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Abstract

This research investigates the existence of a causal effect of the quality of talent man-

agement practices on sales performance. Insights into talent management practices are of

particular interest to managers who want to attract and develop talented employees in order

to improve the performance of their firm. Using a diverse data set from 20 countries, I em-

ploy a Debiased Machine Learning (DML) approach to ensure unbiased estimates. I address

multicollinearity issues through the pre-processing of the data. That is, variables that are

highly correlated with each other are not included all together. Since these are variables that

measure similar concepts, the exclusion of one of them should solve the multicollinearity issue

without causing any loss of information. Subsequently, I use Post-Double Lasso Selection to

determine optimal control variables.

Various machine learning methods are utilized, with Identification Strategy 3 showing

statistically significant results using Random Forest. These suggest that a firm that is fully

engaged in talent management and talent development exhibits sales 6-7 % higher than a

company that does not invest in talent management practices at all.

The results indicate that firms should evaluate the return on investment in talent man-

agement practices by carefully considering their specific objectives. For example, better

talent management practices may contribute to a better work environment and, based on

the results from this thesis, there may be a pecuniary return if the implementation costs are

not excessive. However, there exist more efficient, less expensive to implement, renowned

strategies for a firm to increase sales, especially in case of necessity rather than ambitious

views. In order to assess the dynamic effect of talent management practices on sales over

time, future research may consider employing a longitudinal analysis. This thesis contributes

to the existing body of literature on talent management practices and on DML. The find-

ings are highly relevant for companies looking to make informed decisions regarding talent

development strategies and resource allocation in such practices.
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1 Introduction

The increasing awareness surrounding talent management practices has led firms to seek top tal-

ent in order to be more successful (Morley, Scullion, Collings & Schuler, 2015). Many companies

strive for improving talent management practices as it is generally believed that better talent

management increases sales (Sparrow, Scullion & Tarique, 2014). However, it is particularly

interesting to study the strength of this relationship when removing the bias that arises when

simply fitting the model through a regression learner. The aim of this thesis is to analyze how

talent management affects sales through Debiased Machine Learning (DML) on a diverse data

set of companies across 20 countries. In this way, this research assesses whether there is a causal

effect of the quality of talent management practices on sales performance. Although research

studying this relationship exists, these do not make use of DML, which may indicate that their

results are biased. Therefore, in this thesis, the DML approach ensures that the estimated

coefficient is unbiased (Chernozhukov, Newey & Singh, 2022).

When estimating a regression through machine learning methods, one often encounters bias

from regularization or model selection. Therefore, it seems necessary to seek a way to correct

these biases. DML is a technique that aims at correcting the bias that arises from causal machine

learning methods applied to high dimensional data. DML is flexible as it can be implemented

to any regression learner (Chernozhukov et al., 2022). Therefore, this research aspires to find

whether talent management practices have an impact on sales by applying DML to a large cross-

sectional data set. This data set includes, among other variables, firms’ talent management

practices (those practices that a firm undertakes to retain and attract top talent employees) and

sales data.

Therefore, the main purpose of this research is to detect the presence and the strength

of a causal relationship between talent management practices and sales. If a strong causal

relationship exists, firms should consider investing more in talent management in order to benefit

from it through increased sales. However, if, after removing bias, this relationship becomes less

credible, either because it is statistically insignificant or the effect size is small, companies might

decide not to use talented employees as a competitive strategy. It is therefore important to

assess whether the effect size is large enough to require action by firms.

Moreover, I repeat the analysis with two different instrumental variables. Firstly, I use

whether a business is family-owned or not as an instrument for talent management. Although

family businesses may be directly correlated with sales (e.g., through the size of the firm) (Gallo,

Tàpies & Cappuyns, 2004), this instrument should satisfy the exclusion restriction because

I will include control variables for sales performance (e.g., the size of the firm). However,

an instrumental variable that is more likely to satisfy the exclusion restriction would be the

number of colleges in the city where the headquarters of the firm is located. That is, if a firm is

located in an area with many cultural and educational institutions, it is likely to attract more

talent and, in turn, invest more in talent management practices. I provide an adaptation of

the Hansen-Sargan test in order to further support the hypothesis that the instruments satisfy

the necessary assumptions. Although a statistically significant result of the Hansen-Sargan

test would indicate a violation of the assumptions, a statistically insignificant result does not

ensure a correct specification of the model (Kiviet & Kripfganz, 2021). However, it can be
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used as evidence supporting the unlikelihood of model misspecification. Finally, I include both

variables in the vector of instruments in order to exploit over-identification. Although the DML

technique should correct for bias in any of the three cases (Chernozhukov et al., 2022), I want

to test whether a more valid instrument provides different results, even when using DML, or

whether the final output is indeed equal across the two regressions. Similarly, I would like to

test whether the machine learning method that is used impacts the final results when applying

DML to it. Therefore, I primarily use Lasso and, subsequently, I will repeat the analysis using

Gradient Boosting, Support Vector Machines, and Random Forests. The findings from this

approach should provide insights on whether the results obtained from DML depend on the

choice of the machine learning method used or on the choice of the instrumental variable.

Lastly, I assess the added value of using DML by comparing the results from this thesis to

those of studies that investigate the relationship between talent management practices and sales

performance through a traditional approach. In addition, I include a traditional instrumental

variable approach as well as Ordinary Least Squares (OLS) applied to my data for comparative

purposes. In case of discrepancies across the DML results and those obtained through traditional

methods, companies that have relied upon findings of the latter may consider modifying their

strategy accordingly. This investigation answers whether the results from this research suggest

an alternative relationship between talent management practices and sales compared to previous

research that does not use DML. Moreover, this thesis provides implications of such findings

from the point of view of a company.

This study is highly relevant as it aims to answer the question of whether investing in talent

management practices increases sales, which may be interesting for companies (Morley et al.,

2015). This is especially true if the findings from previous studies that use traditional methods

reveal to be subject to bias (Chernozhukov et al., 2022). In this case, companies would have to

reconsider their internal organization around talent management. Overall, this research will aid

firms in making informed decisions about whether and how much to invest in talent management

practices to improve sales performance. Moreover, the use of DML in order to improve the

accuracy of the results (Chernozhukov et al., 2022) might reveal important insights regarding

machine learning theory, especially when comparing the results using different instruments and

machine learning methods.

Firms looking to develop talented employees in order to increase sales generally have high

expenditures on talent management practices. For this reason, understanding whether these

practices effectively increase sales is highly important. This research is particularly relevant

as its objective is to estimate a causal relationship, and not a correlation. Moreover, causal

estimates from previous research may be biased (Chernozhukov et al., 2022) and potentially

harm companies that follow advice based on the results of such studies. Hence, the practical

relevance of this study that will provide accurate and unbiased estimates through the use of

DML. Therefore, companies can consider these results reliable in order to have an idea on if and

how much to invest in talent management practices. If a strong positive causal relationship is

found, firms may decide to invest more in such practices. However, if the relationship turns out

to be weak or statistically insignificant, companies might be better off allocating these funds on

other competitive strategies that aim at increasing sales.
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Secondly, DML is an innovative approach (Chernozhukov et al., 2022) and this thesis will

provide insights on how powerful this method is in the instrumental variable setting. Therefore,

this research may add onto the existing literature on machine learning and causal inference.

Moreover, this study will further demonstrate how the use of traditional methods may sometimes

be inapt to estimate causality when dealing with high-dimensional data. Therefore, this thesis

will be of scientific relevance for researchers that wish to use machine learning for causal inference

instead of traditional techniques.

This research is necessary in estimating whether and to what extent there exists a causal re-

lationship between talent management practices and sales performance. Therefore, firms looking

for a strong reason to invest in talent management practices may use this research in order to

base their decision on whether to invest and how much to invest. The existing knowledge on this

topic is not sufficient as it is mostly based on traditional regression analysis. Existing studies

are likely to be biased due to a naive estimation of the causal effect (Chernozhukov et al., 2018)

due to a variety of endogeneity concerns. For example, model selection may induce bias if the

wrong control variables are included. Standard Lasso may lead to bias since it does not take into

account correlation between the control variables and the treatment variable (Chernozhukov et

al., 2018). In order to address these issues, this research uses DML, a technique that aims to ob-

tain an unbiased estimate of the causal effect. Moreover, this study performs an accurate model

selection in order to choose the best control variables from a large pool of options. By comparing

this estimate to results of previous studies, it is possible to infer whether past research has over-

estimated or underestimated the effect of talent management on financial performance. In this

way, firms will be able to weigh their expenditures on talent management practices accordingly.
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2 Literature Review

Chernozhukov et al. (2022) and Chernozhukov et al. (2018) provide an overview of Double

Machine Learning and of DML. In particular, Chernozhukov et al. (2022) address the general

framework of DML and outline the two-step procedure to correct for bias that arises from endo-

geneity when estimating causal effects. The DML technique can be applied to many econometric

models that aim to find causal and structural effects. Endogeneity occurs when the explanatory

variable is correlated with the error term, leading to bias in the estimate of the causal effect.

The DML approach first constructs the conditional expectation function of the dependent vari-

able given the covariates through a machine learning method of choice. The causal parameter

of interest is the expectation of a function of the conditional expectation that depends on an

observation of the data and is linear in the conditional expectation. More precisely, denote the

conditional expectation by

γ0(x) = E[Y |X = x],

where Y is the dependent variable and X is a set of covariates. Then, Chernozhukov et al.

(2022) rely on a regression learner estimator of γ0, say γ̂. Subsequently, denote the function

m(w, γ(x)) as a function of γ(x) (a functional of γ0(x)), that is linear in γ(x) and that depends

on an observation of the data w. The causal estimand is then

θ0 = E[m(W,γ(x))],

where W is an observation and γ(x) is a regression. Chernozhukov et al. (2022) rely on a

regression learner estimand of γ0(x), say γ̂(x), which is appropriately adjusted in order to

satisfy specific conditions (e.g., orthogonality and moment condition). Moreover, the authors

provide results on the validity of the technique as well as theoretical proof that the resulting

causal estimated coefficient has been corrected from bias that arises from endogeneity concerns.

Chernozhukov et al. (2022) use the DML framework to obtain an unbiased estimand of the

average treatment effect on the treated for the National Supported Work Demonstration job

training data, a job training program for underprivileged workers that were employed around

1970. They also apply this technique to estimate unbiased demand elasticities from Nielsen

scanner data while allowing for individual preferences that are correlated with prices and total

expenditure. Moreover, the authors compare different machine learning techniques and they

provide guidance in the appendix for tuning the hyperparameters. It is clear that the DML

technique is highly innovative and works well in evaluating causal effects while eliminating

sources of endogeneity. The DML framework can be applied to different settings, including

instrumental variable regressions, in order to obtain accurate and reliable causal effect estimates.

Chernozhukov et al. (2018) describe applications of DML in the instrumental variable con-

text. This is a useful guide to the approach developed in this research. Consider the instrumental

variable model

Y = Dθ0 + g0(X) + U, EP [U |X,Z] = 0,
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Z = m0(X) + V, EP [V |X] = 0,

where Z denotes the instrument and the true value of the causal parameter is θ0. In order to

estimate θ0, the authors use the Robinson-style score:

ψ(W ; θ, η) = (Y − l(X)− θ(D − r(x)))(Z −m(X)), η = (l,m, r),

where W = (Y,D,X,Z) and l,m, r are P-square integrable functions. This score function

satisfies both the moment and the orthogonality condition, and it is therefore adequate for the

analysis. Its advantage is that all of the nuisance parameters are conditional mean functions

that can be directly estimated through machine learning methods. The authors also show how

regularity conditions are satisfied in this case as well as asymptotic validity of the resulting

estimand. The final estimand of θ0 is then obtained by averaging across the parameters of θ0

that are estimated through the Robinson-style score from cross-fitting samples. Cross-fitting is

a data-splitting procedure where the estimated coefficient is constructed based on a partition of

the data. The final estimand is then obtained by repeating this K times and averaging over the

K estimands obtained. Chernozhukov et al. (2018) compare the results of the DML technique

applied to their example across a variety of machine learning methods and hyperparameters.

Furthermore, they use both two-fold and five-fold cross fitting.

