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Abstract

In online advertising, an internet user is continuously exposed to different advertisement

campaigns. Accurately estimating contributions of advertisements to conversion decisions is

crucial for marketers and advertisement auctioneers. However, the literature lacks simple and

interpretable models that solve the multi-touch attribution (MTA) problem. In this paper,

we discuss a simple, interpretable, feed-forward neural network using attention mechanisms,

which we refer to as a Stacked Web of Attentional Neurons (SWAN). We show that the

SWAN performs similar as a state-of-the-art model and adds interpretability, despite its

simpler architecture. On top of that, we introduce a novel ensemble learning approach,

referred to as Ensemble-SWAN, which uses random undersampling to leverage the class

imbalance problem in MTA data. The Ensemble-SWAN shows slightly reduced performance

compared to the SWAN. However, we believe using the Ensemble-SWAN is worthwhile as

failures in real-world applications caused by oversampling are avoided. On top of that, to

address the need for acknowledging uncertainty in real-world applications, we discuss two

epistemic uncertainty quantification (UQ) approaches. In the constituent models of the

Ensemble-SWAN, we observe notable presence of epistemic uncertainty, emphasizing the

need for caution in real-world applications.
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1 Introduction

The advertising market has experienced an enormous shift from offline to online in the past

decade. Newspaper advertisements, leaflets, billboards, radio advertisements, and television

commercials have made way for advertisements on social media, Google, and via e-mail. Com-

panies are increasingly relying on the online customer journey to persuade potential customers

to buy their products. Moreover, the retail landscape is evolving rapidly into an omni-channel

world, with new channels, media, and different types of devices competing for marketing invest-

ments (De Haan, Kannan, Verhoef & Wiesel, 2015). As enormous sums of money are spent

on marketing, the careful allocation of marketing budget is one of the most crucial decisions a

company has to make. In today’s competitive business landscape, companies face constant pres-

sure from stakeholders to maximize advertising returns, underscoring the critical importance of

effective marketing campaigns.

The online customer journey of an internet-user often consists of multiple exposures to ad-

vertisements, called ‘touchpoints’ or ‘impressions’ and will eventually lead to a final purchase

or not, called the conversion. An example of such an online customer journey is illustrated in

Figure 1. Advertisers and advertisement exchanges can leverage browsing history and advert-

isement interaction to uncover meaningful insights on the effect of certain advertisements on

potential conversion. As most online advertisements are sold by advertisement exchanges using

real-time bidding (Cai et al., 2017), it is of critical importance for both advertisement sellers and

marketers to accurately determine the value of certain touchpoints in the online customer jour-

ney. However, it remains a challenge to accurately attribute ‘credit’ to a certain touchpoint in

a customer journey. Attributing credit to conversion in such an online user sequence is referred

to as the multi-touch attribution (MTA) problem.

Figure 1: An illustration of different online user journeys consisting of advertisement impres-
sions and clicks.

In the past decade, attribution modelling has transitioned from reliance on human intuition

to reliance on more advanced mathematical models. Many different approaches to solve MTA

problems are present in the literature. Initially, advertisers employed rule-based approaches such

as the first-touch, last-touch, linear-touch, and time-decaying models to address MTA problems

(Zhang, Wei & Ren, 2014; Wooff & Anderson, 2015; Buhalis & Volchek, 2021). These rule-

based approaches were popular in practice due to their simplicity. On the other hand, empirical
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evidence and research has demonstrated inherent weaknesses in rule-based approaches used to

address the MTA problem. For example, in Goldfarb and Tucker (2011), the authors find that

obtrusive advertisements (e.g., intrusive, disruptive, overly prominent in presentation) have a

negative relationship with conversion probability. Rule-based approaches are not able to capture

these kind of complex dynamics.

To overcome the limitations mentioned above, data-driven approaches emerged as a solution.

Amongst others, algorithmic approaches (Zhou et al., 2019; Dalessandro, Perlich, Stitelman &

Provost, 2012; Xu et al., 2016), and approaches based on additive survival analysis (Zhang et

al., 2014; Ji, Wang & Zhang, 2016) have been widely discussed in the literature. Due to the

enormous growth in the use of mobile technological devices, the customer journey shifted to an

omni-channel experience. This significantly increased the size and complexity of the to-be-solved

MTA problems. As a result of this increase in dimensionality, deep learning approaches arose to

tackle these complex and computationally heavy MTA problems. On top of that, deep learning

approaches have shown to be superior in modelling the user decision journey, which is a highly

nonlinear process where touchpoints show complex interactions with each other.

Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-

Term Memory RNNs, and Gated Recurrent Unit RNNs were established as state-of-the-art

approaches for modelling sequential data such as in the fields of natural language processing

(NLP) and MTA. The sequential nature of these models precludes parallelization within training,

which causes computational problems when handling long sequences due to memory constraints.

‘The Transformer’ (Vaswani et al., 2017), a neural network architecture that replaces recurrent

layers with (self-)attention mechanisms, which was initially introduced in the field of NLP,

aims to solve these computational issues. By leveraging attention mechanisms and parallel

computation, significant advancements in NLP tasks have been realized, achieving state-of-the-

art results. Due to its success in the field of NLP, Transformer-based architectures have been

widely adopted in other research domains, such as MTA.

Over the last few years, deep learning approaches using attention mechanisms have emerged

as effective and accurate solutions for tackling the complex MTA problems (Ren et al., 2018;

Kumar et al., 2020; Arava, Dong, Yan, Pani et al., 2018; Li, Cheng, Chen, Chen & Wang, 2020).

Even though these models greatly increase the efficiency, this comes at a cost of interpretabil-

ity. In the field of MTA, interpretable models are vital when it comes to understanding which

touchpoints contribute to what extent to the conversion. Therefore, a neural network architec-

ture using a simplified attention mechanisms, which can be interpreted as conversion credit is

required.

In this paper, we propose a simple, interpretable, feed-forward neural network, which we

refer to as a Stacked Web of Attentional Neurons (SWAN). The architecture consists of one

embedding layer, one layer of four attentional neurons, another layer of one attentional neuron

and a final representation layer. The attentional neurons represent a simplified version of ‘The

Transformer’, allowing us to trace attention weights back to individual touchpoints, facilitat-

ing interpretability. This model aims to retain the efficient properties of the aforementioned

deep learning architectures, while assuring interpretability of conversion attribution at the same

time. Moreover, the proposed architecture is computationally efficient, enabling training within
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minutes, making it highly applicable in real-world applications.

A major challenge in machine learning is the class imbalance problem, particularly in the

context of MTA data. The online customer journey leads to a non-conversion outcome (major-

ity class) significantly more frequently than compared to a conversion outcome (minority class).

Training on this skewed data negatively impacts the performance of deep learning models. Mod-

els trained on highly imbalanced data tend to favor the majority class and have difficulties cor-

rectly classifying the minority class. In a dataset where 5% of the observations belong to the

minority class, a high accuracy of 95% can easily be achieved by the model by solely predicting

the majority class.

In the literature, oversampling is a commonly used technique to solve the class imbalance

problem in deep learning. However, oversampling is a concern as models that are trained on

fictitious data may fail miserably in real-world applications (Tarawneh, Hassanat, Altarawneh

& Almuhaimeed, 2022). Alternatively, undersampling techniques can be used to address the

class imbalance problem. A disadvantage of undersampling is the fact that large amounts of

(informative) data are discarded.

Ensemble learning techniques can be leveraged to solve the class imbalance problem without

losing huge amounts of information. For instance, EasyEnsemble (Liu, Wu & Zhou, 2008)

creates multiple balanced datasets by randomly undersampling the majority class, and then

trains multiple neural networks on the distinct balanced datasets. Before making the final

classification of an input, the prediction results of all the distinct neural networks are aggregated.

In this research we propose the Ensemble-SWAN, which leverages the idea of EasyEnsemble to

account for the class imbalance problem present in MTA data.

