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Abstract

This research paper analyzes the relationship between macroeconomic and climate covariates and

extreme events in the European stock market. The research analyzed 01-01-2000 - 25-05-2022 for 6

market indices: DAX, CAC 40, FTSE MIB, IBEX 35, AEX, and FTSE 100. The study aims to answer

three subquestions: 1) What are the most important driving factors for modeling extreme risks in

the market? 2) Has the inclusion of climate factors had a significant beneficial effect? Furthermore,

3) To what extent does a climate agreement affect financial market risk? The research found that

covariates have significantly affected market risk for all market indices, with statistically accurate

VaR models constructed for some market indices when including both climate and macroeconomic

covariates. However, the ES models were unsuitable for use in this research setting. Furthermore, the

results suggest that omitting the climate variables increases the model fit to the data, indicating that

macroeconomic covariates are more informative than climate covariates. Finally, the study found

that the Paris climate agreement has a risk-reducing effect on almost all market indices.
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1 Introduction

The increasing concerns about the impacts of climate change have led to an increase in interest in

analyzing the relationship between climate covariates and various economic sectors. (IPCC, 2014) The

stock market is a good indicator of a country’s economic status. This market is susceptible to extreme

events like natural disasters and pandemics. These events have been more frequent and intense due to

the changing climate over the last decades. (World Health Organization, 2021). This research aims to

analyze the relationship between macroeconomic and climate covariates and extreme events in the stock

market in Europe.

The financial crisis in 2008 and COVID-19 have shown that natural disasters can significantly affect

the economy and society. (World Health Organization, 2021) Considering this, it is essential to understand

the drivers behind this to create policies and strategies to mitigate the drivers’ impacts. Therefore, the

main question that this research tries to answer is, ’Do climate and macroeconomic covariates contain

important information in predicting extreme adverse market events in Europe?’ The emphasis is on the

climate variables. However, including macroeconomic variables in the research makes the methodology

more complete and applicable to stakeholders. If these extreme events can be predicted more precisely,

this will benefit multiple stakeholders—for example, the insurance industry, banks, and policymakers.

It brings multiple benefits if the extreme risks can be estimated more precisely when the covariates

are included. The insurance industry, whose business model revolves around risks, can benefit if new

models are developed that predict the risk pattern more precisely. Moreover, banks can also benefit from

improved risk models. Improved models can, for example, more accurately predict how much a bank’s

minimum capital requirement is. Banks should adhere to the Basel III framework requirements for the

minimum capital requirement. (King and Tarbert, 2011). Finally, policymakers could use the found

results to their benefit. If they could adjust their policies to change the most influential macroeconomic

and climate covariates, they could mitigate the possibility of an adverse risk event.

The first subquestion is: ’What are the most critical driving factors (covariates) for modeling the ex-

treme risks in the market?’ The answer will form the foundation of the research. The second subquestion

is: ’Has the inclusion of the climate factors in the process a significant beneficial effect?’ This question

will analyze the importance of the climate covariates and test whether their inclusion can significantly

improve existing models. Finally, the third question is: ’To what extent does a climate agreement af-

fect financial market risk?’ If climate agreements impact risk measurement, these agreements effectively

adjust policy. As a reference point, we take the Paris Climate Agreement (United Nations Framework

Convention on Climate Change, 2015) signed on the 12th of December, 2015.

This research is scientifically relevant because it analyses new relationships between climate covariates

and market indices. Climate research is a relatively new topic since the Intergovernmental Panel on

Climate Change (IPPC) was founded in 1988 by the World Meteorological Organization (WMO) and the

United Nations Environment Programme (UNEP) to assess and provide climate research for policymakers.

This research will contribute to climate research by discovering new relations between various (climate)

covariates and extreme adverse risks in the European stock market. These new relationships will provide
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more insights into the processes and point out new directions for further research.

The results suggest that covariates help construct VaR models. The estimations allow for the construc-

tion of statistically accurate VaR models. Furthermore, it is found that omitting the climate variables

increases the model fit to the data, which indicates that macroeconomic covariates are more informative

than climate covariates. Finally, it is also found that the Paris climate agreement has a risk-reducing

effect on almost all the different market indices.

The research is built up as follows, first, the current literature will be discussed in Section 2. Secondly,

the data that is used is analyzed in Section 3. Third, the methodology is described in Section 4, and the

results are shown in Section 5. Finally, the thesis is concluded in Section 6.

2 Literature

This section will review and synthesize the relevant literature on the research topic. Moreover, it will state

where this research will support and extend the existing literature. Specifically, this section will focus

on three areas of literature: risk measurement, macroeconomic analysis, and economic climate research.

By reviewing and synthesizing these different areas of literature, this section aims to establish a solid

theoretical foundation for the study and to identify potential avenues for further investigation.

2.1 Risk Measurement and Extreme Value Theory (EVT)

The Peaks-over-Threshold (POT) is a widely used approach for modeling extreme events in various fields.

The POT procedure assumes that exceedances above a certain threshold can be modeled differently than

the entire dataset. One of the most influential papers that demonstrated the effectiveness of the POT

approach is by Davison and Smith (1990). Their research estimated parameters with this model in the

field of river flows and on nuclear power sites. This research will apply this methodology to financial

returns in combination with implementing macroeconomic and climate covariates. Chavez-Demoulin

and Embrechts (2004) first investigated the inclusion of covariates into the modeling of financial return

tails and Chavez-Demoulin et al. (2016). Both papers form the foundation for the methodology of this

research. Moreover, their developed methods form a significant basis to expand further to model financial

risk’s tails more efficiently.

Different risk measures will be used to assess the risk measurement of the different models that will

be developed. In the field of risk management, there are a few widely used risk measures. James et al.

(2021) try to forecast the Value-at-Risk (VaR) and Expected Shortfall (ES) in the US stock market in

combination with the POT and specific covariates. According to Philippe (2001), these risk measures

are still widely used in current systems. The Basel II framework, developed by the Basel Committee on

Banking Supervision, is the most important recommendation for international banking. (Lind, 2005).

In their proposals, these measures are more efficiently used to calculate risks for the minimum capital

requirement. The international adoption of the measures suggests that these risk measures are reliable

and used widely in the professional world. This research will add a method with different covariates to

the current literature to estimate the VaR and ES, which could lead to a more optimal way to estimate
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risks in the market.

2.2 Macroeconomic Covariates and Stock Market Returns

There is much research on the relationship between macroeconomic covariates and stock market returns.

All these papers are a basis for this research because all known relations could play a role in the connection

between extreme market observations and macroeconomic covariates. Most research focused on developed

economies which is suitable for this research since the target regions are developed regions in Europe.

The paper by Sirucek (2012) tested relations between the stock market in the US and macroeconomic

variables. The report found significant relations between two major stock indices in the US and industrial

production, interest rate, inflation, oil price, production price index, unemployment, and money supply.

These relations form a reasonable basis for the macroeconomic covariates used in this research. In

addition, Humpe and Macmillan (2009) found similar ties in the US and Japanese economies. The US

has a relationship between the stock market and industrial production, the consumer price index, money

supply, and long-term interest rate. In Japan, there is a relationship between stock prices, industrial

production, and money supply. The mentioned papers agreed on the relationship between the stock

market returns and industrial production, the interest rate, and the money supply. These statements can

also be supported by earlier research which found relations between major international stock indices and

real oil price, real consumption, real money, and real output (Cheung and Ng, 1998). The reason behind

the stock market growth was studied in earlier research by Chen (1991). This paper analyzed that there

are relations between the investment opportunities in the market and the macroeconomy. Especially

production growth rate, default premium, term premium, short-term interest rate, and market dividend-

price ratio played a significant role. If these investment opportunities are favorable, this will lead to

average growth in the market and a positive return on the stock indices.

Jin and Guo (2021) found that the relations between the stock market and the macroeconomic vari-

ables are much weaker for emerging markets. This is mainly due to external factors such as irrational

market sentiments. Maghyereh (2002) found fragile relations in the emerging market of Jordan between

exports, foreign reserves, interest rate, inflation, industrial production, and the stock market. This shows

similar factors to mature markets but is much less robust.

Some papers find no existing relations between certain macroeconomic variables and stock market

indices. Filis (2010), for example, found no direct connection between industrial production and the

stock market in Greece. Since Greece is a southern European country, this finding may have the same

conclusion in this paper for some of the sample regions. Moreover, Gay Jr et al. (2008) found no

significant relationship between selected macroeconomic variables and the leading stock indices of the

BRIC (Brazil, Russia, India, and China) economies. However, this might be due to excluding other

domestic or international variables in the research.

Combining all the conducted research between the macroeconomic covariates and the stock market

indices in different markets will lead to an extensive basis for choosing variables in this research. Moreover,

it provides insights into future results to find specific differences and similarities between countries and

regions.
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2.3 Climate Covariates and Stock Market Returns

Climate research is a field of science which gained more attention in recent decades. The problems and

challenges of the changing climate are becoming increasingly apparent. An increasing area of literature

investigates the relationship between climate change and its driving factors. Therefore researchers have

also increased attention to the implications of these changes on the financial markets, recognizing the risk

and opportunities related to these climate factors.

Venturini (2022) performed a literature study on the relationship between climate change, risk factors,

and stock returns. In the paper, three main points are made which are related to this research. First, the

response to climate risk factors has increased over the years. Recent periods react more strongly to these

risks, emphasizing the recent increase in climate change concern in the market. The most used climate

factors are temperature anomalies and drought. These two risk factor classes will form the basis for the

climate covariate selection.

Secondly, more research is needed on the relationship between asset returns and climate risk factors.

New studies clarifying relations can be used to improve climate models. Moreover, in the future, extreme

events are more likely to happen due to climate change, giving more data points to enhance the models

again.

The last point made by Venturini (2022) is that many individual firms cannot adapt to climate change.

However, there are also solutions proposed to this problem. The leading answer is that investors prefer

’green’ assets over other assets, which automatically will shift the market towards a more sustainable

economy. This process will make individual firms more capable of adapting to climate change.

Finally, there is also climate (finance) research which also uses the same risk measurement techniques.

For example, Silva et al. (2016) use climate covariates within the POT model to model the risk of floods

in Brazil. Applying the POT with climate covariates provides an inspirational basis for this research.

This concludes contemporary climate research and gives a broad foundation to build on and extend the

current literature.

3 Data

In the research, two types of data are used. The first type is the market indices for different regions,

and the second is the covariates. Moreover, the covariates can also be divided into macroeconomic and

climate-related categories.

3.1 Market indices

Six different regions are selected for this research. First, the biggest economies in the European Union

in terms of GDP are chosen, and the United Kingdom is added to this list. Germany, France, Italy,

Spain, the Netherlands, and the United Kingdom are the countries. The biggest and most well-known

index is selected as the market proxy for the corresponding country. These are the DAX (Germany),

CAC40 (France), FTSE MIB (Italy), IBEX35 (Spain), AEX (the Netherlands), and the FTSE100 (United

Kingdom). The exact definition and composition of each index are given in Appendix A.1. The period is
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from 01-01-2000 until 25-05-2022. This period contains the financial crisis and also the COVID-19 crisis.

However, the exact role of the climate crisis is unknown. The market index closing prices are retrieved

from the Google Finance database and transformed into weekly negative log returns to show the weekly

losses. Weekly losses are used to match the covariate data better. In total, we have 1169 weekly losses

from six different market indices. The descriptive statistics of the market index losses are shown in Table

1.

Table 1: Descriptive Statistics of the Weekly Index Losses in Percentages (%)

Index # Losses Mean St. Dev Min Q1 Median Q3 Max

DAX 526 (45.0%) -0.062 3.21 -14.94 -1.84 -0.37 1.58 24.35

CAC 40 530 (45.3%) -0.0053 3.01 -12.43 -1.75 -0.25 1.49 25.05

FTSE MIB 538 (46.0%) 0.045 3.30 -19.36 -1.84 -0.27 1.66 26.52

IBEX 35 544 (46.5%) 0.024 3.16 -12.48 -1.74 -0.27 1.76 23.83

AEX 521 (44.6%) -0.001 3.01 -13.58 -1.61 -0.24 1.44 28.75

FTSE 100 537 (45.9%) -0.012 2.44 -12.58 -1.32 -0.20 1.21 23.63

Table 1 shows that the indices have much in common. For example, they all have almost the same

number of losses in the research period. However, there are some noticeable differences. The main

difference is that the means of nearly all indices are negative. Only the FTSE MIB and the IBEX 35

have a positive mean for the losses. Moreover, the highest loss in the period is from the AEX, with a

log loss of 28.75%. The final observation is that FTSE 100 is more stable than the other indices with

a lower standard deviation, highest minimal loss, and lowest maximal loss. In contrast, the amount of

losses equals the rest.

Next, we examine the presence of autocorrelation, which is the serial dependence of the index returns

(or losses). The autocorrelation will be tested in two ways, the first is an autocorrelation plot, and the

second way is the Ljung-Box test for autocorrelation. (Ljung and Box, 1978) The Ljung-Box test statistic

is shown below.

Q = n(n+ 2)

h∑
k=1

ρ̂2k
n− k

,

Here n is the total sample size of the time series, ρk is the sample autocorrelation at lag k, and h is the

total number of lags tested in the test. The test statistic Q is Chi-squared distributed (Q ∼ χ2
(h)) under

the null hypothesis that the time series is independently distributed. Autocorrelation is not only tested

in the time series of losses but also in the time series of absolute losses and also the squared losses time

series. These last two will indicate volatility clustering in the indices, a common element in the time

series of stock returns. Volatility clustering means that periods with high volatility will follow after each

other. The same holds for periods with low volatility.
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Table 2: Ljung-Box test statistics for 30 lags

Index Losses Absolute Losses Squared Losses

DAX 47.667** 718.31*** 291.65***

CAC 40 52.663*** 655.87*** 192.07***

FTSE MIB 58.347*** 640.6*** 181.8***

IBEX 35 41.152* 508.4*** 178.87***

AEX 52.207*** 805.99*** 180.61***

FTSE 100 75.397*** 503.34*** 190.75***
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 2 shows that the losses have autocorrelation. Moreover, the pattern becomes even stronger for

the absolute and squared losses. This is a commonly seen phenomenon. This image is also clear from

the autocorrelation plots, which can be found in Figure 4 in Appendix A.1. This Figure shows the same

results. The autocorrelation pattern in the regular, absolute, and squared losses indicates that the data

is undoubtedly serial-dependent.

3.2 Covariates

The second main element of the research is the class of covariates. A covariate is a variable that can

influence an outcome or a not directly significant process. Two different types of covariates are used in

this research paper. The first type is macroeconomic covariates, and the second is climate covariates.

3.2.1 Macroeconomic Covariates

Macroeconomic covariates depend on or measure the macroeconomic environment in different aspects.

Therefore, based on Section 2, a set of covariates is selected. The covariates are the industrial production,

the consumer price index as a proxy for inflation, the unemployment rate, the short-, middle- and long-

term interest rates, the producer price index, the imports, the exports, and three sentiment indicators

for each country. Moreover, for many covariates, two values are used. The first is the country-specific

value, and the second is the European average. All the different macroeconomic covariates are retrieved

from Eurostat, which is the official statistical office of the European Union.

There are 128 individual macroeconomic covariates used in the research. These are spread over the

six countries used in this research. The exact definitions and explanations for all the different covariates

are given in the appendix. Most macroeconomic data is only available monthly. Since the index data

is available weekly, the macroeconomic covariate data is interpolated into weekly data. So, the monthly

value is used for all 4 (or 5) weeks. Moreover, the units of all covariates are different. This is why all the

covariates are standardized, meaning all covariates are demeaned and divided by the standard deviation.

