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Abstract

We introduce new (univariate and multivariate) score-driven models based on the ProPar filter, an im-

plicit stochastic updating model. These models are aimed at accurately capturing the joint dynamics of

leptokurtic stock returns and time-varying volatilities. We investigate the use of a Student’s t distribution

instead of the traditional conditional normal distribution for returns and consider high-frequency data

to modify existing score-driven time series models. Through simulations that encompass both correct

and incorrect return and volatility specifications, as well as empirical applications involving up to 15

dimensions, our findings demonstrate that the implicit models consistently yield more favorable results

compared to their explicit counterparts. Moreover, the adoption of the Student’s t distribution was found

to lead to significant improvements. Our univariate and multivariate score-driven models, ProPar-HF and

HEAVY-ProPar-tF, respectively, outperform explicit models in estimating and predicting time-varying

volatilities and covariance matrices.
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1 Introduction and Literature

The behavior of the stock market is affected by a variety of factors such as interest rates, cor-

porate earnings, and geopolitical events. It is therefore widely acknowledged that the volatility

of this type of financial time-series data is generally not constant. Here, the time-varying na-

ture of volatility is a stylized fact that stems from various sources, such as volatility trends,

regimes, volatility clustering, structural breaks, and jumps. Consequently, numerous studies in

the literature have proposed diverse techniques to model and forecast this volatility. Obtaining

such time-varying volatility estimates and predictions is highly critical in financial economet-

rics and option pricing, as it allows for better risk assessment and derivative pricing. Accurate

models enable financial market agents to make informed decisions, thereby improving market

efficiency and stability. However, the process of accurately estimating time-varying parameters

presents a significant challenge, mainly because time-series observations are often accompanied

by considerable amounts of noise that contaminate the signals.

To obtain a clean time-varying volatility estimate for financial time-series data, various ap-

proaches have been proposed. Among these methods, some rely on modeling the noise and

volatility itself through filtering techniques such as the popular autoregressive models like the

(generalized) autoregressive conditional heteroskedasticity ((G)ARCH) models of Engle (1982),

Bollerslev (1986) and Engle & Bollerslev (1986) along with their extensions. In this study, we

investigate the performance of a novel approach to tackle this problem, namely the proximal-

parameter (ProPar) updating algorithm proposed by Lange et al. (2022). Time-varying pa-

rameter models have become increasingly popular in applied econometrics and finance, where

capturing the dynamic behavior of time series processes is essential. These models can be broadly

categorized into two classes (Cox et al., 1981): observation-driven and parameter-driven models.

The ProPar filter joins the scientific strand in the former class. In this class, observations are

assumed to follow a certain distribution with time-varying parameters, while parameter-driven

models take parameter processes as being driven by their own sources of uncertainty. Common

examples of observation-driven and parameter-driven models are GARCH models and stochas-

tic volatility (SV) models, respectively (see Shephard (2005) for an overview of SV models and

Heston (1993) for the commonly used SV Heston model).

ProPar’s updating algorithm builds upon the literature regarding dynamic conditional score

(DCS, Harvey (2013)) and generalized autoregressive score (GAS,Creal et al. (2013)) models,

both of which are observation-driven models. The ProPar updating filter extends these explicit

stochastic gradient methods, by creating an implicit stochastic gradient method. The main

concept of this implicit part is that the score (gradient of the log-likelihood) is evaluated at the
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updated parameter value (rather than the predicted parameter value as in the explicit case),

which, in turn, uses the observation at that moment to update its parameter value. As such, the

ProPar filter also joins the scientific strand of proximal-point methods. Owing to its stochastic

modeling, the ProPar filter is related to implicit stochastic gradient methods, as discussed in

e.g. Toulis & Airoldi (2017).

The ProPar filter has been shown to exhibit some crucial advantages. It has strong invertibil-

ity and optimality properties, even under model misspecification. The filter is also highly robust

to large shocks and poorly specified learning rates and converges globally towards a pseudo-

truth. ProPar has successful and improved (compared to traditional time-varying estimators)

practical applications in time-varying regressions, volatility, and growth-at-risk estimates.

This research aims to provide a comprehensive analysis of the ProPar filter’s performance,

as well as its potential application in high-frequency financial data. Furthermore, we explore

modeling alternatives of the ProPar filter to potentially improve its performance in estimating

and predicting volatility. The research is divided into three main branches.

1. We start by conducting simulation studies to investigate the performance of the ProPar

filter. Specifically, we will focus on three key aspects. Firstly, we will evaluate the efficiency

of the ProPar filter (using maximum likelihood) under a correctly and incorrectly specified

stochastic volatility model. Besides, we will examine ProPar’s ability to capture simulated

jumps following Bates (1996). Lastly, using the simulation study, we test whether there

is statistical outperformance of the implicit ProPar framework compared to its explicit

DCS/GAS counterpart by performing Diebold-Mariano tests (Diebold & Mariano, 2002).

2. The second branch of interest is the empirical performance of the ProPar filter, regarding

time-varying volatility. Here, we will establish whether the implicit part of this proximal-

point algorithm is superior to its explicit counterpart by conducting statistical parameter

tests and by studying the interaction of the exponential GARCH (EGARCH) model of Nel-

son (1991) and the ProPar filter. The EGARCH model was shown in Lange et al. (2022) to

be similar to the ProPar filter to some degree, but also performed somewhat worse in terms

of predictions. This model may also be regarded as explicit as it uses the past volatility

prediction instead of the updated volatility estimate for its current prediction. Therefore,

a hybrid version of the two filters may potentially display superior performance and pro-

vide additional insights into the relative importance of this implicit part. Secondly, we

will study alternatives to the modeling assumptions when creating the framework behind

the ProPar filter. Specifically, instead of assuming a conditional normal distribution for

returns, assuming Student’s t distribution will be discovered, causing ProPar’s volatility
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estimator to change. The Student’s t distribution allows for fatter tails, thereby account-

ing for a greater probability of extreme events or outliers. This assumption may be more

valid when considering the leptokurtic stock returns (see e.g Hansen (1994) and Alberg et

al. (2008)). Alberg et al. (2008) even found that the EGARCH model in combination with

assuming a skewed Student’s t model outperformed other GARCH models.

3. The third and final branch of our research is concerned with the performance of the ProPar

filter on high-frequency financial data. Research on the use of intraday financial data is

not new. Taylor & Xu (1997) for example made use of the intraday standard deviation

of returns to better estimate volatility. And in theory, the sum of squares intraday re-

turns should provide a good estimate for the daily realized variance. As such, Andersen et

al. (1999) found favorable results when forecasting volatility on multiple horizons, using

intraday returns. However, in a more recent study, Ait-Sahalia et al. (2005) argue that

this intraday information could suffer heavily from the so-called microstructure noise often

found in high-frequency data. Other approaches involve simply down-sampling the data or

constructing efficient estimators using smart subsample averaging, such as the two scales

realized volatility (TSRV) estimator of Aı̈t-Sahalia et al. (2011). However, the former

approach may be statistically non-trivial and inefficient, as it may neglect valuable data

points with informative signals, while the latter approach can suffer from model misspeci-

fication and lead to spurious limiting behaviors following invalid assumptions. Therefore,

the ProPar filter, which makes a tradeoff between the optimal estimate and the closeness

to the previous estimate (due to the proximal feature) could be more applicable. Specif-

ically, using sub-batches of observations, 5-minute returns will be calculated to update

daily volatilities. In our high-frequency application, we will both present a 1-dimensional

modeling framework using ProPar and a multivariate ProPar model (using a framework

similar to Opschoor et al. (2018)). The relevance surrounding the use of high-frequency

financial data is quite trivial. Namely, the ProPar filter could provide a substantial esti-

mator for trading companies that seek to manage their volatility estimates continuously

throughout the day, e.g. to adjust their option pricing estimates.

During the simulations and empirical results, we found that maximum likelihood generally

estimates parameters efficiently, under both an incorrectly and correctly specified model for

volatility. Here, ProPar was found to generally outperform the explicit GAS model, with an

even stronger effect at the correctly specified case. Therefore, implicitly (instead of explicitly)

evaluating the score can be regarded as superior information. This finding is in line with our

3



empirical results, where implicit models generally outperformed GAS, and implicit parameters

yielded significantly larger (in magnitude) estimates than explicit parameters. Depending on

the loss function and prediction horizon, our implicit model that instead assumes a conditional

Student’s t distribution for returns was found to provide a more accurate volatility predictor

than other (implicit and explicit) dynamical conditional score models. Lastly, using our high-

frequency dataset of intraday stock returns, both the univariate and multivariate implicit models

were found to significantly outperform their explicit counterparts, thereby providing relatively

accurate models for updating and predicting the covariance matrix and volatility estimates.

The rest of the paper is structured as follows. We extensively describe our methodology in

Section 2, followed by a simulation study in Section 3. In Section 4, we apply the models to

our panel of 15 daily equity returns from the Dow Jones Industrial Average index. Additionally,

we introduce our high-frequency models in Section 5, wherein we proceed to implement these

models utilizing our high-frequency dataset. Finally, Section 6 contains the conclusion of our

research, including suggestions for further research.

2 Modeling Framework

In this section, we present an overview of the ProPar methodology developed by Lange et al.

(2022). We subsequently introduce novel model extensions, consisting of assuming a Student’s

t distribution for returns and a hybrid filter combining the EGARCH model and the ProPar

filter.

2.1 ProPar

The implicit updating algorithm of Lange et al. (2022) is based on the following structure. Let

K denote the number of dimensions under consideration, such as the number of stocks. Let yt

denote the multivariate returns and let the time-varying parameters be denoted as θt|t−1 and

θt|t (all K × 1 vectors). This yields their considered optimization setup:

θt|t = argmax
θ

[
log p(yt | θ)−

1

2
(θ − θt|t−1)

′Pt(θ − θt|t−1)

]
, (1)

where p(yt | θ) denotes the multivariate observation density of yt and Pt is a symmetric and

positive-definite penalty matrix (to be estimated using e.g. maximum likelihood), possibly time-

varying itself. Conceptually, this means that we are optimizing time-varying parameters while

at the same time penalizing deviations from the predicted parameters. Therefore, their model

is called a proximal-parameter (ProPar) updating algorithm. What is unique about this filter is

that it is an implicit stochastic updating algorithm. Namely, in Equation 1, the gradient of the
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log-likelihood function with respect to the parameter vector (also called the score) is evaluated at

the updated parameter vector instead of at the one-step ahead predicted parameter vector as in

explicit stochastic gradient methods. Mathematically, when computing the first-order condition

of Equation 1 with respect to the updated parameter vector, it yields:

∇(yt | θt|t)− Pt(θt|t − θt|t−1) = 0

=⇒ θt|t = θt|t−1 + P−1
t ∇(yt | θt|t),

where ∇(yt | θ) = ∂ log p(yt|θ)
∂θ is the score vector which is evaluated at the updated parameter

vector θt|t rather than at the predicted parameter θt|t−1 (as in an explicit stochastic gradient

method).

After updating their parameter estimate, the authors proposed the following linear prediction

step:

θt+1|t = ω +Φθt|t, (2)

where ω is a K × 1 vector and Φ is a K ×K matrix.

When considering volatility, we first turn to a 1-dimensional parameter space, namely the

time-varying volatility for a certain stock. For this, the authors consider the following model

specifications. Let stock returns be defined as yt under the following model:

yt = µ+ σtzt σt = exp(ht) zt
i.i.d∼ N(0, 1),

where µ, σt, and zt denote the average return of the time-series, time-varying exponential volatil-

ity, and a random, standard normal distributed variable, respectively. This implies that yt is

also conditionally normally distributed as N(µ, exp(2ht)). With such a conditional normal den-

sity, we can solve for ht|t in a similar manner as the general, multivariate case. Namely, using a

constant penalty term, we have the following optimization setup:

ht|t = argmax
h∈R

[
log p(yt | exp (h))−

1

2
(h− ht|t−1)

2P

]
p(yt | ht) =

1

exp(ht)
√
2π
e
− 1

2

(
yt−µ

exp(ht)

)2

.

(3)

Similar to the general setup, when taking the first-order condition with respect to the up-

dating parameter, ht, and rewrite1, it yields:

1This can be found in Appendix Section 7.2
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ht|t = ht|t−1 + η

( yt − µ
exp

(
ht|t
))2

− 1

 , (4)

where η = 1
P > 0 and thus may be regarded as the time-invariant learning rate. Notice that

the updated volatility appears both on the left-hand side and the right-hand side. To solve it,

we can use a Lambert W function, exact details can be found in Appendix Section 7.2.2. This

yields

ht|t = ht|t−1 − η +
1

2
W0

(
2η(yt − µ)2 exp

(
−2(ht|t−1 − η)

))
, (5)

where W0(x) is the Lambert W function for x ∈ R+. Furthermore, the ProPar prediction step

is modeled as

ht+1|t = ω + ϕht|t. (6)

In the proposed ProPar filter, the parameters (η, ω, and ϕ) can be estimated by maximum

likelihood, using the standard prediction-error decomposition. Following Blasques et al. (2022),

the resulting parameter set under a one-dimensional explicit stochastic gradient method follows

a normal distribution, as supported by the works of Newey & McFadden (1994) and Creal et al.