Uncertainty is inseparably connected to deep learning as reliable models are critical in real-

world applications. Therefore, uncertainty estimation, visualization, and quantification are hot

topics in machine learning nowadays (Abdar et al., 2021). Deep learning models are often

simplifications of the reality, which cause uncertainties. These uncertainties can be classified as

aleatoric (due to randomness) and epistemic (due to lack of knowledge) (Rao, Kushwaha, Verma

& Srividya, 2007). Epistemic uncertainty is considered to be reducible by increasing information

and/or complexity, whereas aleatoric uncertainty is irreducible. In this paper, we introduce two

approaches to visualize and quantify the epistemic uncertainty present in the Ensemble-SWAN.

First, we visualize and quantify the epistemic uncertainty caused by the randomly undersampled

datasets in the Ensemble-SWAN. We do this by evaluating the predictions of the individual

constituent models of the Ensemble-SWAN, referred to as sub-NNs. Second, we use Monte

Carlo Dropout (Srivastava, Hinton, Krizhevsky, Sutskever & Salakhutdinov, 2014) to visualize

and quantify the epistemic uncertainty caused by lack of model complexity present in one of the

sub-NNs of the Ensemble-SWAN.

In summary, the contributions in this paper are three-fold and can be summarized as follows:

1. We propose an interpretable and computational efficient, simple feed-forward neural net-

work using attention mechanisms for multi-touch conversion attribution problems, which

we refer to as a Stacked Web of Attentional Neurons (SWAN). The model performance is

evaluated on the benchmark Criteo dataset.

2. We propose the Ensemble-SWAN, an approach which accounts for class imbalance in
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multi-touch conversion attribution problems by leveraging ensemble learning techniques

and random undersampling.

3. We introduce two novel approaches for quantifying epistemic uncertainty in the model,

pioneering advancements in the field of multi-touch conversion attribution (and click-

stream data analysis in general).

All source code used in this paper can be found at https://github.com/pimweterman/

Ensemble-SWAN.git. The remainder of this paper will be structured as follows: Section 2 dis-

cusses the academic literature related to our research. Section 3 discusses the benchmark Criteo

dataset and corresponding pre-processing steps, which are necessary in order to train and eval-

uate the SWAN and the Ensemble-SWAN. Thereafter, Section 4 outlines the methodologies of

the SWAN and the Ensemble-SWAN. Also, the two methods of the proposed uncertainty quan-

tification (UQ) approaches are discussed. Section 5 reports the obtained results and discusses

their interpretation. Finally, Section 6 summarizes the results and discusses some suggestions

for future research.

2 Literature Review

Due to the major shift in advertising from offline to online, MTA modelling becomes an increas-

ingly important topic in the literature. A considerable amount of research is recently being done

on conversion prediction and conversion attribution, highlighting the significance of these fields.

Multi-touch attribution is generally defined as the science of using mathematical approaches

to assign conversion credit to touchpoints in a sequence of advertisements viewed by an online

user (Moffett, Pilecki & McAdams, 2014). Attribution modelling enables companies to answer

the critical question regarding marketing return on investment (ROI): What advertisements are

driving conversions? (Kannan, Reinartz & Verhoef, 2016).

Algorithmic and Deep learning approaches will be discussed in Sections 2.1 and 2.2, respect-

ively. Subsequently, in Section 2.3, we will discuss the class imbalance problem which is present

in online marketing user journey data. Last, in Section 2.4 we will give a brief overview of UQ

approaches in deep learning.

2.1 Algorithmic Approaches

In early works rule-based attribution models were developed. ‘First-touch’ and ‘Last-touch’

attribution rules are widely adopted in practice, where full conversion credit is assigned to

the first and last touchpoint, respectively. However, despite the simplicity of these rule-based

approaches, a disadvantage is the fact that it only recognizes the contribution of one single

touchpoint in the sequence. These models do not fully capture the effects of a sequence of

advertisements, as a conversion is believed to be caused by the combined effect of individual

advertisements (Zhang et al., 2014). As a consequence, MTA models like Time-Decay attribution

(Wooff & Anderson, 2015) and U-Shaped attribution (Buhalis & Volchek, 2021) were introduced

in the literature.

In Shao and Li (2011) two data-driven approaches are proposed, a bagged logistic regres-

sion method in combination with aggregated bootstrap and a probabilistic approach based on
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conditional probabilities. The downside of the bagged logistic regression approach is the fact

that retrieved effects are now aggregated and difficult to interpret. A solution is to derive a

measure of importance for each variable for classifying a positive outcome. In Dalessandro et

al. (2012) this idea is leveraged, a channel importance measure based on the Shapley value is

proposed. Each touchpoint is considered as a player in a cooperative game, this logic is used

to derive the Shapley value by summing the marginal contributions a touchpoint adds to all

possible sequences that do not contain this touchpoint. Alternatively, Xu et al. (2016) propose

a lift-based prediction model for real-time advertisement delivery, arguing that user behaviour

has different additional effects on the user’s conversion decision. The authors believe that the

bid price (i.e., value) of an advertisement should be measured based on the performance lift

among users who have and who have not been exposed to a certain advertisement.

Survival analysis-based models and techniques have proven to be a powerful tool for the

analysis of conversion probability, as these techniques account for the duration and timing of

user interaction with touchpoints. For example, Zhang et al. (2014) propose the Additive Hazard

(AH) model, which uses an additive hazard function for conversion prediction. Likewise, Ji et

al. (2016) introduce the Additional Multi-touch Attribution (AMTA) model, this model uses

the hazard rate of a conversion at a specific time to model conversion attribution.

2.2 Deep Learning Approaches

More recently, deep neural network architectures have been proposed for a wide range of applic-

ations such as amongst others NLP (Goldberg, 2016), image and video recognition (Fu, Zheng

& Mei, 2017), and recently MTA modelling. As a sequence of touchpoints can be seen as a

sequence of words, neural NLP techniques can be leveraged to create meaningful insights in the

field of MTA modelling. For example, Qu et al. (2016) propose a Product-based Neural Network

(PNN) which aims to predict user response. The PNN not only explores feature interactions,

but also has the ability to learn high-order latent patterns, resulting in superior performance

compared to the state-of-the-art methods at that time. Similarly, Zhou et al. (2019) propose a

deep learning approach to predict click-through rates. Here, a Deep Interest Evolution Network

(DIEN) is proposed, where an extractor layer is used to capture temporal interest from past

user behaviour.

Before the introduction of ‘The Transformer (Vaswani et al., 2017), sequential data (often

in the field of NLP) was often modelled by deep learning architectures like Recurrent Neural

Networks (RNNs) and Convolutional Neural Networks (CNNs). A downside of these models is

the lack of parallelization of the input sequences during training because the output of each time

step depends on the output of the previous step. By allowing the model to focus selectively on

specific parts of the input sequence, Transformer-based models aim to solve the lack of paralleliz-

ation. These models learn to selectively attend to relevant information from the input sequences

by incorporating so-called key, value, and query computations. Because of parallelization, the

model is able to capture complex and long-range dependencies in the input data.

In the literature, we have seen an enormous growth in the use of attention mechanisms in

deep learning architectures since, also in the field of MTA modelling. The attention mechanisms

allow the model to focus specifically on certain touchpoints in the input sequence. In Ren et al.
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(2018), the Dual-attention Recurrent Neural Network (DARNN) is proposed, which learns the

attribution of the conversion action over the whole sequence of touchpoints by using a Location-

Base attention mechanism in a recurrent neural network. Hence, this model captures sequential

user behaviour patterns and learns the attention weights using sequential modelling. Simil-

arly, in Arava et al. (2018), a Deep Neural Net with Attention Multi-Touch Attribution model

(DNAMTA) which also uses sequential modelling and the dynamic interaction effects between

media channels to make conversion predictions and to evaluate media channel contributions,

is proposed. Additionally, DNAMTA uses extra user information and time-decay functions to

make predictions. Other approaches prove the effectiveness of deep learning architectures us-

ing attention mechanisms for prediction of conversion (Kumar et al., 2020) and prediction of

click-through rate (CTR) (Li et al., 2020).