The descriptions of all the standardized macroeconomic covariates are in section C.1 of the appendix.
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3.2.2 Climate Covariates

This section will outline the different climate covariates. The main challenge in selecting climate covariates

is that each country does not have one national-level climate variable. For example, the maximum

temperature may differ between places within the same country. Therefore the covariate values of the

weather station closest to the market are chosen. These cities are Frankfurt (DAX), Paris (CAC 40),

Milan (FTSE MIB), Madrid (IBEX 35), Amsterdam (AEX), and London (FTSE 100). Moreover, the

data is not available from one data source.

There are three separate data sources: NASA (National Aeronautics and Space Administration),

POWER (Prediction Of Worldwide Energy Resources) earth program, the Copernicus database, and the

IMF database. These databases can be seen as reliable since they are globally well-known institutions.

The NASA data contains four types of covariates: Solar Fluxes, Temperature, Humidity/Precipitation,

and Wind/Pressure. The Copernicus database, which is European Union’s earth observation program,

provides other climate and energy indicators for this database. Finally, the IMF database contains

indicators about the impact of economic activity on climate change.

The total dataset consists of 28 climate covariates available for each country. Moreover, all the

individual data is standardized, like the macroeconomic covariate data. Finally, the data is matched to

the weekly observations of the returns dataset. The same procedure as for the macroeconomic covariates

is used. A complete list of all the individual covariates, abbreviations, and explanations is given in the

appendix. So the index data, the macroeconomic covariates, and the climate covariates are the complete

dataset used in this research.

The descriptions of the different climate covariates are shown in Appendix C.2. Moreover, the corre-

sponding abbreviations can be found in this section.

3.2.3 Multicollinearity

A problem that can arise in the data set is multicollinearity between the different covariates, especially

in the dataset where the covariates are directly or indirectly related. For example, the wind speed at 10

meters is associated with the wind speed at 50 meters. Multicollinearity is a statistical phenomenon that

occurs when two or more explanatory variables in a regression model are highly correlated (Hair et al.,

1998). This can cause problems in the model interpretation, as the coefficients of the correlated variables

may be unstable and difficult to interpret. One way to detect multicollinearity is to use variance inflation

factors (VIFs).

To calculate VIFs, a separate regression model is fit for each explanatory variable, with all of the other

explanatory variables as predictors (Hair et al., 1998). The VIF for a particular explanatory variable is

then calculated as the reciprocal of the tolerance, which measures the degree to which that variable is

correlated with the other variables in the model. A VIF value of 1 indicates no multicollinearity, while a

value greater than 1 indicates the presence of multicollinearity. It is generally recommended to consider

removing variables with VIF values above five from the model. (Neter et al., 1996) This method will be

used to test the chosen covariates on multicollinearity, resulting in a set of independent covariates for the

methodology.
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4 Methodology

The methodology used in this research consists of three main steps. The first step is the POT method

which analyses the extreme events in the market. The method fits a Generalized Pareto distribution

to observations above a certain threshold. The second step is covariate selection. This part introduces

the covariates to model the Generalized Pareto distribution (GPD) parameters. Moreover, here is also

determined which covariates are the most influential for the extreme risk observations. In the final step,

the models with the covariates are used to estimate different risk measures. These risk measures are then

tested against known and used benchmark models. As a benchmark, the historical simulation and non-

dynamic POT method are used. These tests determine if the inclusion of the covariates can significantly

benefit the traditional risk measurement in Europe. Furthermore, there is also tested if including climate

variables has a significant beneficial effect. Finally, there also tested if the role of covariates has changed

after the Paris Climate Agreement, signed on December 12, 2015.

4.1 Peaks-over-Threshold approach

The POT approach is an extreme value theory(EVT) technique. This concept, developed by Smith

(1984), tries to model threshold exceedances in i.i.d data. (McNeil et al., 2015) The POT procedure in

this research makes three assumptions:

• Exceedances above a certain threshold occur in time according to a homogeneous Poisson process.

• Excess amounts above the threshold are i.i.d. and independent of exceedance times.

• The distribution of excess amounts is GPD.

Since the assumptions require i.i.d. data, the market index loss data must be adjusted. This is because

the index data has a significant degree of autocorrelation, shown in section 3. The filtration technique

developed by McNeil and Frey (2000) is used to overcome the problem of autocorrelation in the data

to make the data suitable for the POT approach. This method uses the residuals after an appropriate

GARCH model is fitted to the index losses. In this research, like in McNeil and Frey (2000), an AR(1)

process with GARCH(1,1) (generalized autoregressive conditional heteroskedasticity) model is fitted to

the losses of the indices using the quasi maximum likelihood approach. The GARCH(1,1) model is

originally introduced by Bollerslev (1986). The AR(1) process with the GARCH(1,1) model is defined as

follows,
Lt = µt + σtZt

µt = µ+ ϕ(Lt−1 − µt−1)

σ2
t = α0 + α1(Lt−1 − µt−1)

2 + βσ2
t−1,

(1)

where Lt is a market index loss at time t, t ∈ {1, ..., n}, µt and σ2
t are the conditional mean and variance,

respectively, and α0 > 0, α1 > 0, β > 0 and β+α1 < 1. The underlying distribution of Zt is the student’s

t-distribution with κ degrees for freedom. κ will be estimated as a variable in the model. After fitting the

model to the market index data, the residuals series Zt should approximately be i.i.d. Thus, the residuals

will be used in the POT because these series do not violate the assumptions of the POT approach.

The residuals of the fitted model are used in the POT procedure in the same procedure and with the
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same notation as in McNeil et al. (2015). As mentioned, the POT approach aims to model exceedances

above a certain threshold. These exceedances are denoted as Z̃1, ..., Z̃p where the number of losses that

exceed the threshold is p. Z̃1, ..., Z̃p are residuals from the GARCH model that exceed threshold u.

Further, X̃ = Z̃ − u where X̃ are the excesses above the threshold. As mentioned in the assumptions,

the POT approach in this research fits these excesses to the Generalized Pareto Distribution (GPD) if

the threshold is chosen sufficiently high. The GPD is one of the most widely used distributions in the

POT procedure. (Davison and Smith, 1990) This is the case because the GDP can take a wide range of

tail shapes. The GPD includes both the exponential and Pareto distributions as special cases and can

also model heavy-tailed or light-tailed distributions, depending on the data. The distribution function of

the GPD is,

Gξ,β(x) =

1− (1 + ξx/β)−1/ξ, ξ ̸= 0,

1− exp(−x/β), ξ = 0,

(2)

where β > 0, and x ≥ 0 if ξ ≥ 0 and 0 ≤ x ≤ −β/ξ if ξ < 0. Moreover, the distribution specifies the

parameters ξ and β as the shape and scale parameters, respectively. The GPD is fitted on the data using

a maximum likelihood to obtain parameter estimates.

The next part of the methodology is estimating the intensity parameter of the occurrences of the

exceedances. If the assumptions hold, it means that occurrences of the residuals that exceed the threshold

follow a homogeneous Poisson distribution with λ as the intensity parameter. Furthermore, the excesses

X1, ..., Xp are asymptotically independent of the exceedance time and the number of exceedances p in

this process.

As mentioned before, a suitable threshold is needed in the POT approach. This is the case because of

a bias-variance trade-off. If the threshold is too high, there will be too few observations in the extreme

dataset. This can lead to too-small sample size and a high variance in the estimate of the tail distribution.

This can result in an unreliable assessment of the tail risk and may lead to overfitting or underestimation

of the tail risk. Conversely, if the threshold is too low, there will be too many observations in the

extreme dataset. This will increase the bias. Three rules of thumb and one graphical method are

used to find a suitable threshold in this research. Each market index will get its POT threshold. For

quick threshold setting, a few rules of thumb can be used. They can give an immediate indication

of an applicable threshold. Three primary rules of thumb are frequently used in extreme value research

(Scarrott and MacDonald, 2012). The first is the 90th percentile rule, which is used by DuMouchel (1983)

for example. The second rule of thumb often used is k =
√
n, where the k-th largest observation is used

as a threshold. This rule is used by Ferreira et al. (2003), for example. The last rule of thumb regularly

used was introduced by Loretan and Phillips (1994). The threshold is the k-th largest observation where

k = n2/3/log(log(n)). These rules of thumb do not contain information about the structure within the

dataset, which is why a graphical method is also used to determine a sufficient threshold. This method

is a mean residual life plot. The mean of the excesses for each threshold is plotted in a mean residual

life plot. When the plot shows a linear trend, a sufficient threshold can be estimated. The threshold

will be chosen as the moment that the graph becomes linear. These are all the different methods to

find the best suitable threshold in the POT approach. The optimal threshold is chosen by combining
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the information from the 90th percentile and the mean residual life plot. The other heuristics give an

indication of whether the selected threshold is a reasonable choice.

4.2 Covariates

This section introduces covariates to the previously explained POT approach. This dynamic POT pro-

cedure is introduced by Chavez-Demoulin et al. (2016), and the key concept is to let the parameters of

the POT approach depend on the different covariates. In our case, the parameters in the POT approach

are going to be dependent on macroeconomic and climate covariates. In the dynamic POT procedure,

there are three different parameters, which are λ(t) in the Poisson arrival distribution and ξ(t) and β(t)

in the generalized Pareto distribution at every time point t depending on covariates. The covariates, both

climate and macro-economic, are in the vector c = (c1, ..., cq), where q is the number of covariates that

correspond to the specific market index. The method that will be used to estimate the parameters on the

covariates is the penalized maximum (log-)likelihood. This is also used to overcome overfitting problems

when the procedure has too many covariates. The method will be explained in more detail in section

4.3.1.

4.2.1 Dynamic Poisson process

As mentioned before, the occurrences of exceedances above the threshold follow a Poisson process. If we

let the parameters depend on the covariates, this becomes a non-homogeneous Poisson process because the

intensity parameter λ(t) varies over time t. The intensity parameter will be modeled using a generalized

additive model. In generalized additive models (GAM) (Hastie and Tibshirani, 1986), the linear response

variable depends on a linear, smooth function of covariates. In the case of the intensity parameter, the

function is,

λ(t) = exp(ϕλ,0 + c1(t)ϕλ,1 + ...+ cq(t)ϕλ,q) (3)

where ϕλ,0 is the estimated constant and ϕλ,1, ..., ϕλ,q are the estimated coefficients for the different

covariates. Depending on the different covariate coefficient estimates, this leads to a different intensity

parameter for each time point. The GAM model will be estimated using a penalized log-likelihood.

The likelihood function of the Poisson process is defined as follows,

Lλ(λ(t)) = exp
(
−
∫ n

0

λ(t)dt

) p∏
i=1

λ(t), (4)

for t ∈ 1, ..., n where n is the sample size, and where λ(t) is, in this case, the additive model defined

in equation (3). In the optimization process, the function that will be optimized is the log(Lλ(λ(t))),

which transforms the multiplication of the λ(t) into a summation of log(λ(t)). Moreover, the integral

also transforms into a summation because we assume that λ(t) is constant between time point t and t+1

for every t. The log-likelihood function of the Poisson process is defined as follows,

ℓλ(λ(t)) := log(Lλ(λ(t))) =

p∑
i=1

log(λ(t))−
n∑

t=1

λ(t) (5)

Moreover, a penalty function will be introduced for the covariate selection for the penalization. This will

be explained in section 4.3.
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4.2.2 Dynamic Generalized Pareto Distribution

The parameters ξ(t) (shape) and β(t) (scale) are modeled to be dependent on the covariates in the gen-

eralized Pareto distribution. However, the parameters must be reparameterized due to the simultaneous

fitting procedure. This is needed because of the convergence of the fitting procedure, which is explained in

Chavez-Demoulin (1999). The reparameterization is as follows, following Chavez-Demoulin et al. (2016),

ν(t) = log((1+ ξ(t))β(t)), where automatically follows that β(t) = exp(ν(t))
1+ξ(t) . Furthermore, the reparame-

terization is only accurate if ξ(t) > −1. Now we can set up the general additive models for the penalized

log-likelihood, shown below.

ξ(t) = ϕξ,0 + c1(t)ϕξ,1 + ...+ cq(t)ϕξ,q,

ν(t) = ϕν,0c1(t)ϕν,1 + ...+ cq(t)ϕν,q.
(6)

Again, the same notation is used as in equation (3). These models indicate that the parameters depend

linearly on the chosen covariates and include a constant. The likelihood function for the optimization of

the parameters in the distribution is,

Lξ,β(ξ(t), β(t); X̃1, ..., X̃p) =

p∏
i=1

gξ(ti),β(ti)(X̃ti), (7)

where ti ∈ 1, ..., p, are the time points where the residuals exceed the thresholds. For the optimization,

the log-likelihood is used, which is shown below.

ℓξ,β(ξ(t), β(t); X̃1, ..., X̃p) =

p∑
i=1

log(gξ(ti),β(ti)(X̃ti)), (8)

where,

log(gξ(ti),β(ti)(X̃ti)) =


−log(β(ti))− (1 + 1/ξ(ti))log(1 + ξ(ti)X̃ti

β(ti)
), if ξ(ti) ̸= 0 and 1 +

ξ(ti)X̃ti

β(ti)
> 0,

−log(β(ti))−
X̃ti

β(ti)
, if ξ(ti) = 0,

−∞, otherwise.
(9)

The optimization of this function will give the estimated coefficients (ϕξ and ϕν) for the different covariates

for the parameters of the distribution.

4.2.3 Likelihood estimation

Due to the asymptotic independence between the exceedance time, the number of exceedances, and the

excesses, as stated by the assumptions of the approach, the log-likelihood can be split into two independent

marginal log-likelihoods. This procedure of splitting the likelihoods is shown below,

L(λ(t), ξ(t), β(t); X̃1, ..., X̃p) = Lλ(λ(t)) · Lξ,β(ξ(t), β(t); X̃1, ..., X̃p) (10)

which means for the log-likelihood that,

log(L(λ(t), ξ(t), β(t); X̃1, ..., X̃p)) = ℓλ(λ(t)) + ℓξ,β(ξ(t), β(t); X̃1, ..., X̃p). (11)

In practice, this means that the intensity parameter can be estimated separately from the parameters

in the GPD, which is computationally less intensive.
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4.3 Model Selection

4.3.1 Model Regularization

A lot of different individual covariates are used in this research. This leads to a lot of different models

that can be evaluated. A strategic approach is needed to look efficiently at the best models. The method

that will be used here is the penalized likelihood approach. The penalized likelihood approach tries the

optimize the "bias-variance" trade-off in the models by implementing regularization. Because as said

before, a simple model is preferred over a more complex model, but without a significant increase in the

variance. Regularization techniques are applied to the log-likelihood function in equation (11), ensuring

that only significant informative covariates are added to the log-likelihood function. The general form of

the penalized likelihood is as follows,

ℓ(λ(t), ξ(t), β(t); X̃1, ..., X̃p)) = ℓλ(λ(t)) + ℓξ,β(ξ(t), β(t); X̃1, ..., X̃p))−
∑
j

τj ||ϕj ||rr. (12)

The last term,
∑

j τj ||ϕj ||rr is the penalization term for the specific parameter j ∈ {(λ), (β, ξ)}. So we

have one specific for the Poisson likelihood and one for the GPD likelihood. τj is the regularization term

and ||.||rr is the Lr norm of ϕj . An Lr norm (Euclidean norm) is defined as ||ϕj ||rr =
∑q

i=1 |ϕj,i|r. The

log-likelihood is penalized for the number of parameters in the model. In the research, three different

types of regularization will be used: the Ridge penalization, the LASSO penalization, and the Elastic-

Net penalization. The Ridge penalization (or Tikhonov regularization), introduced and developed by

Tikhonov (1943); Phillips (1962), is a regularization technique that takes multicollinearity into account.

It uses an L2 norm in the log-likelihood function in equation (12). The second regularization technique

is the LASSO (least absolute shrinkage and selection operator) penalization. LASSO penalization was

first introduced and developed by Santosa and Symes (1986); Tibshirani (1996). This method uses a

L1 norm in the optimization function in the penalty term, which is the absolute value. The difference

between Ridge and Lasso penalization is that LASSO penalization can shrink some covariates to zero,

which is impossible in the Ridge penalization. However, LASSO cannot deal well with multicollinearity.

