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Abstract

In this study, we investigate the primary drivers of cryptocurrency returns by
analyzing both the cross-sectional and market returns. Our findings demon-
strate that network and sentiment characteristics significantly influence mar-
ket returns, while production factors play a minimal role. We also discover
that a three-factor model, which includes the cryptocurrency market, size,
and momentum factors, can effectively account for nearly all cross-sectional
cryptocurrency returns. To achieve this, we employ a comprehensive list of
market-related return predictors, complemented by projections of network,
production, and sentiment characteristics. We find that using the projec-
tions of the characteristics to form long-short portfolios, did not result in
significant excess returns, except for exposure to the Chinese energy market.
Our results indicate that, with the exception of three return predictors, these
factors capture the excess returns. Lastly, we offer an explanation for these
observed effects.

1The views stated in this thesis are those of the author and not necessarily those of the supervisor, second
assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

Since the advent of the Bitcoin, cryptocurrencies have garnered significant attention from in-

vestors, regulators, and the general public. Some view cryptocurrencies as a way to invest in

a new technology that will revolutionize the financial system, while others see them as a spec-

ulative bubble that will eventually burst. If the former is true, then cryptocurrencies are here

to stay, and investors and regulators should understand the factors that drive their returns and

the risks associated with them.

Current research has focused on the drivers of cryptocurrency market returns and the risk

factors that explain the cross-section of cryptocurrency returns. Among the factors that have

been studied are network factors, such as network size and degree of centralization, and pro-

duction factors, such as mining costs. Additionally, investor sentiment has been shown to have

a significant impact on cryptocurrency returns. Furthermore, the relationship between crypto-

currencies and traditional currencies, tail-risk, price inequalities, arbitrage opportunities, and

potential price manipulation in the market have also been studied extensively.

This paper focuses on two primary objectives: replicating the findings of previous research

and broadening the scope of those studies. Our primary research objective is to explain the key

drivers of cross-sectional variations in cryptocurrency returns.

We investigate the factors driving cryptocurrency market returns and build upon Liu and

Tsyvinski (2021) by examining the influence of network and production cryptocurrency char-

acteristics. We use a more extensive dataset that includes the post-COVID-19 cryptocurrency

boom to capture a broader view of market trends and dynamics.

We hypothesize that production factors, such as mining costs, will not significantly impact

returns due to the maturing market, regulatory actions, rising interest rates, and the shift from

Proof-of-Work to Proof-of-Stake algorithms. On the other hand, we expect network factors,

which serve as proxies for adoption and utility, to have a significant impact on cryptocurrency

returns.

Additionally, we explore the impact of investor sentiment on cryptocurrency market returns

by employing deep-learning natural language processing techniques. We use the XLM-T model,

published in Barbieri et al. (2021), to analyse an extended list of investor-centric message boards

and assess the influence of investor sentiment on returns. We expect that investor sentiment,

especially as seen through social media influence, will have a pronounced effect on cryptocurrency

returns, as demonstrated by recent market events such as the GameStop saga and Elon Musk’s

Dogecoin endorsements.

Moreover, we replicate the work of Liu et al. (2022) by analysing excess returns of quintile

portfolios and examining whether size and momentum factors can capture the cross-section of

cryptocurrency returns. We hypothesize that our extended dataset, reflecting a more mature

cryptocurrency market, will show risk premia converging more closely to those observed in equity

markets, implying that the behavior of the cryptocurrency market will become increasingly

similar to traditional financial markets.

We further project the characteristics of the cryptocurrency market onto individual returns

to analyse the resulting return predictors. Our hypotheses include more established crypto-

currencies benefiting more from network characteristics, Proof-of-Work cryptocurrencies being
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sensitive to production characteristics, and “meme” cryptos being influenced by sentiment char-

acteristics.

Our study makes several significant contributions to the existing literature. First, we broaden

the scope of previous research by incorporating a much larger dataset that covers the recent

post-COVID-19 cryptocurrency boom. Second, we assess the impact of investor sentiment on

cryptocurrency market returns by employing a more sophisticated method for deriving senti-

ment from social media messages. Lastly, we extend our analysis by applying characteristic

projections onto individual cryptocurrency returns and examining the resulting returns of the

quintile portfolios and their respective factor loadings. This approach allows us to gain a deeper

understanding of the relationships between specific cryptocurrency characteristics, their factor

loadings, and their subsequent market performance. Overall, our study not only enriches the

existing body of research but also provides valuable insights for investors and regulators in the

ever-evolving cryptocurrency landscape. The code for this paper is available on GitHub.

This paper is structured as follows. Section 2 describes the data used in this paper. Section 3

presents the methodology used in this paper and describes the various data transformations and

return predictors. Section 4 presents the results of our analysis and discusses the implications

of our findings. Lastly, section 5 concludes.

1.1 Literature Review

Bitcoin, the first decentralized cryptocurrency, was introduced in 2008 when an anonymous

individual or group of individuals under the pseudonym Satoshi Nakamoto published the Bit-

coin whitepaper (Nakamoto, 2008). This innovative digital currency introduced the concept of

a decentralized ledger that does not rely on a central authority or intermediary for reaching

consensus, called a blockchain.

Blockchains consist of blocks of data that are linked together in a chain, starting from the

genesis block. Each block contains three elements: the data, the hash of the block, and the hash

of the previous block. The data can be any information, such as a transaction or a computational

result, that is to be stored in the blockchain. The hash of the block is computed based on the

data contained in the block and the hash of the previous block, forming a chain, hence the name

blockchain. This mechanism ensures that the data contained in the blockchain is immutable and

any tempering with the data is easily detected by validating the hash of the block. To ensure

the integrity of the blockchain, the hash of the block must be computed in a way that is difficult

to replicate or penalizes any bad actors from attempting to alter the data, but at the same time

is easy to verify.

Bitcoin used this decentralized ledger to record transactions and verify their validity. After

the Bitcoin gained popularity and widespread acceptance, other cryptocurrencies, such as Lite-

coin, Ripple, and Ethereum, were introduced, each with their own unique capabilities or differ-

entiator, all centered around the same blockchain technology.

Ethereum, created by Buterin, provided an open source environment for building smart

contracts and decentralized apps. It effectively serves as a Blockchain-as-a-service, enabling

individuals to develop applications on top of the network by utilizing the Ethereum Virtual

Machine (EVM), benefiting from its transparency and availability. Ether (ETH), the cryptocur-
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rency embedded in Ethereum network, more commonly referred to as ‘gas’ in the community, is

used when undertaking any transactions or computational services on the platform. It also en-

abled the creation of custom tokens, allowing new projects to raise capital outside government

control and without the need for lengthy and costly legal scrutiny, via Initial Coin Offerings

(ICOs). The Ethereum network has revolutionized the way blockchain applications have been

developed.

In contrast to Ethereum and its focus on decentralized apps, Ripple prioritizes payment sys-

tems that provide real time settlement, foreign currency exchange and remittance services via its

open source protocol that supports varying forms of value such as cryptocurrency commodities

or fiat currency. In essence, Ripple seeks to offer secure financial transactions in near instant time

and without chargebacks or other fraudulent activity, irrespective of transaction size. Ripple,

powered by its native digital ledger XRP, ensures swift transaction processing through its val-

idated consensus facilitated by a network of peer-to-peer servers (Chase & MacBrough, 2018,

XRP Ledger). This approach is faster than comparable solutions offered by Bitcoin and Eth-

ereum. Practical usage for cross-border payments or liquidity management services has been

established thanks to Ripple’s partnerships with major financial institutions. Blockchain tech-

nology extends its reach well beyond cryptocurrency usage alone into varied applications like

supply chain management or even land registries, among others. It has significant implications

for finance and online security/trust, potentially revolutionizing these fields entirely.

To ensure network safety while validating transactions, cryptocurrencies use distinct meth-

ods for reaching consensus such as Proof of Work (PoW) and Proof of Stake (PoS). The former

requires miners to compute a nonce that satisfies a specific condition, generally a hash with a

certain number of leading zeros, before adding the block to the blockchain. Meanwhile, PoS func-

tions by selecting validators based on their holdings or stake of cryptocurrency, and penalizing

bad actors by confiscating their stake. The energy consumption patterns between these meth-

ods are vastly different. PoW requires more energy due to miners leveraging powerful computer

hardware to solve said complex math problems. Sedlmeir et al. (2020) estimates suggest that

the top five cryptocurrencies by market cap consume 100 TWh annually through this method.

However, newer cryptocurrencies have been embracing PoS for its lower computational power

requirements resulting in less wastage of energy; an environmentally friendly approach that is

also future-proof, as noted by Nguyen et al. (2019).

Furthermore, exchanges have cropped up globally where individuals can buy and sell vari-

ous digital currencies since the creation of cryptocurrencies. Cryptocurrency exchanges have

facilitated trading between digital assets and traditional currencies such as the US dollar or

Euro. This feature has allowed individuals to invest in and speculate using cryptos similarly

to fiat money. Additionally, select exchanges now offer crypto shorting and derivatives such as

options (Hou et al., 2020).

Despite their popularity, cryptocurrency values remain extremely erratic with prices fluctu-

ating significantly within brief periods of time. This unpredictability has led experts to question

their potential as either a groundbreaking form of currency or simply another speculative bubble.

Nevertheless, the cryptocurrency market continues its expansion with new digital currencies and

innovative blockchain applications regularly emerging.
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It is important to also note that while commonly referred to as “currency”, these digital assets

do not fit into typical currency definitions. A currency, as per economic literature (Bernstein,

2008), is defined as a medium of exchange that is widely accepted for the purchase of goods and

services. It should serve as a unit of account, facilitating the comparison of the value of various

goods and services. Finally, currencies act as a store of value, enabling individuals to save and use

them in the future for the procurement of goods and services. For a currency to reach successful

adoption worldwide, a couple conditions have to be met. It must be broadly available while

maintaining stability without significant fluctuations in values. Often, this is achieved through

the intervention of governments and central authorities regulating the currency’s movement

through oversight mechanisms preventing frauds or manipulations, ensuring credibility.

However, cryptocurrencies operate differently since they lack centralized governing bodies

entirely relying on a decentralized approach, resulting in significant instability of their values,

making them unpredictable and risking their reliability at being widely adopted. The lack of

widespread acceptance and inconsistent regulatory status across different countries do not de-

ter many from embracing cryptocurrencies as a potentially profitable investment choice akin to

stocks and bonds. However, investing in cryptocurrencies carries significant inherent uncertain-

ties due to a lack of proper regulations that puts investors at high risk despite the potential for

high returns.

Experts and researchers employ ‘risk factor analysis’ to identify the underlying determin-

ants influencing an investment its profitability against associated risks. Developed during the

early twentieth century, The Capital Asset Pricing Model (CAPM) introduced the “market risk

premium” as a mechanism providing an understanding for variations in returns among various

stock investments (Lintner, 1975; Mossin, 1966; Sharpe, 1964; Treynor, 1961). After the intro-

ducing of the CAPM model, researchers uncovered multiple different factors to reveal variations

in returns. Added factors such as size, value and momentum also had a significant influence on

stock returns, producing an extensive explanation of cross-sectional variation (Carhart, 1997;

Fama & French, 1993).

Furthermore, studies expanded the research beyond stocks to encompass bonds and curren-

cies by examining the key underlying drivers that determine risk and return. For instance, credit

risk and the term structure were recognized as essential for bonds while interest rates and carry

trade played crucial roles in currency markets (Fama & French, 1993). Today’s increased use of

risk factor analysis has found its way into mainstream finance, especially portfolio management.

More recently, other asset classes such as real estate and commodities have undergone aca-

demic scrutiny in the context of the risk factor analysis. Also, with the constant increases in

computational power and data processing abilities, in conjunction with more efficient and ef-

fective machine learning algorithms, new techniques such as natural language processing and

computer vision have been used to extract risk factors from unstructured data. In the recent

literature, these techniques have also been applied to the ever-growing market of cryptocurren-

cies.

One of the key challenges in conducting risk factor analysis on cryptocurrencies is the lack

of historical data, the relative size compared to other equity classes and the illiquidity. This

makes comparison of results with already existing literature more difficult, since findings most
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often do not apply to these markets. The ability to gather data for these assets is also severely

hindered by the fragmented landscape of exchanges. Despite these shortcomings, several studies

have attempted to identify the risk factors that drive the returns of cryptocurrencies by using

various econometric methods such as principal component analysis, multivariate regression, and

factor analysis.

Several risk factors have been identified as being associated with cryptocurrency returns, in-

cluding investor sentiment, investor attention, the regulatory environment, and trading volume.

Chen et al. (2019) constructed a sentiment index by analysing the frequency of positive and

negative words within StockTwits and Reddit posts to construct an overall sentiment score.

They employed a bag-of-words algorithm, which categorizes words into positive and negative

sentiment categories, to identify the relevant terms. Their findings revealed that the sentiment

index positively correlated with cryptocurrency returns, but only when an accurate lexicon and

an investment-focused message board were utilized.

Investor attention has also been linked to cryptocurrency returns. This factor can be meas-

ured by tracking the increase in Google searches for cryptocurrency related terms like “Bitcoin”.

Studies have shown that increased investor attention, as indicated by a surge in relevant search

queries, is positively associated with the returns of cryptocurrencies. Moreover, the actions of

governments and central banks play a significant role in shaping cryptocurrency returns. Regu-

latory decisions and policy shifts can dramatically impact the performance of digital currencies

in the market.

Another important risk factor associated with the returns of cryptocurrencies is trading

volume. Cryptocurrencies are highly speculative assets and are subject to significant price

volatility, making them unpopular as a general asset class and thus vulnerable to manipulation

by large traders. Studies have found that the returns of cryptocurrencies are positively correlated

with trading volume, or rather negatively correlated with illiquidity, which suggests that this

can form an important risk factor to consider when analysing the returns of cryptocurrencies.

Production factors, such as the average price of electricity and total energy consumption, have

also been analysed for their contributions to the returns of cryptocurrencies (Cong, He & Li,

2021; Sockin & Xiong, 2020) due to the fact that many of the high market-cap cryptocurrencies,

including Bitcoin, still use a PoW algorithm.

The influence of network factors on the risk of cryptocurrency returns has also been widely

studied in recent years (Biais et al., 2018; Cong, Li et al., 2021; Pagnotta & Buraschi, 2018). One

of the key network factors is the size of the network, measured by the number of nodes or parti-

cipants in the network. A larger network size is generally associated with lower risk and higher

liquidity, as more participants lead to greater market efficiency and reduced volatility. Another

important network factor is the degree of centralization, which refers to the concentration of

computational power in the hands of only a few individuals or institutions. A highly centralized

network is associated with higher risk, as it is more vulnerable to manipulation and systemic

failures. One such attack is called the fifty-plus-one attack where 51% of the hash-rate is in the

hands of a group of individuals, giving them complete control over the blockchain. In addition,

the network’s level of decentralization can also impact the risk of cryptocurrency returns, with a

more decentralized network being less susceptible to the influence of a few dominant participants
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and offering greater security and stability.

Studies have extensively explored the relationship between cryptocurrencies and other tra-

ditional currencies, including the correlation between their prices and their market dynam-

ics (Athey et al., 2016; Jermann, 2021; Schilling & Uhlig, 2019). There has also been a signific-

ant focus on the tail-risk in the cryptocurrency markets, examining the likelihood of large and

rare price movements (Borri, 2019). In recent years, researchers have looked into the presence of

price inequalities and the resulting arbitrage opportunities in the cryptocurrency market (Borri

& Shakhnov, 2022; Makarov & Schoar, 2020). The widespread use of Tether cryptocurren-

cies has sparked concerns about the potential for price manipulation within the cryptocurrency

space (Griffin & Shams, 2020). Additionally, there have been studies on the relationship between

Bitcoin and other cryptocurrencies, focusing on the interdependence and similarities between

these digital assets (Hu et al., 2019).

2 Data

2.1 Risk-free Rate and Stock Market Returns

The risk-free rate and stock market returns are obtained from the Kenneth R. French Data

Library, a repository of various factors such as SMB (Small Minus Big) and HML (High Minus

Low) for different markets. The data library is maintained by Professor Kenneth R. French of

the Tuck School of Business at Dartmouth College, who is a leading expert in finance and has

co-authored numerous influential studies with Nobel laureate Eugene F. Fama. For the purposes

of this paper, we only use data on the risk-free rate and excess stock market returns.

The dataset covers a time period from July 1, 1926, to January 31, 2023, and comprises

25,418 data points representing daily interest rates and excess stock market returns.

2.2 Cryptocurrency Market Data

The market data for cryptocurrencies is obtained from Coinmarketcap.com, a reputable source

of cryptocurrency pricing and trading volume information commonly used by researchers. The

website collates data from over 200 significant cryptocurrency exchanges, compiling information

regarding daily opening and closing prices, highs, lows, volume, and market capitalization for

over 18,000 distinct cryptocurrencies. The website includes both dedicated cryptocurrencies

utilizing their own blockchain and tokens based on, for example, the Ethereum blockchain.

Both active and inactive cryptocurrencies are listed on Coinmarketcap.com, alleviating concerns

about survivorship bias. To be eligible for inclusion within the dataset, a cryptocurrency must

sustain a minimum market capitalization of $1 million for a period of one week. Additionally,

the cryptocurrency must adhere to Sections B1, B2, and C of the CoinMarketCap.com Listings

Criteria.

Section B1 outlines the technical prerequisites a cryptocurrency must comply with, covering

aspects such as consensus algorithm implementation and the presence of a functional block

explorer. Section B2 specifies the exchange requirements necessary for a cryptocurrency to be

listed on CoinMarketCap.com, including the requirement for traders to execute both purchase

and sale orders, as well as the condition that the exchange must have been operational for a
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minimum of 60 days. Lastly, Section C elaborates on the subjective assessment policy, stating

that specific attributes must be present for a cryptocurrency to be deemed “listed”. These

criteria encompass factors such as community engagement, institutional partnerships, and the

expertise and proficiency of the project’s personnel.

The dataset covers a time period from April 28, 2013, to February 16, 2023, and comprises

3,573 data points representing daily cryptocurrency closing prices, market cap, and volume.

2.3 Blockchain Data

The blockchain data is obtained from Blockchain.info, a reputable source of blockchain-related

information such as hash-rate, block-size and transaction data for various cryptocurrencies. The

website collates data directly from the blockchains of several coins. The website includes data on

the blockchain of Bitcoin, Ethereum, Litecoin, Ripple and various other cryptocurrencies. We

use data on the number of active addresses, transaction count, payment count, and hash-rate

from the Bitcoin blockchain for this research.

Active addresses represent the quantity of distinct addresses created and actively engaged

in Bitcoin transactions. The transaction count refers to the number of daily transactions oc-

curring on the blockchain. It is important to note that a single transaction can encompass

multiple payments. As the reward for mining a transaction—essentially confirming a trans-

action and recording it onto the blockchain—is equivalent to the transaction fee, exchanges

employ a method known as payment batching to minimize these costs. In practice, the number

of payments more accurately reflects the cryptocurrency’s activity. The hash rate denotes the

computational capacity available to the cryptocurrency. This metric is anticipated to increase

somewhat exponentially, as the power of GPUs and CPUs consistently rises in tandem with user

count growth.

