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Abstract

Real estate data commonly contains a positively skewed distribution in the pricing distri-

bution for the valuation of the residencies within the dataset, possibly indicating undesired

effects such as heteroskedasticity, outliers, and nonlinearity. A transformation is a traditional

method to account for positive skewness in data when using linear regression. However, liter-

ature about the effects of transformations to account for skewness in the dependent variable

for real estate data using machine learning is inadequate. This study compares the effects of

square root, log, and box-cox transformations on the dependent variable for real estate data

on the predictive accuracy of machine learning models. We compare the predictive accuracy

for penalized linear regression, support vector machine, random forest, and extreme gradient

boosting on multiple real estate datasets. Analyses show that transformations can benefit the

predictive accuracy of penalized linear regression and support vector machine. Additionally,

we observe transformations adversely affect random forest and extreme gradient boosting in

predictive accuracy.
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1 Introduction

The average property in the Netherlands is valued at 425.000 euros with the entire housing mar-

ket valued at 3.4 trillion euros (Centraal Bureau voor de Statistiek, 2022). There are approxi-

mately eight million residences in the Dutch housing market. Annually 75 thousand properties

are developed, making this market increasingly appealing for entrepreneurs (Centraal Bureau

voor de Statistiek, 2021). As a result of the vast influx of money and, given the present trend,

the increasing character of the market, the real estate market receives much attention from

researchers and investors. However, the property market is not untouchable, as adverse devel-

opments in the housing market can have a worldwide economic impact, such as the financial

crisis in 2008.

In 2008 the Dutch GDP fell by about four percent even though the companies in the Nether-

lands had no direct influence on the occurrence of the global financial crisis (Ministerie van

Financiën, 2021). The housing boom in the United States was one primary cause for the Dutch

GDP decline. Before the financial crisis began borrowers who in hindsight, were too risky ob-

tained large mortgages for their low overhead. Due to the accessible nature of mortgages, demand

for housing escalated quickly, causing housing prices to increase and consecutively excessive con-

struction of housing. However, the “housing bubble” eventually popped due to disproportionate

defaults on high-risk-containing mortgages, ultimately causing the financial crisis (Kahn, 2008).

Property overvaluation greatly affected banks their decisions to offer risk-containing mortgages

to consumers. With the irregularly high demand for housing driving the real estate pricing

upward at the time, banks were unaware of issuing mortgages on unreasonable valued homes

(Adelino et al., 2018).

Hedonic pricing models are one of the most common methods to asses the monetary worth

of commodities for real estate valuation (Yazdani, 2021). Hedonic pricing models provide a

tangible framework to estimate housing prices using heterogeneous characteristics such as the

number of bedrooms, square foot of living space, and garden size (Kim, 1992), and less tangible

environmental variables such as percentage of carbon particles in the air (Din et al., 2001; Smith

and Huang, 1993). Researchers commonly employ parametric models to embody the widespread

features to decide house prices. Linear regression (LR), among the most popular hedonic pricing

models, is one example of the functional form for these parametric models, along with the double-

log, exponential, and logarithmic models. However, LR relies on numerous assumptions where

violations of these assumptions negatively impact predictive accuracy. A positive skew in the

distribution of the dependent variable can indicate the presence of factors that can affect the

accuracy of LR, such as heteroskedasticity, outliers, and nonlinearity. Skewed data is common
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in real estate data due to the more extensive offer of cheaper housing compared to expensive

residences. To account for skewness in data, researchers frequently use transformations to the

dependent variable, such as square root, logarithmic, and box-cox transformations, which alter

the distribution shape of the dependent variable (Heij et al., 2004).