The last method that is introduced is the ElasicNet penalization. This method combines both Ridge and

LASSO. (Zou and Hastie, 2005) It includes both a L1 and L2 norm in the log-likelihood function. The

penalization term, in this case, becomes α
∑

j τj ||ϕj ||11 + (1 − α)
∑

j τj ||ϕj ||22, where we choose α = 0.5.

The ElasticNet penalization tries to combine the strengths of Ridge and LASSO penalization. These

three regularization techniques optimize the "bias-variance" trade-off in the models by selecting the right

amount of parameters.

The penalized likelihood is unable to exclude covariates from the equation. It is only able to shrink

the estimated coefficients toward zero. That is why covariates with an estimated coefficient smaller than

0.001 are excluded from the results and are treated as insignificant.

Regularization term selection A grid search is performed to find the best regularization term τj .

There are two different regularization terms, one for the Poisson process likelihood and one for the GPD

likelihood. The grid search is performed over a logarithmically spaced range: τj ∈ {1, 10, 100}. The grid

search is performed with the Lasso regularization for the DAX market index. Due to their computational
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intensiveness, the same regularization terms are used for all the market indices. The optimal regularization

term for the Poisson process and the GPD estimation is 1 in this setting after 10000 and 100000 likelihood

optimization iterations, respectively. However, the likelihoods did not converge within the iterations. This

is why a more restrictive regularization term is chosen. That is why the second best option 10 is chosen

as the regularization term for the Poisson process and the GPD likelihood estimation.

4.3.2 Model Criteria

In Section 3, it is shown that there are a lot of individual covariates, so we have a lot of potential models

which are interesting to research. The best-performing model needs to be selected out of all the potential

models. Criteria are needed to choose the best models from all the possible models. In this research, three

commonly used criteria for model selection are used. The first one that is used is the Akaike information

criterion (AIC), (Akaike, 1998; Mills and Prasad, 1992) AIC = 2k − ln(L̂), where k is the number of

estimated ’significant’ covariates and L̂ is the value of the likelihood. The lower the AIC, the better the

model, but this only can be used to rank the models. It does not give an absolute indication of how

good the model is. Looking at the definition of the AIC, it protects against over- and underfitting; it

covers the under-fitting by the likelihood value and over-fitting by including the number of parameters k.

The second criterion is the Bayesian (Schwarz) information criterion (BIC). (Schwarz, 1978) The BIC is

defined as, BIC = kln(n)− 2ln(L̂), where again k is the number of estimated ’significant’ covariates, n

is the sample size (n ≫ k) and L̂ is the value of the likelihood. Moreover, here applies that a lower BIC

is better but can only be used to rank models. Like the AIC, also the BIC controls for both over- and

underfitting. However, there is a slight difference between these information criteria in the penalty term.

The difference in performance, as indicated by Vrieze (2012), is that the AIC generally performs better

when n is finite. However, the best solution is to check both criteria, often leading to the same model.

The criterion for model evaluation is a goodness-of-fit test, which is the likelihood-ratio or Wilks test.

(Wilks, 1938) the test statistic is,

ΛLR = −2

[
L(θ1)

L(θ2)

]
,

or for the log-likelihoods, the test statistic becomes,

λLR = −2(ℓ(θ1)− ℓ(θ2)),

where L(θ1) and ℓ(θ1) are the likelihood and log-likelihood of the more parsimonious model, respec-

tively. The parameters θ1 and θ2 indicate the parameter spaces of the models. The test statistic λLR

is (asymptotically) chi-squared distributed with p degrees of freedom under the null hypothesis that the

parsimonious model is the better performing model (λLR ∼ χ2
p, where p is the difference in the number

of parameters). This only holds if the models are nested, which is the case in the research. Moreover,

the degree of freedom is equal to the difference in the number of parameters in the models. These three

selection criteria are used to determine which model is preferred for estimation compared to another

model.
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4.4 Risk and Performance Measures

The last step is to move from the optimized models to estimate the financial risk for the different indices.

In Chavez-Demoulin et al. (2016), the most well-known risk measures are used for the different models.

The first one is the most used risk measure, which is the Value-at-Risk (VaR). (Philippe, 2001) The VaR

measure is adopted worldwide by banks and was agreed upon in the Basel II Accord framework. This

framework contains international banking recommendations for laws and regulations which the Basel

Committee on Banking Supervision issues. (Yetis, 2008) The Value-at-Risk is formally defined as,

V aRα(X) = −inf{x ∈ ℜ : FX > α} = F−1
Y (1− α).

Alternatively, in words, V aRα is defined as the threshold where the probability of a loss larger than V aRα

is only (1− α). Besides the VaR, the Expected Shortfall (ES) (or conditional Value at Risk (CVaR)) is

also used as a risk measure. This measure is the average loss when the VaR level is exceeded.(Rockafellar

et al., 2000) The ES, compared to the VaR, takes more care of the distribution of the losses. This might,

in some cases, give more insight into the risks of a market.

V̂ aR
Z

α (t) = u+
β̂(t)

ξ̂(t)

((
1− α

1− e−λ̂(t)

)−ξ̂(t)

− 1

)

ÊS
Z

α (t) =


V̂ aR

Z

α (t)+β̂(t)−ξ̂(t)u

1−ξ̂(t)
, if ξ̂(t) ∈ (0, 1),

∞, if ξ̂(t) ≥ 1

(13)

Where the V aR and ES are transformed back from the residuals to the index losses by the following

formulas,
V̂ aR

L

α(t) = µ̂t + σ̂t · V̂ aR
Z

α (t)

ÊS
L

α(t) = µ̂t + σ̂t · ÊS
Z

α (t)
(14)

The µ̂t and σ̂t are the estimated values from the GARCH model in equation 1. These estimated models

will be statistically tested against benchmark models to see which models perform significantly better.

4.4.1 Benchmark models

The next thing to consider is a benchmark model to compare to the found models in the research. The

first benchmark model to be considered is the historical simulation approach. The historical simulation

approach for the VaR uses past data. It takes the value which satisfies the requested VaR condition.

This value will be the VaR over time. This benchmark’s strength is that it is nonparametric; it does not

need a pre-specified distribution. The second benchmark model used is the Peaks-over-Threshold method

without the covariates. The Poisson and Generalized Pareto distribution parameters will be estimated

without any covariates. The rest of the methodology will be the same as the dynamic method. This will

give insights into the impact that the covariates have. This method can also be repeated for the expected

value. These two benchmark models test if the optimal dynamic covariate model performs significantly

better.
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4.4.2 Model Performance

Statistical tests are needed to determine which VaR model outperforms the others. Kupiec et al. (1995)

has developed two tests for Value-at-Risk models. The first one is the proportion of failing (POF) test

which tests whether the confidence level is statistically equal to the exceedance rate of the VaR level.

The test statistic, a special likelihood ratio test, is defined as in equation (15).

LRPOF = −2log
(

αn−xe(1− α)xe

(1− xe

n )n−xe(xe

n )xe

)
∼ χ2

1, (15)

n is the number of observations, xe is the number of observations exceeding the VaR level, and α is the

confidence level. Under the null hypothesis, the VaR model is accurate, so the exceedance rate equals

the confidence level. The second test by Kupiec et al. (1995) is the time until the first failure test (TFF).

This test examines whether or not the observed time until the first exceedance of the VaR level is equal

to the expected time. The test statistic is almost equal to the previous statistic,

LRTFF = −2log
(

αte,1−1(1− α)

(1− 1
te,1

)te,1−1( 1
te,1

)

)
∼ χ2

1, (16)

where the notation is the same as before, except for te,1, which is the time of the first VaR exceedance.

Both tests backtest the VaR models on the dataset’s theoretical and observed behavior. Another test

that backtests an estimated Value-at-Risk is the VaR duration test by Christoffersen and Pelletier (2004).

This test evaluates whether or not the VaR exceedances are independent of each other, which is the case

in an adequate VaR model. The test is built up as follows: first, we need to define di = te,i− te,i−1 (te,i is

the time of the ith VaR exceedance) which is the duration between two VaR exceedances. Then, since di

are independent under the null hypothesis, they need to be distributed with a memoryless distribution.

The only continuous memoryless distribution is the exponential distribution. This distribution has the

density:

f(d) = pexp(−pd) (17)

This means that under the null hypothesis of a correct specified VaR model, there needs to hold that the

VaR level α is equal to p. A likelihood ratio test again tests this. These are all the methods to analyze

the models on their performance.

4.5 Influence of Climate Covariates

We employ the dynamic POT method to evaluate the influence of climate covariates. However, we only

consider macroeconomic covariates as input covariates. We determine the coefficients for the covariates

and then construct the Value-at-Risks and Expected Shortfall. Additionally, we conduct the same tests

as previously to ascertain whether the climate covariates have a favorable impact.

4.6 Impact of Climate Agreements

Finally, the impact of the Paris climate agreement is estimated. A typical before-after analysis is used

to assess the impact. This is a standard method to examine the effect of an intervention on a particular

outcome variable. The intervention, in this case, is the signing of the Paris climate agreement. In this
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method, a dummy variable is constructed to assess the impact. The dummy variable will be 0 for the

periods before the climate agreement, and 1 after the agreement was signed. So, in formula form:

DParis =

1, in the period after 12/12/2015.

0, in the period before 12/12/2015.

We add this variable to the set of existing covariates and proceed with the dynamic POT approach.

The other covariates in the model will serve as control variables to address possible endogeneity in this

setting. The coefficient estimated for the dummy variable will indicate how the agreement influences the

different parameters in the model. The difference in risk between the period before and after the climate

agreement can be constructed using the estimated coefficients and equation (13). This indicates how the

Paris climate agreement has impacted the risk measures in this setting.
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5 Results

5.1 Threshold Determination

Table 3 shows the thresholds for the different market indices based on the rules and heuristics stated

before. Moreover, the table shows the chosen threshold for the rest of the methodology based on the

decision rule. The DAX has the highest chosen threshold, and the FTSE 100 has the lowest. The pattern

in the chosen thresholds generally corresponds to Table 1. A higher standard deviation in the losses

indicates more variability in the data, so a higher point is needed to classify an observation as an extreme

observation.

Table 3: Threshold selection based on different decision rules

DAX CAC 40 FTSE MIB IBEX 35 AEX FTSE 100

90th percentile 0.039 0.036 0.039 0.039 0.032 0.027
√
n 0.066 0.057 0.065 0.062 0.061 0.048
n2/3

log(log(n)) 0.053 0.050 0.053 0.053 0.050 0.039

mean residual life plot 0.040 0.035 0.039 0.030 0.029 0.025

Chosen Threshold 0.040 0.036 0.039 0.035 0.030 0.026

5.2 Dynamic Peaks-over-Threshold

First, the results of the dynamic POT approach are examined. Covariates are introduced in this approach.

The results for the different market indices are presented per market index. In the main section of this

research, the DAX market index is shown, while the rest of the results are presented in the Appendix. All

figures and tables are given per market index in Appendix B.1 (Table 16) - B.5 (Table 28). Table 4 shows

the estimated coefficients for the different regularization methods per covariate. The general pattern for

the market indices is that the Lasso and ElasticNet regularization methods are the most restrictive. It

shrinks coefficients more strongly toward zero compared to the Ridge regularization.

Here, an economic explanation will be given of the sign of the coefficients. The first thing to remember

is that we work with standardized covariates. This means that the covariates are 0 for their average value

in the research period. The coefficient of the constant can be interpreted as the geometric mean for

the λ̂(t) parameter and as the arithmetic mean for the ξ̂(t) and ν̂(t) parameters. This is because the

covariates depend linearly on parameters ξ̂(t) and ν̂(t) but also depend linearly on log(λ̂(t)). So, the

covariate coefficient estimates for ξ̂(t) and ν̂(t) can directly be seen as the increase (decrease) magnitude

of the corresponding parameter if the covariate increases (decreases) by one unit. However, the covariate

coefficient estimates for λ̂(t) can be seen as the increase (decrease) magnitude of the log(λ̂(t)) if the

covariate increases (decreases) by one unit.

Furthermore, an increase in the λ̂(t), ξ̂(t), and ν̂(t) parameters lead to an higher estimated VaR.

Combining this notion with the explanation of the coefficients it can be determined that an increase

of covariates with a positive coefficient lead to a higher estimated VaR. Moreover, a decrease in this
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covariate leads subsequently to a lower estimated VaR. This is the opposite for covariates with a negative

coefficient.

The model that best fits the criteria specified beforehand is selected along with its corresponding

regularization method. For instance, the Lasso method was chosen as the model for the λ̂(t) parameter

in the DAX market index. Similarly, the CAC 40, IBEX 35, and FTSE 100 also adopted the Lasso

regularization method. However, the ElasticNet regularization proved optimal for the FTSE MIB, while

the Ridge regularization was best suited for the AEX. These optimal models surpassed other regularization

methods by producing lower AIC (and BIC) scores. Additionally, for the DAX, CAC 40, and the FTSE

100 market indices, the goodness-of-fit test statistic indicated that the null hypothesis could be rejected,

meaning the more parsimonious model is preferred. In this case, this was the model with the Lasso

regularization. Furthermore, the IBEX 35, AEX, and FTSE MIB had the same conclusion as the model

based on the AIC. Their optimal method based on the AIC also outperformed the others in terms of

log-likelihood value.

The first thing to notice regarding the coefficient estimates for the λ̂(t) parameter is that the covariate

with the highest magnitude for the DAX market index is the Long rate in the Euro area followed by

the SCI. The Long rate has a positive coefficient and the SCI has a negative coefficient. This is also

the case for the FTSE MIB market index. More similarities can be found between market indices. For

example, the AEX and CAC 40 share a large negative coefficient for the unemployment rate percentage

change. In contrast, there are also differences between the market indices. For example, the coefficients

for the producer price index percentage change are negative for the AEX and IBEX 35 market indices,

while they are positive for all other indices. Moreover, the minimum wind speed at 10 meters has a

positive coefficient for all indices except for the FTSE MIB. Moreover, there are also differences in which

covariates are considered significant for the model. For example, the Imp TV (Change) Euro area is only

in the models for the DAX and AEX market indices.

Table 5 shows estimation results for the ξ̂(t) and ν̂(t) parameters for the DAX market index. The same

general pattern can be seen for these parameters as for the λ̂(t) parameter. The Lasso and ElasticNet

regularization methods are the most restrictive, and Ridge is the least restrictive. For the DAX market

index, the ElasticNet method is optimal in this setting. Since it the lowest AIC criterion, this is also the

case for the CAC 40, FTSE MIB, IBEX 35, and the FTSE 100 market indices. Only the AEX has the

Lasso regularization as the optimal method. These model choices are also supported by the goodness-of-

fit likelihood ratio test since this tests conclude that the same regularization methods are optimal for the

different market indices. These results are presented in Tables 17, 20, 23, 26 and 29.

In the dynamic POT approach estimation for the ξ̂(t) and ν̂(t) parameters there are also similarities

and differences between market indices. For example, the Imp TV (Change) Euro area covariate is

included in the models for the ξ̂(t) parameter for all the market indices except for the IBEX 35 market

index. There are also a lot of differences in coefficient signs between market indices. To highlight one,

the CLD covariate has a positive sign for the ξ̂(t) parameter for all market indices except for the FTSE

MIB market index.

