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Abstract

Early purchase prediction of online shopping sessions has become crucial for e-commerce busi-

nesses aiming to personalise the consumer experience and boost conversion rates. This need is

especially pronounced considering the smaller user bases due to privacy concerns and limited

returning customers. This paper focuses on the early prediction of purchase intention using the

pattern of similarity scores derived from the initial three interacted items in sessions as features.

We create novel similarity scores from word2vec item recommendations based on the number

of commonly recommended items and their relative relevancies based on the item’s positions

in recommendation lists. We construct effective classifiers and conduct extensive evaluations of

the similarity scores across multiple datasets. The findings implicate that marketing strategists

can leverage the similarity of the first item interaction with subsequent interactions as signal for

purchase intention. This early signal can effectively be used to tailored marketing strategies to

persuade customer purchases before the session ends. Notably, the Random Forest (RF) model

outperforms other machine learning models in terms of F1 and Area Under Curve (AUC) scores

and emphasises the importance of similarity features for accurate prediction.
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Chapter 1

Introduction

Since online shopping continues to flourish and consumer data collection continues to improve,

the ability to predict consumer behaviour has become increasingly important for e-commerce

businesses seeking to personalise the shopping experience to drive sales and foster consumer

loyalty. An inherent challenge faced by e-commerce platforms is the persistently low conver-

sion rates, where the number of completed purchases lags significantly behind the number of

initiated browsing sessions (Zhou, Mishra, Gligorijevic, Bhatia & Bhamidipati, 2019; Behera,

Gunasekaran, Gupta, Kamboj & Bala, 2020). To address this challenge, even small increases in

accurately identifying consumer browsing intent have been proven to be highly effective in im-

proving the personalisation of the customer journey resulting in higher conversion rates (Blasco-

Arcas, Lee, Kastanakis, Alcañiz & Reyes-Menendez, 2022; Zimmermann & Auinger, 2022).

Other work further highlights the effectiveness of targeting customers during ongoing sessions,

ensuring the opportunity to directly engage them with personalised marketing action (Esmeli,

Bader-El-Den & Abdullahi, 2021, 2022; Alves Gomes, Meyes, Meisen & Meisen, 2022). This

approach gains particular significance as an increasing number of customers prefer anonymous

browsing and the majority of the started session are from non-returning customers (Tagliabue

et al., 2021). Consequently, early purchase intention prediction has become a vital area of

investigation for businesses striving to thrive in the rapidly evolving e-commerce sector.

On the one hand, a large number of abandoned sessions, i.e., sessions not ending in a pur-

chase, could be attributed to informational or investigative intent, which is unlikely to convert

to a purchase (Esmeli et al., 2021). On the other hand, a considerable proportion of abandoned

sessions involve customers who exhibit strong purchase intent but do not complete a purchase

due to factors such as a lack of offerings or misinterpretation of their behaviour. Targeted

marketing strategies, such as personalised recommendations, limited-time discounts, ads, and

follow-up emails, are shown to be very effective for converting customers with strong purchase

intent to purchase (Chatterjee, McGinnis et al., 2010).

Existing research has primarily been focusing on predicting purchase intention based on ex-

tracted customer behaviour features from ended sessions, features such as average sessions dura-

tion, number of items clicked, and number of unique items clicked is shown to be highly correlated

with the purchase intent (Mokryn, Bogina & Kuflik, 2019; Mart́ınez, Schmuck, Pereverzyev Jr,

Pirker & Haltmeier, 2020). Another example of a feature which can be extracted from the

click-stream within sessions and contributes to an improved purchase prediction is the item sim-
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ilarity (Esmeli, Bader-El-Den & Abdullahi, 2020). Esmeli et al. (2020) incorporate the pattern

of interacted item similarities within sessions as features in the prediction models, resulting in

improved accuracy. The item similarity is derived from the commonly recommended items for

a combination of item pairs in the first, middle, and last positions in sessions. The recommen-

ded items are provided by next item recommendation using an adapted word2vec Skip-gram

model (Grbovic et al., 2015; Barkan & Koenigstein, 2016). Word2vec is originally developed to

learn syntactic word associations in sentences presented in low-dimensional word embeddings

(Mikolov, Sutskever, Chen, Corrado & Dean, 2013). Its adapted version learns representations

of items from user interaction in sessions instead of representations of words in sentences. The

underlying concept assumes that item interactions which frequently co-occur together exhibit

a certain level of similarity to each other. This version has proven to be highly effective in

recommendation systems (RS) for predicting relevant next items.

The research question addressed in this paper is whether the pattern of similarity of combina-

tions of the first three item interactions within sessions, derived from word2vec item embeddings,

can serve as an early prediction signal for purchase intention. These early predictive signals,

which capture initial interest, enable marketing strategists to deliver targeted incentives and of-

fers that persuade customers to purchase during ongoing sessions, thus reducing abandonment.

For example, when a customer lands on the platform, a prediction of their purchase intent en-

ables the triggering of targeted offers specifically for the items in which they have shown initial

interest (Liu, Lee & Srinivasan, 2019), such as limited-time discounts or exclusive deals which

can create a sense of urgency and incentivise the customer to complete the purchase. This

targeted approach, at the very beginning of sessions, helps to maximise conversion rates.

By adopting and building upon the approach proposed by Esmeli et al. (2020), this research

extends prior research in six ways. First, the item similarity scores between the first three items

based on item embeddings have, to our knowledge, never been investigated in classification

models. Unlike the research of Esmeli et al. (2020), the similarity scores derived from these

interactions can serve as an early prediction signal for purchase intention. Second, we propose

the use of “position-aware similarity”, PAS, scores. These scores enhance the interpretation of

item similarity scores by considering not only the number of common recommendations between

item interaction pairs (Esmeli et al., 2020), but also incorporating the relative ranking of re-

commended items. For example, two item interactions with common recommendations at the

top of the recommendation list can be considered more similar than recommendations that only

overlap towards the end of the lists. The enriched understanding of the relationship between

interactions is expected to improve the accuracy of purchase intent prediction. Third, we assess

the performance effect of similarity scores when only considering the available information of

the first three interactions. With this approach we aim to enhance our focus on early purchase

prediction further, acknowledging the significance of the initial interactions within a session.

Fourth, we extend the work of Esmeli et al. (2020) by tuning the classification model to build

more effective classifiers, contributing to the overall performance improvement. Fifth, we con-

duct a thorough evaluation of our approach, considering multiple aspects such as performance

improvement, feature importance, and feature effects. This comprehensive evaluation provides

a deeper understanding of the effectiveness of our proposed method. Finally, the robustness of
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our approach is tested on two e-commerce datasets, ensuring the generalisability and reliability

of our findings.

The structure of this paper is as follows. In Sect. 2, we provide a brief overview of related work

on purchase prediction and discuss relevant models used in RS. Section 3 presents the datasets

and explains the employed data processing techniques. The similarity scores, framework, and

performance metrics are outlined in Sect. 4. We evaluate the item similarity scores and their

performance effect on different classification models in Sect. 5. Thereafter, in Sect. 6 managerial

implications and recommendations are provided. Last, we summarise our findings and suggest

potential avenues for future research in Sect. 7.
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Chapter 2

Related Work

In this section, we, first, provide an overview of existing research on purchase prediction models

in Sect. 2.1. Thereafter, different methods to derive similar items from sessions are outlined in

Sect. 2.2.

2.1 Purchase Prediction

Purchase prediction refers to the process of using binary classification models to estimate the like-

lihood of users making purchases (Mart́ınez et al., 2020), which can help e-commerce strategists

make appropriate marketing decisions. User representations are required as input for the pur-

chase prediction models, which can be extracted from session data. Session data consist of a

chronological sequence of users interaction in a session, e.g., click, add to cart and purchase

events (Esmeli et al., 2021). Generally, for each interaction at least the event time, interacted

item, and an user or a session identifier is logged. Extensive research has been devoted to identi-

fying user behavioural features that can be extracted from session data (Sheil, Rana & Reilly,

2018; Mokryn et al., 2019; Mart́ınez et al., 2020; Esmeli et al., 2020, 2021; Alves Gomes et al.,

2022).

For example, Mokryn et al. (2019) extract the product trendiness from click-stream data.

They include this feature to the temporal feature set to predict the purchase intention on dif-

ferent machine learning models. Temporal features capture the temporal aspect of user actions,

example are the month, day and hour of the started session. Esmeli et al. (2020) investigate the

effect of using the pattern of product similarity scores instead of product trendiness as feature.

This product similarity score is based on the number of common recommendations for pair of

items in the first, middle and last position in a session. To derive recommendations Esmeli et al.