The dataset covers a time period from April 28, 2013, to February 16, 2023, and comprises

3573 data points representing daily cryptocurrency network data.

2.4 Energy Market Data

The energy market data is collected from several sources. The average price of electricity in the

United States, the net generation of electricity of all sectors in the United States, and the total

electricity consumption of all sectors in the United States is obtained from the U.S. Energy

Information Administration. This dataset encompasses a time period from January 2001 to

November 2022 and comprises 263 data points representing monthly U.S. electricity data.

Owing to limitations in data availability, we utilize a proxy for the mean price of electricity

in China, specifically the residential price index. The National Bureau of Statistics of China

emphasizes the cost of electricity and other utilities within this index, rendering it a suitable

proxy for this measurement. The residential price index for China is obtained from the National

Bureau of Statistics of China.

The price-index is formulated as a growth measure relative to the previous month, where the

previous month is set constant at 100. To create a cumulative monthly price index, we apply
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the following transformation

PCN
t =

t∏
s=0

PICN
s

100
, (1)

where PCN
t is the cumulative monthly price index value at time t and PICN

s is the price index

value relative to the previous month (kept constant at 100) at time s.

The dataset spans from January 2003 to October 2022 and consists of 238 data points, which

represent monthly electricity data for China.

2.5 Reddit Data

The Reddit post data is collected from Pushshift (Baumgartner et al., 2020). Pushshift is a data

service platform that provides access to social media data, particularly focusing on Reddit data

since 2015. Initially introduced by Jason Baumgartner, Pushshift later joined forces with the

National Contagion Research Institute (NCRI). The data includes titles, text, links, subreddits,

scores, the number of comments, and various other information related to Reddit posts accessible

via the Reddit API.

For this research, we downloaded all the posts from the following subreddits: r/CryptoCurrency,

r/Bitcoin, r/Altcoin, r/CryptoMarkets, r/CryptoTechnology, r/CryptoMoonShots, r/Ethereum,

r/Ripple, r/WallStreetBetsCrypto, r/ethtrader, r/NFT, r/bitcoinbeginners, r/CryptoCurrencies,

r/CryptoCurrencyTrading, r/Crypto General, r/Binance, r/CoinBase, and r/dogecoin. The

dataset covers a time period from January 1, 2013, to March 1, 2023, and consists of 6,912,239

data points representing individual Reddit posts.

3 Methodology

The methodology for this paper is divided into four sub-sections. Section 3.1 presents the meth-

ods used to compute the various factors employed throughout this paper. Section 3.2 outlines

the various cryptocurrency-specific characteristics we test for their effect on cryptocurrency re-

turns. Section 3.3 describes the range of return predictors we use for analysing the cross-section

of cryptocurrency returns. Section 3.4 details the different factor models we estimate for the

various return predictors.

3.1 Factors

Throughout this paper we use the following factors for our analysis: the market factor (MKT),

the size factor (SMB), and the momentum factor (MOM). All subsequent factor models are

based on these three factors.

We define the excess return of cryptocurrency s at time t as:

rs,t = Rs,t −Rf,t, (2)

where Rs,t is the return of cryptocurrency s at time t, and Rf,t is the risk-free rate at time t.

The market factor, originating from the CAPM (Capital Asset Pricing Model) published

in Lintner (1975), Mossin (1966), Sharpe (1964) and Treynor (1961), represents the market
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risk premium or the market return. The market risk premium is the additional return that

investors expect to receive for holding risky assets over risk-free assets. In essence, the market

factor captures the influence of overall market movements on the returns of individual assets or

portfolios. Let t1, t2, . . . , tk represent the end of week indices (e.g., Sundays), then for each day

t, we define:

MKTt =
n∑

s=1

ws,t′rs,t, (3)

where t′ is the most recent end of week index preceding t, i.e., t′ = max{ti | ti < t}, n denotes

the total number of cryptocurrencies in the market, ws,t′ is the weight of cryptocurrency s in

the market portfolio at the end of the previous week, calculated as:

ws,t′ =
MCs,t′∑n
j=1MCj,t′

, (4)

where MCs,t′ is the market cap of cryptocurrency s at the end of the previous week, and rs,t is

the excess return of cryptocurrency s at time t.

The size factor, first introduced by Fama and French in their three-factor model (Fama &

French, 1993), captures the return difference between small-cap stocks (companies with lower

market capitalization) and large-cap stocks (companies with higher market capitalization). The

size factor is intended to explain the observed anomaly that small-cap stocks have historic-

ally outperformed large-cap stocks on average, even after accounting for their increased risk as

measured by the market factor in the CAPM model. For each day t, we define:

SMBt =
∑
s∈St′

ws,t′rs,t −
∑
s∈Bt′

ws,t′rs,t, (5)

where, t′ is the most recent end of week index preceding t, i.e., t′ = max{ti | ti < t}, St′

contains the lowest 30% of cryptocurrencies in terms of market cap at the end of the previous

week, Bt′ contains the highest 70% of cryptocurrencies in terms of market cap at the end of the

previous week, ws,t′ is the weight of cryptocurrency s in the respective small-cap or large-cap

value-weighted portfolio at the end of the previous week, calculated as:

ws,t′ =
MCs,t′∑

j∈Gt′
MCj,t′

, (6)

where MCs,t′ is the market cap of cryptocurrency s at the end of the previous week, Gt′ rep-

resents the specific group, either St′ or Bt′ , to which cryptocurrency s belongs at the end of the

previous week, and rs,t is the excess return of cryptocurrency s at time t.

The momentum factor, first introduced by Carhart in (Carhart, 1997), captures the return

difference between past winners (assets with high past returns) and past losers (assets with low

past returns). The momentum factor is intended to explain the observed anomaly that assets

with strong past performance continue to outperform those with weak past performance in the

short term, which is not explained by either the market or size factors. For each day t, we define:

MOMt =
∑
s∈Wt′

ws,t′rs,t −
∑
s∈Lt′

ws,t′rs,t, (7)
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where t′ is the most recent end of week index preceding t, i.e., t′ = max{ti | ti < t}, Wt′

contains the top 70% of cryptocurrencies in terms of 3-week aggregate returns at the end of

the previous week, Lt′ contains the lowest 30% of cryptocurrencies in terms of 3-week aggregate

returns at the end of the previous week, ws,t′ is the weight of cryptocurrency s in the respective

high-momentum or low-momentum value-weighted portfolio at the end of the previous week,

calculated as:

ws,t′ =
MCs,t′∑

j∈Ht′
MCj,t′

, (8)

where MCs,t′ is the market cap of cryptocurrency s at the end of the previous week, Ht′ repres-

ents the specific group, either Wt′ or Lt′ , to which cryptocurrency s belongs at the end of the

previous week, and rs,t is the excess return of cryptocurrency s at time t.

3.2 Cryptocurrency Characteristics

In the following sections, we define sets of network, production, and sentiment characteristics.

Additionally, we also define the first two principal components of the network, production, and

sentiment characteristics as additional characteristics.

During our analysis, we explore the relationships between these characteristics. We employ

the Pearson-correlation matrix to examine the dependencies amongst the various variables. This

technique also assists in comprehending the structure of the principal component and identifying

which variables contribute the most variance.

To assess the explanatory power of these cryptocurrency-specific characteristics on coin mar-

ket returns, we use standard linear regression. We regress the coin market returns on the char-

acteristics.

MKTt = βiCi,t + εi, (9)

where Ci,t denotes the value of characteristic i at time t. We report the regression coefficient β

(including the significance level), the t-statistic, and the model’s explanatory power, represented

by the R2 value.

Regarding the analysis of network characteristics, it is of academic interest to examine the

impact of market returns on network factors. To investigate this, we perform the reverse re-

gression, regressing the cumulative growth rates for the network characteristics on the lagged

market returns and a constant.

C
(h)
i,t = βconst + βMKTMKTt−h + εi (10)

where C
(h)
i,t signifies the cumulative growth rate of characteristic i at time t and horizon h, both

expressed in weeks. We conduct this regression with 1 ≤ h ≤ 8.

In the analysis of sentiment characteristics, we test whether lagged values of the character-

istics influence the cumulative market returns. For this investigation, we execute the following

regression:

MKT
(h)
t = βiCi,t−h + εi, (11)

where h is the horizon, expressed in weeks. We conduct this regression also with 1 ≤ h ≤ 8.

12



3.2.1 Network Characteristics

The theoretical literature on cryptocurrency emphasizes the role of several network character-

istics in determining the valuation of cryptocurrencies (Biais et al., 2018; Cong & He, 2019;

Pagnotta & Buraschi, 2018; Sockin & Xiong, 2020). A critical aspect of this relationship is the

network effect, which emerges from the adoption of cryptocurrencies by users. This network

effect could potentially assume a central role in influencing the valuation of these digital assets.

As users adopt cryptocurrencies, they generate positive network externalities, subsequently

affecting asset prices. Hence, the extent of user adoption has a direct impact on the price dy-

namics of cryptocurrencies. It can be inferred that fluctuations in user adoption rates within the

cryptocurrency network might contribute to the observed variations in cryptocurrency prices.

This is particularly relevant for cryptocurrencies with built-in anti-inflation mechanisms, which

limit the number of outstanding coins, leading to increased demand and subsequent price in-

creases.

Another potential network effect that could significantly influence cryptocurrency prices is

the mining reward. This reward constitutes the compensation miners receive for verifying trans-

actions on the blockchain. Since the mining reward differs for each cryptocurrency and is subject

to varying magnitudes, the hash rate serves as a useful proxy for this effect. The hash rate rep-

resents the computational power available to miners. An increase in the hash rate results in

increased difficulty, leading to a lower pay-out for mining cryptocurrency transaction blocks.

This diminished pay-out may prompt miners to shift their focus to mining alternative crypto-

currencies where the pay-out might be more substantial, both in terms of the cryptocurrency

itself and its associated price.

In terms of network characteristics, we consider:

• the percentage growth in active addresses,

• the percentage growth in daily transactions,

• the percentage growth in daily payments, and

• the percentage growth in hash rate.

Furthermore, we employ the first two principal components derived from these four character-

istics to analyse the impact of these network characteristics-derived features on cryptocurrency

prices.

3.2.2 Production Characteristics

Numerous studies have posited that mining costs are crucial for the infrastructure and security

of cryptocurrencies (Abadi & Brunnermeier, 2018; Cong, He & Li, 2021; Sockin & Xiong, 2020).

In particular, Sockin and Xiong (2020) demonstrate that within a general equilibrium model

featuring cryptocurrency production, the prices of cryptocurrencies are closely related to the

marginal cost of mining. The marginal cost of mining primarily comprises two components: the

price of electricity and the price of computational power.

The price of electricity is readily available for various countries. In this paper, we construct a

proxy for the price of electricity by utilizing both the production and consumption of electricity,
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as well as the price of electricity. Given that the majority of mining operations are geographically

situated in China and the United States, we utilize the statistics from these countries for our

analysis, in accordance with Liu and Tsyvinski (2021).

Finding a suitable proxy for the cost of computational power proves to be rather more chal-

lenging. Owing to the rapid development of the cryptocurrency mining industry, characterized

by frequent releases of faster and more energy-efficient compute units from companies such as

NVIDIA, AMD, and Intel, devising a proxy for this production effect is no easy task. Papers

such as Liu and Tsyvinski (2021) employ the price of Antminer equipment as a proxy for the

price of computational power. In our opinion, this does not represent a fair quantification for the

cost of computational power, as this equipment varies greatly in capability between generations

and is largely no longer in use by large mining operations.

Analysing the different prices across vendors and markets for mining equipment, weighted

by their hash-rate, proved to be too time-consuming and beyond the scope of this paper. This

relationship is better investigated by considering only the hash-rate, as discussed in the previous

section.

With respect to production characteristics, we include the following variables:

• the percentage change in the monthly price of electricity in the United States,

• the percentage change in total monthly electricity generation within the United States,

• the percentage change in total monthly energy consumption in the United States,

• the percentage change in the cumulative monthly residential price index value for China,

and

• the percentage change in total monthly energy production in China.

As with the network characteristics, we employ the first two principal components derived from

these five production-related characteristics.

3.2.3 Sentiment Characteristics

In the case of cryptocurrencies, the absence of fundamental information, such as earnings, di-

vidends, and other types of cash flows, renders the price discovery process exceedingly complic-

ated. As argued by Cheah and Fry (2015), the fundamental value of Bitcoin is zero, render-

ing financial models based on well-defined fundamental values inapplicable to cryptocurrencies.

Theoretically speaking, when the market is driven by individual investors with elevated risk pref-

erences and in the presence of limits to arbitrage (e.g. a short-sale constraint), sentiment-driven

noise traders may significantly influence the price discovery process (De Long et al., 1990).

Specifically, Chen et al. (2019) demonstrate that employing a simple bag-of-words algorithm

coupled with a hand-picked lexicon to ascertain the sentiment of StockTwits or Reddit posts

enables the utilization of investor sentiment to predict future cryptocurrency returns. However,

this approach has several drawbacks, as it cannot capture the context of the text and is limited

to the English language. Moreover, it struggles to handle negations, sarcasm, and other forms

of figurative language.
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To enhance the accuracy of the analysed sentiment, we adopt a more sophisticated method

for determining sentiment. In this paper, we make use of the XLM-T model, as presented in

Barbieri et al. (2021), which is a natural language model specialized in multilingual sentiment

analysis of social media data. This model is derived from the XLM-R model (Conneau et al.,

2019), which itself is a variation within the BERT family of natural language models (Devlin

et al., 2018). The XLM-T model is designed for improved performance in sentiment analysis

tasks, particularly those involving social media data, through the incorporation of advanced pre-

processing techniques and optimizations. It is particularly adept at handling challenges posed

by social media posts, such as informal language, abbreviations, and code-switching.

The training of these models utilizes the masked language model (MLM) objective, which

is a variant of the “Cloze Procedure” introduced by Taylor (1953). The MLM objective aims

to predict masked tokens within a given input text. To achieve this, a corpus of text is first

divided into (sub-)words, or tokens, using a tokenizer. Subsequently, a certain percentage of

tokens, typically around 15%, are replaced with a special mask token. The model processes

the masked input sequence and attempts to predict the masked tokens based on the context

provided by the surrounding unmasked tokens. This results in a pre-trained model that can be

further specialized for specific tasks, such as sentiment analysis.

In this paper, we use the XLM-T model to perform sentiment analysis on the Reddit post

titles. We restrict ourselves to titles, and not post bodies, for two reasons. First, most Reddit

posts are not text posts, but instead contain a link to an article or image. Extending the current

dataset beyond just the Reddit posts to also include the content of possible backlinks proved to

be too time-consuming and beyond the scope of this paper. Since the dataset contains more than

6.9 million posts and running deep learning models requires tremendous computing resources,

this limitation was deemed adequate.

Secondly, running the sentiment analysis on only the posts that did have text bodies also

resulted in a significant computational burden. For the computation of the sentiment based on

just the title, additional computing resources already had to be acquired.

The classifier model produces the probabilities that a post is positive, neutral, and negative.

To construct a sentiment score for a post, ranging from 0 to 1, we apply the following formula:

Sk =
P(S = positive)− P(S = negative) + 1

2
(12)

where Sk is the sentiment measure for Reddit post k.

Based on the 6.9 million sentiment entries, we construct the following sentiment character-

istics:

• the percentage change in the amount of posts per day,

• the percentage change in the amount of positive posts per day,

• the percentage change in the amount of negative posts per day,

• the percentage change in the amount of neutral posts per day,

• the average sentiment measure per day,
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• the post score weighted average sentiment measure per day, and

• the standard deviation of the sentiment measure per day.

3.3 Return Predictors

In the subsequent sections, we describe a set of return predictors based on size, momentum,

volume, volatility, and projected cryptocurrency characteristics which are utilized to construct

quintile portfolios. These former four return predictors are derived from market information, as

presented by Chen and Zimmermann (2020) and Feng et al. (2020). The latter is constructed

based on projections of cryptocurrency market characteristics. There are two primary reasons

for this approach.

First, cryptocurrencies lack inherent value, making traditional financial models based on

fundamental values inapplicable. Consequently, our analysis is restricted to potential return

predictors within our sole cross-sectional dataset, specifically market data.

Second, these return predictors encompass all the hypothesized excess return drivers iden-

tified in current literature that have proven significant in other asset classes. This serves as a

suitable generalization for abnormal returns and effectively neutralizes potential outliers in the

data.

Each week, we sort individual cryptocurrencies into quintile portfolios based on the value

of a given return predictor. Subsequently, we construct the value-weighted portfolio returns for

these quintiles and analyse the significance of their mean using a single-sample Student-t test.

Following this, we perform factor model analysis, as explained in section 3.4, to examine the

portfolio returns and their factor-loadings.

3.3.1 Size-Related Predictors

Size-related return predictors aim to capture potential return anomalies associated with the size

of an asset, commonly represented by its market cap. Size factors are amongst the first risk

factors proposed in the literature, dating back to Fama and French (1993). They represent the

anomaly that small market cap assets tend to outperform large market assets. We define the

following size-related return predictors:

Banz (1981) define the logarithm of the market cap on the last day of trading before portfolio

formation as a possible return predictor:

MCAPs,t = log(MCs,t′), (13)

where MCs,t′ is the market cap of cryptocurrency s at the end of the previous week.

Another considered return predictor, proposed in Miller and Scholes (1982), is the price on

the last day of trading before portfolio formation:

PRCs,t = Ps,t′ , (14)

where Ps,t′ is the price of cryptocurrency s at the end of the previous week.
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Additionally, we consider the maximum price in the week before portfolio formation, pro-

posed by George and Hwang (2004):

MAXDPRCs,t = max(Ps,t′), (15)

where Ps,t′ = {Ps,t′−h | 0 ≤ h ≤ 6} and h is expressed in days.

Finally, we also consider the number of days the cryptocurrency is listed on Coinmarket-

cap.com, denoted by AGEs,t, as a return predictors, put forth by Barry and Brown (1984).

3.3.2 Momentum-Related Predictors

Momentum-related return predictors generally represent compounded returns over some horizon.

De Bondt and Thaler (1985) and Jegadeesh and Titman (1993) argue that buying past winners

and selling past losers generates abnormal returns.

For this research, we use the past one-, two-, three-, four-, one-to-four, eight-, 16-, 50-,

100-week returns, proposed by De Bondt and Thaler (1985) and Jegadeesh and Titman (1993):

r
(h,k)
s,t =

 7h∏
j=1+7k

(1 + rs,t−j)

− 1, (16)

for all (h, k) ∈ {(1, 0), (2, 0), (3, 0), (4, 0), (4, 1), (8, 0), (16, 0), (50, 0), (100, 0)}.