From these differences in significant covariates, it is quite apparent that the impact of a covariate is
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heavily reliant on the country and the type of regularization technique that is executed. This is primarily

due to the fact that each country possesses its own distinct economic characteristics, institutional frame-

works, climate patterns, and political landscape, all of which can play a crucial role in determining the

relation between the covariates and the potential market risk. Therefore, it is possible for different coun-

tries to have completely different coefficients assigned to the same covariate, underscoring the noteworthy

impact that regional variations can exert on market projections.
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Table 4: Dynamic POT for DAX index describing the λ̂(t) parameter in different regularisation methods

Lasso Ridge ElasticNet

Constant (Intercept) -2.293 (0.097) -2.067 (0.079) -2.122 (0.084)

IP (Change) EU28 -0.034 (0.099) -0.036 (0.090) -0.053 (0.099)

IP (Change) 0.001 (0.016) -0.102 (0.111) 0.039 (0.121)

HICP (Change) Euro area 0.058 (0.099) 0.214 (0.106) 0.116 (0.096)

HICP (Change) -0.147 (0.101) -0.016 (0.105)

Unemp (Change) EU -0.005 (0.174) -0.031 (0.095)

Unemp (Change) -0.049 (0.122) -0.121 (0.109)

PPI (Change) EU28 -0.070 (0.134) -0.075 (0.097)

PPI (Change) 0.019 (0.133) 0.093 (0.095) 0.049 (0.108)

Long rate Euro area 0.464 (0.161) 0.304 (0.117) 0.371 (0.115)

Exp TV (Change) Euro area 0.022 (0.095) 0.019 (0.142) -0.017 (0.114)

Imp TV (Change) Euro area 0.153 (0.116) 0.004 (0.137) 0.091 (0.101)

CCI Euro area 0.047 (0.092)

ICI -0.010 (0.150) -0.051 (0.112) -0.082 (0.124)

RCI 0.098 (0.186) -0.136 (0.114) 0.158 (0.132)

SCI -0.405 (0.160) -0.285 (0.130)

PS 0.122 (0.111) 0.197 (0.089) 0.158 (0.095)

WS10M 0.115 (0.136) -0.014 (0.103) 0.007 (0.116)

CLOUD_AMT 0.070 (0.125) 0.316 (0.111) 0.169 (0.116)

T2M_RANGE -0.029 (0.136) 0.019 (0.100) 0.122 (0.101)

WS10M_MAX 0.094 (0.101) 0.025 (0.113)

WS10M_MIN 0.019 (0.086) 0.190 (0.069) 0.114 (0.075)

PRECTOTCORR_SUM 0.006 (0.112) 0.039 (0.091) 0.092 (0.098)

CDD EU 0.093 (0.101) 0.047 (0.120) 0.039 (0.132)

CDD 0.131 (0.100) 0.096 (0.114)

Solar 0.052 (0.126) 0.137 (0.119) -0.037 (0.117)

Hydro 0.047 (0.108)

CLD -0.136 (0.104) -0.081 (0.086) -0.146 (0.087)

Log-likelihood value -403.65 -420.63 -414.09

AIC 851.31 885.27 876.18

BIC 962.72 996.67 997.71
Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed

errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA, then the estimated standard error is negative, which is impossible. The term (Change) refers to the

percentage change of the covariate in relation to the previous period.
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Table 5: Dynamic Peak-over-Threshold for DAX index describing the ξ̂(t) and ν̂(t) parameter for different

regularisation methods

Lasso Ridge ElasticNet

ξ̂(t) ν̂(t) ξ̂(t) ν̂(t) ξ̂(t) ν̂(t)

Constant (Intercept) 0.231 (0.267) -3.161 (0.458) 0.586 (0.156) -2.315 (0.160) 0.590 (0.203) -2.633 (0.209)

IP (Change) EU28 0.049 (0.407) -0.108 (0.536) -0.022 (0.153) -0.011 (0.169) 0.005 (0.194) 0.015 (0.014)

IP (Change) 0.079 (0.440) 0.204 (0.561) 0.041 (0.145) -0.015 (0.155) 0.041 (0.172)

HICP (Change) Euro area 0.006 (0.045) 0.064 (0.162) 0.059 (0.177) 0.044 (0.229)

HICP (Change) 0.121 (0.302) 0.174 (0.281) -0.028 (0.148) 0.024 (0.189)

Unemp (Change) EU 0.028 (0.183) -0.004 (0.520) -0.085 (0.179) -0.013 (0.170) 0.022 (0.176) 0.001 (0.208)

Unemp (Change) -0.040 (0.909) -0.006 (2.247) -0.098 (0.172) 0.004 (0.202) 0.060 (0.018)

PPI (Change) EU28 0.027 (0.533) -0.027 (0.935) 0.032 (0.149) 0.093 (0.191)

PPI (Change) 0.010 (0.305) 0.222 (0.682) 0.085 (0.158) 0.102 (0.162) 0.123 (0.317) 0.003 (0.184)

Long rate Euro area 0.300 (0.692) 0.008 (1.566) -0.029 (0.170) -0.232 (0.161) 0.002 (0.029) -0.139 (0.188)

Exp TV (Change) Euro area 0.042 (0.977) 0.107 (0.169) -0.147 (0.172) -0.110 (0.192)

Imp TV (Change) Euro area -0.124 (0.663) -0.384 (1.029) -0.129 (0.169) -0.049 (0.173) -0.009 (0.203) 0.010 (0.213)

CCI Euro area -0.192 (0.114) -0.020 (0.324) 0.059 (0.152) 0.016 (0.175) 0.044 (0.199) 0.217 (0.014)

ICI 0.282 (NA) 0.154 (0.323) 0.120 (0.154) 0.253 (0.155) 0.008 (0.208)

RCI 0.031 (0.732) 0.024 (1.073) 0.131 (0.169) 0.318 (0.169) 0.101 (0.190)

SCI -0.053 (0.446) -0.053 (0.586) 0.058 (0.155) 0.095 (0.177) 0.115 (0.214) 0.039 (0.225)

PS 0.022 (0.183) 0.041 (1.049) -0.060 (0.156) -0.062 (0.163) -0.010 (0.175) 0.001 (0.194)

WS10M -0.012 (0.785) -0.041 (0.175) -0.038 (0.173) 0.233 (0.256) 0.140 (0.025)

CLOUD_AMT -0.008 (0.155) 0.001 (0.018) 0.055 (0.150) 0.216 (0.166) 0.022 (0.222) 0.128 (0.198)

T2M_RANGE 0.039 (0.327) 0.413 (0.990) -0.051 (0.161) 0.168 (0.170) 0.175 (0.178)

WS10M_MAX 0.054 (0.560) 0.013 (0.639) 0.047 (0.153) 0.139 (0.183) -0.007 (0.224) 0.199 (0.224)

WS10M_MIN 0.066 (0.374) 0.080 (0.151) -0.023 (0.177) -0.049 (0.185) -0.245 (0.215)

PRECTOTCORR_SUM -0.006 (0.637) 0.357 (0.443) 0.120 (0.154) 0.130 (0.161) 0.196 (0.262) 0.024 (0.182)

CDD EU 0.394 (0.658) 0.041 (0.566) -0.050 (0.178) -0.012 (0.174) -0.002 (0.180)

CDD 0.029 (0.387) 0.003 (0.845) 0.018 (0.172) -0.186 (0.184) 0.029 (0.245) -0.004 (0.238)

Solar -0.205 (0.335) 0.060 (0.167) 0.017 (0.169) 0.106 (0.207) 0.310 (0.014)

Hydro 0.282 (0.830) 0.098 (0.172) 0.207 (0.185) 0.050 (0.235)

CLD -0.293 (0.184) 0.108 (NA) 0.448 (0.181) 0.018 (NA) 0.153 (0.219)

Log-likelihood value 213.57 219.21 219.30

AIC -329.14 -330.42 -348.61

BIC -81.00 -56.97 -120.73
Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed

errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA, then the estimated standard error is negative, which is impossible. The term (Change) refers to the

percentage change of the covariate in relation to the previous period.

Finally, in the optimal models for the λ̂(t), ξ̂(t) and ν̂(t) (β̂(t)) parameters the climate covariates have

a significant enough coefficient to be contained in the model. So in the dynamic POT method, the climate

covariates affect all the market indices. These models for the parameters will be used in constructing the

VaR and ES.
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5.3 Benchmark models

Now the benchmark models are considered. The parameters λ, ξ, and β do not depend on covariates in

these two models. In Tables 6 and 7, the estimates are shown for the historical simulation (HS) Value-

at-Risk and Expected Shortfall, respectively. It can be seen that the Value-at-Risk estimates are almost

equal between the different market indices. However, the FTSE 100 has the lowest VaR and ES for all

levels. The highest ES is estimated for the FTSE MIB for all levels. The rest of the market indices are

estimated to be similar. The historical simulation method provides constant level estimates for the VaR

and ES for the entire period.

Table 6: Historical simulation Value-at-Risk

DAX CAC 40 FTSE MIB IBEX 35 AEX FTSE 100

VaR 90 0.036 0.035 0.037 0.038 0.033 0.025

VaR 95 0.050 0.049 0.050 0.050 0.048 0.037

VaR 99 0.091 0.087 0.095 0.081 0.093 0.070

Table 7: Historical simulation Expected Shortfall

DAX CAC 40 FTSE MIB IBEX 35 AEX FTSE 100

ES 90 0.060 0.057 0.064 0.059 0.058 0.045

ES 95 0.078 0.073 0.083 0.075 0.077 0.060

ES 99 0.133 0.129 0.154 0.130 0.134 0.108

Table 8 shows the estimation results of the POT approach without covariate dependence. The AEX

and DAX market indices are estimated to have almost the same tail distribution because the estimated

ξ and β parameters are nearly the same. The other market indices do not have a tail distribution that is

close to another tail distribution. Moreover, all the indices have almost the same estimated λ parameter,

which is the intensity parameter for threshold exceedances. Only the IBEX 35 market index has a higher

parameter. The log-likelihood, AIC, and BIC for the model evaluation are also shown in the table.
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Table 8: Estimated POT benchmark model without covariate dependence

DAX CAC 40 FTSE MIB IBEX 35 AEX FTSE 100

ξ 0.216 0.322 0.308 0.209 0.217 0.376

(0.106) (0.121) (0.118) (0.090) (0.100) (0.132)

β 0.019 0.015 0.018 0.017 0.019 0.012

(0.003) (0.002) (0.003) (0.002) (0.002) (0.002)

Log-Likelihood 312.29 344.89 315.51 416.03 378.69 389.80

AIC -620.58 -685.77 -627.03 -828.05 -753.37 -775.61

BIC -610.46 -675.64 -616.90 -817.92 -743.25 -765.48

λ 0.098 0.102 0.100 0.124 0.118 0.110

(0.009) (0.009) (0.009) (0.010) (0.010) (0.010)

Log-Likelihood -379.36 -390.89 -386.30 -447.64 -432.86 -411.01

AIC 760.72 783.78 774.60 897.28 867.72 824.02

BIC 758.72 781.78 772.60 895.28 865.72 822.02
Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed

errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid.

5.4 Risk Measures

Figure 1 shows the estimated VaR for different probability levels. The chosen probability levels are often

used in risk measurement. The general pattern is visible in the figure since a higher probability level

needs a higher VaR estimation. Moreover, it can be seen that the dynamic POT approach is very close to

the non-dynamic POT approach for the VaR. Only for the 99% probability level VaR, a slight deviation

is noticeable for the DAX market index. This picture is visible for all the different market indices. The

historical simulation is a constant line by construction. So, from the visual presentation, the standard

POT approach and dynamic POT are very close in performance for the VaR. Statistical tests are used

to examine their accuracy.
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Figure 1: Value-at-Risk for the DAX market index

(a) Value-at-Risk at the 90% probability level (b) Value-at-Risk at the 95% probability level

(c) Value-at-Risk at the 99% probability level

The ES estimated with the dynamic POT approach, shown in Figure 2, is not informative. The ξ̂(t)

is sometimes estimated to be above 1. According to the definition used in (13), the ES is estimated to be

∞ in this case. Only the 90% probability level is shown, because this is the case for all the probability

levels for all the market indices. Therefore the ES is not used in further analysis.

Figure 2: Expected Shortfall at the 90% probability level for the DAX market index
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5.4.1 Model Accuracy

This section discusses the statistical tests for the VaR models. The first test that was performed was the

Kupiec POF test. The test’s null hypothesis is that the VaR model is accurate in terms of exceedance

proportion according to its probability level. The significance level of the test is equal to the probability

level of the estimated VaR models. Table 9 shows the estimated test statistics. The historical simulation

VaR does not reject the null hypothesis by construction. Some dynamic VaR models are statistically

accurate in terms of their exceedance proportion. Namely, the CAC 40, AEX, and FTSE 100 at the 90%

probability level. The FTSE MIB at the 95% probability level and the AEX at the 99% probability level.

Moreover, for the non-dynamic POT models, none of the VaR models is statistically accurate. It can be

concluded that the historical simulation models are preferred according to this test. However, for some

market indices, the dynamic POT models can also be used.

Table 9: Kupiec Proportion of Failing (POF) test

DAX CAC 40 FTSE MIB IBEX 35 AEX FTSE 100

HS VaR 90 0.000 0.000 0.000 0.000 0.000 0.000

HS VaR 95 0.005 0.005 0.005 0.005 0.005 0.006

HS VaR 99 0.008 0.008 0.008 0.008 0.008 0.009

Dynamic POT VaR 90 59.113∗ 0.956 13.955∗ 3.312∗ 1.637 0.937

Dynamic POT VaR 95 22.076∗ 29.117∗ 1.698 27.232∗ 13.749∗ 18.971∗

Dynamic POT VaR 99 16.561∗ 15.561∗ 24.187∗ 16.561∗ 0.008 12.382∗

POT VaR 90 180.352∗ 165.294∗ 165.294∗ 165.294∗ 156.128∗ 160.445∗

POT VaR 95 80.022∗ 71.338∗ 67.393∗ 75.536∗ 75.536∗ 84.751∗

POT VaR 99 12.399∗ 12.399∗ 12.399∗ 12.399∗ 12.399∗ 12.382∗

∗: The null hypothesis (H0) of an accurate VaR model is rejected

Table 10 shows the result of the second VaR test. The null hypothesis is the same as the previous test,

but in terms of time until the first VaR exceedance. Moreover, again the significance level is used that

corresponds to the probability level of the estimated model. Evidently, if the VaR has no exceedance,

then the model is not accurate. The table shows that all VaR models for the 99% probability level are

statistically accurate according to the corresponding significance level of the test. However, compared to

the previous test in Table 9, not all historical simulation VaR models are accurate. Furthermore, more

dynamic POT VaR models are statistically accurate compared to the non-dynamic POT models. The

preferred model differs per probability level for each market index.
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Table 10: Kupiec Time until First Failure (TFF) test

DAX CAC 40 FTSE MIB IBEX 35 AEX FTSE 100

HS VaR 90 0.083 4.605∗ 0.083 4.605∗ 4.605∗ 2.043

HS VaR 95 1.214 5.991∗ 3.973∗ 0.000 1.214 3.321

HS VaR 99 0.016 0.013 0.013 0.013 0.013 0.013

Dynamic POT VaR 90 0.207 3.153∗ 0.128 1.208 0.207 2.043

Dynamic POT VaR 95 1.214 3.973∗ 3.973∗ 3.973∗ 7.672∗ 2.011

Dynamic POT VaR 99 4.145 0.013 4.145 4.145 4.145 4.129

POT VaR 90 12.183∗ 12.183∗ 12.183∗ 12.183∗ 12.183∗ 12.183∗

POT VaR 95 4.053∗ 4.053∗ 4.053∗ 4.053∗ 4.053∗ 38.524∗

POT VaR 99 4.145 4.145 4.145 4.145 4.145 4.129
∗: The null hypothesis (H0) of an accurate VaR model is rejected

Finally, the last test is the VaR duration test, which tests whether the VaR exceedances are inde-

pendent. Also in this test, the significance level corresponds with the probability level of the estimated

VaR model. VaR models with no exceedances cannot be tested with this test. Table 11 shows that most

VaR models do not have independent VaR exceedances. None of the historical simulation models have

independent exceedances. However, for a few POT approach models the null hypothesis is not rejected at

the corresponding significance level. Most notably is that for all market indices, the non-dynamic POT

models for the 95% probability level have statistically independent VaR exceedances.

