
.A

tu
rn

ov
er

of
0.

01
in

di
ca

te
s

1%
of

th
e

w
ea

lth
is

tr
ad

ed
on

a
da

ily
ba

si
s.

B
en

ch
m

ar
k

Fa
ct

or
m

od
el

Li
ne

ar
sh

ri
nk

ag
e

N
on

-l
in

ea
r

sh
ri

nk
ag

e
D

C
C

bm
k

m
in

va
r

1F
F

3F
F

L
S

co
v1

Pa
ra

L
S

co
v2

Pa
ra

L
S

co
vC

or
L

S
co

vD
ia

g
L

S
co

vM
kt

N
L

S
L

IS
N

L
S

Q
IS

N
L

S
G

IS
D

C
C

D
C

C
-L

S
D

C
C

-N
L

S
D

C
C

-3
FF

D
C

C
-3

FF
-L

S
D

C
C

-3
FF

-N
L

S

M
=

25
0

E
xc

es
sr

et
ur

n
0.

14
46

0.
06

68
0.

06
50

0.
06

03
0.

07
13

0.
07

23
0.

04
60

0.
06

58
0.

06
17

0.
06

90
0.

14
76

0.
14

77
0.

14
60

0.
09

13
0.

09
12

0.
09

12

St
d

de
v

E
xc

es
sr

et
ur

n
0.

15
32

0.
09

01
0.

10
58

0.
10

44
0.

08
93

0.
08

93
0.

09
26

0.
08

97
0.

08
89

0.
08

90
0.

10
74

0.
10

74
0.

10
77

0.
15

95
0.

15
93

0.
15

94

Sh
ar

pe
ra

tio
0.

94
41

0.
74

12
0.

61
46

0.
57

81
0.

79
86

0.
81

03
0.

49
73

0.
73

33
0.

69
40

0.
77

52
1.

37
42

1.
37

51
1.

35
58

0.
57

21
0.

57
22

0.
57

22

p-
va

lu
e

Sh
ar

pe
ra

tio
0.

32
96

0.
10

98
0.

07
40

0.
43

61
0.

45
89

0.
04

41
0.

30
62

0.
25

25
0.

39
56

0.
11

08
0.

10
96

0.
14

21
0.

32
79

0.
32

81
0.

32
80

A
lp

ha
re

tu
rn

-0
.0

84
2

-0
.0

85
9

-0
.0

90
6

-0
.0

79
7

-0
.0

78
6

-0
.1

04
9

-0
.0

85
2

-0
.0

89
3

-0
.0

82
0

-0
.0

03
4

-0
.0

03
3

-0
.0

05
0

-0
.0

59
7

-0
.0

59
8

-0
.0

59
8

St
d

de
v

A
lp

ha
re

tu
rn

0.
11

06
0.

13
11

0.
13

17
0.

10
81

0.
10

71
0.

11
09

0.
10

97
0.

11
36

0.
11

06
0.

10
69

0.
10

68
0.

10
89

0.
20

93
0.

20
91

0.
20

92

In
fo

ra
tio

-0
.7

60
8

-0
.6

55
5

-0
.6

88
6

-0
.7

37
0

-0
.7

34
1

-0
.9

46
6

-0
.7

76
5

-0
.7

86
1

-0
.7

41
6

-0
.0

31
3

-0
.0

31
1

-0
.0

46
0

-0
.2

85
4

-0
.2

86
0

-0
.2

85
6

p-
va

lu
e

In
fo

ra
tio

0.
00

49
0.

00
27

0.
00

21
0.

00
53

0.
00

52
0.

00
19

0.
00

45
0.

00
43

0.
00

51
0.

08
26

0.
08

28
0.

08
03

0.
03

41
0.

03
40

0.
03

41

C
E

Q
0.

03
96

0.
02

75
0.

02
38

0.
04

46
0.

04
56

0.
01

73
0.

03
88

0.
03

52
0.

04
25

0.
10

90
0.

10
90

0.
10

71
0.

00
60

0.
00

61
0.

00
61

p-
va

lu
e

C
E

Q
0.

50
55

0.
50

24
0.

50
23

0.
50

55
0.

50
56

0.
50

56
0.

50
55

0.
50

57
0.

50
57

0.
49

78
0.

49
77

0.
49

81
0.

49
85

0.
49

88
0.

49
86

Tu
rn

ov
er

0.
03

49
0.

02
50

0.
02

57
0.

03
25

0.
03

17
0.

03
06

0.
03

33
0.

03
09

0.
02

94
0.

04
54

0.
04

56
0.

04
68

0.
02

39
0.

02
39

0.
02

39

M
=

75
0

E
xc

es
sr

et
ur

n
0.

14
38

0.
04

62
0.

05
69

0.
06

82
0.

04
82

0.
04

90
0.

04
07

0.
04

63
0.

04
36

0.
05

05
0.

04
83

0.
04

94
0.

16
39

0.
12

15
0.

12
31

0.
06

71
0.

06
69

0.
06

70

St
d

de
v

E
xc

es
sr

et
ur

n
0.

16
17

0.
08

93
0.

10
72

0.
11

17
0.

08
87

0.
08

86
0.

08
96

0.
08

91
0.

08
85

0.
08

84
0.

08
79

0.
08

82
0.

18
08

0.
10

95
0.

11
02

0.
16

00
0.

15
98

0.
15

99

Sh
ar

pe
ra

tio
0.

88
95

0.
51

72
0.

53
03

0.
61

11
0.

54
34

0.
55

29
0.

45
46

0.
51

96
0.

49
25

0.
57

16
0.

54
96

0.
56

00
0.

90
68

1.
10

90
1.

11
64

0.
41

92
0.