For capturing linear relationships, LR performs well, but LR falls short of more complex

relationships within the dataset. There is extensive research on how to use adapted forms of

LR to capture non-linear relationships. (Motulsky and Ransnas, 1987; White and Domowitz,

1984). Nevertheless, interest in machine learning (ML) is rising due to the capability to account

for sophisticated relationships in data. As ML can account for the complex interactions within

real estate regressors, ML models such as penalized linear regression (PLR) and support vector

machine (SVM) show remarkable performance compared to LR for real estate data (Baldominos

et al., 2018; Fabozzi et al., 2020). Additionally, Borde et al. (2017) and Guliker et al. (2022)

observe that tree-based estimation algorithms such as random forest (RF) and eXtreme Gradient

Boosting (XGB) outperform LR when using real estate data.

This research aims to improve the accuracy of real estate pricing using an ML model-based

approach. We compare the predictive accuracy of multiple ML models, specifically PLR, SVM,

RF, and XGB, to our benchmark model LR. We assess the performance of the models using

the mean absolute error (MAE), root mean squared error (RMSE), and Median Absolute Error

(MedAE). We compare the performances of our ML models on various dependent variable trans-

formations, including the square root transformation, logarithmic transformation, and box-cos

transformation, to account for the highly skewed data in real estate pricing. By comparing

the performances of the ML models with various transformations of the dependent variable,

we answer which transformations on the dependent variable positively influences the predictive

accuracy of ML models using skewed real estate data.

The remaining content of this paper is organized as follows. Section 2 provides an overview

of current literature on credit scoring and imbalance. Then, Section 3 describes the data to train

and test our models. Subsequently, in Section 4, we discuss the methodology of this research.

Section 5 presents the results of our models on the data of Section 3. Finally, we discuss our

results and provide a conclusion in Section 6.

2 Literature

The following section provides an overview of current modeling methods in real estate literature

for manual appraisal, linear regression (LR), and machine learning (ML) models. Then, we

discuss the literature about skewed data and common methods to account for skewed data in
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regression.

2.1 Pricing in real estate

Commonly, experts are responsible for rating the monetary value of real estate properties.

Northcraft and Neale (1987) show that amateurs and experts use different methods to eval-

uate properties. First is the concrete referent, which bases pricing on the property’s age and

listing price. Second, is features-only computation, where experts determine property price

based only on the features of the property, such as the property’s condition, size of the property,

and location of the property. The last and most common is comparison computation. The com-

parison computation bases property value on the price of closed properties in the neighborhood

proportional to each other’s square footage. However, as Northcraft and Neale (1987) observe,

these valuation methods are heavily biased and subjective as these methods do not incorporate

all factors driving housing prices. During the crisis in 2008, the overvaluation of properties by

manual appraisal substantially impacted consumer purchasing power (Ben-David, 2011). Kok

et al. (2017) argue that manual appraisals of properties can vary around fifteen percent in price

and take up to three weeks to determine, costing around 3000 euros extra for consumers, and

show an automated model can decrease the variation in property pricing below ten percent

providing price indication instantly instead of three weeks.

Researchers commonly employ hedonic pricing models as a model-based pricing method to

evaluate real estate price estimates where specifically LR draws considerable attention to re-

search (Abdulhafedh, 2022; Ghosalkar and Dhage, 2018; Ozgur et al., 2016). Researchers use

LR substantially in real estate pricing utilizing a model-based approach due to its uncompli-

cated implementation and interpretability. LR allows for a straightforward interpretation of

marginal effects through the explanatory variables, elasticities, and log-odds ratios. LR also

supports traditional econometric inference via F -tests and t-tests of the coefficients. However,

the accuracy of LR declines for more complex relations within the dataset as, for example, extra

bedrooms in apartments have a different pricing influence compared to an extra sleeping room

in a stand-alone house. Because LR assumes a linear relationship for feature interactions, it falls

short of explaining more complex nonlinear relationships Guliker et al. (2022).

2.2 Machine learning models

ML is a common method of choice for high-accuracy prediction in multidimensional analysis.

Its substantial predictive accuracy is well known in econometric literature to engage the most

complex problems. Two groups of ML models are among the most common models in econo-
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metric literature. First is the individual classifier, which bases predictions on a single model.