Table 11: Value-at-Risk duration test

DAX CAC 40 FTSE MIB IBEX 35 AEX FTSE 100

HS VaR 90 0.015∗ 0.056 0.011∗ 0.018∗ 0.009∗ 0.023∗

HS VaR 95 0.000∗ 0.000∗ 0.000∗ 0.008∗ 0.000∗ 0.009∗

HS VaR 99 0.003∗ 0.029∗ 0.002∗ 0.003∗ 0.025∗ 0.005∗

Dynamic POT VaR 90 0.002∗ 0.923 0.000∗ 0.000∗ 0.260 0.004∗

Dynamic POT VaR 95 0.096 0.021∗ 0.000∗ 0.000∗ 0.000∗ 0.088

Dynamic POT VaR 99 1∗∗ 1∗∗ 0.000∗ 1∗∗ 0.000∗ 0.016∗

POT VaR 90 0.031∗ 0.049∗ 0.002∗ 0.003∗ 0.002∗ 0.010∗

POT VaR 95 0.238 0.307 0.092 0.134 0.098 0.059

POT VaR 99 0.016∗ 0.016∗ 0.016∗ 0.016∗ 0.016∗ 0.016∗

∗: The null hypothesis (H0) that the VaR exceedances are independent is rejected. ∗∗: The VaR model did not have

enough exceedances to evaluate the test statistic.

Various tests are used to evaluate the effectiveness of VaR models, with each test emphasizing a distinct

feature. To draw a comprehensive conclusion about their performance and accuracy, all tests must be

considered, including the null hypotheses. The combined results indicate that there is no definitive winner

among the models. The model of choice depends on the market index and its accuracy. However, it can

be concluded that the dynamic POT, which takes into account climate covariates, performs just as well
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as the non-dynamic POT VaR model with respect to accuracy.

5.5 Influence of Climate covariates

Table 12 shows the estimation results from the dynamic POT approach with the same penalization

methods chosen for the VaR construction. In the case of the DAX market index, these were Lasso

penalization for the λ̂(t) and the ElasticNet penalization for the ξ̂(t) and ν̂(t). The climate covariates

were excluded from this estimation. The same model performance measures are used to see if the model

without climate covariates outperforms the original dynamic POT estimation approach. The likelihood,

AIC, and BIC criterion of the λ̂(t) parameter all favor the model without climate covariates. The same

conclusion holds for the estimation of the ξ̂(t) and β̂(t) parameters. This indicates that including the

climate covariates lowers the model fit for the DAX market index. This conclusion holds for all the

market indices based on the criteria. So, for all the market indices, the influence of climate variables is

not beneficial for the model’s overall fit. It is more optimal only to include the macroeconomic covariates

in the model.

Table 12: DAX coefficient estimates without climate covariates

λ̂(t) ξ̂(t) ν̂(t)

Constant (Intercept) -2.286 (0.094) 0.478 (0.192) -2.984 (0.172)

IP (Change) EU28 -0.029 (0.105) -0.002 (0.039) 0.023 (0.189)

IP (Change) -0.074 (0.134) 0.143 (0.169) -0.003 (0.228)

HICP (Change) Euro area 0.057 (0.101) 0.022 (0.251)

HICP (Change) -0.069 (0.147) 0.009 (0.184)

Unemp (Change) Euro area 0.123 (0.199) -0.036 (0.170)

Unemp (Change) 0.010 (0.227) 0.021 (0.215)

PPI (Change) EU28 -0.237 (0.118) -0.008 (0.180) -0.068 (0.304)

PPI (Change) -0.011 (0.125) 0.087 (0.282) 0.095 (0.232)

12m rate Euro 0.354 (0.131) 0.006 (0.169)

Exp TV (Change) Euro area 0.070 (0.126) 0.007 (0.235) -0.070 (0.014)

Imp TV (Change) Euro area

CCI Euro area -0.009 (0.125) 0.001 (0.024) -0.005 (0.016)

ICI 0.047 (0.198) 0.113 (0.145)

RCI -0.110 (0.110) 0.010 (0.241) 0.121 (0.192)

SCI 0.096 (NA)

Log-likelihood -395.98 230.22

AIC 813.96 -408.43

BIC 869.66 -276.77
Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed

errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA, then the estimated standard error is negative, which is impossible. The term (Change) refers to the

percentage change of the covariate in relation to the previous period.
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Figure 3 shows the constructed VaR estimations based on the estimation results without including the

climate covariates. According to the VaR estimation in the figure, including the climate covariates does

not seem to have a significant influence. The performance appears graphically very similar, valid for all

market indices. However, the ES estimation can still not be used in this setting. This is because the ξ̂(t)

is still estimated to be above 1 for some points in the period, both with and without climate covariates.

This is why the ES is also not analyzed further without climate covariates. Therefore, although the

inclusion of climate covariates seems to lower the model’s fit, no significant differences are visible between

the models graphically.

Figure 3: Value-at-Risk and Expected Shortfall without Climate covariates

(a) Value-at-Risk at the 95% probability level (b) Expected Shortfall at the 95% probability level

5.5.1 Model Accuracy

Table 13 shows the results of the statistical test to assess the statistical accuracy and assumptions for the

estimated VaR models. The tests have the same null hypotheses as in Tables 9-11. Also, in these tests,

the significance level corresponds to the probability level of the estimated VaR models. Here we only

evaluated the VaR models for the 95% probability level. The results in Table 13 show that the VaR model

for the CAC 40 market index is the only statistically accurate model in terms of failing proportion. The

FTSE MIB market index was the only accurate model for the model with climate covariates. Moreover,

the Kupiec TFF test results differ if the climate covariates are not included. Of all the models considered,

only the estimated VaR model for the FTSE 100 market index has independent VaR exceedances. These

results show that omitting the climate covariates does not automatically increase the statistical accuracy

of the dynamic POT VaR models.

Table 13: Model performance test results

DAX CAC 40 FTSE MIB IBEX 35 AEX FTSE 100

POF test 14.696∗ 3.002 12.591∗ 33.156∗ 29.117∗ 35.250∗

TFF test 3.973∗ 4.053∗ 3.973∗ 0.692 1.214 4.053∗

Duration test 0.001∗ 0.000∗ 0.000∗ 0.019∗ 0.009∗ 0.187
∗: The null hypothesis (H0) of the test is rejected
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5.6 Impact of Climate agreements

Table 14 shows the estimated coefficients for the climate agreement dummy variable and the corresponding

performance measures. In the previous section, it was concluded that including the climate covariates

decreases the model fit. Therefore, the impact of the climate agreement dummy on the VaR will be

examined.

Using the climate dummy’s coefficients, we can evaluate the difference in estimated VaR for the

different market indices. The inclusion climate agreement dummy variable decreases the fit of the models

compared to the dynamic POT models with climate covariates.

Table 14: Climate agreement dummy variable coefficient estimates for the different parameters

DAX CAC 40 FTSE MIB IBEX 35 AEX FTSE 100

λ̂(t) 0.001 (0.017) 0.000 (0.010) 0.000 (0.014) -0.133 (0.475) -0.240 (0.190) -0.099 (0.187)

ξ̂(t) 0.265 (NA) 0.028 (NA) 0.028 (NA) 0.000 (0.068) -0.004 (NA) 0.000 (0.295)

ν̂(t) -0.165 (0.189) -0.120 (0.014) -0.200 (0.251) -0.203 (0.110) -0.003 (0.010) -0.034 (0.451)

Log-likelihood λ̂(t) -406.86 -422.64 -416.12 -476.47 -450.46 -445.28

AIC λ̂(t) 855.73 885.28 878.23 1002.95 958.92 946.56

BIC λ̂(t) 962.07 986.56 994.70 1129.54 1105.77 1088.33

Log-likelihood (ξ̂(t), ν̂(t)) 221.74 244.09 228.16 328.92 291.19 275.54

AIC (ξ̂(t), ν̂(t)) -345.48 -400.18 -358.32 -565.85 -490.38 -459.07

BIC (ξ̂(t), ν̂(t)) -97.35 -177.37 -110.18 -332.91 -257.44 -226.17
Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed

errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA, then the estimated standard error is negative, which is impossible.

From equation (13), it can be determined that the parameters have a positive correlation with the

estimated VaR. An higher λ̂, ξ̂ and β̂ all lead to an higher estimated VaR.

For the DAX market index, the estimated VaR at the 95% probability level after the signing of the

climate agreement, when the dummy variable is 1, is 0.032 higher compared to the period before the

climate agreement. However, for this value, it is assumed that the covariates are at their mean value

and λ̂(t) is scaled to unity. This equals that ξ̂ and ν̂ are equal to their intercept value and λ̂(t) = 1.

This ensures we do not get an invalid value in (13). The values for the CAC 40, FTSE MIB, IBEX

35, AEX, and FTSE 100 are -0.025, -0.038, -0.063, -0.009, and -0.015, respectively. So, only for the

DAX, the risk increases after the climate agreement. For the other market indices, the estimated VaR

at the 95% probability level decreases. This indicates that the climate agreement is estimated to have a

risk-decreasing effect on 5 of the 6 market indices.

6 Conclusion and Discussion

In conclusion, this thesis researched if climate and macroeconomic covariates could be used to predict

better market risk for six different market indices in Europe. (DAX, CAC 40, FTSE MIB, IBEX 35,

AEX and FTSE 100) A dynamic POT approach estimates parameters in the Poisson process and GPD

distribution as a linear relation of the different covariates. We used a penalized likelihood approach
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for the estimation. Furthermore, different regularization methods were used to restrict the number of

parameters added to the model, and the best method was selected. Finally, we estimate VaR and ES

models as risk measures. Various tests are used to assess the accuracy and performance of the models.

This procedure was used to answer the research questions.

This study’s findings suggest that covariates significantly affect estimated market risk for all market

indices, with statistically accurate VaR models constructed for some market indices when including cli-

mate and macroeconomic covariates. However, the ES models were unsuitable for use in this research

setting. Notably, excluding climate covariates improved model fit for all the different climate covariates,

indicating that the macroeconomic covariates were more informative than the climate covariates. How-

ever, the omission of the climate covariates did not automatically increase the statistical accuracy of the

VaR models.

The discrepancy between the initial expectation about the climate covariates and the evidence from

the data could be due to several reasons. One important reason is that the chosen covariates may not be

good indicators for large-scale climate impacts. Moreover, climate covariates alone may not capture the

indirect effects of climate impacts on market risk, and additional factors may need to be considered to

understand the relationship entirely.

Finally, an analysis was conducted on the Paris climate agreement’s influence, revealing a decrease in

risk for 5 out of 6 markets. The signing of the agreement resulted in a lower estimated VaR at the 95%

probability level for all the selected market indices except for the DAX market index. This discovery

reinforces the importance of signing the agreement, as it leads to a lower estimated VaR for most markets.

It is undeniable that the Paris climate agreement had a positive effect on market risk in this particular

context.

6.1 Limitations and Potential Improvements

There are a few things that could be improved in this research. The first limitation is that this research

is limited to this data period and market indices. The results are limited to the context of this research

and thus have low external validity.

The second limitation is that some assumptions made in the research might need to be revised or be

more complex. For example, the parameters in the Poisson process and GPD distribution depend only

linearly on the different covariates. However, this assumption may not hold since the real effect is not

linear.

Another limitation of the research is that the covariates used in the models are not tested for station-

arity within the scope of the study. Stationarity can lead to biased and unreliable results. Therefore,

the covariates’ potential non-stationarity might affect the results’ validity. Additional research could

address the potential stationarity of the covariates and incorporate appropriate methods to address non-

stationarity if necessary.

The final limitation is the uncertainty in the data. There are two main limitations in the data selection.

The first is that we matched the data frequency to weekly observations. This might remove some of the

information that is present in the data. The second is that there may be more informative variables than
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the data used in this research. These variables may contain more information and are more critical in

the linear relation with the parameters.

Furthermore, other assumptions might need to be more relaxed or realistic. Finally, these assumptions

need more research to assess if they are valid within the scope of the study.

6.2 Future Research

Future research in this area could address the limitations of this study by exploring the use of alternative

data frequencies. For example, using daily or intra-day data may provide more detailed information

on the relationship between covariates and market risk, which may help improve the accuracy of risk

prediction models. Additionally, future research could consider alternative covariates that may be more

informative than the climate and macroeconomic variables considered in this study. For example, social

and political factors may significantly drive market risk and could be incorporated into the modeling

approach.

Another area for future research is to utilize more sophisticated modeling approaches that allow

for more flexible and realistic parameterizations. For example, non-linear relationships between the

covariates and market risk may be more appropriate than the linear relationships assumed in this study.

Additionally, machine learning algorithms and deep learning techniques may offer a more flexible and

powerful approach to modeling complex relationships between covariates and market risk.

Finally, further research could investigate the impact of other climate-related events and policies on

market risk. For example, the effect of extreme weather events such as hurricanes, floods, and droughts

on market risk may be significant and should be considered in future studies. Furthermore, other climate

policies, such as carbon taxes, renewable energy subsidies, and emissions trading schemes, significantly

impact market risk and should be explored. By considering these factors, future research could provide a

more comprehensive understanding of the relationship between climate and market risk, which may have

important implications for risk management and policy-making.
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A Appendix 1: Market Index Description

A.1 Stock Indices Description

Table 15: Indices Description

Indices Data Period Place of origin Definition

DAX 03/01/2000-25/05/2022 Germany, Frankfurt am Main A market index that consists of 40 major German blue chip companies
trading on the Frankfurt Stock Exchange

CAC 40 03/01/2000-25/05/2022 France, Paris A market index that represents a capitalization-weighted measure of the 40
most largest stocks on the Euronext Paris

IBEX 35 03/01/2000-25/05/2022 Spain, Madrid A market cap weighted index containing the 35 most liquid stocks
traded on Bolsa de Madrid

FTSE MIB 03/01/2000-25/05/2022 Italy, Milan A market index that consists of the 40 most liquid stocks on the Borsa Italiana

AEX 03/01/2000-25/05/2022 the Netherlands, Amsterdam A market index that contains 25 of the most liquid stocks\
traded on the Euronext Amsterdam

FTSE 100 03/01/2000-25/05/2022 United Kingdom, London A market index that contains the 100 largest (market cap) companies
traded on the London Stock Exchange

Figure 4: Autocorrelation plots for the different Indices

(a) DAX (b) CAC 40

(c) FTSE MIB (d) IBEX 35

(e) AEX (f) FTSE 100
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A.2 Threshold Selection

Figure 5: Mean Residual Life plots

(a) DAX (b) CAC 40

(c) FTSE MIB (d) IBEX 35

(e) AEX (f) FTSE 100

39



B Appendix 2: Results Market Indices

B.1 Methodology results CAC 40

Table 16: Dynamic POT for CAC index describing the λ̂(t) parameter in different regularisation methods