(2013). Under correct specification, this yields

√
n
(
θ̂ML − θ0

)
d∼ N

(
0,J−1

)
, (7)

where n denotes the length of the time series, θ̂ML denotes the estimated optimal parameter vec-

tor under maximum likelihood, θ0 denotes the true parameter vector, and J = −Et[Ht] denotes

the (Fisher) information matrix. Here, Ht := ℓ′′t (θ) denotes the Hessian matrix, where ℓ(θ) rep-

resents the observation log-likelihood, evaluated at the parameter set θ. To compute standard

errors, we use Equation 7 and apply a similar approach as Creal et al. (2013) by computing

the finite difference Hessian, as an approximation for the true Hessian matrix. Throughout this

report, we apply a 5% significance level to determine the significance of each parameter.

In Lange et al. (2022), the authors display the relation of their ProPar filter with explicit

score-driven models. In fact, the explicit score-driven models can be obtained within the ProPar

framework by linearly approximating the logarithmic density target around the prediction. Here,

the same normal distribution for returns is assumed and the following optimization problem is

considered:

ht|t = argmax
h∈R

[
log p(yt | exp(ht|t−1)) +∇(yt | exp(ht|t−1))(h− ht|t−1)−

1

2
(h− ht|t−1)

2P

]
(8)
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Using similar steps as in the ProPar framework (so taking the first order condition and

solving for ht|t) yields the following DCS/GAS model:

ht|t = ht|t−1 + η

( yt − µ
exp

(
ht|t−1

))2

− 1

 . (9)

Now, the right-hand side is immediately computable. This simplifies the execution of the update,

but may also lead to an efficiency loss. Equation 6 can still be used for the 1-step ahead volatility

predictions. Namely, the prediction can be rewritten into

ht+1|t = ω + ϕht|t

= ω + ϕ

ht|t−1 + η

( yt − µ
exp

(
ht|t−1

))2

− 1


= ω + ϕht|t−1 + ϕη∇(yt | exp(ht|t−1)),

(10)

which exactly formulates a GAS model (Creal et al., 2013) under the given modeling framework

for returns.

2.2 Student’s t distribution

In the modeling of returns and volatility, we made use of the assumption that returns are

conditionally normally distributed. Following the literature, this may not always be a reasonable

assumption. However, the advantage of using this distribution is that it enables us to rewrite

the volatility optimization into Equation 4, for which a closed-form solution can be uniquely

found using the Lambert W function. Now, when assuming a Student’s t distribution for the

residuals zt, the returns are also Student’s t distributed with ν > 4 degrees of freedom and,

consequently, the volatility optimization does not turn into Equation 4.

Hence alternatively, we can modify our optimization setup following Harvey & Lange (2017).

The authors consider a generalized Student’s t-distribution (McDonald & Newey, 1988) for re-

turns, yielding what Harvey & Lange (2017) call the Beta-Gen-t-EGARCH model. Mathemat-

ically, we apply the following modeling assumptions:

yt = µ+ exp(ht)zt,where zt
i.i.d∼ t(ξ, ν)

ht|t = argmax
h∈R

[
log p(yt | exp(h))−

1

2
(h− ht|t−1)

2P

]
p(yt | ht) =

ξ

2ν1/ξ
1

B(1/ξ, ν/ξ)

1(
1 + |(yt − µ) / exp(ht)|ξ /ν

)(ν+1)/ξ
,

(11)

where the non-standardized Student’s t-distribution with positive shape parameters ξ = 2 and
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ν degrees of freedom is a special case of the provided observation density and yields the known

Beta-t-EGARCH model. Here, B(., .) denotes the beta function and exp(ht) sets the scaling

of the distribution. Moreover, µ is a constant return average, zt denotes the standardized i.i.d.

Student’s t distributed shock, and ht is the time-varying conditional scaling factor (which should

be multiplied by
√

ν
ν−2 for time-varying volatility (when ξ = 2). The authors formulated the

score function evaluated at the predicted parameter ht|t−1 as:

∇(yt | ht|t−1) =
d

dht
log p (yt | exp(ht))

∣∣∣∣
ht=ht|t−1

= (ν + 1)bt, (12)

where bt =

(
|yt−µ|e−ht|t−1

)ξ
/ν(

|yt−µ|e−ht|t−1
)ξ

/ν+1
= |εt|ξ

|εt|ξ+ν
. In this research, we simply assume ξ = 2 corresponding

to a Student’s t-distribution and implicitly evaluate the score at the updated parameter ht|t itself,

yielding ∇(yt | ht|t). Similar to the ProPar framework, we take the first-order condition of the

maximization formula, yielding: ht|t = ht|t−1 + P−1∇(yt | ht|t) = ht|t−1 + η∇(yt | ht|t).

Instead of solving the optimization problem mathematically, we apply a more numerical anal-

ysis. That is, since both terms in the maximization formula are continuous and differentiable

with respect to the real-valued ht|t, we can apply the Newton-Raphson (NR) root-finding algo-

rithm on the first-order condition of the maximization formula. The general Newton-Raphson

search algorithm works as follows, following the analytical steps of e.g. Nocedal & Wright (2006).

Here, the function to be evaluated is the gradient of the optimization formula, thereby providing

an approximation for the optimal value for ht|t.

Algorithm 1 Newton-Raphson algorithm

Input: Function f(x), derivative f ′(x), initial point x0

Output: x̂ s.t. f(x̂) ≈ 0

y ← f(x0)

y′ ← f ′(x0)

x1 ← x0 − y/y′ ▷ Do Newton’s computation

x0 ← x1 ▷ Update x0 to start the process again

The optimization scheme is repeated iteratively until one of the following stopping criteria

is met:

1. The maximum number of iterations imax, which is set to 2×103, is reached. Note, in

our research, the average number of iterations only equals 2.403, indicating relatively fast

convergence.

2. The changes in the state become smaller than the tolerance value ϵ = 10−4, or the deriva-

tive value of the function becomes smaller than the threshold value δ. This is set to 10−3,
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to prevent the denominator from becoming too small and causing explosive behavior.

Hence, to solve for ht|t, the function to be evaluated is the gradient of the optimization

formula, yielding f(ht|t) = ∇(yt | ht|t)− P (ht|t − ht|t−1). We have derivative2:

f ′(ht|t) = H(yt | ht|t)− P,

H(yt | ht|t) = (ν + 1)
−2ν(yt − µ)2 exp(−2ht|t)((

yt−µ
exp(ht|t)

)2
+ ν

)2 . (13)

It is crucial to acknowledge the possible challenges that may arise when applying the Newton-

Raphson algorithm. One of these challenges is convergence issues that could result from e.g. a

weak initial guess. In this study, we will address this by using ht|t−1 as a starting point, which can

be conjectured to be close to the ht|t solution due to the fact that the ProPar framework possesses

the ’proximal’ feature. Another issue would be that there could be a non-zero probability

that the NR algorithm converges to a local optimum instead of a global optimum. Given

that f ′(ht|t) = H(yt | ht|t) − P is actually the second derivative of the maximization formula

in Equation 11, we can state that the NR algorithm will find the global (rather than local)

optimum whenever f ′(ht|t) is always negative for all values of ht|t. A simple similar example

would be f(x) = −x2, where the second derivative, −2, is always negative for all values of x ∈ R.

Hence, this would ensure that only one maximum (= global optimum ) can be attained. Taking

this into consideration, notice that in Equation 13, the sign of the derivative is consistently

negative for all values of ν > 0 (taking into account that the penalty term P is also greater

than zero) it follows that the first derivative (which is equivalent to the second derivative of the

maximization formula) is strictly negative for t = 1, . . . , T . As a result, the risk of encountering

a local optimum, as opposed to a global one, is rendered irrelevant. In total, the algorithm

yields optimal updated scales exp(ht|t), t = 1, . . . , T (transformable into time-varying volatility

by factor
√

ν
ν−2).

For the 1-day ahead predictions, we again apply the prediction step in Equation 6. Let us

denote this modified version as the Implicit-Beta-t-EGARCH (IBT-EGARCH) model.

2.3 Implicit EGARCH

In this section, we provide a hybrid modeling framework (based on the exponential GARCH

(EGARCH) model developed by Nelson (1991) and the ProPar filter) to also assess the impor-

tance of the implicit aspect of the proximal-point algorithm. We adopt a similar approach to

2Derivation can be seen in Appendix subsection 7.2
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that of Lange et al. (2022) in specifying the EGARCH volatility filter, namely

log
(
ht+1|t

)
= ω + α

(
|zt| −

√
2

π

)
+ β log

(
ht|t−1

)
, (14)

where ω, α, β are parameters to be estimated by maximum likelihood and zt =
yt−µ
ht|t−1

. Notice, the

right-hand side can be regarded as explicit in the sense that the 1-step ahead volatility prediction

is evaluated at the past prediction ht|t−1 instead of the updated volatility ht|t. To that extent,

we provide two hybrid implicit EGARCH models. In the first one (denoted I-EGARCH-1), we

simply add an extra parameter in the EGARCH filter:

log
(
ht+1|t

)
= ω + α

(
|zt| −

√
2

π

)
+ β log

(
ht|t−1

)
+ γ log

(
ht|t
)
, (15)

where ht|t first needs to be computed using the ProPar updating step, γ also is to be computed

using maximum likelihood, and zt is an explicit shock as defined before. Notice that in the

ProPar framework, α and β are equal to zero. So by comparing the magnitudes of β and γ, we

can establish whether the extra implicit step under γ is of greater importance than the explicit

step under β. This follows from the fact that these two parameters capture the effect of the

latest volatility estimations with respect to the current volatility prediction (contrary to the

parameter α which captures the effect of the current shock). Given a null hypothesis stating

equal importance between the two variables, we statistically test for it by performing the Wald

test for each stock. Specifically, under the null hypothesis of equal coefficients (between β and

γ), the test statistic takes on the following form:

W =
|β̂| − |γ̂|√

σ̂2β + σ̂2γ − 2σ̂βγ

H0∼ N(0, 1), (16)

where σ̂2β, σ̂
2
γ and σ̂βγ are the estimated (co)variances of the (maximum-likelihood generated)

coefficients. The Likelihood-Ratio (LR) test is also applied in this research to determine whether

the addition of this implicit parameter yields a significantly better fit. Namely, let us denote

L0(ω, α, β) as the log-likelihood under the restriction of γ = 0, which yields a model equivalent to

the standard EGARCH filter in Equation 14. Furthermore, let L̂(ω, α, β, γ) be the log-likelihood

of the unrestricted I-EGARCH-1 model. Then, under the null hypothesis that the restricted

model is the correct specification, the LR test statistic takes on the following form:

LR = −2(L0(ω, α, β)− L̂(ω, α, β, γ))
H0∼ χ2

1, (17)
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where chi-squared distribution is assumed with one degree of freedom, following from the addi-

tion of a single parameter in the unrestricted model.

In the second hybrid model (denoted I-EGARCH-2), we directly replace the explicit volatility

step with the implicit volatility update (i.e. enforce β = 0). Mathematically,

log
(
ht+1|t

)
= ω + α

(
|zt| −

√
2

π

)
+ γ log

(
ht|t
)
, (18)

where ht|t again first needs to be computed using the ProPar updating step and zt (shock vari-

able) is defined as before. This hybrid model especially holds promising potential for improved

out-of-sample predictions since it leverages the advantages of both the EGARCH model and the

ProPar filter while maintaining a parsimonious set of parameters.

2.4 Forecasting analysis

When making h-step ahead predictions, we turn to the predicted volatility (PVol) over a d-

day horizon as the square root of the predicted variance(PVar) over a d-day horizon. This, in

turn, could be modeled by the conditional expectation of the sum of squared (forward) returns,

also seen in e.g. Andersen et al. (1999). For the ProPar, GAS and IBT-EGARCH model, this

mathematically yields3

PVart := Et

[
d∑

i=1

y2t+i

]
≈ dµ2 +

d∑
i=1

exp

(
2ω

1− ϕi

1− ϕ
+ 2ϕdht|t

)
. (19)

In our research, we decide to follow Andersen et al. (1999) and investigate d ∈ {1, 5, 20},

corresponding to a prediction horizon of one day, one calendar week, and one calendar month

respectively. Using the predicted volatility, we first turn to the mean squared error (MSE) as a

loss function. This takes the following formula: MSE = 1
T

∑T
t=1(PVart−Ht)

2, where T denotes

the length of the time-series and Ht is the proxy for the variance at time t. One trivial proxy

for the variance over a d-day horizon is the (forward-looking) sum of squared daily returns.

Mathematically,

Ht =

d∑
i=1

y2t+i. (20)

Note, the choice of loss function (here, the MSE) is important. Patton (2011) showed that

well-known loss functions could lead to inaccurate comparisons between volatility forecasts,

stemming from a noisy and perhaps false proxy for the variance. The MSE loss function fur-

thermore is heavily influenced by a small number of large observations, making it less robust

to outliers. For our research, this is of considerable concern given that volatility processes in

3 Derivations can be seen in Appendix subsection 7.2
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stock market returns are generally dominated by a small number of such extreme events. Under

a simulation analysis, Patton & Sheppard (2009) argued for the use of the QLIKE loss func-

tion due to its superior power in DM tests. Therefore, in this research, we also compare the

forecasting ability of two models using the QLIKE function, which takes on the following form:

QLIKE = log(PVart)−
Ht

PVart
. (21)

This loss function can be argued to be more robust to outliers compared to the MSE. However,

unlike MSE (a symmetrical loss function), QLIKE is asymmetrical and treats positive and

negative losses differently. Consequently, predictive volatility processes with a known (especially

positive) bias should be carefully studied, since the QLIKE function may display favorable results

for such a model.