3.3.3 Volume Related Predictors

Volume-related return predictors aim to capture potential return anomalies associated with the

volume of an asset. These return predictors are based on the assumption that assets with higher

trading volumes are more liquid and thus less risky. Another aspect of volume-related return

predictors is the assumption that assets with higher trading volumes are more likely to be traded

by informed investors. Volume can also be a proxy for momentum, as assets with higher trading

volumes are actively traded and thus more likely to be subject to momentum trading. Finally,

volume can also gauge investor attention and sentiment, as assets with higher trading volumes

are more likely to be discussed in the media.

Volume is generally expressed as the number of shares traded per day. In the case for

cryptocurrencies, this is expressed as the number of coins traded per day.

We use the return predictors proposed by Chordia et al. (2001). These include the logarithm

of the average daily trading volume before portfolio formation, which can proxy for liquidity

and investor attention:

VOLs,t = log

1

7

6∑
j=0

Vs,t′−j

. (17)

where Vs,t′ is the trading volume of cryptocurrency s at the end of the previous week.

Additionally, we use the logarithm of the average daily trading volume times the price before
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portfolio formation, which can proxy for the interaction between liquidity and price movements:

PRCVOLs,t = log

1

7

6∑
j=0

(
Vs,t′−j · Ps,t′−j

). (18)

Finally, we use the logarithm of the average daily trading volume times the price scaled by

market capitalization before portfolio formation, which can help identify the interaction between

liquidity, price movements and size:

VOLSCALEDs,t = log

1

7

6∑
j=0

Vs,t′−j · Ps,t′−j

MCs,t′−j

. (19)

3.3.4 Volatility Related Predictors

Volatility-related return predictors aim to capture potential return anomalies associated with

the volatility of an asset. These return predictors are based on the assumption that assets with

higher volatility are more risky and thus have higher expected returns. They attempt to capture

the risk associated with the price fluctuations of an asset and the impact of this risk on expected

returns.

Volatility can be subdivided into four categories: historical volatility, implied volatility,

idiosyncratic volatility, and realized volatility. Historical volatility is the standard deviation

of the asset’s returns over a given period. Implied volatility is the volatility implied by the

market price of an option. It represents the market’s expectation of the asset’s future volatility.

Idiosyncratic volatility is the volatility of an asset’s returns that is not explained by the market.

Realized volatility is the volatility of an asset’s returns over a given period, with intraday price

movements taken into account. It captures the actual risk experienced by investors over a given

period.

Since only a very small subset of exchanges offer options on cryptocurrencies, implied volat-

ility is not a viable option for this research. Furthermore, since we are using daily data, realized

volatility is not a viable option either. Therefore, we only consider historical volatility and

idiosyncratic volatility.

Based on the work of Ang et al. (2006) and Fama and MacBeth (1973), we employ the follow-

ing model and its derived coefficients as return predictors. Firstly, we estimate the subsequent

model based on the previous 365 days before portfolio formation:

rs,t = α+ βMKTMKTt + εs,t. (20)

We then define the following volatility return predictors:

BETAs,t = βMKT (21)

BETA2s,t = (βMKT )
2 (22)

IDIOVOLs,t = Var(εs,t) (23)
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Furthermore, we define the following volatility return predictors, proposed by Ang et al.

(2006) and Bali et al. (2011), specifically the standard deviation and maximum of the daily

returns in the week before portfolio formation:

RETVOLs,t =
√
Var(Rs,t′) (24)

MAXRETs,t = max(Rs,t′) (25)

where Rs,t = {rs,t′−j | 0 ≤ j ≤ 6}.
Based on the work of Hou and Moskowitz (2005), we also consider the return predictors

derived from the following model:

rs,t = α+ βMKTMKTt + βMKT−1MKTt−1 + βMKT−2MKTt−2 + εs,t. (26)

This model is estimated based on the previous 365 days before portfolio formation as well.

We define DELAYs,t as the difference in R2 between eq. (20) and eq. (26).

Finally, we examine the return predictors proposed by Amihud (2002) and Chordia et al.

(2001). They define the logarithm of the standard deviation of the price multiplied by the

volume and the average absolute daily return divided by the price multiplied by the volume in

the week before portfolio formation as potential return predictors:

STDPRCVOLs,t = log

(√
Var(PVs,t′)

)
(27)

DAMIHUDs,t =
1

7

6∑
j=0

∣∣rs,t′−j

∣∣
Ps,t′−j · Vs,t′−j

(28)

where PVs,t′ = {Ps,t′−j · Vs,t′−j | 0 ≤ j ≤ 6}.

3.3.5 Projected Cryptocurrency Characteristics

We explore the use of projected cryptocurrency characteristics as return predictors, as they

represent essential aspects of cryptocurrencies.

We project the characteristics of cryptocurrencies onto their individual returns using the

following model:

rs,t = α+ βCiCi,t + εs,t. (29)

where Ci,t is the characteristic i of cryptocurrency s at time t. We then subsequently use these

projection betas (βCi) as potential return predictors.

For network characteristics, we aim to create proxies for network size (based on the number

of active addresses) and network activity (based on the number of transactions and payments).

Given that these characteristics are derived from Bitcoin, widely considered the most used

and accepted cryptocurrency, we assume that Bitcoin’s network size and activity serve as valid

representations of a large, active, and widely accepted cryptocurrency. These projections should,

therefore, favor subsequent large, active, and well-accepted cryptocurrencies.

19



Regarding production characteristics, we attempt to create a proxy for the distinction

between Proof-of-Work (PoW) and Proof-of-Stake (PoS) cryptocurrencies. PoW cryptocur-

rencies are heavily dependent on electricity prices, so they should exhibit a larger regression

coefficient compared to cryptocurrencies that do not consume significant amounts of electricity.

For the sentiment characteristics, we attempt to create a proxy for “meme” coins, a term

often used to describe cryptocurrencies that are exploited in pump-and-dump schemes. “Meme”

coins experience rapid price growth as they gain popularity and garner significant attention, often

driven by individuals with substantial social media influence.

These influencers typically accumulate a significant position in a relatively obscure crypto-

currency and subsequently promote it heavily on social media platforms, fueling the price surge.

They often predict a specific date when the price will soar and sell their holdings just before

that date, leaving the latecomers to bear the brunt of the price collapse. This tactic resembles

a modern-day Ponzi scheme.

To capture this phenomenon, we employ sentiment and post-count as the regressors, as these

metrics are closely associated with the underlying dynamics of such schemes. By analyzing

sentiment and post-count data, we aim to identify and better understand the impact of “meme”

coins on the cryptocurrency market.

3.4 Factor Models

Factor models play a crucial role in finance, as they help describe and predict asset return beha-

viors. These models break down an asset’s return into systematic and idiosyncratic components,

which help investors identify key drivers of asset returns. By understanding the sources of risk

and return in their portfolios, investors can make more informed investment decisions.

We employ the following factor models, utilizing the factors outlined in section 3.1:

(1) rp,t = α+ βMKTMKTt + εs,t (30)

(2) rp,t = α+ βMKTMKTt + βSMBSMBt + εs,t (31)

(3) rp,t = α+ βMKTMKTt + βMOMMOMt + εs,t (32)

(4) rp,t = α+ βMKTMKTt + βSMBSMBt + βMOMMOMt + εs,t (33)

where rp,t represents the return of portfolio p at time t, βj denotes the factor loading for factor

j, and εs,t signifies the idiosyncratic return of cryptocurrency s at time t.

The constant, α, can be interpreted as the portfolio’s unique return, which is not explained

by its exposure to the factors. A positive alpha indicates that the portfolio has generated returns

beyond what can be explained by the factors, while a negative alpha suggests that the portfolio’s

returns fall short of what can be explained by the factors. This discrepancy could indicate that

the factor model is missing a relevant factor that accounts for the portfolio’s returns and the

associated underlying risk.

The factor loadings, βj , represent the portfolio its sensitivity to factor j. A positive βj

implies that the portfolio returns increase as factor j rises, while a negative βj suggests that the

portfolio returns decrease when factor j increases. In essence, a higher beta for a specific factor

indicates that the asset’s returns are more sensitive to changes in that factor, thus exposing the
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portfolio to the risks associated with that factor.

We utilize the framework proposed by Beck et al. (2023), for constructing the standard errors

used for factor model inference. They argue that stock and factor returns exhibit time-varying

volatility. The same can be argued for cryptocurrency returns, as they are often characterized

by periods of high and low volatility. This time-varying volatility results in conditional hetero-

skedasticity of the error terms, which violates the OLS assumption of homoskedasticity. This

heteroskedasticity needs to be accounted for when conducting statistical tests in order to avoid

false inferences.

This phenomenon does not pose a problem for the estimation of the factor loadings, since the

OLS estimator is still consistent in the presence of heteroskedasticity. However, the estimator

is no longer efficient in the sense that it does not achieve the smallest asymptotic covariance

matrix.

The standard approach to address this issue is to use a heteroskedasticity-consistent covari-

ance matrix estimator (HCCME) which guarantees asymptotically valid inference under condi-

tional heteroskedasticity of an unknown form. Examples of these estimators are the HC0 estim-

ator, better known as the White estimator (White, 1980), the HC1-HC3 estimators (MacKinnon

& White, 1985), and the HC4 estimator (Cribari-Neto, 2004). For a thorough overview of the

different methods, we refer to MacKinnon (2013). For this research, as recommended by Romano

and Wolf (2017), we use the HC3 estimator.

Romano and Wolf (2017) propose an alternative to OLS, suggesting the use of weighted least

squares (WLS) or adaptive least squares (ALS) for estimating factor loadings. These methods

employ a skedastic function, which maps the factor into the conditional variance of the error

term:

υ(xt) = E
[
ε2t

∣∣ xt], (34)

where xt = (1,MKTt,SMBt,MOMt), or a subset depending on the specific model, as specified in

eqs. (30) to (33). In practice, this function is unknown, but it can be estimated using observed

data, resulting in υ̂(·).
The WLS method weights the data by the reciprocal of the estimated conditional stand-

ard deviation of the error terms,
√
υ̂(xt), before applying OLS. This results in the following

regression model:
rp,t√
υ̂(xt)

= β′ xt√
υ̂(xt)

+ ε∗t with ε∗t =
εt√
υ̂(xt)

. (35)

Allowing for the possibility that υ̂(·) might not be a consistent estimator of the true skedastic

function, it becomes necessary to apply heteroskedasticity-consistent standard errors during

model inference. This should be done in conjunction with WLS or ALS.

For this research, we use the following skedastic function:

υθ(xt) = exp(ν + γ2|x2,t|+ · · ·+ γK |xK,t|) with θ = (ν, γ2, · · · , γK)′. (36)

In order to estimate θ, we use a two-step procedure. First, we estimate the standard OLS model:

rp,t = β′xt + εt. (37)
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Subsequently, we estimate the following model:

log
[
max

(
δ2, 10q ε̂2t

)]
= 10qν + γ2|10qx2,t|+ · · ·+ γK |10qxK,t|+ ut, (38)

where we choose q ∈ [0, 1, 2, . . .] as the smallest non-negative integer such that fraction of

truncations on the left-hand side is at most 5% with the lower bound δ2 = 0.01.

Next, we test the joint significance of the heteroskedasticity coefficients as computed with

eq. (38). We test the null hypothesis H0 : γ2 = · · · = γK = 0. If this hypothesis is rejected at a

significance level of 0.1, then the ALS aligns with WLS; otherwise, it aligns with standard OLS.

In this research, we use the ALS method for estimating the factor loadings, as it is more robust

to potential heteroskedasticity in the error terms.

4 Results

The results of this paper are organized into four sub-sections. Section 4.1 provides descriptive

statistics for the market returns of cryptocurrencies, and Bitcoin, Ethereum, and Ripple (XRP).

Section 4.2 details the analysis of cryptocurrency-specific characteristics. Section 4.3 offers

insights into the cross-sectional examination of return predictors. Lastly, section 4.4 explores

possible mechanisms that could account for the observed return predictability.

4.1 Descriptive Statistics

In this section, we investigate the time-series properties of cryptocurrency market returns. The

cryptocurrency market returns are calculated using all cryptocurrencies meeting the inclusion

criteria specified in section 2.2. The cryptocurrency market returns are calculated using the

procedure outlined in section 3.1.

Figure 1: This figure plots the distribution of daily, weekly, and monthly cryptocurrency market returns
and log returns.
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Figure 1 displays the return distribution for the cryptocurrency market index, considering

both standard returns and log-returns. For comparative purposes, a normal distribution is

included in each figure. Both the weekly and monthly data sets reveal significant extreme values

in the tails of the distribution, with the majority of returns centered around zero.

Figure 2: This figure plots the cryptocurrency market returns, Bitcoin returns, Ethereum returns, and
Ripple returns. The figure shows the value of investment over time for one dollar investment at the
starting point of the graphs. The Bitcoin graph starts on the 5th of May 2013, the Ethereum graph on
the 14th of August 2015, and the Ripple graph on the 11th of August 2013
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Figure 2 compares the price trajectories of Bitcoin, Ethereum, Ripple (XRP), and the crypto-

currency market index side by side. A notable degree of co-movement can be observed among

these three major cryptocurrencies. Furthermore, the cryptocurrency market index has exhib-

ited impressive rates of return over the past nine years. At the peak of the cryptocurrency

“boom” in 2022, a one-dollar investment made in early 2013 in the cryptocurrency market index

could have potentially appreciated to $400, significantly surpassing traditional investments such

as those in the S&P500. However, this estimate does not consider potential transaction costs,

the risks associated with cyberattacks on cryptocurrency exchanges, or the availability of such

exchanges (liquidity). Even a modest one-dollar investment in individual cryptocurrencies like

Bitcoin, Ethereum, and Ripple could have generated considerable returns.

Table 1 displays descriptive statistics for the cryptocurrency market returns, specifically Bit-

coin, Ethereum, and Ripple (XRP), across daily, weekly, and monthly frequencies. A noteworthy

observation is the high mean and standard deviation values associated with these cryptocurren-

cies. For the daily frequency, the mean return is 0.23% and the standard deviation is 4.09%; for

the weekly frequency, these values are 1.62% and 11.37%; and for the monthly frequency, they

are 9.68% and 50.63%. The mean stock returns for daily, weekly, and monthly frequencies are

0.05%, 0.39%, and 1.74%, respectively. Cryptocurrency market returns are significantly higher

than stock returns, sometimes by nearly 500%.

The Sharpe ratios for cryptocurrency market returns are 0.06 at the daily frequency, 0.14 at

the weekly frequency, and 0.19 at the monthly frequency. In contrast, the Sharpe ratios for stock
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Table 1: This table documents the daily, weekly, and monthly summary statistics of the coin market
returns (MKT) and compares them with the returns for Bitcoin, Ethereum, Ripple (XRP) and the stock
market. The mean, standard deviation, t-statistic, Sharpe-ratio, Skewness, Kurtosis, and the percentage
of positive observations are reported.

Mean SD t-Stat Sharpe Skewness Kurtosis % > 0

Daily MKT 0.23% 4.09% 3.29 0.06 -0.03 10.66 54.88
Bitcoin 0.24% 4.11% 3.42 0.06 0.24 10.19 53.20
Ethereum 0.43% 5.87% 4.37 0.07 0.64 6.85 38.67
XRP 0.38% 7.68% 2.97 0.05 5.59 101.69 46.30
Stock 0.05% 1.04% 9.49 0.05 -0.09 15.56 55.62

Weekly MKT 1.62% 11.37% 3.22 0.14 0.57 3.05 55.58
Bitcoin 1.61% 11.26% 3.23 0.14 0.60 2.77 55.97
Ethereum 3.42% 18.38% 4.21 0.19 1.83 7.69 41.49
XRP 3.75% 36.10% 2.35 0.10 9.12 116.50 45.99
Stock 0.39% 3.57% 7.83 0.11 -0.08 6.12 60.05

Monthly MKT 9.68% 50.63% 2.08 0.19 7.08 64.47 53.39
Bitcoin 9.20% 47.46% 2.12 0.19 7.20 66.90 51.69
Ethereum 16.11% 48.89% 3.60 0.33 1.88 4.81 41.53
XRP 21.96% 108.87% 2.20 0.20 4.96 29.74 37.29
Stock 1.74% 7.81% 7.59 0.22 0.49 6.27 62.21

returns are 0.05 for the daily frequency, 0.11 for the weekly frequency, and 0.22 for the monthly

frequency. The cryptocurrency market Sharpe ratios exceed their respective stock return coun-

terparts at the daily and weekly frequency, but are surpassed at the monthly frequency.

We now compare the Sharpe ratios of Bitcoin, Ethereum, and Ripple (XRP) to the crypto-

currency market returns. It is important to note that the return series for Bitcoin commences on

the 5th of May 2013, Ethereum on the 14th of August 2015, and Ripple on the 11th of August

2013. For Bitcoin returns, the Sharpe ratios are 0.06 at the daily frequency, 0.14 at the weekly

frequency, and 0.19 at the monthly frequency. For Ethereum returns, the Sharpe ratios are 0.07

at the daily frequency, 0.19 at the weekly frequency, and 0.33 at the monthly frequency. For

Ripple returns, the Sharpe ratios are 0.05 at the daily frequency, 0.10 at the weekly frequency,

and 0.20 at the monthly frequency. Comparing mean returns, Ripple exhibits higher mean re-

turns across all frequencies than the cryptocurrency market index. However, its Sharpe ratio

is lower than that of the cryptocurrency market index across all frequencies, as its standard

deviation is substantially higher, except for the monthly frequency. The standard deviation of

Ripple is approximately 80% higher than that of the cryptocurrency market returns for the daily

and monthly frequencies, and 220% higher for the weekly frequency. The only cryptocurrency

that outperforms the cryptocurrency market index based on Sharpe ratio is Ethereum, at all

frequencies, and Ripple, at the monthly frequency.

We note that the returns of Bitcoin, Ethereum, and Ripple all exhibit positive skewness.

This is in contrast to stock market returns, with the former displaying negative skewness for

both the daily and weekly frequencies, and near zero skewness for the monthly frequency. The

cryptocurrency market returns exhibit positive skewness at the weekly and monthly frequencies,

but negative skewness at the daily frequency. The skewness of the coin market returns is -0.03,

0.57, and 7.08 for daily, weekly, and monthly frequencies, respectively. In contrast, the skewness

of stock returns is -0.09, -0.08, and 0.49 for daily, weekly, and monthly frequencies, respectively.
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Examination of the individual cryptocurrencies reveals that Ripple exhibits remarkably

elongated tails for positive returns in comparison to other cryptocurrencies at both daily and

weekly frequencies. This implies that the magnitude and frequency of positive returns for Ripple

significantly surpass that of what is typically observed within the cryptocurrency market.

The kurtosis of the coin market returns is 10.66, 3.05, and 64.47 for daily, weekly, and

monthly frequencies, respectively. These figures are of a similar order of magnitude to stock

returns for daily and weekly frequencies, where the kurtosis measures 15.56 and 6.12. The sole

striking deviation occurs at the monthly frequency, where the stock market returns only have a

kurtosis of 6.27, alluding to a substantial concentration around the mean of the distribution.