Lasso Ridge ElasticNet
Constant (Intercept) -2.235 (0.093) -2.009 (0.076) -2.119 (0.083)
IP (Change) 0.017 (0.113) 0.011 (0.091) 0.078 (0.098)
HICP (Change) Euro area 0.003 (0.095) 0.185 (0.117) 0.081 (0.093)
HICP (Change) -0.084 (0.112) -0.241 (0.100)
Unemp (Change) -0.326 (0.109) -0.203 (0.089)
PPI (Change) Euro area -0.083 (0.120) 0.034 (0.127) -0.121 (0.153)
PPI (Change) 0.009 (0.133) -0.122 (0.128) 0.021 (0.154)
Imp TV (Change) Euro area 0.020 (0.101) -0.080 (0.115)
CCI -0.184 (0.165) -0.154 (0.115) -0.224 (0.134)
ICI -0.024 (0.127) -0.125 (0.098) -0.010 (0.113)
RCI 0.004 (0.123) 0.020 (0.094) 0.029 (0.107)
PS 0.005 (0.116) 0.126 (0.092) 0.154 (0.097)
WS10M 0.005 (0.116) 0.147 (0.104) 0.053 (0.121)
CLOUD_AMT 0.069 (0.133) 0.213 (0.105) 0.163 (0.113)
T2M_RANGE 0.016 (0.123) -0.090 (0.096) 0.008 (0.105)
WS10M_MAX 0.032 (0.133) 0.109 (0.099) 0.114 (0.110)
WS10M_MIN 0.025 (0.091) 0.044 (0.075) 0.136 (0.079)
PRECTOTCORR_SUM -0.090 (0.117) -0.077 (0.092) 0.001 (0.021)
ALLSKY_SFC_SW_DWN 0.221 (0.146) 0.228 (0.111) 0.161 (0.124)
CDD 0.014 (0.103) 0.167 (0.073) 0.119 (0.079)
Hydro 0.130 (0.106) 0.065 (0.087) 0.057 (0.096)
CLD 0.341 (0.140) 0.087 (0.098) 0.027 (0.111)
CO2 0.224 (0.106) 0.259 (0.122)
ND-GAIN 0.224 (0.173) 0.145 (0.114) 0.082 (0.134)
ND-GAIN (change) 0.456 (0.152) 0.306 (0.108) 0.297 (0.125)
Log-likelihood value -420.60 -429.21 -426.52
AIC 885.21 902.43 901.04
BIC 996.62 1013.83 1022.57

Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed
errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA then the estimated standard error is negative, which is impossible. The term (Change) refers to the
percentage change of the covariate in relation to the previous period.
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Table 17: Dynamic Peak-over-Threshold for CAC 40 index describing the ξ̂(t) and ν̂(t) parameter for
different regularisation methods

Lasso Ridge ElasticNet
ξ̂(t) ν̂(t) ξ̂(t) ν̂(t) ξ̂(t) ν̂(t)

Constant (Intercept) 1.178 (0.440) -3.141 (0.424) 0.653 (0.153) -2.672 (0.166) 0.900 (0.222) -2.848 (0.251)
IP (Change) 0.001 (0.017) -0.096 (0.162) -0.056 (0.102) -0.053 (0.159) 0.070 (0.333) 0.004 (0.193)
HICP (Change) Euro area -0.016 (0.142) 0.051 (0.155) 0.057 (0.144) 0.006 (0.409) -0.001 (0.146)
HICP (Change) 0.361 (0.386) 0.094 (0.161) 0.035 (0.182) -0.014 (0.254) 0.020 (0.015)
Unemp (Change) 0.083 (0.380) 0.041 (0.149) 0.140 (0.178) 0.007 (0.667)
PPI (Change) Euro area 0.016 (0.292) 0.001 (0.018) 0.136 (0.155) 0.181 (0.158) 0.015 (0.204)
PPI (Change) -0.110 (0.352) 0.004 (0.157) 0.047 (0.166) 0.113 (0.185) 0.044 (0.249)
Imp TV (Change) Euro area -0.058 (0.176) -0.020 (0.187) -0.021 (0.146) -0.015 (0.173) 0.161 (0.229) -0.006 (0.387)
CCI 0.162 (0.359) -0.198 (0.327) -0.002 (0.167) 0.111 (0.158) 0.004 (0.313) 0.020 (0.209)
ICI -0.004 (0.282) 0.169 (0.149) -0.018 (0.171) 0.031 (0.339) -0.016 (0.254)
RCI 0.116 (0.405) 0.004 (0.317) -0.017 (0.112) 0.066 (0.160) 0.001 (0.024) -0.002 (0.193)
PS -0.036 (0.557) 0.116 (0.389) 0.019 (0.145) 0.238 (0.158) 0.001 (0.022) 0.222 (0.167)
WS10M 0.067 (NA) 0.002 (0.032) 0.015 (0.171) -0.086 (0.175) -0.007 (0.181)
CLOUD_AMT 0.201 (0.356) 0.234 (0.297) -0.013 (0.164) -0.067 (0.163) 0.269 (0.014)
T2M_RANGE 0.215 (0.296) 0.046 (0.147) 0.279 (0.173) 0.199 (0.474)
WS10M_MAX 0.615 (NA) 0.164 (NA) -0.010 (0.164) 0.041 (0.171) -0.002 (0.034) 0.012 (0.200)
WS10M_MIN -0.019 (0.274) 0.064 (0.182) -0.079 (0.110) -0.127 (0.161) 0.046 (0.199) 0.116 (0.014)
PRECTOTCORR_SUM -0.083 (0.421) 0.370 (0.314) -0.098 (0.165) 0.266 (0.140) -0.018 (0.298)
ALLSKY_SFC_SW_DWN 0.338 (0.372) 0.038 (0.372) 0.056 (0.163) -0.103 (0.162) 0.256 (0.298) 0.002 (0.018)
CDD 0.014 (0.191) -0.013 (0.307) 0.050 (0.174) -0.101 (0.181) 0.027 (0.291)
Hydro -0.126 (0.380) -0.057 (0.143) -0.072 (0.182) -0.023 (0.030)
CLD 0.045 (0.527) 0.080 (0.157) 0.028 (0.168) 0.051 (0.391) 0.065 (0.259)
CO2 0.003 (0.466) -0.007 (0.426) -0.044 (0.154) -0.155 (0.180) 0.009 (0.323) -0.005 (0.260)
ND-GAIN 0.520 (0.603) 0.065 (0.524) 0.088 (0.180) 0.063 (0.171) 0.078 (0.244) 0.138 (0.210)
ND-GAIN change 0.300 (0.618) -0.130 (0.448) -0.002 (NA) -0.229 (0.173) -0.148 (NA) -0.160 (0.232)
Log-likelihood value 237.09 236.77 243.59
AIC -388.18 -373.55 -405.17
BIC -170.43 -120.35 -197.55
Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed
errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA then the estimated standard error is negative, which is impossible. The term (Change) refers to the
percentage change of the covariate in relation to the previous period.
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Figure 6: Value-at-Risk for the CAC 40 market index

(a) Value-at-Risk at the 90% probability level (b) Value-at-Risk at the 95% probability level

(c) Value-at-Risk at the 99% probability level

Figure 7: Expected Shortfall at the 90% probability level for the CAC 40 market index
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Table 18: CAC 40 coefficient estimates without climate covariates

λ̂(t) ξ̂(t) ν̂(t)
Constant (Intercept) -2.440 (0.108) 0.924 (0.058) -2.958 (NA)
IP (Change) EU -0.261 (0.119) 0.084 (NA) -0.002 (0.145)
IP (Change) Euro area 0.213 (0.310) -0.106 (0.201) 0.003 (NA)
IP 0.023 (0.161) 0.017 (NA)
IP (Change) -0.016 (0.247) 0.012 (0.129)
HICP (Change) Euro area 0.001 (0.015) -0.054 (0.014)
HICP (Change) 0.036 (0.105) 0.309 (NA) 0.275 (0.177)
Unemp (Change) EU 0.016 (0.214) -0.033 (0.148) -0.056 (0.078)
PPI (Change) Euro area 0.057 (NA) 0.004 (0.174)
PPI (Change) 0.118 (0.214) -0.011 (NA) 0.111 (NA)
Long rate Euro area 0.534 (0.152) -0.063 (0.172)
Exp TV (Change) Euro area -0.110 (0.158) 0.054 (NaN)
Imp TV (Change) Euro area -0.010 (0.238) -0.075 (0.014)
CCI -0.156 (0.117) -0.110 (0.165)
ICI 0.268 (NA) 0.204 (0.147)
RCI -0.007 (0.121) -0.011 (NA)
Log-likelihood -425.96 243.62
AIC 877.93 -437.24
BIC 943.76 -310.64

Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed
errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA then the estimated standard error is negative, which is impossible. The term (Change) refers to the
percentage change of the covariate in relation to the previous period.

Figure 8: Value-at-Risk and Expected Shortfall without Climate covariates

(a) Value-at-Risk at the 95% probability level (b) Expected Shortfall at the 95% probability level
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B.2 Methodology results FTSE MIB

Table 19: Dynamic POT for FTSE MIB index describing the λ̂(t) parameter in different regularisation
methods

Lasso Ridge ElasticNet
Constant (Intercept) -2.263 (0.096) -2.029 (0.077) -2.124 (0.083)
IP Euro area -0.003 (0.103) 0.121 (0.100) 0.003 (0.104)
IP (Change) Euro area -0.149 (0.138)
IP (Change) 0.121 (0.110) -0.101 (0.118)
HICP (Change) EU 0.186 (0.118) 0.018 (0.142)
HICP (Change) -0.134 (0.116) -0.037 (0.132)
Unemp (Change) -0.046 (0.095) 0.071 (0.096) 0.002 (0.101)
PPI (Change) EU28 -0.096 (0.087) -0.057 (0.098)
PPI (Change) 0.389 (0.130) 0.023 (0.097) 0.004 (0.110)
Long rate 0.223 (0.113) 0.206 (0.111)
Exp TV (Change) Euro area -0.003 (0.245) -0.121 (0.149) -0.015 (0.113)
Imp TV (Change) Euro area -0.013 (0.242) 0.065 (0.139)
CCI -0.014 (0.135) -0.060 (0.116) -0.003 (0.135)
RCI -0.097 (0.109)
SCI -0.006 (0.131) -0.057 (0.115) -0.142 (0.115)
PS 0.133 (0.142) 0.034 (0.104) 0.002 (0.112)
WS50M 0.006 (0.147) 0.011 (0.118) -0.006 (0.122)
CLOUD_AMT 0.117 (0.143) 0.066 (0.105) 0.040 (0.112)
T2M_RANGE 0.012 (0.106) -0.014 (0.088)
WS10M_MAX -0.002 (0.020) 0.029 (0.090)
WS10M_MIN 0.101 (0.121) -0.105 (0.087) -0.003 (0.093)
WS50M_MIN 0.080 (0.090) 0.013 (0.099)
PRECTOTCORR_SUM 0.042 (0.099) 0.083 (0.105)
CDD 0.085 (0.156) 0.019 (0.117)
Solar 0.142 (0.166) 0.104 (0.114) 0.160 (0.122)
Hydro 0.138 (0.119) 0.075 (0.097)
Wind 0.266 (0.175) 0.081 (0.118) 0.111 (0.133)
CLD 0.204 (0.108) 0.167 (0.089) 0.068 (0.091)
CO2 -0.040 (0.104) -0.026 (0.113) -0.004 (0.120)
ND-GAIN (change) -0.001 (0.017) 0.058 (0.120)
Log-likelihood value -417.77 -424.49 -415.76
AIC 877.54 890.97 875.53
BIC 983.88 997.31 986.93

Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed
errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA then the estimated standard error is negative, which is impossible. The term (Change) refers to the
percentage change of the covariate in relation to the previous period.
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Table 20: Dynamic POT for FTSE MIB index describing the ξ̂(t) and ν̂(t) parameter in different regu-
larisation methods

Lasso Ridge ElasticNet
ξ̂(t) ν̂(t) ξ̂(t) ν̂(t) ξ̂(t) ν̂(t)

Constant (Intercept) 0.812 (0.738) -2.922 (0.427) 0.612 (0.151) -2.457 (0.177) 0.598 (0.178) -2.750 (0.015)
IP Euro area -0.017 (0.408) -0.018 (0.363) 0.192 (0.133) 0.076 (0.161) 0.003 (0.176)
IP (Change) Euro area 0.014 (0.802) -0.003 (0.601) -0.012 (0.105) -0.027 (0.185) 0.001 (0.016)
IP (Change) -0.038 (0.566) 0.035 (0.003) 0.059 (0.187) 0.065 (0.204) -0.012 (0.022)
HICP (Change) EU -0.150 (0.246) -0.054 (0.376) 0.053 (0.155) 0.153 (0.253) 0.003 (NA)
HICP (Change) 0.090 (0.464) -0.075 (0.424) -0.014 (0.138) 0.046 (0.174) 0.146 (0.014)
Unemp (Change) 0.219 (0.667) 0.089 (0.136) -0.102 (0.172) 0.111 (0.160) -0.063 (0.113)
PPI (Change) EU28 0.650 (0.416) -0.094 (0.446) 0.110 (0.132) -0.028 (0.172) 0.130 (0.094) -0.013 (0.213)
PPI (Change) -0.088 (0.570) 0.004 (0.601) 0.026 (0.172) 0.089 (0.169) -0.008 (0.361) 0.018 (0.176)
Long rate -0.290 (0.290) 0.002 (0.020) -0.174 (0.148) -0.234 (0.179) -0.052 (0.216)
Exp TV (Change) Euro area 0.025 (1.007) 0.030 (0.159) -0.023 (0.181) 0.067 (0.186) 0.070 (0.198)
Imp TV (Change) Euro area 0.046 (0.771) 0.001 (0.020) 0.023 (0.157) 0.181 (0.188) 0.018 (0.209) 0.044 (0.239)
CCI -0.019 (0.766) 0.133 (0.157) 0.271 (0.185) 0.179 (0.214) 0.101 (0.217)
RCI 0.068 (1.020) -0.129 (0.557) 0.128 (0.168) 0.354 (0.184) 0.098 (0.206) 0.343 (0.206)
SCI 0.073 (0.237) 0.052 (0.157) 0.081 (0.176) 0.090 (0.220)
PS -0.214 (0.585) 0.133 (0.148) 0.375 (0.178) 0.127 (0.016)
WS50M -0.227 (0.748) 0.002 (0.035) -0.066 (0.148) 0.139 (0.174) 0.186 (0.176)
CLOUD_AMT 0.275 (0.988) 0.048 (0.886) 0.124 (0.135) 0.021 (0.177) 0.037 (0.175) -0.090 (0.208)
T2M_RANGE 0.399 (0.577) 0.002 (0.289) -0.034 (0.145) -0.013 (0.173) 0.106 (0.203) 0.006 (0.199)
WS10M_MAX 0.132 (0.635) 0.004 (0.109) 0.005 (0.199) 0.030 (0.148) 0.048 (0.243)
WS10M_MIN -0.066 (0.874) -0.225 (0.527) 0.045 (0.108) -0.028 (0.167) 0.006 (0.209)
WS50M_MIN 0.358 (0.674) 0.441 (0.479) -0.004 (0.119) -0.040 (0.16) 0.002 (0.028) -0.120 (0.165)
PRECTOTCORR_SUM 0.029 (1.179) 0.076 (0.316) 0.035 (0.139) -0.098 (0.173) 0.112 (0.185)
CDD 0.007 (1.410) 0.094 (0.153) 0.067 (0.174) -0.022 (0.209)
Solar -0.365 (0.738) -0.204 (0.525) 0.083 (0.151) 0.089 (0.187) -0.004 (0.241) 0.025 (0.014)
Hydro 0.190 (0.520) -0.003 (0.326) -0.024 (0.134) -0.084 (0.191) -0.026 (0.214) -0.123 (0.235)
Wind 0.021 (0.631) 0.022 (0.486) 0.026 (0.140) -0.103 (0.168) -0.008 (0.279) -0.011 (0.160)
CLD -0.040 (0.259) 0.106 (0.230) -0.151 (0.141) -0.041 (0.180) -0.025 (0.192) 0.131 (0.217)
CO2 -0.415 (0.583) -0.009 (0.487) 0.072 (0.150) -0.008 (0.182) 0.032 (0.202) 0.038 (0.207)
ND-GAIN (change) 1.009 (0.828) 0.133 (0.639) 0.099 (NA) 0.028 (0.169) 0.015 (0.208)
Log-likelihood value 180.51 224.27 228.27
AIC -257.02 -328.53 -360.54
BIC 6.30 -24.70 -117.47
Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed
errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA then the estimated standard error is negative, which is impossible. The term (Change) refers to the
percentage change of the covariate in relation to the previous period.
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Figure 9: Value-at-Risk for the FTSE MIB market index

(a) Value-at-Risk at the 90% probability level (b) Value-at-Risk at the 95% probability level

(c) Value-at-Risk at the 99% probability level

Figure 10: Expected Shortfall at the 90% probability level for the FTSE MIB market index
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Table 21: FTSE MIB coefficient estimates without climate covariates

λ̂(t) ξ̂(t) ν̂(t)
Constant (Intercept) -2.096 (0.082) 0.365 (0.198) -2.821 (0.014)
IP (Change) EU28 0.073 (0.093) 0.062 (0.109) 0.163 (0.194)
IP (Change) Euro area -0.005 (0.170) -0.020 (0.192) -0.007 (0.186)
IP (Change) -0.172 (0.145) 0.181 (0.223) 0.049 (0.279)
HICP (Change) EU -0.029 (0.136) 0.132 (0.184) 0.404 (0.360)
HICP (Change) 0.082 (0.124) 0.186 (0.137) 0.223 (0.201)
Unemp (Change) EU -0.188 (0.118) 0.020 (0.173)
Unemp (Change) 0.231 (0.110) 0.018 (0.085) -0.114 (0.014)
PPI (Change) EU28 -0.003 (0.095) 0.058 (0.113) -0.010 (0.177)
PPI (Change) 0.493 (0.123) -0.105 (0.129) -0.387 (0.206)
Long rate -0.022 (0.198) -0.108 (0.224)
Exp TV (Change) Euro area -0.029 (0.183) -0.015 (0.169) 0.040 (0.200)
Imp TV (Change) Euro area 0.083 (0.170) 0.144 (0.194) 0.237 (0.229)
CCI 0.058 (0.100) 0.035 (0.164) 0.108 (0.235)
ICI -0.271 (0.119) 0.028 (0.163) 0.136 (0.159)
RCI 0.252 (0.117) 0.038 (0.167) 0.125 (0.154)
SCI -0.184 (0.144)
Log-likelihood -425.17 222.95
AIC 882.34 -383.90
BIC 963.37 -226.92

Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed
errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA then the estimated standard error is negative, which is impossible. The term (Change) refers to the
percentage change of the covariate in relation to the previous period.