To determine whether potential outperformance is statistically significant, we will use the

Diebold-Mariano (DM) test of Diebold & Mariano (2002) where the null hypothesis states equal

predictive ability. The test is constructed as follows. Let dt,p be the loss function at time t

for model p (for simplicity, either the ProPar or GAS model but it can be any other model

comparison). Then, denote et as the difference between the loss functions of the two models at

time t, that is, et = dt,P roPar − dt,GAS . The DM test statistic is modeled as:

DM =
ê√[

γ0 + 2
∑h−1

k=1 γk

]
/T

H0∼ N(0, 1), (22)

where ê is the average of all et values (t = 1, . . . , T ), γk = 1
T

∑T
t=k+1 (et − ê) (et−k − ê) and

T denotes the length of the time-series. The choice for h can be quite complex but a well-

known rule-of-thumb is to take h = T
1
3 + 1, which is implemented in our research. A common

alternative is to determine the number of significant autocorrelations in ê a priori. Using a

significance level of 5%, the DM test statistics and their p-values can be estimated in order to

test the null hypothesis stating that the two models achieve equal predictive ability. If rejected,

the model with the lower average loss function is assumed to have statistical outperformance.

3 Simulation

In simulation studies, we start a comparative analysis between the ProPar filter and its DCS/GAS

counterpart to evaluate their respective capabilities in estimating volatility. This comparison

will help us determine which method performs better under the given conditions and assump-

tions. This way, we can establish the importance and usefulness of this implicit part (in implicit

stochastic proximal-point algorithm). This will be done by generating a simulated sample of
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volatilities within a specified stochastic volatility (SV) model, and comparing the time-varying

volatility estimates under the ProPar framework as in Equation 4 and the DCS/GAS counter-

part as in Equation 9. We implement this by generating volatility and stock price observations

using multiple time-series lengths. Our research studies the lengths T ∈ {252, 504, 1009, 4036},

corresponding to 1, 2, 4, and 16 years with roughly 252 trading days. We simulate such time se-

ries one thousand times for each simulation scenario. We extract the data using both a relatively

straightforward correctly-specified SV model, and an incorrectly specified SV model. This way,

we can determine the performance of both filters using a broader data sample, which ultimately

is more informative.

We start by utilizing the popular discrete-Heston SV model (Heston, 1993) for our incorrectly

specified framework. Specifically, the Heston model takes the following stochastic differential

equations (SDE):

dSt = µStdt+
√
vtStdW

s
t

dvt = κ (θ − vt) dt+ σ
√
vtdW

v
t ,

(23)

where µ is a constant drift for the price process dSt, dWt denotes the increment of a standard

Wiener process with zero mean and variance 1, and dvt is the instantaneous change in the

volatility process. Here, θ > 0 is the long-term mean of variance under risk-neutral dynamics

and κ > 0 is the rate of mean reversion of variance under risk-neutral dynamics. Here, the

processes dW s
t and dW v

t are related by correlation ρ, that is, dW s
t dW

v
t = ρdt. To make it

discrete, we consider the following discrete-Heston SV model:

St+∆t = St exp

((
µ− 1

2
vt

)
∆t+

√
vt∆tz

s
t

)
vt+∆t = vt + κ (θ − vt)∆t+ σ

√
vt∆tz

v
t ,

(24)

where zst and zvt (t = 1, . . . , T ) are identically distributed samples from a normal distribution

with mean 0, variance 1 and ρsv = ρ and ∆t denotes the length of each time interval.

In Table 1, we display the 6 different simulation scenarios, taken from Lord et al. (2010) and

Van Haastrecht & Pelsser (2010).

Next to these six scenarios and four different time-series lengths, we are interested in ProPar’s

ability to capture (simulated) jumps well. To account for jumps, we follow the methodol-

ogy of Bates (1996) that includes jumps in its SDE for the price process, the so-called SVJ

model. Namely, using a Poisson process dNt (independent of other motions) for jumps with
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Table 1: Test scenarios for the Heston model, with their corresponding parameter values. For all cases,
we use S0 equal to 100 and ∆t = 1

252 .

1 2 3 4 5 6

µ 0 0 0 0 0 0.05

V0 0.04 0.04 0.09 0.09 0.04 0.09

κ 0.5 0.3 1 2 0.5 1

θ 0.04 0.04 0.09 0.09 0.04 0.09

σ 1 0.9 1 1 1 1

ρ -0.9 -0.5 -0.3 -0.3 0 -0.3

rate/intensity λ, we adjust the Heston SDE as follows:

dSt = (µ− λγ̂)Stdt+
√
vtStdW

s
t + JNtStdNt

dvt = κ (θ − vt) dt+ σ
√
vtdW

v
t ,

(25)

where JNt is theNt’th percentage jump size, log-normally distributed as log(JNt+1) ∼ N(log(γ̂+

1)− 1
2δ

2, δ2).

In our application, we take the parameter settings of such an SVJ model from Duffie et

al. (2000). The authors derived these estimations from a calibration process (by minimizing

the MSE pricing error) performed on options of the S&P 500 index. This yields the following

(seventh) scenario:

1. Belonging to the jump process: λ = 0.11 such that the mean of this process (i.e. the

expected number of jumps) is equal to λT ), γ̂ = −0.12 and δ = 0.15.

2. Other parameter calibrations: µ = 0,
√
V0 = 0.094, κ = 3.99, θ = 0.014, σ = 0.27 and

ρ = −0.79

We apply these scenarios to the ProPar and the GAS counterpart model for volatility to

compare an implicit and explicit stochastic gradient method. For this, we also make use of the

MSE loss function. Since we are doing 103 repetitions for different time-series lengths, the MSE

formula is now altered as follows. MSE = 1
N×T

∑N
n=1

∑T
t=1

(
exp(ht|t)− ht

)2
, where N = 103

denotes the number of repetitions, T ∈ {252, 504, 1009, 4036} denotes the length of the simulated

time-series, ht|t denotes the estimated log-volatility and ht is the simulated volatility at time t.

To determine whether potential outperformance is statistically significant, we will also use the

Diebold-Mariano test for each scenario and time-series length (T ∈ {252, 504, 1009, 4036}). Here,

the GAS filter is the benchmark model, such that the DM test statistic is negative (positive)

when the ProPar filter, on average, has a lower (higher) MSE.
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In Table 2 we display the results for T = 1009 (4 years). Based on the reported standard

errors, Table 2 shows that the maximum-likelihood optimization for both filters results in quite

efficient parameter estimates. While many parameters are estimated to be significantly different

from 0, the standard errors for the ProPar filter are generally slightly higher, possibly related

due to more precision errors caused by the complex Lambert W function needed to analytically

solve for ht|t. Furthermore, since the DM test statistics are always negative, the ProPar filter

consistently has the lowest MSE for each scenario, suggesting that its implicit updating algorithm

is superior to its explicit counterpart. The DM test statistics significantly validate this suggestion

for scenarios 4 and 7. Scenario 4 is unique in the sense that it has the highest value for κ, the rate

of mean reversion for the volatility process. Consequently, the ProPar filter seems to behave well

for a relatively stable time series. Because of this enhanced stability, the estimated learning rate,

η, under the ProPar filter is substantially larger, thereby allowing for more sensitivity during

low volatility periods. However, since scenario 7 includes jumps in its stochastic differential

equation for the asset price, it appears that the ProPar filter is less vulnerable to these sudden

shocks, hence also presenting a more suitable model for highly noisy data. While it is true that

for scenario 7, the persistence parameter (ϕ) is larger under the ProPar filter (thereby suggesting

worse predictions for unstable time series), it also has a substantially larger learning rate (η)

compared to its GAS counterpart. The latter relationship thus seems to outweigh the former in

importance. Besides, during low-volatility periods, sudden large shocks adversely impacted the

GAS filter more, due to its explicit modeling — where the score is evaluated at the predicted

volatility — as opposed to the implicit updating strategy of ProPar where the score is evaluated

at the updated volatility.

In Table 3, we display the results when considering a substantially shorter time series (T =

252). Here, maximum likelihood still estimates the parameters quite efficiently for both filters,

following small standard errors. However, some parameters lose their significance. This outcome

can be attributed to the reduced amount of information available in a shorter time series,

resulting in fewer data points that can be effectively utilized for parameter calibration. Still,

the majority of the parameters are significant, indicating that maximum likelihood efficiently

estimates the parameters both for a long and short (simulated) time series. Compared to Table 2,

the MSEs for the GAS filter are substantially higher for scenarios 2 and 5. This can be the result

of a few outliers, caused by large return shocks following extremely low volatility periods such

that the explicit score function displays explosive behavior (in combination with the exponential

formulation for volatility). As a result, the DM test statistic, using differences in the MSE

loss function, also contains a few extreme outliers, creating insignificant accuracy comparisons.
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Nevertheless, in the other five scenarios, the ProPar filter statistically outperforms its GAS

counterpart. This is a substantial improvement compared to Table 2 where this was the case

for only two scenarios. Hence, the ProPar filter seems to achieve a relatively better modeling

accuracy than its explicit GAS counterpart for shorter time series. One explanation for this

would be that the event of having a large return shock following extremely low volatility periods

is considerably lower for shorter time series. Therefore, the DM test statistics for these data

samples are expected to be based on fewer outliers, thereby increasing the chance of statistical

significance. This is supported by the fact that in scenarios 2 and 5, the difference in MSE is

quite high, yet not significant. In Appendix Section 7.3, a similar comparison analysis can be

made for the results using T = 504 and T = 4036.

Table 2: Average parameter estimates and standard errors in parentheses, MSEs of the filtered volatility
updates, and their corresponding DM test statistic.

Scenario 1 2 3 4 5 6 7

Maximum Likelihood Optimization

η̂
0.636(0.070)

0.055(0.005)

0.627(0.072)

0.055(0.005)

0.302(0.044)

0.058(0.006)

0.208(0.030)

0.071(0.007)

0.559(0.065)

0.055(0.005)

0.289(0.040)

0.057(0.006)

0.072(0.015)

0.038(0.006)

ω̂
0.165(0.028)

-0.093(0.010)

0.186(0.028)

-0.090(0.009)

0.091(0.018)

0.011(0.008)

0.066(0.013)

0.039(0.007)

0.143(0.024)

-0.091(0.008)

0.087(0.017)

-0.008(0.004)

0.001(0.006)

-0.069(0.009)

ϕ̂
0.925(0.010)

0.882(0.008)

0.901(0.010)

0.899(0.008)

0.949(0.008)

0.956(0.008)

0.964(0.007)

0.904(0.010)

0.919(0.009)

0.876(0.007)

0.954(0.007)

0.978(0.004)

0.972(0.008)

0.779(0.016)

µ̂
-0.026(0.023)

-0.026(0.023)

-0.020(0.012)

-0.021(0.022)

-0.015(0.020)

-0.014(0.023)

-0.020(0.026)

-0.019(0.030)

-0.012(0.012)

-0.012(0.016)

0.002(0.022)

0.002(0.026)

-0.005(0.019)

-0.005(0.019)

Performance Metrics

MSE ProPar 0.966 0.143 0.569 1.110 0.176 1.005 0.194

MSE GAS 1.890 0.562 0.927 1.441 0.681 1.482 0.212

DM -1.011 -1.159 -1.010 −13.350 -1.064 -1.010 −19.349

T = 1009. For the parameter estimates, the upper and lower element corresponds to those of the ProPar and
GAS filter, respectively. The DM test statistics in bold indicate a p-value lower than the significance level of
0.05.
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Table 3: Average parameter estimates and standard errors in parentheses, MSEs of the filtered volatility
updates and their corresponding DM test statistic.

Scenario 1 2 3 4 5 6 7

Maximum Likelihood Optimization

η̂
0.685(0.143)

0.055(0.010)

0.631(0.143)

0.053(0.014)

0.336(0.122)

0.052(0.013)

0.269(0.134)

0.050(0.015)

0.631(0.138)

0.055(0.011)

0.329(0.089)

0.052(0.019)

0.137(0.239)

0.044(0.020)

ω̂
0.152(0.055)

-0.093(0.015)

0.114(0.055)

-0.081(0.019)

0.145(0.070)

-0.003(0.017)

0.098(0.044)

-0.000(0.027)

0.126(0.051)

-0.101(0.020)

0.102(0.039)

0.011(0.025)

-0.049(0.028)

-0.114(0.028)

ϕ̂
0.910(0.025)

0.921(0.013)

0.897(0.026)

0.889(0.019)

0.887(0.049)

0.866(0.019)

0.903(0.040)

0.796(0.034)

0.895(0.025)

0.870(0.017)

0.930(0.025)

0.871(0.026)

0.838(0.049)

0.733(0.044)

µ̂
-0.005(0.039)

-0.005(0.039)

-0.006(0.030)

-0.006(0.037)

-0.008(0.078)

-0.009(0.082)

-0.010(0.081)

-0.010(0.085)

0.003(0.027)

0.003(0.035)

0.021(0.070)

0.021(0.078)

0.003(0.037)

0.002(0.038)

Performance Metrics

MSE ProPar 0.502 0.494 1.333 1.106 0.363 1.148 0.156

MSE GAS 1.474 5.289 1.606 1.372 6.248 1.372 0.179

DM −2.114 -1.462 −5.480 −6.830 -1.208 −9.250 −5.924

T = 252. For the parameter estimates, the upper and lower element corresponds to those of the ProPar and GAS
filter, respectively. The DM test statistics in bold indicate a p-value lower than the significance level of 0.05.