The disadvantage of these relatively complex neural network architectures is the lack of

interpretability. In most Transformer-based attention mechanisms it is not possible to trace

back attention weights to individual tokens in the input sequence. In Raffel and Ellis (2015), a

simplified form of attention, where the attention weights are directly learned from the encoder

hidden-states, which allows for variable length input sequences and can handle input sequences

longer than the ones present in the training set, is introduced. This model produces a single

context vector from an entire input sequence. Hence, enabling us to trace back attention weights

to individual tokens in the input sequence. In the field of MTA, this simplification is justified

as there is no need to model complex language relations

In this paper, we introduce a relatively simple feed-forward neural network approach using

simplified attention mechanisms (Raffel & Ellis, 2015) which can match state-of-the-art accuracy

results while maintaining interpretability.

2.3 Class Imbalance

Not only in the context of MTA, but in the entire field of deep learning, the class imbalance

problem (Japkowicz & Stephen, 2002) is a major issue that needs solving. This facilitated

the birth of widely-used oversampling techniques like Synthetic Minority Over-sampling Tech-

nique (SMOTE) (Chawla, Bowyer, Hall & Kegelmeyer, 2002) and Adaptive Synthetic Sampling

(ADASYN) (He, Bai, Garcia & Li, 2008). These techniques aim to solve the class imbalance

problem by generating synthetic observations of the minority class until the dataset is balanced.

Several variants of SMOTE, such as Borderline-SMOTE (Han, Wang & Mao, 2005) and Safe-

level-SMOTE (Bunkhumpornpat, Sinapiromsaran & Lursinsap, 2009) are also widely-used in

practice.

Unfortunately, oversampling does not come without risks. In Tarawneh et al. (2022), the

authors critically review over 70 oversampling techniques and conclude that models trained on

fictitious data may fail miserably when used in real-world applications. They argue that the

fundamental challenge with oversampling approaches is the fact that synthetically generated data

points may actually not belong to the minority class in the real-life population. Surprisingly,

the authors even demonstrate that all reviewed methods generate minority data points that are

highly likely to belong to the majority class in real-life. Hence, the authors manifest to stop

oversampling for class imbalance learning.

6



Alternatively, to reduce the risk of failures in real-world applications, undersampling tech-

niques can be used. For instance, Tomek’s link undersampling (Tomek, 1976) finds pairs of

observations that are nearest neighbours, one from both the minority and majority class, and

then discards the majority class instance. Cluster centroids undersampling (Lemâıtre, Nogueira

& Aridas, 2017) uses clustering techniques to remove observations from the majority class while

preserving the distribution and structure of the dataset. A downside of these techniques is the

fact that data instances and thus valuable information are discarded.

Ensemble learning techniques provide a solution for the loss of information caused by under-

sampling. As mentioned in the introduction, the idea of EasyEnsemble (Liu et al., 2008) can

be leveraged to obtain class balance by undersampling while avoiding throwing away too much

valuable information. In this paper, we introduce Ensemble-SWAN, a method that trains mul-

tiple neural networks on separate randomly undersampled datasets, and subsequently aggregates

predictions before classification.

2.4 Uncertainty Quantification (UQ)

With the growing adoption of deep learning solutions in real-world applications, the correct

quantification of uncertainties in processes and predictions is crucial (Jiang, Kim, Guan & Gupta,

2018). This need facilitated the birth of various UQ techniques for deep learning solutions

in the field of NLP (e.g., machine translation), medical image analysis (e.g., medical image

classification), and computer vision (e.g., self-driving cars). A comprehensive overview of these

techniques can be found in Abdar et al. (2021). The fact that between 2010 and 2021 more than

2500 papers addressing UQ in the field of AI were published, underscores the importance of this

topic.

As mentioned in the introduction, there are two types of uncertainty: aleatoric and epistemic

(Hüllermeier & Waegeman, 2021). Aleatoric uncertainty (also known as data uncertainty) is ir-

reducible and is often attributed to measurement errors, noise, or natural stochasticity. On the

other hand, epistemic uncertainty (also known as model uncertainty) is caused by the limited

amount of knowledge and arises from the model’s limited understanding of the underlying sys-

tem. Epistemic uncertainty can be reduced with additional information and improved model

fit.

Bayesian approaches, like Bayesian NNs (BNNs) (Izmailov, Vikram, Hoffman & Wilson,

2021), provide a mathematical framework for reasoning under uncertainty and can help quan-

tifying uncertainty in model predictions. Unfortunately, Bayesian approaches often come with

prohibitive computational cost. In Gal and Ghahramani (2016), the authors show that the use

of Monte Carlo Dropout in neural networks can be interpreted as a Bayesian approximation of

the Gaussian Process (GP) probabilistic model (Rasmussen, Williams et al., 2006). Normally,

dropout is a regularization technique that is used in more complex neural networks to prevent

overfitting. However, Monte Carlo Dropout has also proven to be an effective and computation-

ally efficient tool for estimating and visualizing epistemic uncertainty in neural networks.

In addition to Bayesian approaches, ensemble learning techniques have been widely-used to

quantify uncertainty in deep neural networks. In the literature it is shown, that training mul-

tiple neural networks independently and aggregating the predictions can enhance performance

7



and quantify uncertainty (Fort, Hu & Lakshminarayanan, 2019). A disadvantage of ensemble

learning is the fact that multiple computationally inefficient models need to be trained. To

address this issue, efficient ensembles of deep neural networks are developed for a broad spec-

trum of applications (Egele et al., 2022; Wen, Tran & Ba, 2020; Vallabhajosyula, Sistla & Kolli,

2022). Due to the computational simplicity of our proposed approach, we can leverage an ap-

proach based on classical, computational ‘infeasible’ ensemble techniques for UQ, like Bagging

(Breiman, 1996; Dietterich, 2000) and Bayesian averaging (Raftery, Madigan & Hoeting, 1997).

3 Data

In this Section, we will discuss the benchmark Criteo dataset used in this research. First, we give

a brief overview of the data in Section 3.1. Next, we will discuss the necessary pre-processing

steps in Section 3.2. Last, we will briefly touch on the class imbalance problem present in the

Criteo dataset in Section 3.3.

3.1 Data Overview

In this research we will use a dataset from Criteo, a leading company in online marketing and

advertising research. The Criteo dataset is being utilized in this study as it is considered the

benchmark dataset in the field of MTA, thereby enabling us to compare our outcomes to state-of-

the-art models. The core business of Criteo is selling advertisements via display. Criteo published

a dataset for attribution modelling in real-time auction based advertising (Diemert, Meynet,

Galland & Lefortier, 2017). In this dataset, useful information on advertisement exposure and

clicking behaviour is captured, which can be used for online user behaviour analysis. The

raw dataset consists of over 16 million touchpoints over 675 campaigns, captured from Criteo

live traffic in a period of 30 days. This results in 6.1 million touchpoint sequences, of which

approximately 550,000 led to a conversion. Each touchpoint in the dataset is characterized by

9 categorical variables as presented in Table 1, which consist of 59,098 unique (sub)categories,

of which the context is masked to remain confidentiality. These category IDs contextualize the

advertisement by including characteristics of the advertisement, such as the device where the

advertisement is shown on.

Table 1: Categories and amount of sub-categories characterizing touchpoints in the Criteo
dataset.