(2020) use an adapted word2vec recommendation model. In computational experiments, they

test on a Random Forest (RF), Bagging and Decision Tree (DT) classification model. Results

show that each model reacts differently when the item’s position changes. Nevertheless, this

research shows that when item similarities are used as a feature next to temporal features and

click-stream features the accuracy of each model improves in terms of F1 score. Wen, Lin and

Liu (2023) combine item popularity and trendiness based on various types of user feedback, also

including product comments and reviews to better capture the dynamic changes in consumer

preferences. They show an improvement in the prediction accuracy in terms of AUC.
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These studies solely rely on historical actions from completed sessions to make purchase

predictions. However, given the dynamic nature of user intentions, the prevalence of non-

returning users, and the growing privacy concerns that restrict access to user data, there is an

increasing demand for real-time personalization. In this context, it requires classification models

to predict accurately at earliest stage of the user session and with minimal data available (Lin,

Milic-Frayling, Zhou & Ch’ng, 2019; Esmeli et al., 2021; Tagliabue et al., 2021; Esmeli et al.,

2022; Alves Gomes et al., 2022). Lin et al. (2019) show that Logistic Regression (LR) is robust

and effective for purchase prediction based on user interaction pattern, achieving AUC score of

0.85 after considering only 50% of an ongoing session. Esmeli et al. (2021) create dynamical

features and use them on DT, RF, Bagging, K-nearest neighbours (KNN), and Naive Bayes (NB)

for purchase prediction in ongoing sessions. Esmeli et al. (2022) even use session information

that is only available upon user arrival at e-commerce platforms. They use besides temporal

features, contextual features such as location and device type.

An alternative approach to manually selecting features involves learning features directly

from the sequence of user interactions. Recently, Alves Gomes et al. (2022) propose the use of

word2vec embeddings to create user representations from click-stream data. The embeddings

are used as input to the prediction models. The experiment shows that just-in-time purchase

prediction is possible and that using word2vec representations on long short-term memory net-

works outperforms baseline models based on features from (Esmeli et al., 2021). According to

Alves Gomes et al. (2022), one possible explanation for the effectiveness is that the embed-

dings are able to encode information that is challenging to be captured by manually created

features. However, a notable limitation in such automated feature learning approaches is the

difficulty of assessing the importance of features driving purchase intent and developing effective

countermeasures based on them.

Given our objective of supporting e-commerce strategists in optimising conversion rates

through the prediction of purchase intent, relying solely on item representations as predictive

features is not sufficient. Nevertheless, we acknowledge the efficacy of embeddings and their

potential to extract implicit consumer behaviour. Additionally, we recognise the importance of

early purchase prediction. Consequently, we build upon the research conducted by Esmeli et al.

(2020). One of the main contributions of this study is our focus on solely the first three items

in a session when calculating item similarity. This guides e-commerce strategists to provide

targeted content and recommendations at the very start of sessions to better engage users and

increase the likelihood of conversion.

2.2 Session Based Recommendations Systems

Session Based Recommendation Systems (SBRS) involve providing recommendations based on

a sequence of user interactions within the current session and previous anonymous sessions.

Especially, in the field of e-commerce, a growing interest is observed in SBRS due to its ability

to provide recommendations even to anonymous or new users. Initially, item-item similarity-

based methods relying on simple heuristics between the target item and the last item were used.

As soon as researchers release the analogy between words in sentences and user interactions in

sessions, Natural Language Processing (NLP) techniques were leveraged and adopted for SBRS.
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Among the first adopted NLP models to SBRS is Prod2Vec (Grbovic et al., 2015). It learns

low-dimensional item embeddings using word2vec skip-gram model. It employs a two-layer

neural network for self-supervised learning of word representations by creating word embeddings

such that words sharing similar contexts within sentences appear close to each other in the vector

space. This model is known to be efficient and effective in providing relevant and diverse item

recommendations using the top N most similar items to the selected items (Grbovic et al., 2015;

Barkan & Koenigstein, 2016).

A less widely adopted NLP model for SBRS is Global Vectors, GloVe (Pennington, Socher

& Manning, 2014). It seeks to capture the local context of words like word2vec as well as global

co-occurrence patterns. This is done by factorising a word-context co-occurrence matrix based

on occurrences of words within a specific context window. Then word representations are learned

such that the dot product of the word embeddings equals the logarithm of the probability of

co-occurrence. The factorisation can be computationally expensive for a very large corpus.

A deep-learning NLP-inspired approach is the use of Recurrent Neural Networks (RNN),

which can capture the sequential order of item interactions within sessions (Hidasi, Karatzo-

glou, Baltrunas & Tikk, 2016). However, its sequential nature restricts parallelisation, which

limits scalability and efficiency, while fast training of scalable models is crucial for e-commerce

businesses of which the item corpus is often very large (Ludewig, Mauro, Latifi & Jannach, 2019).

Furthermore, Jannach, Ludewig and Lerche (2017) show in experiments that simpler algorithms

provide more accurate recommendations and that RNN models are often not reproducible.

More recently, Transformer based architectures are shown to be an efficient alternative to the

RNN-based models (Vaswani et al., 2017). These architectures provide efficient parallel training,

scale well with training data and are more effective at modelling long sequences. BERT4Rec

(Bianchi, Yu & Tagliabue, 2021) adopt Bidirectional Encoder Representations from Transformers

(BERT) (Devlin, Chang, Lee & Toutanova, 2019), for SBRS. BERT uses the entire sentence

as input and creates unique embeddings for each word occurrence, based on their position and

full context within the sentence. To leverage the full context the Masked Language Modelling

(MLM) technique is used, which requires the model to predict the masked words during training.

Bianchi et al. (2021) adopted the MLM technique also for evaluation, such that the last item in

the session is masked for next item recommendation.

Although the great success of BERT4Rec to improve the accuracy, personalisation, and con-

textual understanding in RS, it may not be suitable for our research due to specific limitations.

First, BERT4Rec is designed to effectively model long sequences, which is not optimal for our

e-commerce data consisting of short sessions. This can result in significant masked items during

MLM such that there is barely any context left. Moreover, in the case where we want to compare

recommendation lists of multiple items, these items need to be masked and almost no context

will be left. Finally, unlike word2vec, BERT4Rec requires retraining for every new session, as it

created unique item embeddings.

Overall, given the nature of our research and the limitations mentioned above, we find that

word2vec is the most suitable choice for our purposes. It is known for its efficiency, scalabil-

ity, and effectiveness in providing similar item recommendations. It is worth noting that our

approach is designed with the flexibility to apply other SBRS models in future research.
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Chapter 3

Data

In this research, we use two session datasets. The first one is the open-sourced RetailRocket1

e-commerce dataset, which provides anonymous click-stream data over 4.5 months. It is widely

used for testing purchase prediction models due to its real-world applicability, various types of

user interactions and its established role as a benchmark dataset (Esmeli et al., 2020; Sheil et

al., 2018). The second dataset is a closed data from an online furniture marketplace collected

by Google Analytics over almost 3 months. We will refer to this dataset as the Closed dataset.

Table 3.1 shows some details of each dataset before processing.

The RetailRocket dataset only provides user identifiers, which are inherently different from

session identifiers, as an user may have multiple sessions in a given time period. To create user

sessions, we apply the session creation approach of Google Analytics. This involves creating

new session identifiers for user interaction sequences whenever the time between sequential

interactions exceeds 30 minutes. We remove accidental and short clicks for both datasets.

Sessions that last less than 2 seconds are discarded, as these sessions do not provide adequate

information about user intent. Furthermore, to compute item similarities for the first three item

interactions, we only keep sessions with at least three interactions.

Word2vec may struggle to generate accurate embeddings for rarely occurring items. Addi-

tionally, the method is only able to provide item recommendations for items that have been

encountered during training. To mitigate this so-called cold-start problem, we remove items

that occur less than twice in the dataset.

Tab. 3.1 and Tab. 3.2 summarise relevant details of each dataset before and after data

pre-processing. It shows that the vast majority of sessions in both datasets do not end in

a purchase. In the RetailRocket dataset, only 7.16% comprises purchase sessions, while the

Closed dataset has an even smaller proportion, 0.95%. This substantial class imbalance could

affect the prediction performance of the classification models (Berry & Linoff, 2004). In addition,

Tab. 3.3 shows that the Closed dataset has relatively more unique item interactions among the

first three items in sessions than the RetailRocket dataset. More specifically, the Closed dataset

also has relatively fewer sessions where the first three item interactions are identical. This could

affect the similarity scores and thus the prediction performance. Hence, the differences between

the datasets provide a valuable opportunity to test the generalisation capabilities of the models.

1https://www.kaggle.com/datasets/RetailRocket/ecommerce-dataset
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Table 3.1: Details of RetailRocket and Closed dataset before pre-processing

dataset # unique items # interactions # view # addtocart # transactions

RetailRocket 235,061 2,756,101 2,664,312 69,332 22,457
Closed 64,365 3,842,745 3,816,970 21,313 4,462

Table 3.2: Details of RetailRocket and Closed dataset after pre-processing

dataset # unique items # interactions # unique sessions # purchase sessions # average session length

RetailRocket 99,389 954,638 171,736 12,294 5.56
Closed 61,573 2,437,151 345,915 3,276 7.05

Table 3.3: Distribution of the number of unique items for the first three interactions in non-
purchase and purchase sessions

dataset # unique items % in non-purchase session % in purchase session

RetailRocket 1 16% 56%
2 41% 28%
3 43% 16%

Closed 1 8% 60%
2 22% 23%
3 70% 17%
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Chapter 4

Methodology

This section provides a comprehensive overview of the steps involved in our proposed framework,

as depicted in Fig. 4.1. Building upon the framework developed by Esmeli et al. (2020), our

approach incorporates several key components. First, we create item embeddings from sessions

by leveraging a word2vec model, which captures the similarity based on the co-occurrences of

items within sessions. Detailed information regarding the model’s configuration can be found

in Sect. 4.1. Next, we define the similarity scores utilised as features in Sect. 4.2 and additional

extracted features are outlined in Sect. 4.3. In Sect. 4.4, we introduce the classification models

employed for purchase intention prediction. Last, in Sect. 4.5, we outline the evaluation metrics

employed to assess the performance and effectiveness of our framework in predicting purchase

intentions.