For our correctly specified case, note that we assumed that returns are conditionally normally

distributed with an exponential formulation for volatility, both for the ProPar and GAS filter.

Hence, a trivial correctly-specified SV model would be an EGARCH SV model. Mathematically,

this has the following framework (see e.g. Harvey et al. (1994)):

yt = exp

(
1

2
vt

)
ϵt

vt = ω + ϕ(vt−1 − ω) + ηt,

(26)

where ϵt∼NID(0, 1) is independent from ηt∼NID(0, σ2η), yt denotes the simulated return at time

t, modeled by variance exp (vt), using a mean ω and persistence parameter ϕ. In this research,

we follow parameter calibrations for ω, ϕ, and σ2η following the literature that performed it

using S&P 500 returns (see e.g. Tsay (2005)). This yields ω = −0.06, ϕ = 0.904 and σ2η =

0.135. The high persistence parameter ϕ closely mirrors stock market volatility by inducing

volatility clustering, a commonly observed stylized fact in volatility processes. Therefore, the

aforementioned parameter settings are particularly useful as they will align with our empirical

dataset, which comprises stocks from the Dow Jones Industrial Average index (more information

about this dataset will follow in the next section).

Using this correctly specified framework, we reveal the estimated maximum-likelihood esti-

mators (and standard errors) for both filters and all four time-series lengths in Table 4. Similarly

to the incorrectly specified Heston model, the maximum-likelihood optimization for both filters

generally yields efficient parameter estimates. For the ProPar filter, the learning parameter
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η tends to decrease substantially with an increase in simulated time series length. A reverse

effect is found for the persistence parameter ϕ. One explanation for this phenomenon would be

that a short time series is relatively more affected by a large shock due to the high persistence

parameter setting in Equation 26, whereas for a longer time series, the effects of such shocks

may decay better. Namely, with a high persistence parameter, the effects of large volatility

shocks are long-lasting, thereby influencing shorter time series for a relatively longer period of

time. As a result, the learning parameter should be lower for these time series (equivalent to a

higher penalty parameter), and vice versa for a longer time series. Consequently, the maximum-

likelihood estimator for the persistence parameter ϕ can be higher for longer time series, since

relatively less simulated volatility observations are highly affected by large past shocks, thereby

increasing the value of the previous volatility.

Table 4 also displays the accuracy analysis based on the MSE. Now, the ProPar filter is not

only significantly outperforming GAS in the shortest time series but also in the longest one.

Using the incorrectly specified case, the ProPar filter struggled in some scenarios with finding

significant outperformance for long time series.

Table 4: Average parameter estimates and standard errors in parentheses, MSEs of the filtered volatility
updates, and their corresponding DM test statistic.

Scenario T=252 T=504 T=1009 T=4036

Maximum Likelihood Optimization

η̂
0.227(0.157)

0.053(0.022)

0.159(0.062)

0.055(0.015)

0.148(0.033)

0.057(0.010)

0.138(0.015)

0.059(0.005)

ω̂
0.062(0.034)

0.027(0.018)

0.045(0.019)

-0.014(0.009)

0.042(0.012)

-0.009(0.006)

0.040(0.006)

0.008(0.002)

ϕ̂
0.811(0.090)

0.778(0.075)

0.871(0.046)

0.865(0.043)

0.895(0.025)

0.900(0.026)

0.902(0.012)

0.906(0.011)

µ̂
-0.006(0.063)

-0.006(0.066)

-0.000(0.044)

-0.000(0.046)

-0.001(0.030)

-0.001(0.032)

0.002(0.015)

0.002(0.016)

Performance Metrics

MSE ProPar 0.415 0.433 0.437 0.436

MSE GAS 0.535 0.623 0.570 0.650

DM -24.785 -1.992 -4.090 -3.104

The upper and lower elements of parameter estimates correspond to those of the ProPar and GAS filters,
respectively. The DM test statistics in bold indicate a p-value lower than the significance level of 0.05.

In summary, parameters in the ProPar and GAS filter can be estimated generally efficiently

using maximum likelihood. Besides, ProPar significantly outperforms its explicit counterpart

in many scenarios and time series lengths, using an incorrectly specified modeling framework.

This effect is stronger when using a correct specification, significantly outperforming GAS in all

cases. Consequently, the implicit evaluation of the score, as opposed to the explicit evaluation,

can be considered of greater value. This study therefore also provides support for the adoption

of the ProPar filter as a relatively more suitable model for empirical financial time series.
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4 Empirical Application: Daily U.S. Equity Returns

4.1 Data

For the empirical studies, close-to-close daily stock returns are used. These are extracted using

stock price data from Yahoo Finance4 for 15 Dow Jones Industrial Average stocks from 2000-

2022 (5786 observations per stock) 5. Furthermore, they are transformed into daily log returns

by taking the natural logarithm, taking differences, and multiplying by 100 to yield percentage

log returns.

As discussed in Section 1, the assumption of normally distributed daily stock returns is often

rejected throughout the literature. Instead, in this research we study the effects of assuming

a conditional Student’s t distribution for returns. To empirically motivate the use of such a

distribution, we conduct Kolmogorov-Smirnov tests on both the optimal normal and Student’s

t distribution for each stock. This way, we can establish statistical validation for the null

hypothesis stating that the theoretical distribution being tested (here, normal or Student’s t) is

identical to the population CDF. The test statistic is as follows:

D = sup
x
|Fn(x)− F (x)|, (27)

where x is a random daily return observation, Fn(x) is the empirical CDF (eCDF) for the

corresponding dataset of returns, and F (x) denotes the CDF of the theoretical distribution

being tested. It thus measures the maximum absolute difference between the eCDF and the CDF

of the given distribution. For large sample sizes (which could be argued to be the case for our

dataset), the distribution of the test statistic under the null hypothesis resembles the Kolmogorov

distribution. In Table 5, we list the p-values for this test, for each stock. It indicates for all

equities that a normal distribution is significantly rejected at the 5% significance level, whereas

we can never state the same for the Student’s t distribution. Hence, an unconditional normal

distribution for returns is strongly rejected by the data, while we can not reject a Student’s t

distribution. Note, in our research, conditional distributions are a key aspect as we are modeling

time-varying volatility. Hence, these test results (based on unconditional distributions) may not

provide a rigorous motivation for the use of a conditional Student’s t distribution.

4https://finance.yahoo.com/
5This list is inspired from Gorgi et al. (2019) and can be found in Appendix Section 7.1
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Table 5: p-values of the Kolmogorov–Smirnov test on the distribution of returns. The 15 stocks are
denoted by their ticker symbol and can be seen in the first column.

H0: Normal Dist. H0: Student’s t Dist.

AA 0.000 0.751

AXP 0.000 0.236

BA 0.000 0.946

CAT 0.000 0.639

GE 0.000 0.302

HD 0.000 0.663

HON 0.000 0.546

IBM 0.000 0.916

JPM 0.000 0.430

KO 0.000 0.672

MCD 0.000 0.402

PFE 0.000 0.390

PG 0.000 0.950

WMT 0.000 0.822

XOM 0.000 0.826

4.2 Explicit vs Implicit

We start our comparison between the implicit and explicit stochastic gradient methods — ProPar

and GAS respectively — by plotting their 1-day ahead volatility predictions against a proxy for

the real volatility on each day. One trivial proxy is the square root of the (forward-looking)

daily squared return, which is equivalent to the absolute daily return. In Figure 1, we show

such a comparison for the first stock, Alcoa Corporation (AA). Figure 1 reveals that both the

ProPar and GAS filter can predict volatility with a somewhat similar accuracy. In Appendix

7.4, we show the comparisons between the ProPar and GAS filter for the 14 other stocks. In

some occasions, the GAS filter displays explosive behavior, stemming from the explicit gradient

in combination with an exponential formulation for volatility and a sudden shift from a low-to-

high volatility period. This finding is in line with Lange et al. (2022) where the authors used

daily S&P500 return data. It is also in line with our simulation study where the MSEs for the

GAS filter can sometimes be relatively high due to exactly this type of outliers.

To gain a better view of the relative performance between the two filters, in Figure 2 we

display the standardized absolute returns together with the standardized difference between the

volatility predictions of the GAS and ProPar filters. From here, we can deduce that the GAS

filter underestimated volatility considerably more at the volatility peak around 2008. This year

is characterized by a series of events that have significantly increased volatility. Among these

events, the most key ones include the downfall of Bears Stearns and Lehman Brothers (follow-

ing the subprime mortgage crisis), as well as the decision of the House of Representatives to

reject the $ 700 Billion Bailout Bill. One explanation for this relative under-estimation is that
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Figure 1: Estimated paths for σt+1|t of the ProPar and GAS filter for daily AA returns, from January
2000 until December 2022

the maximum-likelihood estimator for the learning rate η is lower for the GAS filter than for

the ProPar filter (0.016 and 0.027 respectively). As a result, the GAS model penalizes volatil-

ity updates (and consequently the prediction) more for deviations from the previous volatility

prediction. From 2016 to 2020, key macroeconomic developments such as Brexit’s referendum,

trade wars (especially affecting AA as it operates globally and relies on international trade for

its aluminum products), and the COVID-19 pandemic all led to phases of relatively high volatil-

ity following low-volatility periods. During this time frame, both the GAS and ProPar filter

generally under-estimated volatility, mainly due to their low learning rates. However, from Fig-

ure 2, now, the ProPar filter seems to underestimate volatility relatively more. One explanation

for this phenomenon could be that the joint effect of an explicit score during these volatility

shifts (which causes explosive behavior) and the reducing effect of a low learning rate η led to

enhanced predictive abilities. Another, perhaps minor, explanation would be that during these

years, the GAS filter benefits more from the information on past volatility shocks due to a higher

maximum-likelihood estimator for the persistence ϕ (0.9943 and 0.9926 for the GAS and ProPar

filter respectively). Still, throughout the whole data sample for AA, the ProPar filter seems to

have a better fit than its explicit counterpart (MSEs of 0.750 and 0.814 respectively).
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Figure 2: Standardized volatility prediction differences (GAS minus ProPar) and absolute returns, for
daily AA returns, from January 2000 until December 2022

In Table 6, we display the MSEs of both filters’ 1, 5, and 20-days ahead predictions for all 15

stocks. Here, we also test for potential significant outperformance using the Diebold-Mariano

test. For both filters, it is evident that their accuracy is notably higher when applied to the

shortest prediction horizon (d = 1) as compared to longer horizons. This is to be expected due

to volatility clustering and the consequently diminishing information of the volatility update

with respect to the prediction horizon. The ProPar filter furthermore successfully outperforms

its explicit counterpart in 35 of the 45 comparisons. Of these 35, 10 are significant meaning

that the ProPar filter has a significantly better predictive accuracy for these ten cases. The

GAS model, on the other hand, only outperforms 10 times, only two of which are significant.

Hence, the ProPar model seems to generally predict volatility better. For the shortest two

prediction horizons (d = 1 and d = 5) this finding holds the most. One explanation for this

phenomenon is that the explicit score — used in the GAS filter — is relatively more unstable

for short-term dynamics due to more noise, while the implicit score — used in the ProPar

filter — gives, per definition, more weight on current information thereby capturing short-term

patterns more accurately thus being able to react faster to recent market conditions (in other

words, ProPar may be more useful for now-casting, a finding that is consistent with Lange et al.

(2022)). The few cases where the GAS filter outperforms are mainly for the longest prediction

horizon (d = 20). The ProPar filter, in contrast with its simplistic explicit counterpart, requires

a more complex solving system, which could ultimately have a worsened effect on these long-

term predictions due to perhaps overfitting the updated volatility. This effect is also visible in

Table 7, where we display similar results, but now based on the robust QLIKE loss function.
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From here, we may also conclude that ProPar outperforms for the shortest prediction horizon,

and underperforms for the longest one. For the GAS filter, the cases of outperformance are also

mainly significant. This may stem from the fact that the QLIKE loss function heavily favors a

positively biased volatility process (compared to a negatively biased (of the same magnitude)

volatility process). Namely, the GAS filter is susceptible to yielding explosive volatility behavior

due to a large return shock during low-volatility periods, amplified by evaluating the score

explicitly.

Table 6: Prediction accuracy analysis of the ProPar and GAS filter: MSEs using d−step ahead volatility
estimates.

d=1 d=5 d=20

MSE ProPar MSE GAS MSE ProPar MSE GAS MSE ProPar MSE GAS

AA 0.814 0.818 1.458 1.472 3.480 3.477

AXP 0.466 0.512 0.887* 1.154 3.056* 3.696

BA 0.454 0.462 0.975 1.038 3.288 3.517

CAT 0.384 0.395 0.711 0.770 1.813 1.867

GE 0.419 0.427 0.819* 0.874 2.153 2.226

HD 0.364 1.206 0.812 4.142 2.571 8.396

HON 0.357* 0.390 0.808* 0.931 2.655 2.572

IBM 0.270 0.275 0.620 0.623 2.606 1.674*

JPM 0.520 0.530 1.067* 1.118 3.393 3.394

KO 0.164* 0.170 0.356* 0.384 1.079 1.058

MCD 0.213 0.217 0.461 0.476 1.325 1.249

PFE 0.237 0.273 0.496 0.621 1.745 1.545

PG 0.211 2.235 0.561 8.044 1.677 12.386

WMT 0.225* 0.233 0.486* 0.528 1.364 1.304

XOM 0.243 0.242 0.463 0.453 1.497 1.393*

A MSE with an asterisk (*) indicates that the corresponding filter for that stock and prediction horizon
statistically outperforms its counterpart, using a 5% significance level.