Researchers use penalized linear regression (PLR), the penalized form of LR, in widespread ap-

plications such as real estate pricing Fabozzi et al. (2020). Castelli et al. (2020) use PLR and

predict building prices showing competitive results for the lasso penalty instead of regular LR.

The penalized form of LR is a feasible solution for regression problems to account for linear

relations while compensating for over-fitting using a penalty term. Jamil et al. (2020) favor

the ridge penalty over the lasso penalty for prediction if regressors have high colinearity and

show competitive results compared to LR in real estate pricing data. The elastic net penalty, a

weighted combination of the ℓ1 and ℓ2 penalty, allows for the feature space sparsity of the ℓ1 term

and the consideration of multicollinearity using the ℓ2 term. Ogutu et al. (2012) observe the

elastic net penalty to outperform individual penalty terms and positively impact model sparsity

while simultaneously addressing colinearity between regressors. By tuning the elastic net weight

penalty parameter, the penalty term can still adopt the functional form of the ridge or lasso

penalty if it positively impacts model performance. However, the accuracy for PLR declines for

higher-order nonlinear interactions. Support vector machine (SVM), a decision boundary-based

algorithm, can account for nonlinearity through its flexible hyperplane by kernel choice (Boser

et al., 1992). Although SVM can account for nonlinear behavior, the prediction accuracy heavily

depends on the proper choice of kernel and hyperparameters but struggles with categorical data

(Meyer et al., 2003). For real estate data, Li et al. (2009) show the competitive performance of

SVM when compared to LR for real estate data. Yu and Wu (2016) compare the performance

of SVM and PLR with a lasso penalty and shows the relatively better performance of SVM.

Homogeneous ensemble learners base decision-making on a pool of likewise models to increase

the performance of weak base learners thereby reducing variance and increasing predictive ac-

curacy. Baldominos et al. (2018) compare multiple supervised ML models and find individual

classifiers like SVM have a good accuracy. Baldominos et al. (2018) observe homogeneous en-

semble learners based upon decision trees that are consistently high-performing models. RF is

a robust and highly accurate homogeneous ensemble learner basing prediction upon groups of

decision trees, which can account for more complex interactions. Borde et al. (2017) compare

the real estate pricing prediction accuracy of LR to RF and show competitive results for RF.

In the spectrum of boosted regression trees, Chen and Guestrin (2016) propose eXtreme Gradi-

ent Boosting (XGB), which outperforms conventional boosting algorithms, such as generalized

boosting regression modeling in terms of predictive accuracy (Nielsen, 2016). Bentéjac et al.

(2021) show ore recent models like Catboost and light GBM have comparable predictive accuracy

to XGB. For real estate data Zhao et al. (2019), show XGB to outperform more conventional

4



ML models in predicting house prices.

2.3 Skewed data

Skewed data, specifically in the dependent variable, is common in fields such as real estate pric-

ing, credit card fraud, and mortgage defaults (Bond and Patel, 2003; Diaz-Serrano, 2005; Makki

et al., 2019). Skewness in the dependent variable in real estate data occurs as a result of greater

demand for less expensive properties compared to more expensive housing. Skewness can have

a negative effect on LR because it relies on general assumptions that ensure the estimator is

unbiased and efficient, such as the homoskedasticity and linearity assumption (Heij et al., 2004).

If skewed data is present, careful consideration is necessary as a violation of the assumptions

interferes with the unbiasedness and efficiency of the estimator. Two solutions are common to

account for skewness in data. The first solution is a model-based approach to LR assumption

violations. If the data does not meet the assumptions of LR, methods such as generalized linear

models are more trustworthy compared to LR (Changyong et al., 2014). The second solution is

transformations of the dependent variable such as a log, square root, or box-cox transformations

Osborne (2010). These transformations notably account for the skewness in the data Benoit

