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quote data is used of the SPDR S&P 500 ETF. An LSTM neural network is used to make

forecasts using different frequencies of data. The forecasts are evaluated against the realized
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frequency does increase forecasting accuracy. It provides support for using a volatility signature

plot to determine the optimal frequency for forecasting volatility.
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1 Introduction

In financial time series, volatility is a measure of the fluctuation of the given return time series.

With securities, volatility can also be seen as a measure of the riskiness of investing in the security.

A more volatile security is considered riskier because of the larger price movements and thus the

larger potential loss. On the other hand, more volatile securities also have potentially larger returns.

To correctly price and assess riskiness of securities it is of great importance to be able to accurately

forecast volatility. In pricing derivatives, volatility is one of the most important variables. In pricing

options, for example, volatility is a direct input parameter to calculate the options price (Poon &

Granger, 2003). Also in financial risk management and portfolio management it is important to

be able to accurately forecast volatility to accurately measure Value at Risk or the riskiness of a

portfolio (González-Rivera et al., 2004). Because of the importance, a broad literature regarding

measuring and forecasting volatility has been developed in the past decades.

A difficulty with volatility is that it is inherently a latent variable and thus not directly observ-

able. The most used proxy of the actual volatility in financial forecasting articles is the realized

volatility (Wilhelmsson, 2006). Realized volatility at time t (σt) is calculated as:

σt =

√√√√ n∑
i=1

r2i−1,i, (1)

where r2i−1,i is the squared return between time i − 1 and i. It is a non-parametric approach that

does not rely on any assumptions on the underlying distribution or restrictions on parameters that

need to be estimated like in stochastic volatility models or conditional heteroscedasticity models.

This makes it an easy to use proxy of volatility and resulted in an important stream of literature

on the properties of this non-parametric approach (Bucci et al., 2017). As shown by Andersen

and Bollerslev (1998), realized volatility is a consistent estimator of the actual volatility when the

frequency of the returns goes to infinity. In practice this does not work due to the microstructure

noise in high frequency data. Microstructure noise can be seen as the noise in the observed returns

caused by imperfections in the trading process like discreteness of prices, bid-ask bounce or irregular

trading (Bai et al., 2000; Bandi & Russell, 2003). As noted by Zhang et al. (2005) and Bandi

and Russell (2003), the realized volatility estimator fails to converge to the actual volatility when

sampling frequency increases. Instead, it seams to increase at higher frequencies for liquid assets

and decrease at higher frequencies for illiquid assets. Bandi and Russell (2007) state that because
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of the microstructure noise in high frequency data there is a bias-variance trade-off in estimating

actual volatility with realized volatility. Increasing the sampling frequency will increase the noise

component in the observed return series causing the realized volatility to be a more biased estimate

of the actual volatility but will lower the variability. At sufficiently low frequencies this bias can

be negligible but the variability in the estimate of the actual volatility can be substantial (Bandi &

Russell, 2007). Therefore, to find an optimal sampling frequency to estimate the actual volatility,

Andersen et al. (1999) propose to plot the average of daily realized volatility estimates against

different sampling frequencies, a so-called ’volatility signature plot’, to visualize at what frequency

the volatility estimates start to suffer from higher sampling error. For liquid assets, Andersen et al.

(1999) consider the frequency with the lowest volatility estimates as proxy for the actual volatility.

A volatility signature plot is also used in this paper to determine the optimal frequency of the

returns to construct the estimates of the actual volatility with. These estimates serve as a proxy

for the actual latent volatility and are in the rest of this thesis referred to as ”true volatility”.

They are used as the target values for the proposed models to forecast volatility. In this paper the

volatility forecasts are constructed using datasets with different sampling frequencies. Then they

are compared to the true volatility to evaluate the forecasting performance. The goal is to evaluate

which data frequency is optimal to forecast the true volatility and hence the actual latent volatility.

Previous papers like Andersen et al. (1999) suggest using a 5-20 minute sampling frequency

to estimate and forecast volatility. When plotting the average daily estimates of realize volatility

against sampling frequency, this is the resulting optimal frequency for the volatility estimates in

their papers. However, no research has been done to evaluate whether the same frequency is also

optimal for forecasting volatility. When return data is available at a 1 second time interval, this

would mean the 300-1200 available data points are aggregated into 1 observation. While aggregating

the data makes the observations less noisy and reduces the computational costs of training models

and making forecasts, from a data science point of view it seems suboptimal to discard so much

data when it is readily available and might contain valuable information. Therefore knowing the

effect of sampling frequency on forecasting performance can be relevant when working with high

frequency data.

Many papers have been written about constructing accurate volatility estimates, but almost

none have focused on the effects of sampling frequency on the forecasting performance of volatility.

This paper looks to contribute to the existing literature by researching this effect. In several papers

the optimal frequency for estimation is used to make the forecasts. However, there is no literature
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to support that this is also the optimal frequency for forecasting. This thesis looks to fill this

gap in the literature by comparing forecasting results of a benchmark model, like the Generalized

Autoregressive Conditional Heteroskedastic (GARCH) model as proposed by Bollerslev (1986),

with that of a Long Short-Term Memory (LSTM) neural network as developed by Hochreiter and

Schmidhuber (1997) for different frequencies. To construct the forecasts many different models can

be used. Recently methods like machine learning and deep learning gained popularity in forecasting

financial time series. There are many papers finding strong evidence that machine learning models

outperform traditional models in forecasting volatility (Rahimikia and Poon (2020), Y. Liu (2019),

Christensen et al. (2021)). As noted by Rahimikia and Poon (2020), recurrent neural networks, like

the LSTM neural network are among the most frequently used machine learning models in both

the financial industry and academia when working with high frequency data. The LSTM neural

network is designed to capture long-term dependencies in long sequence data and can achieve good

forecasting performance on big raw data (Y. Liu, 2019). Since volatility exhibits long memory

properties, the LSTM neural network will be used to construct volatility forecasts.

All of the above brings us to the following research question:

”Does increasing sampling frequency also increase out-of-sample volatility forecasting performance

when using an LSTM neural network?”

As benchmark model the Generalized Autoregressive Conditional Heteroskedastic (GARCH)

model as proposed by Bollerslev (1986), the GJR-GARCH model by Glosten et al., 1993, the

threshhold-GARCH (TGARCH) model by Zakoian, 1994 and the exponential-GARCH (EGARCH)

model by Nelson, 1991 are considered. The forecasts of the optimal benchmark model are compared

to the forecasts of the LSTM models using different frequencies of data. The LSTM neural network

is expected to be able to learn more from the extra information in higher frequency data than

lose from the extra noise and therefore also able to have a better forecasting performance when

increasing the sampling frequency. Being able to more accurately forecast volatility is important

to better assess risk in financial markets and therefore interesting for practical applications like

assessing market risk for portfolio managers and trading companies or Value at Risk and expected

shortfall for banks. Also regulators can benefit from models that produce more accurate volatility

forecasts by using it to assess and create regulation to protect investors and the financial market as

a whole.
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The results show that increasing sampling frequency does increase forecasting performance until

the bias in the returns becomes too large. A volatility signature plot seems to be an appropriate

tool to determine the optimal sampling frequency to forecast volatility.

The rest of this paper is structured in the follow way. First a review on the relevant literature

is given in section 2. Then, a description of the dataset follows in section 3. Next, an overview of

the used methodology is given in section 4. The results are discussed in section 5 and in section 7

the conclusion of this research is given.

2 Literature review

This section discusses the relevant literature on microstruture noise and volatility forecasting. First

the preliminary literature on the manifestation of microstructure noise in returns is reviewed. Next,

a discussion about the volatility forecasting literature is given.

2.1 Preliminaries microstructure noise

Since the famous papers by Engle (1982) and Bollerslev (1986), a broad literature on modeling

estimating and forecasting volatility has been developed. To model the characteristics of volatility

many models have been proposed. With the large amounts of high frequency transaction and quote

data available of different assets, modeling prices in a continuous time setting seems natural (Engle,

2000). Assume the logarithmic prices of an asset p(t) follow a continuous time diffusion process like:

dp(t) = µ(t)dt+ σ(t)dW (t), (2)

where µ(t) is the drift, σ(t) is the spot volatility and W (t) is a standard Brownian motion. Also

σ(t) > 0 and σ(t) and µ(t) are assumed to be independent of the standard Brownian motion

W (t). Allowing the spot volatility to be time varying, serially dependent and random, this model

implies returns that exhibit some important stylised facts like a fat-tailed unconditional distribution

and volatility clustering making it useful in econometrics and finance (O. E. Barndorff-Nielsen &

Shephard, 2002). Barndorff-Nielsen and Shephard (2002) and Andersen et al. (2003) showed that

the returns rt = p(t)− p(t− 1) are Gaussian conditional on the information set at time t:

rt|µ(t), σ(t) ∼ N

(
µ(t),

∫ t

0
σ2(s)ds

)
, (3)

where
∫ t
0 σ

2(s)ds is called the integrated variance and is a measure of the actual latent volatility