Categorical variable Unique values

Campaign ID 675
Category 1 9
Category 2 70
Category 3 1,829
Category 4 21
Category 5 51
Category 6 30
Category 7 57,196
Category 8 11
Category 9 30

8



For every shown advertisement the following information is captured: relative timestamp,

if the advertisement was clicked, if the advertisement led to a conversion, unique user ID,

unique campaign ID, timestamp of conversion, number of clicks, time since last click given the

advertisement, and category IDs. Additionally, the dataset contains information on the price

paid for displaying the advertisement and the monetary order size if converted. This monetary

data will not be used in this research, thus can be disregarded. Please find all variables and

more detailed descriptions in Table 2.

Table 2: Variables and corresponding descriptions captured in Criteo dataset.

Variable Description

timestamp
Timestamp of the impression (starting from 0 for the
first impression)

uid Unique user identifier
campaign Unique campaign identifier

conversion
1 if there was a conversion in the 30 days after the impression,
0 otherwise

conversion timestamp Timestamp of the conversion, -1 if no conversion was observed
conversion id Unique conversion identifier, -1 if no conversion was observed
click 1 if the impression was clicked, 0 otherwise
cost Price paid by Criteo for the display
cpo Cost-per-order in case of attributed conversion

cat[1-9]

Contextual features associated to the display. Each column is a
categorical variable representing contextual features such as
browser, device, format etc. They are mapped to a fixed
dimension space using hashing trick.

3.2 Data Cleaning and Pre-Processing

In order to input the data in the SWAN and Ensemble-SWAN, some data cleaning and data

pre-processing steps are required. Following the data pre-processing steps of Ren et al. (2018),

the raw data can be transformed into sequences of touchpoint per user. Each user can be

associated with a single conversion ID or multiple conversion IDs, hence we split the sequences

based on conversion time in such a way that we have at most one conversion per sequence.

Additionally, sequences with less than three touchpoint are removed from the dataset as no

useful information on browsing behaviour can be derived from these sequences. From Figure 2

we see that the shorter the user journey, the higher the fraction of conversions is. Taking into

account computational feasibility of the pre-processing steps, we decide that a maximum journey

length of 20 touchpoints suffices in this research. After performing the above pre-processing

steps, we obtain a clean dataset with a conversion ratio of approximately 4.7%.

We split the clean dataset in a training set and a test set, containing 80% and 20% of the

sequences, respectively. The training set consists of 287,145 sequences and the test set of 71,787

sequences, both maintaining a conversion ratio of approximately 4.7%. To efficiently input the

data in the SWAN and Ensemble-SWAN we create three-dimensional batches of size (batch

size, maximum sequence length, touchpoint characteristics) = (1024, 20, 13). When sequences

are shorter than the maximum length of 20 touchpoints, we set all the remaining values equal
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(a) Journey length all journeys (b) Journey length converted journeys

Figure 2: Fraction of total and converted sequences with respect to sequence length.

to zero.

3.3 Class Imbalance

After pre-processing, the remaining 287,145 sequences in the training set have a conversion ratio

of approximately 4.7%. Hence, the dataset used in this research is highly imbalanced.

State-of-the-art neural models for MTA problems strictly employ oversampling of the minor-

ity class techniques to reach class balance. To compare the SWAN with other models such as

the ARNN proposed in Ren et al. (2018), we will also train one instance of the neural network

using a balanced dataset obtained by oversampling the minority class (i.e., conversion) using

ADASYN (He et al., 2008). This results in a training set of 530,145 sequences with a conversion

ratio of 48%. The test set will not be balanced.

As discussed in Section 1, we believe that machine learning architectures trained on over-

sampled data can fail miserably in real-world applications. To overcome this we introduce the

Ensemble-SWAN, where distinct neural networks are trained on randomly undersampled data-

sets before aggregating the results. All of these randomly undersampled datasets consists of

27,348 sequences with a conversion ratio of 50%. Again, the test set will not be balanced.

4 Methodology

First, in Section 4.1, we will describe the proposed feed-forward neural network with simpli-

fied attention mechanism called Stacked Web of Attentional Neurons (SWAN) in great detail.

Second, in Section 4.2, we will describe the Ensemble-SWAN, our approach that leverages en-

semble learning techniques to compensate for the information loss caused by random under-

sampling. Third, to address the need for acknowledging uncertainty in real-world applications,

we explore and discuss two approaches to visualize and quantify uncertainty present in the

Ensemble-SWAN in Section 4.3.
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4.1 SWAN

This Section provides a comprehensive discussion of the various components comprising the

SWAN. We will start by discussing the attention mechanisms in Section 4.1.1. As this attention

mechanism is order-agnostic, we will add positional encodings to the input embeddings, which

are described in Section 4.1.2. Next, to form the SWAN, we stack attentional neurons, this

is described in Section 4.1.3. Then, in Section 4.1.4, we describe how the final representation

is converted to a conversion probability. For completeness, we will add some detail regarding

model settings and specification in Section 4.1.5. Last, in Section 4.1.6, we will discuss various

performance evaluation metrics which are used to assess the performance of the SWAN and

Ensemble-SWAN.

4.1.1 Attention Mechanism

In the past, Recurrent Neural Networks (RNNs) were often used for modelling sequential data as

they are able to model temporal dependencies in sequences such as sentences. However, during

training of RNNs with backpropagation challenges such as the vanishing and exploding gradient

problem arise (Pascanu, Mikolov & Bengio, 2013). Resulting in the fact that, RNNs are almost

exclusively used for tasks where the sequential dependencies span across a large number of time

steps. Moreover, as evaluation of RNNs is sequential and cannot be parallelized, the training

process can become computationally inefficient for long sequences. Attention mechanisms were

introduced to solve the problems stated above.

In our proposed neural network architecture we make use of a simple attention mechanism

as proposed in Raffel and Ellis (2015). This architecture produces a single context vector c from

an entire user journey input sequence consisting of multiple touchpoints. Each touchpoint is

embedded in an input vector zi. The proposed attention mechanisms weighs the importance of

every touchpoint in the user journey and computes importance values ri which are transformed

accordingly to attention weights vi using the softmax function. Finally, the context vector c is

computed as the weighted sum of the attention weights vi and the original input vectors zi.

The simple feed-forward attention mechanisms can be described by the following three equa-

tions.

ri = α(zi) = uα
T tanh(Wαzi + bα) (1)

vi = softmax(r) =
exp(ri)∑
j exp(rj)

(2)

c =
∑
i

vizi (3)

The embedding vector zi has dimension d In Eq. 1 the learnable function α(zi), which

merely depends on input vector zi, computes the importance values. In this function, matrix

Wα of dimension dh x d, and vectors bα and uα of dimension dh x 1, are learnable parameters.

The attention weights computed in Eq. 2 by the softmax activation function, form a probability

distribution that tells the model to what extent a touchpoint contributes to the conversion or
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non-conversion, when predicting the outcome of a sequence. Last, in Eq. 3 the output of the

attention mechanism, the fixed-length context vector c, is computed by the weighted average of

the attention weights vi and input vectors zi.

Figure 3: The architecture of an attentional neuron as proposed in Raffel and Ellis (2015).

The architecture in Figure 3 illustrates the fundamental idea of the attention mechanism

described above. When a certain touchpoint in a user journey sequence has a high attention

weight, we can say that this touchpoint significantly contributed to the conversion prediction.

4.1.2 Positional Encodings

Attention mechanisms, like ‘The Transformer (Vaswani et al., 2017) and the attentional neuron

used in the proposed architecture, are order-agnostic (Yun, Bhojanapalli, Rawat, Reddi & Ku-

mar, 2019). Unlike in Recurrent Neural Networks (RNNs), the attention mechanism process the

input sequence in parallel, causing the model to lack the inherent notion of order. To explicitly

encode positional and order information in the model, positional encodings are employed.