(2011). Osborne (2010) argue the box-cox transformation to incorporate many common trans-

formations such as the log, square, and cubic root. Although, Osborne (2010) also argue that

the log and square root transformations are still common in literature to ensure the assumptions

of LR. However, Krawczyk (2016) argue that the econometric literature lacks research about

imbalance for ML models. Even though transformations are not unheard of, researchers such

as Potrawa and Tetereva (2022) apply a box-cox transformation for their skewed real estate

pricing dataset for prediction. However, Changyong et al. (2014) argue transformations can

harm the empirical form of a distribution as, for example, the log transformation offsets the

positive skew towards a negative skew in the distribution of the dependent variable. Changyong

et al. (2014) recommend careful consideration for applying transformations as they can impose

a negative skew instead of the desirable bell curve shape. Kiely et al. (1995) show a square root

transformation can force a more regularly distributed dependent variable. In contrast, Kiely

et al. (1995) observe a log transformation to change the positive skew of the data to a negative

skew, emphasizing the essence of using transformations carefully. Also, Sakia (1992) and Silva

and Tenreyro (2006) discuss it is seldom that transformations such as the box-cox or log trans-

formation help fulfill all assumptions of LR. However, Sakia (1992) emphasizes transformations

have the potential to help improve model accuracy if adequately used.
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3 Data

In the following section, we discuss the datasets used for this research. The five curated datasets

originate from Kaggle. For each dataset, we describe the size and characteristics of the dataset.

Also, if relevant, we describe pre-processing measures to account for outliers and missing values.

We describe the Boston housing dataset, the Russia rent dataset, the housing prices dataset,

the advanced house prices dataset, and the Saudi dataset.

3.1 Boston dataset

The first dataset, the Boston housing dataset, contains 511 data points about the median values

of privately owned houses of neighborhoods in Boston. The Boston dataset includes information

about neighborhood quality, such as pupil-teacher ratios, the concentration of nitric oxide in

the air, and tax rate. In the density plot of Figure 1, observe the positively skewed nature of

the distribution. The dependent variable of the dataset contains information about the median

cost of privately owned houses in the neighborhood. The median values of the homes within the

dataset range from 5000 to 67,000 dollars. Appendix A provides an overview of the variables

with additional descriptive statistics and a description of the variables.

Figure 1: Density plot of the dependent variable of the Boston dataset

3.2 Russia rent dataset

The second dataset in this research, the Russia rent dataset, contains 1446 data points and

describes information about the apartment size, public transport near the apartment, and type

of the deal for the apartment. Examples of the variables in the dataset include the nearest station

name for the metro, the size of the living area, and the number of views the apartment got.
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The dependent variable considers the rent price of multiple residencies in Russia. We describe

the variables and their respective descriptive statistics in Appendix A. Figure 2 illustrates a

density plot of the distribution for the rent prices within the dataset. The density plot shows a

high frequency of observations in the tails and does not coincide with the bell-shaped curve. In

the dataset, the realtor variable contains various false data points, as these data points did not

represent a category. We impute these data points using the mode of the variable.

Figure 2: Density plot of the dependent variable of the Russia rent dataset

3.3 Housing prices dataset

The housing prices dataset contains information about various houses where the dependent

variable explains the housing prices ranging from 1,75 million to 13,3 million dollars of an

undisclosed area. Figure 3 shows the distribution of the house prices in the dataset, indicating

a slight positive skew of the dependent variable. The dataset consists of 546 data points where

the regressors comprise basic information about a residency. Examples of these variables in the

dataset are the number of bedrooms, stories of the building, and parking area size. We further

describe these variables and respective descriptive statistics in Appendix A.
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Figure 3: Distribution of the house price in the House prices dataset

3.4 Advanced house prices dataset

The advanced house prices dataset, similar to the housing prices dataset, contains valuation

prices of houses ranging from 34,900 to 755,000 dollars of an undisclosed area. However, where

the regressors in the housing prices dataset contain more basic characteristics of a home such

as the number of bedrooms or bathrooms, the advanced house prices dataset contains more

complex information, such as the type of roof or the length of the perimeter. The dataset

contains 1460 data points, where 43 variables are categorical, and 37 variables are continuous.