In summary, in terms of fit, the ProPar filter seems to estimate volatility better. It also

provides a relatively more adequate model for volatility predictions under a short prediction

horizon. In longer prediction horizons, this outperformance generally no longer holds (and the

reverse effect, in favor of the GAS filter is observed). Hence, the implicit evaluation of the score

(in the ProPar filter), as opposed to the explicit evaluation (in the GAS filter) can be considered

of greater value for volatility estimation and short-term volatility predictions.
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Table 7: Prediction accuracy analysis of the ProPar and GAS filter: QLIKEs using d−step ahead volatility
estimates.

d=1 d=5 d=20

QLIKE ProPar QLIKE GAS QLIKE ProPar QLIKE GAS QLIKE ProPar QLIKE GAS

AA -0.793 -0.792 0.826 0.801* 2.242 2.127*

AXP -1.597 -1.551 0.119 0.053* 1.832 1.410*

BA -1.461 -1.445 0.223 0.167* 1.832 1.534*

CAT -1.432 -1.412 0.252 0.209* 1.856 1.632*

GE -1.632 -1.613 0.018 -0.014* 1.593 1.373*

HD -1.756 -1.712 -0.019 -0.103* 1.765 1.274*

HON -1.781 -1.755 -0.036 -0.157* 1.807 1.214*

IBM -1.949 -1.913 -0.040 -0.277* 1.958 1.200*

JPM -1.556 -1.545 0.127 0.041* 1.793 1.389*

KO -2.467 -2.443 -0.744 -0.799* 1.008 0.716*

MCD -2.218 -2.202 -0.488 -0.555* 1.255 0.949*

PFE -1.991 -1.962 -0.182 -0.288* 1.756 1.292*

PG -2.449 -2.393 -0.729 -0.748 1.041 0.760*

WMT -2.164 -2.138 -0.430 -0.513* 1.346 0.944*

XOM -2.010 -2.007 -0.303 -0.367* 1.391 1.117*

A QLIKE with an asterisk (*) indicates that the corresponding filter for that stock and prediction horizon
statistically outperforms its counterpart, using a 5% significance level.

Additionally, an alternative means of determining the viability of implicit score evaluation

is researched in this paper. Namely, in our I-EGARCH-1 model in Equation 15, we extended

the regular EGARCH volatility filter by including an extra parameter (γ), accounting for the

effects of the updated volatility on the 1-step ahead predicted volatility. Since this extra layer is

constructed using ProPar’s implicit stochastic gradient method, comparing the magnitudes of γ

and β would yield another insight into the relative importance of this implicit score. Namely, the

latter parameter accounts for the effects of the previous volatility prediction, indicating explicit

short-term dynamics. To statistically test for claiming significant importance, the Wald test

for equal coefficients is applied for each stock. Furthermore, to determine whether the extra

parameter yields a model with a significantly better fit, Likelihood-Ratio (LR) tests are also

applied. Lastly, Diebold-Mariano tests are applied to establish whether the extra parameter

also holds importance in out-of-sample analyses. Table 8 shows that for most stocks, the γ

parameter is statistically significant different from β in magnitude. Since the numerator of the

Wald test statistic is modeled as |β|− |γ|, the many negative and significant Wald test statistics

furthermore show that the implicit persistence parameter γ generally carries more importance.

Hence, again, implicitly solving these dynamic conditional score systems yields more favorable

results. In Table 8, the LR test statistics are also mostly significant in favor of the implicit-

EGARCH model. Hence, at least in terms of fit, the addition of the implicit parameter γ is of

statistically significant importance. However, most MSEs are still quite similar, with fourteen

(of in total fifteen) MSEs not being significantly different from each other. Still, the only case
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where one model is significantly outperforming is the implicit EGARCH model for stock PG.

The exact same conclusion can be made using the QLIKE function as a loss function for the

DM tests instead.

Table 8: Wald test-statistic, Likelihood-Ratio test-statistic, and loss functions of the 1-step ahead volatil-
ity predictions of the I-EGARCH-1 and EGARCH model.

Wald LR MSE I-EGARCH-1 MSE EGARCH QLIKE I-EGARCH-1 QLIKE EGARCH

AA -439.747* 7.016* 0.813 0.813 -0.792 -0.791

AXP -42.245* 14.393* 0.465 0.466 -1.598 -1.596

BA -83.957* 26.664* 0.455 0.456 -1.461 -1.456

CAT -0.754 22.298* 0.383 0.382 -1.440 -1.437

GE -18.435* 9.584* 0.418 0.419 -1.633 -1.631

HD -19.664* 28.677* 0.358 0.365 -1.763 -1.757

HON -6.719* 8.206* 0.356 0.357 -1.784 -1.782

IBM 1.036 64.295* 0.265 0.266 -1.962 -1.951

JPM -0.945 4.462* 0.519 0.519 -1.555 -1.554

KO 5.648* 6.947* 0.166 0.166 -2.461 -2.460

MCD -52.860* 18.008* 0.212 0.213 -2.225 -2.221

PFE -21.270* 8.462* 0.235 0.236 -1.991 -1.989

PG 160.414* 0.051 0.209* 0.211 -2.503* -2.471

WMT 2.004* 36.589* 0.223 0.223 -2.174 -2.168

XOM -372.794* 8.783* 0.243 0.244 -2.006 -2.004

An asterisk (*) indicates statistical significance, using a 5% significance level. For the loss functions,
Diebold-Mariano tests are used.

4.3 Student’s t distribution

During the ProPar and GAS formulation, a normal distribution for returns is assumed. However,

a Student’s t-distribution might be more applicable, as discussed in Section 1 and 4.1. In Sec-

tion 2.2, we provided an implicit model where such a distribution is assumed, IBT-EGARCH. In

Table 9, we provide a prediction accuracy analysis for this model, with the explicit GAS model

being the benchmark for Diebold-Mariano tests. First of all, it reveals that IBT-EGARCH can

make more accurate predictions for a shorter prediction horizon, consistent with Table 6. Based

on the QLIKE loss function, IBT-EGARCH significantly outperforms mainly for the medium-

to-long-term prediction horizon. Hence, this implicit filter may provide a significantly better

framework for predicting volatility at these prediction horizons. For the shortest prediction

horizon, it is somewhat harder to state the same, since IBT-EGARCH only significantly out-

performs with 3 out of the 15 stocks, using the QLIKE loss function. Still, the results do show

that assuming a Student’s t-distribution can broadly yield superior results. Nevertheless, it is

important to note that not all of the preceding conclusions can be inferred when using the MSE

loss function instead. Now, IBT-EGARCH does not outperform GAS at the longest predic-

tion horizon anymore. One explanation for this could be that the GAS filter displays explosive

behavior for some observations, driven by large return shocks following low-volatility periods.
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Therefore, it may not be a good benchmark for MSE calculation as the loss function difference,

which is being calculated during DM tests, consequently also displays explosive behavior (re-

turning high (auto)covariances). Still, for the medium-term volatility predictions (d = 5), the

implicit IBT-EGARCH model provides a significantly better model than the explicit GAS filter.

Table 9: Prediction accuracy analysis of the IBT-EGARCH filter: QLIKEs and MSEs using d−step ahead
volatility estimates.

d=1 d=5 d=20

QLIKE MSE QLIKE MSE QLIKE MSE

AA -0.802 0.823 0.506* 1.412 0.707* 5.188

AXP -1.637* 0.475 -0.471* 0.850* -0.811* 4.418

BA -1.481 0.466 -0.287* 0.976 -0.453* 4.546

CAT -1.432 0.390 -0.125* 0.657* 0.189* 2.224

GE -1.643 0.425 -0.455* 0.762* -0.587* 3.262

HD -1.788 0.357 -0.614* 0.743 -0.812* 3.347

HON -1.816 0.358 -0.682* 0.757* -0.938* 3.393

IBM -2.033* 0.270 -0.836* 0.515* -0.786* 2.059

JPM -1.550 0.530 -0.408* 1.033* -0.796* 5.297

KO -2.507 0.165 -1.243* 0.332* -0.961* 1.241

MCD -2.240 0.214 -0.973* 0.432* -0.763* 1.510

PFE -2.021 0.237 -0.819* 0.447 -0.669* 1.779

PG -2.525* 0.201 -1.268* 0.509 -0.839* 1.809

WMT -2.224 0.223 -0.951* 0.432* -0.679* 1.469

XOM -2.008 0.247 -0.761* 0.458 -0.639* 2.079

A loss function with an asterisk (*) indicates that the filter for that stock and prediction horizon significantly
outperforms the explicit GAS benchmark, using a 5% significance level.

4.4 Other Forecasting Results

In the previous sections, more favorable results were found when solving these dynamical con-

ditional score filters using implicit stochastic gradient methods. However, it remains unknown

which of the four implicit filters yields significantly better results. In Table 10 and Table 11, we

reveal each ranking (and average ranking) based on the MSE and QLIKE loss function respec-

tively. For the MSE loss function, the two hybrid EGARCH models appear to yield the best

1-step ahead predictions. Among the two models, it appears that I-EGARCH-1 (where both

the implicit updating step and the previous prediction term are used) is the superior one. While

acknowledging the paramount significance of the implicit stochastic updating step (as discussed

in the previous section) it seems that also the previous volatility prediction has considerable

information regarding current volatility predictions. Perhaps one could regard this effect to be

similar to a shrinkage/regularization term, in the sense that it provides a more stable volatility

forecast instead of relying purely on the (possibly overfitting) updated volatility. The model that

is based on the Student’s t-distribution, IBT-EGARCH, also suggests some outperformance. For

certain stocks, it outperforms ProPar and may be regarded as the best model. Still, on average,
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the ProPar filter (using a normal distribution for returns) is slightly better. This could stem

from the fact that although the use of a normal distribution can be rejected, it does ensure

a closed-form unique solution to the volatility update, while in the Student’s t-based model,

the updated volatility estimates have to be approximated using the numerical Newton-Raphson

algorithm.

Nonetheless, for the QLIKE loss function, the IBT-EGARCH dominantly appears to be the

overall best model. The rankings for the ProPar and GAS filter stay relatively the same, while

the hybrid EGARCH models are now overtaken by the IBT-EGARCH filter. As the QLIKE

function is more robust to outliers, this may be an explaining factor why the hybrid models are

now somewhat performing worse. Namely, next to the GAS filter, these two models are the only

ones where the previous volatility prediction is explicitly used in the current one. For the MSE

case, this could be regarded as a shrinkage term, since MSE is susceptible to outliers. But now

that a robust loss function is used, this concern is rendered irrelevant, diminishing the value of

this explicit variable. Now, the IBT-EGARCH model, which assumes a Student’s t-distribution

for returns, seems to be the superior model. Thus, assuming such a distribution for (leptokurtic)

returns not only fits the data significantly better than a normal distribution, but it also seems

to be the better choice when using score-driven models to predict volatility.

Table 10: Ranking based on MSEs of 1-day ahead volatility predictions. Here, ’1’ represents the best
filter, and ’5’ denotes the least favorable filter.

ProPar GAS IBT-EGARCH I-EGARCH-1 I-EGARCH-2

AA 3 4 5 2 1

AXP 3 5 4 1 2

BA 1 4 5 2 3

CAT 2 5 4 1 3

GE 3 5 4 1 2

HD 4 5 1 3 2

HON 2 5 4 1 3

IBM 3 5 4 2 1

JPM 3 5 4 1 2

KO 1 5 2 4 3

MCD 3 5 4 1 2

PFE 3 5 4 2 1

PG 3 5 1 2 4

WMT 4 5 2 1 3

XOM 3 1 5 2 4

Average 2.733 4.600 3.533 1.733 2.400
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Table 11: Ranking based on QLIKEs of 1-day ahead volatility predictions. Here, ’1’ represents the best
filter, and ’5’ denotes the least favorable filter.

ProPar GAS IBT-EGARCH -EGARCH-1 I-EGARCH-2

AA 2 5 1 4 3

AXP 4 5 1 2 3

BA 2 5 1 3 4

CAT 4 5 1 2 3

GE 2 5 1 3 4

HD 4 5 1 2 3

HON 4 5 1 2 3

IBM 4 5 1 2 3

JPM 2 5 1 3 4

KO 2 5 1 3 4

MCD 4 5 1 2 3

PFE 2 5 1 3 4

PG 4 5 1 2 3

WMT 4 5 1 2 3

XOM 2 3 1 4 5

Average 3.067 4.867 1 2.600 3.467

5 High-Frequency

5.1 Data

For the high-frequency case, we also extract bid and ask-price quotes data from the (monthly

updated) Trades and Quotes (TAQ) database via Wharton Research Data Services (WRDS).

The time-stamp precision of this database6 is one second. Using these high-frequent stock price

data, we consider three months of data (1 January 2013 - 31 March 2013) for the same 15 stocks.