41
88

0.
41

90

p-
va

lu
e

Sh
ar

pe
ra

tio
0.

20
01

0.
17

47
0.

22
07

0.
21

67
0.

22
37

0.
14

32
0.

19
74

0.
17

52
0.

23
80

0.
22

10
0.

22
85

0.
70

32
0.

41
10

0.
41

19
0.

31
25

0.
31

24
0.

31
24

A
lp

ha
re

tu
rn

-0
.0

97
6

-0
.0

86
9

-0
.0

75
6

-0
.0

95
6

-0
.0

94
8

-0
.1

03
1

-0
.0

97
5

-0
.1

00
2

-0
.0

93
2

-0
.0

95
5

-0
.0

94
4

0.
02

01
-0

.0
22

3
-0

.0
20

7
-0

.0
76

7
-0

.0
76

9
-0

.0
76

8

St
d

de
v

A
lp

ha
re

tu
rn

0.
12

10
0.

14
19

0.
13

03
0.

11
94

0.
11

87
0.

12
14

0.
12

04
0.

12
27

0.
11

79
0.

12
01

0.
11

90
0.

02
93

0.
11

05
0.

11
23

0.
21

42
0.

21
41

0.
21

41

In
fo

ra
tio

-0
.8

06
2

-0
.6

12
7

-0
.5

79
6

-0
.8

00
8

-0
.7

98
5

-0
.8

48
9

-0
.8

09
9

-0
.8

16
5

-0
.7

90
6

-0
.7

95
0

-0
.7

93
3

0.
68

76
-0

.2
02

1
-0

.1
84

7
-0

.3
58

3
-0

.3
59

1
-0

.3
58

6

p-
va

lu
e

In
fo

ra
tio

0.
01

63
0.

01
55

0.
01

45
0.

01
63

0.
01

63
0.

01
45

0.
01

60
0.

01
56

0.
01

62
0.

01
61

0.
01

61
0.

57
46

0.
09

65
0.

10
38

0.
06

26
0.

06
26

0.
06

26

C
E

Q
0.

01
95

0.
01

84
0.

02
65

0.
02

18
0.

02
27

0.
01

38
0.

01
97

0.
01

73
0.

02
43

0.
02

24
0.

02
33

0.
05

45
0.

08
13

0.
08

24
-0

.0
18

7
-0

.0
18

6
-0

.0
18

7

p-
va

lu
e

C
E

Q
0.

50
68

0.
50

23
0.

50
14

0.
50

67
0.

50
67

0.
50

67
0.

50
66

0.
50

67
0.

50
68

0.
50

71
0.

50
72

0.
89

59
0.

49
75

0.
49

73
0.

49
88

0.
49

85
0.

49
87

Tu
rn

ov
er

0.
02

15
0.

01
90

0.
02

59
0.

02
12

0.
02

10
0.

02
06

0.
02

13
0.

02
09

0.
02

05
0.

02
03

0.
02

04
0.

01
52

0.
04

55
0.

04
67

0.
02

40
0.

02
39

0.
02

39

35



Figures 5c and 2d show that the dynamic-factor covariance estimators obtain higher Information ratios than

the factor, linear, and non-linear shrinkage estimators. Nevertheless, the dynamic-factor models also obtain the

lowest CEQ compared to the alternative optimizations. This indicates an investor demands the lowest risk-free

return for holding the specific portfolio. The CEQ values for the dynamic-factor models even obtain negative

values. When the CEQ equals -0.0187 I state that an investor expects a negative risk-free return of −1.87% on

the portfolio. As a result, it is unlikely that an agent would invest in such a portfolio.

Altogether, I find that the minimum-variance model with sample estimates is not easily outperformed

by alternative optimization techniques, despite the dynamic-covariance estimators. Moreover, the minimum-

variance model does not strictly outperform the benchmark weights resulting in negative alpha returns and

Information ratios. Although the factor, linear, and non-linear shrinkage models obtain lower turnover ratios

than the sample minimum-variance model, the dynamic and dynamic-factor covariance estimators do not. This

is in contrast with our hypothesis as accounting for time-variance generally leads to lower turnover ratios

(Engle 2002).

5.2 Multi-manager setting

Tables 5, 6, and 8 show the portfolios’ performance for γ = 2,7, and the implied level of risk-aversion γ ≃ 22.

The benchmark (bmk) weight portfolio equals APG’s benchmark weights over time, and the benchmark model

equals Markowitz (1952) mean-variance optimization. For all risk aversion levels, I find that the mean-variance

portfolio only outperforms the benchmark portfolio for a short estimation window of M = 12. Therefore, I find

that the performance of the mean-variance portfolio worsens for larger estimation windows. The decreasing

performance of the mean-variance portfolio is likely caused by the presence of estimation errors in the mean

and covariance.

Further evaluating the effect of the estimation errors, I compare the mean-variance model to the minimum-

variance model both with sample estimates. The mean-variance model deals with mean and covariance

estimation errors, while the minimum-variance model only deals with covariance estimation errors. Tables 5,

6, and8 show that for M = 12 the mean-variance portfolio outperforms the minimum-variance portfolio. The

opposite is observed for M = 36 and M = 72. This implies that the mean estimation errors enlarge when more

observations are considered in the estimation window. This result underlines the conclusion of Merton (1980)

which states the covariance estimation tends to improve for more observations, while the mean estimation does

not. Moreover, the result shows that estimation errors in the mean weaken the portfolio performance.
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Due to the presence of estimation errors in the mean and covariance in the mean-variance portfolio, I expect

this optimization to be outperformed by all the alternative optimizations. Nevertheless, figures 3 and 5 show

that the mean-variance portfolio performs average in terms of Information ratio and CEQ. Moreover, I see

that the performance of the mean-variance portfolio further excels compared to the alternative optimizations

for smaller estimation windows. This result shows that: 1) indeed estimation errors erode the performance of

the mean-variance portfolio for the largest estimation windows as concluded above, and 2) optimizations that

intend to improve these estimation errors do not seem to successfully do so in this empirical study. The latter

is in contrast with the results of the Ledoit and Wolf (2004b, 2012), Pástor (2000), Sharpe (1963), and Stein

(1956) as they introduce these estimators to improve the sample estimator.