As we one-hot-encode categorical variables, the dimensions of the n × m dataset with n the

number of data points and m the number of regressors will result in m and n almost to have

similar dimensions, which can have consequences for our models. High dimensionality in data

can cause ML models to overfit and diminishes the predictive accuracy of models (Gnana et al.,

2016). Therefore we exclude a proportion of the categorical variables based on our reasoning. In

Appendix A, we provide an overview of the variables used for this research with their respective

description and descriptive statistics. Figure 4 shows the distribution with a positively skewed

dependent variable in the advanced house prices dataset.
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Figure 4: Density plot of the dependent variable of the Advanced house prices dataset

3.5 Saudi dataset

The last dataset used for this research is the Saudi dataset containing the housing prices of

various villas in Saudi Arabia. The dataset contains 1417 data points with regressors containing

information about the villa’s location, size, and additional features. Examples of the independent

variables are the city of the villa, if a pool is present, and the number of rooms in the villa.

As Figure 5 illustrates, the dependent variables contain large values on the right side of the

mean, thus a positive skew of the distribution. We provide the full description of all variables

in Appendix A with respective descriptive statistics.

Figure 5: Density plot of the dependent variable of the Saudi dataset
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4 Methodology

In the upcoming section, we first detail the transformations to which we subject the dependent

variable. Second, we discuss D’Agostino’s K-squared test, which we use to detect skewness and

assess the normality of the dependent variable after transformations. Then, we elaborate on the

mathematical background of the aforementioned models in Section 1, which are LR, PLR, SVM,

RF, and XGB. Followed by the introduction of all five models, we will discuss hyperparameter

tuning. Lastly, we discuss pre-processing of the data and the performance assessment through

statistical testing of the models.

4.1 Transformation of the dependent variable

We use three transformations to account for the skewness of the dependent variable within the

dataset. Before tuning and training the ML models, we transform the dependent variable using

the root, log, and box-cox transformations. Then, we tune the hyperparameters, train our ML

models and predict our test set using 5×2 cross-validation, which we will elaborate on in Section

4.4. After prediction, we transform the predicted values of our models using the inverse of the

same mutation that the data was previously transformed with to ensure the magnitude of the

errors for the respective transformation is in the same order as the untransformed dependent

variable to assure equal comparison.

As mentioned in the previous paragraph, we use the square root, log, and box-cox transfor-

mation. For datapoints i = 1, ..., N the square root transformation mutates datapoint y to ỹ as

follows

ỹi =
√
yi.

The log transformation, a common transformation in econometric literature, attains ỹ using the

natural logarithm as follows

ỹi = log(yi).

Last, the box-cox transformation considers all values of λ between minus five and five to attain

the optimal value for the dependent variables distribution to resemble most closely to a normal

distribution (Box and Cox, 1964). The box-cox algorithm attains ỹ using

ỹi =
yλi − 1

λ
if λ ̸= 0,

ỹi = log(yi) if λ = 0.

For λ = 0, the functional form of the box-cox algorithm acquires the log transformations’

functional form.
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Figure 6 illustrates the effects of the square root, log, and box-cox transformation on data.

The x-axis illustrates the original value of data, and the y-axis depicts the transformed form.

Note that the primary purpose of the transformations is to diminish higher values more heavily,

which converts a positive skew towards a more regular bell curve. For these examples, the

log transformation is the most severe. However, lower values of λ can impose more severe

transformations to higher values. In Appendix D, we provide an overview of the square root,

log, and box-cox transformation effects on the dependent variable of our datasets.

Figure 6: Figure illustrating the effects of various transformations where the original unit,

through a transformation, mutates to the transformed unit.