Figure 4.1: Framework for session feature generation to purchase intention prediction

4.1 Hyperparameters Word2vec Model

We implement a word2vec skip-Gram model following the approach of Bader-El-Den, Teitei and

Perry (2018) using the Gensim library (Řehřek & Sojka, 2010). As input, we create sequences of

item ids for each session. We set the model hyperparameters according to Esmeli et al. (2020)

as follows: epochs = 30, vector dimension = 100, window= 3, minimal count = 1, and other

hyperparameters remain as shown by default. The model is trained only on the training set to

avoid bias in the test dataset.
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4.2 Similarity Score

In this section, we begin by describing how similarity scores are derived from item recommend-

ations in the work of Esmeli et al. (2020). This serves as the foundation for our subsequent

discussions on limitations, potential improvements, and the introduction of novel similarity

scores. Before delving into these aspects, let us establish some notions. We denote S as the set

of S sessions, where each session s = (ip, . . . , iP ) ∈ S is defined as an ordered sequence of P

interacted item ids.

4.2.1 Jaccard Similarity

Esmeli et al. (2020) create item recommendations from the word2vec by selecting the N nearest

neighbours in the vector space to the selected item using the cosine similarity. Then, the

similarity score between item interaction ip and iq within session s, such that p ̸= q is computed

by the Jaccard Similarity (JS):

JS(ip, iq) =

∣∣Lip ∩ Liq

∣∣∣∣Lip ∪ Liq

∣∣ , (4.1)

where the recommendation list for ip is denoted by Lp = R (ip) and Lq = R (iq) denotes the

recommendation list for iq. We choose to set the length of the recommendation lists equal to N

= 100. This ensures that items that are less relevant to the selected item are disregarded, and

more precise similarity calculations are made (Esmeli et al., 2020).

JS has the limitation that it solely considers the number of common item recommendations

between two given items, disregarding other important factors. For example, the ranking of

the recommended items may influence the perceived similarity between two items. Overlapping

items at the top of the recommendation list may be considered more similar than items that

only overlap towards the end of the list. JS fails to recognise such ranking effects. Therefore,

it is crucial to explore alternative similarity measures that take into account factors like item

recommendation relevancy and ranking. By addressing these limitations, we can potentially

enhance the accuracy and effectiveness of similarity scores used as features in purchase prediction

models.

4.2.2 Position-Aware Similarity

We propose a novel similarity score called “position-aware similarity”, PAS, to address the lim-

itations of the JS score. PAS score takes into account the relevancy of commonly recommended

items based on the position within the given recommendation list relative to the item positions of

the target item recommendation list. The underlying intuition is that common recommendations

that are highly ranked in both recommendation lists should be accorded more weight, reflecting

their presumed greater relevance and similarity. On the other hand, items that are less similar

and appear lower in the lists should be assigned less weight, indicating their comparatively lower

similarity. This approach captures both the number of common recommendations and the rel-

evancy of common recommendations, ultimately aiming to provide a more comprehensive and

effective approach for measuring the similarity between items.

We calculate PAS as follows. First, we calculate the position score (PS) for ip compared to
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iq by comparing the positions of their item recommendations as follows

PS (Lq|Lp) =
∑

rip ,riq∈Lp∩Lq

1 +N − rip(n)

log2(riq(n)
+ 1)

, (4.2)

where rip is an item in the recommendation list Lp and commonly shared with Lq and riq is

an item in the recommendation list Lq. The numerator represents the relevancy based on the

position of the common recommended items in Lp, rip(n)
∈ Lp ∩ Lq. The n’th position of an

item in rip is presented by rip(n)
. For the target item, iq, with a recommended item riq in

recommendation list Lq applies an analogous notion. The value of n equals 1 if an item is in

the first position of the recommendation list and equals N when it is the last recommended

item. Resulting in the numerator being equal to N if an item is in the first position and 1 if

an item is at the last position of Lq. The denominator discounts the relevance of the given

recommendations by giving higher weight to items which are at the top of the target list, Lq. It

reflects the diminishing importance of the relevance of the given item recommendations as the

position of these items increases in the target list.

Second, compare the positions of the commonly recommended items to an ideal list. Ideally,

all items in Lp should also be in Lq. Since all recommendation lists have a length of N , we could

write the ideal position similarity (IPS) as,

IPS (Lq) =
∑

riq∈Lq

1 +N − riq(n)

log2(riq(n)
+ 1)

=
N∑

n=1

1 +N − n

log2(n+ 1)
, (4.3)

where we sum over all n positions. Now, we can obtain a normalised position score (NPS) for

the recommended items in ip by

NPS (Lq|Lp) =
PS (Lq|Lp)

IPS (Lq)
. (4.4)

NPS ranges between 0 and 1, such that a score of 1 is assigned to two items which share exact

same items in their recommendation lists and a score of 0 is assigned when there are no common

recommendations. The more items are in common at the top of the recommendation list the

higher the value of NPS. Since we compare two recommendation lists with each other, we should

consider both Lp and Lq as target lists. The final similarity score (PAS) is then computed as

the average of NPS (Lq|Lp) and NPS (Lp|Lq),

PAS (Lq, Lp) =
1

2
(NPS (Lq|Lp) + NPS (Lp|Lq)). (4.5)

As an alternative to the position of item recommendations as relevancy score, we could also

consider the cosine similarity between the given item and its recommendations as a measure for

relevancy. The cosine similarity score indicates how close the given item and its recommended

item are in the embedding space. Cosine similarity scores range between 0 and 1, where 1

represents the highest similarity and 0 indicates no similarity between items. Since we always

consider the top N closest items to the given item in the embedding space as recommendations

it could be that the first items in the list are relatively closer to each other in the embedding
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space and thus exhibit higher similarity than the last items in the list. We also experiment with

whether the cosine similarity can be used as relevancy score. To this end, we adjust PS to the

cosine position similarity score (CPS),

CPS (Lq|ip, Lp) =
∑

rip ,riq∈Lp∩Lq

cos
(
vip , vrip

)
log2(riq(n)

+ 1)
, (4.6)

where cos(vip , vrip ) denotes the cosine similarity between the vector representation of item ip,

denoted by vip , and the vector representation of a common recommended item riq , denoted by

vriq . Ideally, we would have all items in Lp also in Lq with the exact same ranking and relevance,

in terms of cosine similarities, therefore the ideal cosine position similarity (ICPS) score can be

calculated as

ICPS (iq, Lq) =
∑

riq∈Lq

cos
(
viq , vriq

)
log2(riq(n)

+ 1)
. (4.7)

After normalising, we obtain the cosine position-aware similarity score (CPAS) in a similar way

as PAS by taken taking the average of NCPS (Lq|ip, Lp) and NCPS (Lp|iq, Lq).

4.3 Session Feature Extraction

Besides similarity scores, we extract important features from the session that are shown to be

relevant for purchase intention prediction. Various works highlight the importance of temporal

features, which are available at the direct start of the session, to better purchase prediction

(Esmeli et al., 2020, 2021; Alves Gomes et al., 2022). Moreover, duration is shown to be one of

the most important features (Esmeli et al., 2021). The vast majority of the work in this field

also uses the number of interactions and the number of unique items as features, which can be

extracted from the click-stream.

For comparability with Esmeli et al. (2020), we use the same feature set. That means we

extract the following click-stream features: total number of interacted items within the session,

number of unique items seen, total session duration in seconds and average duration per item in

seconds. The temporal features we use are month (0 to 12), hour of the day (0 to 23) and day

of the week (0 to 6) and weekend (0 or 1) of the session start. Last, we incrementally include

the item similarity scores for different combinations of interacted item positions in the sessions

to assess their impact on the purchase prediction. This encompasses considering the similarity

of the first-second item, first-third, second-third, first-second and first-third, first-second and

second-third, first-third and second-third, and first-second, first-third and second-third. To

compare them with the similarity score of combinations of first, middle and last done by Esmeli

et al. (2020), we apply the same procedure.

4.4 Purchase Prediction Models

We employ machine learning algorithms trained on a binary classification task to predict pur-

chases, determining whether a given session results in a purchase. In line with relevant literature,
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we evaluate four distinct classification models, i.e., DT, Bagging, RF, and LR.