Cleaning the resulting dataset is highly necessary for most research in this field (see e.g. Gorgi et

al. (2019), Brownlees & Gallo (2006), Barndorff-Nielsen et al. (2009)). In cleaning the TAQ data,

we follow the guidelines of Barndorff-Nielsen et al. (2009) which is implemented in the R package

highfrequency of Boudt et al. (2022). For example, we only consider data that are recorded at

standard market periods (9:30 AM- 4:00 PM), delete entries with quotes equal to 0, retain data

from one exchange (the New York Stock Exchange (NSYE) in our research), and remove quotes

that generate a negative spread. We compute mid-prices as the average between the best-bid and

best-ask price for each second 7. These mid-prices are consequently used to calculate intraday

returns in a similar way as for daily prices: taking the natural logarithm, taking differences, and

multiplying by 100 to achieve percentage intraday returns. With 64 trading days considered, in

6TAQ also provides data with an even higher frequency (milliseconds and even microseconds starting in April
2015), but this is outside the scope of the research as it would cost too much computer memory or would
substantially reduce our data-range.

7Note, the choice of using quoted mid-prices is not trivial. Instead, an alternative would be to use the last
traded price as a proxy for the real price of stocks, which is also available in the TAQ database. However, we deem
the quoted mid-price to contain more valuable information as order book quotes are more continuously updated,
following more updated activity. The last traded price can be considered to be a more discretization of the stock
price process.
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total 64 × 6.5 hours × 60 minutes/5 minutes=4992 5-minute returns per stock are recorded (so

in total 74,880 observations in our cross-section of stocks).

In our research, the realized (co)variance estimator (based on the sum of squared intraday

returns) is a key aspect of our high-frequency models. More details about this methodology will

follow in this section. To gain insight into these intraday returns, in Figure 3 we display the

average volatility of the different 5-minute returns per day for the first stock, Alcoa Corporation

(AA). As we are dealing with 6.5 trading hours, this corresponds to 6.5 × 60/5=78 unique 5-

minute windows, each of which we take the average for. For every unique window, we calculate

its volatility as the absolute 5-minute return (which is equivalent to the square root of the

squared 5-minute return) and annualize it by multiplying it with the square root of 78 x 252

(the number of 5-minute window intervals in a day times the number of trading days in a

year). From Figure 3, we observe a skewed U-shape, indicating that, on average, volatility is

relatively high in the morning when the NYSE opens but also somewhat higher when it closes

in the afternoon. At lunchtime, intraday volatility appears to be substantially lower. These

findings are in line with previous research on high-frequency data (see e.g. Wood et al. (1985)

and Andersen et al. (2001)).

Figure 3: Average Alcoa Corporation (AA) volatilities across 5-minute time intervals, Jan 1, 2013 - Mar
28, 2013. Average volatility is calculated as the average absolute 5-minute return per unique 5-minute
window (starting from the first moment of each trading day).

5.2 ProPar-HF

In this section, we will provide an extension to the ProPar filter by researching the use of high-

frequency financial data to predict daily volatility. Namely, by using sub-batches of intraday

returns, we update daily volatilities. Let us denote the ith 5-minute return during day t as yt,i,

for all i = 1, . . . , 78 (# unique 5-minute intervals), t = 1, . . . , T . We consider the following
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optimization framework for each sample of 78 i.i.d. normal random intraday returns:

ht|t = argmax
h∈R

[
log p (yt,1, yt,2, . . . , yt,78 | exp(h))−

1

2

(
h− ht|t−1

)2
P

]
ht|t = argmax

h∈R

[
log

78∏
i=1

p (yt,i | exp(h))−
1

2

(
h− ht|t−1

)2
P

]

= argmax
h∈R

[
78∑
i=1

log p (yt,i | exp(h))−
1

2

(
h− ht|t−1

)2
P

]

p (yt,i | exp(h)) =
1

exp(ht)
√
2π

exp

(
−1

2

(
yt,i − µ
exp(ht)

)2
)
.

(28)

The drawback of this setup is that it implicitly assumes that all 78 intraday returns have the

same distribution, including the same volatility. However, we observed in Figure 3 a (skewed)

U-shape for intraday volatilities. Therefore, we control for this phenomenon by including the

average U-shape in the logarithmic observation densities, yielding scaling factors wi. We propose

to construct wi to account for the (cross-sectional) average U-shape:

wi =
1

K

1

T

K∑
k=1

T∑
t=1

|yt,i,k|, (29)

where K = 15 denotes the number of stocks and yt,i,k is the i’th 5-minute return at time t for

stock k. To ensure that the sum of weights sums up to 78 (equivalent to the situation without

weights, or, equivalently, wi = 1 for all i = 1, . . . , 78), we scale all weights accordingly. Now, the

optimization framework becomes:

ht|t = argmax
h∈R

[
78∑
i=1

log p (yt,i | wi exp(h))−
1

2

(
h− ht|t−1

)2
P

]

p (yt,i | wi exp(h)) =
1

wi exp(h)
√
2π

exp

(
−1

2

(
yt,i − µ
wi exp(h)

)2
)
.

(30)

Using the optimization setup in Equation 30, we analytically solve the value for ht|t into a

closed-form solution similar to the ProPar model. The solution is given by:

ht|t = ht|t−1 + η

 78∑
i=1

(
yt,i − µ

wi exp
(
ht|t
))2

− 1

 , (31)

which, again, can be solved using the Lambert W function. Namely, ht|t = ht|t−1 −
∑78

i=1 η +

1
2W0

[
2η exp

(
−2(ht|t−1 −

∑78
i=1 η)

)∑78
i=1

(
yt,i−µ
wi

)2]
. Let us denote this model as ProPar-High-

Frequency (ProPar-HF). Its explicit GAS counterpart can be denoted as GAS-High-Frequency
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(GAS-HF). This is straightforwardly modeled as:

ht|t = ht|t−1 + η

 78∑
i=1

(
yt,i − µ

wi exp
(
ht|t−1

))2

− 1

 , (32)

where the right-hand side is immediately computable and thus requires no analytical solving

system. Using Equation 6, 1-step ahead predictions can still be calculated 8.

5.3 HEAVY-ProPar-tF

Since our dataset consists of multiple stocks, we are also interested in the multivariate case.

That is, let yt now be a (K × 1) vector, consisting K close-to-close stock price returns. In

our subsequent model, we modify the HEAVY-GAS-HAR-tF model of Opschoor et al. (2018)

to account for implicit information. Among seven other multivariate models, this model was

found to be generally the most accurate in providing the best multivariate density forecasts

for realized covariance matrices and returns (using 1-day ahead forecasts). There, the authors

constructed a score-driven multivariate location/scale model for daily returns and (realized)

covariance matrices. To capture the dynamics behind the time-varying covariance matrix Vt,

the authors use the multivariate GAS model, which is also an explicit stochastic gradient method.

Hence, we modify their optimization and formulations by implicitly updating this parameter and

by making use of ProPar’s proximal-point feature, utilizing a (squared) Frobenius norm for the

penalty-weighted covariance matrix difference. Namely, we consider the following optimization

framework:

Vt|t = argmax
V ∈RK×K

[
log p(yt | V ) + log p(RCt | V )− 1

2

∥∥∥√P (V − Vt|t−1)
∥∥∥2
F

]
, (33)

where RCt is the daily realized covariance matrix (where e.g. the i’th diagonal is calculated as

the sum of squared 5-minute returns for the i’th stock). Moreover, the matrix P represents aK×

K weighting matrix, and ∥A∥2F is the squared Frobenius norm for matrices. The rationale behind

the use of the Frobenius norm follows from the fact that, just as for the ℓ2 norm for vectors, it is

positively related to the magnitudes of the elements. As a result, the concept of penalty matrix

P slightly changes, as it now weighs the difference between K×K covariance matrices (whereas

in univariate models it weighed the K×1 volatility vector). Since the Frobenius norm is defined

as the square root of the sum of singular values of the matrix, we can rewrite our optimization

8Note, we multiply the final updated and predicted volatilities by factor
√
78 to transform the intraday volatility

into one daily volatility, which will also be used in the forecasting analysis.
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framework into:

Vt|t = argmax
V ∈RK×K

[
log p(yt | V ) + log p(RCt | V )− 1

2

K∑
i=1

λi
(
∆T∆)

)]
, (34)

where ∆ =
√
P (V − Vt|t−1). Here, the term λi(A) denotes the i’th eigenvalue of matrix

A. Furthermore, vector observation yt is assumed to be fat-tailed and conditionally follows a

Student’s t-distribution with ν > 2 degrees of freedom. Therefore, it has the following conditional

observation density:

p(yt | Vt) =
Γ((ν +K)/2)

Γ(ν/2)[(ν − 2)π]K/2|Vt|1/2

(
1 +

y′
tV

−1
t yt

ν − 2

)−(ν+K)/2

, (35)

where |A| denotes the determinant of A. Throughout the literature, RCt often is assumed to

be Wishart distributed (see e.g. Gorgi et al. (2019)). However, in Opschoor et al. (2018), the

authors significantly reject such a distribution and advocated for the assumption of a scaled mul-

tivariate F -distribution instead. Given that our dataset is a subset of the 30 stocks investigated

by the authors (thereby rendering it comparable), we likewise employ the scaled multivariate

F -distribution in our analysis. With ν1 and ν2 > K − 1 degrees of freedom, it has the following

conditional observation density:

p(RCt | Vt) =
ΓK((ν1 + ν2)/2)

ΓK(ν1/2)ΓK(ν2/2)
×
| ν1
ν2−K−1V

−1
t |ν1/2 × |RCt|(ν1−K−1)/2

|IK + ν1
ν2−K−1V

−1
t RCt|(ν1+ν2)/2

, (36)

where Γp(a) = πp(p−1)/4
∏p

i=1 Γ (a+ (1− i)/2) (the multivariate Gamma function), and IK is a

(K ×K) identity matrix.

To implicitly solve Equation 34, we formulate the first-order condition as:

∇(yt | Vt|t) +∇(RCt | Vt|t)−
1

2

(
K∑
i=1

ui

(
∆T∆

)
ui

(
∆T∆

)T)
= 0K×K , (37)

where ui(A) denotes the normalized (K× 1) eigenvector corresponding to the i’th eigenvalue of

matrix A. The vector calculus step behind the relationship of eigenvectors and the derivative

of eigenvalues with respect to its matrix is based on Theorem 1 in Magnus (1985). The score
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formulas are derived in Opschoor et al. (2018) and take on the following form:

∇(yt | Vt|t) =
1

2
V −1
t|t

(
ν +K

ν − 2 + y′
tV

−1
t|t yt

yty
′
t − Vt|t

)
V −1
t|t

∇(RCt | Vt|t) =
ν1
2
V −1
t|t

[
ν1 + ν2

ν2 −K − 1
RCt

(
IK×K +

ν1
ν2 −K − 1

V −1
t|t RCt

)−1

− Vt|t

]
V −1
t|t .

(38)

Since Equation 37 is highly complex with respect to Vt|t, obtaining a unique closed-form

solution may be infeasible. Therefore, we numerically optimize the maximization problem in

Equation 34 using Gradient Descent. Namely, since the gradients in Equation 38 are highly

complex with respect to Vt|t, obtaining a closed-form Hessian matrix may prove to be impractical.

Also, BFGS (Broyden-Fletcher-Goldfarb-Shanno), a conventional quasi-Newton optimization

algorithm may be used as it still uses second-order information by approximating the Hessian.

Below, the algorithm is displayed. Here, we initialize V0 by Vt|t−1. Also, f(V0) denotes the

maximization formula in Equation 34 evaluated at the initialization, and f ′(V0) is its gradient,

formulated in Equation 37 9. The step size δ > 0 is updated at each iteration by applying a

backtracking line search method with the Armijo condition as a stopping criterion. Here, we

start with an initial step size equal to 10, with the decrease parameter and decrease factor both

equal to 0.5. Moreover, the optimization scheme is repeated until one of the following stopping

criteria is met:

1. The maximum number of iterations imax, which is set to 103, is reached. Note, in our

research, the average number of iterations only is 1.729, indicating relatively fast conver-

gence.

2. The Frobenius matrix norm of the difference between the previous and updated gradient

in Equation 37 becomes smaller than the tolerance value ϵ = 10−3.

Algorithm 2 Gradient Descent algorithm

Input: Gradient f ′(V ), initial point V0, step size δ

Output: V̂ s.t. f ′(V̂ ) ≈ 0K×K

x← −δIK×Kf
′(V0) ▷ Updating argument

V ← V0 + x ▷ Updating Step

V0 ← V ▷ Re-initialize V0 to start the process again

9Since the algorithm is modeled to find a minimum, we minimize the negative of Equation 34, which is
equivalent to maximizing the original formula. Consequently, the first-order condition in Equation 37 should be
multiplied by −1 as well.
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In the HEAVY-GAS-HAR-tF filter, Opschoor et al. (2018) made use of the following explicit

GAS filter:

Vt+1|t = Ω+ αSt|t−1 + βVt|t−1 + β2V̂t|t−1 + β3V̄t|t−1, (39)

where α, β, β2, and β3 are scalars that we optimize by maximum likelihood, Ω is a K × K

matrix of real-valued intercepts, St|t−1 is an explicitly scaled score (as defined in the following

paragraph), V̂t|t−1 is the average predicted covariance matrix using the last 5 days, and where

V̄t|t−1 is the average predicted covariance matrix using the last 20 days.