I see that the dynamic and dynamic-factor covariance estimators outperform the alternative strategies for

the estimation windows M = 36 and M = 72. Tables 6 and 8 show that for higher risk-aversion levels, the

dynamic-factor covariance estimators obtain higher Information ratios and CEQs than the dynamic-covariance

estimators. This means that it is beneficial for more risk-averse investors to incorporate factor exposure in

the dynamic-covariance estimation, which is not surprising as previous results in the individual-stock setting

indicate that accounting for factor exposure functions as a form of hedging. Moreover, I deduce that in general,

it is beneficial to account for time-variance by estimating the covariance matrix. Although this result underlines

the conclusion by Engle (2002), they state it is likely to be beneficial for daily or weekly return data. Despite

the lower frequency of the monthly return data in the multi-manager setting, I still find the out-performance of

the dynamic covariance estimators.

Furthermore, I see in figure 3 and 5 that the non-linear shrinkage estimators result in slight performance

gains for the shorter estimation window M = 12 by obtaining the highest Information ratios and CEQs.

Nonetheless, the difference between linear shrinkage, mean shrinkage and factor models is small. The overall

performance of linear shrinkage estimators slightly improves compared to the non-linear shrinkage estimators.

Ledoit and Wolf (2012) state the non-linear shrinkage is especially beneficial in high-dimensional settings, thus

N close to M. In the multi-manager setting, I deal with N = 8 assets and an estimation window of M = 12. This

means the number of assets is slightly larger than the moments in time in the estimation window. This might

cause the non-linear shrinkage estimators to perform similarly or better than the linear shrinkage estimators.
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Figures 3b, 3d, and 3f demonstrate that similar to figures 3a, 3c, and 3e, the linear, non-linear shrinkage,

and factor models generate the highest information ratios and CEQ for M = 12, whereas the dynamic and

dynamic-factor models achieve the highest information ratios and CEQ for longer estimation windows. This

is due to the decreasing performance of the linear, non-linear, mean shrinkage, and factor models for larger

estimation windows, while the performance of the dynamic and dynamic-factor models remains consistent.

The consistent performance of the dynamic covariance estimators is explained by how I estimate the model. I

estimate the time-variant 8×8×121 for N = 8 assets and T = 121 months, where-after I use the covariance

matrix at time t in the optimization for t = 1, . . . ,T . As a result, the dynamic covariance estimators might be

less influenced by varying the estimation window, while the linear, non-linear shrinkage, and factor models are

affected.

As I increase the level of risk-aversion from γ = 2 to γ ≃ 22 I expect higher alpha returns and volatilities,

as more risk-seeking investors tend to invest more risky in order to obtain a higher return. Tables 5 and 8

show higher Information ratios for more risk-seeking investors with γ ≃ 22. This difference enlarges for larger

estimation windows and seems to be mainly caused by the higher expected alpha returns a more risk-seeking

investor attains as the volatilities are similar for both risk-aversion levels.

In summary, I see for all the different estimation windows and risk-aversion levels that the dynamic

covariance estimators obtain the lowest turnover ratios. This means that accounting for time-variance results in

lower trading volumes. The same result is obtained for the individual-stock setting in this study and in previous

papers such as Engle (2002). They explain that accounting for time variance leads to estimates that more closely

follow the market trends, thus requiring less trading.

Finally, Tables 9, 10, 11, 12, 13, and 14 present the weight statistics of all distinct models in both the

individual-stock and multi-manager settings. Within the individual-stock setting, the benchmark weights

exhibit the greatest disparity between the average minimum and maximum weights but at the same time yield

the lowest residual sum of squares compared to the alternative models. Conversely, in the multi-manager

setting, the dynamic models exhibit the smallest discrepancy between the average minimum and maximum

weights and achieve the lowest residual sum of squares. Therefore, the weight analysis suggests that small

discrepancies in the weights result in a lower residual sum of squares in the multi-manager setting, while the

opposite is observed in the individual-stock setting. Furthermore, the dynamic-factor models in the individual-

stock minimum-variance setting display a significantly larger residual sum of squares when compared to the

alternative optimization approaches.
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(a) M = 12, γ = 2 (b) M = 12, γ = 7

(c) M = 36, γ = 2 (d) M = 36, γ = 7

(e) M = 72, γ = 2 (f) M = 72, γ = 7

Figure 3: Empirically obtained Information ratios and CEQs from tables 5, 6 of the one-period out-of-sample

monthly returns over the time period October 2012 - October 2022. The portfolios are sorted on the x-axis on

descending order of the Information ratio. The Information ratios are on the left y-axis, and the CEQ on the

right y-axis.
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6 Conclusion

The aim of this research is to evaluate the consequences of sample estimation errors on the robustness of

portfolios and to identify techniques that can minimize these errors. This is done by conducting an empirical

study on daily returns in an individual-stock setting and monthly returns in a multi-manager setting. I find

in both settings that estimation errors erode the performance of the portfolio. Moreover, the portfolios that

incorporate dynamic covariance estimators tend to be the best-performing portfolios, although none of the

alternative optimizations strictly outperforms the benchmark models at a 5% significance level. The main

findings of this paper are divided into two parts: 1) main findings for the individual-stock setting that entails

N = 564 assets over a time period of T = 2509 days and 2) for the multi-manager setting that entails N = 8

assets over a time period of T = 121 months.