The DT algorithm (Berry & Linoff, 2004) uses decision rules to predict the value of the target

variable by splitting the data into smaller subsets based on the values of input features. Bagging

(Louppe & Geurts, 2012) is an ensemble method that uses multiple weak learning models, in

our case DTs, trained on random subsets of the data to improve accuracy and reduce variance.

The final prediction is obtained by combining the individual predictions using an aggregation

function. RF (Breiman, 2001) is a specific type of bagging which trains multiple weak DTs on

randomly selected subsets of features. This helps to reduce the correlation between the trees

and increase the diversity of the models.

In contrast to Esmeli et al. (2020), we also implement LR in addition to ensemble methods.

LR applies a logistic function to the linear combination of input features, providing interpretable

estimates that represent both the importance and directionality of each feature on the probability

of the target class (Hosmer Jr, Lemeshow & Sturdivant, 2013). Ensemble methods on the

contrary, only provide feature importances which show the relative importance of features in

the decision-making process. On LR features with larger magnitudes can dominate the learning

process and potentially lead to biased coefficient estimates. Since we have features with different

ranges, we apply feature scaling before building the model. DT, RF, and Bagging are invariant

to feature scaling because they make decisions based on relative feature thresholds rather than

absolute values. Consequently, scaling the features may not have a significant impact on the

performance of these models.

To address the issue of imbalanced data, as mentioned in Sect. 3, sampling methods can

be applied, such as Undersampling (Kubat, Matwin et al., 1997) and Synthetic Minority over-

sampling Technique (SMOTE) (Chawla, Bowyer, Hall & Kegelmeyer, 2002). Esmeli et al. (2021)

test both sampling methods on RF, DT and Bagging classifiers and show that all models pro-

duce better results when SMOTE is applied. Therefore, we opt to apply SMOTE to the training

datasets.

Differently to Esmeli et al. (2020), we apply hyperparameters search to build effective models.

To this end, we divide the data into training and test set using a ratio of 90:10. Subsequently,

hyperparameters are set by applying grid-search over 10-fold cross-validations of the training

dataset. In preliminary research, we find that the first-second and, first-third item pairs con-

tribute most to the purchase prediction. Therefore, we opt to tune the models based on this

feature set to save running costs. For the first, middle and last interaction combinations, we set

hyperparameters using the first-middle and middle-last similarity scores.

We use the scikit-learn library in Python to implement the classification models (Pedregosa

et al., 2011). During the training of the classification models, we apply SMOTE to address the

class imbalance problem. The machine used for building the framework is a 2.1 GHz Intel Core

i3-10110U CPU with 16 GB RAM. After the hyperparameter search, we find equal grids for the

first three item combinations and, the first, middle and last combinations. Table 4.1 summarises

the hyperparameters determined by the tuning process for each model and dataset.
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4.5 Evaluation Metrics

In our evaluation of classification model performance, we opt to use two common evaluation

metrics, namely the F1 score and Area Under the Curve (AUC). The F1 score is computed as

the harmonic mean of Recall and Precision and reflects the model’s ability to accurately predict

purchase sessions. It overcomes the shortcomings of stand-alone precision and recall measures,

which can be misleading if the data is highly imbalanced, by balancing the trade-off between

precision and recall.

Additionally, we use the AUC score to assess the model’s ability to distinguish between

purchase and non-purchase sessions across various thresholds. Specifically, the AUC represents

the area under the Receiver Operating Characteristic (ROC) curve, which plots the true pos-

itive rate plotted against the false positive rate at various classification thresholds. The AUC

has the advantage of being independent of the classification threshold whereas the F1 score is

computed using only one threshold. This allows for a more robust assessment of the model’s

performance on imbalanced data. Both scores range from 0 to 1, with higher values indicating

better performance.

Table 4.1: Tuned hyperparameter of the prediction models on the RetailRocket and Closed
dataset

Model Parameter RetailRocket Closed

DT Max depth 10 10
Min samples split 4 2
Min samples leaf 20 50

Bagging N estimators 70 100
Max depth 10 10
Max samples 0.6 0.6

RF N estimators 120 120
Criterion gini gini
Max Features sqrt sqrt
Max depth 20 15

LR Solver newton-cg newton-cg
Max iter 50 60
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Chapter 5

Evaluation

The evaluation of our methods consists of two parts. First, we analyse the PAS and CPAS scores

against JS scores in Sect. 5.1. Thereafter, we evaluate the purchase prediction performance across

four classification models in Sect. 5.2. We examine the prediction performance of similarity scores

for combinations of the first three items in sessions as signal for early purchase intent. To this

end, we benchmark against combinations of item interactions of the first, middle and last item

interactions, as done by Esmeli et al. (2020) and against baseline features. For the baseline

we only use temporal and click-stream features, similarity scores are excluded. To test the

robustness of our approaches, we evaluate two datasets, namely the open-sourced RetailRocket

dataset and a Closed dataset.

We create item pairs and test for all possible combinations of them, in total there are 7

different feature sets for each approach. We use abbreviations to present item positions and

item pairs. We denote the first interacted item by f, the second interacted item by s, and the

third interacted item in the session by t. The middle and last item interactions are denoted by m

and l, respectively. The similarity between two item interactions is indicated by their positions

and ‘-’, e.g., the similarity between f and s is denoted by f-s. When all possible item pairs are

included, we denote that by all included. We refer to the baseline models with similarity not

included.

5.1 Similarity Scores Evaluation

Table 5.1 and Tab. 5.2 and, Tab. 5.3 and Tab. 5.4 present the computed similarity scores on

the RetailRocket and Closed dataset, respectively. We observe that purchase sessions contain

relatively a higher proportion of similar item interactions than non-purchase sessions. More than

50% of the purchase sessions have item interaction for which we get equal recommendation lists.

Non-purchase, on the other hand, have a higher variation in similarity scores, thus more diverse

items are clicked within these sessions. In the preceding subsections, we evaluate in more detail

the scores for each dataset.
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RetailRocket Dataset

In Tab. 5.1 we observe for the first three interactions that f-t results in the highest average

similarity in non-purchase sessions while yielding relatively lower values in purchase sessions.

Furthermore, Fig. 5.1 reveals that this item pair exhibits the most extreme similarity values,

indicating that items are either very similar or not at all. On the other hand, f-s and s-t

similarity scores emphasise more the pronounced differences between highly similar items in

purchase sessions and dissimilar items in non-purchase sessions. Especially, for the bucket 0.95-

1.0 for purchase sessions we observe f-s and s-t being more often highly similar compared to

non-purchase sessions.

Comparing JS with PAS and CPAS scores, we see on average higher values for PAS and CPAS

in Tab. 5.1 compared to JS. PAS results even in slightly higher similarity values compared to

CPAS. For PAS values in non-purchase sessions, the largest increase in mean compared to JS is

for the s-t, 32.7%, and 29.2% and 29.8% for f-s and f-t, respectively. Purchase sessions exhibit a

lower increase in similarity values. The highest average increase is shown for f-t by 3.96% and for

f-s and s-t which is 3.66% and 3.76%, respectively. These small increases in values for purchase

sessions are explained by the fact that recommendation lists for items are highly similar or not

identical at all. In these cases, PAS and CPAS can not make any impact compared to JS. In

non-purchase sessions, there are more non-extreme similarity values for which PAS and CPAS

could adjust. Also, taking into account the insights from the statistics presented in Table 3.3,

we can infer that there are numerous non-identical item combinations that share relevant items

within recommendation lists. Since this distinction in similarity scores between purchase and

non-purchase sessions is most pronounced for f-t, we expect that this item pair will show higher

performance when using PAS.

Table 5.1: Statistics of similarity scores between the first three item interactions for purchase
and non-purchase sessions in the RetailRocket dataset

Non-purchase Sessions

JS(f, s) JS(f, t) JS(s, t) PAS(f, s) PAS(f, t) PAS(s, t) CPAS(f, s) CPAS(f, t) CPAS(s, t)

mean 0.56 0.59 0.55 0.68 0.68 0.67 0.67 0.68 0.67
std 0.35 0.38 0.34 0.34 0.36 0.33 0.33 0.35 0.32
min 0 0 0 0 0 0 0 0 0
25% 0.27 0.24 0.27 0.45 0.40 0.45 0.48 0.43 0.48
50% 0.56 0.61 0.55 0.80 0.83 0.79 0.77 0.81 0.76
75% 1 1 1 1 1 1 1 1 1
max 1 1 1 1 1 1 1 1 1

Purchase Sessions

JS(f, s) JS(f, t) JS(s, t) PAS(f, s) PAS(f, t) PAS(s, t) CPAS(f, s) CPAS(f, t) CPAS(s, t)

mean 0.76 0.72 0.77 0.81 0.76 0.81 0.81 0.76 0.81
std 0.37 0.40 0.37 0.34 0.37 0.33 0.34 0.37 0.33
min 0 0 0 0 0 0 0 0 0
25% 0.50 0.37 0.53 0.75 0.61 0.77 0.73 0.61 0.74
50% 1 1 1 1 1 1 1 1 1
75% 1 1 1 1 1 1 1 1 1
max 1 1 1 1 1 1 1 1 1
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Figure 5.1: Distribution of similarity scores between the first, second and third item interactions
in the RetailRocket dataset

We also evaluate the similarity scores for f, m, and l interactions. In Tab. 5.2 and Fig. 5.2

we see that the m-l are clearly more often highly similar compared to f-m and f-l. For f-m

and f-l we observe a better distinction in similarity values between purchase and non-purchase

sessions, being on average lower in non-purchase sessions compared to purchase sessions. Hence,

we expect that the f-m and f-l will contribute the most to purchase prediction.