(McAleer & Medeiros, 2008). Hence it is the object of interest. Following the theory of quadratic
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variation, Andersen et al. (2003) showed that the realized variance is a consistent estimator of the

integrated variance in the absence of microstructure noise, such that

σ2
t

p→
∫ t

0
σ2(s)ds, (4)

where σ2
t is the square of the realized volatility as defined in 1. Andersen and Bollerslev (1998)

noted that, in theory, when frequency of observations goes to infinity, the realized volatility measure

converges to the measurement of the actual latent volatility. This is why the realized volatility is a

good proxy for the actual latent volatility. In practice, however, market microstructure noise makes

the convergence infeasible. Following the notation in Zhang et al., 2005, observing the logarithmic

prices with noise gives:

pt = p∗t + ϵt, (5)

where p∗t is considered the true and not contaminated price process and ϵt is the microstructure

noise. This results in observed return process

rt = r∗t + ϵt − ϵt−1 = r∗t + νt, (6)

where again r∗t = p∗t−p∗t−1 is the true and not contaminated return (McAleer & Medeiros, 2008). The

observed returns are autocorrelated making the realized variance and hence the realized volatility

a biased estimator of actual latent volatility. Following notation in McAleer and Medeiros (2008),

σ2
t =

nt∑
i=1

(r∗i )
2 + 2

nt∑
i=1

r∗i νi +

nt∑
i=1

ν2i , (7)

where nt is the amount of observations in time period t and it follows that

E(σ2
t |r∗) = σ2∗

t + 2ntE(ϵ2t ), (8)

such that the realized variance is a biased estimator of the integrated variance. Bandi and Rus-

sell (2003) showed that when assuming the microstructure noise has mean zero and is covariance

stationary the realized variance and realized volatility estimates converge to infinity when the sam-

pling frequency goes to infinity. Bai et al. (2000) explain this is caused by phenomenon like bid-ask

bounce, irregular trading or discreteness of prices. This problem is also likely to manifest itself when

forecasting volatility using high frequency data. Andersen et al. (1999) therefore propose to use a

higher sampling frequency of the returns instead of using every tick. This way they try to minimize

the bias in the volatility estimates while still making optimal use of the convergence properties of

the realized variance measure from equation 4. They create volatility signature plots to find the
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optimal data frequency to construct realized volatility estimates that are closest to the actual latent

volatility. Using this technique they find that 5 or 15 minute observations are optimal. They also

make use of this result in their other papers (Andersen et al., 2001 Andersen et al., 2004 Andersen et

al., 2007). This result is also used by Bollerslev et al. (2006), Andersen et al. (2005), Bollerslev and

Wright (2001), Bandi and Russell (2003) and many more. It is clear there is noise in the observed

returns and that this can cause difficulties when estimating the realized volatility. However, the

effect of the noise when forecasting realized volatility has not been thoroughly researched yet. This

thesis evaluates the effect of the sampling frequency on the volatility forecasts and hence whether

the optimal frequencies for estimation are also optimal when forecasting the volatility.

2.2 Volatility forecasting

Since the development of the GARCH model it has been extensively research. This has resulted

in many extensions and changes to the original GARCH model to try and improve the forecasting

power. Hansen and Lunde (2005) compared 330 different GARCH-like models. They find that there

is no evidence that any model significantly beats the standard GARCH(1,1) model in their analysis

on exchange rate data. However, when using stock data they find that the GARCH(1,1) model

is clearly inferior to models that accommodate an asymmetric component. H.-C. Liu and Hung

(2010) also find that models allowing asymmetry have a significantly better forecasting performance.

Therefore the standard GARCH model and the GJR-GARCH, TGARCH and EGARCH model will

be used to determine the best benchmark model.

The development of machine learning models started a new branch of literature in forecasting

volatility. Machine learning models can accurately approximate complex and non-linear functions,

making them suitable for forecasting realized volatility. Rahimikia and Poon (2020) use an LSTM

neural network to forecast realized volatility. They find strong evidence LSTM neural networks

dominate HAR and GARCH type models in forecasting power during normal volatility days. Bucci

(2020) found that recurrent neural networks like the LSTM neural network are able to outperform

all traditional econometric models in forecasting volatility. Y. Liu (2019) compared an LSTM neural

network with a GARCH(1,1) model. They find evidence that the LSTM neural network significantly

outperforms the GARCH(1,1) model. Y. Liu (2019) notes that LSTM neural networks can learn

from big raw data to achieve good predictions for long sequence data. LSTM neural networks are

designed to not suffer from the vanishing gradient problem making it capable of remembering long

term dependencies in data (Yu et al., 2019). Because of the long memory properties of volatility,
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the LSTM neural network is a suitable model to forecast realized volatility and will therefore be

used to construct the volatility forecasts.

3 Data

3.1 Data manipulation

In this research data is used from Wharton Research Data Services from the NYSE trades and

quotes database. It consists of millisecond quote data of the SPDR S&P 500 ETF (SPY) for the

period January 2014 until December 2017. Each row of data contains the date, time, bid price

and ask price. Only data is used during market open from 09:30 am until 16:00 pm. This dataset

contains a total of 6.571.942.712 rows of millisecond quote data. To be able to use the data for this

research, the dataset is first cleaned following the procedure used by O. E. Barndorff-Nielsen et al.

(2009). First of all, all data entries outside of the 09:30-16:00 time interval are deleted because

this research focuses on volatility during market open. Using the holiday calendar of the New York

Stock Exchange, markets closed at 1 pm on the following days: 3 July 2014, 28 Nov 2014, 24 Dec

2014, 27 Nov 2015, 24 Dec 2015, 25 Nov 2016, 3 July 2017, 24 Nov 2017. These days do not have

the data for the whole day and are excluded from the dataset. Including them would result in much

less observations for those days and this could result in problems when optimizing the LSTM neural

network due to the missing values in the data matrix that is put into the neural network or it could

bias the optimization when all missing values would be set to zero. Next, all entries with a bid or

ask price equal to zero are deleted. This step removes errors in the dataset like misrecordings of

prices. Then, all quotes with a negative spread, the bid price is larger than the ask price, are deleted

because these quotes can not be correct. And last, all duplicate data entries with exactly the same

timestamp, bid price and ask price are deleted. The resulting dataset is sampled by so-called tick

time. Tick time sampling means that the dataset contains each tick, or quote, containing a bid price

and ask price, during the period of interest. This dataset is irregularly spaced because the quotes

do not come in at regular time intervals. Because this research uses different sampling frequencies,

the dataset is changed to contain data with calendar time sampling. This sampling scheme does

contain regularly spaced data which is useful when aggregating the dataset to different frequencies.

First, for each unique second all bid prices and ask prices are aggregated by replacing them by their

median value. Then for each second the mid price is calculated as the average between the bid

price and ask price. The resulting dataset contains the mid prices per second for the whole sample
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period. Last, the natural logarithm of the returns is calculated for each second using the following

formula:

rt = log(Pt/Pt−1), (9)

where pt and pt−1 are the mid prices for the given time stamps and rt is the log return.

Figure 1: Plot of log returns per second

In Figure 1 the log returns are visualized. One thing that stands out is the large positive and

negative observation in August 2015. On the 24th of August in 2015 a flash crash occurred making

the S&P500 index lose more than 5% in just minutes. A flash crash is an event where an extreme

and rapid drop occurs in the prices of financial assets. Usually the sudden losses are again recovered

within the day as is nothing has happened. The 2015 crash also had an impact on the SPY ETF

causing a big spike in volatility that day. A crash like this is unpredictable and has a significant

impact on the market. It is considered abnormal market activity and distorts the data on small time

intervals. The 26 largest absolute returns in the dataset all occurred during this day. Looking at

Figure 2 it is clear this crash caused a major volatility spike much bigger than all other days in the

sample period. Because the data is distorted this day is excluded from the dataset. The resulting

dataset contains 998 different trading days consisting of 23.227.518 second with return data.
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Figure 2: Plot realized volatility per day

3.2 Stylized facts

Asset returns are known to have no significant autocorrelation and are therefore hard to predict.

However, the squared returns and the absolute returns usually do have a slow decaying autocorre-

lation indicating the existence of volatility clustering (Cont, 2001). This means that periods with

high volatility alternate with periods with low volatility. This phenomenon is why volatility is more

predictable than asset returns. To check for this stylized facts in the data used in this research, an

autocorrelation plot is made for the returns, the absolute returns and the squared returns.

Figure 3: ACF returns Figure 4: ACF absolute returns Figure 5: ACF squared returns

Figure 3 shows no significant autocorrelation in the returns while Figure 4 and Figure 5 show

that the absolute returns and the squared returns do have a slowly decaying autocorrelation as

expected. In the absolute returns the autocorrelation is most prominently visible. This might
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indicate that the TGARCH model which uses the absolute returns to model the volatility might

be the best model to use as a benchmark. Another stylized fact of asset returns is that they are

non-normal (Cont, 2001). Returns usually exhibit negative skewness, indicating that large negative

returns occur more often than large positive returns. They also have excess kurtosis, meaning that

the distribution of returns has a higher peak and fatter tail.

Figure 6: Histogram of returns Figure 7: QQ-plot of returns

Figure 6 shows a histogram of the log returns where the blue line indicates the normal distri-

bution. It is clear that the returns do in fact have a higher peaked distribution and fatter tails

indicating excess kurtosis. Figure 7 shows a Quantile-Quantile plot where the red line represents a

normal distribution. If the returns where normally distributed, the line and data would be aligned,

but it is clear the quantiles deviate from the normal quantiles again indication the distribution is not

normal. Table 1 show some descriptive statistics of the data. A normal distribution has a skewness

of 0 and kurtosis of 3 while the data shows negative skewness and excess kurtosis. The Jarque-Bera

test tests whether these conditions hold true for the dataset. The Jarque-Bera test statistic and

p-value clearly reject the null hypotheses meaning the returns are not normally distributed.