Table 2: This table documents the count and percentage of extreme events for the daily coin market
index returns.

Disasters Counts % Miracles Counts %

< -5 % 262 7.35% > 5 % 273 7.66%
< -10 % 69 1.93% > 10 % 57 1.60%
< -20 % 6 0.17% > 20 % 3 0.08%
< -30 % 1 0.03% > 30 % 2 0.06%

Drawing upon the skewness and kurtosis from table 1, the results from table 2 offer addi-

tional insights into the distribution of cryptocurrency market returns. With more remarkable

results at the 5% level, there are higher occurrences of adverse outcomes at the 10% and 20%

thresholds. However, the 30% threshold shows a higher number of exceptional results again.

With a significant concentration around the mean, a slight left skew, and elevated kurtosis,

cryptocurrency market returns are more prone to exhibit extreme values compared to stock

returns.

4.2 Characteristics Analysis

In this section, we examine the impact of cryptocurrency-specific characteristics on market

returns, focusing on network, production, and sentiment characteristics as detailed in section 3.2.

Our results demonstrate that specific network characteristics, such as the growth rates of

active addresses, transactions, and hash rate, have an impact on coin market returns. We

also note that cryptocurrency market returns have a negative influence on transaction growth

between the 4- to 8-week horizon. Moreover, we find that market returns positively affect hash

rate growth from the 5- to 8-week horizon. Interestingly, we find that coin market returns are

not affected by production factors. We also observe that coin market returns have a positive

exposure to the growth rate of the number of posts, negative posts, neutral posts, and, to

a smaller degree, positive posts. Lastly, we discover that the growth in social media posts,

including negative, neutral, and, to a lesser extent, positive, contribute positively to long-term

cryptocurrency market returns.

4.2.1 Network Characteristics

The correlation matrix for the network factors under investigation is presented in table 3. Each

of the four measures exhibits a positive correlation with the others, albeit a minute positive coef-
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Table 3: This table reports the correlations of the network characteristics. The data frequency is monthly.

∆address ∆transactions ∆payments ∆hash-rate PCnetwork
1 PCnetwork

2

∆address 1.00 0.48 0.11 0.32 0.18 0.08
∆transactions 1.00 0.21 0.40 0.24 0.10
∆payments 1.00 0.02 0.35 -0.11
∆hash-rate 1.00 0.19 0.19
PCnetwork

1 1.00 0.65
PCnetwork

2 1.00

ficient is observed between the increase in hash-rate and the increase in payments. Interestingly,

the growth in transactions and the growth in payments do not exhibit a perfect correlation.

To briefly summarize, transactions and payments possess a theoretical association, wherein

a single blockchain transaction consists of multiple payments. However, this batching process

is only feasible for exchanges or groups of individuals managing multiple wallets, as individual

users lack the capacity or coordination to combine payments. This finding is rather surprising,

considering that cryptocurrencies were initially conceived as a decentralized payment method.

The correlation thus indicates that the majority of transactions on the blockchain transpire via

centralized exchanges. This is not entirely unexpected since these exchanges in their turn offer

simplified management of wallets, a process that formed the biggest hurdle in initial adoption

of cryptocurrencies.

The first principal component exhibits correlations of 0.18, 0.24, 0.35, and 0.19 with the

growth rates in addresses, transactions, payments, and hash-rate, respectively. This component

appears to primarily emphasize the variation in the growth rates of payments and transactions,

while only partially encapsulating the variance in the growth rates of addresses and hash-rate.

Conversely, the second principal component demonstrates correlations of 0.08, 0.10, -0.11, and

0.19 with the aforementioned network attributes. This component seemingly captures the rela-

tionship between the growth in address size and the growth in hash-rate, whilst adjusting for

the growth in payments.

Table 4: This table reports the regression coefficients of the coin market returns on the network charac-
teristics. The standard t-statistic is reported in parentheses. *, **, and *** denote the significance levels
at the 10%, 5%, and 1% levels based on the standard t-statistic. The data frequency is monthly.

(1) (2) (3) (4) (5) (6)

∆address 0.93***
(4.62)

∆transactions 0.59**
(2.58)

∆payments 0.40
(1.04)

∆hash-rate 0.26**
(2.05)

PCnetwork
1 0.00

(0.01)
PCnetwork

2 -0.08
(-0.25)

R2 0.15 0.05 0.01 0.03 0.00 0.00
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We conduct a regression analysis of market returns on the network characteristics, with

the results presented in table 4. The coin market returns exhibit positive correlations with all

network characteristics, except the composite measures. The coefficient for address growth rate

is statistically significant at the 1% level, whereas the coefficients for transaction and hash-

rate growth rates attain significance at the 5% level. Conversely, the coefficient for payment

growth rate fails to reach significance even at the 10% level, implying a weak correlation between

payments and market price. This outcome is not entirely unexpected, as there is no inherent

requirement for price and the volume of payments recorded on the blockchain to be correlated.

Cryptocurrency transactions conducted on exchanges do not necessarily result in payments or

transactions being recorded on the blockchain.

Upon examination of the R2 measures for the factor loadings, it becomes evident that only

the growth in addresses yields a measure of 15%. The other measures—5%, 1%, 3%, 0%, and

0%—corresponding to the growth rates of transactions, payments, and hash-rate, as well as the

two composite measures, suggest that only user adoption is a driving force behind cryptocurrency

prices and returns, when considering network characteristics.

Table 5: This table reports the regression coefficients of cumulative future coin network growth on coin
market index returns. The columns represent the horizons for the cumulative network growth. The
standard t-statistic is reported in parentheses. *, **, and *** denote the significance levels at the 10%,
5%, and 1% levels based on the standard t-statistic. The data frequency is weekly.

(1) (2) (3) (4) (5) (6) (7) (8)

∆address const 0.01* 0.02*** 0.02*** 0.03*** 0.04*** 0.05*** 0.06*** 0.06***
(1.95) (3.03) (3.73) (4.61) (5.05) (5.82) (6.39) (6.67)

MKT 0.01 -0.04 -0.01 -0.10 -0.09 -0.12* -0.18** -0.18**
(0.32) (-0.73) (-0.16) (-1.58) (-1.34) (-1.75) (-2.30) (-2.15)

R2 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

∆transactions const 0.01* 0.02*** 0.02*** 0.03*** 0.04*** 0.04*** 0.05*** 0.05***
(1.89) (2.77) (3.07) (3.88) (4.22) (4.80) (5.20) (5.46)

MKT 0.02 -0.07 -0.04 -0.21*** -0.21*** -0.26*** -0.28*** -0.29***
(0.48) (-1.09) (-0.56) (-2.96) (-2.68) (-3.48) (-3.65) (-3.53)

R2 0.00 0.00 0.00 0.02 0.01 0.02 0.03 0.02

∆payments const 0.00 0.00 0.01 0.01 0.01 0.01* 0.01* 0.01**
(0.70) (1.20) (1.25) (1.47) (1.64) (1.71) (1.86) (2.06)

MKT 0.02 -0.02 0.00 -0.01 -0.03 -0.03 -0.06 -0.09**
(0.95) (-0.71) (0.14) (-0.34) (-0.78) (-0.75) (-1.31) (-2.04)

R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

∆hash-rate const 0.04*** 0.08*** 0.11*** 0.15*** 0.20*** 0.25*** 0.30*** 0.36***
(6.02) (9.69) (11.17) (11.93) (12.30) (12.17) (11.90) (11.67)

MKT 0.02 -0.07 0.11 0.14 0.28** 0.30* 0.48** 0.55**
(0.30) (-0.96) (1.20) (1.27) (2.00) (1.72) (2.18) (2.06)

R2 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01

PCnetwork
1 const -0.07*** -0.12*** -0.18*** -0.22*** -0.26*** -0.30*** -0.32*** -0.35***

(-12.54) (-17.10) (-19.92) (-21.27) (-21.96) (-22.44) (-22.67) (-22.79)
MKT 0.08* 0.04 0.14* 0.15* 0.17 0.19* 0.19 0.14

(1.80) (0.58) (1.86) (1.68) (1.63) (1.67) (1.52) (1.08)
R2 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00

PCnetwork
2 const -0.02*** -0.04*** -0.06*** -0.08*** -0.10*** -0.12*** -0.14*** -0.16***

(-5.21) (-9.17) (-12.37) (-15.05) (-17.00) (-17.77) (-18.57) (-19.42)
MKT 0.01 -0.00 0.03 0.10** 0.16*** 0.17*** 0.21*** 0.19***

(0.33) (-0.06) (0.60) (2.11) (3.09) (2.80) (3.21) (2.73)
R2 0.00 0.00 0.00 0.01 0.02 0.02 0.02 0.01

We further investigate the inverse relationship, namely the influence of coin market returns

on network characteristics. This mechanism forms a cornerstone of the dynamic cryptocurrency
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pricing model developed by Cong, Li et al. (2021). In order to accomplish this, we execute the

reverse regression, as explained in section 3.2, wherein future network characteristic growth,

from 1 to 8 week horizons, is regressed on coin market returns. Table 5 presents the results

obtained from these regressions.

It becomes evident that short-term increases in coin market return do not significantly impact

the cumulative growth in addresses. However, for more protracted periods, starting at the six-

week horizon, the effect is significant at the 10% level for the 6-week durations, and at the 5%

level for the 7 and 8-week durations. What is of interest and contrary to the findings of Liu and

Tsyvinski (2021), is that this effect is negative. A potential rationale for this result could be

that surging returns on cryptocurrencies coincide with a longer timeframe during which these

digital currencies become more regulated, thereby reducing the number of exchanges trading

them, which in part reduces the number of active addresses. A similar pattern is observed for

the growth in transactions, where the short-term effect is not significant, but from the four-week

horizon onwards, the influence becomes significant, even at the 1% level. This can be explained

by individuals being less inclined to use cryptocurrencies for payments when returns are rising,

opting to save them in hopes of an increase in value rather than spending them.

For the growth rate in payments, an increase in coin market return yields a virtually negligible

effect, with only marginal significance observed at the 8-week horizon. The growth rate in hash-

rate does show a significant effect at the 5% level for the 5, 7, and 8-week horizons, and at the 10%

level for the 6-week horizon. Again, the effect of increasing coin market results on the growth rate

in payments is negative, yielding a similar explanation as for the negative relationship observed

for the growth in transactions. The first principal component, primarily reflecting the variation

in the growth rate of transactions and payments, remains largely uninfluenced by increases in

coin market returns, showing only slight significance at the 10% level for the 1, 3, 4, and 6-week

horizon. Contrastingly, the second principal component exhibits an effect commencing from the

4-week horizon up to and including the 8-week horizon at the 1% level for the 5, 6, 7, and 8-week

horizons and at the 5% level for the 4-week horizon.

4.2.2 Production Characteristics

Table 6: This table reports the correlations of the production characteristics. The data frequency is
monthly.

PUS GenUS ConsUS PCN GenCN PCprod
1 PCprod

2

PUS 1.00 0.55 0.60 0.03 0.37 0.70 -0.22
GenUS 1.00 0.97 -0.02 0.67 0.99 -0.07
ConsUS 1.00 -0.02 0.62 0.99 -0.16
PCN 1.00 -0.15 -0.03 -0.18
GenCN 1.00 0.72 0.69

PCprod
1 1.00 -0.00

PCprod
2 1.00

The correlation matrix for the network factors under investigation is presented in table 6.

A noteworthy result is the weak correlation between the prices of electricity in China and the

United States, with a correlation coefficient of only 0.03, indicating almost no correlation at all.
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This might be attributed to the significantly different main sources of electricity for China and

the United States. According to the Gas Exporting Countries Forum (GECF), China mainly

relies on coal and hydropower, while the US primarily depends on natural gas and coal. Another

possible explanation could be the heavy influence of the Chinese government over electricity

prices, compared to the United States where there exists mostly a free market.

We also observe a strong correlation between the generation and consumption of electricity

in the United States, with a correlation coefficient of 0.97. This is expected, as the import and

export of electricity in the United States are nearly equal. There is a correlation of 0.67 and 0.62

between the generation and consumption of electricity in the United States and the generation of

electricity in China, respectively. Given China its recent rapid economic development, it is reas-

onable to expect that both countries will experience similar increases in electricity consumption

levels.

The first principal component appears to represent the United States energy market, as evid-

enced by the correlation between it and the price of electricity, the generation of electricity, and

the consumption of electricity in the United States, which are 0.70, 0.99, and 0.99, respectively.

While it does not capture any variation in the price of electricity in China, it correlates well

with the generation of electricity in China, with a coefficient of 0.72.

The second principal component seems to capture the differences between the United States

and Chinese energy markets, with only negative coefficients for the former (-0.22, -0.07, and

-0.16) and a substantially large positive coefficient for the generation of electricity in China,

namely 0.69. However, it correlates negatively with the price of electricity in China with a

coefficient of -0.18.

Table 7: This table reports the regression coefficients of the coin market returns on the production
characteristics. The standard t-statistic is reported in parentheses. *, **, and *** denote the significance
levels at the 10%, 5%, and 1% levels based on the standard t-statistic. The data frequency is monthly.

(1) (2) (3) (4) (5) (6) (7)

PUS -2.31
(-1.20)

GenUS -0.01
(-0.02)

ConsUS -0.06
(-0.18)

PCN 54.53*
(1.96)

GenCN 0.33
(0.45)

PCprod
1 -0.05

(-0.16)

PCprod
2 -0.00

(-0.00)

R2 0.01 0.00 0.00 0.03 0.00 0.00 0.00

We now analyse the exposures of the production characteristics with the coin market re-

turns, presented in table 7. Surprisingly, we only observe a significant exposure of the coin

market returns to the price of electricity in China. All the other factors, including the com-

pound measures, appear to have no statistically significant exposure to the coin market returns.
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When analysing the coefficient of determination (R2), we see a similar result. Only the price of

electricity in the United States and the price of electricity in China have coefficients different

from 0.00.

Interestingly, the regression coefficient is largely positive, indicating a positive relationship

between the return on cryptocurrencies and the price of electricity in China. This is entirely

unexpected, and it is difficult to postulate a possible explanation for this finding.

4.2.3 Sentiment Characteristics

Table 8: This table reports the correlations of the sentiment characteristics. The data frequency is
monthly.

∆N ∆Npos ∆Nneg ∆Nneu ∆Savg ∆Swavg ∆Sstd PCsent
1 PCsent

2

∆N 1.00 0.92 0.94 0.99 0.22 0.14 0.15 0.25 0.61
∆Npos 1.00 0.81 0.89 0.27 0.13 0.09 0.11 0.70
∆Nneg 1.00 0.91 0.01 0.08 0.38 0.29 0.50
∆Nneu 1.00 0.25 0.15 0.06 0.25 0.58
∆Savg 1.00 0.37 -0.18 0.17 0.27
∆Swavg 1.00 -0.07 0.07 0.14
∆Sstd 1.00 0.28 -0.06
PCsent

1 1.00 -0.06
PCsent

2 1.00

The correlation matrix for the sentiment characteristics under investigation is presented in

table 8. We observe a strong correlation between the number of posts, positive posts, negative

posts, and neutral posts, with correlation coefficients all near 0.9, except for the correlation

between positive and negative posts. The correlation between positive and negative posts is

0.81, suggesting that growth rates for these posts do not move in tandem. This is expected since

positive posts likely increase when cryptocurrency prices rise, while negative posts increase when

prices fall.

As anticipated, the number of neutral posts correlates strongly with the total number of posts

since neutral posts tend to increase when the overall post count rises. Neutral posts typically

include advertisements and other content not directly related to significant positive or negative

price movements.

In analyzing the mean constructed sentiment measure, it is interesting to note that it does

not correlate with the growth rate in negative posts but does correlate with the growth rate

in total posts, positive posts, and neutral posts. One possible explanation is that the natural

language model may struggle to identify negative posts, leading to a lower sentiment measure

that places more emphasis on positive and neutral posts.

The weighted average of the constructed sentiment measure exhibits a similar pattern, al-

though this version has an even smaller correlation with the growth rates in total posts. The

standard deviation of the constructed sentiment measure displays minimal correlation with the

growth rates in total posts, positive posts, neutral posts, and the two constructed sentiment

measures. However, it does show a substantial correlation with the growth rate in negative

posts, with a coefficient of 0.38. This finding supports our previous hypothesis that the natural

language model faces more difficulty identifying negative posts, resulting in greater variation in
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the constructed sentiment measure.

When analysing the principal components, we see that the first principal component cor-

relates strongly with the growth rate in total posts, negative posts, and neutral posts with

coefficients of 0.25, 0.29, and 0.25, respectively. This principal component captures the de-

pendence between the growth rates in total posts, negative posts, and neutral posts. The first

component also correlates with the growth rate in positive posts, albeit to a lesser extent, with

a coefficient of 0.11. The first principal component also correlates well with the growth rate of

the standard deviation in the constructed sentiment measure, with a coefficient of 0.28. This is

not unexpected, since this measure also correlates well with the growth rate in negative posts.

The second principal component correlates strongly with the growth rate in posts and positive

posts, with a coefficient of 0.61 and 0.70, respectively. It also captures some dependence between

the growth rate in negative posts and the growth rate in negative and neutral posts, with

coefficients of 0.50 and 0.58, respectively. To a lesser extent, it also captures a small amount of

dependence between the mean constructed sentiment measure and the score weighted average

of the constructed sentiment measure, with coefficients of 0.27 and 0.14, respectively.

Table 9: This table reports the regression coefficients of the coin market returns on the sentiment charac-
teristics. The standard t-statistic is reported in parentheses. *, **, and *** denote the significance levels
at the 10%, 5%, and 1% levels based on the standard t-statistic. The data frequency is monthly.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

∆N 0.12***
(2.66)

∆Npos 0.05*
(1.90)

∆Nneg 0.14***
(3.23)

∆Nneu 0.14***
(2.81)

∆Savg -0.10
(-0.10)

∆Swavg 0.14
(0.48)

∆Sstd 1.07
(1.59)

PCsent
1 -0.09*

(-1.79)
PCsent

2 -0.10
(-1.39)

R2 0.06 0.03 0.08 0.06 0.00 0.00 0.02 0.03 0.02

We now analyse the exposures of the sentiment characteristics with the coin market returns,

presented in table 9. The regression coefficients for the growth rate in posts, the growth rate in

positive posts, the growth rate in negative posts, and the growth rate in neutral posts are all

significant and positive, indicating a positive relationship between the return on cryptocurrencies

and the growth rate in posts. The regression coefficients for the growth rate in the number of

posts, negative posts, and neutral posts are significant at the 1% level. The coefficient for

the growth rate in the number of positive posts is significant at the 10% level. This result is

surprising and indicates that the number of positive posts does not have a substantial influence on
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cryptocurrency market returns. Another surprising result is that this effect is positive, meaning

that more neutral and negative posts result in a higher cryptocurrency market return.