From these observations, we can conclude that the similarity scores extract better similarity

than item-item similarity can reveal. We observe that on average the recommendations lists

have more items within the top of the list in common than at the bottom resulting in higher

similarity values. Furthermore, extrapolating the relevance of items with the recommendations

lists could, on the one hand, help identify purchase sessions better in the classification models.

On the other hand, we observe that the distinction between similarity scores in purchase and

non-purchase sessions also diminishes slightly, since they are both highly similar in purchase and

non-purchase sessions. This could make purchase classification also more difficult.

Closed Dataset

For the Closed dataset, we see in Tab. 5.3 and Tab. 5.4 that interactions within purchase sessions

are significantly more similar than non-purchase sessions. In addition, Fig. 5.3 and Fig. 5.4

show that the Closed dataset reveals significantly less similarity between item interactions in

non-purchase sessions compared RetailRocket dataset. This is in line with our expectations

since we observed in Sect. 3 on average more unique items and especially within the first three

item interactions of non-purchase sessions for the Closed dataset compared to the RetailRocket

dataset.

Regarding the first three item interactions in the Closed dataset, we observe that f-t is the

least similar in the purchase and non-purchase sessions, while this item pair reveals the highest

similarity in non-purchase session on the RetailRocket dataset. This could be related to shorter
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Table 5.2: Statistics of similarity scores between the first, middle, and last item interactions for
purchase and non-purchase sessions in the RetailRocket dataset

Non-purchase Sessions

JS(f, m) JS(f, l) JS(m, l) PAS(f, m) PAS(f, l) PAS(m, l) CPAS(f, m) CPAS(f, l) CPAS(m, l)

mean 0.57 0.57 0.64 0.67 0.66 0.73 0.67 0.66 0.73
std 0.37 0.38 0.35 0.35 0.37 0.33 0.35 0.36 0.32
min 0 0 0 0 0 0 0 0 0
25% 0.24 0.21 0.35 0.40 0.34 0.56 0.43 0.38 0.57
50% 0.57 0.58 0.78 0.80 0.81 0.89 0.78 0.79 0.88
75% 1 1 1 1 1 1 1 1 1
max 1 1 1 1 1 1 1 1 1

Purchase Sessions

JS(f, m) JS(f, l) JS(m, l) PAS(f, m) PAS(f, l) PAS(m, l) CPAS(f, m) CPAS(f, l) CPAS(m, l)

mean 0.71 0.69 0.74 0.75 0.73 0.77 0.75 0.73 0.77
std 0.40 0.41 0.39 0.38 0.40 0.37 0.37 0.39 0.37
min 0 0 0 0 0 0 0 0 0
25% 0.33 0.24 0.38 0.51 0.41 0.61 0.51 0.41 0.60
50% 1 1 1 1 1 1 1 1 1
75% 1 1 1 1 1 1 1 1 1
max 1 1 1 1 1 1 1 1 1

Figure 5.2: Distribution of similarity scores between the first, middle and last item interactions
in the RetailRocket dataset

19



sessions in the RetailRocket dataset. Moreover, we see a smaller percentage change in the mean

for JS and PAS. For non-purchase sessions, the percentage increase in the mean is 2.92%, 2.98%

and 3.27% for f-s, s-t and s-t, respectively. For purchase sessions, the percentages are 1.78%,

1.52% and 1.40%, respectively. One of the main reasons for these smaller changes compared to

the RetailRocket dataset is that in cases where the similarity of the recommendation list is 1 or

0, PAS and CPAS are also 1 and 0 and no correction takes place. For example, when comparing

the results shown in Fig. 5.3, we observe minimal differences when using PAS and CPAS on

purchase and non-purchase sessions within the 0.95-1.0 bucket. Similarly, in the 0.0-0.05 bucket,

we find similar results for purchase sessions. However, for non-purchase sessions, there is a clear

distinction with higher similarity scores for items that have fewer items in common. This

suggests that these item pairs in purchase sessions with a few common recommendations do

have relevant items in common. We hypothesise that this clear distinction in similarity scores

between purchase and non-purchase sessions helps to better classify the purchase intent for all

item pairs.

Regarding the first, middle, and last item interactions, we see in Fig. 5.4 that similar to

the RetailRocket dataset m-l shows the highest similarity in both purchase and non-purchase

sessions. We see that PAS and CPAS similarity scores are particularly increased from the left

tail, the least similar items. Similarity scores for item pairs in the 0.95-1.0 bucket undergo

small changes in both purchase and non-purchase sessions. This is likely due to the fact that

these items are identical. Similar to the RetailRocket dataset, we expect f-m and f-l to con-

tribute mostly to purchase prediction performance, where f-l could reveal even better purchase

indication to better distinction in values between purchase and non-purchase sessions.

Table 5.3: Statistics of similarity scores between the first three item interactions for purchase
and non-purchase sessions in the Closed dataset

Non-purchase Sessions

JS(f, s) JS(f, t) JS(s, t) PAS(f, s) PAS(f, t) PAS(s, t) CPAS(f, s) CPAS(f, t) CPAS(s, t)

mean 0.27 0.22 0.25 0.34 0.29 0.34 0.34 0.29 0.34
std 0.35 0.34 0.34 0.36 0.35 0.35 0.36 0.35 0.35
min 0 0 0 0 0 0 0 0 0
25% 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.03
50% 0.10 0.06 0.10 0.20 0.12 0.20 0.21 0.13 0.22
75% 0.33 0.26 0.32 0.59 0.49 0.57 0.57 0.48 0.55
max 1 1 1 1 1 1 1 1 1

Purchase Sessions

JS(f, s) JS(f, t) JS(s, t) PAS(f, s) PAS(f, t) PAS(s, t) CPAS(f, s) CPAS(f, t) CPAS(s, t)

mean 0.73 0.68 0.73 0.76 0.70 0.76 0.76 0.70 0.76
std 0.41 0.44 0.41 0.39 0.42 0.39 0.39 0.42 0.38
min 0 0 0 0 0 0 0 0 0
25% 0.24 0.12 0.25 0.46 0.23 0.47 0.45 0.24 0.46
50% 1 1 1 1 1 1 1 1 1
75% 1 1 1 1 1 1 1 1 1
max 1 1 1 1 1 1 1 1 1
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Figure 5.3: Similarity scores between the first, second and third item interactions in the Closed
dataset

Table 5.4: Statistics of similarity scores between the first, middle, and last item interactions for
purchase and non-purchase sessions in the Closed dataset

Non-purchase Sessions

JS(f, m) JS(f, l) JS(m, l) PAS(f, m) PAS(f, l) PAS(m, l) CPAS(f, m) CPAS(f, l) CPAS(m, l)

mean 0.20 0.19 0.44 0.26 0.24 0.49 0.26 0.25 0.49
std 0.32 0.32 0.45 0.34 0.34 0.44 0.34 0.34 0.44
min 0 0 0 0 0 0 0 0 0
25% 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.03
50% 0.04 0.03 0.20 0.08 0.05 0.38 0.09 0.06 0.38
75% 0.22 0.20 1.00 0.43 0.39 1.00 0.43 0.39 1.00
max 1 1 1 1 1 1 1 1 1

Purchase Sessions

JS(f, m) JS(f, l) JS(m, l) PAS(f, m) PAS(f, l) PAS(m, l) CPAS(f, m) CPAS(f, l) CPAS(m, l)

mean 0.62 0.60 0.69 0.64 0.62 0.71 0.64 0.62 0.71
std 0.46 0.47 0.44 0.45 0.45 0.43 0.44 0.45 0.42
min 0 0 0 0 0 0 0 0 0
25% 0.04 0.02 0.09 0.07 0.03 0.19 0.07 0.04 0.21
50% 1 1 1 1 1 1 1 1 1
75% 1 1 1 1 1 1 1 1 1
max 1 1 1 1 1 1 1 1 1
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Figure 5.4: Similarity scores between the first, middle and last item interactions in the Closed
dataset

5.2 Prediction Performance Evaluation

We measure prediction performance in terms of F1 and AUC. In the conducted experiments,

we find that the distribution of PAS and CPAS scores is not significantly different, nor are

there any significant differences in prediction performance. Therefore, in this section, we choose

to compare only JS and PAS against each other and against the baseline. In Sect. 5.2.1, we

evaluate the purchase prediction performance using the complete session information to create

the temporal and click-stream features. To further enhance early prediction of purchase intent, it

would be of great use to leverage only the information available from the first three interactions

of the session. This approach is highly beneficial as it enables the purchase intent prediction

even after just three interactions, which can greatly assist e-commerce strategists in executing

real-time personalised marketing strategies to optimise conversion rates effectively. Therefore,

we examine the early purchase intention prediction using only information available on the first

three item interaction in Sect. 5.2.2.