Table 1: Descriptive statistics

Mean Std. dev. Kurtosis Skewness Jarque-Bera statistic p-value

6.770 (×10−9) 3.293 (×10−5) 22.827 -0.051 5.065 (×108) 0.000

3.3 Volatility signature plot

Using a good volatility proxy to evaluate the performance of the models is important to draw correct

conclusions from the results. Following the paper by Andersen et al. (1999) a volatility signature
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plot is constructed, visualizing the average daily realized volatility for different sampling frequencies.

In their paper they consider daily realized volatility as the square of equation 1, σ2
t . It is important

to note that this paper uses formula 1 as the definition for realized volatility and considers the

definition used by Andersen et al. (1999) the realized variance. To construct the volatility signature

plot, the data is first aggregated to the following frequencies: [1s, 2s, 3s, 4s, 5s, 6s, 10s, 12s, 15s,

20s, 30s, 1m, 2m, 3m, 5m, 6m, 10m, 15m, 20m, 30m]. Next, the average daily realized variance is

calculated and plotted against the corresponding sampling frequency.

Figure 8: Volatility signature plot

Figure 8 is a visualization of the average daily realized variance and the corresponding sampling

frequency in seconds. Andersen et al. (1999) find in their paper that for a liquid asset the largest

realized variance estimates occur at the highest sampling frequency. They explain this by negative

correlation in the returns that is likely induced by the bid-ask bounce. However, Andersen and

Teräsvirta (2009) say that the opposite occurs when using returns constructed from bid-ask quote

mid prices because the asymmetric adjustments to the spread make the returns positively correlated.

This paper uses returns calculated as the mid price of bid-ask quotes and the pattern observed in

Figure 8 is therefore expected. The optimal proxy for the real latent volatility is the frequency

where the realized variance starts to suffer from the biases induced by microstructure noise. In this

case, at the 60 second frequency indicated by the orange dot in Figure 8, a clear decline in average

daily realized variance is visible and this frequency will be used to construct the true volatility, the

proxy of the actual latent volatility. The same frequency is found to be optimal by Wilhelmsson
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(2006) using high frequency S&P 500 Future data.

4 Methodology

4.1 Volatility models

4.1.1 GARCH

The Generalized Autoregressive Conditional Heteroskedastic (GARCH) process as introduced by

Bollerslev (1986) is widely used in the academic literature and by practitioners to model volatility.

It assumes that the returns rt are generated by a model like this:

rt = µt + σtϵt, ⇐⇒ ϵt = (rt − µt)/σt, (10)

where the ϵt’s are independently and identically distributed and σt is considered the time-varying

volatility. The µt in this model can be any type of mean process or just a constant. The GARCH(1,1)

model reads as follows:

σ2
t+1 = ω + α(rt − µ)2 + βσ2

t ,

= ω + ασ2
t ϵ

2
t + βσ2

t ,
(11)

where the second line follows from 11. The parameters ω, α and β are non-negative to ensure

σ2
t ≥ 0 for all t with additional constraint α + β < 1 (Bollerslev, 1986). The model assumes

future volatility is predictable conditional on past volatility and past errors. A shortcoming of

the GARCH(1,1) model, as discussed by Hansen and Lunde (2005), is the inability to capture the

asymmetric properties of return series because ηt and rt are symmetric time series. To evaluate

if models including an asymmetric component better fit the data, three of the most widely used

models are considered as a benchmark model.

4.1.2 GJR-GARCH

The GJR-GARCH model is an extension of the traditional GARCH model proposed by Glosten

et al. (1993). The mean equation is equal to equation 10, but to the conditional variance equation

they added an additional component that is able to capture the asymmetric properties of the time
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series. The equation is as follows:

σ2
t+1 = ω + α(rt − µt)

2 + βσ2
t + γ(rt − µt)

2
1[rt−µt<0], (12)

where 1 is an indicator function that has a value of 1 when the condition rt − µt < 0 holds true

and a value of 0 otherwise. If the coefficient γ is zero then this model is again equal to the GARCH

model. A positive γ indicates that negative errors have a bigger impact on the conditional volatility

than positive errors.

4.1.3 TGARCH

Inspired by the paper by Glosten et al. (1993), Zakoian (1994) developed the threshold-GARCH

model (TGARCH). It is very similar to the GJR-GARCH model, again has the same mean equation,

but uses the absolute errors instead of the squared errors to model the conditional volatility. The

specification is as follows:

σt+1 = ω + α|rt − µt|+ βσt + γ|rt − µt|1[rt−µt<0], (13)

where |rt − µt| is the absolute value of rt − µt and the asymmetric effect is again captured in the

coefficient γ.

4.1.4 EGARCH

The last model used in this paper to capture the asymmetric properties of the return series is the

exponential-GARCH model (EGARCH) proposed by Nelson (1991). Again the same mean equation

is used but the conditional volatility equation is changed to the following:

ln(σ2
t+1) = ω + α(|ϵt| −

√
2

π
) + βln(σ2

t ) + γϵt, (14)

where ϵt is equal to the specification in equation 10 and ln is the natural logarithm. The natural

logarithm on the left side of equation 14 makes sure the variance σ2
t+1 can not be negative because

the exponential function can only be positive. Therefor there are no restrictions necessary on the

parameters of the model. The γ coefficient captures the effect of the asymmetry in the returns.

4.1.5 Long-Short Term Memory neural network

The Long Short-Term Memory (LSTM) neural network as introduced by Hochreiter and Schmid-

huber (1997) is a recurrent neural network specifically designed to overcome the vanishing gradient
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problem. This problem arises in many recurrent neural networks when learning long-term depen-

dencies (Van Houdt et al., 2020). The LSTM neural network consists of one or more memory blocks

that are able to retain information over time.

Figure 9: Schematic representation of an LSTM memory block (Y. Liu, 2019)

Figure 9 is a visualization of the LSTM memory block. The main parts of the memory block

are the forget gate ft, the input gate it, the output gate Ot and the candidate cell state C̃t. The sig

in Figure 9 is the logistic sigmoid function defined as,

sig(x) =
1

1 + e−x
, (15)

and is used as an activation function for the forget gate ft and the input gate it. It returns a value

between 0 and 1, The hyperbolic tangent, tanh, is used as activation function to the candidate cell

state C̃t and the output. It is formulated as follows:

tanh(x) =
ex − e−x

ex + e−x
, (16)

and returns a value between -1 and 1. The logistic sigmoid and hyperbolic tangent are used to

enhance the non-linearity of the model making it able to learn complex dependencies in the data.

The candidate cell state C̃t is used to update the cell state Ct and uses the current input xt and

the output of previous LSTM unit ht−1. This is done by the following formula:

C̃t = tanh(Wcxt +Rcht−1 + bc), (17)

where Wc is the weight vector associated with input xt and Rc is the weight vector associated with
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the previous output ht−1. The vector bc is the bias vector. The input gate it is updated using the

input xt, the previous output ht−1 and the previous cell state Ct−1. It is calculated as follows:

it = sig(Wixt +Riht−1 + pi ⊙ Ct−1 + bi), (18)

where Wi, Ri and pi are the weight vectors for xt, ht−1 and Ct−1 respectively, bi is the bias vector

and ⊙ is the point-wise multiplication between the two vectors.

The forget gate is used to determine what information should be discarded from the precious

cell state Ct−1. It uses the input xt, the previous output ht−1 and the previous cell state Ct−1 in

the follow way:

ft = sig(Wfxt +Rfht−1 + pf ⊙ Ct−1 + bf ), (19)

where Wf , Rf and pf are the weight vectors for xt, ht−1 and Ct−1 respectively, bf is the bias vector

associated with the forget gate and ⊙ is the point-wise multiplication between the two vectors.

To compute the cell state Ct, the information computed in the input gate it, the forget gate ft

and the candidate cell state C̃t as well as the precious cell state Ct−1 are combined. This is done

by the following calculations:

Ct = ft ⊙ Ct−1 + it ⊙ C̃t. (20)

Next the output gate ot is calculated by combining the current output xt, previous output yt−1

and the previous cell state Ct−1 in the following way:

ot = sig(Woxt +Roht−1 + po ⊙ Ct−1 + bo), (21)

where again Wo, Ro and po are the weight vectors for xt, ht−1 and Ct−1 respectively, bo the bias

vector and ⊙ is the point-wise multiplication. Last, the output ht is calculated using the current

cell state Ct and the output gate ot as follows:

ht = tanh(Ct)⊙ ot. (22)

The neural network is trained using the backpropagation through time algorithm. It feeds the

input sequence to the LSTM neural network and computes the output and cell state for each time

step. Next, the outputs are compared to the target values and the error is computed as the difference

between them. Then, the gradients of the error with respect to the network weights and biases are
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computed recursively from the last time step back to the first time step. The gradients are used to

update the weights and biases in the neural network using an optimization algorithm that minimizes

the error. All these steps are then repeated until the network converges or for a predefined number

of iterations.

A neural network makes use of hyperparameters that guide the learning process during training.