The presence of many control variables may induce bias in the estimation of the causal

effect, may lead to inflated standard errors, and might cause over-fitting issues. This is due to a

higher chance of including bad control variables, which violate the unconfoundedness assumption

behind DML. Hünermund, Louw and Caspi (2021) depict the situation in Figure 1.

Figure 1: Directed acyclic graphs representing different structural causal models
(Hünermund et al., 2021)

Hünermund et al. (2021) show that, if only good control variables are included, DML is able

to obtain an unbiased estimate of the causal effect and to perform much better than Lasso. This

is the situation that Hünermund et al. (2021) shows in the first row of Figure 2. However, if

unconfoundedness does not hold and not all control variables are (conditionally) exogenous, DML

may perform even worse than Lasso. This would suggest that one should include more controls
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such that conditional exogeneity is likely to hold. However, if the covariate space is large, the

probability of finding and including bad controls increases, especially when using purely data-

driven techniques. Only a few bad control variables can produce this outcome because they are

correlated with the treatment and/or the dependent variable just as good controls. Therefore,

they are also likely to be selected by DML (Hünermund et al., 2021).

Figure 2: Performance of DML compared to naive LASSO for different causal models
(Hünermund et al., 2021)

In order to obtain a reliable estimate of the causal effect when working with high-dimensions,

it is important to find an appropriate way to exclude some of them without loosing too much

information. Belloni, Chernozhukov and Hansen (2014) deal with control variable selection when

considering a high number of covariates. They propose a procedure called Post-Double Lasso

Selection in order to select the best control variables. Namely, their framework works with the

regression

Y = Dθ0 +Xα+ U,

D = Xβ + V,

First, the approach of Belloni et al. (2014) selects a set of control variables for the treatment

D. In this way, the authors find important potential confounding factors for the treatment D
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that are strongly related to it since they are able to predict well the treatment variable. It is

crucial to highlight that these are potential confounders as they affect both D and Y , so they

are not necessarily confounders. Secondly, Belloni et al. (2014) repeat the procedure for Y . This

step ensures that the authors find controls that are useful in predicting Y . These controls might

not be correlated with D and, therefore, not be confounders. However, including such selected

variables explains more variation in Y , potentially reducing standard errors. The final set of

control variables is the union of the set of variables selected in the two steps. Given this final

specification of the model that only includes a subset of the original set of covariates, one can

then estimate the treatment effect θ0 using any suitable technique.

Tarique and Schuler (2010) give a comprehensive view of (global) talent management, i.e.

those practices that a firm undertakes in order to attract and develop talent (in a global context).

Specifically, they split talent management into three parts: strategic alignment, global mindset,

and global talent pipeline. Strategic alignment is defined as aligning talent management practices

with business goals. Global mindset refers to instilling a specific mindset into the top leaders

and top performers of the firm, i.e. the talented employees. Global talent pipeline reflects the

need to identify, develop, and keep talent through the operations of the firm. This includes,

for example, the ability for talented employees to easily switch roles or geographical location

within the company and to have access to valuable training opportunities. This thesis considers

talent management practices as an average of indicators measured by the World Management

Survey (WMS). These indicators are closely related to the definition of talent management

given by Tarique and Schuler (2010). In particular, WMS measures the importance that a

firm attributes to developing and making room for talent. That is comparable to a measure

of how much talent management practices are aligned to the goals of a company, i.e. strategic

alignment. Furthermore, WMS measures the ability of a company to instill a talent mindset, i.e.

global mindset. Moreover, WMS outlines a set of talent management indicators that reflects the

quality and quantity of promotion opportunities and of incentives/appraisal systems for talented

employees, which can be directly relates to the definition of global talent pipeline. Therefore,

this supports the choice of using the WMS data in this thesis.

Talent management is a highly relevant topic in nowadays business environment. Pagan-

Castaño, Ballester-Miquel, Sánchez-Garćıa and Guijarro-Garćıa (2022) acknowledge that the

shift in business culture due to globalization and technological advancement encourages talent

management to align with the changing economy. In particular, firms should consider a more

personalized approach to talent management, which addresses talented employees individually,

rather than constructing talent management practices that fit all employees in the same way.

A factor that positively affects talent development is, for example, the well-being of employees.

Therefore, companies with a good work environment are able to build a strong work morale and

job engagement in employees, which will further foster talent. According to Kwon and Jang

(2022), there exists a war for talent amongst companies. Namely, firms focus on the scarcity

of talent, competing for talented employees to work for their company. However, the authors

highlight that talent should not be viewed as a scarce, finite resource. Rather, through talent

management practices, firms may be able to foster and develop talent. Similarly, Kaliannan,

Darmalinggam, Dorasamy and Abraham (2022) suggest that a key factor for embracing talent
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development is inclusiveness. That is, companies should not only focus on a selected group

of talented employees. Rather, by extending talent management practices to a broader, more

inclusive group of people, firms may be able to further further develop talent. Talent is therefore

not to be considered innate, but rather a skill that can be acquired. Although there exists

plenty of research that examines talent management by itself and in relation to many factors

such as innovativeness and job engagement, few investigate the relationship between talent

management and sales performance. Ansar, Baloch et al. (2018) discuss the issues related to

identifying and developing talent. That is, identifying talent is subject to bias when evaluating

an employee. Moreover, concrete career opportunities and an engaging work environment are

keys to developing talent. However, in order to effectively foster talent, companies must align

talent management practices to their overall business goal. Lewis and Heckman (2006) claim that

there is mixed empirical evidence regarding the effect of talent management on firm performance.

Although talent acquisition is considered a competitive advantage, the effectiveness of talent

management practices is not well-studied. Collings and Mellahi (2009) suggest that there are

gaps to be filled in the body of literature on this topic. They find that talent management is

associated to improved financial performance. However, Collings and Mellahi (2009) discuss

the need for investigating causality between talent management and financial performance as

well as the need for identifying those specific mechanisms through which talent management

leads to success. In addition, the existing research on this topic is quite descriptive, highlighting

correlation between talent management and firm performance, rather than causality. In this

thesis, I aim to offer a more systematic approach to analyzing the effect of talent management

practices on sales.

According to Rabbi, Ahad, Kousar and Ali (2015), talented employees are valuable because

they are the ones that can actually lead a company towards success. Therefore, identifying,

attracting, and developing talent is of high importance for a firm that aims at improving financial

performance and sales. Moreover, Wright, Mcmahan and McWilliams (1994) investigate how

good human resource management can be used as a competitive advantage. The authors claim

that creating rare and unique resources, for example valuable talent management practices, can

be a main driver of firm performance.

Kehinde (2011) studies how talent management practices impact firm performance. The au-

thor conducts a correlation analysis and finds that the quality of talent management practices,

e.g., the ability to attract and develop skilled employees, is positively related to firm perform-

ance through innovativeness and employee satisfaction. Namely, talent management fosters

innovation which, in turn, leads to better firm performance. Moreover, talent management has

a positive impact on job engagement and satisfaction. More passionate employees strive for

leading their company to success. Hence, talent management positively affects performance.

Kafetzopoulos (2022) studies the effect of talent management on financial performance through

a traditional approach. The author investigates the relationship between talent development

and financial performance through a survey experiment. He conducts a mediation analysis in

which he uses innovativeness and strategic flexibility as mediators. The findings of this study

reveal a strong statistically significant positive effect of talent management practices on financial

performance through strategic flexibility (with an estimate of 0.200) and innovativeness (with
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an estimate of 0.216). This suggests that firms that invest more in talent management prac-

tices have better financial performance because they are more flexible and innovative. It may

be interesting to compare the results of my research, which aims to correct for bias through

machine learning methods, to the aforementioned papers. That is, one may compare whether

my results show a strong positive effect of talent management practices on sales similarly to

Kehinde (2011) and to Kafetzopoulos (2022), and whether this effect turns out to be causal,

rather than a simple correlation.
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3 Methods

3.1 Background Setting

Firstly, I will estimate the existence and the strength of a causal relationship between talent

management practices and sales performance using DML. Better talent management practices

may lead to higher sales. However, companies with better sales performance may decide to invest

more on talent management practices. Therefore, the relationship is subject to simultaneity bias.

This research proposes to use ownership of the firm as an instrument for talent management

practices. If a firm is family-owned, it will be less prone to invest in talent management practices

as it will be more likely to hire family members, regardless of talent. According to Bhalla and

Bratton (2015), most family-businesses are likely to impose a glass-ceiling on employees that are

not family members, which may prevent good talent management practices to be implemented.

Therefore, the validity condition holds. After controlling for all factors (for example, size, market

performance etc.) that may cause ownership type to be correlated with sales performance

according to Wang and Shailer (2015), the fact of being a family business is not correlated with

the sales itself, except through talent management practices. Therefore, the exclusion restriction

holds if the appropriate controls are included. The model looks as follows:

Y = Dθ0 + g0(X) + U,

Z = m0(X) + V, (1)

where the outcome variable, Y , is (the logarithm of) sales and the endogenous explanatory

variable, D, is a measure of talent management practices that averages over different indicators

of such management practices. To deal with endogeneity, I use an instrumental variable Z

which is a dummy variable that equals 1 if the business is family-owned, and 0 otherwise.

The original set of control variables, X, includes, amongst others: management performance

indicators (unrelated to talent management), the age of the firm, the country of where the plant

of the firm is located, the number of employees in the company, the return on capital employed

(ROCE), the line of business of the firm, the number of managers with a college degree.

The analysis is also replicated with a different instrumental variable Z which indicates the

number of colleges in the city where the firm is located. If a firm is located in a city with lots of

universities, it may attract more talented people which will encourage more investment in talent

management practices. The number of universities in a city has been used as an instrumental

variable for determining the likelihood of students to pursue higher-level education, for example

by Proteasa and Crăciun (2020). As the likelihood for students to attend higher-level education

directly speaks to their motivation and talent mindset, the number of colleges in the city is a

good candidate for an instrumental variable in this research. In fact, a city with more universities

and highly-educated students may increase the supply of talent. Therefore, a firm located in

such a city might be better aware of talent management because they are more exposed to talent.

However, the number of colleges in the city where the firm is located should not be correlated to

sales performance, especially after having controlled for other factors (size, market performance

etc). Finally, I exploit over-identification by including both instruments, i.e. ownership of the
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firm and number of colleges in the area. This should increase the accuracy of the results as the

instrument varies both by firm (ownership) and by city (colleges). Therefore, including more

variation in the instrument should increase the reliability of the findings (Ionescu-Ittu, Delaney

& Abrahamowicz, 2009). This answers whether varying the choice of the instrument provides

different results.

Lastly, this research compares the results to previous results that do not use DML. For ex-

ample, Kehinde (2011) finds evidence for a strong positive correlation between firm performance

and talent management, through innovativeness and job satisfaction. Moreover, Kafetzopoulos

(2022) follows a traditional mediation approach and finds a strong, positive relationship between

talent management practices and financial performance due to strategic flexibility (with an es-

timate of 0.200) and innovativeness (with an estimate of 0.216). In case this thesis comes to

a different conclusion (e.g., insignificance of talent management practices on sales or a lower

impact than the one found in the study of Kafetzopoulos (2022)), it is likely that results from

previous research is biased. Moreover, I compare the results using DML to the ones that I

would obtain when running a simple instrumental variable model as well as when estimating a

traditional OLS regression. In case the results do not match to those obtained through DML,

this will bring about further evidence that DML corrects for bias.

3.2 Post-Double Lasso Selection

I first select the set of control variables X by using Post-Double Lasso Selection, which is a

renowned valid method for principled variable selection (Urminsky, Hansen & Chernozhukov,

2016). The procedure follows the approach of Belloni et al. (2014). Although DML should

already be able to select the relevant variables, Post-Double Lasso Selection additionally ensures

that the estimation is unbiased. Moreover, Post-Double Lasso Selection is not computationally

expensive. However, Post-Double Lasso Selection is not strictly necessary when using DML.