5.2.1 Performance Using Complete Session Information

In this section, we first evaluate the purchase prediction on the RetailRocket dataset and there-

after on the Closed dataset.

RetailRocket Dataset

In Tab. 5.5 we see that the similarity score approaches outperform the baseline on four out of

four prediction models.Regarding DT and Bagging, we see that f-t and s-t mainly contributes

to better performance. However, relatively more feature importance is assigned f-t (Fig. A.1).

Also, considering item pair combinations, f-t contributes most to the prediction accuracy.

RF and LR reveal slightly different patterns. First, we find that RF allocates overall more
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feature importance to the similarity scores compared to DT and Bagging (Fig. A.1). Second,

relatively more importance is placed on f-s and s-t than f-t, while f-t is the dominant predictor

on DT and Bagging. Especially, s-t contributes to better performance on LR for both similarity

scores. In combination with other item pairs, s-t is the most dominant. Interestingly, for LR we

see that f-t even has minimal effect and even a negative effect on the purchase intention when all

similarity scores are included on LR. This could be due to the relatively high similarity of f-t in

both purchase and non-purchase sessions. Since the data is highly imbalanced, this could result

in a bias toward indicating non-purchase intention, also indicated by relatively lower AUC scores

on LR. As presented in Sect. 5.1 the similarity values of f-s and s-t reveal a better distinction in

similarity values of purchase and non-purchase session. Similarity features f-s and s-t show on

LR a positive effect on the purchase intention, indicating that the interactions of subsequently

three very similar items could be a signal of early purchase intention.

Table 5.5: Purchase prediction performance on different classifications models using JS and PAS
scores for the first three item interactions in complete sessions of the RetailRocket dataset

DT Bagging RF LR

Similarity Feature(s) F1 AUC F1 AUC F1 AUC F1 AUC

Jaccard Similarity (JS) Score

similarity not included 0.363 0.856 0.359 0.872 0.373 0.864 0.356 0.839
f-s 0.359 0.856 0.360 0.869 0.372 0.865 0.356 0.839
f-t 0.363 0.861 0.366 0.871 0.372 0.866 0.350 0.835
s-t 0.363 0.860 0.366 0.872 0.373 0.867 0.359 0.843
f-s, f-t 0.364 0.860 0.372 0.872 0.376 0.867 0.354 0.839
f-s, s-t 0.362 0.858 0.362 0.869 0.373 0.866 0.355 0.843
f-t, s-t 0.362 0.860 0.369 0.872 0.377 0.868 0.359 0.843
all included 0.364 0.861 0.372 0.873 0.374 0.869 0.357 0.845

Position Aware Similarity (PAS) Score

f-s 0.361 0.857 0.361 0.869 0.373 0.864 0.349 0.839
f-t 0.365 0.862 0.367 0.871 0.369 0.866 0.350 0.836
s-t 0.363 0.859 0.361 0.872 0.376 0.866 0.354 0.840
f-s, f-t 0.366 0.862 0.371 0.872 0.374 0.868 0.349 0.839
f-s, s-t 0.358 0.854 0.362 0.869 0.376 0.867 0.354 0.840
f-t, s-t 0.365 0.861 0.368 0.872 0.372 0.868 0.355 0.841
all included 0.368 0.859 0.370 0.872 0.375 0.869 0.352 0.842

The prediction results for similarity scores between the f, m, and l item interactions are

shown in Tab. 5.6. We clearly see that f-m outperforms the baseline in DT, Bagging and RF in

case of using JS and PAS. We show in Sect. 5.1 that this item pair also has the most extreme

value distinction between purchase and non-purchase sessions. Our finding that f-m contributes

most to the purchase intention accuracy is similar to what Esmeli et al. (2020) find. Considering

the feature importance scores (Fig. A.2), we note only little differences between JS and PAS for

DT, Bagging and RF. In these models, we see relatively lower importance of m-l compared to

f-m, f-l. This indicates that f-m is a real contributor to better purchase performance.

Again LR shows a different pattern. On this model m-l shows the highest performance
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among similarity features. However, this similarity feature exhibits lower importance compared

to f-m, f-l . More specifically for PAS, we see that m-l has little and even a negative effect on

LR purchase intention when used with other item pairs. However, in neither combination the

baseline is outperformed, which suggests that LR is not able to find information patterns in the

similarity scores.

To draw some general conclusions on the RetailRocket dataset, we achieve for both item

combinations, i.e., the first three items and the first, middle, and last item comparable levels

of performance. Although the differences between the similarity features are relatively small,

f-s, s-t, and f-m contribute most to signalling early purchase prediction. The best prediction

performance is achieved for Bagging in terms of AUC and for RF in terms of F1. These results

suggest that on the RetailRocket dataset, RF is best able to predict purchase intention correctly

while Bagging is better able to distinguish the purchase and non-purchase sessions. The per-

formance of Bagging can be explained by the fact that it trains multiple DTs on bootstrapped

samples and averages their predictions. Consequently, the ensemble can collectively capture a

wider range of patterns enhancing its ability to discriminate between purchase and non-purchase

sessions and leading to a higher AUC. On the other hand, RFs superior performance in terms of

F1 score can be attributed to its capacity to effectively capture complex decision boundaries. RF

trains multiple decision trees on a random selection of features, which can lead to lower correla-

tion among the trees and improved generalisation. The individual decision trees within the RF

ensemble collectively learn different aspects of the data, contributing to improved performance

in identifying purchase intentions.

Table 5.6: Purchase prediction performance on different classifications models using JS and PAS
for the first, middle and last item interactions in complete sessions of the RetailRocket dataset

DT Bagging RF LR

Similarity Feature(s) F1 AUC F1 AUC F1 AUC F1 AUC

Jaccard Similarity (JS) Score

similarity not included 0.363 0.856 0.359 0.872 0.373 0.864 0.356 0.839
f-m 0.365 0.862 0.369 0.873 0.375 0.869 0.348 0.835
f-l 0.361 0.857 0.364 0.869 0.370 0.864 0.348 0.836
m-l 0.359 0.855 0.358 0.871 0.375 0.865 0.354 0.837
f-m, f-l 0.364 0.857 0.372 0.872 0.374 0.868 0.348 0.836
f-m, m-l 0.363 0.858 0.367 0.872 0.378 0.869 0.351 0.835
f-l, m-l 0.357 0.852 0.363 0.869 0.373 0.866 0.352 0.836
all included 0.365 0.857 0.371 0.873 0.373 0.868 0.349 0.835

Position Aware Similarity (PAS) Score

f-m 0.365 0.861 0.369 0.873 0.377 0.870 0.350 0.836
f-l 0.362 0.858 0.364 0.870 0.375 0.865 0.350 0.837
m-l 0.363 0.856 0.359 0.871 0.371 0.865 0.352 0.838
f-m, f-l 0.366 0.857 0.370 0.872 0.377 0.867 0.350 0.836
f-m, m-l 0.365 0.860 0.367 0.872 0.377 0.868 0.349 0.836
f-l, m-l 0.358 0.852 0.363 0.869 0.370 0.866 0.349 0.837
all included 0.367 0.858 0.370 0.873 0.378 0.868 0.348 0.836
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Closed Dataset

Looking at the performances on the Closed dataset in Tab. 5.7, we generally observe lower F1

and higher AUC scores compared to the RetailRocket dataset. Higher AUC scores could be due

to a clearer distinction in feature values between purchase and non-purchase features. Lower

F1 scores can be explained by the fact that the Closed dataset is more imbalanced than the

RetailRocket dataset shown in Sect. 3, making it harder to accurately predict purchase sessions.

Despite the clearer distinction in similarity scores between purchase and non-purchase sessions,

we see that in all models it is harder to outperform the baseline using similarity scores. This

could also be explained by the strong imbalance of the data, where the high similarity scores of

purchase sessions make up a very small proportion of the data. Additionally, for SMOTE it is

more difficult to create accurate synthetic samples of purchase sessions.

The f-s interaction pair is the most influential in purchase prediction performance while

including additional features does not significantly enhance performance except for LR. Inter-

estingly, JS scores show significantly better performance than PAS on the Closed dataset also

more importance is placed on JS’s similarity features, while the difference between JS and PAS

on the RetailRocket dataset is minimal. Moreover, the relative importance of f-s, f-t, and s-t

differ between using JS and PAS in DT and Bagging, indicating their sensitivity to minor value

changes. RF shows the highest prediction performance in terms of F1 and outperforms the

baseline, with f-s playing a key role in predicting purchase intention.