Figure 11: Value-at-Risk and Expected Shortfall without Climate covariates

(a) Value-at-Risk at the 95% probability level (b) Expected Shortfall at the 95% probability level

47



B.3 Methodology results IBEX 35

Table 22: Dynamic POT for IBEX 35 index describing the λ̂ parameter in different regularisation methods

Lasso Ridge ElasticNet
Constant (Intercept) -2.031 (0.083) -1.920 (0.074) -1.931 (0.076)
IP (Change) EU 28 -0.052 (0.087) -0.036 (0.077)
IP (Change) Euro area 0.008 (0.106) -0.049 (0.122) -0.002 (0.028)
IP (Change) 0.123 (0.103) 0.168 (0.098)
HICP (Change) EU 0.070 (0.111) 0.005 (0.080) 0.021 (0.081)
Unemp (Change) EU 0.088 (0.089) 0.010 (0.095)
PPI (Change) Euro area -0.012 (0.101) -0.070 (0.123) -0.021 (0.097)
PPI (Change) -0.001 (0.018) -0.002 (0.119)
DtD rate Euro 0.007 (0.127) 0.115 (0.096) 0.040 (0.103)
Exp TV (Change) Euro area 0.003 (0.115) -0.110 (0.148) -0.417 (0.166)
Imp TV (Change) Euro area 0.096 (0.138) 0.287 (0.163)
RCI Euro area -0.005 (0.129) -0.056 (0.100) -0.009 (0.107)
RCI -0.024 (0.112) -0.070 (0.106) -0.124 (0.115)
PS 0.117 (0.124) 0.051 (0.100)
QV2M 0.079 (0.117) -0.067 (0.105) 0.039 (0.094)
WS10M 0.111 (0.121) 0.043 (0.105) 0.108 (0.082)
CLOUD_AMT 0.286 (0.141) 0.214 (0.111) 0.201 (0.113)
T2M_RANGE 0.022 (0.107) -0.001 (0.099)
WS10M_MAX -0.025 (0.112) 0.016 (0.095)
WS10M_MIN 0.070 (0.122) 0.060 (0.078)
WS50M_MIN 0.099 (0.120)
PRECTOTCORR_SUM 0.078 (0.101) 0.003 (0.102)
CDD EU 0.196 (0.110) 0.186 (0.097) 0.169 (0.098)
Hydro -0.230 (0.107) -0.009 (0.085)
CLD -0.261 (0.092) -0.186 (0.092)
CO2 0.053 (0.151) 0.030 (0.090) 0.090 (0.096)
ND-GAIN 0.143 (0.110) 0.041 (0.122)
Log-likelihood value -470.93 -474.31 -476.08
AIC 981.85 988.62 990.16
BIC 1083.13 1089.90 1086.37

Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed
errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA then the estimated standard error is negative, which is impossible. The term (Change) refers to the
percentage change of the covariate in relation to the previous period.
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Table 23: Dynamic POT for IBEX 35 index describing the ξ̂(t) and ν̂(t) parameter in different regulari-
sation methods

Lasso Ridge ElasticNet
ξ̂(t) ν̂(t) ξ̂(t) ν̂(t) ξ̂(t) ν̂(t)

Constant (Intercept) 0.827 (1.768) -3.240 (0.730) 0.486 (0.147) -2.881 (0.157) 0.792 (0.227) -2.871 (0.236)
IP (Change) EU 28 0.017 (2.068) 0.033 (0.235) 0.032 (0.143) -0.130 (0.157) 0.261 (0.209) 0.006 (0.195)
IP (Change) Euro area 0.059 (1.084) 0.105 (0.154)
IP (Change) -0.091 (0.704) 0.003 (0.322) -0.112 (0.143) -0.209 (0.168) -0.038 (0.250)
HICP (Change) EU 0.130 (1.159) 0.144 (0.519) 0.078 (0.142) 0.022 (0.168) 0.100 (0.204)
Unemp (Change) EU 0.058 (0.333) -0.047 (0.434) -0.099 (0.132) -0.198 (0.164) -0.103 (0.014)
PPI (Change) Euro area -0.312 (0.311) 0.114 (0.162) 0.078 (0.164) 0.002 (0.058) 0.024 (0.148)
PPI (Change) 0.104 (0.356) 0.040 (0.400) 0.063 (0.157) 0.103 (0.174) -0.001 (0.023)
DtD rate Euro 0.144 (1.142) 0.003 (0.433) -0.017 (0.140) -0.099 (0.169) 0.020 (0.188)
Exp TV (Change) Euro area 0.014 (1.556) -0.170 (1.218) 0.054 (0.172) -0.043 (0.159) 0.004 (0.203)
Imp TV (Change) Euro area 0.073 (2.440) -0.074 (0.159) 0.006 (0.181) 0.004 (0.014)
RCI Euro area 0.326 (0.458) 0.002 (0.024) 0.161 (0.139) 0.148 (0.183) 0.007 (0.232) 0.026 (0.151)
RCI 0.143 (0.713) -0.050 (0.436) 0.091 (0.150) 0.147 (0.171) 0.024 (0.230) 0.030 (0.201)
PS 0.131 (0.372) 0.169 (0.160) 0.273 (0.171) 0.343 (0.207)
QV2M -0.143 (0.743) 0.160 (0.506) -0.008 (0.149) 0.147 (0.163) -0.075 (0.263) 0.078 (0.162)
WS10M 0.029 (0.858) 0.187 (0.685) 0.022 (0.137) -0.054 (0.170) 0.143 (0.217) 0.157 (0.208)
CLOUD_AMT -0.161 (0.517) 0.028 (0.145) -0.167 (0.162) 0.001 (0.021)
T2M_RANGE -0.005 (0.589) -0.057 (0.666) -0.056 (0.128) 0.146 (0.176) 0.060 (0.231) 0.248 (0.015)
WS10M_MAX 0.015 (0.929) -0.014 (0.155) 0.158 (0.174) -0.044 (0.256) 0.082 (0.209)
WS10M_MIN 0.055 (0.981) -0.160 (0.089) -0.117 (0.157) -0.006 (0.248) 0.005 (0.180)
WS50M_MIN 0.714 (0.551) -0.002 (0.334) 0.042 (0.139) -0.206 (0.166) 0.119 (0.247) -0.038 (0.180)
PRECTOTCORR_SUM 0.027 (0.797) -0.069 (1.900) 0.125 (0.174) 0.117 (0.178)
CDD EU -0.001 (0.014) 0.008 (1.266) 0.045 (0.153) -0.017 (0.162) 0.002 (0.249) -0.005 (0.014)
Hydro 0.232 (1.886) -0.016 (0.128) -0.039 (0.168) 0.153 (0.232) -0.002 (0.196)
CLD -0.001 (0.015) 0.156 (0.256) 0.163 (0.155) 0.414 (0.155) 0.007 (0.204) 0.244 (0.179)
CO2 0.041 (2.257) 0.028 (0.152) -0.078 (0.172) 0.016 (0.223) -0.087 (0.207)
ND-GAIN -0.062 (1.291) 0.129 (NA) 0.005 (0.151) 0.114 (NA) 0.005 (0.189)
Log-likelihood value 311.90 309.62 312.95
AIC -535.80 -513.23 -543.89
BIC -312.99 -244.85 -336.27
Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed
errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA then the estimated standard error is negative, which is impossible. The term (Change) refers to the
percentage change of the covariate in relation to the previous period.
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Figure 12: Value-at-Risk for the IBEX 35 market index

(a) Value-at-Risk at the 90% probability level (b) Value-at-Risk at the 95% probability level

(c) Value-at-Risk at the 99% probability level

Figure 13: Expected Shortfall at the 90% probability level for the IBEX 35 market index
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Table 24: IBEX 35 coefficient estimates without climate covariates

λ̂(t) ξ̂(t) ν̂(t)
Constant (Intercept) -1.964 (0.080) 0.820 (0.212) -2.979 (0.179)
IP (Change) EU28 -0.020 (0.083) 0.159 (0.149) 0.008 (0.174)
IP Euro area 0.073 (0.162) 0.282 (0.149)
IP (Change) Euro area -0.008 (0.139)
IP -0.118 (0.090) 0.288 (0.226) 0.160 (0.014)
IP (Change) 0.048 (0.114) -0.006 (0.190) -0.110 (0.194)
HICP (Change) Euro area 0.020 (0.168) 0.196 (0.217)
HICP (Change) -0.130 (0.166) 0.017 (0.238) 0.078 (0.014)
Unemp (Change) EU -0.001 (0.016) 0.007 (0.173)
PPI (Change) Euro area 0.087 (0.099) 0.035 (0.220) -0.004 (0.014)
PPI (Change) 0.003 (0.208) 0.017 (0.215)
Long rate 0.261 (0.096) -0.006 (0.228) 0.035 (0.203)
Exp TV (Change) Euro area -0.196 (0.149) -0.001 (0.027) 0.094 (0.185)
Imp TV (Change) Euro area 0.003 (0.123) 0.005 (0.210)
RCI 0.253 (0.203) 0.178 (0.204)
SCI Euro area -0.186 (0.117) 0.003 (NA) -0.021 (0.186)
Log-likelihood -469.64 313.39
AIC 965.29 -572.77
BIC 1031.12 -436.05

Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed
errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA then the estimated standard error is negative, which is impossible. The term (Change) refers to the
percentage change of the covariate in relation to the previous period.

Figure 14: Value-at-Risk and Expected Shortfall without Climate covariates

(a) Value-at-Risk at the 95% probability level (b) Expected Shortfall at the 95% probability level
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B.4 Methodology results AEX

Table 25: Dynamic POT for AEX index describing the λ̂(t) parameter in different regularisation methods

Lasso Ridge ElasticNet
Constant (Intercept) -2.015 (0.084) -1.977 (0.076) -2.022 (0.080)
IP (Change) EU28 -0.123 (0.088) -0.117 (0.080) -0.041 (0.084)
IP Euro area 0.014 (0.080) 0.041 (0.092) 0.103 (0.097)
IP (Change) 0.020 (0.073) 0.031 (0.078)
HICP (Change) Euro area 0.024 (0.108) -0.036 (0.092) 0.031 (0.099)
HICP (Change) 0.184 (0.105) 0.103 (0.090) 0.092 (0.096)
Unemp (Change) -0.005 (0.090) -0.112 (0.096) -0.092 (0.107)
PPI (Change) Euro area -0.002 (0.164) -0.025 (0.122) 0.032 (0.143)
PPI (Change) -0.173 (0.152) -0.065 (0.112) -0.059 (0.130)
Long rate Euro area 0.201 (0.121) 0.142 (0.108) 0.219 (0.118)
Exp TV (Change) Euro area 0.142 (0.095) 0.040 (0.132) 0.054 (0.094)
Imp TV (Change) Euro area -0.118 (0.092) 0.069 (0.133)
CCI -0.180 (0.098) -0.005 (0.106)
ICI Euro area -0.200 (0.110) -0.336 (0.124)
RCI 0.228 (0.096) 0.099 (0.113) 0.035 (0.129)
PS 0.100 (0.087) 0.135 (0.093)
QV2M 0.013 (0.171) 0.020 (0.126) 0.205 (0.135)
RH2M 0.002 (0.141) 0.002 (0.112) 0.170 (0.126)
WS10M 0.057 (0.145) 0.122 (0.117) 0.111 (0.131)
CLOUD_AMT 0.006 (0.097) 0.014 (0.103) 0.099 (0.114)
T2M_RANGE 0.042 (0.089) 0.168 (0.091)
WS10M_MAX -0.022 (0.116) -0.068 (0.100) -0.039 (0.109)
WS50M_MIN 0.106 (0.078) 0.079 (0.073) 0.095 (0.077)
PRECTOTCORR_SUM 0.301 (0.101) 0.116 (0.093) 0.140 (0.102)
CDD EU 0.004 (0.131) 0.043 (0.117)
CDD 0.022 (0.123) -0.055 (0.101) -0.006 (0.097)
CLD -0.068 (0.090)
ND-GAIN 0.079 (0.105) 0.177 (0.117)
Log-likelihood value -455.43 -452.10 -459.18
AIC 952.86 946.19 968.36
BIC 1059.20 1052.54 1094.95

Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed
errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA then the estimated standard error is negative, which is impossible. The term (Change) refers to the
percentage change of the covariate in relation to the previous period.
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Table 26: Dynamic POT for AEX index describing the ξ̂(t) and ν̂(t) parameter in different regularisation
methods

Lasso Ridge ElasticNet
ξ̂(t) ν̂(t) ξ̂(t) ν̂(t) ξ̂(t) ν̂(t)