DML is indeed a generalization of Post-Double Lasso Selection. Rather, Post-Double Lasso

Selection should serve as a validation of DML or as a pre-selection process that aids the DML

procedure, in case the latter reveals to be extremely time-expensive in comparison to Post-Double

Lasso Selection. Whereas in Post-Double Selection we assume the data generating process to be

of the following type:

Y = Dθ0 +Xβ + U,

D = Xα+ V,

DML does not specify the relationship between X, Y , and D, which is instead modeled through

the functions g()̇ and r()̇ (Chernozhukov et al., 2022). Therefore, DML works well in a setting

where the relationship is not assumed to be linear, contrary to Post-Double Lasso Selection

(Ahrens, Aitken & Schaffer, 2021). However, DML can produce inaccurate results in case I

include bad covariates. That is because DML is based on unconfoundedness, which is the

exogeneity of all control variables (Hünermund et al., 2021). Since, in this case, Post-Double

Lasso Selection is not directly used for causal inference but, rather, for variable selection, bad

controls should not be an issue and they will most likely be kicked out of the model. Therefore,
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in order to have a complete overview of the model and of the relevant terms, Post-Double

Lasso Selection is a useful preliminary step to DML. The double selection step indeed provides

additional correction to reduce bias and improve the accuracy of the selected variables. This

helps to avoid the inclusion of variables that may lead to biased estimates. It is crucial to

highlight that DML itself should take care of variable selection. However, since DML is a

generalization of Post-Double Lasso Selection, the latter could turn out to be useless, but not

harmful. Applying this procedure does not guarantee better final results, but also not worse.

Applying this additional step is to the discretion of the researchers, who should evaluate their

decision based on the dimensions of the data set and the context of the study.

Post-Double Lasso Selection works as follows. I perform Lasso on the regression of all control

variables in the set X on the treatment variable D

D = Xβ + V,

which will yield a subset of X, say S1, that contains only the variables in X that are statistically

significant in the regression setting above. Subsequently, I perform Lasso on the regression of

all control variables in the set X on the outcome variable Y

Y = Xα+ U,

Similarly, this will result in a subset S2. The union between S1 and S2 is the final set of covariates

X ′ that I will use when regressing D on Y by estimating equation 1.

3.3 Debiased Machine Learning

DML is particularly useful when considering causal inference applied to instrumental variable

models with high-dimensional controls (Kreif & DiazOrdaz, 2019).

3.3.1 Overview of Debiased Machine Learning

Consider the partial linear model:

Y = Dθ0 + g0(X) + U,

D = r0(X) + V,

The aim is to estimate the conditional expectations l(X) = E[Y |X] and r(X) = E[D|X] through

machine learning and partial out the effect of X (similarly to the Frisch-Waugh-Lovell theorem

(Lovell, 2008)). That is, we retrieve θ0 through the simple equation:

θ̂0 =

(
1

n

∑
i∈I

V̂ 2
i

)−1
1

n

∑
i∈I

V̂i ×
(
Y − l̂

)
,

where V = D − r̂ (Ahrens, Hansen, Schaffer & Wiemann, 2023).

However, over-fitting issues may lead the error l(X)− l̂ and V to be correlated and, therefore,

bad performance. In order to solve this, DML uses cross-fitting. This means that, in order to

14



estimate l̂ and r̂, DML relies only on a sub-sample if the data, whereas the remaining part of

the observations are used to construct l(X) and m(X). More precisely, the algorithm for cross

fitting works as follows (Ahrens et al., 2023):

• Split the sample in K parts of equal sizes, and denote the sample that arises from the kth

split by Ik.

• For k = 1, ...,K, construct l̂ and r̂ using sample Ik, whereas estimate l(X) and m(X) using

the observations that are not contained in Ik.

• Finally, obtain θ0 as:

θ̂0 =

(
1

n

∑
i∈I

V̂ 2
i

)−1
1

n

∑
i∈I

V̂i ×
(
Y − l̂)

)
,

where V = D − r̂.

3.3.2 Debiased Machine Learning and Instrumental Variable Models

Applying DML to the instrumental variable model works in a similar fashion as described above,

with the exception that I am interested in the conditional expectation E[Z|X] (Ahrens et al.,

2023) in addition to E[Y |X] and E[D|X].

I apply DML to the instrumental variable setting:

Y = Dθ0 + g0(X
′) + U,

D = r0(Z,X
′) + V, (2)

It is important to highlight that I now model the relationship between X, Y , and D through the

functions g()̇ and r()̇ (Chernozhukov et al., 2022), in contrast to Post-Double Lasso Selection,

where the relationship is assumed to be linear (Ahrens et al., 2021) and, therefore, the coefficients

β and α are suitable in describing the aforementioned relationship. I begin by splitting the

sample in a main part and an auxiliary part. Using the auxiliary sample, I estimate ĝ0(X
′)

through the Lasso method from the equation

Y = Dθ0 + g0(X
′) + U,

as well as r̂0(Z,X
′) through Lasso applied to the equation

D = r0(Z,X
′) + V,

Then, I use the main sample and obtain the orthogonalized component V̂ of D on (Z,X):

V̂ = D − r̂0(Z,X
′),

In order to answer the research question regarding the strength of the causal effect, I obtain

the debiased estimator of θ0 from the OLS formula:
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θ̂0 =

(
1

n

∑
i∈I

V̂i ×Di

)−1
1

n

∑
i∈I

V̂i ×
(
Y − ĝ0(Z,X

′)
)
,

The estimator is root-N consistent, which means that both the estimator and its standard

deviation approach the true value as the the sample size increases. The procedure is repeated K

times by using different data proportions (cross-fitting) and the final estimate of θ0 is the mean

of all results. Cross-fitting increases the rate of convergence (Newey & Robins, 2018). This

is a valid procedure because the various estimates that arise from each cross-fitted sample are

independent of each other (Williamson, Gilbert, Simon & Carone, 2021). This answers whether

varying the choice of the machine learning method provides different results.

3.3.3 Over-identification in Instrumental Variable Models

One of the DML identification strategies that I consider in this thesis relies on an over-identified

instrumental variable model. When the dimension of the excluded instruments vector is larger

than one, the endogenous variable is over-identified. The derivation of the equations is slightly

different compared to the case where the endogenous variable is just-identified. The proof

exploits the Two-Stage Least Squares (2SLS) method and it is inspired by the procedure and

explanations of Baum, Schaffer and Stillman (2003). Consider the model:

Y = Dθ0 + g0(X
′) + U, (3)

and assume that I can find two valid instrumental variables, Z1 and Z2. The first-stage regression

looks as follows:

D = r0(Z1, Z2, X
′) + V,

Similarly to the just-identified case, I estimate ĝ0(Z1, Z2, X
′). Then, I estimate θ0 through

Generalized Method of Moments (GMM) or efficient GMM. This is different than the just-

identified case where I could estimate θ0 through a simple formula.

In order to implement GMM, I first define:

ιi(θ̂0) = (Z1, Z2, X
′)Ti Ûi = (Z1, Z2, X

′)Ti (Yi −Diθ0 − ĝ0(X
′)i), (4)

for all observations i = 1, ..., n. I define the set of all observations as the set I. Equation 4

arises from the exogeneity of the instruments and of the other covariates, which can be written

as E[(Z1, Z2, X
′)iU̇i] = 0. If X ′ has dimension L × n, then ιi(θ̂0) has dimension (L + 2) × 1.

Therefore, there are L+2 moment conditions that will be satisfied at the true value of θ0 (Baum

et al., 2003):

E[ιi(θ0)] = 0

Moreover, define the sample moments as the sample mean of these moments. That is:
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¯
ι(θ̂0) =

1

n

∑
i∈I

ιi(θ̂0) =
1

n

∑
i∈I

(Z1, Z2, X
′)Ti (Yi −Diθ0 − ĝ0(X

′)i) =
1

n
(Z1, Z2, X

′)T Û

The GMM method aims to find θ0 such that
¯

ι(θ̂0) = 0 (Baum et al., 2003).

Subsequently, I construct the GMM objective function, which measures the difference between

the sample moments and the moments obtained through the estimated r̂0(Z1, Z2, X
′). The ob-

jective function looks as follows:

GMM(θ0) = n
¯

ι(θ̂0)
T
W

¯
ι(θ̂0), (5)

where W is a positive semi-definite weighting matrix. In order to find an estimate of θ0, the

objective function in equation 5 needs to be minimized (Baum et al., 2003). Efficient GMM

chooses the optimal weighting matrix, i.e. the weighting matrix that minimizes the asymptotic

variance of θ̂0 (Baum et al., 2003).

17



4 Data

I use (cross-sectional) data from 7094 firms in 20 countries used in the Bloom, Genakos, Sadun

and Van Reenen (2012) survey paper. The data has been retrieved in the years from 2004 to

2010. The data set can be found on the World Management Survey website. The three most

relevant variables that are included are: sales for each firm (dependent variable), six talent man-

agement practices indicators (variable of interest), the type of ownership of the firm, i.e. whether

it is family-owned or other (instrument). The sales variable is provided in different formats and

I will use the logarithm of sales as dependent variable due to scaling and interpretability reasons.

Figure 3 shows the distribution of the variable lsales. The talent management practices indic-

ators refer to different organizational aspects that are related to talent management. These are

measured on a scale from 1 ( = worse) to 5 ( = best) based on their efficiency. I aggregate talent

management indicators into one variable, which is an average over them. Therefore the resulting

treatment variable talent is continuous and ranges from 1 to 5. Figure 4 displays the distribution

of this variable. I aggregate 10 performance indicators and 5 indicators regarding lean manage-

ment in a firm together in a similar way. These will be included in the set of control variables.

Regarding the instrument, I aggregate all types of ownership that are not family-related. This

results in two groups, one which contains 1288 firms and takes value 1 (family-owned, both

with internal or external CEO), and another one which contains 5081 firms and takes value 0

(all other types of ownership such as dispersed shareholders, government, private equity etc.).

Ownership data is missing for 725 firms. Moreover, other covariates that can be controlled for

are included. For example, the data set provides information on general performance, size etc.

of each firm which can also influence sales and must be accounted for.

Figure 3: Distribution of lsales variable.

In order to construct the second instrument, i.e. the number of colleges in the city where the
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Figure 4: Distribution of talent variable.

firm is located, I use additional data that are obtained upon request to the World Management

Survey. This data set contains 9231 firms across the same 20 countries. However, the firms

included in this data do not fully match the ones in the original data set. Indeed, only a

subset of this data set is equal to a subset of the original data. Therefore, since I want to

use the same sample throughout the whole analysis, I merge the two data sets and I obtain the

intersection of the two. The final sample is representative of 1512 firms that are common to both

data sets. I then exclude those observations that include missing values, which results in 1189

observations remaining. I construct the second instrument by reporting, for each city, the number

of universities in the area. This variable does not yield much variation as it is shown by plotting

its distribution in Figure 5, where the range of this variable is from 0 to 120. In order to include

more variation in this variable, I transform the number of universities into its corresponding

squared value (Grissom, 2000). I hereby provide an overview of the data. Namely, I report the

relevant variables (dependent, treatment, instruments) of the first five observations in Table 1

as well as descriptive statistics of these variables in Table 21. The descriptive statistics of all

variables are reported in Table 13 as well as an explanation of their meaning. The distribution

of lsales in Figure 3 resembles a normal distribution with the mean centered around 11, which is

also supported by the mean value given by the descriptive statistics. Similarly, the distribution

of talent in Figure 4 resembles a normal distribution with the mean centered around 3, which is

confirmed by the corresponding mean value in Table 13. Moreover, Figure 6 is a visual display

of the amount of firms that are and are not family-owned. Figure 7 describes the distribution

of the university instrument. In addition, I investigate the validity of the instrument by

inspecting the correlation between the instrument (ownership) and the treatment (talent). The

1All numbers rounded to two decimals.
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Figure 5: Distribution of university variable (before transformation).

log sales talent ownership universities
10.85 1.33 0.00 225.00
11.66 1.00 0.00 121.00
12.01 1.16 0.00 4.00
8.84 1.00 1.00 576.00
9.59 1.833 0.00 100.00

Table 1: First five observations

log sales talent ownership universities
count 1189.00 1189.00 1189.00 1189.00
mean 11.08 2.80 0.21 720.74
std 1.51 0.69 0.41 1695.17
min 3.64 1.00 0.00 0.00
25% 10.2 2.33 0.00 36.00
50% 11.01 2.83 0.00 144.00
75% 11.96 3.20 0.00 576.00
max 16.59 5.00 1.00 18225.00

Table 2: Descriptive Statistics
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Figure 6: Distribution of ownership variable: number of firms that are family-owned (1) versus
not family-owned (0)

Figure 7: Distribution of university variable (after transformation).
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value of the correlation coefficient is -0.15 and it is statistically significant at a 5% level (p-value:

1.59× 10−38). This confirms that, if a business is family-owned, it will be less inclined to invest

in talent management practices. Figure 8 also suggests that talent and ownership are correlated

since firms that are family-owned (1) have a lower density respective to the talent variable than

those that are not (0). Therefore, the validity condition holds. Regarding the second instrument,

Figure 8: Density of talent for two groups of ownership: family-owned (1) versus not family-
owned (0)

the correlation coefficient is 0.06 and it is statistically significant at a 5% level (p-value: 0.03).