In the individual-stock setting, the dynamic covariance estimators outperform the alternative strategies for

the best hedges and minimum-variance models. In the best hedges model, the linear and non-linear covariance

shrinkage estimators improve the performance of the best hedges optimization with sample estimates. On the

other hand, the dynamic-factor estimators perform worse than the best hedges model with the sample estimates.

In the minimum-variance model, I find that dynamic-factor model does outperform the minimum-variance

model with sample estimates. This phenomena is explained by the how the best hedge function is defined. It

minimizes the tracking error by accounting for factor exposures. These factors in the best hedges function are

the 3 Fama-French factors thus similar to the factors in the dynamic-factor estimator. Therefore, implementing a

dynamic-factor covariance estimator in the best hedges model is similar to accounting for factor exposure twice.

Table 7 underlines this reasoning as it shows that lowering the hedging coefficient results in better performing

dynamic-factor estimators.

Further comparing the performance in the best hedge models for both ν = 0.8 and ν = 0.4, I see that the

best hedge models strictly outperform the minimum-variance models. The minimum-variance model with

the sample covariance estimator and some more advanced covariance estimators is even outperformed by the

benchmark weight portfolio. This indicates that accounting for factor risk exposure, while minimizing the

tracking error results in better performing portfolios than only minimizing the volatility of a portfolio, and that

an investor is better off by investing in a benchmark index than in a minimum-variance model. Furthermore, I

find that increasing the hedging coefficient ν results in a higher trading volume and CEQ, which is intuitive as

hedging for factor risk reduces riskiness of the portfolio but also requires additional trading.

Remarkably, the Sharpe and Information ratios of the best hedge models attain the highest values for

different optimization techniques. The Sharpe ratios attain the highest values for the linear and non-linear

shrinkage covariance estimators, while the Information ratios for the dynamic-covariance estimators. Moreover,

as previously stated, I find that the gain in performance of the dynamic-factor covariance estimators erodes
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when the hedging coefficient increases. Therefore, I conclude that an investor that aims to construct the most

beneficial portfolio should determine whether he values the Information ratio over the Sharpe ratio. If the

latter is the case, the dynamic covariance estimators are the best-performing portfolios, while for low hedging

coefficients the performance of the dynamic-factor models improve relative to the dynamic models. Also, the

dynamic and dynamic-factor models require the least asset trading.

In the multi-manager setting, I find that the linear, non-linear shrinkage, and factor models perform best

for the estimation window M = 12, while the dynamic-factor covariance estimators perform best for longer

estimation windows. I find that the performance of the dynamic-factor models remains consistent over the

different estimation windows, while the performance of the linear, non-linear shrinkage, and factor models

erodes for longer estimation windows. Therefore, I conclude that shrinking the covariance matrix is mainly

beneficial for smaller estimation windows, while accounting for dynamic factor covariance matrices more

consistently outperforms the sample covariance matrices and alternative estimations for different estimation

windows. This makes intuitively sense as for small estimation windows M, the ratio N/M increases with N the

number of assets such that the non-linear shrinking estimators improves compared to linear shrinkage (Ledoit

and Wolf 2012).

The benchmark portfolio is set to the mean-variance portfolio. I expect that mean and covariance shrinkage

estimators outperform the mean-variance portfolio due to the occurrence of estimation errors in the mean and

variance estimation. Moreover, I expect these estimation errors to decrease for larger estimation windows

resulting in a better performing mean-variance portfolio. Compared to alternative portfolios, the mean-variance

portfolio performs average, but still outperforms some mean and covariance shrinkage estimators which

contradicts with our hypothesis. For shorter estimation window, the DCC, DCC-Factor, factor, and mean-

shrinkage models are outperformed by the mean-variance portfolio. For larger estimation windows, the factor,

linear and non-linear shrinkage models are outperformed by the mean-variance portfolio. Therefore, I conclude

the mean-variance portfolio performs better than expected compared to several extensions that aim to reduce

the estimation errors in the mean and covariance.

The minimum-variance portfolio performs worse than the mean-variance portfolio for the estimation

window M = 12 months, but outperforms the mean-variance portfolio for M = 36 and M = 72 months. The

worsening performance of the mean-variance portfolio relative to the minimum-variance portfolio is possibly

caused by estimation errors in the mean, because the mean-variance portfolio uses mean estimation, while the

minimum-variance does not. Furthermore, the turnover ratios are lower for the dynamic covariance estimators

which is in line with what I observe in the individual-stock setting. Therefore, I conclude that accounting for

time-variance on individual asset level reduces the trading volume. Finally, I see that the level of risk-aversion
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γ does slightly impact the performance of the portfolios as I attain higher Information ratios for γ ≃ 22 than for

γ = 2. This difference is mainly caused by higher alpha returns, as the volatility’s remain constant.

In summary, I see that including time-variant covariance estimators improves the portfolio performance in

the individual-stock and multi-manager setting. This means that estimation errors in the covariance cause sub-

optimal performance of the benchmark portfolios. In the individual-stock setting the DCC-models outperform

the alternative portfolios, though the DCC-Factor models in the best hedge function are outperformed. Therefore,

I conclude that accounting for factor exposure twice erodes the gain from a time-variant covariance estimator.

Moreover, the best hedge models outperform the minimum-variance models, thus accounting for factor exposure

in the individual-stock setting is beneficial. In the multi-manager setting the DCC-Factor models outperform

the alternative strategies for larger estimation windows. Finally, the estimation errors in the mean worsen

the portfolio performance for larger estimation windows as the minimum-variance portfolio outperforms the

mean-variance portfolio for larger estimation windows.