In our research, we alter this prediction filter by utilizing and focusing on the updated/implicit

information. Namely, since we can update our score by using the updated covariance matrix,

these may be more informative for the current covariance matrix prediction. Mathematically,

the prediction step for the HEAVY-ProPar-tF model becomes:

Vt+1|t = Ω+ αSt|t + βVt|t, (40)

where the implicit St|t (instead of the explicit St|t−1) is a scaled score as defined by Opschoor

et al. (2018), and takes on the following form:

vec(St|t) =
2

ν1 + 1
vec
(
Vt|t

(
∇(yt | Vt|t) +∇(RCt | Vt|t)

)
Vt|t
)

⇔ St|t =

ν+K
ν−2+y′

tV
−1
t|t yt

yty
′
t − Vt|t

ν1 + 1
+

ν1
ν1 + 1

[
ν1 + ν2

ν2 −K − 1
RCt

(
IK×K +

ν1
ν2 −K − 1

V −1
t|t RCt

)−1

− Vt|t

]
.

(41)

For the explicit counterpart (HEAVY-GAS-HAR-tF), the score St|t−1 is modeled explicitly and

can be calculated using Equation 41 where the predicted covariance matrix Vt|t−1 is used instead

of the updated covariance matrix Vt|t.

In total, the maximum likelihood estimation for our novel implicit model will thus search

for optimal parameter values for ν, ν1, ν2, α, β, Ω and P . Since P is a symmetric K × K

weighting matrix, we have K(K+1)
2 unique elements/parameters. And in theory, the K × K

matrix Ω can also be estimated using K2 unique elements. However, to reduce the number of

parameters in the maximum likelihood estimation, we construct P to be a diagonal positive

definite penalty matrix with initial/starting elements taken from the univariate models as an

educated guess and follow Opschoor et al. (2018) by replacing Ω with (1− β)R̂C, where R̂C is

the sample mean of RCt. This is argued to be a valid estimator for Ω as long as β < 1, which

we impose in our maximum likelihood estimation. Altogether, we label this novel model by the
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HEAVY-ProPar-tF model.

Note, in Proposition 2 of Opschoor et al. (2018), the authors have proved that the predicted

covariance matrices resulting from Equation 39 are positive definite under some assumptions.

This proposition is extremely useful regarding the ability to always compute the likelihood

function (evaluated at the predicted covariance matrix), which could be problematic since it is

dependent on inverting covariance matrices. First of all, in order for the proof to hold for our

implicit model, we need β > α > 0, which we can easily impose during the maximum likelihood

estimation. Secondly, the realized covariance matrices are assumed positive semi-definite. This

assumption is per definition valid, given that it is a symmetric covariance matrix. During their

proof, the authors also made use of the fact that the previous predicted covariance matrix is

positive definite, given an initial positive definite covariance matrix V0. However, since we are

evaluating at the updated covariance matrix Vt|t instead of Vt|t−1, this step may not always be

valid. When that is the case, we could transform the updated matrix as:

Vt|t ← Vt|t+ψIK×K , where ψ is equal to the smallest negative eigenvalue of Vt|t plus a small

arbitrary value (e.g. in our research equal to 10−6). The resulting matrix is positive definite

(Cailliez, 1983). However, during implementation, this transformation function was found to

never be invoked, as it only gets exercised when the updated matrix is not positive definite.

Therefore, we conjecture (at least with our dataset) that the resulting sequence of updated

covariance matrices are positive definite. To further validate this hypothesis, a formal proof is

required. For example, a proof by induction could be applied, specifically demonstrating that

each step in the algorithm produces a positive definite matrix. This aspect remains an open

question for future research.

5.4 Forecasting

Using high-frequency data, we analyze our forecasts slightly differently. First of all, we compare

the 1-day ahead predictions of the ProPar-HF model against its explicit GAS-HF counterpart

but also against the standard ProPar model that does not include this intraday information. To

test the validity of the null hypothesis that states equal predictive ability between two models,

a volatility proxy is needed. A commonly utilized proxy in the literature is the daily squared

return (which we use in the aforementioned general empirical study). While this is shown to be

an unbiased estimator of ex-post volatility, Andersen & Bollerslev (1998) have argued that this

estimator is also prone to high levels of noise. Therefore, in Andersen et al. (1999), the authors

make use of the sum of squared intraday returns. Given that we work with 78 5-minute returns

per trading day, we can apply that methodology and thus consider the following forward-looking
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1-day ahead (realized) volatility proxy10:

ht+1 =

78∑
i=1

y2t+1,i. (42)

We again conduct Diebold-Mariano tests (using the two loss functions) to establish whether

potential outperformance is statistically significant.

Lastly, for our multivariate models, we compare the 1-step ahead covariance matrix predic-

tions using differences in forecasted log observation densities as a loss function for the Diebold-

Mariano test (similar to Opschoor et al. (2018) where the authors label the log densities itself as

scores). As a result, a significantly higher mean score would now indicate that the corresponding

model has a significantly superior forecast performance, based on a DM test for equal predictive

ability 11.

5.5 Results

In this section, we investigate the potential power of ProPar on high-frequency data. Specifically,

we study the performance of implicitly and explicitly evaluating the score, using both univariate

and multivariate models.

As discussed, we can generate two volatility proxies. Based on daily return data, we can

estimate the variance proxy as before, namely the squared daily return. Based on intraday

returns, we can estimate the realized variance traditionally as the sum of squared intraday

returns. In Figure 4, we display the resulting two (annualized) volatility paths for stock AA.

What stands out is that the annualized volatility based on daily returns sometimes can be

extremely low and high. Particularly, instances of exceptionally low-volatility estimates are

observed frequently. This suggests that on certain days, the annualized volatility could approach

or even reach zero. Conversely, the annualized realized volatility proxy yields a range of roughly

10-25% which may be considered more reasonable. In Appendix Section 7.4 the volatility paths

for the other stocks are shown, and similar conclusions can be drawn. Therefore, we believe that

this estimator may provide a more accurate proxy for the true daily volatility. Still, we study

the predictive ability of ProPar-HF based on both volatility proxies.

In Table 12, the 1-day ahead forecasting results are revealed for the ProPar model utilizing

high-frequency data (ProPar-HF). Regardless of the volatility proxy used, the implicit ProPar-

HF significantly outperforms the explicit GAS-HF in many cases. Therefore, when considering

intraday returns to update daily volatilities, implicitly (instead of explicitly) evaluating the

10Straightforward extensions could be the use a higher frequency to compute squared returns or noise-corrected
RV estimators, such as the two scales realized variance of Aı̈t-Sahalia et al. (2011).

11This is contrary to the MSE and QLIKE loss function where a superior model is assumed to have the lowest
MSE or QLIKE.
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Figure 4: Two daily volatility paths of Alcoa Corporation (AA) using the realized volatility and absolute
daily return.

score yields far more favorable results. A conclusion that is repeatedly drawn in this paper.

Furthermore, when considering the realized volatility as the proxy for the true volatility, ProPar-

HF also significantly outperforms the standard ProPar model when using the MSE as a loss

function. Both the use of the MSE as a loss function and the realized volatility as a proxy is more

reasonable in this setting. The latter one is already explained using Figure 4. For the former one,

note that the QLIKE loss function is asymmetric and consequently heavily penalizes models that

yield generally higher volatility estimates, regardless of the volatility proxy. Then, given that

the ProPar-HF model is trained on intraday returns (that yield generally higher (realized) daily

volatility estimates than daily volatility estimates based on absolute daily returns) it follows that

its daily volatility estimates are also generally higher. As a result, the QLIKEs of the ProPar-HF

model are higher, despite the fact that its volatility estimations are closer to the pseudo-true

volatilities. Also, the ProPar-HF filter (while significantly outperforming its explicit GAS-HF

counterpart) fails to outperform the standard ProPar model when considering the absolute daily

return as a proxy for the volatility. For the cases using the QLIKE loss function, this can be

explained as before. For the cases using the MSE loss function, we believe that this can be

attributed to the fact that the ProPar-HF model is trained on intraday returns (which Figure 4

showed to yield a substantially different volatility path) such that its volatility estimates are

relatively far from the pseudo-true volatility path.
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Table 12: Prediction accuracy analysis of the ProPar-HF filter: MSEs and QLIKEs using 1-step ahead
volatility estimates.

Proxy: Absolute Daily Return Proxy: Realized Vol

MSE QLIKE MSE QLIKE

AA 0.533* -0.267* 0.051*△ -1.075*

AXP 0.280* -0.762* 0.065*△ -1.704*

BA 0.346 -0.566* 0.100△ -1.297*

CAT 0.337* -0.614* 0.085△ -1.676*

GE 0.322 -0.955* 0.133△ -2.024*

HD 0.344* -0.784* 0.048*△ -1.649*

HON 0.252* -0.935* 0.040△ -1.850*

IBM 0.200 -1.313* 0.030△ -2.051*

JPM 0.445* -0.358* 0.064△ -1.252*

KO 0.238* -1.022* 0.034*△ -1.838*

MCD 0.131* -1.579* 0.041*△ -2.578*

PFE 0.238* -0.952* 0.040*△ -1.751*

PG 0.182 -1.422* 0.027△ -2.234*

WMT 0.345 -0.725* 0.086△ -1.548*

XOM 0.228 -1.012* 0.026△ -1.861*

A loss function with an asterisk (*) indicates that ProPar-HF significantly outperforms the explicit GAS-HF
benchmark, using a 5% significance level. In a similar way, a triangle (△) indicates significant outperformance of
the ProPar-HF filter against the normal ProPar filter that is trained on daily returns. Here, we use DM tests to
statistically test for outperformance and consider both the forward-looking daily absolute returns and realized
volatility as a proxy for the true volatility.

In summary, when considering the realized volatility estimate as a proxy for the true volatility

(which we believe is more reasonable), ProPar-HF provides a significantly better model compared

to its explicit GAS-HF counterpart and the standard ProPar model.

Now, we turn to our multivariate models. Here, we compare the HEAVY-GAS-HAR-tF

model of Opschoor et al. (2018) against our proposed implicit counterpart (HEAVY-ProPar-

tF). To differentiate between the predictive ability of both multivariate models, we compute

1-day ahead prediction log observation densities (labeled as the score in this context) and take

differences to construct the loss function used in the DM test, as explained in the previous

section. In Table 13, we display the maximum likelihood estimation output, the optimal total log-

likelihoods, and the mean scores using 1-day ahead forecasted densities. Following relatively low

standard errors, maximum likelihood thus seems to generate parameters efficiently. This finding

is in line with our univariate models. Furthermore, the three degrees of freedom parameters

(ν, ν1, ν2) for both models are relatively low, suggesting that not only returns (assumed to

be conditionally Student’s t distributed with ν degrees of freedom) are fat-tailed, but also the

realized covariances (that are assumed to be scaled F -distributed with ν1 and ν2 degrees of

freedom). This is in line with the findings in Section 4.1 where we already found evidence for

this fat-tailedness of return data as the unconditional empirical Student’s t distribution could

never be rejected whereas a normal distribution was always rejected. Note, the values for ν1
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may seem high at first sight (suggesting no evidence for fat-tailed realized covariance matrices),

but only when ν1 → ∞ do we get that the scaled F-distribution converges to the Wishart

distribution. As a result, both models strongly account for the effects of return and realized

covariance outliers. Additionally, recall that α solely accounts for information on the explicit

score in the HEAVY-GAS-HAR-tf model and β + β1 + β2 measures the persistence effect of

previous predictions on current predictions. Since α is relatively large, it follows that explicit

information on the score is essential for explicit models. In our implicit HEAVY-ProPar-tF

model, the implicit information on solely the score is less used, following a lower value for α.

One explanation for this would be that, in this formulation, β not only captures the effects of the

previous predictions but also of implicit information, as it accounts for the effects of the updated

(instead of the predicted) covariance matrix. This updated covariance matrix, therefore, carries

relatively more information, making it more valuable, and consequently the implicit score on

its own less valuable. In terms of fit, our implicit model provides a marginally better model

for in-sample analysis, following a slightly higher optimal total log-likelihood and mean score.

The results of this latter forecasting evaluation metric also indicate that our proposed HEAVY-

ProPar-tF model provides a significantly better model than the explicit HEAVY-GAS-HAR-

tF model. This does not only stem from the fact that we use implicit (instead of explicit)

information (a conclusion often drawn in this paper). Namely, our model also penalizes for

deviations with the previously predicted covariance matrix, weighted by the penalty matrix P .

In sum, we have developed a novel multivariate score-driven model, proven to yield a relatively

more accurate covariance matrix estimator and predictor.

Table 13: Parameter estimates, total likelihoods L∗ and mean scores for the HEAVY-GAS-HAR-tF and
HEAVY-ProPar-tF model.

HEAVY-GAS-HAR-tF HEAVY-ProPar-tF

ν 2.363(0.004) 2.358(0.003)

ν1 103.249(53.733) 104.244(2.227)

ν2 40.764(1.003) 39.964(0.020)

α 0.478(0.002) 0.369(0.001)

β 0.443(0.004) 0.369(0.001)

β1 0.175(0.022) \

β2 0.001(0.151) \

L∗ 6671.289 6714.983

Score 114.195 114.848*

Standard errors are in parentheses. A mean score with an asterisk indicates that the corresponding model
significantly outperforms the other using a 5% significance level. Here, we use a DM test to statistically test for
potential superior predictive ability using the difference in scores as a loss function.
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6 Conclusion

In this research, we provided a broad analysis of the proximal-parameter (ProPar) filter and

presented alternative models based on different modeling assumptions. The ProPar filter, con-

structed by Lange et al. (2022), joined the emerging class of dynamical conditional score (Harvey,

2013, DCS) or generalized autoregressive score (Creal et al., 2013, GAS) models. This field can

be characterized by its observation-driven modeling of parameters and its focus on the first-order

condition associated with the logarithmic observation density (referred to as the score), to ob-

tain time-varying parameter estimates. By constructing an implicit stochastic-gradient update

and penalizing for parameter deviations, the ProPar framework presented this scientific strand

with a novel model. Our study leverages these two fundamental aspects to develop univariate

and multivariate score-driven models for financial time-series analysis, specifically applicable to

high-frequency datasets comprising intraday stock returns.