The constructed measures have no significant effect on the market return. From this, we can

conclude that the relative sentiment score, which our constructed sentiment measure represents,

does not have a significant effect on the cryptocurrency market returns.

When analyzing the composite measures, only the coefficient on the first principal compon-

ents has slight significance and a negative coefficient. This is to be expected since this component

captures the dependence structure between the post, negative post, and positive post growth

rates.

Table 10: This table reports the regression coefficients of cumulative coin market return on future coin
sentiment growth. The columns represent the horizons for the cumulative coin market return. The
standard t-statistic is reported in parentheses. *, **, and *** denote the significance levels at the 10%,
5%, and 1% levels based on the standard t-statistic. The data frequency is weekly.

(1) (2) (3) (4) (5) (6) (7) (8)

∆N 0.02** 0.05*** 0.09*** 0.06** 0.09** 0.11*** 0.11** 0.12**
(2.47) (3.56) (4.17) (2.28) (2.56) (2.70) (2.26) (2.21)

R2 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01

∆Npos 0.01** 0.02*** 0.04*** 0.03** 0.04** 0.05** 0.05* 0.04
(2.12) (3.37) (4.09) (2.21) (2.42) (2.22) (1.95) (1.64)

R2 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01

∆Nneg 0.02** 0.04*** 0.07*** 0.05** 0.08*** 0.10*** 0.11*** 0.14***
(2.17) (3.17) (3.91) (2.33) (2.98) (3.15) (2.92) (3.24)

R2 0.01 0.02 0.03 0.01 0.02 0.02 0.02 0.02

∆Nneu 0.03*** 0.07*** 0.11*** 0.08** 0.11*** 0.14*** 0.14** 0.15**
(2.75) (3.90) (4.37) (2.50) (2.63) (2.89) (2.40) (2.28)

R2 0.01 0.03 0.04 0.01 0.01 0.02 0.01 0.01

∆Savg 0.05 0.02 0.14 0.17 -0.10 -0.16 0.05 -0.45
(0.43) (0.11) (0.54) (0.51) (-0.25) (-0.33) (0.09) (-0.70)

R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∆Swavg 0.01 0.02 0.05 0.09 0.05 0.09 0.03 0.03
(0.41) (0.45) (0.70) (0.99) (0.45) (0.66) (0.20) (0.18)

R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∆Sstd -0.02 -0.04 0.09 0.00 0.30 0.17 0.30 0.41
(-0.24) (-0.34) (0.49) (0.02) (1.08) (0.49) (0.75) (0.93)

R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PCsent
1 -0.01* -0.02 -0.03 -0.06*** -0.09*** -0.11*** -0.13*** -0.15***

(-1.77) (-1.63) (-1.51) (-2.76) (-3.23) (-3.47) (-3.53) (-3.62)
R2 0.01 0.01 0.00 0.01 0.02 0.02 0.02 0.03

PCsent
2 -0.02* -0.02 -0.00 -0.00 0.00 -0.02 -0.01 -0.08

(-1.72) (-1.22) (-0.10) (-0.05) (0.08) (-0.27) (-0.17) (-1.08)
R2 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

We now analyse the long-term effect of the sentiment characteristics on the cryptocurrency

market returns. These results are presented in table 10. We see that the growth rate in posts has

a significant effect on the cryptocurrency market returns at all horizons. The effect is significant

at the 5% level for the 1, 4, 5, 7, and 8-week horizons, and at the 1% level for the 2, 3, and

6-week horizons. An increase in posts has a long-lasting effect on the cumulative market returns.

The same effect is also observed for the growth rate in positive posts, albeit less significant.

This effect is only significant at the 1% level for the 2 and 3-week horizons, at the 5% level for

the 1, 4, 5, and 6-week horizons, and at the 10% level for the 7-week horizon.

Similar to the growth rate of the posts, the growth rates of the negative and neutral posts
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are significant for all horizons, for at least the 5% level. Surprisingly, all coefficients are positive,

meaning an increase in negative posts results in an increase in cumulative cryptocurrency market

returns. This gives rise to the phrase, “there is no such thing as bad publicity”, at least not for

cryptocurrencies it seems.

4.3 Cross-Sectional Analysis

In this section, we perform a cross-sectional analysis on the performance of weekly-rebalanced

quintile portfolios, based on size-, momentum-, volume-, volatility-, and cryptocurrency-related

return predictors presented in section 3.3. We then analyse the portfolio returns using four

distinct factor models detailed in section 3.4, employing three separate factors discussed in

section 3.1.

We find that of all the considered return predictors, only MCAP, PRC, MAXDPRC, 1, 2,

and 3-week horizon cumulative return, PRCVOL, VOLSCALED, and STDPRCVOL form high-

minus-low portfolios capable of generating significant returns. None of the return predictors

based on projected cryptocurrency characteristics are able to form high-minus-low portfolios

capable of generating significant returns.

After factor analysis, only MCAP, the 2-week horizon cumulative return, and the 50-week

cumulative return predictors are able to generate significant excess return. The market factor,

size factor, and momentum factor were able to explain the returns observed in the other return

predictors.

Additionally, our findings suggest that investing in cryptocurrencies with low exposure to

the growth rate of electricity generation in China can yield a modest yet significant excess

return. This outcome could potentially instigate a shift in demand towards Proof-of-Stake

cryptocurrencies.

4.3.1 Size-Related Return Predictors

Table 11: This table reports the weekly mean quintile portfolio returns on the size return predictors.
The mean returns are the time-series averages of weekly value-weighted portfolio excess returns. The
standard t-statistic is reported in parentheses. *, **, and *** denote the significance levels at the 10%,
5%, and 1% levels based on the standard t-statistic.

Quintiles

1 2 3 4 5 5− 1

MCAP 0.061*** 0.023*** 0.024*** 0.034*** 0.016*** -0.045***
(5.470) (2.934) (2.642) (2.856) (3.196) (-4.609)

PRC 0.075*** 0.035*** 0.012 0.018** 0.016*** -0.059**
(2.765) (2.888) (1.477) (2.080) (3.195) (-2.227)

MAXDPRC 0.069** 0.038*** 0.011 0.021** 0.016*** -0.054**
(2.551) (3.031) (1.346) (2.304) (3.188) (-2.010)

AGE 0.023** 0.019** 0.024** 0.022** 0.014*** -0.009
(2.067) (2.073) (2.124) (2.454) (2.993) (-0.833)

We now explore the results for the size return predictors, as displayed in table 11. First,

we investigate the logarithm of the market cap (MCAP) zero-investment quintile portfolios.

Notably, the MCAP high-minus-low portfolio yields significant mean weekly returns of 4.5%,
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significant at the 1% level. However, we do not observe a consistent decrease or increase in

mean return across the quintile portfolios, which could indicate that the measure may not fully

capture the underlying anomaly.

Next, we examine the characteristic based on the last trading day’s price (PRC) and observe

similar results. The returns across the quintiles are nearly monotonically decreasing, except for

the higher three quintiles. The high-minus-low portfolio based on this return predictor generates

an even greater return of 5.9% per week, significant at the 1% level.

We then analyse the maximum price in the week of trading before portfolio formation

(MAXDPRC), discovering a result quite similar to the previous characteristic. This high-minus-

low portfolio generates an almost identical weekly return of 5.4%. Again, the return across the

quintiles is nearly monotonically decreasing, except for the higher three quintiles.

Lastly, we assess the characteristic based on the cryptocurrency’s age (AGE) and find no

significant result. Additionally, we do not observe monotonically decreasing returns across the

portfolios.

In summary, three of the four size return predictors form high-minus-low portfolios capable

of generating significant returns.

We now examine the size portfolios, accounting for the coin market factor, size factor, and

momentum factor, with results presented in table 12. When only adjusting for the market factor,

all excess returns generated by the portfolios, except for the AGE portfolio, maintain significance,

although at the 5% and 10% level for the PRC and MAXDPRC portfolios, respectively. This

suggests that the portfolios created based on size-related return predictors exhibit minimal

market risk. This is evident from the coefficients of the market factor in the CAPM model,

which is only significant for the PRC portfolio, at the 10% level.

Correcting with the additional size factor, all portfolios, except AGE, exhibit significant

loadings at the 1% level. As expected, these return predictors are intended to proxy for the

return anomaly where smaller cryptocurrencies yield higher returns than larger ones, similar to

the size factor. All portfolios, except for the MCAP portfolio, lose significance in their excess

returns.

Considering the momentum factor, instead of the size factor, no portfolios display significant

loadings. This indicates that these portfolios have no exposure to the momentum factor, which is

expected. This suggests that there is no connection between the market cap of a cryptocurrency

and its cumulative returns. After adjusting for the momentum factor, all portfolios, except for

AGE, retain significant excess returns.

When factoring in all three factors, only the MCAP portfolio remains with significant excess

returns. All other portfolio excess returns are explained by the size factor alone. The AGE

portfolio is the only portfolio based on a size-related return predictor that does not generate

significant excess returns, in any of the configurations.

4.3.2 Momentum-Related Return Predictors

We assess the performance of portfolios based on momentum return predictors, as shown in

table 13. We notice that only the high-minus-low portfolios based on the 1, 2, and 3-week

horizon return predictors generate significant mean weekly returns. These portfolios generate
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Table 12: This table reports the results on the cryptocurrency factor adjustments of the high-minus-low
size return predictor portfolios. The standard t-statistic is reported in parentheses. *, **, and *** denote
the significance levels at the 10%, 5%, and 1% levels based on the standard t-statistic. The standard
errors are computed using HCCME and ALS. The data frequency is weekly.

const MKT SMB MOM R2

MCAP (1) -0.043*** -0.098 0.003
(-5.419) (-0.484)

(2) -0.009*** -0.036 -1.253*** 0.841
(-3.332) (-0.819) (-12.920)

(3) -0.051*** -0.076 0.377 0.070
(-4.482) (-0.421) (1.445)

(4) -0.010*** -0.035 -1.247*** 0.024 0.842
(-3.649) (-0.804) (-12.370) (0.565)

PRC (1) -0.051** -0.479* 0.008
(-1.974) (-1.735)

(2) -0.024 -0.430* -0.971*** 0.078
(-1.046) (-1.746) (-3.085)

(3) -0.053** -0.471* 0.117 0.009
(-2.185) (-1.697) (0.293)

(4) -0.020 -0.437* -1.014*** -0.171 0.080
(-0.997) (-1.769) (-2.900) (-0.475)

MAXDPRC (1) -0.047* -0.403 0.006
(-1.778) (-1.593)

(2) -0.022 -0.356 -0.925*** 0.067
(-0.904) (-1.575) (-2.858)

(3) -0.050** -0.386 0.147 0.007
(-2.018) (-1.569) (0.382)

(4) -0.019 -0.361 -0.953*** -0.113 0.068
(-0.945) (-1.599) (-2.728) (-0.324)

AGE (1) -0.007 -0.111 0.003
(-0.757) (-0.582)

(2) 0.011 -0.078 -0.655 0.201
(0.899) (-0.430) (-1.368)

(3) -0.014 -0.090 0.340 0.050
(-1.063) (-0.499) (1.084)

(4) 0.006 -0.070 -0.613 0.166 0.211
(0.605) (-0.387) (-1.385) (0.812)
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Table 13: This table reports the weekly mean quintile portfolio returns on the momentum return pre-
dictors. The mean returns are the time-series averages of weekly value-weighted portfolio excess returns.
The standard t-statistic is reported in parentheses. *, **, and *** denote the significance levels at the
10%, 5%, and 1% levels based on the standard t-statistic.

Quintiles

1 2 3 4 5 5− 1

r(1,0) 0.005 0.012 0.018** 0.034*** 0.027*** 0.022**
(0.668) (1.349) (2.087) (3.572) (2.999) (2.468)

r(2,0) 0.005 0.015 0.013** 0.028*** 0.034*** 0.029***
(0.517) (1.323) (1.986) (3.067) (3.964) (3.547)

r(3,0) 0.010 0.003 0.011* 0.036*** 0.031*** 0.020***
(1.025) (0.393) (1.841) (3.663) (3.777) (2.598)

r(4,0) 0.015 0.011 0.011* 0.030*** 0.026*** 0.011
(1.491) (1.370) (1.826) (3.206) (3.303) (1.449)

r(4,1) 0.008 0.011 0.038** 0.027*** 0.019** 0.011
(0.874) (1.523) (2.569) (3.362) (2.486) (1.366)

r(8,0) 0.024** 0.011* 0.028** 0.024*** 0.020*** -0.004
(2.426) (1.659) (2.185) (2.982) (2.772) (-0.444)

r(16,0) 0.026** 0.023** 0.024** 0.019** 0.019*** -0.007
(2.527) (2.059) (2.175) (2.406) (2.937) (-0.710)

r(50,0) 0.015*** 0.013** 0.021** 0.016*** 0.009 -0.006
(2.606) (2.216) (2.397) (2.737) (1.626) (-1.156)

r(100,0) 0.033*** 0.017*** 0.015*** 0.013** 0.012** -0.021
(2.605) (2.843) (2.614) (2.101) (2.338) (-1.612)

2.2%, 2.9%, and 2.0% mean weekly return, respectively. This mean return is significant at the

5% level for the 1-week horizon and at the 1% level for the 2 and 3-week horizons. Only for the

1 and 2-week horizons are the quintile portfolio returns almost monotonically increasing. For

the 3-week horizon, this effect is less pronounced. Interestingly, for the shorter maturities, from

1 up to 4-week horizons, the lower quintiles do not have statistically significant mean weekly

returns. The portfolios based on the other horizons all lack significant mean weekly returns.

What is intriguing is that there appears to be a sort of reversal effect, starting at the portfolios

from the 8-week horizons. From this horizon, it appears that lower momentum cryptocurrencies

actually produce a higher mean return than those with high momentum.

In summary, only three momentum return predictors form high-minus-low portfolios capable

of generating significant returns.

We now investigate the first set of momentum portfolios, taking into account the coin market

factor, size factor, and momentum factor, with results displayed in table 14. When adjusting for

just the market factor, none of the return predictors have a significant loading, even at the 10%

level. Only the 1-to-4-week horizon has an insignificant excess return, even at the 10% level.

The rest of the momentum-based return predictors have a significant excess return at the 1%

level, except for the 4-week horizon portfolio, which is only significant at the 5% level.

In line with the results for the size-based return predictors, almost none of the momentum-

based return predictors have a significant loading on the size factor. Only the 2- and 4-week

horizon momentum portfolios have a significant loading on the size factor, albeit at the 10%.

After correcting for the additional momentum factor, does the 2-week horizon portfolio lose its

significance on the size factor, with only the 4-week horizon portfolio remaining significantly
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Table 14: This table reports the results on the cryptocurrency factor adjustments of the first set of high-
minus-low momentum return predictor portfolios. The standard t-statistic is reported in parentheses. *,
**, and *** denote the significance levels at the 10%, 5%, and 1% levels based on the standard t-statistic.
The standard errors are computed using HCCME and ALS. The data frequency is weekly.

const MKT SMB MOM R2

r(1,0) (1) 0.021*** 0.031 0.000
(2.811) (0.168)

(2) 0.017 0.023 0.155 0.016
(1.554) (0.115) (0.362)

(3) 0.012 0.055 0.417 0.101
(1.155) (0.330) (1.587)

(4) 0.003 0.046 0.279 0.496*** 0.149
(0.367) (0.250) (0.611) (2.701)

r(2,0) (1) 0.031*** -0.134 0.007
(4.317) (-0.815)

(2) 0.040*** -0.118 -0.317* 0.084
(5.113) (-0.843) (-1.650)

(3) 0.012** -0.082 0.887*** 0.549
(2.072) (-0.899) (7.118)

(4) 0.015*** -0.079 -0.100 0.858*** 0.556
(2.608) (-0.908) (-1.290) (7.146)

r(3,0) (1) 0.023*** -0.155 0.010
(3.287) (-0.960)

(2) 0.031*** -0.140 -0.297 0.084
(4.162) (-0.992) (-1.505)

(3) 0.003 -0.100 0.937*** 0.667
(0.517) (-1.116) (7.450)

(4) 0.005 -0.098 -0.065 0.918*** 0.670
(0.849) (-1.103) (-0.855) (7.225)

r(4,0) (1) 0.014** -0.175 0.013
(2.080) (-1.099)

(2) 0.023*** -0.158 -0.342* 0.113
(3.261) (-1.183) (-1.933)

(3) -0.003 -0.127 0.820*** 0.523
(-0.597) (-1.372) (6.782)

(4) 0.001 -0.123 -0.146* 0.779*** 0.540
(0.246) (-1.418) (-1.894) (6.902)

r(4,1) (1) 0.011 0.006 0.000
(1.581) (0.040)

(2) 0.023** 0.028 -0.430 0.141
(2.338) (0.191) (-1.090)

(3) -0.000 0.037 0.536** 0.194
(-0.034) (0.245) (2.315)

(4) 0.010 0.048 -0.318 0.445*** 0.266
(1.379) (0.308) (-0.960) (2.618)
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loaded on the size factor, at 10%. This reinforces the idea that market cap and cumulative

returns are not linked to one-another.

After correcting for just the market and momentum factors, none of the portfolios exhibit

significant excess returns, except for the 2-week horizon portfolio. Even after adjusting for all

three factors, the 2-week horizon portfolio still displays significant excess returns, whereas none

of the other portfolios do.

This calls into question the choice for a 3-week horizon momentum factor. We ultimately

made this decision to stay in conformity with the original research by Liu et al. (2022) and enable

us to directly compare our results. In retrospect, this decision might have been misguided, as

the 2-week horizon portfolio appears to be the only one with significant excess returns, even

after correcting for all three factors.

Table 15: This table reports the results on the cryptocurrency factor adjustments of the second set of high-
minus-low momentum return predictor portfolios. The standard t-statistic is reported in parentheses. *,
**, and *** denote the significance levels at the 10%, 5%, and 1% levels based on the standard t-statistic.
The standard errors are computed using HCCME and ALS. The data frequency is weekly.

const MKT SMB MOM R2

r(8,0) (1) -0.004 -0.032 0.000
(-0.499) (-0.159)

(2) 0.012 -0.003 -0.572 0.179
(1.069) (-0.017) (-1.203)

(3) -0.021** 0.016 0.818*** 0.327
(-2.051) (0.094) (3.180)

(4) -0.008 0.029 -0.393 0.706*** 0.406
(-0.984) (0.163) (-1.036) (3.768)

r(16,0) (1) -0.004 -0.196 0.010
(-0.501) (-0.765)

(2) 0.015* -0.160 -0.702* 0.280
(1.680) (-0.830) (-1.872)

(3) -0.020* -0.151 0.763*** 0.294
(-1.930) (-0.806) (3.049)

(4) -0.002 -0.133 -0.549* 0.607*** 0.446
(-0.233) (-0.883) (-1.928) (4.298)

r(50,0) (1) -0.008 0.095 0.008
(-1.513) (1.530)

(2) -0.008 0.095 -0.001 0.008
(-1.524) (1.527) (-0.025)

(3) -0.010* 0.101 0.104* 0.025
(-1.888) (1.623) (1.812)

(4) -0.011* 0.100 0.027 0.111* 0.026
(-1.959) (1.611) (0.604) (1.683)

r(100,0) (1) -0.021* -0.001 0.000
(-1.930) (-0.006)

(2) -0.017* 0.006 -0.151 0.007
(-1.668) (0.037) (-1.264)

(3) -0.021* 0.001 0.028 0.000
(-1.719) (0.003) (0.213)

(4) -0.016 0.006 -0.155 -0.016 0.007
(-1.343) (0.033) (-1.301) (-0.117)

We now investigate the second set of momentum portfolios, as displayed in table 15. When
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adjusting for only the market factor, none of the portfolios have a significant loading on this

factor, even at the 10% level. Additionally, only one of the horizons, namely the 100-week

horizon, has a significant excess return, at the 10% level.