Constant (Intercept) 0.315 (NA) -3.504 (0.070) 0.584 (0.145) -2.697 (0.149) 0.452 (0.188) -3.088 (0.185)
IP (Change) EU28 -0.007 (NA) -0.078 (0.095) 0.080 (0.108) 0.134 (0.159) 0.008 (0.205) 0.034 (0.185)
IP Euro area -0.108 (0.023) -0.008 (0.227) 0.141 (0.124) 0.282 (0.156) -0.011 (0.304) 0.054 (0.181)
IP (Change) 0.025 (0.166) 0.125 (0.159) -0.036 (0.062) -0.037 (0.167) -0.071 (0.163) -0.055 (0.216)
HICP (Change) Euro area -0.020 (0.136) 0.002 (0.241) 0.095 (0.096) 0.127 (0.123)
HICP (Change) 0.059 (0.214) -0.146 (0.114) -0.019 (0.169) 0.202 (0.014)
Unemp (Change) -0.026 (0.196) -0.054 (0.261) 0.211 (0.142) 0.059 (0.153) 0.040 (0.209) -0.002 (0.138)
PPI (Change) Euro area -0.093 (NA) -0.193 (NA) 0.184 (0.158) -0.040 (0.171) 0.126 (0.271) -0.080 (0.032)
PPI (Change) -0.075 (NA) -0.010 (NA) 0.029 (0.154) 0.012 (0.176) -0.009 (0.272) 0.003 (0.229)
Long rate Euro area 0.154 (0.266) 0.018 (0.224) 0.130 (0.136) -0.115 (0.169) -0.246 (0.238)
Exp TV (Change) Euro area -0.048 (0.216) 0.055 (0.162) 0.044 (0.132) -0.208 (0.179) 0.055 (0.322) -0.163 (0.200)
Imp TV (Change) Euro area 0.299 (0.019) 0.162 (0.268) -0.112 (0.152) 0.001 (0.169) -0.159 (0.299) -0.028 (0.259)
CCI 0.181 (0.172) 0.126 (0.141) 0.280 (0.163) 0.194 (0.195) 0.243 (0.244)
ICI Euro area -0.016 (0.119) 0.208 (0.162) 0.021 (0.199) -0.002 (0.224)
RCI 0.005 (0.352) 0.138 (0.131) -0.054 (0.159) -0.024 (0.206)
PS 0.263 (0.256) 0.015 (0.378) 0.055 (0.143) 0.106 (0.163) 0.021 (0.197) 0.136 (0.185)
QV2M 0.016 (0.180) -0.012 (0.396) 0.048 (0.145) -0.104 (0.167) 0.002 (0.029) 0.003 (0.212)
RH2M 0.005 (0.337) 0.064 (0.402) 0.020 (0.127) 0.174 (0.171) -0.031 (0.234) 0.041 (0.202)
WS10M -0.018 (0.203) -0.367 (0.270) -0.096 (0.130) -0.214 (0.173) -0.090 (0.182) -0.156 (0.219)
CLOUD_AMT 0.003 (0.309) 0.117 (0.131) 0.129 (0.183) 0.075 (0.210)
T2M_RANGE 0.069 (0.141) -0.229 (0.125) 0.189 (0.131) 0.070 (0.168) 0.113 (0.193) 0.041 (0.164)
WS10M_MAX 0.086 (0.174) 0.098 (0.151) -0.061 (0.160) 0.085 (0.215) 0.055 (0.215)
WS50M_MIN 0.144 (NA) -0.071 (0.122) -0.081 (0.168) -0.001 (0.218)
PRECTOTCORR_SUM 0.198 (0.781) 0.143 (0.160) -0.116 (0.090) -0.060 (0.147) -0.013 (0.279) 0.036 (0.023)
CDD EU -0.029 (0.439) -0.018 (0.163) 0.205 (0.173) 0.002 (0.034) 0.065 (0.235)
CDD 0.452 (NA) 0.514 (NA) 0.014 (0.181) 0.172 (0.174) -0.002 (0.295) 0.110 (0.198)
CLD -0.043 (0.322) 0.015 (0.351) 0.144 (0.138) 0.202 (0.189) 0.010 (0.184)
ND-GAIN 0.027 (0.206) 0.001 (0.015) 0.211 (NA) 0.008 (0.180) 0.222 (NA) 0.009 (0.016)
Log-likelihood value 293.74 278.96 289.99
AIC -493.49 -445.91 -483.98
BIC -255.48 -162.33 -240.91
Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed
errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA then the estimated standard error is negative, which is impossible. The term (Change) refers to the
percentage change of the covariate in relation to the previous period.
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Figure 15: Value-at-Risk for the AEX market index

(a) Value-at-Risk at the 90% probability level (b) Value-at-Risk at the 95% probability level

(c) Value-at-Risk at the 99% probability level

Figure 16: Expected Shortfall at the 90% probability level for the AEX market index
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Table 27: AEX coefficient estimates without climate covariates

λ̂(t) ξ̂(t) ν̂(t)
Constant (Intercept) -1.968 (0.076) 1.059 (NA) -3.159 (NA)
IP (Change) EU28 -0.191 (0.081) 0.032 (NA) -0.024 (NA)
IP Euro area 0.070 (0.089) 0.370 (NA) 0.172 (NA)
IP (Change) Euro area 0.003 (0.109) -0.042 (NA) -0.152 (NA)
IP (Change) 0.049 (0.070) 0.002 (0.021) 0.006 (NA)
HICP (Change) Euro area 0.002 (0.088) -0.045 (0.531) -0.011 (0.128)
HICP (Change) 0.018 (0.087) -0.067 (0.363) -0.006 (0.429)
Unemp (Change) -0.057 (0.089) 0.055 (0.227) 0.002 (0.28)
PPI (Change) EU28 -0.071 (0.098) -0.008 (0.229) 0.032 (0.256)
PPI -0.004 (0.093) -0.080 (NA) -0.159 (0.194)
PPI (Change) -0.092 (0.108) 0.012 (0.265)
Long rate Euro area 0.141 (0.092) -0.466 (NA) -0.412 (0.01)
Exp TV (Change) Euro area 0.108 (0.144) 0.111 (NA) -0.046 (NA)
Imp TV (Change) Euro area -0.028 (0.136) 0.001 (0.018)
CCI -0.161 (0.105) -0.065 (NA) -0.009 (0.010)
RCI 0.185 (0.111) -0.021 (NA) 0.013 (0.342)
SCI Euro area -0.223 (0.104) 0.230 (NA) 0.009 (NA)
Log-likelihood -455.93 298.54
AIC 945.85 -533.07
BIC 1031.94 -371.03

Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed
errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA then the estimated standard error is negative, which is impossible. The term (Change) refers to the
percentage change of the covariate in relation to the previous period.

Figure 17: Value-at-Risk and Expected Shortfall without Climate covariates

(a) Value-at-Risk at the 95% probability level (b) Expected Shortfall at the 95% probability level
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B.5 Methodology results FTSE 100

Table 28: Dynamic POT for FTSE 100 index describing the λ̂(t) parameter in different regularisation
methods

Lasso Ridge ElasticNet
Constant (Intercept) -2.178 (0.089) -1.979 (0.075) -2.063 (0.081)
IP (Change) EU27 -0.172 (0.139) 0.019 (0.100) -0.039 (0.105)
IP 0.060 (0.126) -0.083 (0.108) -0.134 (0.124)
IP (Change) -0.008 (0.103) 0.073 (0.111)
HICP (Change) EU 0.095 (0.109) 0.072 (0.106) 0.048 (0.11)
HICP (Change) -0.037 (0.145) -0.012 (0.096) 0.019 (0.106)
Unemp (Change) EU -0.179 (0.110) -0.054 (0.128)
PPI (Change) EU27 0.015 (0.088)
PPI (Change) 0.038 (0.146) -0.038 (0.085)
Exp TV (Change) 0.061 (0.111)
Imp TV (Change) -0.033 (0.116) -0.078 (0.091)
CCI 0.011 (0.120) 0.012 (0.098) 0.095 (0.111)
ICI -0.141 (0.137) 0.049 (0.111) -0.028 (0.126)
RCI EU27 0.004 (0.140) -0.004 (0.113) 0.087 (0.126)
RCI -0.031 (0.135) -0.159 (0.106) -0.204 (0.118)
PS 0.064 (0.128) 0.134 (0.101) 0.106 (0.110)
QV2M -0.004 (0.149) -0.037 (0.116)
WS10M 0.173 (0.145) 0.220 (0.109) 0.156 (0.099)
CLOUD_AMT 0.140 (0.109) 0.035 (0.087) 0.052 (0.095)
T2M_RANGE 0.018 (0.097) -0.034 (0.106)
WS10M_MAX 0.015 (0.133) -0.078 (0.105)
WS50M_MIN 0.028 (0.094) -0.003 (0.083) -0.002 (0.086)
PRECTOTCORR_SUM 0.055 (0.133) 0.101 (0.101) 0.052 (0.110)
ALLSKY_SFC_SW_DWN 0.064 (0.135) 0.015 (0.116) 0.022 (0.123)
CDD EU 0.147 (0.102) 0.131 (0.099)
CLD 0.018 (0.092) 0.059 (0.077) 0.043 (0.083)
ND-GAIN change 0.219 (0.111) 0.301 (0.099) 0.265 (0.113)
Log-likelihood value -440.82 -446.32 -442.59
AIC 925.63 936.64 927.18
BIC 1037.02 1048.02 1033.50

Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed
errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA then the estimated standard error is negative, which is impossible. The term (Change) refers to the
percentage change of the covariate in relation to the previous period.
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Table 29: Dynamic POT for FTSE 100 index describing the ξ̂(t) and ν̂(t) parameter in different regular-
isation methods

Lasso Ridge ElasticNet
ξ̂(t) ν̂(t) ξ̂(t) ν̂(t) ξ̂(t) ν̂(t)

Constant (Intercept) 1.059 (1.026) -3.502 (0.414) 0.720 (0.156) -2.832 (0.166) 0.738 (0.211) -3.205 (0.164)
IP (Change) EU27 -0.002 (0.053) -0.335 (0.272) 0.143 (0.175) 0.149 (0.160) 0.017 (0.269)
IP 0.351 (0.663) 0.211 (0.501) -0.023 (0.186) 0.140 (0.287) 0.162 (0.238) 0.036 (0.014)
IP (Change) 0.009 (0.179) -0.128 (0.183) 0.234 (0.221)
HICP (Change) EU 0.098 (0.268) -0.185 (0.305) 0.166 (0.182) 0.070 (0.172) 0.075 (0.200) 0.015 (0.014)
HICP (Change) 0.092 (0.430) -0.007 (0.172) 0.059 (0.173) 0.009 (0.220)
Unemp (Change) EU 0.012 (0.464) 0.035 (0.172) 0.074 (0.162) -0.102 (0.132)
PPI (Change) EU27 -0.012 (0.293) -0.006 (0.264) -0.047 (0.160) -0.043 (0.177) -0.005 (0.183)
PPI (Change) 0.198 (0.203) 0.049 (0.156) -0.056 (0.162) 0.036 (0.249) -0.029 (0.014)
Exp TV (Change) 0.251 (0.400) 0.005 (0.385) 0.038 (0.188) -0.004 (0.163) 0.108 (0.187)
Imp TV (Change) -0.020 (NA) 0.011 (0.150) 0.018 (0.151) 0.121 (0.185) 0.054 (0.150) 0.028 (0.234)
CCI -0.173 (NA) -0.157 (0.258) 0.012 (0.164) 0.010 (0.173) -0.010 (0.216) 0.079 (0.217)
ICI 0.002 (0.166) 0.011 (0.333) 0.036 (0.184) 0.059 (0.173) -0.052 (0.197)
RCI EU27 0.002 (NA) -0.046 (NA) 0.013 (0.176) -0.093 (0.169) 0.038 (0.198) -0.012 (0.217)
RCI -0.066 (0.303) -0.048 (0.350) 0.075 (0.171) 0.012 (0.176) 0.152 (0.234) 0.013 (0.215)
PS 0.285 (0.626) 0.022 (0.397) 0.012 (0.180) 0.160 (0.165) 0.208 (0.247) 0.237 (0.216)
QV2M 0.529 (0.643) 0.002 (0.042) 0.161 (0.171) 0.080 (0.176) 0.083 (0.220) -0.011 (0.218)
WS10M 0.113 (0.510) 0.112 (0.441) 0.080 (0.174) 0.038 (0.175) 0.015 (NA) 0.004 (0.226)
CLOUD_AMT 0.567 (0.247) 0.124 (0.255) 0.018 (0.166) 0.073 (0.177) 0.170 (0.329) 0.003 (0.214)
T2M_RANGE -0.017 (0.012) 0.041 (0.271) 0.043 (0.178) 0.334 (0.172) 0.141 (0.131) 0.295 (0.144)
WS10M_MAX 0.278 (0.586) 0.046 (0.483) 0.106 (0.166) 0.150 (0.160) 0.016 (0.217)
WS50M_MIN 0.186 (0.399) 0.068 (0.349) -0.192 (0.162) 0.069 (0.183) 0.164 (0.214)
PRECTOTCORR_SUM -0.002 (1.148) 0.028 (0.485) -0.003 (0.169) 0.148 (0.236) -0.073 (0.195) 0.069 (0.137)
ALLSKY_SFC_SW_DWN 0.044 (0.715) -0.015 (0.234) 0.117 (0.176) -0.008 (0.173) 0.122 (0.247) 0.016 (0.208)
CDD EU 0.129 (0.352) 0.046 (0.182) -0.072 (0.191) 0.089 (0.225)
CLD -0.008 (NA) 0.057 (NA) 0.032 (0.162) -0.123 (0.170) 0.113 (0.161)
ND-GAIN change -0.282 (0.528) 0.006 (0.330) -0.028 (NA) -0.196 (0.159) 0.034 (NA) -0.007 (0.014)
Log-likelihood value 274.95 265.26 280.40
AIC -453.90 -422.51 -474.79
BIC -210.87 -149.11 -257.08
Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed
errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA then the estimated standard error is negative, which is impossible. The term (Change) refers to the
percentage change of the covariate in relation to the previous period.
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Figure 18: Value-at-Risk for the FTSE 100 market index

(a) Value-at-Risk at the 90% probability level (b) Value-at-Risk at the 95% probability level

(c) Value-at-Risk at the 99% probability level

Figure 19: Expected Shortfall at the 90% probability level for the FTSE 100 market index
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Table 30: FTSE 100 coefficient estimates without climate covariates

λ̂(t) ξ̂(t) ν̂(t)
Constant (Intercept) -2.137 (0.086) 0.920 (0.221) -3.143 (0.250)
IP (Change) EU27 -0.003 (0.110) 0.066 (0.144) -0.036 (0.178)
IP (Change) 0.050 (0.118) -0.018 (0.241) -0.014 (0.123)
HICP (Change) EU 0.026 (0.128) 0.004 (0.266) 0.021 (0.215)
HICP (Change) -0.065 (0.120)
Unemp (Change) EU 0.148 (0.184)
PPI (Change) EU27 -0.040 (0.101) 0.070 (0.244)
PPI (Change) 0.120 (0.230) -0.052 (0.014)
DtD rate 0.121 (0.110) 0.118 (0.216) 0.115 (0.186)
Long rate EU27 0.029 (0.119)
Exp TV (Change) 0.175 (0.257) 0.365 (0.014)
Imp TV (Change) -0.011 (0.182) -0.230 (0.222)
CCI 0.005 (0.227) 0.013 (0.188)
ICI -0.018 (0.112) 0.010 (0.260) 0.024 (0.187)
RCI -0.174 (0.106) 0.097 (0.232) -0.037 (0.201)
SCI EU27 0.028 (NA) -0.025 (0.197)
Log-likelihood -431.84 280.80
AIC 883.68 -509.61
BIC 934.31 -377.97

Note: The standard errors in this table were calculated using the Hessian matrix, which assumes normally distributed
errors and valid regularization assumptions. If these assumptions are not met, the standard errors are not valid. If the

standard error is NA then the estimated standard error is negative, which is impossible. The term (Change) refers to the
percentage change of the covariate in relation to the previous period.

Figure 20: Value-at-Risk and Expected Shortfall without Climate covariates

(a) Value-at-Risk at the 95% probability level (b) Expected Shortfall at the 95% probability level
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C Appendix 3: Covariates Description

C.1 Macroeconomic Covariates

Table 31: Macroeconomic Covariate description

C
ovariates

A
bbreviation

D
ata

R
egions

D
ata

T
ype

D
escription

IndustrialP
roduction

IP
E

U
,E

uro
area,D

E
,F
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,E
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L,U
K

Index
&
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A
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H
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U
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R
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U
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R
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U
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p
E

U
,E
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E
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R
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K
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unem
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a
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P
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P
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P

P
I

E
U

,E
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E
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R
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K
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A
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C
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C
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E
conom
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E
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Services
C
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C.2 Climate Covariates

Table 32: Climate Covariate description

C
ovariates

A
bbreviation

D
ata

R
egions

D
ata

T
ype

D
escription
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the
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