7 Discussion

This study focuses on optimizing mean and covariance estimation in both an individual-stock and multi-manager

setting. I evaluate the impact of mean and covariance estimation errors on portfolios at APG by comparing their

performance to portfolio optimization techniques aimed at reducing these errors. Portfolio optimization has

been extensively researched, as theoretically optimal optimizations do not always outperform equally weighted

or benchmark portfolios in practice (DeMiguel, Garlappi, and Uppal 2009; Kan and Zhou 2007). Therefore, I

intend to test the portfolios in an empirical study that simulates closely a true investment setting, though this

implies falling back on assumptions and restrictions.

Several optimizations incorporate factor exposure to the Fama-French factors in its optimization. The

benchmark model in the individual-stock setting, the best hedge model, depends on its factor exposure

determined by the varying hedging coefficient. Moreover, the 1FF, 3FF, DCC-FF, DCC-FF-LS, and DCC-FF-

NLS models rely on a factor exposure. This study involves the 1 and 3 Fama-French factors. Alternatively, a

study can include different factors to test whether similar results for these optimizations are obtained. This

study concludes that heavily accounting for factor exposure in the best hedge function, while estimating

the covariance matrix with a dynamic-factor covariance estimator is not beneficial. Further research could

study whether similar results are obtained if the study accounts for distinct factors in both settings instead of

accounting twice for the 3 Fama-French factors. Moreover, Chan, Karceski, and Lakonishok (1999) studies

principal component analysis (PCA) in an empirical portfolio optimization study. They find that the first
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component already explains 75% of the variability in the assets. Therefore, further research might include PCA

as a way to determine the factors instead of using the 3 Fama-French factors.

Another assumption I make in the dynamic-factor covariance estimation models is that the residual

covariance matrix remains constant over time. Ledoit and Wolf (2022b) exhibit the setting with constant and

time-varying covariance matrices. They even modeled the dynamic-factor models with time-varying factor

exposure, though they conclude this does not improve the estimation. Capturing the time-varying component

of the residual covariance matrix makes the dynamic-factor model computationally much heavier, therefore I

assume it to be constant. However, this results in a residual covariance matrix that is a diagonal matrix and

assumes an exact factor model (EFM) (Ledoit and Wolf 2022b). The latter assumption is often violated in

practice, therefore likely impacts the performance. Further research could consider implying a sparse residual

covariance matrix as a time-varying residual covariance matrix is computationally heavy, but a constant one

seems to rely on strong assumptions. One could consider using the POET estimator introduced by Fan, Liao,

and Mincheva (2013).

In the individual-stock setting that entails daily returns, I deal with many assets and moments in time

resulting in longer computational time of the best hedge models. Therefore, I estimate the optimal weights

once every month, assuming one month contains 21 trading days. This implies the proportion of the weights

remains constant for these 21 trading days. However, I deal with daily returns indicating that keeping the same

proportion implies a certain amount of trading. In further research, I could look at portfolio optimizations that

optimize every trading day instead of once every 21 trading days. Furthermore, I could account for changes

in the returns by updating the proportion of the optimized weights. Both methods might better reflect a true

investment setting.

Furthermore, the results are obtained from an empirical study that entails daily and monthly returns from

October 2012 - October 2022. A potential risk of conducting an empirical study for a certain time frame is a bias

in the data. For example, the overall stock market did not entail any compelling financial crises. Though a crisis

might influence how the portfolios perform compared to each other. For example, a minimum-variance portfolio

that just minimizes a portfolio’s volatility might perform better compared to a more risk-seeking portfolio.

Moreover, I might see larger differences between the different parameter settings for the hedging coefficient ν

and the risk-aversion level γ in the individual-stock and multi-manager settings, respectively. Another downside

of an empirical study is that I was not able to test stylized settings. Therefore, further research could conduct a

simulation study or an empirical study for different time periods to see whether similar results are obtained.

Looking at the results, I see that many of the performance measures are not significantly different from the

APG benchmark weight portfolios at a 5% significance level. This is likely caused by the small differences

between the benchmark returns and the several extension techniques. The high significance levels make it
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harder to draw strong conclusions on whether a certain extension truly outperforms the model in place at APG.

Nonetheless, finding no extensions that strictly and significantly outperforms the benchmark models still gives

valuable insights to APG. The results in this study give the first direction in searching for optimizations that do

strictly and significantly outperform the best hedge and mean-variance model.
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B Information ratios and CEQs for best hedge model with hedging coefficient

0.4

(a) Best hedges model with ν = 0.4 and M = 250 (b) Best hedges model with ν = 0.4 and M = 750

Figure 4: Empirically obtained Information ratios and CEQs from appendix A of the one-period out-of-sample

daily returns of the best hedge model with ν = 0.4 over the time period October 2012 - October 2022. The

portfolios are sorted on the x-axis on descending order of the Information ratio. The Information ratios are on

the left y-axis, and the CEQ on the right y-axis.
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D Information ratios and CEQs for mean-variance model with implied risk-

aversion

(a) M = 12, implied γ (b) M = 36, implied γ

(c) M = 72, implied γ

Figure 5: Empirically obtained Information ratios and CEQs from appendix C of the one-period out-of-sample

monthly returns of mean-variance models over the time period October 2012 - October 2022. The portfolios

are sorted on the x-axis on descending order of the Information ratio. The Information ratios are on the left

y-axis, and the CEQ on the right y-axis.
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E Weight statistics of individual-stock best hedge model with hedging coeffi-

cient 0.8

Table 9: This table shows the statistics of the portfolio weights of the best hedge model (equation 1) with

ν = 0.8 from Oct 2012 - Oct 2022 such that T = 2509 days. The best hedge model optimally allocates over