Absolute positional encodings using sinusoidal functions are the most standard and effective

way of incorporating positional information in the attention mechanism and was first introduced

in Vaswani et al. (2017). The idea is to construct an encoding vector of dimension dh by using

sine and cosine functions of different frequencies. The positional encoding vector for the i -th

touchpoint in the sequence is defined as follows:

pi =

sin(pos/10000(2i/dh)) ifi = 2i

cos(pos/10000(2i/dh)) ifi = 2i+ 1
(4)

where pos is the position of the touchpoint in the sequence i = 1, ... dh/2. The positional

encoding vector consists of y-coordinates from sinusoidal functions of different wavelengths as

defined above, evaluated at a x-coordinate that depends on pos. These positional encodings

are added to the input vectors zi. The advantage of the sinusoidal encodings is the fact that

the functions have a smooth and continuous path, which enables the model to extrapolate to

sequence lengths longer than encountered in training.
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4.1.3 Stacked Web of Attentional Neurons (SWAN)

When using a single attention mechanism as described in Section 4.1.1, the importance score

given to a touchpoint in the user journey always stays the same regardless of other touchpoints in

the user journey, assuming that the touchpoint occurs at the same position in the user journey.

To capture complex interactions between touchpoints in the user sequence we use a stacked

web of attention mechanisms. Different neural networks αl(.) are used in the architecture to

compute multiple context vectors cl. Ultimately, the final representation c is computed by a

single attentional neuron layer, which is computed as the weighted sum of the context vectors

outputted by the different neural nets αl(.):

c =
∑
l

vl
∑
i

vliz
′
i (5)

In Eq. 5, vli is the attention given to the i -th touchpoint in the sequence by the l -th context

vector. Whereas, vl is the attention given to the l -th context vector by the final representation.

The total attention given to the i -th touchpoint in the user sequence can then be computed as

follows:

vi =
∑
l

vlvli (6)

The total attention for each touchpoint vi is automatically dependent on the entire input

sequence as vl are outputs from neural networks αl(.), which take the entire sequence as input.

Stacking multiple attention mechanisms as described above, results in a model architecture

we call a Stacked Web of Attentional Neurons (SWAN). The architecture is schematically presen-

ted in Figure 4. In our proposed model we use a layer of four attentional neurons and a layer of

a single attentional neuron between the embedding and final representation layer.

Figure 4: The architecture of the Stacked Web of Attentional Neurons (SWAN).
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4.1.4 Conversion Prediction

The final representation c, as defined in Eq. 5, is used to make a final prediction of the probability

of conversion for a particular sequence. We transform c to a conversion probability as follows:

P (Y = 1 | c) = sigmoid(ϕ(Wcc) + bc) (7)

Where sigmoid is a logistic function, sigmoid(x) = 1/(1 + e−x). The Rectified Linear Unit

(ReLU) activation function is defined as follows ϕ = max(0, x). We classify a sequence as a

conversion when P (Y = 1 | c) > 0.5

The sigmoid function transforms the final representation c to a number between 0 and 1,

allowing the resulting value to be interpreted as a probability. Moreover, due to its characterist-

ics, the ReLU activation ensures that the touchpoints in the sequence can solely make a positive

contribution on the conversion probability.

4.1.5 Model Details

As we normalize the data instead of using one-hot encoding schemes, the embedding vectors of

the input data have dimension d = 12. All feed-forward neural networks with simple attention

mechanisms consists of one layer of hidden size 2 × d. We use four attentional neurons as

described in Section 4.1.1 between the input and final representation layer. Another single

attentional neuron layer is used before computing the final representation. To model complex

and non-linear relations and dependencies, we use the hyperbolic tangent activation function to

activate the neurons in the attention mechanisms. Optimization during training is carried out

using the binary cross-entropy (BCE) loss criterion and the Adam optimizer, which adaptively

adjust learning rates for the model parameters to reach smooth convergence. The learning rates

of the Adam optimizer are initialized as follows: α = 1 × 10−2, β1 = 0.90, β2 = 0.98 and

ϵ = 1 × 10−9. We allow the model to learn itself the importance of the positional encodings

by introducing learnable parameter γ, for which we choose a higher learning rate of 0.01. The

neural network is implemented using Python’s machine learning library PyTorch (Paszke et al.,

2019) and trained on a Asus Vivobook with a 12th Gen Intel(R) Core(TM) i7-12700H processor

and 16GB memory.

4.1.6 Performance Evaluation Metrics

As this research is focused on the implications of real-world application of the SWAN and

Ensemble-SWAN, we will evaluate the performance using several performance measures. As

SWAN and Ensemble-SWAN can be utilized by diverse stakeholders (marketers, advertisement

auctioneers, etc.), who all have different objectives. Hence, it is of great importance to evaluate

the SWAN on different aspects. In this research we will use 5 performance measures: Accuracy,

Precision, Recall, F-Measure and Area Under the Receiver Operating Characteristics Curve

(AUC-ROC).

We will use the following abbreviations to define the performance measures: TP = True

Positive, TN = True Negative, FP = False Positive, & FN = False Negative.

The most widely-used performance measure Accuracy is defined as follows:
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Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Accuracy can be a misleading performance measure in datasets where the class imbalance

problem is present. For example, in our dataset we have a conversion ratio of approximately

4.7%, when the model only predicts non-conversion a high accuracy of roughly 95% will be

achieved. Nonetheless, accuracy remains a valuable performance measure to report due to its

generalizability.

Precision is defined as follows:

Precision =
TP

TP + FP
(9)

Precision tells us how many of the predicted converting sequences are actually a converting

sequence. Precision is a particularly good measure to use when the cost of a False Positive are

high.

Recall is defined as follows:

Recall =
TP

TP + FN
(10)

Recall tells us how many of the actual conversions in the dataset are classified as a conversion

by the model. Recall is often used in cases where there are high cost associated with a False

Negative.

The F1-Score is a combination of Precision and Recall and is defined as follows:

F1− Score = 2× Precision×Recall

Precision+Recall
(11)

The F1-Score is used when we seek a performance measure that balances the importance of

Precision and Recall. The F1-Score is particularly suitable in situations where we have a highly

imbalanced dataset and where accurately identifying both positive and negative instances is

equally important. In the subsequent uncertainty analysis we will use the F1-Score as leading

metric when performance results will be reported. Please note that in this paper we use the

weighted variants of Precision, Recall, and F1-Score as these metrics assign higher importance

to certain classes to create a more balanced evaluation metric in the case of class imbalance.

Another performance measure that is particularly popular when evaluating the performance

of a binary classification task is the AUC-ROC (Davis & Goadrich, 2006). The AUC-ROC

tells us to what extent the model is capable of distinguishing between a converting and a non-

converting sequence. The higher the AUC-ROC, the more capable the model is. The AUC-ROC

is especially useful in settings where the class imbalance problem is present, as the AUC-ROC

provides a more comprehensive evaluation of discriminatory power rather than simply assessing

the overall correctness of predictions, as for example accuracy does.

4.2 Ensemble-SWAN

In order to compare the SWAN to a state-of-the-art MTA deep learning solution, we first test the

model on a balanced dataset generated by oversampling using ADASYN. However, as mentioned
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in Section 1, we believe that training a model on fictitious, oversampled data can fail miserably in

real-world applications. To solve this problem, we propose an ensemble deep learning approach

using random undersampling, called Ensemble-SWAN. This model avoids generating fictitious

data through oversampling, instead creating balanced datasets through undersampling. To over-

come the drawback of discarding valuable data, we create N randomly undersampled datasets.

Then, we train N neural networks, referred to as sub-NNs, using these datasets, and aggregate

the conversion probabilities before classifying instances as a conversion or non-conversion. This

approach will robustify the model predictions, as the model will be less sensitive to inconsisten-

cies in the relatively small undersampled datasets. The ensemble learning approach is described

in Algorithm 1.