When considering only the market and size factors, we observe that only the 16-week ho-

rizon portfolio has a significant loading on this additional factor, at the 10% level. Even after

considering all three factors, does the 16-week horizon portfolio remain significantly loaded on

the size factor, also the 10% level. Of the 4 horizons considered, only the 100-week horizon

does not have a significant loading on the momentum factor. Only after correcting for all three

factors does the 50-week horizon maintain a significant excess return, at the 10% level.

4.3.3 Volume-Related Return Predictors

Table 16: This table reports the weekly mean quintile portfolio returns on the volume return predictors.
The mean returns are the time-series averages of weekly value-weighted portfolio excess returns. The
standard t-statistic is reported in parentheses. *, **, and *** denote the significance levels at the 10%,
5%, and 1% levels based on the standard t-statistic.

Quintiles

1 2 3 4 5 5− 1

VOL 0.020*** 0.018*** 0.019** 0.017** 0.011** -0.009
(2.688) (2.849) (2.580) (2.074) (2.533) (-1.255)

PRCVOL 0.040*** 0.059* 0.019*** 0.020** 0.011** -0.029**
(2.741) (1.801) (2.589) (2.025) (2.477) (-2.119)

VOLSCALED 0.036*** 0.038** 0.014** 0.008 0.011** -0.026**
(2.778) (2.372) (2.089) (1.180) (2.489) (-2.120)

We evaluate the performance of portfolios based on volume return predictors, as illustrated

in table 16. Firstly, we investigate the logarithm of the average daily trading volume (VOL)

zero-investment quintile portfolios. The high-minus-low portfolio produces an insignificant mean

weekly return, even at the 10% level. Moreover, the mean quintile returns do not exhibit any

monotonicity among them.

Next, we examine the logarithm of the average daily trading volume multiplied by the price

(PRCVOL) zero-investment quintile portfolios. The high-minus-low portfolio for this return

predictor yields a significant mean weekly return of 2.9%, at the 5% level. As with the previous

return predictor, these quintile portfolios also do not display any monotonicity in the mean

returns.

Finally, we explore the logarithm of the average daily trading volume multiplied by the price

and scaled by market capitalization (VOLSCALED) zero-investment quintile portfolios. The

high-minus-low portfolio for this return predictor generates a significant mean weekly return of

2.6%, at the 5% level. These quintile portfolios also do not display any monotonicity in their

mean returns.

In summary, only two of the three volume return predictors form high-minus-low portfolios

capable of generating significant returns.

We now analyse the volume portfolios, accounting for the coin market factor, the size factor,

and the momentum factor. The results of this analysis are presented in table 17. When adjusting
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Table 17: This table reports the results on the cryptocurrency factor adjustments of the high-minus-low
volume return predictor portfolios. The standard t-statistic is reported in parentheses. *, **, and ***
denote the significance levels at the 10%, 5%, and 1% levels based on the standard t-statistic. The
standard errors are computed using HCCME and ALS. The data frequency is weekly.

const MKT SMB MOM R2

VOL (1) -0.013 0.245* 0.031
(-1.484) (1.725)

(2) -0.009 0.252* -0.135* 0.051
(-1.106) (1.766) (-1.955)

(3) -0.012 0.244* -0.017 0.032
(-1.525) (1.727) (-0.341)

(4) -0.007 0.249* -0.150** -0.060 0.054
(-0.995) (1.765) (-2.219) (-1.053)

PRCVOL (1) -0.026** -0.190 0.005
(-2.062) (-0.589)

(2) -0.010 -0.161 -0.570 0.095
(-0.868) (-0.520) (-1.394)

(3) -0.020* -0.205 -0.269 0.023
(-1.896) (-0.622) (-1.238)

(4) 0.003 -0.182 -0.686* -0.463 0.144
(0.214) (-0.598) (-1.699) (-1.558)

VOLSCALED (1) -0.020** -0.328 0.019
(-2.027) (-1.356)

(2) -0.010 -0.309 -0.378 0.069
(-1.049) (-1.309) (-1.333)

(3) -0.021* -0.326 0.029 0.019
(-1.896) (-1.304) (0.127)

(4) -0.008 -0.313 -0.399 -0.084 0.071
(-0.569) (-1.276) (-1.305) (-0.291)
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solely for the market factor, only the VOL portfolio has a significant loading on this factor, at the

10% level. Even when considering all different factor model configurations, does this portfolio

remain significantly loaded on the market factor. This is also the only portfolio that does not

have any significant excess returns, as both the PRCVOL and VOLSCALED portfolios exhibit

significant excess returns, both at the 5% level.

When examining the model that includes both the market and size factors, it appears that

only the VOL portfolio has a significant loading on the newly added size factor, significant at the

10% level. The remaining portfolios do not show significant loadings on this factor unless the

model is supplemented by the momentum factor. With the addition of the momentum factor, the

PRCVOL portfolio also demonstrates a significant loading on the size factor, again significant

at the 10% level. Based on the sign of the coefficient, this demonstrates that cryptocurrencies

with small volume often have small market caps, and vice versa.

None of the volume based return predictors portfolios have a significant loading on the mo-

mentum factor. This signals that investing in cryptocurrencies with high volume, often referred

to as momentum by informed investors, does not lead to significant cumulative returns. How-

ever, none of the considered portfolios, after correcting for all three factors, have any significant

excess return, even at the 10% level.

4.3.4 Volatility-Related Return Predictors

Table 18: This table reports the weekly mean quintile portfolio returns on the volatility return predictors.
The mean returns are the time-series averages of weekly value-weighted portfolio excess returns. The
standard t-statistic is reported in parentheses. *, **, and *** denote the significance levels at the 10%,
5%, and 1% levels based on the standard t-statistic.

Quintiles

1 2 3 4 5 5− 1

BETA 0.021** 0.028*** 0.017*** 0.015** 0.010 -0.012
(2.099) (2.778) (2.877) (2.197) (1.630) (-1.130)

BETA2 0.022** 0.028*** 0.017*** 0.015** 0.010 -0.012
(2.110) (2.759) (2.863) (2.206) (1.635) (-1.139)

IDIOVOL 0.012*** 0.018*** 0.019** 0.028 0.013 0.002
(2.744) (2.699) (2.571) (1.632) (1.519) (0.202)

RETVOL 0.024*** 0.014* 0.027*** 0.019** 0.020 -0.004
(2.969) (1.949) (3.181) (2.022) (1.472) (-0.314)

MAXRET 0.011 0.028*** 0.026*** 0.023*** 0.024* 0.013
(1.358) (3.003) (3.160) (2.766) (1.923) (1.217)

DELAY 0.011*** 0.010* 0.018** 0.030** 0.010* -0.002
(2.608) (1.807) (2.462) (2.490) (1.673) (-0.365)

STDPRCVOL 0.038*** 0.024*** 0.025** 0.023** 0.011** -0.027**
(2.685) (3.168) (2.296) (2.346) (2.458) (-2.056)

DAMIHUD 0.011** 0.018* 0.020** 0.041** 0.030** 0.019
(2.388) (1.960) (2.250) (2.090) (2.333) (1.606)

We evaluate the performance of portfolios based on volatility return predictors, as illustrated

in table 18. The only high-minus-low portfolio that generates significant mean weekly return is

based on the STDPRCVOL return predictor, at the 5% level. This portfolio shows a 2.7% mean

weekly return. These quintiles display rough monotonicity between the different portfolios, with
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the three middle portfolios showing roughly the same, but significant return. In other words,

going long on cryptocurrencies with low price volume standard deviation and shorting coins

with high price volume volatility generates significant weekly returns.

All other return predictors show no significant mean weekly high-minus-low portfolio return.

Only the quintiles scoring low for the return predictors have significant mean returns, whereas

the higher quintiles all lose significance.

In summary, only one of the eight volatility based return predictors forms high-minus-low

portfolios capable of generating significant returns.

We now analyse the first set of volatility portfolios, accounting for the coin market factor,

the size factor, and the momentum factor. The results of this analysis are presented in table 19.

When evaluating the market factor, only the BETA and BETA2 portfolios show a significant

loading on this factor, and this is at the 5% significance level. These portfolios maintain their

significant loading at the 5% level, even when the market factor is considered alongside the size

and/or momentum factors. Interestingly, these two portfolios are also the only ones that generate

significant excess returns. However, this excess return is only significant at the 10% level and

only occurs when adjustments are made for either the market factor alone or a combination of

the market and size factors. None of the other considered portfolios generate a significant excess

return in any configuration, even at the 10% level.

When considering the size factor in combination with the market factor, none of the con-

sidered portfolios have a significant loading on the size factor. This shows that there is no

underlying connection between the returns of cryptocurrencies with high idiosyncratic volatility

and size.

When considering the momentum factor in combination with the market factor, only RET-

VOL and MAXRET have a significant loading on the momentum factor, at a 10% and 5%

level, respectively. This shows that cryptocurrencies with high return also have high cumulative

return.

We now analyse the second set of volatility portfolios, as shown in table 20. When considering

only the market factor, none of the portfolios exhibit a significant loading on this factor, even

at the 10% significance level. However, both the STDPRCVOL and DAMIHUD portfolios have

significant excess returns in this factor model configuration, at the 5% significance level.

When adjusting for both the market and size factors, the DELAY portfolio exhibits a modest

but significant loading, at the 10% level. Upon further adjustment for the momentum factor,

this factor loading becomes insignificant. Yet, in this expanded model configuration, both the

STDPRCVOL and DAMIHUD portfolios become significantly loaded on the size factor, also at

the 10% level.

For STDPRCVOL, acting as a liquidity-based return predictor, the sign of the coefficient

suggests that high liquidity is associated with a high market cap, and vice versa. For DAMIHUD,

functioning as the converse of STDPRCVOL and serving as an illiquidity return predictor, the

result, based on the sign of the coefficient, is comparable.

In the full factor model, only the DAMIHUD portfolio exhibits a significant loading on

the momentum factor. The loading of the DAMIHUD portfolio on this factor suggests that

illiquid cryptocurrencies tend to have high momentum and vice versa. Unfortunately, none of
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Table 19: This table reports the results on the cryptocurrency factor adjustments of the first set of high-
minus-low volatility return predictor portfolios. The standard t-statistic is reported in parentheses. *,
**, and *** denote the significance levels at the 10%, 5%, and 1% levels based on the standard t-statistic.
The standard errors are computed using HCCME and ALS. The data frequency is weekly.

const MKT SMB MOM R2

BETA (1) -0.016* 0.250** 0.015
(-1.795) (1.976)

(2) -0.015* 0.251** -0.030 0.015
(-1.856) (1.998) (-0.518)

(3) -0.016 0.251** 0.026 0.015
(-1.565) (2.016) (0.199)

(4) -0.015 0.252** -0.025 0.018 0.016
(-1.481) (2.016) (-0.366) (0.131)

BETA2 (1) -0.016* 0.249** 0.015
(-1.805) (1.968)

(2) -0.015* 0.250** -0.030 0.015
(-1.866) (1.991) (-0.521)

(3) -0.016 0.250** 0.025 0.015
(-1.571) (2.010) (0.194)

(4) -0.015 0.251** -0.025 0.018 0.015
(-1.487) (2.008) (-0.370) (0.128)

IDIOVOL (1) -0.000 0.119 0.006
(-0.054) (1.062)

(2) -0.004 0.111 0.152 0.026
(-0.638) (0.975) (1.586)

(3) 0.002 0.113 -0.095 0.013
(0.206) (1.013) (-0.697)

(4) -0.003 0.109 0.138 -0.056 0.028
(-0.334) (0.936) (1.243) (-0.359)

RETVOL (1) -0.004 0.025 0.000
(-0.374) (0.139)

(2) -0.003 0.028 -0.046 0.001
(-0.261) (0.153) (-0.352)

(3) -0.011 0.045 0.336* 0.034
(-0.979) (0.267) (1.724)

(4) -0.013 0.044 0.042 0.348* 0.034
(-1.133) (0.255) (0.469) (1.774)

MAXRET (1) 0.010 0.192 0.008
(1.035) (1.106)

(2) 0.012 0.197 -0.086 0.011
(1.297) (1.155) (-0.642)

(3) 0.003 0.211 0.323** 0.049
(0.289) (1.369) (2.196)

(4) 0.003 0.211 -0.005 0.321** 0.049
(0.322) (1.361) (-0.050) (2.294)
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Table 20: This table reports the results on the cryptocurrency factor adjustments of the second set of
high-minus-low volatility return predictor portfolios. The standard t-statistic is reported in parentheses.
*, **, and *** denote the significance levels at the 10%, 5%, and 1% levels based on the standard t-
statistic. The standard errors are computed using HCCME and ALS. The data frequency is weekly.

const MKT SMB MOM R2

DELAY (1) -0.001 -0.041 0.002
(-0.237) (-0.624)

(2) -0.005 -0.048 0.138* 0.042
(-1.074) (-0.740) (1.701)

(3) -0.000 -0.044 -0.041 0.005
(-0.050) (-0.641) (-0.602)

(4) -0.005 -0.048 0.138 -0.002 0.042
(-0.937) (-0.713) (1.572) (-0.025)

STDPRCVOL (1) -0.024** -0.203 0.006
(-1.971) (-0.641)

(2) -0.008 -0.174 -0.573 0.102
(-0.722) (-0.572) (-1.406)

(3) -0.018* -0.218 -0.273 0.025
(-1.772) (-0.676) (-1.287)

(4) 0.005 -0.195 -0.691* -0.467 0.155
(0.380) (-0.655) (-1.728) (-1.616)

DAMIHUD (1) 0.018** 0.086 0.001
(2.038) (0.325)

(2) 0.004 0.060 0.507 0.095
(0.475) (0.240) (1.390)

(3) 0.011 0.104 0.326 0.036
(1.576) (0.382) (1.554)

(4) -0.010 0.083 0.634* 0.505* 0.172
(-0.965) (0.337) (1.779) (1.802)
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the considered return predictors have a significant excess return when considering the full factor

model.

4.3.5 Projected Network Return Predictors

We assess the performance of portfolios based on projected network characteristic return pre-

dictors, as presented in table 21. Unfortunately, none of the high-minus-low portfolios, based

on the projected network characteristics, manage to generate a significant mean weekly return.

Additionally, we cannot discern any visible pattern across the different quintile portfolios. It

seems that no discernible return can be achieved when considering portfolios created based on

exposure to network characteristics.

Considering that these network characteristics are captured only from the Bitcoin blockchain,

this result is not entirely unexpected. In section 4.2, we established that only specific network

characteristics had a significant influence on the cryptocurrency market returns. Given that the

cryptocurrency market return mostly consists of Bitcoin returns, it is logical that these network

characteristics have an influence.

When constructing the projections, all cryptocurrencies are considered, totalling more than

18,000 at the height of the boom. As Bitcoin is the largest cryptocurrency currently available,

it is logical that not many cryptocurrencies have a sizeable projection with such a developed

blockchain. This could be a possible reason for the lack of significant mean weekly returns for

the portfolios based on projected network characteristics.

In summary, none of the four network characteristic based return predictors forms high-

minus-low portfolios capable of generating significant returns.

We now examine the portfolios formed using return predictors from projected network char-

acteristics, accounting for the coin market factor, the size factor, and the momentum factor.

The results of this analysis are presented in table 22.

We observe that only the payments based portfolio exhibits a significant loading on the

market factor, for all factor model configurations. Considering the size factor alongside the

market factor, we find that none of the portfolios demonstrate a significant loading on the size

factor. This result suggests that there is no underlying connection between exposure to a mature

blockchain and the size of a cryptocurrency, which is unexpected.

When evaluating the momentum factor in conjunction with the market factor, we notice that

no portfolios have a significant loading on the momentum factor. This implies that cryptocur-

rencies with exposure to a mature blockchain do not necessarily generate more or less cumulative

returns.

Ultimately, none of the considered portfolios display a significant excess return, even at the

10% level.

4.3.6 Projected Production Return Predictors

We evaluate the performance of portfolios based on projected production characteristic return

predictors, as presented in table 23. Regrettably, none of the high-minus-low portfolios, formed

using projected production characteristics, manage to generate a significant mean weekly return.

Additionally, we are unable to discern any visible pattern across the different quintile portfolios.
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This observation suggests that the differences between Proof-of-Work (PoW) and Proof-of-Stake

(PoS) cryptocurrencies do not yield a significant mean weekly return.

Interestingly, this outcome can be interpreted as positive news from an investor’s perspective.

The lack of significant differences in mean weekly returns between PoW and PoS cryptocurrencies

implies that investors are not forced to choose power-hungry PoW cryptocurrencies for their

investments. This potentially paves the way for more sustainable investment options in the

cryptocurrency market, as investors may opt for environmentally friendly PoS cryptocurrencies

without compromising their potential returns.

In summary, while the projected production characteristic return predictors do not display

any significant differences in mean weekly returns between PoW and PoS cryptocurrencies, this

result could encourage a shift towards more sustainable investment choices in the cryptocurrency

market.

We now examine the portfolios formed using return predictors from projected production

characteristics, accounting for the coin market factor, the size factor, and the momentum factor.

The results of this analysis are presented in table 24.

Our analysis reveals that all projected characteristic portfolios have a large significant loading

on the market factor, at the 1% level. This observation indicates that these portfolios are

significantly exposed to market risk, further confirming our belief that the distinction between

PoW and PoS cryptocurrencies should not result in worse returns.

Considering the momentum factor and the market factor, we find that only the portfolio

based on the projections of the consumption of electricity in the United States exhibits a small

significant loading on the momentum factor, at the 10% level. This effect is surprising and does

not have an immediate explanation. It may warrant further investigation to understand the

underlying factors contributing to this relationship.

When evaluating the size factor, we do not observe any significant loading for the portfolios

based on projected production characteristics. This suggests that the size factor does not play

a major role in the returns of these portfolios.