Throughout our simulations and empirical results, we found more favorable results when

using implicit instead of explicit stochastic-gradient updates. Moreover, we have investigated

the adoption of a conditional Student’s t distribution, rather than the conventional assumption

of a conditional normal distribution for returns. Here, we found significant results in favor of the

former distribution. Furthermore, our univariate and multivariate score-driven models (ProPar-

HF and HEAVY-ProPar-tF respectively), based on high-frequency stock data, were found to

possess more accurate estimates and predictions for time-varying volatilities and covariance

matrices compared to their explicit counterparts.

Obtaining time-varying volatility estimates is crucial for e.g. financial econometrics, asset

management, and option pricing, as it allows for better risk assessment and derivative pricing. As

such, our analyses and novel modeling frameworks provide valuable perspectives and adequate

score-driven time-series models, not only for this scientific strand but also for market agents

seeking the most precise time-varying volatility estimators.

Moving forward, there are several potential paths for future research. For example, during

our research, we made use of two relatively established non-linear optimization techniques.

However, numerous potentially more efficient algorithms have been proposed throughout the

literature, which warrants a comparative study among them. Furthermore, at the cost of more

computer memory and enlarged computational times, a larger high-frequency data sample (by

expanding dimensions or extending time series) could yield more valuable insights and potentially

alternative outcomes, thereby serving as a promising avenue for further investigation.
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7 Appendix

7.1 Data

Table 14: 15 Dow Jones Industrial Average stocks considered in this research

Stock Ticker Stock Name

AA Alcoa Corporation

AXP American Express Company

BA The Boeing Company

CAT Caterpillar

GE General Electric Company

HD The Home Depot

HON Honeywell

IBM International Business Machines Corporation

JPM JPMorgan Chase & Co.

KO The Coca-Cola Company

MCD McDonald’s Corporation

PFE Pfizer Inc.

PG The Procter & Gamble Company

WMT Walmart Inc.

XOM Exxon Mobil Corporation

7.2 Mathematical Simplifications

7.2.1 Volatility Formula ProPar

Equation 4 is derived as follows. Given the optimization setup, we have the following first-order

condition.

∇(yt | ht|t)− P (ht|t − ht|t−1) = 0

=⇒ ht|t = ht|t−1 + P−1∇(yt | ht|t) = ht|t−1 + η∇(yt | ht|t).

Using the normal distributed model specification for yt, we can calculate ∇(yt | ht|t) as
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∇(yt | ht|t) =
d

dht
log p (yt | exp(ht))

∣∣∣∣
ht=ht|t

=
d

dht
log

1

exp(ht)
√
2π
e
− 1

2

(
yt−µ

exp(ht)

)2∣∣∣∣
ht=ht|t

=
d

dht

(
−ht − log

√
2π − 1

2

(yt − µ)2

exp(2ht)

) ∣∣∣∣
ht=ht|t

= −1 +
(

yt − µ
exp(ht|t)

)2

.

Hence, ht|t = ht|t−1 + η
(
−1 + ( yt−µ

exp(ht|t)
)2
)
.

7.2.2 Lambert W solution

We start with the volatility formula under the ProPar framework (Equation 4):

ht|t = ht|t−1 + η

( yt − µ
exp

(
ht|t
))2

− 1


= ht|t−1 + η

[
(yt − µ)2

exp
(
2ht|t

) − 1

]
,

(43)

multiplying everything with 2, this is equivalent to writing

2ht|t = 2η

(
(yt − µ)2

exp
(
2ht|t

))+ 2(ht|t−1 − η). (44)

This leads to the final rewritings:

2ht|t exp
(
2ht|t

)
= 2η(yt − µ)2 + 2(ht|t−1 − η) exp

(
2ht|t

)
(2ht|t − 2(ht|t−1 − η)) exp

(
2ht|t

)
= 2η(yt − µ)2

(2ht|t − 2(ht|t−1 − η)) exp
(
2ht|t

)
exp

(
−2(ht|t−1 − η)

)
= 2η(yt − µ)2 exp

(
−2(ht|t−1 − η)

)
(2ht|t − 2(ht|t−1 − η)) exp

(
2ht|t − 2(ht|t−1 − η)

)
= 2η(yt − µ)2 exp

(
−2(ht|t−1 − η)

)
=⇒ (2ht|t − 2(ht|t−1 − η)) =W0

(
2η(yt − µ)2 exp

(
−2(ht|t−1 − η)

))
,

where we used in the last step that W0(y) is the solution to x exp(x) = y. Finally, rewriting this

solution for ht|t yields ht|t = ht|t−1 − η + 1
2W0

(
2η(yt − µ)2 exp

(
−2(ht|t−1 − η)

))
.
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7.2.3 Implicit Hessian under a Student’s t distribution

Under our modeling assumptions, the implicit Hessian (i.e. the derivative of the score with

respect to the updated volatility) under the IBT-EGARCH model can be formulated as:

H(yt | ht|t) =
d

dht|t
∇(yt | ht|t) =

d

dht|t
(ν + 1)

ε2t
ε2t + ν

− 1,

where ε2t = (yt − µ)2 exp(−2ht|t). The derivative of ε2t with respect to ht|t is equal to −2(yt −

µ)2 exp(−2ht|t). Hence, we can evaluate the Hessian as:

H(yt | ht|t−1) = (ν + 1)
(ε2t + ν)(−2(yt − µ)2 exp(−2ht|t))− ε2t (−2(yt − µ)2 exp(−2ht|t))

(ε2t + ν)2

= (ν + 1)
−2ν(yt − µ)2 exp(−2ht|t)

(ε2t + ν)2
.

7.2.4 Long-Term Volatility predictions

From Equation 6, we have Et[ht+1] = ω̂+ ϕ̂ht|t. Under the standard ProPar filter, we can write

the d-step ahead volatility prediction by recursion:

ht+d|t = ω + ϕht+d−1|t

= ω + ϕ(ω + ϕht+d−2|t)

= ω(1 + ϕ) + ϕ2ht+d−2|t

= . . .

= ω(1 + ϕ+ . . .+ ϕd−1) + ϕdht|t

= ω
1− ϕd

1− ϕ
+ ϕdht|t.

(45)

Next, we compute the expectation of squared returns. The above result implies

Et[y
2
t+d] = Et[(µ+ exp(ht+d)zt)

2]

= µ2 + Et[exp(ht+d)
2z2t ]

= µ2 + Et[exp(ht+d)
2]

= µ2 + Et[exp(2ω
1− ϕd

1− ϕ
+ 2ϕdht|t)]

= µ2 + exp(2ω
1− ϕd

1− ϕ
+ 2ϕdht|t),

where we used that, following the geometric series formula, (1 + ϕ+ . . .+ ϕd−1) =
∑d

i=1 ϕ
i−1 =

1−ϕd

1−ϕ , whenever ϕ < |1|. We can impose this restriction in our maximum likelihood optimization
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to stimulate optimization speed. This constraint can be considered reasonable as it would

indicate that the importance of the updated volatility estimate with respect to the 1-step ahead

predicted volatility estimate lies between 0 and ± 100%. The rest of the importance is captured

by ω. Besides, the constraint is also reasonable to prevent explosive behavior in (1+ϕ+. . .+ϕd−1)

and ϕd.

To obtain the expected variance over a period of d days, we compute

Et[
d∑

i=1

y2t+i] =
d∑

i=1

Et[y
2
t+i]

=
d∑

i=1

µ2 + exp(2ω
1− ϕi

1− ϕ
+ 2ϕiht|t)

= dµ2 +

d∑
i=1

exp(2ω
1− ϕi

1− ϕ
+ 2ϕiht|t),

(46)

hence, the expected volatility over a period of d days is the square root of this formula.

For the alternative models (GAS and IBT-EGARCH), we apply a similar approach. The GAS

model was modeled similarly to the ProPar model, except that the update ht|t uses argument

ht|t−1. Nevertheless, ht|t is still an argument for the prediction (Equation 6). Therefore, the

d-day volatility prediction under the GAS model is similar to the ProPar model. Trivially,

Equation 46 is also applicable to the GAS model, where ht|t is computed differently in the sense

that we can immediately calculate it, instead of analytically having to solve for it. The same

reasoning can be applied to the IBT-EGARCH model. Note, since the variance of the (Student’s

t-distributed) shock zt now is equal to ν
ν−2 , each exponent function should be multiplied by this

factor. Here, ν > 4 equals the maximum likelihood estimator for the degrees of freedom.
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7.3 Other Simulation Results

Table 15: Average parameter estimates and standard errors in parentheses, MSEs of the filtered volatility
updates, and their corresponding DM test statistic.

Scenario 1 2 3 4 5 6 7

Maximum Likelihood Optimization

η̂
0.607(0.044)

0.058(0.003)

0.549(0.032)

0.057(0.002)

0.280(0.019)

0.059(0.003)

0.210(0.016)

0.059(0.003)

0.523(0.032)

0.059(0.002)

0.272(0.019)

0.059(0.003)

0.070(0.007)

0.024(0.003)

ω̂
0.188(0.017)

-0.034(0.003)

0.164(0.013)

-0.034(0.002)

0.093(0.009)

-0.003(0.002)

0.069(0.007)

0.002(0.002)

0.161(0.013)

-0.026(0.002)

0.091(0.008)

-0.003(0.002)

0.003(0.003)

-0.208(0.017)

ϕ̂
0.933(0.004)

0.951(0.002)

0.933(0.004)

0.950(0.002)

0.961(0.003)

0.980(0.002)

0.967(0.003)

0.980(0.002)

0.932(0.004)

0.965(0.002)

0.963(0.003)

0.978(0.002)

0.979(0.003)

0.270(0.047)

µ̂
-0.017(0.009)

-0.017(0.008)

-0.023(0.005)

-0.023(0.007)

-0.023(0.008)

-0.024(0.010)

-0.019(0.011)

-0.019(0.013)

-0.023(0.005)

-0.023(0.006)

-0.003(0.008)

-0.003(0.010)

-0.005(0.009)

-0.005(0.010)

Performance Metrics

MSE ProPar 0.824 1.102 1.157 1.129 0.878 1.262 0.199

MSE GAS 0.876 38.852 210.364 1.389 106.446 2.261 0.245

DM -1.010 -1.762 -1.028 -9.746 -1.381 -3.822 -11.842

T = 4036. For the parameter estimates, the upper and lower element corresponds to those of the ProPar and
GAS filter, respectively. The DM test statistics in bold indicate a p-value lower than the significance level of
0.05.

Table 16: Average parameter estimates and standard errors in parentheses, MSEs of the filtered volatility
updates, and their corresponding DM test statistic.

Scenario 1 2 3 4 5 6 7

Maximum Likelihood Optimization

η̂
0.668(0.104)

0.057(0.007)

0.639(0.106)

0.057(0.006)

0.317(0.178)

0.056(0.009)

0.239(0.052)

0.056(0.009)

0.601(0.092)

0.057(0.007)

0.329(0.067)

0.055(0.008)

0.088(0.029)

0.038(0.010)

ω̂
0.163(0.041)

-0.094(0.012)

0.135(0.036)

-0.120(0.012)

0.106(0.028)

0.010(0.012)

0.076(0.022)

-0.003(0.006)

0.121(0.035)

-0.093(0.016)

0.086(0.025)

-0.011(0.007)

-0.007(0.010)

-0.072(0.013)

ϕ̂
0.923(0.016)

0.901(0.008)

0.903(0.016)

0.903(0.008)

0.935(0.014)

0.941(0.010)

0.947(0.014)

0.951(0.009)

0.899(0.016)

0.889(0.014)

0.940(0.014)

0.934(0.010)

0.954(0.016)

0.756(0.020)

µ̂
-0.002(0.022)

-0.003(0.022)

-0.003(0.012)

-0.004(0.015)

-0.005(0.042)

-0.004(0.043)

-0.025(0.043)

-0.025(0.049)

-0.004(0.019)

-0.004(0.020)

0.008(0.034)

0.008(0.039)

-0.003(0.026)

-0.002(0.028)

Performance Metrics

MSE ProPar 0.572 0.300 1.147 1.129 0.308 1.212 0.188

MSE GAS 29.949 33.581 2.350 1.389 0.497 1.793 0.209

DM -1.183 -1.070 −1.969 −11.116 -1.061 −2.505 5.581

T = 504. For the parameter estimates, the upper and lower element corresponds to those of the ProPar and GAS
filter, respectively. The DM test statistics in bold indicate a p-value lower than the significance level of 0.05.
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7.4 Empirical Results

Figure 5: Estimated paths for σt+1|t of the ProPar and GAS filter for daily returns, from January 2000
until December 2022
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Figure 7: Two daily volatility paths using the realized volatility and absolute daily return.
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