Algorithm 1 Ensemble-SWAN

Input: N = number of balanced datasets, epochs
Output: predictions y, evaluation metrics

1: for each Ni in N do
2: Create 50/50 balanced dataset by random undersampling
3: Divide dataset in batches of 1024, maintaining 50/50 class balance
4: for each epoch in epochs do
5: for each batch in Ni do
6: Train SWAN on balanced batch and obtain conversion probabilities pi

7: Average the conversion probabilities over N neural networks
8: Convert averaged conversion probability to conversion classification {0, 1}
9: Calculate performance evaluation metrics

10: Return predictions y, evaluation metrics

4.3 Epistemic Uncertainty Quantification

To be able to use deep learning solutions for real-world applications, it is vital to quantify the

uncertainty present in the model. In this Section, we assess the epistemic uncertainty in the

Ensemble-SWAN. We will quantify and visualize two different types of epistemic uncertainty.

First, in Section 4.3.1, we will analyze the uncertainty caused by training multiple neural net-

works on relatively small datasets in the Ensemble-SWAN. Second, in Section 4.3.2, we will

analyze the uncertainty in one of the sub-NNs of the Ensemble-SWAN by using UQ technique

Monte Carlo Dropout.

4.3.1 Uncertainty: Ensemble Approach

To prevent too much information loss by random undersampling when balancing the datasets,

the Ensemble-SWAN is proposed in Section 4.2. As explained previously, the Ensemble-SWAN

aggregates the conversion probabilities of N neural networks before classifying a sequence as

conversion or non-conversion. To get some more insights in the inner workings of the Ensemble-

SWAN we will visualize the probability distributions of the conversion probabilities of the sub-

NNs of the Ensemble-SWAN. This allows us to assess to what extent the conversion probabilities

are subject to differences in the randomly undersampled datasets on which the sub-NNs are

trained. Moreover, we assess the model performance of the sub-NNs by calculating the F1-
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Score for every sub-NN, before aggregating the results in order to show the variability of model

performance caused by the random undersampling when no aggregation is applied.

4.3.2 Uncertainty: Monte Carlo Dropout

Another popular technique to quantify epistemic uncertainty in neural networks is Monte Carlo

Dropout (Gal & Ghahramani, 2016). Normally, dropout regularization (Srivastava et al., 2014) is

a technique used to prevent overfitting when training more complex neural network architectures.

By randomly disabling a fraction of the nodes during training, the network is forced to learn

redundant representations and to reduce its reliance on specific nodes in the network, which

helps improve generalization capability of the model.

In Gal and Ghahramani (2016), the idea of dropout regularization is extended to the testing

phase in order to quantify epistemic uncertainty present in the neural network. Instead of using

a single forward pass through the network when calculating conversion probabilities, Monte

Carlo Dropout performs nMCD forward passes with dropout enabled. Concretely, this means

that during every forward pass of the data during the testing phase, a different set of nodes is

randomly dropped out, which results in slightly different predictions. The idea is to generate

a distribution of possible outcomes rather than just predicting a single value. Plotting this

probability distribution for certain sequences of the input data, allows us to visually assess the

uncertainty regarding the conversion probability predictions. Also, aggregating the predictions

results from different forward passes during testing robustifies the model’s predictions. In this

research, we will merely use Monte Carlo Dropout to visualize the probability distribution of

predictions and to calculate the variance of the predictions. The Monte Carlo Dropout UQ

technique is described in Algorithm 2.

Algorithm 2 Monte Carlo Dropout

Input: Pre-trained model Mtrained, Number of samples nMCD, Test data Xtest

Output Model predictions ypred

1: for each i in range(nMCD) do
2: Dropout regularization (p = 0.25)
3: Run test set through model ypred = Mtrained(Xtest)

4: Plot prob. distribution ypred
5: Return ypred

We perform the Monte Carlo Dropout uncertainty analysis for nMCD = 1000 forward passes

and use a dropout percentage of 25%.

5 Results

The results presented and discussed in this Section are three-fold. First, in sake of comparison, we

evaluate the performance of the proposed SWAN for a balanced by oversampling Criteo dataset

in Section 5.1.1. Additionally, we will provide insights of the inner workings of the SWAN and

demonstrate the model’s ability to assign conversion credit to individual touchpoints in the

input sequence. Second, in Section 5.1.2 we evaluate the performance of the Ensemble-SWAN,

an ensemble learning approach which trains multiple neural networks on distinct, randomly
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undersampled datasets. Third, in Section 5.2 we present results of two approaches used to

visualize and quantify epistemic uncertainty in the Ensemble-SWAN: Ensemble Approach and

Monte Carlo Dropout.

5.1 SWAN

First, to compare the SWAN with another state-of-the-art MTA neural network solution as

proposed in Ren et al. (2018), we first evaluate the SWAN on a Criteo dataset which is balanced

by oversampling technique ADASYN in Section 5.1.1.

Next, as we believe oversampling can fail miserably in real-world applications, we evaluate

the performance of our undersampling ensemble learning approach in Section 5.1.2. Here, we

train multiple neural networks on balanced Criteo datasets, which are obtained by random

undersampling, and aggregate the predictions before classification.

5.1.1 SWAN (Oversampling)

Most state-of-the MTA solutions account for the class imbalance problem by oversampling the

dataset using various oversampling techniques. Therefore, we balance the Criteo dataset using

oversampling technique ADASYN to compare the SWAN to a RNN-based attribution model

as proposed in Ren et al. (2018). Approximately 4.7% of the sequences in the raw Criteo

dataset lead to a conversion, after oversampling this ratio increases to roughly 48%. To mitigate

memory issues, we split the data in batches of 1024 while maintaining a constant conversion

ratio of roughly 48% in all batches. Consequently, both models are trained for 7 epochs using a

learning rate of α = 1× 10−2.

Given the variability in user goals and objectives of the SWAN, we assess the perform-

ance using different performance evaluation metrics as discussed in Section 4.1.6. The results

are summarized in Figure 5. In Figure 5(a) we see that both models achieve reasonably high

out-of-sample accuracies of approximately 89.7%. Moreover, we see that the SWAN slightly out-

performs the ARNN after 7 epochs. The weighted precision of both models is around 94.5% and

depicted in Figure 5(b). Here, we see that the ARNN slightly outperforms the SWAN, meaning

that the ARNN is slightly more accurate in correctly classifying converting sequences as a con-

version. Please note that we are not reporting the results of the weighted recall as it is exactly

equal to the accuracy in our case. This indicates that all converting sequences are correctly

classified. In Figure 5(c) we observe that both models demonstrate comparable performance

regarding the weighted F1-Score, which converges at approximately 91.7%. Last, Figure 5(d)

reveals that the ARNN exhibits slightly superior performance after 7 epochs compared to the

SWAN model regarding the AUC-ROC. The SWAN achieves a AUC-ROC of 77.8%, while the

ARNN achieves a slightly higher value of roughly 80%.

Given all of the above, we can conclude that the SWAN shows similar performance as the

ARNN, despite having a much simpler architecture. Moreover, due to its simpler architecture,

the SWAN can be trained within minutes and is therefore computationally more efficient than

the ARNN.

Another advantage of the SWAN is its ability to trace back attention weights to individual

tokens in the input sequence. Hence, allowing the user to assign conversion credit to individual
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(a): Accuracy (b): Precision

(c): F1-Score (d): Area-Under-Curve (AUC)

Figure 5: SWAN vs ARNN: Accuracy, Precision, F1-Score, and AUC-ROC.

touchpoints in the online user sequence. In Figure 6, a heatmap representation of the attentional

distribution is provided, giving insights into the inner mechanisms of the SWAN. The heatmap

depicts an exemplary converting user sequence with a (maximum) length of 20 touchpoints.

In this illustration it is clear that each attentional neuron captures a different context of

the input sequence. The first and the second attentional neuron mostly attend to touchpoints

somewhere in the middle of the input sequence. The third attentional neuron reveals a significant

focus on the last touchpoint within the input sequence, whereas the fourth attentional neuron

mainly focuses on the first few touchpoints.