Table 5.7: Purchase prediction performance on different classifications models using JS and PAS
for the first three items interaction in sessions of the Closed dataset

DT Bagging RF LR

Similarity Feature(s) F1 AUC F1 AUC F1 AUC F1 AUC

Jaccard Similarity (JS) Score

similarity not included 0.123 0.890 0.128 0.917 0.150 0.904 0.119 0.917
f-s 0.123 0.886 0.127 0.909 0.150 0.916 0.111 0.925
f-t 0.111 0.878 0.123 0.908 0.144 0.908 0.113 0.922
s-t 0.113 0.860 0.124 0.906 0.151 0.913 0.115 0.924
f-s, f-t 0.110 0.869 0.116 0.899 0.148 0.912 0.124 0.926
f-s, s-t 0.105 0.859 0.115 0.898 0.140 0.912 0.125 0.929
f-t, s-t 0.104 0.874 0.116 0.903 0.143 0.908 0.126 0.925
all included 0.109 0.868 0.116 0.899 0.143 0.911 0.128 0.929

Position Aware Similarity (PAS) Score

f-s 0.102 0.874 0.120 0.908 0.150 0.916 0.112 0.923
f-t 0.104 0.893 0.114 0.906 0.144 0.909 0.113 0.920
s-t 0.108 0.881 0.119 0.908 0.147 0.911 0.118 0.921
f-s, f-t 0.107 0.872 0.116 0.903 0.146 0.912 0.122 0.923
f-s, s-t 0.101 0.877 0.109 0.905 0.142 0.910 0.122 0.926
f-t, s-t 0.106 0.887 0.113 0.906 0.143 0.908 0.124 0.922
all included 0.107 0.862 0.116 0.901 0.139 0.909 0.122 0.926
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Regarding the performance of the similarity scores between the f, m, and l item interactions,

we generally see in Tab. 5.8 no major differences in the level of performance compared to the f, s,

and t item interactions in Tab. 5.7. For the Closed dataset, we see that the classification models

significantly place more importance on f-l and f-m than m-l (Fig. A.5). This could be explained

by the fact that this similarity feature shows the clear distinction in values between purchase

and non-purchase session making providing more clear information for the decision process. We

observe that in most cases also f-l contributes to better prediction of purchase intention, though

only outperforming the baseline on RF and LR. For this similarity feature, we find that RF is

the best performing model in terms of F1 and outperforming the baseline.

Table 5.8: Purchase prediction performance on different classifications models using JS and PAS
for the first, middle and, last item interactions in complete sessions of the Closed dataset

DT Bagging RF LR

Similarity Feature(s) F1 AUC F1 AUC F1 AUC F1 AUC

Jaccard Similarity (JS) Score

similarity not included 0.123 0.890 0.128 0.917 0.150 0.904 0.119 0.917
f-m 0.108 0.880 0.115 0.906 0.145 0.911 0.114 0.921
f-l 0.123 0.888 0.127 0.909 0.156 0.916 0.126 0.920
m-l 0.105 0.878 0.117 0.911 0.152 0.911 0.114 0.919
f-m, f-l 0.113 0.876 0.122 0.902 0.150 0.910 0.113 0.921
f-m, m-l 0.110 0.877 0.115 0.905 0.148 0.910 0.118 0.922
f-l, m-l 0.118 0.880 0.127 0.907 0.154 0.914 0.117 0.921
all included 0.113 0.870 0.122 0.899 0.150 0.909 0.116 0.922

Position Aware Similarity (PAS) Score

f-m 0.108 0.879 0.113 0.907 0.143 0.913 0.116 0.918
f-l 0.123 0.886 0.127 0.908 0.151 0.913 0.125 0.918
m-l 0.105 0.883 0.117 0.911 0.150 0.914 0.115 0.918
f-m, f-l 0.115 0.873 0.122 0.903 0.146 0.910 0.115 0.919
f-m, m-l 0.111 0.879 0.115 0.906 0.144 0.911 0.117 0.920
f-l, m-l 0.119 0.880 0.126 0.907 0.150 0.913 0.117 0.919
all included 0.114 0.871 0.121 0.901 0.143 0.907 0.116 0.920

5.2.2 Performance Using Information from First Three Item Interactions

So far we have used temporal and click-stream features from complete session information. Now,

we examine the performance effect of using only the information on the first three items to the

early purchase intention prediction.

RetailRocket Dataset

Table 5.9 shows that the overall performance descreases by on average 0.1, even for the baseline

models when only the information of the first three interactions is used on the RetailRocket

dataset. Furthermore, when including all similarity features, the four classification models con-

sistently outperform the baseline, with PAS scores achieving higher F1 and AUC values than

to JS. We observe similar patterns of the similarity features on the prediction performance as
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in Sect. 5.2.1 on the RetailRocket, though higher feature importances (Fig. 5.9). The signific-

ance of f-s becomes even more apparent when using PAS, while the performance of f-t and s-t

worsens compared to JS, suggesting the importance of PAS in extracting underlying similarity

information, particularly with limited information.

Table 5.9 shows that f-s is the main contributor to higher F1 scores and f-t to higher AUC.

The high AUC scores of f-t could also question again the bias, as indicated in Sect. 5.2.1 on

the RetailRocket dataset. For the combination of f-s and f-t, f-t is relatively more important

on DT and Bagging and f-s on RF (Fig. A.3). Furthermore, we see in Tab. 5.9 that the good

complementarity of these item pairs for purchase prediction is again confirmed by the set f-s,

f-t. Interestingly, we find that all similarity features exhibit negative effects on the likelihood of

purchase, while we find for f-s and s-t positive effects when the complete session information is

used (Fig. A.3). In Sect. 5.2.1, we find that the similarity values are relatively higher in purchase

sessions than in non-purchase sessions, suggesting that higher similarity increases the likelihood

of purchase intention. Since only the baseline features are changed and the similarity scores

remain the same for the first three items, we may question the stability of LR in this case.

Closed Dataset

Tab. 5.10 shows an average decrease of 0.07 in prediction scores compared to using the complete

session information (Tab. 5.7 Moreover, JS scores attain higher prediction scores than PAS when

only the first three session interactions are used, which was also found with the complete session

information. This is contradictory to the RetailRocket dataset in Tab. 5.9, PAS results in higher

scores on DT Bagging and RF.

The main difference in feature importance across similarity scores on the Closed dataset is

observed for DT and Bagging, where similarity features become less important in the case of

PAS, especially s-t (Fig. A.6). Furthermore, we observe that the similarity features become less

important when only the first three items are used compared to the complete session information

(Fig. A.4), suggesting the relatively greater importance of baseline features and difficulty to ex-

tract informative decision boundaries from similarity features when information is more limited.

This observation might explain why the baseline generally performs better. For LR, none of

the similarity features outperforms the baseline, although s-t shows almost equal performance.

Similar to the estimated coefficients of the RetailRocket dataset on LR (Fig. A.3), we see that in

most cases the similarity features have a negative effect on the likelihood of purchase (Fig. A.6),

which we do not observe when using the complete session information (Fig. A.4), again calling

into question the stability of these models.

Interestingly, we find that f-t and s-t are the most contributing predictors to better perform-

ance across classification models, whereas in Tab. 5.7 we observed that f-s was the most con-

tributing to better prediction performance, though much importance is placed on f-s (Fig.A.6).

This could imply that f-s reveals interesting patterns, but when considering the first three items

it is harder to capture complex decision boundaries.
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Table 5.9: Purchase prediction performance on different classifications models using JS and PAS
on only the first three item interactions in sessions of the RetailRocket dataset

DT Bagging RF LR

Similarity Feature(s) F1 AUC F1 AUC F1 AUC F1 AUC

Jaccard Similarity (JS) Score

similarity not included 0.281 0.733 0.281 0.739 0.287 0.740 0.271 0.723
f-s 0.274 0.722 0.279 0.732 0.281 0.736 0.250 0.725
f-t 0.267 0.742 0.270 0.753 0.269 0.757 0.272 0.744
s-t 0.264 0.726 0.264 0.731 0.273 0.735 0.246 0.721
f-s, f-t 0.284 0.755 0.289 0.760 0.293 0.765 0.281 0.747
f-s, s-t 0.263 0.721 0.269 0.728 0.284 0.738 0.242 0.721
f-t, s-t 0.254 0.740 0.259 0.749 0.265 0.756 0.271 0.741
all included 0.299 0.759 0.302 0.766 0.305 0.770 0.275 0.746

Position Aware Similarity (PAS) Score

f-s 0.266 0.720 0.278 0.731 0.282 0.735 0.253 0.726
f-t 0.259 0.745 0.267 0.752 0.270 0.756 0.281 0.745
s-t 0.263 0.724 0.265 0.729 0.274 0.734 0.248 0.723
f-s, f-t 0.275 0.751 0.285 0.759 0.291 0.765 0.283 0.748
f-s, s-t 0.272 0.722 0.285 0.727 0.283 0.735 0.248 0.723
f-t, s-t 0.253 0.744 0.256 0.750 0.264 0.757 0.280 0.744
all included 0.305 0.759 0.304 0.766 0.307 0.770 0.280 0.748

Table 5.10: Purchase prediction performance on different classifications models using JS and
PAS on only the first three item interactions in sessions of the Closed dataset