This confirms that, if a company is situated in an area with many educational institutions, it

will attract more talented employees.

If the instrument impacts sales even without talent management practices, the instrument

might not be valid. In order to check for this, I use a test conditionally on the other instrument.

That is, the first model is misspecified if the variable ownership or the variable university

directly affects sales through, for example, talented employees, irrespective of their development

through talent management practices. If I control for ownership in the model that uses university

as instrument and vice versa, I should be able to capture the effect of talent as the control

would serve as a proxy for it. Therefore, if this control variable turns out to be statistically

significant, the model is misspecified. This is similar to the Hansen-Sargan test conditional

on one instrument (Kiviet & Kripfganz, 2021). The limitation of this approach is that, if the

control variable is statistically insignificant, this does not guarantee that the model is correctly

specified. Nonetheless, this would be a supporting evidence of the argument that the control

variable at hand, when used as an instrument, is valid. I provide the results for the variable

ownership when universities is employed as instrument and for the variable universities when

ownership is instrumented in Table 3. Table 3 displays the coefficients as well as the p-value for

the two cases.

coefficient std err z P ≥ |z| 95% conf interval
ownership -0.04 0.11 -0.40 0.69 [-0.25, 0.17]
universities 0.00 0.00 -0.33 0.74 [0.00, 0.00]

Table 3: Misspecification Test
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As the coefficients are statistically insignificant at the 5% level in both scenarios, the in-

struments are more likely to be valid. However, one cannot formally test whether the model is

correctly specified. Rather, I can state that this misspecification test does not reject the null

hypothesis that the model is correctly specified.
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5 Results

5.1 Control Variable Selection

Model selection is key to obtaining accurate results. The control variables are selected using Post-

Double Lasso Selection. As Lasso works best in the absence of multicollinearity, I first analyse

correlation amongst the variables in my model. However, since I do not know which variables are

in the true DGP, dropping some of them does not necessarily solve the multicollinearity issue.

Nonetheless, this data pre-processing step might still be useful if paired with nuisance on which

variable can be safely excluded from a logical, rather than only mechanical, standpoint (Kozak,

2009). In fact, I consider both the magnitude of the pairwise correlation coefficient as well as the

interpretation of the two variables at hand in order to make inference on which variable should

be excluded at this stage. The correlation table is reported in Figure 10. The variable measuring

the degree to which a firm makes use of lean practices (lean) and the variable measuring firm

performance (perf ) have a correlation of 0.61 that is statistically significant. Although not the

scope of this thesis, it is interesting that firms adopting modern, lean strategies perform better

than more tradition-oriented ones. Due to this being a source of multicollinearity, I only keep the

variable perf. Moreover, I find almost perfect correlation that is statistically significant between

the variables management and factor management as they measure the same concept using

different specifications. Moreover, these variables have a statistically significant high correlation

of, respectively, of 0.95 and of 0.96 with the variable perf. Therefore, I exclude both management

and factor management from the model. In addition, I find a high correlation of 0.72 that is

statistically significant between the variable measuring the number of employees in a firm (lemp)

and the variable indicating the amount of long-term, tangible assets that a company owns (e.g.,

trucks, machinery) (lppent). Therefore, I only keep the variable lemp because it seems more fit

to be a proxy for the size of the firm.

In order to apply Post-Double Lasso Selection, I perform Lasso to the regression:

talent = Xβ + V, (6)

and, subsequently, on the regression:

lsales = Xα+ U, (7)

where X represents the remaining control variables. The penalty coefficient is chosen through

cross-validation. Figure 9 provides an overview of the selected control variables in equation 6

(lasso talent) and in equation 7 (lasso lsales). These variables consist of the final set of control

variables that are included in the model, which will be referred to as X ′. It is important to

underline that this step is not necessary if the dimension of the covariate space is not extremely

large, such as in the case presented in this thesis. That is because DML is a generalization of Post-

Double Lasso Selection and, therefore, already incorporates good variable selection properties.
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Figure 9: Results from Post-Double Lasso Selection
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5.2 Debiased Machine Learning Identification Strategy 1

The first identification strategy of DML that I consider uses ownership of the firm as an instru-

ment for talent management practices. The setting is as follows:

lsales = θ0talent+ g0(X
′) + U,

talent = r0(ownership,X
′) + V, (8)

where the aim is to obtain an unbiased estimate of θ0. I randomly split the data in two parts, the

auxiliary sample and the main sample. First, I compute the residual of the dependent variable

lsalesa on the treatment variable talenta using the auxiliary sample, say ˆlsalesa. I distinguish

the auxiliary sample and the main sample by introducing a lower case a and m, respectively.

Namely,

θ̄0 =
(
talenta

T talenta
)−1

talenta
T lsalesa,

ˆlsalesa = lsalesa − θ̄0talenta.

I then retrieve an estimate of g0(X
′
m) from:

ˆlsalesa = θ0talenta + g0(X
′
a) + U,

through the use of machine learning (i.e. Lasso) predictions on the main sample, say ĝ0(X
′
m). I

then obtain Û using the main sample and ĝ0(X
′
m). Namely,

Û = lsalesm − ĝ0(X
′
m),

Similarly, I retrieve r̂0(ownershipm, X
′
m) from:

talenta = r0(ownershipa, X
′
a) + V,

and obtain V̂ from:

V̂ = talentm − r̂0(ownershipm, X
′
m).

The estimation of Û and V̂ allows me to retrieve θ̂0 from:

θ̂0 =

(
1

n

∑
i∈I

V̂i × talentmi

)−1
1

n

∑
i∈I

V̂i × Ûi,

I use 5-folds cross-fitting, meaning that the data is divided into 5 proportions when considering

the cross-fitting algorithm. The Lasso penalty parameter is chosen through cross-validation.

Moreover, in addition to Lasso, I repeat the analysis for different machine learning methods:

Random Forest, Gradient Boosting, and Support Vector Machines. Table 4 outlines the results.

The coefficients are statistically insignificant. This is the case for all the machine learning
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Method θ̂0 std err z P ≥ |z| 95% conf interval
Lasso 1.37 1.16 1.48 0.14 [-0.56, 4.01]
Forest 2.00 1.41 1.43 0.15 [-0.75, 4.76]
GB 1.27 1.03 1.23 0.22 [-.75, 3.30]
SVM 1.85 1.17 1.58 0.11 [-0.45, 4.15]

Table 4: Results Identification Strategy 1

methods that I consider for which the estimates, although statistically insignificant, are similar

across each other. This suggests that the accuracy of the results does not heavily depend on

the machine learning technique that is applied and all methods lead to the same conclusion, i.e.

talent management practices do not affect sales. Nonetheless, when considering the p-value or

the standard error, the estimates are close to being statistically significant. Therefore, when

using ownership as instrument, talent management practices do not seem to have an effect on

sales. This may mean that firms should not be investing in talent management practices as it

does not bring any benefit when considering sales. It may still be that talent management adds

value to a company through different channels, for example better employee morale. However,

ultimately, firms should only invest in those practices that have a positive pecuniary return

as the net profit of the investment would then be positive. Although the validity condition of

the instrument is satisfied, it may be that the exclusion restriction is violated. Indeed, when

considering the p-value or the standard error, the estimates are close to being statistically

significant. This suggests that a better instrument may yield statistically significant results. In

the next section, I propose an alternative instrument, i.e. the number of educational institutions

in the city where the firm is located.

5.3 Debiased Machine Learning Identification Strategy 2

The second identification strategy of DML exploits the number of universities that are in the

area where the headquarters of the firm are located as instrument:

lsales = θ0talent+ g0(X
′) + U,

talent = r0(universities,X
′) + V, (9)

where I want to find an unbiased estimate of θ0. The technique is similar to the one used in

Identification Strategy 1 (section 5.2), with the only exception that the variable ownership is

replaced by the variable universities. In the same fashion, I use 5-folds cross-fitting and the

Lasso penalty parameter is chosen through cross-validation. Table 5 displays the results for

Lasso, Random Forest, Gradient Boosting, and Support Vector Machines. The coefficients are

Method θ̂0 std err z P ≥ |z| 95% conf interval
Lasso 1.31 1.20 1.09 0.27 [-1.04, 3.65]
Forest 1.26 1.19 1.06 0.29 [-1.07, 3.59]
GB 1.45 1.24 1.17 0.24 [-0.97, 3.87]
SVM 0.99 0.86 1.15 0.25 [-0.70, 2.68]

Table 5: Results Identification Strategy 2
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statistically insignificant and similar across all machine learning methods used. This confirms

the findings of Identification Strategy 1 ((section 5.2). Although varying the instrument does

not seem to yield different results, it may also be the case that both instrumental variables do

not appropriately capture the endogeneity in talent. I investigate this further by exploiting a

setting where the instrument over-identifies the endogenous variable in the next section.

5.4 Feature Selection for Lasso and Random Forest

Lasso and Random Forest allow for feature selection. Lasso drives the coefficients of irrelevant

variables to zero through the L1 regularization penalty (Fonti & Belitser, 2017). Random Forest

computes the importance of each feature by calculating the decrease in accuracy when that

variable is removed. The larger the decrease in accuracy is, the more important that variable

is (Hasan, Nasser, Ahmad & Molla, 2016). In order to check which variables are excluded in

the DML framework and whether there is a logical, economical explanation for their exclusion,

Table 6 and Table 7 provide an overview of which features have a coefficient or an importance

larger than zero according to Lasso and Random Forest, respectively.

Variable Active (A) Identification Strategy 1 Active (A) Identification Strategy 2
firm id A A
firmage A A
mne f
ldegree A A
perf A A
roce A A
sic A A
dow
lemp A A
dead
year A A

reliability A
i comptenure A A
i seniority A A
australia
brazil

germany
greece
italy

northern ireland
china

republic of ireland
france
japan
poland
portugal
sweden

US

Table 6: Lasso. Coefficients that are different from zero are defined as active and highlighted
with an A.

Lasso excludes all country variables. This may be because the country effect is already

captured by other variables such as performance. It makes economic sense that the variable
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dead is excluded as the owner of the firm being dead or alive is not necessarily predictive of sales

performance. Similarly, the variable mne f is not relevant. That is, whether the headquarters

are located in the country where the firm originated is not a predictor of sales according to

the Lasso procedure. Finally, the coefficient of the variable dow is shrunk to zero. That may

be because the market performance indicator is strictly related to the performance variable

(perf ). Therefore, Lasso only keeps perf and excludes dow. Lasso in Identification Strategy

2 also shrinks to zero the coefficient of the variable reliability. This may also be because the

performance of the firm already reflects the reliability of the company, e.g., a less reliable firm

is probably going to perform worse.

Random Forest includes all variables that are selected by Lasso, except for year and reliabil-

ity. Moreover, Identification Strategy 2 finds that i comptenure is not important. The variable

year might not be considered as important because the time effect might already be captured

by some other variable. Contrarily to Lasso, Random Forest finds that some of the country

variables are indeed important. Moreover, the variable mne f has an importance different from

zero in both identification strategies, whereas the variable dead is considered important in Iden-

tification Strategy 2. However, the variable importance criteria of Random Forest is much more

inclusive than the feature selection of Lasso. That is, a variable may have a low importance

even if different than zero.