4.2 D’Agostino’s K-squared test

After applying the transformations to the dependent variable of the five datasets mentioned

above, we perform D’Agostino’s K-squared test to evaluate the similarity to a normal distribu-

tion of the untransformed dependent variables according to the skewness and kurtosis.

D’Agostino’s K-squared test evaluates the goodness-of-fit of a variable according to the

kurtosis and skewness compared to a normal distribution (D’agostino and Pearson, 1973). We

determine the statistic K2 for D’Agostino’s K-squared as

K2 = W1(S)
2 +W2(Ku)

2,

with S, a metric for the skewness and Ku, a metric for the kurtosis. The functions W1 and

W2 represent a transformation of the sample skewness and kurtosis. A sample skewness of
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two indicates the dependent variable is moderately skewed (Curran et al., 1996). For the full

formulation of W1(S) and W2(Ku) we refer to the papers of D’agostino and Pearson (1973)

and Anscombe and Glynn (1983). We compare D’Agostino’s K-squared test statistic with two

degrees of freedom chi-squared distribution at a 0.05 and 0.01 significance level.

4.3 Models

As discussed at the start of this section, we evaluate five models in this research. In the following

paragraphs, we further elaborate on LR, PLR, SVM, RF, and XGB.

4.3.1 LR

LR is a common model among widespread academic research fields and industries. The mod-

els’ simplistic construction allows for easy implementation and good interpretation of decision-

making. The model, however, relies upon heavy assumptions, such as homoskedasticity and the

independence of residual errors, which has implications for the predictive accuracy of LR. Also,

LR is prone to overfitting as it does not rely upon a penalty, which can cause inaccuracies on

unseen data. We denote LR, which assesses dependent variable yi with i = 1, ..., N observations

for datapoint xi,j with regressors j = 1, ..., p as

yi = β0 +

p∑
j=1

βjxi,j .

4.3.2 PLR

As mentioned in Section 4.3.1, LR lacks a penalty term to prevent the model from overfitting.

Customary options for PLR are a ℓ1 norm, a ℓ2 norm, or a weighted combination of both. Where

the ℓ1 norm shrinks regressors ultimately to zero resulting in a sparser model and hence is more

interpretable. The ℓ2 norm shrinks regressors substantially small and, therefore, desirable in

possible multicollinearity. The elastic net is a combination of both and has a parameter that

controls the proportion of the ℓ1 and ℓ2 norm, respectively. As there is no preference for the

model sparsity or accounting of multicollinearity property and ultimately, as by tuning of θ, it

can still optimize to either the ℓ1 or ℓ2 norm, we opt for the elastic net as a penalty. We calculate

the loss function of the elastic net penalty as

L(β) = argmin
β

− N∑
i=1

p∑
j=1

(yi − xiβj)
2 +λ

θ

p∑
j=1

|βj |+ (1− θ)

p∑
j=1

|βj |2
 ,

where yi represents our dependent variable for i = 1, ..., N and our parameter vector which we

denote with βj for j = 1, ..., p. The parameter λ is the penalty term for elastic net with higher

values imposing larger penalties.
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4.3.3 SVM

The regression form of SVM, support vector regression (SVR), fits a hyperplane within its

margins and maximizes the total amount of data points within the area of the margins. Data

points outside of the margins impose a penalty on the cost function of SVR. For SVR, we

minimize the Lagrangian function

L(ξ) = 1

2

N∑
i=1

N∑
i′=1

(ξi − ξ∗i )(ξ
′
i − ξ∗j )K(xi, x

′
i) + ϵ

N∑
i=1

(ξi + ξ∗i )
N∑
i=1

yi(ξi − ξ∗i ),

for data points i,i’=1,...,N, which are subject to the constraints

N∑
i=1

(ξn − ξ∗n) = 0,

0 ≤ ξn ≤ C,

0 ≤ ξ∗n ≤ C.

The parameter C represents the regularization parameter and the parameters ξ and ξ∗ are the

slack variables that allow for a tolerance of the constraints for data points outside of the margin.