One of them is the amount of layers used in the network. The more layers are used, the better the

neural network is able to model complex sequences. However, using more layers makes the model

prone to overfitting, resulting in a worse out-of-sample performance. Another hyperparameter is

the amount of nodes used in a layer. More nodes can make the model better with the data but

can also lead to overfitting. One way to prevent overfitting the model, is to add dropout layers.

These layers randomly ignore a preset percentage of the outputs when training. This helps the

neural network converge to a more general model which empirically results in better out-of-sample

forecasts (Cheng et al., 2017). Also the choice of optimization algorithm, the learning rate and

loss function when minimizing the errors of the weights and biases are hyperparamters that can

influence the learning of the neural network. A popular algorithm is Adam, a stochastic gradient

decent method based on the adaptive estimation of the first and second moments. This algorithm

tries to minimize the loss function, usually the mean squared error is used. The Adam optimizer

uses by default a learning rate of 0.001 that gets adjusted with each training iteration for faster

convergence. The amount of epochs is the hyperparameter that decides on the number of iterations

when training the model. In each epoch the whole dataset is used to optimize the network weights

and biases. The batch size refers to the number of training observations used in each optimization

iteration. Lower batch size can lead to more a stable optimization but also slower convergence.

When optimizing over all hyperparameters it is common practice to use k-fold cross-validation to

prevent overfitting and support generalization of the model (Berrar, 2019). This method divides

the train dataset in k dis-joined subsets of approximately equal size. Then k-1 of these subsets are

used to train the model and the remaining subset is used to evaluate its performance using a loss

function. This is done until all k subsets have been used to evaluate the model. The average loss of

all those models is used to determine the best set of hyperparameters to use for the neural network.
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4.2 Evaluation methods

4.2.1 Diebold-Mariano Test

To evaluate which model has a better predictive accuracy a Diebold-Mariano (DM) test is used as

proposed by Diebold and Mariano (2002). It compares two forecasts using a loss function and tests

whether these two forecasts are significantly different from each other. Patton (2011) shows that

from the most commonly used loss functions in volatility forecasting, only the Quasi-Likelihood

(QLIKE) and the Mean Squared Prediction Error (MSPE) loss functions are robust to noise in the

volatility proxy. Therefor these are used to evaluate the forecasts. The QLIKE loss function is

specified similar to Bollerslev et al. (2016):

L(σ2
t , σ̂

2
t ) =

1

n

n∑
t=1

(
σ2
t

σ̂2
t

− log

(
σ2
t

σ̂2
t

)
− 1

)
, (23)

where σt is volatility proxy and σ̂t is the forecasted volatility. The MSPE is specified in the following

way:

L(σ2
t , σ̂

2
t ) =

1

n

n∑
t=1

(
σ2
t − σ̂2

t

)2
, (24)

where again σt is volatility proxy and σ̂t is the forecasted volatility. For two given models, the loss

functions are used to calculate the error for each model. Then the loss differential is defined as:

dt = L(σ2
1t, σ̂

2
1t)− L(σ2

2t, σ̂
2
2t), (25)

where L(σ2
1t, σ̂

2
1t) and L(σ2

2t, σ̂
2
2t) are the losses for model 1 and 2 respectively. The DM test, tests

the null hypothesis of equal predictive performance give by:

E[dt] = 0. (26)

The DM test only requires that the loss differential is covariance stationary. Under this assump-

tion the limiting distribution of the DM test statistic is given by:

DM =
d̄

σ̂d̄
−→ N(0, 1), (27)

where d̄ is the sample average of the loss differential and σ̂d̄ a consistent estimate of the standard

deviation of the loss differential. Diebold and Mariano (2002) empirically find good results for the

DM test but in small samples the test statistic can be oversized. Harvey et al. (1997) therefor

propose to adjust the DM test statistic in the following way:

DM∗ = DM

√
T + 1− 2h+ T−1h(h− 1)

T
, (28)
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where DM is the original statistic from equation 27, T is the amount of forecasts and h represents

how many steps ahead the forecasts are made. This statistic is used to evaluate the different models

pairwise.

4.2.2 Mincer-Zarnowich regression

The Mincer-Zarnowich regression as proposed by Mincer and Zarnowitz (1969) is used to evaluate

the forecasting performance of the individual models. The proxy of the true latent volatility is

regressed on a constant and the forecasts:

σt = β0 + β1σ̂t + ϵt, (29)

where σ̂t are the forecasts of the model that is evaluated. The regression is estimated with OLS

and uses Newey-West standard errors to correct for autocorrelation and heteroscedasticity. Next a

Wald-test is conducted test the joint hypothesis β0 = 0 and β1 = 1. If the null hypothesis can not

be rejected, the forecasts are unbiased.

4.3 Implementation

To be able to test the models on their out-of-sample forecasting performance, the dataset is split in a

training dataset, used to train and optimize the models, and a test dataset to evaluate the accuracy

of the forecasts out-of-sample. The train dataset consists of the data from the years 2014, 2015 and

2016 while the test dataset consists of the datapoints from 2017. For optimization purposes, all

returns are multiplied by a factor 100. This makes it easier for the models to converge.

To determine the most appropriate benchmark model, the train dataset at the daily frequency

is used to optimized the models. The GARCH model, TGARCH model, GJR-GARCH model and

EGARCH model are all trained on the train data for different settings. For the mean equation, the

constant mean and zero mean are considered. For the error distribution, the normal distribution,

Student-t distribution, skewed Student-t distribution and Generalized error distribution (GED) are

evaluated. Based on the log likelihood of the models, the Akaike information criteria (AIC), the

Bayesian information criteria (BIC) and the significance of the parameters of the models a decision

is made which model is used as the benchmark model. This model is then used to make the out-

of-sample predictions. This is done by training the model using a rolling window and making a

one-step ahead forecasts on each iteration. These forecasts are evaluated against the test dataset

using the loss functions in equation 23 and 24.
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The LSTM neural network is also trained on the training dataset but for different frequencies.

The following frequencies are use: [10s, 15s, 20s, 30s, 1m, 2m, 3m, 5m, 6m, 10m, 15m, 30m]. Before

training the models the data is transformed using the MinMaxScaler to scale the data between 0

and 1. This can help the model in computing the gradients more efficiently during training which

helps converging faster. To optimize the LSTM neural network, many hyperparameters have to be

fine tuned. Table 2 shows the different values that are tested for each hyperparameter.

Table 2: LSTM hyperparameters

Hyperparameters Values

Layers [1]

Units [5,10,20,30,50,75,100]

Epochs [5,10,20,30,50,100,200]

Optimizer [Adam]

Batch size [1,2,4,8,16,32,64,128]

Learning rate [0.00025,0.00050.0,00100]

Only 1 LSTM layer is used in optimizing the LSTM neural networks. For the models using

lower frequency data the extra layers didn’t perform better than using only a single layer and for

the higher frequencies optimizing the model would become extremely computationally expensive.

The amount of units, amount of epochs, optimizer and batch sized follow the analysis from Rodikov

and Antulov-Fantulin (2022). The LSTM neural networks are trained using the different sets of

hyperparameters to determine the optimal model to construct the forecasts. Using 5-fold cross-

validation the optimal set of hyperparameters is the set that achieves the lowest average MSPE

while training. To prevent overfitting the models to the dataset, a dropout layer is added. This

layer randomly drops out 20% of the units in the LSTM layer when training the neural network.

The 20% is chosen based on the paper of Zou and Qu, 2020. After optimizing the neural networks

for the different data frequencies the forecasts are evaluted against the forecasts of the benchmark

model using the Diebold-Mariano test and the Mincer-Zarnowich regression.
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5 Results

5.1 Benchmark model

To determine the best benchmark model all models are trained on the training dataset for the

different distributions and mean functions. The results for all different models can be found in the

Appendix. The first thing to notice is that all models have the worst fit to the data when using

a normal distribution compared to the other distributions. The logLikelihood (LogL), AIC and

BIC are all much higher for the normal distribution indicating the other distributions better fit the

data. This results is for all models the same and does not change for the different mean functions

and is in line with the finding from Wilhelmsson (2006). This might be because the returns are

also not normally distributed as noted in section 3. The Student’s T distribution and the GED

have a very similar fit to the data for all models. Again the logL, AIC and BIC are similar when

using a zero mean function or a constant mean function. The best fit is achieved when using the

skewed Student’s T distribution. This is a result of the excess kurtosis and negative skewness in

the returns as show in section 3 (Alberg et al., 2008). The results for all different models using the

skewed Student’s T distribution are shown in table 3. The parameter λ controls the skewness of

the distribution. All models report a significant negative skewness at the 1% level. The parameter

η controls the tail shape of the distribution similar to the degrees of freedom in the Student’s T

distribution. An η of 1 would indicate similar tails as the normal distribution. The results show

for all models a higher η significant at the 1% level indicating the distribution of the errors has

bigger tails. When conducting a Ljung-Box test on the standardized residuals of the models, all

models show no significant autocorrelation in the standardized residuals and squared standardized

residuals up to at least lag 100. This indicates that the models do capture the autocorrelation in

the data.
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Table 3: Results for each model using the Skewed Student’s T distribution

GARCH GJR-GARCH TGARCH EGARCH

Zero Constant Zero Constant Zero Constant Zero Constant

µ 0.020 0.012 0.010*** 0.011

ω 0.012* 0.012* 0.018** 0.017** 0.035** 0.034** -0.069* -0.072*

α 0.164*** 0.166*** 0.068** 0.069** 0.053** 0.055** 0.272*** 0.271***

γ 0.223** 0.215** 0.204*** 0.199*** -0.161*** -0.156***

β 0.820*** 0.814*** 0.787*** 0.786*** 0.827*** 0.827*** 0.931*** 0.933***

η 4.837*** 4.924*** 5.245*** 5.287*** 5.619*** 5.666*** 5.538*** 5.584***

λ -0.164*** -0.143*** -0.160*** -0.148*** -0.161*** -0.151*** -0.161*** -0.150***

logL 738.993 738.002 732.053 731.708 723.761 723.530 725.543 725.253

AIC 1487.99 1488.00 1476.11 1477.42 1459.52 1461.06 1463.09 1464.51

BIC 1512.56 1517.49 1505.59 1511.81 1489.01 1495.46 1492.57 1498.9

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level.