564 assets and accounts for 1197 assets in the benchmark. The estimation windows differ between M = 250

and M = 750 days. The weights are updated once every 21 trading days. The average portfolio weights equals

w̄i ×100 = 0.1773. The table shows the average minimum and maximum portfolio weights, minwi ×100 and

maxwi ×100, and the residual sum of squares, ∑(wi − w̄i)
2.

minwi ×100 maxwi ×100 ∑(wi − w̄i)
2 minwi ×100 maxwi ×100 ∑(wi − w̄i)

2

Models M = 250 M = 750

bmk 0.0022 9.7055 0.0190 0.0022 9.7055 0.0190

best hedges 0.0378 0.7346 42.0493 0.0835 0.3490 32.5147

LS cov1Para 0.0960 0.3315 41.8764 0.1052 0.2907 32.2800

LS cov2Para 0.1042 0.3062 41.8371 0.1124 0.2744 32.1750

LS covCor 0.0961 0.3459 42.0805 0.1081 0.2887 32.4090

LS covDiag 0.0852 0.3739 41.9636 0.0996 0.3063 32.3739

LS covMkt 0.0966 0.3256 41.9904 0.1079 0.2848 32.3683

NLS LIS 0.1165 0.2658 31.9647

NLS QIS 0.1273 0.2506 42.3791 0.1216 0.2558 31.9140

NLS GIS 0.1351 0.2319 32.7169

DCC 0.1700 0.1844 42.9691 0.1737 0.1806 33.4582

DCC-LS 0.1702 0.1841 42.9685 0.1738 0.1805 33.4578

DCC-NLS 0.1722 0.1821 42.9644 0.1748 0.1795 33.4552

DCC-3FF 0.0477 0.5153 43.2751 0.1376 0.2188 9.0307

DCC-3FF-LS 0.0477 0.5153 43.2752 0.0458 0.4873 34.9641

DCC-3FF-NLS 0.0477 0.5153 43.2751 0.0458 0.4873 34.9640
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F Weight statistics of individual-stock best hedge model with hedging coeffi-

cient 0.4

Table 10: This table shows the statistics of the portfolio weights of the best hedge model (equation 1) with

ν = 0.4 from Oct 2012 - Oct 2022 such that T = 2509 days. The best hedge model optimally allocates over

564 assets and accounts for 1197 assets in the benchmark. The estimation windows differ between M = 250

and M = 750 days. The weights are updated once every 21 trading days. The average portfolio weights equals

w̄i ×100 = 0.1773. The table shows the average minimum and maximum portfolio weights, minwi ×100 and

maxwi ×100, and the residual sum of squares, ∑(wi − w̄i)
2.

minwi ×100 maxwi ×100 ∑(wi − w̄i)
2 minwi ×100 maxwi ×100 ∑(wi − w̄i)

2

Models M = 250 M = 750

bmk 0.0022 9.7055 0.0190 0.0022 9.7055 0.0190

best hedges 0.0562 0.4825 35.8673 0.1109 0.2817 34.3102

LS cov1Para 0.1218 0.2649 42.2856 0.1295 0.2425 34.0106

LS cov2Para 0.1244 0.2590 42.2710 0.1335 0.2355 33.9612

LS covCor 0.1169 0.2760 42.1784 0.1315 0.2394 33.9463

LS covDiag 0.1169 0.2817 42.3173 0.1259 0.2498 34.0639

LS covMkt 0.1277 0.2516 42.0777 0.1340 0.2347 33.9506

NLS LIS 0.1351 0.1773 33.9341

NLS QIS 0.1338 0.2385 42.0726 0.1415 0.2226 33.8388

NLS GIS 0.1387 0.2268 33.8794

DCC 0.1759 0.1786 42.9634 0.1767 0.1779 33.4540

DCC-LS 0.1760 0.1786 42.9633 0.1767 0.1778 33.4539

DCC-NLS 0.1764 0.1782 42.9627 0.1769 0.1777 33.4536

DCC-3FF 0.0615 0.4117 42.9419 0.0615 0.4117 42.9419

DCC-3FF-LS 0.0615 0.4117 42.9419 0.0749 0.3496 33.8851

DCC-3FF-NLS 0.0615 0.4117 42.9419 0.0749 0.3496 33.8851
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G Weight statistics of the individual-stock minimum-variance model

Table 11: This table shows the statistics of the portfolio weights of the minimum-variance model (equation 17)

from Oct 2012 - Oct 2022 such that T = 2509 days. The number of assets equals 564. The estimation windows

differ between M = 250 and M = 750 days. The weights are updated once every 21 trading days. The average

portfolio weights equals w̄i ×100 = 0.1773. The table shows the average minimum and maximum portfolio

weights, minwi ×100 and maxwi ×100, and the residual sum of squares, ∑(wi − w̄i)
2.

minwi ×100 maxwi ×100 ∑(wi − w̄i)
2 minwi ×100 maxwi ×100 ∑(wi − w̄i)