For this research, we employ the radial basis function where we denote the kernel function

K(xi, x
′
i) as

K(xi, x
′
i) = exp(γ||xi − x′i||2),

where hyperparameter γ determines the flexibility of the hyperplane for SVR.

4.3.4 RF

The RF model of Breiman (2001) aggregates individually trained decision trees and bases predic-

tion on majority voting. RF, also known as a bagging method, trains weak independent learners

to form a group. The group of weak learners reduces the variance of the weak individual learners

and thus increases the power to predict accurately. Individual decision trees can display high

variance in their results. As such, we can lower this variance by bundling a group of decision

trees. To lower the variance of individual trees, for a subsample of the features, RF grows splits

for the least impure feature of the subset, where RF defines impurity as the best possible split

to separate the dependent variable.

4.3.5 XGBoost

For our last model, we consider a common high-predictive performance model: the XGB algo-

rithm introduced by Chen and Guestrin (2016). We adopt the notation of Chen and Guestrin
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(2016) for the true outcome yi ∈ R in parameter set xi ∈ Rm the true outcome XGB sequentially

builds k = 1, ...,K decision trees fk and predicts ŷi for i = 1, ..., N dependent variables by

ŷi = ϕ(xi) =

K∑
k=1

fk(xi).

For consecutive trees, the weighted importance updates for every observation corresponding to

the error of the previous decision tree through gradient boosting. By optimizing, we greedily

add DT fk, which best optimizes1

L(ϕ) =
n∑

i=1

l(ŷi, yi) +

K∑
k=1

Ω(fk),

where l is the convex loss function to measure prediction error between yi and ŷi and Ω a

regularization term to prevent over-fitting of fk.

4.4 Tuning

The order in how well ML performs substantially correlates with its respective hyperparame-

ters. Before training a ML model, its respective hyperparameters are predetermined and can

considerably influence predictions. Since we fix hyperparameters before learning, we tune these

hyperparameters.

Wu et al. (2019) compare grid search with bayesian optimization, where grid search slightly

outperforms bayesian optimization, but this comes at a cost. Grid search evaluates all possible

hyperparameter combinations causing long runtime. random search, a common alternative for

grid search, evaluates the parameter space randomly given a predefined amount of evaluations.

However, as Wu et al. (2019) discuss, this comes at a cost for bigger dimensionality problems.

For tuning complex models, such as XGB (Kapoor and Perrone, 2021), bayesian optimization

finds optimal hyperparameter configurations notably quicker than random search and grid search

due to its more structured approach. The two-step approach of bayesian optimization makes

it suitable for hyperparameter tuning. First, the bayesian optimization algorithm randomly

explores the hyperparameter space and proposes a preliminary hyperparameter combination.

Then, bayesian optimization seeks the optimal hyperparameter setting by repeatedly updating

prior beliefs of the unknown objective function and using the updated beliefs to evaluate the

following point to evaluate around the preliminary hyperparameter combination determined in

the first step. Using a more direct approach for hyperparameter tuning bayesian optimization

saves evaluations compared to random search and grid search. We limit bayesian optimization to

200 steps in the exploratory phase and 50 in the second phase due to computational constraints.

1We refer to Chen and Guestrin (2016) for the full mathematical formulation of XGBoost.
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For model performance comparison using smaller datasets, Raschka (2018) favor the 5 × 2

cross-validation method of Dietterich (1998). The 5 × 2 cross-validation method is a nested

cross-validation approach to validating model performance. Commonly nested cross-validation

consists of two cross-validation loops consisting of an inner hyperparameter validation and an

outer test set loop. For 5 × 2 cross-validation, the inner loop evaluates the performance of

hyperparameter settings in 2 folds, resulting in two splits of 50/50 train/validation folds. In the

outer loop, five folds of a train/test split of 80/20 evaluate model performance given optimal

hyperparameter settings from the inner loop. Resulting in five evaluations of performance on

each dataset for each model.