Looking at table 3 the GARCH model has the highest values for the logL, AIC, and BIC. This

indicates that the other models have a better fit to the data. This is also in line with the findings

from Hansen and Lunde (2005). Models incorporating an asymmetric component better fit the

return data than the standard GARCH(1,1) model. The logL, AIC and BIC do not change much

when adjusting the mean function for all models. This result is also reported by Hansen and Lunde

(2005). Out of the models that incorporate an asymmetric component the GJR-GARCH model has

a lesser fit to the data compared to the TGARCH and EGARCH model based on the logL, AIC,

and BIC. The TGARCH reports the lowest values for the logL, AIC and BIC but they do not differ

much from the values for the EGARCH model. Therefore the TGARCH and EGARCH with zero

mean and constant mean are used to construct forecasts to determine which model has the best

out-of-sample forecasting performance and will be used as benchmark model.
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Table 4: Out-of-sample results TGARCH and EGARCH models

TGARCH EGARCH

Zero Constant Zero Constant

MSPE 0.0236 0.0234 0.0254 0.0251

QLIKE 0.2711 0.2695 0.2791 0.2773

MZ p-value 0.0000 0.0000 0.0000 0.0000

In Table 4 the out-of-sample results for the TGARCH and EGRACH model with zero and

constant mean are reported. TGARCH with constant mean has the lowest MSPE and lowest

QLIKE value. Although the other models report higher values for the loss functions, they do not

differ much. Interestingly the p-values from Minzer-Zarnowitz regression indicate that the forecasts

for all models are significantly biased. Figure 10 shows the true volatility in blue and the forecasted

volatility by the TGARCH model with constant mean in orange. The forecasts seem to have an

upward bias compared to the true volatility and the model did not accurately capture the large

spike at the end of the forecasting period. The other three models display similar characteristics

in the plots of their forecasts. This explains why the p-value of the Mincer-Zarnowitz regression is

0.0000 for all models.

Figure 10: Plot of true volatility (blue) against TGARCH with constant mean forecasts (orange)

To determine which model has the best forecasting performance the Diebold-Mariano test is
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used. The results for this test are reported in Table 5. The models on the left side of the table

are used as model 1 and the models on top are used as model 2 in the test as stated in section

4.2.1. For the MSPE loss function the DM test does indicate a significant difference in forecasting

performance between all the models at a significance level of 5%. From the definition of the DM

statistic in equation 27 the statistic is negative when the average loss differential is negative and

positive when the average loss differential is positive. If the average loss differential is negative, then

the average loss for model 1 is smaller than the average loss for model 2. Following the interpretation

from Liang et al. (2020), this indicates that a significant and negative DM statistic would indicate

that model 1 has a significantly better out-of-sample forecasting performance compared to model 2.

Looking at Table 5 the TGARCH model with constant mean has a significant negative DM statistic

when comparing with the other models for the MSPE loss function. This means that this model

has superior forecasting power over the other models. When looking at the DM statistics for the

QLIKE loss function only the TGARCH with constant mean and EGARCH with zero mean have a

significant difference in forecasting performance. One reason for this might be the poor performance

to predict the big volatility spike at the end of the forecasting period. Since the QLIKE loss function

penalizes lower forecasts more heavily than higher forecasts compared to the true value, the bad

prediction of the volatility spike can have a big effect on the loss function and the results of the

DM test. Because the TGARCH-C model did perform significantly better than the other models

for the MSPE, this model is chosen as benchmark.
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Table 5: Diebold-Mariano test results

MSPE TGARCH-Z TGARCH-C EGARCH-Z EGARCH-C

TGARCH-Z 5.933*** -2.383** -2.100**

TGARCH-C -5.933*** -2.599*** -2.337**

EGARCH-Z 2.383** 2.599*** 5.333***

EGARCH-C 2.100** 2.337** -5.333***

QLIKE TGARCH-Z TGARCH-C EGARCH-Z EGARCH-C

TGARCH-Z 1.932* -1.880* -1.242

TGARCH-C -1.932* -2.589** -1.792*

EGARCH-Z 1.880* 2.589** 1.962*

EGARCH-C 1.242 1.792* -1.962*

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level.

The models on the left side are used as model 1 and on the top as model 2 when conduction the

DM test from section 4.2.1. The Z and C stand for the zero mean and constant mean models

respectively.

5.2 Long-Short Term Memory neural network

For each different frequency of data an LSTM neural network is optimized and trained to make

volatility forecasts. They are optimized for the different hyperparameters as noted in Table 2 using

5-fold cross-validation to prevent overfitting the models and allow for more generalized results. The

models are optimized with respect to the MSPE loss function from equation 24 where for each data

frequency the model with the lowest average loss is considered the best model. This model with the

related hyperparemeters is used to make the volatility forecasts and the results for all frequencies

are displayed in Table 6.

25



Table 6: LSTM neural network results

Frequency Units Batch Epochs learn rate MSPE QLIKE MZ p-value

30m 30 64 100 0.0005 0.0036 0.0774 0.0000

15m 30 32 100 0.0005 0.0026 0.0440 0.0633

10m 30 64 100 0.0005 0.0021 0.0446 0.0000

6m 30 32 100 0.00025 0.0024 0.0232 0.0000

5m 30 32 100 0.00025 0.0023 0.0153 0.1325

3m 50 64 200 0.00025 0.0021 0.0112 0.1848

2m 50 64 200 0.00025 0.0010 0.0175 0.0000

1m 75 64 100 0.00025 0.0005 0.0138 0.0850

30s 75 64 200 0.00025 0.0030 0.0780 0.0000

20s 75 64 200 0.00025 0.0082 0.0716 0.0000

The first thing to note from Table 6 is the increasing amount of units used by the models when

the data frequency increases. Higher frequency data has increasingly more data to train the models

with. A probable explanation for the increasing amount of nodes is the increasing amount of data

used in training the models. Using more units in a model makes it able to get a bitter fit to the

data. For the lower frequencies using 30 nodes is enough to reach a good fit to the data while not

overfitting the model. Increasing the amount of data makes it harder to get a good fit and learn

the complexities and therefor the amount of units used increases. The batch size stays relatively

constant only using batches of 32 or 64. The learning rate seems to decrease when data frequency

increases. This might be because the higher frequency data contains smaller return values and

updating the model parameters using a smaller learning rate can make the model converge more

easily and prevent overshooting when updating the gradients. The amount of epochs on the other

hand seems to increase when frequency increases. This can be a result of the learning rate decreasing

and thus needing more epochs to reach convergence when training the neural network.

The forecasts of the benchmark model had a MSPE of 0.0234. The MSPE values reported in

Table 6 are all considerably lower than that. The same holds true for the QLIKE loss. One of the

reasons the MSPE for the benchmark model is much higher is because of inaccurately forecasting

the volatility spike in the end of the forecasting period. Looking at Figure 11 the LSTM neural

network using the 1 minute data is able to make accurate forecasts of the volatility spike. Also
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Figure 11: Plot of true volatility (blue) against TGARCH-C (orange) and the LSTM neural

network using 1 minute data (green)

during the whole forecasting period it is clearly visible the forecasts of the LSTM model more

closely resemble the true volatility compared to the forecasts of the benchmark model. Therefor

the MSPE and QLIKE are, as expected, lower for the LSTM neural networks compared to the

benchmark model. To test whether the forecasts are unbiased the Mincer-Zarnowitz regression is

conducted as explained in section 4.2.2. The p-values in Table 6 indicate that the forecasts of most

models are biased. At the 5% significance level only the 15 minute, 5 minute, 3 minute and 1 minute

LSTM neural network do have unbiased forecasts. A possible explanation for the biased forecasts

is that the LSTM neural network did not manage converge to the true minimum but instead got

reached a local minimum. At the 30 second and 20 second frequency the bias could also be induced

by the microstructure noise in the data. The MSPE and the QLIKE for these frequencies show a

significant increase compared to the 1 minute frequency LSTM model. Overall the MSPE is slowly

decreasing when sampling frequency increases indicating that the forecasts are closer to the true

value when using an LSTM neural network that is trained with higher frequency data. For the 30

second and 20 second frequency however, the MSPE increases again.