Ultimately, only the portfolio based on projections of electricity generation in China shows

a significant excess return, albeit at the 10% level. This suggests a small difference in return

between cryptocurrencies with large exposure to electricity generation in China and those with

minimal exposure. The sign of this coefficient might indicate potential for greater excess return

from investing in Proof-of-Stake cryptocurrencies as compared to Proof-of-Work cryptocurren-

cies.

4.3.7 Projected Sentiment Return Predictors

We assess the performance of portfolios based on projected sentiment characteristic return pre-

dictors, as illustrated in table 25. Interestingly, none of the high-minus-low portfolios, created

using projected sentiment characteristics, manage to generate a significant mean weekly return.

Moreover, we cannot discern any consistent pattern across the different quintile portfolios. This

observation implies that relying on the exposure of individual cryptocurrencies to social media

sentiment as a predictor of potential returns may not yield dependable outcomes.

Our analysis also reveals that cryptocurrencies with considerable exposure to social senti-
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ment do not exhibit significantly higher returns than those with minimal exposure. This finding

has positive implications for cryptocurrency investors. It suggests that including cryptocurren-

cies with various levels of social media sentiment exposure in an investment portfolio does not

necessarily impact potential returns, providing investors with greater flexibility in their portfo-

lio composition. However, this finding should be taken with caution, as the quintile portfolios

themselves could not generate any discernible return, especially for the highly exposed quintile.

We now explore the portfolios formed using return predictors from projected sentiment

characteristics, taking into account the coin market factor, the size factor, and the momentum

factor. The results of this analysis are presented in tables 26 and 27. None of the portfolios

have a significant loading on either the market factor, the size factor, the momentum factor or

any combination of the three, even at the 10% level. Also, none of the portfolios exhibit any

significant excess return. This finding indicates that there is no excess return to be gained by

investing in cryptocurrencies with a high exposure to social media sentiment.

4.4 Investigating Mechanism

The results from section 4.3 largely align with the findings of Liu and Tsyvinski (2021), except

the four significant excess return generating portfolios.

Similar to Liu and Tsyvinski (2021), our study also reveals that most return predictors,

which initially generate excess returns, fail to do so after accounting for the market factor, the

size factor, and the momentum factor. In their paper, Liu and Tsyvinski propose potential

explanations for the observed size and momentum factors.

Firstly, they suggest that the size factor may serve as a proxy for an illiquidity premium.

This means that cryptocurrencies with a smaller market cap tend to exhibit higher illiquidity.

As a result, investors in these cryptocurrencies demand larger returns as compensation for the

risk of not being able to sell their positions in a timely manner. Our analysis supports this

notion, as we find that cryptocurrencies with high DAMIHUD illiquidity and low STDPRCVOL

liquidity demonstrate a substantial and significant loading on the size factor.

Secondly, Liu and Tsyvinski argue that the momentum factor might be rooted in behavioural

explanations, particularly psychological biases and investor over- and under-reaction. However,

our analysis does not provide any evidence of an attention-based, overreaction-induced mo-

mentum effect. Surprisingly, none of our sentiment measures, including those loosely associated

with investor attention, display a significant loading on the momentum factor. Additionally, the

volume related return predictors, which function as a proxy for momentum by well-informed

investors, also did not yield any significant loadings on the momentum factor.

5 Conclusion

This paper aimed to achieve two primary objectives: replicating the findings of previous research

and expanding the scope of those studies. Our primary research objective was to identify the

key drivers of cross-sectional variations in cryptocurrency returns.

Our investigation into factors driving cryptocurrency market returns built upon the work of

Liu and Tsyvinski (2021) by examining the influence of network and production characterist-
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ics of cryptocurrencies. By employing an extensive dataset that includes the post-COVID-19

cryptocurrency boom, we captured a broader view of market trends and dynamics. We hypothes-

ized that production factors would not significantly impact returns due to market maturation,

regulatory actions, rising interest rates, and the shift from Proof-of-Work to Proof-of-Stake

algorithms. Conversely, we expected network factors, as proxies for adoption and utility, to

significantly impact cryptocurrency returns.

Additionally, we explored the impact of investor sentiment on cryptocurrency market re-

turns using deep-learning natural language processing techniques, specifically the XLM-T model

published in Barbieri et al. (2021). We expected investor sentiment, particularly social media

influence, to have a pronounced effect on cryptocurrency returns, as evidenced by recent market

events such as the GameStop saga and Elon Musk’s Dogecoin endorsements.

Furthermore, we replicated the work of Liu et al. (2022) by analyzing excess returns of quin-

tile portfolios and examining whether size and momentum factors capture the cross-section of

cryptocurrency returns. We hypothesized that our extended dataset, reflecting a more mature

cryptocurrency market, would show risk premia converging more closely to those observed in

equity markets, implying that the behavior of the cryptocurrency market would become increas-

ingly similar to traditional financial markets.

Our study yielded several significant findings. We discovered that coin market returns are

influenced by certain network characteristics, such as the growth rates in active addresses, trans-

actions, and hash rate. We also observed that market returns negatively affect the growth in

transactions from the 4- to 8-week horizon and positively affect the growth in hash-rate from

the 5- to 8-week horizon. Our analysis revealed that coin market returns are not exposed to

production factors but exhibit positive exposure to the growth rate in the number of posts,

negative posts, neutral posts, and to a lesser extent, positive posts. Lastly, we discover that

the growth in social media posts, including negative, neutral, and, to a lesser extent, positive,

contribute positively to long-term cryptocurrency market returns.

We found that only MCAP, PRC, MAXDPRC, 1, 2, and 3-week horizon cumulative return,

PRCVOL, VOLSCALED, and STDPRCVOL form high-minus-low portfolios capable of gener-

ating significant returns, while none of the return predictors based on projected cryptocurrency

characteristics were able to do so. After factor analysis, only MCAP, the 2-week horizon cumu-

lative return, and the 50-week cumulative return predictors generated significant excess return,

with the market factor, size factor, and momentum factor explaining the returns observed in

the other return predictors. Additionally, we found that investing in cryptocurrencies with

low exposure to the Chinese energy market generates a small but significant return, even after

adjusting for all three factors.

Our findings largely align with Liu and Tsyvinski (2021), except for the three excess return

generating portfolios based on return predictors. Like Liu and Tsyvinski (2021), our study

reveals that most return predictors that initially generate excess returns fail to do so after

accounting for the market factor, the size factor, and the momentum factor. We supported the

notion that the size factor may serve as a proxy for an illiquidity premium, but our analysis did

not provide any evidence of an attention-based, overreaction-induced momentum effect, as none

of our sentiment measures displayed a significant loading on the momentum factor.
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Our study not only enriches the existing body of research but also provides valuable insights

for investors and regulators in the ever-evolving cryptocurrency landscape.
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A Projected Cryptocurrency Characteristics Results

A.1 Projected Network Return Predictors

Table 21: This table reports the weekly mean quintile portfolio returns on the projected network charac-
teristics. The mean returns are the time-series averages of weekly value-weighted portfolio excess returns.
The standard t-statistic is reported in parentheses. *, **, and *** denote the significance levels at the
10%, 5%, and 1% levels based on the standard t-statistic.

Quintiles

1 2 3 4 5 5− 1

∆address 0.012** 0.019*** 0.012** 0.021*** 0.009 -0.003
(2.248) (3.009) (2.223) (3.016) (1.317) (-0.462)

∆transactions 0.011** 0.019*** 0.013** 0.018*** 0.009 -0.002
(2.086) (3.024) (2.486) (2.642) (1.375) (-0.243)

∆payments 0.006 0.007 0.011* 0.012** 0.004 -0.002
(1.101) (1.072) (1.834) (2.032) (0.670) (-0.365)

∆hash-rate 0.013** 0.026** 0.013** 0.017*** 0.010 -0.003
(2.361) (2.322) (2.326) (2.625) (1.451) (-0.428)
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Table 22: This table reports the results on the cryptocurrency factor adjustments of the high-minus-low
projected network return predictor portfolios. The standard t-statistic is reported in parentheses. *, **,
and *** denote the significance levels at the 10%, 5%, and 1% levels based on the standard t-statistic.
The standard errors are computed using HCCME and ALS. The data frequency is weekly.

const MKT SMB MOM R2

∆address (1) -0.005 0.099 0.006
(-0.741) (1.301)

(2) -0.007 0.095 0.075 0.013
(-1.106) (1.251) (1.176)

(3) -0.005 0.099 0.001 0.006
(-0.672) (1.260) (0.012)

(4) -0.007 0.096 0.081 0.024 0.014
(-1.005) (1.217) (1.126) (0.218)

∆transactions (1) -0.003 0.106 0.007
(-0.535) (1.395)

(2) -0.005 0.102 0.074 0.014
(-0.896) (1.345) (1.163)

(3) -0.003 0.106 0.003 0.007
(-0.493) (1.352) (0.033)

(4) -0.006 0.103 0.081 0.026 0.015
(-0.841) (1.309) (1.128) (0.237)

∆payments (1) -0.003 0.135** 0.024
(-0.500) (2.522)

(2) -0.002 0.137*** -0.030 0.025
(-0.384) (2.595) (-0.380)

(3) -0.000 0.139** -0.108 0.036
(-0.081) (2.557) (-1.285)

(4) 0.000 0.141*** -0.027 -0.107 0.037
(0.059) (2.610) (-0.351) (-1.274)

∆hash-rate (1) -0.005 0.121 0.009
(-0.763) (1.594)

(2) -0.007 0.118 0.071 0.015
(-1.112) (1.546) (1.126)

(3) -0.005 0.122 0.017 0.009
(-0.734) (1.552) (0.170)

(4) -0.008 0.119 0.081 0.039 0.017
(-1.063) (1.510) (1.164) (0.360)
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A.2 Projected Production Return Predictors

Table 23: This table reports the weekly mean quintile portfolio returns on the projected production
characteristics. The mean returns are the time-series averages of weekly value-weighted portfolio excess
returns. The standard t-statistic is reported in parentheses. *, **, and *** denote the significance levels
at the 10%, 5%, and 1% levels based on the standard t-statistic.

Quintiles

1 2 3 4 5 5− 1

PUS 0.015*** 0.019*** 0.017*** 0.024** 0.015** -0.000
(3.532) (2.991) (2.771) (2.525) (2.378) (-0.069)

GenUS 0.013*** 0.017*** 0.020*** 0.021** 0.016** 0.003
(3.201) (2.677) (3.174) (2.238) (2.572) (0.450)

ConsUS 0.013*** 0.017*** 0.018*** 0.022** 0.016** 0.003
(3.182) (2.729) (2.844) (2.310) (2.570) (0.468)

PCN 0.012** 0.029** 0.013** 0.020*** 0.020** 0.008
(2.422) (2.515) (2.349) (2.978) (2.535) (1.186)

GenCN 0.017*** 0.034** 0.015*** 0.021*** 0.011* -0.006
(3.624) (2.332) (2.919) (2.750) (1.871) (-1.174)
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Table 24: This table reports the results on the cryptocurrency factor adjustments of the high-minus-low
projected production return predictor portfolios. The standard t-statistic is reported in parentheses. *,
**, and *** denote the significance levels at the 10%, 5%, and 1% levels based on the standard t-statistic.
The standard errors are computed using HCCME and ALS. The data frequency is weekly.

const MKT SMB MOM R2

PUS (1) -0.005 0.293*** 0.071
(-0.974) (5.194)

(2) -0.004 0.295*** -0.028 0.072
(-0.841) (5.143) (-0.553)

(3) -0.005 0.292*** -0.025 0.072
(-0.837) (5.073) (-0.567)

(4) -0.003 0.293*** -0.037 -0.036 0.074
(-0.604) (4.981) (-0.644) (-0.714)

GenUS (1) -0.002 0.302*** 0.074
(-0.442) (5.060)

(2) -0.002 0.302*** -0.015 0.075
(-0.370) (5.010) (-0.287)

(3) -0.001 0.297*** -0.079 0.084
(-0.111) (4.879) (-1.510)

(4) 0.001 0.298*** -0.038 -0.090 0.086
(0.120) (4.834) (-0.612) (-1.621)

ConsUS (1) -0.002 0.305*** 0.075
(-0.428) (5.085)

(2) -0.002 0.305*** -0.016 0.076
(-0.352) (5.035) (-0.303)

(3) -0.001 0.300*** -0.081 0.085
(-0.093) (4.906) (-1.531)

(4) 0.001 0.301*** -0.039 -0.092* 0.087
(0.142) (4.857) (-0.631) (-1.647)

PCN (1) 0.001 0.461*** 0.109
(0.175) (4.343)

(2) -0.001 0.458*** 0.072 0.114
(-0.154) (4.297) (0.649)

(3) 0.002 0.459*** -0.036 0.110
(0.272) (4.185) (-0.287)

(4) -0.000 0.457*** 0.068 -0.017 0.115
(-0.052) (4.108) (0.517) (-0.114)

GenCN (1) -0.010** 0.264*** 0.067
(-2.170) (4.467)

(2) -0.009** 0.265*** -0.034 0.069
(-1.991) (4.442) (-0.853)

(3) -0.010** 0.264*** 0.001 0.067
(-2.168) (4.395) (0.014)

(4) -0.009* 0.264*** -0.037 -0.010 0.069
(-1.872) (4.335) (-0.759) (-0.185)
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A.3 Projected Sentiment Return Predictors

Table 25: This table reports the weekly mean quintile portfolio returns on the projected sentiment
characteristics. The mean returns are the time-series averages of weekly value-weighted portfolio excess
returns. The standard t-statistic is reported in parentheses. *, **, and *** denote the significance levels
at the 10%, 5%, and 1% levels based on the standard t-statistic.

Quintiles

1 2 3 4 5 5− 1

∆N 0.010* 0.020*** 0.010* 0.022*** 0.008 -0.002
(1.937) (3.149) (1.856) (3.161) (1.257) (-0.284)

∆Npos 0.011** 0.016*** 0.011* 0.021*** 0.010 -0.001
(2.212) (2.639) (1.956) (3.082) (1.433) (-0.207)

∆Nneg 0.009* 0.014** 0.010* 0.024*** 0.008 -0.000
(1.673) (2.340) (1.796) (3.166) (1.244) (-0.078)

∆Nneu 0.011** 0.019*** 0.010* 0.021*** 0.009 -0.002
(2.165) (3.002) (1.855) (2.981) (1.413) (-0.292)

∆Savg 0.012** 0.027** 0.012** 0.019*** 0.009 -0.003
(2.212) (2.320) (2.237) (2.954) (1.331) (-0.438)

∆Swavg 0.011** 0.027** 0.015*** 0.016** 0.009 -0.002
(2.081) (2.359) (2.705) (2.530) (1.322) (-0.337)

∆Sstd 0.011** 0.028** 0.009* 0.019*** 0.010 -0.002
(2.185) (2.453) (1.764) (2.955) (1.445) (-0.260)
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Table 26: This table reports the results on the cryptocurrency factor adjustments of the first set of
high-minus-low projected sentiment return predictor portfolios. The standard t-statistic is reported in
parentheses. *, **, and *** denote the significance levels at the 10%, 5%, and 1% levels based on the
standard t-statistic. The standard errors are computed using HCCME and ALS. The data frequency is
weekly.

const MKT SMB MOM R2

∆N (1) -0.003 0.100 0.006
(-0.561) (1.316)

(2) -0.005 0.096 0.075 0.014
(-0.928) (1.268) (1.176)

(3) -0.003 0.100 0.000 0.006
(-0.503) (1.272) (0.004)

(4) -0.006 0.097 0.081 0.023 0.014
(-0.846) (1.231) (1.119) (0.210)

∆Npos (1) -0.003 0.120 0.008
(-0.530) (1.370)

(2) -0.005 0.116 0.074 0.014
(-0.874) (1.324) (1.146)

(3) -0.004 0.121 0.012 0.008
(-0.517) (1.332) (0.122)

(4) -0.006 0.118 0.083 0.036 0.016
(-0.863) (1.296) (1.168) (0.316)

∆Nneg (1) -0.002 0.101 0.007
(-0.350) (1.344)

(2) -0.004 0.098 0.054 0.011
(-0.603) (1.309) (1.072)

(3) -0.001 0.099 -0.030 0.008
(-0.219) (1.288) (-0.325)

(4) -0.003 0.097 0.050 -0.016 0.011
(-0.435) (1.256) (0.838) (-0.154)

∆Nneu (1) -0.003 0.094 0.006
(-0.552) (1.237)

(2) -0.006 0.090 0.079 0.014
(-0.937) (1.186) (1.209)

(3) -0.003 0.094 0.002 0.006
(-0.498) (1.196) (0.016)

(4) -0.006 0.091 0.085 0.026 0.014
(-0.861) (1.154) (1.165) (0.231)

58



Table 27: This table reports the results on the cryptocurrency factor adjustments of the second set of
high-minus-low projected sentiment return predictor portfolios. The standard t-statistic is reported in
parentheses. *, **, and *** denote the significance levels at the 10%, 5%, and 1% levels based on the
standard t-statistic. The standard errors are computed using HCCME and ALS. The data frequency is
weekly.

const MKT SMB MOM R2

∆Savg (1) -0.004 0.092 0.005
(-0.703) (1.225)

(2) -0.006 0.088 0.076 0.013
(-1.077) (1.174) (1.205)

(3) -0.004 0.093 0.008 0.006
(-0.653) (1.190) (0.081)

(4) -0.007 0.090 0.084 0.032 0.014
(-1.004) (1.147) (1.193) (0.288)

∆Swavg (1) -0.004 0.086 0.005
(-0.579) (1.136)

(2) -0.006 0.082 0.078 0.013
(-0.959) (1.084) (1.234)

(3) -0.004 0.086 0.000 0.005
(-0.522) (1.099) (0.004)

(4) -0.006 0.083 0.085 0.024 0.013
(-0.882) (1.056) (1.181) (0.220)

∆Sstd (1) -0.004 0.121 0.009
(-0.590) (1.591)

(2) -0.006 0.117 0.077 0.016
(-0.959) (1.539) (1.178)

(3) -0.004 0.121 0.013 0.009
(-0.570) (1.546) (0.129)

(4) -0.007 0.118 0.086 0.037 0.018
(-0.933) (1.501) (1.202) (0.335)
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B Factor Models without HCCME and ALS

B.1 Size-Related Return Predictors

Table 28: This table reports the results on the cryptocurrency factor adjustments of the high-minus-low
size return predictor portfolios. The standard t-statistic is reported in parentheses. *, **, and *** denote
the significance levels at the 10%, 5%, and 1% levels based on the standard t-statistic. The data frequency
is weekly.

const MKT SMB MOM R2

MCAP (1) -0.043*** -0.099 0.003
(-4.399) (-1.144)

(2) -0.009** -0.036 -1.253*** 0.841
(-2.345) (-1.036) (-51.850)

(3) -0.052*** -0.077 0.378*** 0.071
(-5.347) (-0.918) (6.103)

(4) -0.010** -0.035 -1.247*** 0.024 0.842
(-2.474) (-1.003) (-49.700) (0.915)