2

Models M = 250 M = 750

bmk 0.0022 9.7055 0.0190 0.0022 9.7055 0.0190

minvar 0.0000 1.7390 97.2458 0.0124 0.6994 64.9317

FF1 0.0040 0.7540 28.0893 0.0311 0.4437 24.6311

FF3 0.0044 0.7746 29.2853 0.0046 0.7119 21.9592

LS cov1Para 0.0000 1.4255 61.5580 0.0142 0.6678 56.1427

LS cov2Para 0.0000 1.3381 53.4485 0.0151 0.6548 52.2004

LS covCor 0.0008 1.5294 109.3205 0.0151 0.6933 70.9866

LS covDiag 0.0000 1.5882 84.2461 0.0134 0.6853 62.0457

LS covMkt 0.0004 1.3919 77.4595 0.0159 0.6577 60.9057

NLS LIS 0.0193 0.5972 40.6853

NLS QIS 0.0006 1.1887 46.1687 0.0199 0.5994 45.9761

NLS GIS 0.0196 0.5982 43.2692

DCC 0.0177 1.2975 49.5167 0.1737 0.1806 33.4582

DCC-LS 0.0174 1.3064 49.1297 0.0146 1.1906 37.8671

DCC-NLS 0.0147 1.4031 49.4944 0.0123 1.2786 38.0706

DCC-3FF 0.0096 0.3480 1140.7420 0.0100 0.3462 907.5020

DCC-3FF-LS 0.0089 0.3484 1138.9148 0.0094 0.3466 906.2498

DCC-3FF-NLS 0.0094 0.3481 1139.9695 0.0099 0.3463 906.9614
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H Weight statistics of multi-manager model with risk-aversion of 2

Table 12: This table shows the statistics of the portfolio weights of the mean-variance model (equation 10)

with risk-aversion γ = 2 from Oct 2012 - Oct 2022 such that T = 121 months. The number of assets equals

N = 8. The estimation windows differ between M = 12,36,72 months. The weights are updated every month.

The average portfolio weights equals w̄i ×100 = 12.5. The table shows the average minimum and maximum

portfolio weights, minwi ×100 and maxwi ×100, and the residual sum of squares, ∑(wi − w̄i)
2.

minwi ×100 maxwi ×100 ∑(wi − w̄i)
2 minwi ×100 maxwi ×100 ∑(wi − w̄i)

2 minwi ×100 maxwi ×100 ∑(wi − w̄i)
2

Models M = 12 M = 36 M = 72

bmk 9.1342 17.9727 13.4660 9.1342 17.9727 13.4660 9.1342 17.9727 13.4660

mv 0.0000 100.0000 94.3696 0.0000 75.0000 67.2251 0.0000 50.0000 39.6474

minvar 0.0000 46.0728 18.3264 0.4967 33.6536 10.2682 6.9449 20.2666 4.2750

Pastor 0.0000 45.5682 18.1029 0.3033 33.3824 10.0466 6.9458 20.1712 4.2440

James-Stein 0.0000 100.0000 91.3242 0.0000 73.3635 58.9995 1.5030 38.0468 12.0800

1FF 0.0000 100.0000 93.9067 0.0000 75.0000 67.1914 0.0000 50.0000 35.0524

3FF 0.0000 100.0000 94.0041 0.0000 75.1820 66.6924 0.0000 50.0000 35.5045

LS cov1Para 0.0000 100.0000 93.2662 0.0000 75.5777 67.2064 0.0000 50.0000 38.3514

LS cov2Para 0.0000 100.0000 93.8112 0.0000 75.0000 67.6310 0.0000 50.0000 38.7299

LS covCor 0.0000 100.0000 94.2185 0.0000 75.0000 67.5782 0.0000 50.0000 38.7935

LS covDiag 0.0000 100.0000 94.1556 0.0000 75.0000 67.1875 0.0000 50.0000 38.5772

LS covMkt 0.0000 100.0000 94.3561 0.0000 75.0000 67.5020 0.0000 50.0000 39.5074

NLS LIS 0.0000 100.0000 92.5842 0.0000 75.0000 67.5655 0.0000 50.0000 39.3660

NLS QIS 0.0000 100.0000 93.8798 0.0000 75.0000 67.1548 0.0000 50.0000 39.1177

NLS GIS 0.0000 100.0000 93.3256 0.0000 75.0000 67.1973 0.0000 50.0000 39.1709

DCC 12.4582 12.5505 9.3705 12.4596 12.5485 7.3059 12.4647 12.5345 4.2109

DCC-LS 12.0401 13.1149 5.2389 12.0535 13.1005 4.0842 12.0976 12.9449 2.3224

DCC-NLS 12.4518 12.5650 7.4968 12.4525 12.5626 5.8447 12.4557 12.5480 3.3653

DCC-3FF 0.0000 59.2419 31.9887 0.0000 37.7078 21.3249 4.5158 27.3003 13.1203

DCC-3FF-LS 0.0000 60.6694 31.3886 0.0000 37.6044 20.4036 4.9763 26.5479 12.8377

DCC-3FF-NLS 0.0000 60.6698 31.3885 0.0000 37.6050 20.4028 4.9765 26.5475 12.8377
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I Weight statistics of multi-manager model with risk-aversion of 7

Table 13: This table shows the statistics of the portfolio weights of the mean-variance model (equation 10)

with risk-aversion γ = 7 from Oct 2012 - Oct 2022 such that T = 121 months. The number of assets equals

N = 8. The estimation windows differ between M = 12,36,72 months. The weights are updated every month.

The average portfolio weights equals w̄i ×100 = 12.5. The table shows the average minimum and maximum

portfolio weights, minwi ×100 and maxwi ×100, and the residual sum of squares, ∑(wi − w̄i)
2.

minwi ×100 maxwi ×100 ∑(wi − w̄i)
2 minwi ×100 maxwi ×100 ∑(wi − w̄i)

2 minwi ×100 maxwi ×100 ∑(wi − w̄i)
2

Models M = 12 M = 36 M = 72

bmk 9.1342 17.9727 13.4660 9.1342 17.9727 13.4660 9.1342 17.9727 13.4660

mv 0.0000 100.0000 88.0749 0.0000 73.5214 57.0047 0.0000 51.2748 28.1667

minvar 0.0000 46.0728 18.3264 0.4967 33.6536 10.2682 6.9449 20.2666 4.2750

Pastor 0.0000 45.9535 18.2635 0.4408 33.5513 10.1990 6.9451 20.2381 4.2648

James-Stein 0.0000 100.0000 80.3262 0.0000 67.7011 43.0017 1.5030 32.9426 9.6887

1FF 0.0000 100.0000 85.4449 0.0000 75.1209 53.1100 0.0000 43.3900 19.9663

3FF 0.0000 100.0000 86.1910 0.0000 75.1023 53.8166 0.0000 44.9550 20.7267

LS cov1Para 0.0000 100.0000 84.7040 0.0000 75.5905 54.7741 0.0000 49.4809 24.4652