In Figure 12 the MSPE is visualized against the associated data frequency. Interestingly, the
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Figure 12: Plot of MSPE values against the different data frequencies

plot is very similar to the volatility signature plot in Figure 8. While the volatility signature

plots shows a slight increase in daily average realized variance when sampling frequency increases

Figure 12 shows a slight decrease. Both graphs reach their extreme value when using a frequency

of 1 minute returns and then the volatility signature plot shows a large decrease while Figure 12

shows a large increase. Andersen et al. (1999) explained that there is a bias variance trade-off in

choosing the optimal frequency of returns. Lower frequency returns are less biased but increase the

variance of estimating the realized variance while higher frequency returns increasingly suffer from

microstructure noise which also causes less accurate estimates of the realized variance. Therefore

they consider the lowest frequency before the realized variance estimator clearly starts suffering

from the bias in the returns as the optimal frequency. Based on Figure 12 the same result seems

to hold when forecasting the realized variance using the LSTM neural network. This supports the

use of the volatility signature plot as proposed by Andersen et al. (1999) to choose the optimal

frequency of returns when forecasting volatility with an LSTM neural network. Like the MSPE,

Table 6 shows a somewhat similar behaviour for the QLIKE measure but it is not as clear. This is

probably due to the LSTM neural network being optimized for the MSPE and not the QLIKE.

To formally test whether the LSTM neural networks significantly have superior forecasting power
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compared to the benchmark model a DM test is conducted. Table 7 shows the DM statistics when

comparing the benchmark model against the LSTM model for the different frequencies. At the

5% significance level all LSTM neural networks do significantly outperform the benchmark model

when using the MSPE measure aswell as the QLIKE measure. That the LSTM neural networks

can outperform GARCH like models is in line with previous research on this topic. The results in

Table 7 show that even the models for the 30 second and 20 second frequency have significantly

better forecasting power compared to the benchmark model despite the clear manifestation of the

microstructure noise bias in the returns data.

Table 7: DM test statistics comparing benchmark vs LSTM for different frequencies

30m 15m 10m 6m 5m

MSPE 2.390** 2.633*** 2.493** 2.773*** 2.895***

QLIKE 4.088** 4.978*** 4.998*** 5.522*** 5.739***

3m 2m 1m 30s 20s

MSPE 2.898*** 2.545** 2.542** 2.556** 3.953***

QLIKE 5.830*** 5.613*** 5.694*** 4.259*** 4.863***

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level.

To determine what frequency is optimal when forecasting realized variance, the DM test is used

to compare the forecasts of all different LSTM models. The DM statistics are displayed in Table

8. Based on the MSPE values in Table 6 the LSTM neural network using the 60 second frequency

data was expected to be the best model. However, using the MSPE measure the DM test can not

reject the null hypothesis of no difference in forecasting power when comparing it to the results of

the LSTM neural network using the 6 minute, 5 minute, 3 minute and 2 minute data. The 2 minute

and 60 second frequency do have a significantly better forecasting performance compared to the

30 minute, 15 minute, 10 minute and 30 second frequencies. However, they do not have superior

forecasting power compared to the 20 second frequency. Based on the QLIKE from Table 6 the 3

minute frequency seems optimal. This result is confirmed by the DM test results in Table 8. The

LSTM neural network using the 3 minute data outperforms all other models at the 99% confidence

level except the model using the 60 second data. At the 90% confidence level the 3 minute data

also has a significantly better forecasting performance compared to the 60 second data.
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Table 8: DM test statistics comparing all LSTM models of different frequencies by MSPE and QLIKE

MSPE data1800S data900S data600S data360S data300S data180S data120S data60S data30S data20S

data1800S 1.973** 2.972*** 1.432 1.256 1.532 3.559*** 3.570*** 1.102 -1.003

data900S -1.973** 0.631 0.277 0.398 0.784 1.879* 1.825* -1.988 -1.338

data600S -2.972*** -0.631 -0.298 -0.122 0.040 3.124*** 3.137** -1.407 -1.254

data360S -1.432 -0.277 0.298 0.495 1.468 1.364 1.306 -1.236 -1.492

data300S -1.256 -0.398 0.122 -0.495 2.085** 1.080 1.024 -1.036 -1.644

data180S -1.532 -0.784 -0.040 -1.468 -2.085** 0.942 1.003 -1.446 -1.669*

data120S -3.559*** -1.879* -3.124*** -1.364 -1.080 -0.942 1.321 -2.392** -1.460

data60S -3.570*** -1.825* -3.137** -1.306 -1.024 -1.003 -1.321 -2.358** -1.446

data30S -1.102 1.988 1.407 1.236 1.036 1.446 2.392** 2.358** -1.214

data20S 1.003 1.338 1.254 1.492 1.644 1.669* 1.460 1.446 1.214

QLIKE data1800S data900S data600S data360S data300S data180S data120S data60S data30S data20S

data1800S 4.188*** 3.498*** 6.352*** 7.16*** 7.690*** 6.662*** 7.190*** -0.059 0.485

data900S -4.188*** -0.114 4.455*** 6.443*** 7.529*** 5.404*** 6.502*** -4.19*** -3.113***

data600S -3.498*** 0.114 7.068*** 9.988*** 10.812*** 11.275*** 11.257*** -6.595*** -3.205***

data360S -6.352*** -4.455*** -7.068*** 4.347*** 7.001*** 2.479** 4.495*** -8.513*** -6.214***

data300S -7.16*** -6.443*** -9.988*** -4.347*** 3.897*** -1.362 1.062 -10.245*** -7.66***

data180S -7.690*** -7.529*** -10.812*** -7.001*** -3.897*** -3.733*** -1.792* -10.740*** -8.154***

data120S -6.662*** -5.404*** -11.275*** -2.479** 1.362 3.733*** 3.945*** -12.249*** -6.899***

data60S -7.190*** -6.5026*** -11.257*** -4.495*** -1.062 1.792* -3.945*** -11.705*** -7.560***

data30S 0.059 4.194*** 6.595*** 8.513*** 10.245*** 10.740*** 12.249*** 11.705*** 0.722

data20S -0.485 3.113*** 3.205*** 6.214*** 7.664*** 8.154*** 6.899*** 7.560*** -0.722

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level. The models on the left side are used as

model 1 and on the top as model 2 when conduction the DM test from section 4.2.1.
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6 Robustness Check

The years 2014-2017 were not very volatile years. To check whether the results for 2014-2017 are

robust to more volatile periods, the same analysis is conducted to the year 2018-2021. In Figure

13 in Appendix 8.2 the returns per second are displayed. Comparing this Figure to Figure 1 it is

clear that the period 2018-2021 is more volatile. This is also confirmed when comparing the daily

realized volatility from Figure 14 in Appendix 8.2 to Figure 2. The data is cleaned following the

procedure described in section 3 and the following days have been removed because of early closure

of the exchange: 4 July 2018, 22 November 2018, 25 December 2018, 4 July 2019, 28 November

2019, 25 December 2019, 26 November 2020, 25 December 2020, 26 November 2021. Based on the

volatility signature plot in Figure 15 in Appendix 8.2 the 2 minute frequency is used as proxy for

the actual latent volatility. This is higher then the 1 minute frequency for the less volatile period.

This might be because the microstructure noise has a bigger impact on the estimation of volatility

in a more volatile period.

All tables and figures with the results of the analysis can be found in Appendix 8.2. The results

show that using the skewed Student’s T distribution results in the best fit for all benchmark models.

The GARCH and GJR-GARCH model have the worst fit to the data and the TGARCH model has

the best fit. In the out-of-sample analysis the TGARCH model with constant mean reports the

lowest MSPE while the QLIKE is almost the same for all models. Based on the Diebold-Mariano

test results from table 19 the TGARCH-C model outperforms the other models based on the MSPE

measure. For the QLIKE measure the null hypothesis of equal performance can not be rejected.

Based on these results the TGARCH-C model is used as a benchmark. These results are very

similar to the analysis of the period 2014-2017.

The results for optimizing the LSTM neural networks for the different frequencies are reported

in Table 20. The hyperparameters show strong similarities with the hyperparameters from the

period 2014-2017. This is also the case for the MSPE values for the different frequencies. Figure 17

shows a plot of the MSPE values against the sampling frequency. This plot looks like the mirrored

volatility signature plot as was also the case in the 2014-2017 period. This means that the lowest

MSPE value is again found at the optimal frequency derived from the volatility signature plot. This

indicates that the use of the volatility signature plot as proposed by Andersen et al., 1999 is not

only appropriate to determine the frequency to estimate the volatility, but it is also appropriate

to determine the sampling frequency to use for forecasting volatility in volatile and less volatile
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periods.

Table 21 shows that the benchmark model is outperformed by the LSTM model at all different

frequencies based on the DM test. When comparing the different LSTM models against each

other, the DM test results in Table 22 indicates that the 2 minute frequency outperforms all other

models for the MSPE measure and for the QLIKE measure while in the less volatile period 2014-

2017 the DM test could not reject the null hypothesis of equal performance between the 6 minute,

5 minute, 3 minute, 2 minute and 1 minute frequency. In the period 2018-2021 the 20 second

frequency is outperformed by all models except the 30 minute frequency, the 30 second frequency

only outperforms the 20 second model and the 1 minute frequency only outperforms the 30 second

and 20 second frequency. For this period the 3 minute frequency is only outperformed by the 2

minute frequency and the 5 minute frequency is only outperformed by the 2 minute and 3 minute

frequency. Overall, it seems that in the more volatile period 2018-2021 the increased bias at higher

frequencies and increased variability at lower frequencies have a bigger effect on the forecasting

performance than in the less volatile period 2014-2017.