The variables that are definitely predictive of sales performance are firm id, firmage, lde-

gree, perf, roce, sic, lemp, and i seniority. The variable firmid is a firm identifier, hence it

is important to include it in the model. The variable firmage may be predictive of sales as

a start up has much less experience than a well-established firm. Therefore, this may impact

sales. The variables ldegree and lemp are indicators of the quality and quantity of the employ-

ees, respectively. Therefore, a firm with many employees of which a large percentage possess a

university degree might perform better than one that does not. The variables perf and roce are

performance indicators, respectively for production and Return on Capital Employed. There-

fore, performance indicators that are not directly related to sales are still indirectly connected

to sales performance. Controlling for them allows to identify the effect of talent management

practices on sales performance rather than overall performance. It is crucial to control for the

variable sic as the industry in which a company operates affects sales performance, irrespective

of talent management practices. Finally, the variable i seniority may affect performance as a

company that promotes earlier based on seniority rather than merit has different characteristics

than one that does not agree with such a promotion policy, e.g., less innovative or less capable

employees at high levels, which would negatively affect sales.

5.5 Debiased Machine Learning Identification Strategy 3

The third identification strategy of DML uses over-identification in order to obtain better results.

Namely, the instrument includes both the ownership of the firm and the number of universities

that are located near the city where the headquarters of the firm are. Because ownership

is firm-specific while universities is city-specific, the instrument that includes both variables

varies in two directions and is therefore more specific. This may lead to the instrument being

able to capture more variability of the endogenous variable which possibly yields better results
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Variable Important (I) Identification Strategy 1 Important (I) Identification Strategy 2
firm id I I
firmage I I
mne f I I
ldegree I I
perf I I
roce I I
sic I I
dow
lemp I I
dead I
year

reliability
i comptenure I
i seniority I I
australia
brazil

germany
greece I I
italy

northern ireland I I
china I I

republic of ireland I I
france
japan
poland I I
portugal I I
sweden I

US

Table 7: Random Forest. Variables importance that are different from zero are defined as
important and highlighted with a I.
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(Wooldridge, 2010, Chapter 15). The setting is the following:

lsales = θ0talent+ g0(X
′) + U,

talent = r0(ownership, universities,X
′) + V, (10)

and I aim to retrieve an unbiased estimate of θ0. The procedure is mirrored to the previous iden-

tification strategies. I use 5-folds cross-fitting and the Lasso penalty parameter is cross-validated.

Table 8 outlines the results for Lasso, Random Forest, Gradient Boosting, and Support Vector

Machines.

Method θ̂0 std err z P ≥ |z| 95% conf interval
Lasso 1.78 0.95 1.88 0.06 [-0.07, 3.64]
Forest 1.67 0.84 2.00 0.05 [0.03, 3.31]
GB 1.15 0.75 1.53 0.12 [-0.32, 2.63]
SVM 1.64 0.87 1.89 0.06 [-0.06, 3.34]

Table 8: Results Identification Strategy 3

The estimates are still statistically insignificant at the 5 % level, except for Random Forest.

However, the statistical significance has greatly increased. Namely, if we consider the threshold

to be 10 %, we obtain estimates of θ0 that are statistically significant across all machine learning

methods, except for Gradient Boosting. Namely, in this case, a firm that abundantly invests

in talent management (i.e. scoring 5) increases sales by 6.68% according to Random Forest,

7.12% according to Lasso, and 6.56% according to Lasso 2 compared to a firm that does not

(i.e. scoring 1), ceteris paribus. It is possible that taking into consideration a larger data set, a

different or expanded set of control variables would greatly improve the statistical significance

of the estimates, leading all of them to be statistical significant at the 5 % level, and not only

at the 10 % level.

There are two important considerations to be made. Firstly, these findings validate the

fact that results obtained from different machine learning methods agree with each other. Not

only the p-values or standard errors that arise from the different techniques are close to each

other, but also the magnitude of the coefficients is similar. Overall, Gradient Boosting seems

to consistently underestimate the standard error (Identification Strategy 1 and Identification

Strategy 3), although the result is not far from the other estimates of the causal effect. Therefore,

I conclude that the choice of the machine learning method does not heavily affect the results.

However, it is suggested to try different techniques when applicable. Secondly, these findings

are evidence that the choice of the instrument affects the estimation, even when using DML.

Therefore, DML cannot replace the choice of an appropriate instrument, or, at least, not entirely.

Including both instruments seems the most fitting choice.

5.6 Results with DML and without Instruments

In order to further validate the choice of implementing an instrumental variable setting, I repeat

the analysis with DML using a model that does not account for talent to be exogenous. Table

2This comes from the fact that there are 4 score points separating a firm with a score of 1 to that with a score
of 5. Therefore, 1.67× 4 = 6.68, 1.78× 4 = 7.12, and 1.64× 4 = 6.56. Hence, the effect lies between 6 and 7%
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9 displays the estimated effect of talent on sales based on such model for the different machine

learning techniques.

Method θ̂0 std err z P ≥ |z| 95% conf interval
Lasso 0.11 0.05 2.44 0.01 [0.02, 0.20]
Forest 0.11 0.04 2.54 0.01 [0.03, 0.20]
GB 0.11 0.04 2.45 0.01 [0.02, 0.20]
SVM 0.12 0.04 2.59 0.01 [0.03, 0.20]

Table 9: Results Model without Instruments

The coefficient of talent is statistically significant at the 5 % level in all cases. This suggests

that talent is indeed endogenous. As these results are different from those obtained through the

instrumental variable setting, the instruments control for endogeneity.

5.7 Comparison and Reflections on Traditional Research

It is generally believed that better talent management practices increase sales. For example,

Kafetzopoulos (2022) finds a positive effect of talent development on financial performance. How-

ever, the author uses a mediation analysis, which does not account for causality. Rather, through

innovation and strategic flexibility, talent development increases sales. However, investing in tal-

ent management practices does not necessarily increase sales. In fact, if talent development is

not correlated with innovation and strategic flexibility, the findings of Kafetzopoulos (2022)

are not valid anymore. Similarly Kehinde (2011) studies the correlation, rather than causality,

between talent management and performance. Although he finds that the two are correlated

through innovativeness and employee satisfaction, the results are biased. That is, the study does

not prove that talent management by itself increases sales. Rather, the study provides evidence

for the hypothesis that high performant companies are also usually those firms that have high

innovation and in which employees are satisfied by their job. Therefore, a company should not

rely on such results in order to increase sales since the exogeneity of the relationship between

talent development and financial performance is not guaranteed. This research finds evidence

of a causal relationship between the two through DML. Although my research and the one of

Kafetzopoulos (2022) both measure talent development on a 1 to 5 scale, the author constructs

the financial performance variable through sales growth, return on investment, and profitabil-

ity based on the scale of Iqbal, Ahmad, Nasim and Khan (2020), Iqbal (2020), and Khan and

Quaddus (2015). Therefore, it is difficult to make a direct comparison of the magnitude of the

estimates obtained by Kafetzopoulos (2022) and those of my thesis. In order to capture the

strength of DML, it is interesting to compare the findings of this thesis to the results that the

exact same analysis would have yield without applying DML. For this reason, I hereby provide

the estimation of three models that are equal to the ones employed in Identification Strategy 1

(section 5.2), Identification Strategy 2 (section 5.3), and Identification Strategy 3 (section 5.5).

Finally, I estimate the model using standard OLS for comparative purposes. Table 10 displays

the first stage estimates of the instrument(s) for the models of Identification Strategy 1, Iden-

tification Strategy 2, and Identification Strategy 3 under the traditional instrumental variable

setting, i.e. r̂10. Table 11 reports the results from the F-tests of excluded instruments, i.e. the

F statistic and the corresponding p-value. Table 12 outlines the estimated effect of talent on
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sales based on such models as well as traditional OLS.

r̂10 std err z P ≥ |z| 95% conf interval
Identification Strategy 1 -0.07 0.04 -1.78 0.08 [-0.15, 0.01]
Identification Strategy 2 0.00 0.00 1.73 0.08 [-2.63e06, 0.00]

Identification Strategy 3 (ownership) -0.07 0.04 -1.73 0.08 [-0.14, 0.01]
Identification Strategy 3 (universities) 0.00 0.00 1.69 0.09 [-3.17e06, 0.00]

Table 10: First Stage

F-statistic Prob ¿ F
Identification Strategy 1 32.62 0.00
Identification Strategy 2 32.61 0.00
Identification Strategy 3 31.67 0.00

Table 11: F-Test of Excluded Instruments

θ̂0 std err z P ≥ |z| 95% conf interval
Identification Strategy 1 1.88 1.30 1.44 0.15 [-0.68, 4.43]
Identification Strategy 2 1.27 1.10 1.16 0.25 [-0.88, 3.43]
Identification Strategy 3 1.58 0.86 1.84 0.07 [-0.10, 3.27]

OLS 0.11 0.04 2.43 0.01 [-0.02, 0.20]

Table 12: Second Stage and OLS

Firstly, the first stage estimates are not statistically significant at the 5 %. However, the

instruments are indeed valid as the F-tests of excluded instruments suggest. The F-statistic

column is an F-statistic for the (joint) significance of the additional instruments. The column

that displays the p-value indicates whether the F-statistic is significant. If the F-statistic is not

statistically significant, it suggests that the additional instruments do not provide significant

explanatory power when considering the influence of the other covariates. In other words, these

instruments do not contribute significantly to explaining the variation in the outcome variable

once the effects of the other variables have been taken into account (Angrist & Pischke, 2009,

Chapter 4). In this case, the F-statistics are all statistically significant at the 5 % level (p-values:

0.00). Hall, Rudebusch and Wilcox (1996) have shown, through Monte Carlo simulation, that

the F-statistic should not only be statistically significant but, as also Stock, Wright and Yogo

(2002) suggest, the F-statistic should be larger than 10 for the excluded instruments to be

considered strong enough (Hayashi, 2011, Chapter 5). In this case, the F-statistics are all larger

than 30. Therefore, I can conclude that the instruments are strong even if the first-stage p-

value does not account for statistical significance at the 5 % level, but only at the 10 % level

(Cameron, Trivedi et al., 2010, Chapter 7). The fact that the coefficient of the instrument,

especially that of universities (Identification Strategy 2 and Identification Strategy 3) which

is equal to 0 when rounded to two decimals, is low does not invalidate these results. Rather,

this means that the instrument does not have a large correlation with the endogenous variable

. However, the instrument is still strong as both the F-test and the correlation coefficient

(section 4) demonstrate. Moreover, Identification Strategy 3 uses both instruments and the

corresponding first-stage coefficient of each instrument, which is displayed in Table 10, remains

unchanged compared to the ones in Identification Strategy 1 and Identification Strategy 2, where
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the instruments are considered separately. This further validates the over-identifying procedure

in Identification Strategy 3 (Greene, 2003, Chapter 11) as it suggests that the two instruments

do not interfere with each other when taken all together (Wooldridge, 2010, Chapter 15).

When comparing the results from DML to those of standard the instrumental variable set-

ting, the the results are very similar. However, the traditional instrumental variable setting

overestimates the standard error which may lead to incorrect inference as one may not consider

an effect as causal when it actually is. In Identification Strategy 1 and Identification Strategy

2, DML and the standard instrumental variable setting agree with each other as both find that

the effect of talent is not significant. Nevertheless, Identification Strategy 3 finds a statistically

significant causal effect of talent on sales when considering DML in one out of the four machine

learning techniques applied, whereas the standard instrumental variable setting does not yield

such result. Naturally, this is because I have established a priori the significance level to be 5 %,

whereas setting it to 10 % would have resulted in the same conclusion across DML and standard

instrumental variable regression, namely that talent has a positive effect on sales. However, this

suggests that DML, because of its bias correction procedure and because it allows for a complete

overview through the comparison across different machine learning techniques, is superior to the

traditional method. Finally, the results of the OLS regression are extremely different from those

of DML as well as those of the standard instrumental variable setting. As expected, the variable

talent is endogenous. For this reason, OLS finds a much lower, positive effect of talent on sales

performance which is statistically significant at the 5 % level. This result is inconclusive and it

is evidence that endogeneity must be taken care of in this scenario.

Overall, companies should indeed consider investing in talent management in order to in-

crease sales. There seems to be support for the hypothesis that better talent management

practices increase sales performance. This increase is around 6-7 % if a company that does not

have any talent management practice in place decides to fully undertake the investment in talent

development. However, there may exist less expensive and more efficient strategies in order to

increase sales. Moreover, the relationship should be further investigated in order to validate the

strength of the results of Identification Strategy 3 (section 5.5). In general, this advice would

be of use for firms that aim at increasing sales because of ambition rather than necessity.
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6 Conclusion

6.1 Limitations

Although this thesis has provided valuable insights into DML as well as into the relationship

between talent management practices and sales, there are some limitations that are worth re-

cognizing. In particular, the small sample size, potential omitted control variables affecting

exogeneity, and the inconsistency in results amongst the machine learning methods are part of

such limitations.