LS cov2Para 0.0000 100.0000 86.3625 0.0000 75.9648 55.8718 0.0000 49.7795 25.2733

LS covCor 0.0000 100.0000 87.2407 0.0000 74.1995 57.0184 0.0000 49.0063 26.9081

LS covDiag 0.0000 100.0000 86.2061 0.0000 74.8641 56.0854 0.0000 49.0388 26.1747

LS covMkt 0.0000 100.0000 88.5094 0.0000 73.6630 57.5589 0.0000 50.7960 28.0696

NLS LIS 0.0000 100.0000 79.3456 0.0000 73.9476 57.0495 0.0000 50.4226 27.5343

NLS QIS 0.0000 100.0000 85.9220 0.0000 74.1016 56.2403 0.0000 50.1861 27.0049

NLS GIS 0.0000 100.0000 80.8946 0.0000 74.0920 56.2940 0.0000 50.2117 27.1386

DCC 12.4582 12.5505 9.3871 12.4596 12.5484 7.3188 12.4647 12.5345 4.2183

DCC-LS 12.0400 13.1148 5.2568 12.0533 13.1003 4.0982 12.0974 12.9448 2.3303

DCC-NLS 12.4518 12.5650 7.5181 12.4525 12.5626 5.8612 12.4557 12.5479 3.3748

DCC-3FF 0.0334 43.0867 27.2582 5.3364 26.8614 20.3110 7.1836 22.1520 14.0083

DCC-3FF-LS 0.1603 42.4525 26.1527 5.5337 26.5654 20.2373 7.2340 22.0211 13.9832

DCC-3FF-NLS 0.1602 42.4524 26.1527 5.5340 26.5651 20.2373 7.2341 22.0209 13.9832
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Table 14: This table shows the statistics of the portfolio weights of the mean-variance model (equation 10) with

implied level of risk-aversion γ ≃ 22 from Oct 2012 - Oct 2022 such that T = 121 months. The number of

assets equals N = 8. The estimation windows differ between M = 12,36,72 months. The weights are updated

every month. The average portfolio weights equals w̄i ×100 = 12.5. The table shows the average minimum and

maximum portfolio weights, minwi ×100 and maxwi ×100, and the residual sum of squares, ∑(wi − w̄i)
2.

minwi ×100 maxwi ×100 ∑(wi − w̄i)
2 minwi ×100 maxwi ×100 ∑(wi − w̄i)

2 minwi ×100 maxwi ×100 ∑(wi − w̄i)
2

Models M = 12 M = 36 M = 72

bmk 9.1342 17.9727 13.4660 9.1342 17.9727 13.4660 9.1342 17.9727 13.4660

mv 0.0000 100.0000 68.5784 0.0000 61.8884 38.1169 0.8903 41.2679 16.0656

minvar 0.0000 46.0728 18.3264 0.0000 61.8884 38.1169 6.9449 20.2666 4.2750

Pastor 0.0000 46.0428 18.3071 0.4787 33.6212 10.2472 6.9450 20.2574 4.2717

James-Stein 0.0000 99.4282 60.0563 0.0000 56.8674 24.8213 3.5195 26.1646 6.2241

1FF 0.0000 99.1888 59.7689 0.0000 57.6286 29.1813 1.4759 30.9991 9.7252

3FF 0.0000 99.9840 62.7995 0.0000 59.1910 30.7177 0.7875 32.7044 10.0121

LS cov1Para 0.0000 99.4282 60.0563 0.0000 60.6734 32.1056 0.6589 37.6954 11.4962

LS cov2Para 0.0000 96.6995 61.9248 0.0000 61.7403 33.9040 0.5104 38.4415 12.1539

LS covCor 0.0000 99.3604 65.9673 0.0000 61.1597 36.8029 0.7600 38.7622 14.7660

LS covDiag 0.0000 99.0104 62.6680 0.0000 60.9851 34.9951 0.7697 38.4320 13.8583

LS covMkt 0.0000 100.0000 68.1164 0.0000 62.0923 38.5018 0.7674 41.0237 16.1244

NLS LIS 0.0000 95.6783 57.1839 0.0000 62.3534 37.7270 0.3750 40.2822 14.4973

NLS QIS 0.0000 98.4915 63.5369 0.0000 61.3350 36.6175 0.5496 39.4894 13.9654

NLS GIS 0.0000 95.1596 57.9113 0.0000 61.4177 36.6100 0.5210 39.6596 14.1098

DCC 12.4582 12.5505 9.3916 12.4596 12.5484 7.3223 12.4647 12.5345 4.2204

DCC-LS 12.0400 13.1148 5.2618 12.0533 13.1003 4.1021 12.0974 12.9448 2.3324

DCC-NLS 12.4518 12.5650 7.5239 12.4525 12.5626 5.8658 12.4557 12.5479 3.3774

DCC-3FF 4.7601 30.0239 26.2161 7.1623 23.5376 21.1161 7.4011 21.2781 12.1224

DCC-3FF-LS 4.9107 29.7150 26.3315 7.2858 23.5090 21.1921 7.4234 21.2513 12.1449

DCC-3FF-NLS 4.9107 29.7150 26.3315 7.2859 23.5090 21.1921 7.4234 21.2513 12.1449
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