7 Conclusion

The aim of this thesis is to investigate the effects of sampling frequency on the forecasting perfor-

mance with an LSTM neural network. The analysis has show that increasing sampling frequency

does increase the forecasting performance until the bias induced by microstructure noise becomes

too large. The frequency at which the microstructure noise becomes problematic for forecasting is

similar to the frequency where the bias in estimating volatility becomes a problem. The volatility

signature plot as introduced by Andersen et al., 1999 is an appropriate method to evaluate what

sampling frequency should be used to forecast volatility. In the less volatile period 2014-2017 a

sampling frequency between 6 minutes and 1 minute resulted in equal forecasting performance.

However, the more volatile period 2018-2021 showed that the 2 minute frequency outperforms all

other frequencies. Both periods confirm that the optimal frequency resulting from the volatility

signature plot is appropriate to use when forecasting volatility.

Previous literature on estimating volatility concluded that frequencies between 20 minutes and

5 minutes are optimal based on the volatility signature plot. However, in this thesis the optimal es-

timates are the 1 minute frequency for the less volatile period 2014-2017 and the 2 minute frequency

for the more volatile period 2018-2021. This difference can be a result of the use of different assets.

32



It could therefore be interesting to repeat this analysis for different assets. The existing literature

is mainly focused on estimation volatility but the effects of sampling frequency on volatility fore-

casting have not been thoroughly researched. This thesis contributes to the existing literature by

showing that increasing sampling frequency can increase the forecasting performance. Because of

the importance of volatility in the financial world this can also be interesting for portfolio managers,

risk managers, trading firms or regulators. The results support the volatility signature plot as a

tool to determine what frequency to use for forecasting volatility, indication another way to use this

plot next to finding the optimal estimation frequency.

As mentioned before, to validate the robustness of the results, the research can be extended

to different assets or a portfolio of assets. For future research, it is also suggested to repeat the

analysis using transaction data instead of quote data. This thesis used the mid prices from quote

data to construct the returns. Using transaction data will result in a different volatility signature

plot and this might influence the results of the analysis. A limitation of the thesis is the lack of

computing power to train the LSTM neural networks. Having more computing power available

makes it possible to use even larger datasets in training the models as well as using more layers.

This makes is possible to train more complex neural networks that can potentially learn more from

the complexities in the high frequency data.
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Van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long short-term memory

model. Artificial Intelligence Review, 53, 5929–5955.

Wilhelmsson, A. (2006). Garch forecasting performance under different distribution assumptions.

Journal of Forecasting, 25 (8), 561–578.

Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: Lstm cells and

network architectures. Neural computation, 31 (7), 1235–1270.

Zakoian, J.-M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and con-

trol, 18 (5), 931–955.

Zhang, L., Mykland, P. A., & Aıt-Sahalia, Y. (2005). A tale of two time scales: Determining inte-

grated volatility with noisy high-frequency data. Journal of the American Statistical Asso-

ciation, 100 (472), 1394–1411.

Zou, Z., & Qu, Z. (2020). Using lstm in stock prediction and quantitative trading. CS230: Deep

Learning, Winter, 1–6.

37



8 Appendix

8.1 Results benchmark models

Table 9: Results GARCH model

Mean Zero Constant

Dist. Normal T skew T GED Normal T skew T GED

µ 0.030** 0.040*** 0.020 0.034*

ω 0.0174* 0.010 0.012* 0.013* 0.018* 0.012 0.012* 0.014*

α 0.161*** 0.148** 0.164*** 0.151*** 0.165*** 0.163** 0.166*** 0.160***

β 0.795*** 0.838*** 0.820*** 0.820*** 0.791*** 0.822*** 0.814*** 0.809***

ν 4.692*** 1.206*** 4.547*** 1.204***

η 4.837*** 4.924***

λ -0.164*** -0.143***

logL 787.172 748.258 738.993 748.438 785.233 743.698 738.002 744.816

AIC 1580.34 1504.52 1487.99 1504.88 1578.47 1497.4 1488 1499.63

BIC 1595.08 1524.17 1512.56 1524.53 1598.12 1521.96 1517.49 1524.2

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level.
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Table 10: Results GJR-GARCH model

Mean Zero Constant

Dist. Normal T skew T GED Normal T skew T GED

µ 0.016 0.032** 0.012 0.027***

ω 0.022*** 0.018** 0.018** 0.019** 0.021*** 0.017** 0.017** 0.018**

α 0.023 0.055* 0.068** 0.041 0.022 0.062* 0.069** 0.044

γ 0.273*** 0.238** 0.223** 0.250*** 0.267*** 0.219** 0.215** 0.234***

β 0.783*** 0.791*** 0.787*** 0.787*** 0.783*** 0.788** 0.786*** 0.786***

ν 5.163*** 1.259*** 4.942*** 1.250***

η 5.245*** 5.287***

λ -0.160*** -0.148***

logL 769.293 740.678 732.053 739.308 768.733 737.859 731.708 737.128

AIC 1546.59 1491.36 1476.11 1488.62 1547.47 1487.72 1477.42 1486.26

BIC 1566.24 1515.93 1505.59 1513.18 1572.04 1517.2 1511.81 1515.74

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level.
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Table 11: Results TGARCH model

Mean Zero Constant

Dist. Normal T skew T GED Normal T skew T GED

µ 0.016*** 0.026** 0.010*** 0.024***

ω 0.039*** 0.034** 0.035** 0.035*** 0.037*** 0.031** 0.034** 0.033***

α 0.007 0.040* 0.053** 0.026 0.010 0.048* 0.055** 0.031

γ 0.245*** 0.212*** 0.204*** 0.225*** 0.240*** 0.198*** 0.199*** 0.213***

β 0.836*** 0.835*** 0.827*** 0.836*** 0.836*** 0.834*** 0.827*** 0.836***

ν 5.583*** 1.298*** 5.379*** 1.288***

η 5.619*** 5.666***

λ -0.161*** -0.151***

logL 757.054 732.087 723.761 731.323 756.379 729.891 723.53 729.435

AIC 1522.11 1474.17 1459.52 1472.65 1522.76 1471.78 1461.06 1470.87

BIC 1541.76 1498.74 1489.01 1497.22 1547.33 1501.26 1495.46 1500.35

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level.
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Table 12: Results EGARCH model

Mean Zero Constant

Dist. Normal T skew T GED Normal T skew T GED

µ 0.017 0.028** 0.011 0.025*

ω -0.088*** -0.068* -0.069* -0.078** -0.090*** -0.071* -0.072* -0.081**

α 0.216*** 0.253*** 0.272*** 0.236*** 0.217*** 0.258*** 0.271*** 0.237***

γ -0.198*** -0.168*** -0.161*** -0.180*** -0.194*** -0.155*** -0.156*** -0.170***

β 0.923*** 0.934*** 0.931*** 0.930*** 0.926*** 0.938*** 0.933*** 0.934***

ν 5.450*** 1.288*** 5.249*** 1.279***

η 5.538*** 5.584***

λ -0.161*** -0.150***

logL 760.113 733.861 725.543 733.239 759.385 731.445 725.253 731.217

AIC 1528.23 1477.72 1463.09 1476.48 1528.77 1474.89 1464.51 1474.43

BIC 1547.88 1502.29 1492.57 1501.05 1553.34 1504.37 1498.9 1503.92

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level.

8.2 Tables and figures robustness check

Figure 13: Plot of log returns per second
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Figure 14: Plot of realized volatility per day

Figure 15: Volatility signature plot
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Table 13: Results GARCH model

Mean Zero Constant

Normal T skew T GED Normal T skew T GED

µ 0.038* 0.063*** 0.031 0.063***

ω 0.025* 0.030** 0.033** 0.026** 0.024* 0.032** 0.031** 0.026**

α 0.166*** 0.202*** 0.204*** 0.175*** 0.168*** 0.216*** 0.2055*** 0.181***

β 0.815*** 0.789*** 0.784*** 0.804*** 0.815*** 0.781*** 0.781*** 0.799***

ν 4.131*** 1.137*** 3.899*** 1.116***

η 4.108*** 4.172***

λ -0.173*** -0.148***

logL 1142.92 1090.69 1079.24 1091.38 1141.24 1084.62 1078.08 1085.83

AIC 2291.84 2189.39 2168.49 2190.76 2290.48 2179.23 2168.15 2181.65

BIC 2306.53 2208.98 2192.97 2210.35 2310.07 2203.72 2197.54 2206.14

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level.
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Table 14: Results GJR-GARCH model

Mean Zero Constant

Normal T skew T GED Normal T skew T GED

µ 0.021 0.052*** 0.018 0.053

ω 0.023** 0.030*** 0.034** 0.026** 0.022** 0.029** 0.032** 0.025**

α 0.067** 0.060 0.065 0.059* 0.070** 0.067 0.066 0.063*

γ 0.163*** 0.232*** 0.236*** 0.195*** 0.156** 0.216*** 0.225*** 0.178***

β 0.830*** 0.805*** 0.797*** 0.817*** 0.829*** 0.803*** 0.797*** 0.816***

ν 4.237*** 1.152*** 4.003*** 1.129***

η 4.224*** 4.257***

λ -0.176*** -0.161***

logL 1134.46 1082.60 1071.12 1084.67 1133.94 1078.41 1070.72 1080.68

AIC 2276.93 2175.20 2154.24 2179.34 2277.88 2168.81 2155.44 2173.35

BIC 2296.52 2199.69 2183.63 2203.83 2302.37 2198.20 2189.72 2202.74

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level.
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Table 15: Results TGARCH model

Mean Zero Constant

Normal T skew T GED Normal T skew T GED

µ 0.019*** 0.047*** 0.015 0.048

ω 0.036*** 0.040** 0.042*** 0.038*** 0.035*** 0.037*** 0.040*** 0.036***

α 0.067** 0.061** 0.064** 0.0625** 0.075** 0.073** 0.067** 0.075**

γ 0.173*** 0.199*** 0.197*** 0.185*** 0.166*** 0.183*** 0.191*** 0.168***

β 0.844*** 0.839*** 0.835*** 0.841*** 0.843*** 0.835*** 0.835*** 0.837***

ν 4.487*** 1.177*** 4.251*** 1.155***

η 4.485*** 4.511***

λ -0.185*** -0.173***

logL 1125.56 1077.26 1065.05 1079.76 1125.22 1073.49 1064.75 1076.08

AIC 2259.12 2164.52 2142.10 2169.52 2260.44 2158.98 2143.51 2164.17

BIC 2278.71 2189.01 2171.48 2194 2284.93 2188.37 2177.79 2193.55

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level.