The data set that I use is a merge of two data sets, which, if considered singularly, contain

a large number of observations (7094 and 9231 observations). The first data set contains in-

formation regarding the ownership of the firm and no information regarding the city where the

headquarters of the firm is located, which I need in order to create the variable that describes

the number of universities in such city. The second data set has no ownership information, but

does contain the city where the headquarters of the firm are located. Therefore, the merge of

the data sets is fundamental because it allows me to create both the ownership instrument

and the universities instrument. In fact, using two different samples, one for each instrument,

would not allow me to easily compare results across Identification Strategy 1 (section 5.2) and

Identification Strategy 3 (section 5.3. Moreover, Identification Strategy 3 (section 5.5), which

includes both instruments, would not be possible if the observations across the two data sets do

not match. However, the intersection between the two data sets only includes 1512 common ob-

servations. Furthermore, excluding the observations that contain missing values results in 1189

observations left, which is the final sample that I use. Therefore, the sample size is relatively

small. This induces the external validity of the findings to be less credible and it may reduce

the statistical power of the resulting estimates (Cohen, 1992). Nevertheless, DML and machine

learning techniques such as Lasso should be able to partially correct for the small sample size

when dealing with a high-dimensional covariate space as in this case (Chernozhukov et al., 2018).

Moreover, I have included the results for Identification Strategy 1 when using the full original

sample in Table 15.

Although the control variables that I include seem sufficient, it is possible that additional

factors influencing the relationship between talent management practices and sales have not been

considered. This might induce bias and affect exogeneity, which DML should be able to partially

correct for (Chernozhukov et al., 2018). However, the analysis would be strongly deteriorated if

important confounding factors have not been accounted for (Angrist & Pischke, 2009, Chapter

2). Despite the fact that the omitted variable bias does not seem to be an issue in this case,

additional covariates could have been gathered since the Post-Double Lasso selection of control

variables would have ignored them if they eventually turned out to be unimportant (Belloni et

al., 2014). In addition, it is possible that some of controls, for example the size of the firm, may

also mediate the impact of talent management practices on sales. In this case, I would not be

estimating the full effect of talent management practices on sales.

In this thesis, I use four machine learning methods: Lasso, Random Forest, Gradient Boost-

ing, and Support Vector Machine. Although this is a strength of this research, it also reveals an

inconsistency among the machine learning methods in the conclusions that are drawn about the
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effect of talent management practices on sales performance in Identification Strategy 3 (section

5.5). Indeed, Identification Strategy 3 shows that only two of the four machine learning methods

(Lasso and Random Forest) find a statistically significant effect of talent management practices

on sales. Therefore, this research could have exploited replication of the analysis through an

appropriate simulation method in order to obtain a more comprehensive overview of the rela-

tionship between talent management and sales.

Acknowledging the limitations of this thesis when evaluating the results is extremely im-

portant. Issues such as the small sample size, the potential omitted variable bias, and the

inconsistency amongst the machine learning methods may introduce inaccuracy in the results.

Despite my attempt to deal with such potential problems, further research in DML may confirm

and expand upon the accuracy of the methods and the findings presented in this thesis.

6.2 Future Research

The research conducted in this thesis is of added value to the existing work on DML as well as

to the body of literature regarding the relationship between talent management practices and

sales performance. Nevertheless, future research can address the limitations presented in section

6.1 in many ways.

In order to improve the external validity as well as the statistical power of the results, future

work may consider expanding the sample size. This implies considering a different data set or

even collecting the data first hand in order to retrieve a single data set for both instruments

instead of merging two data sets. Another possibility would be to use one of the two data sets

that are employed in this research while varying one of the instruments in such a way that the

instrument can be retrieved from the same data set as the first one. This would result in more

robust and, in turn, reliable findings.

Considering more control variables would also be of benefit to the robustness and reliability

of the results. Future research may further investigate whether there is omitted variable bias in

the model that I use in this research as well as retrieve additional factors that may be included in

the set of control variables. Overall, the exogeneity of the analysis should be taken into account

and, possibly, improved. Moreover, it would be of interest to study whether some of the control

variables mediate the effect of talent management practices on sales and, if this is the case, to

correct for it. In this way, one would be estimating the full effect of talent management practices

on sales. This would be a great addition, especially if the results differ greatly compared to the

ones obtained in this thesis.

This thesis applies DML to the following machine learning techniques: Lasso, Random Forest,

Gradient Boosting, and Support Vector Machine. Because the results from these four methods

only partially agree with each other, future work may aim at replicating the analysis in order to

find more coherent results across these methods. This would greatly improve the robustness of

the findings. Another possibility would be to further investigate the assumptions behind each

machine learning method and decide upon which ones provide more creditable results.

Moreover, this research uses Post-Double Lasso in order to choose the most appropriate

control variables. However, this is not the only available method that can be employed for control

variables selection. Future work may explore the application of alternative techniques, evaluate
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the different models, and choose the best performing one. This would add onto the research on

control variables selection, which is both fundamental in general and specifically to obtaining

unbiased estimates when applying DML. For example, one may employ forward or backward

step-wise selection which consists in iteratively adding or removing control variables from the

model based on their statistical significance (Harrell, 2017). Another possibility would be to use

Bayesian Model Averaging (BMA), a technique that computes a weighted average over different

models, each considering a specific combination of control variables. The weights are computed

based on the fit of the model to the data (Hoeting, Madigan, Raftery & Volinsky, 1999). In

order to enhance variable parsimony, information-based criteria such as Akaike Information

Criterion (AIC) or Bayesian Information Criterion (BIC) can be used. These penalize models

with a larger number of covariates. Therefore, researchers can choose the set of control variables

that provides with the best trade-off between fitness to the data and complexity (Burnham

& Anderson, 2004). In addition, one may substitute Lasso with Elastic Net in Post-Double

selection. This might yield slightly different results since Elastic Net is a mixture of Ridge and

Lasso (Hastie, Tibshirani & Wainwright, 2015, Chapter 3). This would require choosing two,

rather than one, penalty parameters through cross validation. However, the overall approach

would be similar to the one outlined in this thesis.

Lastly, future research might develop a longitudinal analysis in order to investigate the

relationship between talent management and sales performance through different time points.

This way, researchers would be able to study the dynamics of this relationship over time and its

long-term effects (Singer, Willett, Willett et al., 2003, Chapter 1).

These extensions would be of great impact from both a scientific and a managerial perspect-

ive. By increasing the sample size, ensuring exogeneity, and, overall, expanding the research in

the aforementioned directions, researchers would add onto the innovative body of literature on

DML. Moreover, future research might find additional reliable, valuable insights that are useful

for companies that are considering different managerial strategies to increase sales.

6.3 Concluding Remarks

In conclusion, this thesis is a valuable application of DML to the research on talent management

as a way to increase sales. Despite the results being value-adding, it is crucial to be aware of the

limitations of this analysis. When interpreting the results, one should acknowledge that the small

sample size, the potential omitted variable bias, and the inconsistency issues outlined in section

6.1 might affect the robustness of the study. Nevertheless, the efforts made at correcting such

issues provide a strong motif to consider the findings as reliable. Although the external validity

of the results is to be further investigated, this thesis suggests that better talent management

practices do increase sales. Future research might be able to confirm such finding by considering

a large sample size, exploring different techniques, and comparing the performance of various

models. Moreover, a longitudinal analysis can study how talent management practices evolve

and impact the sales of a company over time. Therefore, despite the limitations, this research

adds onto the body of literature regarding DML and talent management practices. Although

one should be cautious in drawing definitive conclusions from these findings, this thesis is surely

a promising start to a topic that is recently growing in popularity. Therefore, researchers should
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continue investigating this topic as it is of great importance to businesses looking for a solid

strategy to increase sales. Shedding light on the value of talent management is of benefit both

to employers who strive for improved performance and employees who want their talent to be

cultivated. Finally, DML provides a reliable approach for firms to make informed decisions on

budget allocation to talent development.
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A Additional material

This appendix includes additional information on the data. Namely, Table 13 provides de-

scriptive statistics for all the control variables included in the data set. Moreover, I provide

a description of the meaning of each variable in Table 14. In addition, Figure ?? is the full

pair-wise correlation table of the variables, which motivates why I have excluded some control

variables from the model a priori.

Table 15 displays the results of Identification Strategy 1 when using the original data set.

As the original data set for Identification Strategy 2 does not include data on sales, I cannot

replicate the analysis only using this full data set. In fact, I can only use in my model the

observations that are in common with the original data set for Identification Strategy 1 because

the latter includes the sales variable.

count mean std min max
firm id 1189 1712.138 778.335 1 2927
perf 1189 3.160667 0.7367801 1 5

factor management 1093 -0.0037842 1.041617 -3.117611 2.761346
ldegree 1189 1.948448 1.32308 -2.995732 4.510859
firmage 1189 50.23465 48.77487 0 361
lean 1189 2.965459 1.052614 1 5

lppent 1189 9.420793 1.633486 2.944439 15.2441
lemp 1189 5.672413 1.120009 1.098612 10.95209

management 1189 3.018285 0.662965 1.111111 4.888889
mne d 1189 0.2809083 0.4496319 0 1
mne f 1189 0.3246426 0.4684382 0 1
roce 1189 14.80801 16.17594 -25 50
dead 1189 0.0210261 0.1435315 0 1
year 1189 2007.173 1.79372 2004 2010
sic 1189 304.4609 59.10506 201 399
dow 1189 2.948696 1.388344 -1 6

reliability 1189 8.124474 1.623579 4 10
i comptenure 1189 13.81665 10.56987 0 50
i seniority 1189 2.926829 0.9038983 0 5
argentina 1189 0.000841 0.0290007 0 1
australia 1189 0.0042052 0.0647384 0 1
brazil 1189 0.0016821 0.040996 0 1
chile 1189 0.000841 0.0290007 0 1
china 1189 0.0227082 0.1490342 0 1
france 1189 0.1236333 0.3293012 0 1

germany 1189 0.058873 0.2354859 0 1
UK 1189 0.2068966 0.4052511 0 1

greece 1189 0.0908326 0.2874919 0 1
italy 1189 0.0824222 0.2751226 0 1
japan 1189 0.0563499 0.2306931 0 1

northern ireland 1189 0.0218671 0.1463111 0 1
poland 1189 0.0866274 0.2814067 0 1
portugal 1189 0.0807401 0.2725502 0 1

republic of ireland 1189 0.0252313 0.1568929 0 1
sweden 1189 0.0916737 0.2886862 0 1

US 1189 0.0445753 0.2064562 0 1

Table 13: Descriptive Statistics
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Method θ̂0 std err z P ≥ |z| 95% conf interval
Lasso 1.48 1.16 1.27 0.20 [-0.80, 3.76]
Forest 2.91 1.75 1.66 0.10 [-0.53, 6.34]
GB 1.15 1.12 1.03 0.30 [-1.04, 3.35]
SVM 1.48 1.19 1.24 0.21 [-0.85, 3.82]

Table 15: Full Sample Results Identification Strategy 1

B Programming code

This appendix includes the code that I use. I use Python (section B.1 and section B.2) for

the data pre-processing as well as for DML. The DML code in python serves as an example

on how the procedure works in detail. It covers Application 1 and Application 2. This code is

an adaptation of the procedure outlined by Corthoud (2022). For the DML results outlined in

the paper, I use Stata (section B.3), which conveniently includes a DML package. Post-Double

Lasso selection has also been conducted in Stata.