PRC (1) -0.051* -0.479** 0.008
(-1.918) (-2.075)

(2) -0.024 -0.430* -0.972*** 0.078
(-0.939) (-1.930) (-6.210)

(3) -0.053** -0.472** 0.118 0.009
(-1.993) (-2.043) (0.685)

(4) -0.020 -0.438* -1.015*** -0.171 0.080
(-0.740) (-1.964) (-6.248) (-0.990)

MAXDPRC (1) -0.047* -0.403* 0.006
(-1.750) (-1.720)

(2) -0.022 -0.356 -0.926*** 0.068
(-0.826) (-1.569) (-5.805)

(3) -0.050* -0.394* 0.159 0.007
(-1.858) (-1.679) (0.911)

(4) -0.019 -0.362 -0.954*** -0.112 0.068
(-0.693) (-1.590) (-5.760) (-0.638)

AGE (1) -0.007 -0.111 0.003
(-0.656) (-1.196)

(2) 0.011 -0.078 -0.657*** 0.202
(1.131) (-0.938) (-11.268)

(3) -0.014 -0.091 0.341*** 0.051
(-1.359) (-1.005) (5.060)

(4) 0.006 -0.070 -0.615*** 0.166*** 0.213
(0.637) (-0.851) (-10.218) (2.610)
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B.2 Momentum-Related Return Predictors

Table 29: This table reports the results on the cryptocurrency factor adjustments of the first set of high-
minus-low momentum return predictor portfolios. The standard t-statistic is reported in parentheses. *,
**, and *** denote the significance levels at the 10%, 5%, and 1% levels based on the standard t-statistic.
The data frequency is weekly.

const MKT SMB MOM R2

r(1,0) (1) 0.021** 0.031 0.000
(2.383) (0.399)

(2) 0.017* 0.023 0.156*** 0.016
(1.896) (0.300) (2.863)

(3) 0.012 0.055 0.416*** 0.101
(1.452) (0.746) (7.544)

(4) 0.003 0.046 0.281*** 0.496*** 0.149
(0.363) (0.635) (5.347) (8.895)

r(2,0) (1) 0.031*** -0.134* 0.007
(3.782) (-1.878)

(2) 0.040*** -0.118* -0.318*** 0.085
(4.966) (-1.721) (-6.586)

(3) 0.012** -0.083* 0.887*** 0.549
(2.166) (-1.711) (24.704)

(4) 0.015*** -0.079* -0.101*** 0.858*** 0.556
(2.727) (-1.652) (-2.884) (23.198)

r(3,0) (1) 0.023*** -0.155** 0.010
(2.899) (-2.263)

(2) 0.031*** -0.140** -0.298*** 0.084
(4.027) (-2.122) (-6.427)

(3) 0.003 -0.100** 0.937*** 0.667
(0.606) (-2.523) (31.661)

(4) 0.005 -0.098** -0.065** 0.918*** 0.670
(1.060) (-2.477) (-2.264) (30.020)

r(4,0) (1) 0.014* -0.175** 0.013
(1.805) (-2.583)

(2) 0.023*** -0.158** -0.343*** 0.113
(3.122) (-2.454) (-7.577)

(3) -0.003 -0.128*** 0.820*** 0.523
(-0.627) (-2.700) (23.323)

(4) 0.001 -0.123*** -0.146*** 0.779*** 0.540
(0.260) (-2.640) (-4.313) (21.700)

r(4,1) (1) 0.011 0.006 0.000
(1.337) (0.084)

(2) 0.023*** 0.028 -0.432*** 0.142
(2.931) (0.414) (-9.166)

(3) -0.000 0.037 0.536*** 0.194
(-0.043) (0.573) (11.072)

(4) 0.010 0.048 -0.319*** 0.445*** 0.266
(1.403) (0.773) (-7.056) (9.276)
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Table 30: This table reports the results on the cryptocurrency factor adjustments of the second set of high-
minus-low momentum return predictor portfolios. The standard t-statistic is reported in parentheses. *,
**, and *** denote the significance levels at the 10%, 5%, and 1% levels based on the standard t-statistic.
The data frequency is weekly.

const MKT SMB MOM R2

r(8,0) (1) -0.004 -0.032 0.000
(-0.386) (-0.375)

(2) 0.012 -0.003 -0.574*** 0.181
(1.320) (-0.041) (-10.576)

(3) -0.021*** 0.016 0.819*** 0.327
(-2.620) (0.224) (15.719)

(4) -0.008 0.029 -0.395*** 0.706*** 0.407
(-1.038) (0.441) (-8.237) (13.902)

r(16,0) (1) -0.004 -0.196** 0.010
(-0.380) (-2.313)

(2) 0.015* -0.161** -0.704*** 0.281
(1.836) (-2.222) (-13.835)

(3) -0.020** -0.152** 0.764*** 0.294
(-2.405) (-2.115) (14.297)

(4) -0.002 -0.133** -0.550*** 0.608*** 0.448
(-0.222) (-2.096) (-11.877) (12.374)

r(50,0) (1) -0.008 0.095** 0.008
(-1.431) (2.017)

(2) -0.008 0.095** -0.001 0.008
(-1.405) (2.014) (-0.027)

(3) -0.010* 0.101** 0.103*** 0.025
(-1.833) (2.158) (2.960)

(4) -0.011* 0.100** 0.027 0.111*** 0.026
(-1.957) (2.137) (0.795) (3.063)

r(100,0) (1) -0.021 -0.001 0.000
(-1.592) (-0.009)

(2) -0.017 0.007 -0.151* 0.007
(-1.261) (0.058) (-1.901)

(3) -0.021 0.001 0.028 0.000
(-1.620) (0.005) (0.329)

(4) -0.016 0.006 -0.155* -0.016 0.007
(-1.204) (0.051) (-1.879) (-0.186)
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B.3 Volume-Related Return Predictors

Table 31: This table reports the results on the cryptocurrency factor adjustments of the high-minus-low
volume return predictor portfolios. The standard t-statistic is reported in parentheses. *, **, and ***
denote the significance levels at the 10%, 5%, and 1% levels based on the standard t-statistic. The data
frequency is weekly.

const MKT SMB MOM R2

VOL (1) -0.013* 0.245*** 0.031
(-1.833) (4.068)

(2) -0.009 0.252*** -0.135*** 0.051
(-1.296) (4.216) (-3.216)

(3) -0.012* 0.244*** -0.017 0.032
(-1.762) (4.044) (-0.384)

(4) -0.007 0.249*** -0.150*** -0.060 0.054
(-1.035) (4.171) (-3.448) (-1.298)

PRCVOL (1) -0.026* -0.191 0.005
(-1.874) (-1.594)

(2) -0.010 -0.162 -0.568*** 0.094
(-0.771) (-1.418) (-7.083)

(3) -0.020 -0.206* -0.270*** 0.023
(-1.453) (-1.737) (-3.051)

(4) 0.003 -0.183 -0.686*** -0.464*** 0.144
(0.217) (-1.646) (-8.459) (-5.404)

VOLSCALED (1) -0.020* -0.329*** 0.019
(-1.675) (-3.118)

(2) -0.010 -0.310*** -0.377*** 0.069
(-0.836) (-3.011) (-5.219)

(3) -0.021* -0.327*** 0.029 0.019
(-1.708) (-3.096) (0.369)

(4) -0.008 -0.313*** -0.398*** -0.084 0.071
(-0.627) (-3.047) (-5.313) (-1.059)
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B.4 Volatility-Related Return Predictors

Table 32: This table reports the results on the cryptocurrency factor adjustments of the first set of high-
minus-low volatility return predictor portfolios. The standard t-statistic is reported in parentheses. *,
**, and *** denote the significance levels at the 10%, 5%, and 1% levels based on the standard t-statistic.
The data frequency is weekly.

const MKT SMB MOM R2

BETA (1) -0.016 0.250*** 0.015
(-1.518) (2.781)

(2) -0.015 0.251*** -0.030 0.015
(-1.420) (2.794) (-0.468)

(3) -0.016 0.251*** 0.026 0.015
(-1.555) (2.793) (0.382)

(4) -0.015 0.252*** -0.025 0.019 0.016
(-1.443) (2.799) (-0.379) (0.267)

BETA2 (1) -0.016 0.249*** 0.015
(-1.526) (2.771)

(2) -0.015 0.250*** -0.030 0.015
(-1.427) (2.784) (-0.471)

(3) -0.016 0.250*** 0.025 0.015
(-1.562) (2.783) (0.378)

(4) -0.015 0.251*** -0.025 0.018 0.015
(-1.449) (2.789) (-0.383) (0.261)

IDIOVOL (1) -0.000 0.119* 0.006
(-0.049) (1.757)

(2) -0.004 0.111* 0.151*** 0.026
(-0.574) (1.658) (3.212)

(3) 0.002 0.113* -0.095* 0.013
(0.211) (1.678) (-1.890)

(4) -0.003 0.109 0.137*** -0.056 0.028
(-0.365) (1.620) (2.805) (-1.082)

RETVOL (1) -0.004 0.025 0.000
(-0.343) (0.229)

(2) -0.003 0.027 -0.047 0.001
(-0.238) (0.251) (-0.607)

(3) -0.011 0.045 0.337*** 0.034
(-0.921) (0.415) (4.205)

(4) -0.013 0.043 0.041 0.348*** 0.034
(-1.009) (0.402) (0.528) (4.190)

MAXRET (1) 0.010 0.192** 0.008
(0.921) (2.036)

(2) 0.012 0.196** -0.086 0.011
(1.123) (2.082) (-1.304)

(3) 0.003 0.211** 0.323*** 0.049
(0.287) (2.280) (4.699)

(4) 0.003 0.211** -0.005 0.322*** 0.049
(0.295) (2.278) (-0.073) (4.503)
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Table 33: This table reports the results on the cryptocurrency factor adjustments of the second set of
high-minus-low volatility return predictor portfolios. The standard t-statistic is reported in parentheses.
*, **, and *** denote the significance levels at the 10%, 5%, and 1% levels based on the standard t-
statistic. The data frequency is weekly.

const MKT SMB MOM R2

DELAY (1) -0.001 -0.041 0.002
(-0.226) (-0.952)

(2) -0.005 -0.048 0.138*** 0.042
(-0.988) (-1.135) (4.642)

(3) -0.000 -0.044 -0.041 0.005
(-0.049) (-1.007) (-1.278)

(4) -0.005 -0.048 0.138*** -0.002 0.042
(-0.959) (-1.136) (4.451) (-0.062)

STDPRCVOL (1) -0.024* -0.203* 0.006
(-1.792) (-1.748)

(2) -0.008 -0.174 -0.572*** 0.102
(-0.646) (-1.577) (-7.363)

(3) -0.018 -0.219* -0.273*** 0.025
(-1.354) (-1.900) (-3.181)

(4) 0.005 -0.196* -0.690*** -0.469*** 0.155
(0.387) (-1.821) (-8.822) (-5.652)

DAMIHUD (1) 0.018 0.086 0.001
(1.471) (0.828)

(2) 0.004 0.061 0.506*** 0.095
(0.331) (0.613) (7.248)

(3) 0.011 0.105 0.326*** 0.036
(0.896) (1.026) (4.273)

(4) -0.010 0.084 0.634*** 0.506*** 0.172
(-0.929) (0.882) (9.141) (6.888)
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B.5 Projected Network Return Predictors

Table 34: This table reports the results on the cryptocurrency factor adjustments of the high-minus-low
projected network return predictor portfolios. The standard t-statistic is reported in parentheses. *, **,
and *** denote the significance levels at the 10%, 5%, and 1% levels based on the standard t-statistic.
The data frequency is weekly.

const MKT SMB MOM R2

∆address (1) -0.005 0.099* 0.006
(-0.707) (1.759)

(2) -0.007 0.095* 0.075* 0.013
(-1.009) (1.695) (1.893)

(3) -0.005 0.099* 0.001 0.006
(-0.703) (1.757) (0.024)

(4) -0.007 0.096* 0.081** 0.024 0.014
(-1.093) (1.712) (1.971) (0.552)

∆transactions (1) -0.003 0.106* 0.007
(-0.510) (1.899)

(2) -0.005 0.102* 0.074* 0.014
(-0.814) (1.835) (1.894)

(3) -0.003 0.106* 0.003 0.007
(-0.515) (1.898) (0.074)

(4) -0.006 0.103* 0.081** 0.026 0.015
(-0.911) (1.854) (1.986) (0.604)

∆payments (1) -0.003 0.135** 0.024
(-0.500) (2.557)

(2) -0.002 0.137** -0.030 0.025
(-0.344) (2.587) (-0.584)

(3) -0.000 0.139*** -0.107* 0.036
(-0.074) (2.645) (-1.797)

(4) 0.000 0.141*** -0.027 -0.107* 0.037
(0.049) (2.670) (-0.531) (-1.778)

∆hash-rate (1) -0.005 0.121** 0.009
(-0.728) (2.148)

(2) -0.007 0.118** 0.071* 0.015
(-1.013) (2.088) (1.790)

(3) -0.005 0.122** 0.016 0.009
(-0.774) (2.161) (0.389)

(4) -0.008 0.119** 0.081** 0.039 0.017
(-1.162) (2.118) (1.966) (0.903)
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B.6 Projected Production Return Predictors

Table 35: This table reports the results on the cryptocurrency factor adjustments of the high-minus-low
projected production return predictor portfolios. The standard t-statistic is reported in parentheses. *,
**, and *** denote the significance levels at the 10%, 5%, and 1% levels based on the standard t-statistic.
The data frequency is weekly.

const MKT SMB MOM R2

PUS (1) -0.005 0.293*** 0.071
(-0.927) (6.166)

(2) -0.004 0.294*** -0.028 0.072
(-0.782) (6.184) (-0.824)

(3) -0.005 0.292*** -0.025 0.072
(-0.822) (6.127) (-0.704)

(4) -0.003 0.293*** -0.037 -0.035 0.074
(-0.592) (6.144) (-1.054) (-0.963)

GenUS (1) -0.002 0.301*** 0.074
(-0.419) (6.339)

(2) -0.002 0.302*** -0.015 0.075
(-0.342) (6.344) (-0.440)

(3) -0.001 0.297*** -0.079** 0.084
(-0.109) (6.261) (-2.254)

(4) 0.001 0.298*** -0.038 -0.090** 0.086
(0.115) (6.280) (-1.095) (-2.467)

ConsUS (1) -0.002 0.304*** 0.075
(-0.406) (6.386)

(2) -0.002 0.305*** -0.016 0.076
(-0.326) (6.391) (-0.464)

(3) -0.001 0.300*** -0.080** 0.085
(-0.093) (6.308) (-2.279)

(4) 0.001 0.301*** -0.039 -0.092** 0.087
(0.137) (6.327) (-1.127) (-2.500)

PCN (1) 0.001 0.461*** 0.109
(0.155) (7.822)

(2) -0.001 0.458*** 0.072* 0.114
(-0.126) (7.787) (1.734)

(3) 0.002 0.459*** -0.036 0.110
(0.267) (7.776) (-0.827)

(4) -0.000 0.457*** 0.068 -0.017 0.115
(-0.055) (7.761) (1.566) (-0.372)

GenCN (1) -0.010** 0.263*** 0.067
(-2.033) (5.986)

(2) -0.009* 0.265*** -0.034 0.069
(-1.830) (6.015) (-1.096)

(3) -0.010** 0.264*** 0.001 0.067
(-2.015) (5.975) (0.022)

(4) -0.009* 0.264*** -0.037 -0.010 0.069
(-1.745) (5.994) (-1.131) (-0.285)
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B.7 Projected Sentiment Return Predictors

Table 36: This table reports the results on the cryptocurrency factor adjustments of the first set of
high-minus-low projected sentiment return predictor portfolios. The standard t-statistic is reported in
parentheses. *, **, and *** denote the significance levels at the 10%, 5%, and 1% levels based on the
standard t-statistic. The data frequency is weekly.

const MKT SMB MOM R2

∆N (1) -0.003 0.100* 0.006
(-0.537) (1.806)

(2) -0.005 0.096* 0.075* 0.014
(-0.849) (1.741) (1.941)

(3) -0.003 0.100* 0.000 0.006
(-0.533) (1.803) (0.007)

(4) -0.006 0.097* 0.081** 0.023 0.014
(-0.935) (1.758) (2.015) (0.546)

∆Npos (1) -0.003 0.120** 0.008
(-0.494) (2.042)

(2) -0.005 0.116** 0.074* 0.014
(-0.782) (1.981) (1.793)

(3) -0.004 0.121** 0.012 0.008
(-0.527) (2.050) (0.280)

(4) -0.006 0.118** 0.083* 0.036 0.016
(-0.914) (2.007) (1.938) (0.790)

∆Nneg (1) -0.002 0.101* 0.007
(-0.340) (1.853)

(2) -0.004 0.098* 0.054 0.011
(-0.567) (1.803) (1.415)

(3) -0.001 0.099* -0.030 0.008
(-0.235) (1.818) (-0.735)

(4) -0.003 0.097* 0.050 -0.016 0.011
(-0.489) (1.788) (1.263) (-0.370)

∆Nneu (1) -0.003 0.094* 0.006
(-0.530) (1.700)

(2) -0.006 0.090 0.079** 0.014
(-0.857) (1.632) (2.032)

(3) -0.003 0.094* 0.001 0.006
(-0.529) (1.698) (0.035)

(4) -0.006 0.091* 0.085** 0.026 0.014
(-0.953) (1.651) (2.117) (0.601)
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Table 37: This table reports the results on the cryptocurrency factor adjustments of the second set of
high-minus-low projected sentiment return predictor portfolios. The standard t-statistic is reported in
parentheses. *, **, and *** denote the significance levels at the 10%, 5%, and 1% levels based on the
standard t-statistic. The data frequency is weekly.

const MKT SMB MOM R2

∆Savg (1) -0.004 0.092* 0.005
(-0.670) (1.667)

(2) -0.006 0.088 0.076* 0.013
(-0.984) (1.601) (1.962)

(3) -0.004 0.093* 0.008 0.006
(-0.689) (1.672) (0.190)

(4) -0.007 0.090 0.084** 0.032 0.014
(-1.104) (1.626) (2.088) (0.743)

∆Swavg (1) -0.004 0.086 0.005
(-0.552) (1.542)

(2) -0.006 0.082 0.078** 0.013
(-0.876) (1.475) (2.010)

(3) -0.004 0.086 0.000 0.005
(-0.547) (1.540) (0.007)

(4) -0.006 0.083 0.085** 0.024 0.013
(-0.964) (1.493) (2.087) (0.566)

∆Sstd (1) -0.004 0.121** 0.009
(-0.562) (2.147)

(2) -0.006 0.117** 0.077* 0.016
(-0.875) (2.083) (1.949)

(3) -0.004 0.121** 0.012 0.009
(-0.597) (2.156) (0.296)

(4) -0.007 0.119** 0.086** 0.037 0.018
(-1.017) (2.111) (2.105) (0.850)
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