45



Table 16: Results EGARCH model

Mean Zero Constant

Normal T skew T GED Normal T skew T GED

µ 0.019*** 0.047*** 0.015 0.048

ω -0.007 -0.004 -0.003 -0.011 -0.010 -0.009 0.040*** -0.017

α 0.266*** 0.263*** 0.266*** 0.260*** 0.269*** 0.276*** 0.067** 0.269***

γ -0.139*** -0.160*** -0.158*** -0.150*** -0.133*** -0.148*** 0.191*** -0.136***

β 0.953*** 0.951*** 0.949*** 0.951*** 0.955*** 0.954*** 0.835*** 0.954***

ν 4.443*** 1.173*** 4.204*** 1.151***

η 4.434*** 4.511***

λ -0.182*** -0.173***

logL 1126.67 1078.21 1066.36 1080.44 1126.31 1074.45 1064.75 1076.81

AIC 2261.35 2166.41 2144.72 2170.88 2262.61 2160.90 2143.51 2165.61

BIC 2280.94 2190.90 2174.11 2195.37 2287.10 2190.28 2177.79 2195.00

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level.
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Table 17: Results for each model using the Skewed Student’s T distribution

GARCH GJR-GARCH TGARCH EGARCH

Zero Constant Zero Constant Zero Constant Zero Constant

µ 0.031 0.018 0.015 0.015

ω 0.033** 0.031** 0.034** 0.032** 0.042*** 0.040*** -0.003 -0.008

α 0.204*** 0.2055*** 0.065 0.066 0.064** 0.067** 0.266*** 0.268***

γ 0.236*** 0.225*** 0.197*** 0.191*** -0.158*** -0.153***

β 0.784*** 0.781*** 0.797*** 0.797*** 0.835*** 0.835*** 0.949*** 0.951***

η 4.108*** 4.172*** 4.224*** 4.257*** 4.485*** 4.511*** 4.434*** 4.464***

λ -0.173*** -0.148*** -0.176*** -0.161*** -0.185*** -0.173*** -0.182*** -0.170***

logL 1079.24 1078.08 1071.12 1070.72 1065.05 1064.75 1066.36 1066.04

AIC 2168.49 2168.15 2154.24 2155.44 2142.10 2143.51 2144.72 2146.08

BIC 2192.97 2197.54 2183.63 2189.72 2171.48 2177.79 2174.11 2180.37

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level.

Table 18: Out-of-sample results TGARCH and EGARCH models

TGARCH EGARCH

Zero Constant Zero Constant

MSPE 0.3308 0.3293 0.3531 0.3510

QLIKE 0.4784 0.4794 0.4774 0.4779

MZ p-value 0.0000 0.0000 0.0000 0.0000
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Table 19: Diebold-Mariano test results

MSPE TGARCH-Z TGARCH-C EGARCH-Z EGARCH-C

TGARCH-Z 3.320*** -1.765* -1.619

TGARCH-C -3.320*** -1.874* -1.732*

EGARCH-Z 1.765* 1.874* 4.097***

EGARCH-C 1.619 1.732* -4.097***

QLIKE TGARCH-Z TGARCH-C EGARCH-Z EGARCH-C

TGARCH-Z -0.543 0.160 0.084

TGARCH-C -0.543 0.291 0.245

EGARCH-Z 0.160 0.291 -0.281

EGARCH-C 0.084 0.245 0.281

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level.

The models on the left side are used as model 1 and on the top as model 2 when conduction the

DM test from section 4.2.1. The Z and C stand for the zero mean and constant mean models

respectively.

Table 20: LSTM neural network results

Frequency Units Batch Epochs learn rate MSPE QLIKE MZ p-value

30m 30 64 100 0.0005 0.0689 0.0694 0.0000

15m 30 64 100 0.0005 0.0465 0.0550 0.2837

10m 30 64 200 0.0005 0.0312 0.0521 0.0000

6m 30 32 100 0.0005 0.0148 0.0573 0.0000

5m 50 64 100 0.00025 0.0156 0.0250 0.0000

3m 50 64 200 0.00025 0.0099 0.0421 0.0000

2m 50 64 200 0.00025 0.0023 0.0095 0.0000

1m 75 64 100 0.00025 0.0291 0.0443 0.0002

30s 75 64 200 0.00025 0.0687 0.1099 0.0000

20s 75 64 200 0.00025 0.0839 0.1841 0.0000
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Figure 16: Plot of true volatility against forecasts of TGARHC-C and LSTM neural network using

2 minute data
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Figure 17: Plot of MSPE values against the different data frequencies in seconds

Table 21: DM test statistics comparing benchmark vs LSTM for different frequencies

30m 15m 10m 6m 5m

MSPE 6.981*** 5.948*** 6.653*** 6.962*** 6.849***

QLIKE 9.582*** 10.145*** 10.432*** 10.381*** 10.815***

3m 2m 1m 30s 20s

MSPE 6.848*** 6.869*** 6.661*** 6.834*** 6.754***

QLIKE 10.686*** 11.295*** 10.560*** 9.494*** 7.781***

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level.
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Table 22: DM test statistics comparing all LSTM models of different frequencies by MSPE and QLIKE

MSPE data1800S data900S data600S data360S data300S data180S data120S data60S data30S data20S

data1800S 0.705 1.274 1.835* 1.819* 1.991** 2.264** 1.341 0.008 -0.914

data900S -0.705 1.051 2.215** 2.200** 2.623*** 3.106*** 1.391 -1.370 -2.292**

data600S -1.274 -1.051 2.461** 2.142** 2.848*** 3.455*** 0.322 -3.283*** -4.170***

data360S -1.835* -2.215** -2.461** -0.350 1.792* 2.695*** -3.662*** -4.482*** -4.916***

data300S -1.819* -2.200** -2.142** 0.350 2.757*** 3.874*** -3.407*** -4.100*** -4.592***

data180S -1.991** -2.623*** -2.848*** -1.792* -2.757*** 3.320*** -4.420*** -4.267*** -4.690***

data120S -2.264** -3.106*** -3.455*** -2.695*** -3.874*** -3.320*** -4.563*** -4.340*** -4.745***

data60S -1.341 -1.391 -0.322 3.662*** 3.407*** 4.420*** 4.563*** -3.787*** -4.305***

data30S -0.008 1.370 3.283*** 4.482*** 4.100*** 4.267*** 4.340*** 3.787*** -4.626***

data20S 0.914 2.292** 4.170*** 4.916*** 4.592*** 4.690*** 4.745*** 4.305*** 4.626***

QLIKE data1800S data900S data600S data360S data300S data180S data120S data60S data30S data20S

data1800S 2.313** 2.328** 1.424 6.433*** 3.423*** 8.459*** 3.328*** -3.771*** -8.051***

data900S -2.313** 0.723 -0.439 6.492*** 2.905*** 12.012*** 2.216** -6.546*** -10.605***

data600S -2.328** -0.723 -2.082** 5.634*** 4.261*** 13.128*** 1.879* -8.747*** -12.971***

data360S -1.424 0.439 2.082** 5.568*** 8.187*** 11.557*** 2.778*** -8.652*** -14.155***

data300S -6.433*** -6.492*** -5.634*** -5.568*** -3.588*** 5.726*** -5.344*** -10.176*** -12.188***

data180S -3.423*** -2.905*** -4.261*** -8.187*** 3.588*** 11.065*** -0.572 -10.873*** -14.575***

data120S -8.459*** -12.012*** -13.128*** -11.557*** -5.726*** -11.065*** -11.173*** -13.192*** -14.595***

data60S -3.328*** -2.216** -1.879* -2.778*** 5.344*** 0.572 11.1732 -11.151*** -12.482***

data30S -3.771*** 6.546*** 8.747*** 8.652*** 10.176*** 10.873*** 13.192*** 11.151*** -11.396***

data20S 8.051*** 10.605*** 12.971 14.155*** 12.188*** 14.575*** 14.595*** 12.482*** 11.396***

Note: the confidence level is indicated by * for 90% level, ** for 95% level and *** for 99% level. The models on the left side are used as

model 1 and on the top as model 2 when conduction the DM test from section 4.2.1.
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