B.1 Python code Instrument 1

import numpy as np

import pandas as pd

import random

from sklearn.preprocessing import PolynomialFeatures

from sklearn.ensemble import RandomForestRegressor

from sklearn.tree import DecisionTreeRegressor

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LassoCV, Lasso, Ridge

import matplotlib.pyplot as plt

from sklearn import svm

from xgboost import XGBRegressor

import io

from scipy.stats import pearsonr

# Data exploration

with open(’AMP_table.csv’, ’r’, encoding=’utf-8’, errors=’replace’) as f:

content = f.read()

data = pd.read_csv(io.StringIO(content), delimiter=",")

print(data.head())

print(data.describe())

#print(data.columns)

#distinct_values = data[’ownership’].unique()
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#print(distinct_values)

# Create ownership dummy

data[’ownership’] = data[’ownership’].replace({’Dispersed Shareholders’: int(0),

’Founder’: int(0), ’Private Equity’: int(0), ’Private Individuals’: int(0),

’Managers’: int(0), ’Government’: int(0), ’Other’: int(0)})

data[’ownership’] = data[’ownership’].replace({’Family owned, family CEO’: int(1),

’Family owned, external CEO’: int(1)})

# Use merged data because you will use the same data set when using different IV

with open(’thesismerge.csv’, ’r’, encoding=’utf-8’, errors=’replace’) as f:

content = f.read()

data = pd.read_csv(io.StringIO(content), delimiter=";")

data = data[(data["_merge"] == "Matched (3)")]

print(data.head())

print(data.describe())

# Count the number of family owned versus not

value_counts = data[’ownership’].value_counts()

print(value_counts)

data[’ownership’].value_counts().plot(kind=’bar’)

plt.title(’Family_owned, data’)

plt.xlabel(’ownership’)

plt.ylabel(’count’)

#plt.show()

# Create dummies for countries (baseline: UK)

value_countscountry = data[’country’].value_counts()

#print(value_countscountry)

dummies = pd.get_dummies(data["country"])

data = pd.concat([data, dummies], axis=1)

print(data.head())

print(data.describe())

# Aggregate indicators

data["talent"] = data[[’talent1’, ’talent2’, ’talent3’, "talent4", "talent5",

"talent6"]].mean(axis=1)
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data["lean"] = data[[’lean1’, ’lean2’]].mean(axis=1)

data["perf"] = data[[’perf1’, ’perf2’, ’perf3’, "perf4", "perf5", "perf6", "perf7",

"perf8", "perf9", "perf10"]].mean(axis=1)

sns.displot(data, x="talent", hue="ownership", col="ownership",

kind="kde", fill=True)

#plt.show()

print(data[[’ownership’, ’lsales’]].groupby(’ownership’).mean().diff())

data = data.reset_index(drop = True)

data[’previous_B’] = data[’uni’].shift(1)

mask = data[’country’] == data[’country’].shift(1)

data.loc[mask, ’uni’] = data[’previous_B’]

data = data.dropna(subset=[’uni’])

data = data.drop(’previous_B’, axis=1)

print(data.head())

data[’previous_B’] = data[’firmage’].shift(1)

data.loc[mask, ’firmage’] = data[’previous_B’]

data = data.dropna(subset=[’firmage’])

data = data.drop(’previous_B’, axis=1)

data[’previous_B’] = data[’plantage’].shift(1)

data.loc[mask, ’plantage’] = data[’previous_B’]

data = data.drop(’previous_B’, axis=1)

data = data[data["ownership"].notnull()]

print(data.head())

print(data.describe())

# Validity of instrument

corr_coef, p_value = pearsonr(data[’talent’], data[’ownership’])

print(’Correlation coefficient:’, corr_coef)

print(’p-value:’, p_value)

print("Sales:")

print(data["lsales"].head())

print(data["lsales"].describe())

print("Talent:")

print(data["talent"].head())

print(data["talent"].describe())

print("Ownership:")

print(data["ownership"].head())

47



print(data["ownership"].describe())

data.to_csv("datathesis22.csv")

# Plot distribution of talent and sales

data[’talent’].plot(kind=’kde’)

plt.xlabel(’talent’)

plt.show()

data[’lsales’].plot(kind=’kde’)

plt.xlabel(’logarithm of sales’)

plt.show()

# control variables found through stata: did a first screening myself to avoid correlation

# to create issues in lasso.

# then used post double lasso selection on stata

# ddml: NOTE: THE OFFICIAL RESULTS THAT I USE ARE GENERATED IN STATA, but this is a nice

# overview of how a manual ddml algorithm would work

# Generate variables

# Add constant term to dataset

#data = data.fillna(0) #NaN corresponds to a 0 score

data[’const’] = 1

D = data[’talent’].values.reshape(-1,1)

X = data[[’const’, ’firmid’, ’firmage’, ’mne_f’, ’ldegree_t’, ’perf’, ’roce’, ’sic’, ’dow’,

’lemp’, ’dead’, ’year’, ’reliability’, ’i_comptenure’, ’i_seniority’, ’Australia’, ’Brazil’,

’Germany’, ’Greece’, ’Italy’, ’Northern Ireland’, ’China’, ’Republic of Ireland’, ’France’,

’Japan’, ’Poland’, ’Portugal’, ’Sweden’, ’United States’]].values

y = data[’lsales’].values.reshape(-1,1)

Z = data[[’const’, ’firmid’, ’firmage’, ’mne_f’, ’ldegree_t’, ’perf’, ’roce’, ’sic’, ’dow’,

’lemp’, ’dead’, ’year’, ’reliability’, ’i_comptenure’, ’i_seniority’, ’Australia’, ’Brazil’,

’Germany’, ’Greece’, ’Italy’, ’Northern Ireland’, ’China’, ’Republic of Ireland’, ’France’,

’Japan’, ’Poland’, ’Portugal’, ’Sweden’, ’United States’, ’ownership’]].values

thetas = np.zeros(shape=[1000,1])

coefs = np.zeros(shape=[1000,29])

for i in range(1000):

I = np.random.choice(1189, int(1189/2),replace=False)

I2 = [x for x in np.arange(1189) if x not in I]

reg = LassoCV(max_iter=1000)

G1 = reg.fit(X[I], y[I]).predict(X[I2])

G2 = reg.fit(X[I], y[I]).predict(X[I])

for j in range(29):
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coefs[i][j] = reg.coef_[j]

M1 = reg.fit(Z[I], D[I]).predict(Z[I2])

M2 = reg.fit(Z[I], D[I]).predict(Z[I])

V1 = D[I2] - M1

V2 = D[I] - M2

theta1 = np.mean(np.dot(V1,(y[I2]-G1)))/np.mean(np.dot(V1,D[I2]))

theta2 = np.mean(np.dot(V2,(y[I]-G2)))/np.mean(np.dot(V2,D[I]))

thetas[i][0] = 0.5*(theta1+theta2)

coef2 = np.mean(coefs, axis = 0)

print("Coefficients: ", coef2)

print("Lasso: ", np.mean(thetas))

thetas = np.zeros(shape=[1000,1])

imp = np.zeros(shape=[1000,29])

for i in range(1000):

I = np.random.choice(1189, int(1189/2),replace=False)

I2 = [x for x in np.arange(1189) if x not in I]

reg = RandomForestRegressor(max_depth = 2)

G1 = reg.fit(X[I], y[I]).predict(X[I2])

G2 = reg.fit(X[I], y[I]).predict(X[I])

for j in range(29):

imp[i][j] = reg.feature_importances_[j]

M1 = reg.fit(Z[I], D[I]).predict(Z[I2])

M2 = reg.fit(Z[I], D[I]).predict(Z[I])

V1 = D[I2] - M1

V2 = D[I] - M2

theta1 = np.mean(np.dot(V1,(y[I2]-G1)))/np.mean(np.dot(V1,D[I2]))

theta2 = np.mean(np.dot(V2,(y[I]-G2)))/np.mean(np.dot(V2,D[I]))

thetas[i][0] = 0.5*(theta1+theta2)

imp2 = np.mean(imp, axis = 0)

print("Variables Importance: ", imp2)

print("Forest: ", np.mean(thetas))

thetas = np.zeros(shape=[1000,1])

for i in range(1000):

I = np.random.choice(1189, int(1189/2),replace=False)

I2 = [x for x in np.arange(1189) if x not in I]

G1 = svm.SVR().fit(X[I], y[I]).predict(X[I2])
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G2 = svm.SVR().fit(X[I], y[I]).predict(X[I])

M1 = svm.SVR().fit(Z[I], D[I]).predict(Z[I2])

M2 = svm.SVR().fit(Z[I], D[I]).predict(Z[I])

V1 = D[I2]-M1

V2 = D[I] - M2

theta1 = np.mean(np.dot(V1,(y[I2]-G1)))/np.mean(np.dot(V1,D[I2]))

theta2 = np.mean(np.dot(V2,(y[I]-G2)))/np.mean(np.dot(V2,D[I]))

thetas[i][0] = 0.5*(theta1+theta2)

print("SVM: ", np.mean(thetas))

thetas = np.zeros(shape=[1000,1])

for i in range(1000):

I = np.random.choice(1189, int(1189/2),replace=False)

I2 = [x for x in np.arange(1189) if x not in I]

G1 = XGBRegressor().fit(X[I], y[I]).predict(X[I2])

G2 = XGBRegressor().fit(X[I], y[I]).predict(X[I])

M1 = XGBRegressor().fit(Z[I], D[I]).predict(Z[I2])

M2 = XGBRegressor().fit(Z[I], D[I]).predict(Z[I])

V1 = D[I2]-M1

V2 = D[I] - M2

theta1 = np.mean(np.dot(V1,(y[I2]-G1)))/np.mean(np.dot(V1,D[I2]))

theta2 = np.mean(np.dot(V2,(y[I]-G2)))/np.mean(np.dot(V2,D[I]))

thetas[i][0] = 0.5*(theta1+theta2)

print("GB: ", np.mean(thetas))

B.2 Python code Instrument 2

import numpy as np

import pandas as pd

import random

from sklearn.preprocessing import PolynomialFeatures

from sklearn.ensemble import RandomForestRegressor

from sklearn.tree import DecisionTreeRegressor

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LassoCV, Lasso, Ridge

import matplotlib.pyplot as plt

from sklearn import svm

from xgboost import XGBRegressor

import io

from scipy.stats import pearsonr
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# Data exploration

with open(’thesismerge.csv’, ’r’, encoding=’utf-8’, errors=’replace’) as f:

content = f.read()

data = pd.read_csv(io.StringIO(content), delimiter=";")

data = data[(data["_merge"] == "Matched (3)")]

print(data.head())

print(data.describe())

#print(data.columns)

#distinct_values = data[’uni’].unique()

#print(distinct_values)

# Count the number of family owned versus not (before merge)

value_counts = data[’uni’].value_counts()

print(value_counts)

data[’uni’].value_counts().plot(kind=’bar’)

plt.title(’Number of universities, data’)

plt.xlabel(’number of universities’)

plt.ylabel(’count’)

plt.show()

# Create dummies for countries (baseline: UK)

value_countscountry = data[’country’].value_counts()

#print(value_countscountry)

dummies = pd.get_dummies(data["country"])

data = pd.concat([data, dummies], axis=1)

# Aggregate indicators

data["talent"] = data[[’talent1’, ’talent2’, ’talent3’, "talent4", "talent5",

"talent6"]].mean(axis=1)

data["lean"] = data[[’lean1’, ’lean2’]].mean(axis=1)

data["perf"] = data[[’perf1’, ’perf2’, ’perf3’, "perf4", "perf5", "perf6", "perf7",

"perf8", "perf9", "perf10"]].mean(axis=1)

#data = data.fillna(0) #NaN corresponds to a 0 score/0 unis

data = data.reset_index(drop = True)

data[’previous_B’] = data[’uni’].shift(1)

mask = data[’country’] == data[’country’].shift(1)
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data.loc[mask, ’uni’] = data[’previous_B’]

data = data.dropna(subset=[’uni’])

data = data.drop(’previous_B’, axis=1)

data["uni"] = data["uni"].astype(int)

data["uni"] = data["uni"]**2

data[’previous_B’] = data[’firmage’].shift(1)

data.loc[mask, ’firmage’] = data[’previous_B’]

data = data.dropna(subset=[’firmage’])

data = data.drop(’previous_B’, axis=1)

data[’previous_B’] = data[’plantage’].shift(1)

data.loc[mask, ’plantage’] = data[’previous_B’]

data = data.drop(’previous_B’, axis=1)

data = data[data["ownership"].notnull()]

print(data.head())

print(data.describe())