As described in Section 4.1.3, the resulting context vectors from the four attentional neurons

are again weighted through a fifth attentional neuron. These attention weights vl are depicted

on the right side of Figure 6. Here, we see that more than half of the attention is directed

to the second attentional neuron (v2 = 0.53). The third and the fourth attentional neuron

jointly receive almost half of the remaining attention (v3 = 0.25 and v4 = 0.18). The context

vector resulting from the fourth attentional neuron gets almost no attention (v4 = 0.04), which

makes sense as a single touchpoint in the middle of the input sequence often does not greatly
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contribute to the conversion decision. As described in Eq. 11, the SWAN architecture allows

to trace back attention distribution to an individual touchpoint in the input sequence. The

attention distribution of the final representation is illustrated in the last heatmap of Figure 6.

In this case, for predicting the conversion, the model attends somewhat to the begin, the

middle and the last touchpoint in the user sequence. However, please note that the inner

mechanisms of the SWAN differ depending on the characteristics of the input sequence. For

other input sequences, the model will focus on the beginning, the middle, or the end of the

input sequence, or a combination of those three. This flexibility, allows the SWAN to account

for differences in user behaviour.

Figure 6: Inner workings SWAN: Attention weights of touchpoints for an exemplary converting
sequence of length 20.

5.1.2 Ensemble-SWAN (Undersampling)

In this research, we propose a new ensemble learning solution for MTA problems as described in

Section 4.2. The performance of the Ensemble-SWAN will again be assessed using the perform-

ance evaluation metrics as described in Section 4.1.6. The N undersampled, balanced datasets

all consist of 27,348 sequences of which 13,674 lead to a conversion, and are therefore significantly

smaller than in the previous analysis. Hence, training the Ensemble-SWAN requires a higher

amount of 80 epochs and a slightly lower learning rate of α = 5×10−3. Again, for computational

reasons, we split the data in batches of 1024 sequences, while maintaining a conversion ratio of

50%.

The out-of-sample performance results for different levels of N are summarized in Figure

7. Please note that we only show the convergence level of the SWAN as this model is trained
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(a): Accuracy (b): Precision

(c): F1-Score (d): Area-Under-Curve (AUC)

Figure 7: Ensemble-SWAN vs SWAN: Accuracy, Precision, F1-Score, and AUC-ROC. N is
the number of sub-NNs in the Ensemble-SWAN.

on 7 epochs instead of 80, therefore difficult to jointly visualize in one figure. In this compar-

ative analysis, three Ensemble-SWAN models with varying sizes (N=50, N=100, N=200) are

evaluated, with particular emphasis on the N=200 Ensemble-SWAN due to its slightly superior

performance. First, in Figure 7(a), we observe that the accuracy of the Ensemble-SWAN (80.5%)

is lower than its corresponding convergence level achieved by the regular SWAN (89.7%). This

shows that the ensemble learning approach can only partly compensate for the information

lost by undersampling. Similarly, Figure 7(c) shows that the weighted F1-Score of Ensemble-

SWAN (85.8%) is lower than the converged F1-Score of the SWAN (91.7%). Conversely, in

Figure 7(d) it is evident that the Ensemble-SWAN (82.7%) significantly outperforms the regular

SWAN (77.8%) in terms of AUC-ROC. This might be attributed to the fact that undersampling

approach creates more diverse subsets than the oversampling approach, which leads to more

variability in the model’s decision boundaries. This potentially allows the model to better dis-

criminate between converting and non-converting sequences. In Figure 7(b) it is evident that

both Ensemble-SWAN and SWAN converge at 94.7% weighted precision.
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Another interesting finding is the fact that we observe in Figure 7 that increasing the amount

of sub-NNs in the Ensemble-SWAN only minimally increases performance, which might imply

that using N = 50 sub-NNs is sufficient.

5.2 Uncertainty Analysis

In this Section, we discuss and visualize the results of the two epistemic UQ approaches: the

Ensemble approach in Section 5.2.1 and the Monte Carlo Dropout approach in Section 5.2.2.

5.2.1 Uncertainty: Ensemble Approach

In this Section, we will assess the uncertainty regarding the conversion probability predictions

for the sub-NNs of the Ensemble-SWAN for N = 200 as discussed in Section 4.3.1. The results

are summarized in Figure 8. Figure 8(a) shows the mean, upper bound, and lower bound, of

the F1-Score when the performance of the individual sub-NNs is evaluated before aggregating

the results. The upper and lower bound are calculated using the 90% and 10% confidence inter-

vals, respectively. Evidently, the sub-NNs individually exhibit significantly lower performance

than when aggregated in the Ensemble-SWAN. The mean, weighted F1-Score of the N = 200,

sub-NNs, is 72.1%, whereas when aggregating the conversion predictions before evaluation the

model achieves a weighted F1-Score of 85.5% (Ensemble-SWAN). The Ensemble-SWAN weighted

F1-Score is significantly higher than the upper bound of the individually evaluated sub-NNs,

confirming that the ensemble learning approach substantially enhances model performance.

In Figures 8(b) - 8(d) we visualize the distributions of the conversion predictions of the N =

200 sub-NNs before aggregating, for a clear converting sequence, a clear non-converting sequence,

and a boundary case, respectively. Please note that the green, vertical, dashed line is the

conversion probability threshold of 0.5. We identified a clear converting sequence and a clear non-

converting sequence by searching for sequences with a relatively high and low mean prediction

conversion probability. The boundary case was identified by searching for a mean prediction

conversion probability close to the conversion boundary of 0.5. These Figures show that the

predicted conversion probability is quite heavily subject to randomness in the undersampled

dataset on which the sub-NNs are trained. For clear converting and non-converting sequences

this does not cause any problems as most sub-NNs still correctly classify the sequence. However,

for boundary cases as the one depicted in Figure 8(d), the different sub-NNs clearly conclude

opposing classifications.

Based on the presented Figures, it is evident that there is considerable amount of uncertainty

withing the individual sub-NNs, reaffirming the benefits of an ensemble learning approach.

For every input sequence, one could quantify the uncertainty by calculating the variance or

standard error of the predicted probabilities. This could especially be useful in various real-

world applications where uncertainty aware-decisions are key such as medical image recognition.

For example, by calculating the uncertainty for every input token, one could flag boundary cases

as depicted in Figure 8(d) for inspection by human eyes.
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(a): Confidence intervals F1-Score (b): Uncertainty Clear Conversion

(c): Uncertainty Clear Non-Conversion (d): Uncertainty Boundary Case

Figure 8: Epistemic uncertainty in the Ensemble-SWAN visualized by distribution of predic-
tions of sub-NNs.

5.2.2 Uncertainty: Monte Carlo Dropout

As discussed in Section 4.3.2, we can visualize and quantify epistemic uncertainty by using

Monte Carlo Dropout. We train the neural network on a dataset which is balanced by random

undersampling just like the datasets on which the Ensemble-SWAN is trained. Essentially, the

analyzed model can be regarded as one of the sub-NNs from the Ensemble-SWAN. Then, in the

test phase, we pass the test data through the neural network nMCD = 1000 times in a forward

pass with dropout activated.

In Figures 9(a) - 9(d) the distributions of conversion predictions are visualized for a clear

converting sequence, two clear non-converting sequences, and a boundary case, respectively.

From the figures, we conclude that randomly dropping a quarter of the nodes during the forward

pass in the testing phase, quite heavily influences the model’s conversion predictions. However,

please note that for some input sequences like the one presented in Figure 9(c), no uncertainty is

present at all. For most input sequences, there is definitely some epistemic uncertainty associated

with the prediction. This epistemic uncertainty might also arise from the fact that the neural
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(a): Uncertainty Clear Conversion (b): Uncertainty Clear Non-Conversion

(c): Uncertainty Clear Non-Conversion 2 (d): Uncertainty Boundary Case

Figure 9: Epistemic uncertainty in one of Ensemble-SWAN’s sub-NNs, visualized using Monte
Carlo Dropout

network is trained on a relatively small undersampled dataset. Performing the same uncertainty

analysis on a similar neural network which is trained on a higher amount of input sequences,

might significantly reduce uncertainty present in the model. Again, one could quantify the

uncertainty by calculating the variance or standard error of the predicted probabilities, which

is useful in situations where uncertainty-aware decisions are key.