DT Bagging RF LR

Similarity Feature(s) F1 AUC F1 AUC F1 AUC F1 AUC

Jaccard Similarity (JS) Score

similarity not included 0.083 0.806 0.081 0.819 0.094 0.817 0.087 0.850
f-s 0.071 0.782 0.075 0.795 0.097 0.785 0.078 0.849
f-t 0.093 0.781 0.093 0.797 0.099 0.799 0.083 0.849
s-t 0.088 0.779 0.090 0.798 0.107 0.801 0.087 0.849
f-s, f-t 0.071 0.779 0.076 0.789 0.093 0.788 0.079 0.849
f-s, s-t 0.096 0.784 0.093 0.793 0.101 0.793 0.078 0.849
f-t, s-t 0.095 0.779 0.094 0.800 0.104 0.799 0.084 0.848
all included 0.100 0.781 0.099 0.792 0.103 0.794 0.079 0.850

Position Aware Similarity (PAS) Score

f-s 0.078 0.778 0.080 0.795 0.090 0.792 0.080 0.849
f-t 0.089 0.780 0.080 0.798 0.091 0.796 0.083 0.848
s-t 0.086 0.776 0.087 0.796 0.102 0.799 0.087 0.849
f-s, f-t 0.071 0.776 0.074 0.787 0.090 0.792 0.080 0.849
f-s, s-t 0.089 0.776 0.090 0.788 0.097 0.794 0.080 0.849
f-t, s-t 0.086 0.771 0.088 0.792 0.096 0.794 0.082 0.847
all included 0.089 0.780 0.089 0.788 0.097 0.788 0.080 0.849
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Chapter 6

Managerial Implications

Our evaluation of the results provides valuable insights for the practical implications, recom-

mendations, and limitations of using item similarity as a feature for early purchase prediction

in the e-commerce sector.

First, regarding the feature similarity sets we observe variate results across models in terms of

feature importance and best similarity features. When comparing the first-middle-last (fml) and

first-second-third (fst) combinations on the complete session information, we found a minimal

difference in prediction performance, despite the fact that the fml similarity scores show generally

better distinction in similarity values between purchase and non-purchase sessions. Moreover, if

we compare the prediction performance of features extracted from the complete session versus

the first three session interactions, we see that in the case of more limited information, overall

performance decreases. Since there is a clear need for early prediction of purchase intention, we

recommend further research on improving similarity representations. Additionally, the use of

other features in combination with the similarity features which can be extracted at the beginning

could be investigated. For example, (Esmeli et al., 2022) show that contextual features which

are already available at the very start of the session such as device and IP location are effective

for early purchase intention prediction.

Second, regarding the choice of prediction models, we found that RF classifiers consistently

outperformed other models, showing the highest performance and feature importance across

various similarity scores. Therefore, we recommend the RF model as the primary choice when

building purchase prediction models using our selected feature sets.

Third, when comparing the JS and PAS similarity scores, we find that PAS results in overall

higher values than JS indicating that items share even more similarity. On the one hand, this

increase diminishes the distinction between values for purchase and non-purchase sessions. On

the other, this results in different relative importances and performance scores among similarity

features, though no significant differences in the performances are found. Consequently, the

results do not directly indicate which similarity score is better to use, and further investigation

is needed to determine the most suitable choice.

Fourth, despite the fact that our findings of best-performing similarity features are different

across the two datasets, we could say that similarities between the first and subsequent items

contribute most to purchase intention detection. On the RetailRocket dataset, f-t, s-t and f-

m,m-l achieve the best performance on the RF model, in which f-t and f-m are relatively more
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important and f-t within the combination even has a negative effect on the purchase. Only

using the available information from the first three item interactions on this dataset highlights

the importance of the similarity scores. On the Closed dataset, f-s and f-l performed the best as

a standalone feature in terms of AUC and F1 on the Closed dataset when the complete session

information is used, including more similarity features does not necessarily result in better

performance. Contrary, if we only consider the first three item interactions f-t and s-t show

higher prediction performance, although f-s gets also significant importance assigned. These

findings strongly suggest that the initial interacted items within sessions reflect the user’s initial

purchase interest. Furthermore, the observed similarity between this first item and subsequent

items within the session serves as a valuable indicator of the user’s underlying purchase intention.

It is important to acknowledge the limitations of our study. Despite adopting the approach to

Esmeli et al. (2020), we did not achieve comparable F1 scores. This suggests that there may be

additional factors or techniques employed in their study that were not reported or considered in

their work. Further investigation and clarification of their results are necessary to draw compar-

ative conclusions. Furthermore, the short duration of e-commerce sessions introduces overlap

between the first-middle-last and first-second-third item interactions, which may affect inter-

pretability of the models. Additionally, it is important to examine the feature similarity values

frequently to capture possible bias during prediction. Last, an one-unit increase in similarity

features reveals on LR opposite directional effects on the likelihood of purchase intention across

item combinations and when limited session information is used. This questions the stability of

LR when using similarity features.

To conclude, the results suggest that the similarity of the first item with subsequent item

interactions plays a significant role in predicting users’ purchase intention. Considering that

e-commerce sessions, especially purchase sessions, are often short, targeting users as soon as

possible is critical. Therefore, we recommend using f-s and f-t on RF for purchase intention

prediction. The directional effect on the purchase intention of the similarity features should

be further investigated. Additionally, we recommend an integration with RS to provide recom-

mendations or discounts for relevant items. Last, we suggest further investigation into selecting

features next to the similarity features, which can contribute to an improved early purchase

prediction.
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Chapter 7

Conclusion

In this research, we investigate whether the patterns of the initial three interacted item simil-

arities can be used as signal for early purchase intention prediction. We hypothesise that the

similarity of the first session interactions reveals initial customer interest and could already be

used to detect purchase intention. By leveraging the similarity between the first three items in

the session, we aim to assist e-commerce businesses by identifying purchase intention not only

during an ongoing session but also in the very early stages. With this approach, conversion

rates can be optimised by using the purchase signal for targeted marketing strategies. We use

item recommendations from word2vec embeddings to create similarity scores from two different

e-commerce datasets and use them as features in various classification models. By implementing

this approach, we demonstrate the effectiveness of item similarity as signal for early purchase

intention prediction.

Compared to Esmeli et al. (2020), we create “position-aware similarity” scores, named PAS,

which are not only based on the number of common recommendations for selected item pairs, but

we also consider the relevancy of the item in the recommendations lists. Although this approach

results in more comprehensive scores, the distinction between similarity scores in purchase and

non-purchases diminished and it leads to varying levels of feature importances. In term of

prediction performance, PAS does not yield significant improvements when compared to solely

considering the number of common recommendations in the classification models.

However, our results show that the similarity score between the first three items in the

session can be effectively used as signal for early purchase prediction. Specially, we find that

the similarity between the first and preceding items contributes most to identifying purchase

intention. We recommend using RF for inferring purchase intention based on these similarities.

This model attains the best performance among the investigated models in terms of its F1

and AUC scores and in terms of its robustness. Additionally, it also allocates relatively more

importance to the similarity features compared to other models, indicating that these truly

contribute to purchase detection.

For future research, we are aiming to use the predictions to create automatised personalised

marketing actions to drive users with uncertain purchase intentions towards a purchase or to

engage users toward the company’s goal. In this respect, we could integrate our approach into

recommendation systems and, if there is a purchase intent, examine which items the consumer

is most interested in and thus should be recommended or discounted, for example. Furthermore,
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this research highlights the effective performance of retrieving similarity scores using a simple

word embedding-based model. However, since item similarity scores are computed independently

from the purchase prediction our approach is also applicable to other recommendation models.

We could further improve the embedding representation such that even better recommendations

are provided using side information. In the field of purchase prediction, we see that temporal

features have a positive effect on the prediction. Further research could address how such

features could be included in the item representation so that these features do not have to be

manually extracted. For example, Vasile, Smirnova and Conneau (2016) show that using the

category when creating the embeddings improves item representations. Finally, it could also be

interesting to evaluate whether the diversity instead of similarity between item interactions can

be considered as a new feature for purchase prediction.
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Appendix A

Similarity Feature Importances and

Coefficients
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Figure A.1: Similarity feature importances from first three item interactions on DT, Bagging,
RF, and estimated coefficients on LR using the RetailRocket dataset
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Figure A.2: Similarity feature importances from the first, middle, and last item interactions on
DT, Bagging and RF and estimated coefficients on LR using the RetailRocket dataset
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Figure A.3: Similarity feature importances on DT, Bagging and RF and estimated coefficients
on LR using only available information on the first three item interactions on the RetailRocket
dataset

39



Figure A.4: Similarity feature importances from first three item interactions on DT, Bagging,
RF, and estimated coefficients on LR using the Closed dataset
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Figure A.5: Similarity feature importances from the first, middle, and last item interactions on
DT, Bagging, RF, and estimated coefficients on LR using the Closed dataset
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Figure A.6: Similarity feature importances on DT, Bagging and RF and estimated coefficients
on LR using only available information on the first three item interactions on the Closed dataset
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