# Validity of instrument

corr_coef, p_value = pearsonr(data[’talent’], data[’uni’])

print(’Correlation coefficient:’, corr_coef)

print(’p-value:’, p_value)

data[’uni’].plot(kind=’kde’)

plt.xlabel(’universities’)

plt.xlim(0,18225)

plt.show()

np.sqrt(data[’uni’]).plot(kind=’kde’)

plt.xlabel(’universities’)

plt.xlim(0,np.sqrt(18225))

plt.show()

print("Sales:")

print(data["lsales"].head())

print(data["lsales"].describe())

print("Talent:")

print(data["talent"].head())

print(data["talent"].describe())

print("Number of Universities:")

print(data["uni"].head())

print(data["uni"].describe())
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data.to_csv("datathesis22.csv")

# Count the number of family owned versus not (merge)

value_counts = data[’ownership’].value_counts()

print(value_counts)

data[’ownership’].value_counts().plot(kind=’bar’)

plt.title(’Family_owned, data’)

plt.xlabel(’ownership’)

plt.ylabel(’count’)

plt.show()

sns.displot(data, x="talent", hue="ownership", col="ownership",

kind="kde", fill=True)

plt.show()

# control variables found through stata: did a first screening myself to avoid correlation

# to create issues in lasso.

# then used post double lasso selection on stata

# ddml: NOTE: THE OFFICIAL RESULTS THAT I USE ARE GENERATED IN STATA, but this is a nice

# overview of how a manual ddml algorithm would work

# Generate variables

# Add constant term to dataset

data[’const’] = 1

D = data[’talent’].values.reshape(-1,1)

X = data[[’const’, ’firmid’, ’firmage’, ’mne_f’, ’ldegree_t’, ’perf’, ’roce’, ’sic’, ’dow’,

’lemp’, ’dead’, ’year’, ’reliability’, ’i_comptenure’, ’i_seniority’, ’Australia’, ’Brazil’,

’Germany’, ’Greece’, ’Italy’, ’Northern Ireland’, ’China’, ’Republic of Ireland’, ’France’,

’Japan’, ’Poland’, ’Portugal’, ’Sweden’, ’United States’]].values

y = data[’lsales’].values.reshape(-1,1)

Z = data[[’const’, ’firmid’, ’firmage’, ’mne_f’, ’ldegree_t’, ’perf’, ’roce’, ’sic’, ’dow’,

’lemp’, ’dead’, ’year’, ’reliability’, ’i_comptenure’, ’i_seniority’, ’Australia’, ’Brazil’,

’Germany’, ’Greece’, ’Italy’, ’Northern Ireland’, ’China’, ’Republic of Ireland’, ’France’,

’Japan’, ’Poland’, ’Portugal’, ’Sweden’, ’United States’, ’uni’]].values

thetas = np.zeros(shape=[1000,1])

coefs = np.zeros(shape=[1000,29])

for i in range(1000):

I = np.random.choice(1189, int(1189/2),replace=False)

I2 = [x for x in np.arange(1189) if x not in I]

reg = LassoCV(max_iter=1000)

G1 = reg.fit(X[I], y[I]).predict(X[I2])

G2 = reg.fit(X[I], y[I]).predict(X[I])
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for j in range(29):

coefs[i][j] = reg.coef_[j]

M1 = reg.fit(Z[I], D[I]).predict(Z[I2])

M2 = reg.fit(Z[I], D[I]).predict(Z[I])

V1 = D[I2] - M1

V2 = D[I] - M2

theta1 = np.mean(np.dot(V1,(y[I2]-G1)))/np.mean(np.dot(V1,D[I2]))

theta2 = np.mean(np.dot(V2,(y[I]-G2)))/np.mean(np.dot(V2,D[I]))

thetas[i][0] = 0.5*(theta1+theta2)

coef2 = np.mean(coefs, axis = 0)

print("Coefficients: ", coef2)

print("Lasso: ", np.mean(thetas))

thetas = np.zeros(shape=[1000,1])

imp = np.zeros(shape=[1000,29])

for i in range(1000):

I = np.random.choice(1189, int(1189/2),replace=False)

I2 = [x for x in np.arange(1189) if x not in I]

reg = RandomForestRegressor(max_depth = 2)

G1 = reg.fit(X[I], y[I]).predict(X[I2])

G2 = reg.fit(X[I], y[I]).predict(X[I])

for j in range(29):

imp[i][j] = reg.feature_importances_[j]

M1 = reg.fit(Z[I], D[I]).predict(Z[I2])

M2 = reg.fit(Z[I], D[I]).predict(Z[I])

V1 = D[I2] - M1

V2 = D[I] - M2

theta1 = np.mean(np.dot(V1,(y[I2]-G1)))/np.mean(np.dot(V1,D[I2]))

theta2 = np.mean(np.dot(V2,(y[I]-G2)))/np.mean(np.dot(V2,D[I]))

thetas[i][0] = 0.5*(theta1+theta2)

imp2 = np.mean(imp, axis = 0)

print("Variables Importance: ", imp2)

print("Forest: ", np.mean(thetas))

thetas = np.zeros(shape=[1000,1])

for i in range(1000):

I = np.random.choice(1189, int(1189/2),replace=False)

I2 = [x for x in np.arange(1189) if x not in I]

54



G1 = svm.SVR().fit(X[I], y[I]).predict(X[I2])

G2 = svm.SVR().fit(X[I], y[I]).predict(X[I])

M1 = svm.SVR().fit(Z[I], D[I]).predict(Z[I2])

M2 = svm.SVR().fit(Z[I], D[I]).predict(Z[I])

V1 = D[I2]-M1

V2 = D[I] - M2

theta1 = np.mean(np.dot(V1,(y[I2]-G1)))/np.mean(np.dot(V1,D[I2]))

theta2 = np.mean(np.dot(V2,(y[I]-G2)))/np.mean(np.dot(V2,D[I]))

thetas[i][0] = 0.5*(theta1+theta2)

print("SVM: ", np.mean(thetas))

thetas = np.zeros(shape=[1000,1])

for i in range(1000):

I = np.random.choice(1189, int(1189/2),replace=False)

I2 = [x for x in np.arange(1189) if x not in I]

G1 = XGBRegressor().fit(X[I], y[I]).predict(X[I2])

G2 = XGBRegressor().fit(X[I], y[I]).predict(X[I])

M1 = XGBRegressor().fit(Z[I], D[I]).predict(Z[I2])

M2 = XGBRegressor().fit(Z[I], D[I]).predict(Z[I])

V1 = D[I2]-M1

V2 = D[I] - M2

theta1 = np.mean(np.dot(V1,(y[I2]-G1)))/np.mean(np.dot(V1,D[I2]))

theta2 = np.mean(np.dot(V2,(y[I]-G2)))/np.mean(np.dot(V2,D[I]))

thetas[i][0] = 0.5*(theta1+theta2)

print("GB: ", np.mean(thetas))

B.3 Stata code

import delimited datathesis22.csv

*descriptive stats

summarize

*correlation table

pwcorr firmid firmage management mne_d mne_f factor_management ldegree_t

lemp lppent lean perf roce dead year sic dow reliability i_comptenure

i_seniority argentina australia brazil canada chile china france

germany greece italy japan northernireland poland portugal republicofireland

sweden unitedstates, star(.05)

*controls selection -- manual
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*first reg

lasso linear talent firmid firmage mne_f ldegree_t

lemp perf roce dead year sic dow reliability i_comptenure

i_seniority argentina australia brazil canada chile china france

germany greece italy japan northernireland poland portugal republicofireland

sweden unitedstates, stop(0)

estimates store mylassotalent

lassocoef

cvplot

*second reg

lasso linear lsales firmid firmage mne_f ldegree_t

lemp perf roce dead year sic dow reliability i_comptenure

i_seniority argentina australia brazil canada chile china france

germany greece italy japan northernireland poland portugal republicofireland

sweden unitedstates, stop(0)

estimates store mylassosales

lassocoef

cvplot

*compare

lassocoef mylassotalent mylassosales

lassocoef mylassotalent mylassosales, display(coef, postselection)

*to keep:

*firmid firmage mne_f ldegree perf roce sic dow lemp dead year reliability i_comptenure

i_seniority australia brazil germany greece italy northernireland china

republicofireland france japan poland portugal sweden unitedstates

*control selection -- package

dsregress lsales talent, controls(firmid plantage mne_d mne_f ldegree_t lemp perf

roce dead year sic dow reliability i_comptenure i_seniority argentina australia

brazil canada chile china france germany greece italy japan northernireland poland

portugal republicofireland sweden unitedstates) selection(cv)

*ddml packages

ssc install ddml

ssc install pystacked

*defining iv setting: IV: ownership (application 1)

global Y lsales

global X firmid firmage mne_f ldegree_t perf roce sic dow lemp dead year reliability

i_comptenure i_seniority australia brazil germany greece italy northernireland china
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republicofireland france japan poland portugal sweden unitedstates

global D talent

global Z ownership

*results: random forest, lasso (cv), gradient boosting, support vector machine

ddml init iv

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(rf))

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(lassocv))

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(gradboost))

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(svm))

*defining iv setting: IV: number of unis (application 2)

global Y lsales

global X firmid firmage mne_f ldegree_t perf roce sic dow lemp dead year reliability

i_comptenure i_seniority australia brazil germany greece italy northernireland china

republicofireland france japan poland portugal sweden unitedstates

global D talent

global Z uni

*results: random forest, lasso (cv), gradient boosting, support vector machine

ddml init iv

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(rf))

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(lassocv))

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(gradboost))

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(svm))

*defining iv setting: IV: overidentification: ownership and number of unis (application 3)

global Y lsales

global X firmid firmage mne_f ldegree_t perf roce sic dow lemp dead year reliability

i_comptenure i_seniority australia brazil germany greece italy northernireland china

republicofireland france japan poland portugal sweden unitedstates

global D talent

global Z uni ownership

*results: random forest, lasso (cv), gradient boosting, support vector machine

ddml init iv

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(rf))

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(lassocv))

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(gradboost))

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(svm))

*without instruments

57



ddml init partial

qddml $Y $D ($X), model(partial) cmdopt(method(rf))

qddml $Y $D ($X), model(partial) cmdopt(method(lassocv))

qddml $Y $D ($X), model(partial) cmdopt(method(gradboost))

qddml $Y $D ($X), model(partial) cmdopt(method(svm))

*standard iv

ivregress 2sls lsales firmid firmage mne_f ldegree_t perf roce sic dow lemp dead year

reliability i_comptenure i_seniority australia brazil germany greece italy northernireland

china republicofireland france japan poland portugal sweden unitedstates

(talent = ownership), first

*hansen sargan

ivregress 2sls lsales firmid firmage mne_f ldegree_t perf roce sic dow lemp dead year reliability i_comptenure i_seniority australia brazil germany greece italy northernireland china republicofireland france japan poland portugal sweden unitedstates ownership (talent = uni)

ivregress 2sls lsales firmid firmage mne_f ldegree_t perf roce sic dow lemp dead year

reliability i_comptenure i_seniority australia brazil germany greece italy northernireland

china republicofireland france japan poland portugal sweden unitedstates (talent = uni)

, first

*hansen sargan

ivregress 2sls lsales firmid firmage mne_f ldegree_t perf roce sic dow lemp dead year reliability i_comptenure i_seniority australia brazil germany greece italy northernireland china republicofireland france japan poland portugal sweden unitedstates uni (talent = ownership)

ivregress 2sls lsales firmid firmage mne_f ldegree_t perf roce sic dow lemp dead year

reliability i_comptenure i_seniority australia brazil germany greece italy northernireland

china republicofireland france japan poland portugal sweden unitedstates

(talent = uni ownership), first

*OLS

reg lsales talent firmid firmage mne_f ldegree_t perf roce sic dow lemp dead year

reliability i_comptenure i_seniority australia brazil germany greece italy northernireland

china republicofireland france japan poland portugal sweden unitedstates

*with original data (appendix)

clear

import delimited datathesisown.csv

*defining iv setting

global Y lsales

global X firmid mne_f ldegree_t perf roce sic dow lemp dead year reliability i_comptenure i_seniority australia brazil germany greece italy northernireland china republicofireland france japan poland portugal sweden unitedstates

global D talent

global Z ownership
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*results: random forest, lasso (cv), gradient boosting, support vector machine

ddml init iv

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(rf))

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(lassocv))

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(gradboost))

qddml $Y ($X) ($D = $Z), model(iv) cmdopt(method(svm))
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