For completeness, we also visualized the epistemic uncertainty present in the SWAN, where

we balance the data by using oversampling technique ADASYN. These results are shown in

Appendix A Figure 10. For most observations, we observe similar levels of uncertainty as we

observed in the Ensemble-SWAN Monte Carlo Dropout analysis. However, we have identified

some clear non-conversion instances, such as the one depicted in Figure 10(c), where the SWAN

produces a small portion of predictions that significantly deviate from the ground truth. This

discrepancy is likely to be attributed to training the model on fictitious data, emphasizing the

risk of oversampling. For some clear conversion we see slightly less spread in the predictions,

which might be attributed to the fact that the SWAN is trained on a dataset 20 times larger
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than the size of a sub-NN of Ensemble-SWAN.

6 Conclusion

In this paper, we propose a machine learning architecture that aims to solve MTA problems

efficiently. The Stacked Web of Attentional Neurons (SWAN) learns to assign conversion credit

to individual touchpoints in the input sequence through a simple feed-forward neural network

using attention mechanisms. The SWAN’s simple architecture enables interpretability and com-

putational efficiency, making it a highly suitable choice for real-world applications. Moreover,

we propose an ensemble learning approach, which we refer to as the Ensemble-SWAN, which

accounts for the class imbalance problem present in online marketing user journey data. Addi-

tionally, in response to the increasing demand for robust UQ methods, we use two techniques

to visualize and quantify the epistemic uncertainty in the Ensemble-SWAN.

To evaluate the performance of SWAN and Ensemble-SWAN we trained and tested both

models on the Criteo dataset, which is a benchmark dataset in the field of MTA. We compared

the results of the SWAN with another state-of-the-art benchmark solution referred to as ARNN,

as proposed in Ren et al. (2018). In order to compare to the ARNN, we used oversampling

technique ADASYN to balance the training set. In this study, the SWAN demonstrates similar

performance in terms of accuracy, precision, F1-Score, and AUC-ROC, despite its simpler archi-

tecture. Additionally, we provide insights in the inner workings of the SWAN. The simplicity of

the model, allows us to trace back attention weights to individual tokens in the input sequence.

Hence, allowing us to assign conversion credit to individual touchpoints in the user journey.

In combination with the short training time of a few minutes, this makes the SWAN a highly

suitable model for real-world applications.

To account for the class imbalance problem present in online marketing user journey data

we introduced the Ensemble-SWAN: an ensemble learning approach leveraging random under-

sampling. We evaluated the performance of the Ensemble-SWAN for varying number of sub-NNs

(N = 50, 100 & 200) against the performance of the SWAN. Here, we see that the Ensemble-

SWAN demonstrates an approximate 5-10% lower performance than the SWAN in terms of

accuracy, precision, and F1-Score. Conversely, the Ensemble-SWAN outperforms the SWAN in

terms of AUC-ROC, meaning that the Ensemble-SWAN has more discriminatory power in clas-

sification. Unsurprisingly, the lost information due to random undersampling comes at the cost

of performance. However, we can conclude that the Ensemble-SWAN can partly compensate for

the information loss. Considering that oversampling approaches involve training on fictitious

data instances, which may lead to significant failures in real-world applications, accepting a

concession of 5-10% in performance could actually prove to be worthwhile.

We also provide two methods to visualize and quantify epistemic uncertainty present in the

Ensemble-SWAN. First, we assess the uncertainty regarding the conversion probability predic-

tions for the sub-NNs of the Ensemble-SWAN for N = 200. Here we see that predictions can

differ significantly when relatively small undersampled datasets are used. Hence, using an en-

semble learning approach, like Ensemble-SWAN, is crucial in order to robustify predictions. Next

to that, we provide explanation how quantification can be useful in settings where uncertainty

aware-decisions are necessary, such as in the field of medical image recognition. Second, Monte
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Carlo Dropout can be used to visualize and quantify uncertainty of individual input sequences.

Monte Carlo Dropout disables a portion of the nodes in the neural network during inference to

estimate uncertainty. Here, we illustrate that the model exhibits uncertainty for certain input

sequences, while displaying no uncertainty for other input sequences. In some settings, it would

be useful to flag the inputs for which the model is uncertain, to be further evaluated with hu-

man eyes. To conclude, both approaches show significant epistemic uncertainty present in the

Ensemble-SWAN, emphasizing the need for caution in real-world applications.

All things considered, the SWAN offers a highly suitable solution for addressing MTA

problems in real-world applications, thanks to its interpretability and computational efficiency.

Moreover, the Ensemble-SWAN effectively handles the class imbalance problem using ensemble

learning techniques and random undersampling, while minimizing performance degradation

caused by the information loss. However, one should acknowledge and be aware of the presence of

epistemic uncertainty in deep learning models, such as the Ensemble-SWAN, when implemented

in practice.

For further research the possibilities are manifold. First, it would be interesting to evalu-

ate the performance of the SWAN in other domains where interpretability and computational

feasibility are important, such as credit card fraud detection and DNA sequence classification.

Moreover, one could combine different types of neural network architectures in one ensemble

learning approach to investigate if this enhances performance in the MTA domain. In this re-

search, the Ensemble-SWAN consists of exactly similar architectures trained on different datasets

rather than different models. Another interesting field to explore further is UQ. In this research

we address the epistemic uncertainty of the model, which can be reduced by increasing the

amount of data and improving model complexity. However, aleatoric uncertainty, which is ir-

reducible, is not addressed in this research. It would be interesting to develop a granular UQ

technique that integrates both epistemic and aleatoric uncertainty in a single measure.
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A Appendix

(a): Uncertainty Clear Conversion (b): Uncertainty Clear Non-Conversion

(c): Uncertainty Clear Non-Conversion 2 (d): Uncertainty Boundary Case

Figure 10: Epistemic uncertainty in ‘regular’ SWAN (oversampled data) visualized using Monte
Carlo Dropout.
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B Code Overview

Please find a brief description of all the Python scripts used in this research below. Note that

some of the scripts are in Jupyter notebook format and some are in regular Python format.

For computational reasons some scripts are run on a more powerful computer, so for those

scripts we do not have the output in Jupyter notebook format. All scripts can be found at

https://github.com/pimweterman/Ensemble-SWAN.git.

Data Preprocessing.ipynb. contains the necessary data pre-processing steps such as ob-

taining all sequences with minimum length 3 and maximum length 20.

Descriptive Statistics Criteo.ipynb contains the code for the descriptive statistics in

Section 3.

ARRN replication.py contains the code of the ARNN as proposed by (Ren et al., 2018),

which is used to benchmark the performance of the SWAN.

SWAN.ipynb contains the code of the Stacked Web of Attentional Neurons (SWAN). This

file also contains the code for obtaining the oversampled dataset using ADASYN.

Ensemble-SWAN.py contains the code of the Ensemble-SWAN. This file also contains the

code for obtaining the undersampled datasets. Additionally, this file contains the code for the

ensemble uncertainty quantification approach.

UQ MCD Undersampled.ipynb contains the code for the Monte Carlo Dropout uncer-

tainty quantification for one of the (undersampled) sub-NNs of the Ensemble-SWAN.

UQ MCD Oversampled.ipynb contains the code for the Monte Carlo Dropout uncer-

tainty quantification for the (oversampled) SWAN.

Plots SWAN Ensemble-SWAN.ipynb contains the code for all the Figures in Section

5.
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