For the PLR models, we tune the penalization hyperparameter and the elastic net distribu-

tion parameter. The penalty term allows control for overfitting, and the adjustable parameter

aids model sparsity and multicollinearity (Zou and Hastie, 2005).

SVM lends its suitability to its N -dimensional hyperplane. Proper kernel choice allows for

comprehension of the complexity within the dataset using its hyperplane for regression. Sain

(1996) observe the RBF kernel to encounter fewer numerical issues than other kernels; hence we

opt for the RBF kernel. Probst et al. (2019a) discuss additional hyperparameters for SVM and

observe gamma to influence the performance of SVM notably if adequately tuned. The C term

is a ℓ2 penalty, which acts as a strength regularization parameter controlling for overfitting and

observations outside of hyperplane margins.

Unlike a model such as SVM, which requires proper tuning for performance, RF achieves

notable performances on its standard settings (Probst et al., 2019b). Though, Probst et al.

(2019a) shows tuning can improve model performance if computational constraints allow it. We

tune the number of estimators, the max depth of the tree, the maximum number of features,

and the impurity criterion for the RF model. Standard impurity criteria for RF regression are

squared error, absolute error, Friedman mean squared error and Poisson penalty. By keeping

the max depth of the tree relatively shallow and by optimizing the size of the set of features, we

account for restraining model complexity and consider overfitting for RF.

The XGB model has a notable amount of hyperparameters to tune. As tuning all hyperpa-

rameters given the size of our dataset is infeasible to ensure adequate model performance, we

select a subset of hyperparameters to tune and hold on to standard hyperparameter settings for

the remaining parameters. Probst et al. (2019a) evaluate the tunability for the hyperparameters

of various models, tunability indicates the influence tuning of the hyperparameters can have

on model performance and find proper tuning of the learning rate and the number of estima-

tors can most notably influence model performance of XGB. Due to personal preference, we
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include the gamma and max depth hyperparameters. XGB bases further learning on residual

errors of the previously trained tree. Higher gamma values make the model more conservative

on splits, hence controlling for overfitting. Max depth is the maximum depth of an individual

decision tree. Excessive values of the max depth cause trees to saturate on data impacting

model performance negatively. Last, as XGB is a complex model to train, computation time is

a factor to consider. Kapoor and Perrone (2021) evaluate the influence of subsamples on model

performance and conclude two notable remarks. First, computation time scales linearly with

sample size. Second, for subsamples above 75%, model performance is minimally compromised.

Hence we set the sub-sample parameter to 80% to reduce computation time. In Appendix C, we

provide an overview of the hyperparameters we tune with their respective range and description.

4.5 Pre-processing

In Section 3, we discussed pre-processing methods to consider outliers and missing values for

each specific dataset, which we assess and fill manually with either the mode for categorical

variables or the median for continuous variables. To ensure similar ranges in our regressors for

training our models, which is particularly necessary for PLR and SVM, we use normalization

as the method is more robust to outliers in our regressors, which we favor because we don’t

perform extensive analysis on the distribution of our regressors. We use the min-max scaling as

a normalization method since min-max scaling preserves the original distribution of the regressor

and is easy to implement. The categorical variables in this research are accounted for by using

one-hot encoding.

4.6 Testing model performance

To assess the effects of transformations on the dependent variable for various ML models. We

tune the hyperparameters of our ML models PLR, SVM, RF, and XGB using the MAE, RMSE,

and MedAE and assess the performance of our models using the respective performance metric

with LR. We elaborate on the performance measures of this research in Appendix E. Section 5.1

shows not all dependent variables comply with a normal distribution, so we use non-parametric

tests as we can not guarantee all assumptions necessary for a parametric test. As a non-

parametric test, we use the Dunn test, a non-parametric ranked multiple comparison test that

evaluates group performance.

The Dunn test is a non-parametric rank-based test considering multiple testing, where we

use a Bonferonni correction to consider multiple testing due to personal preference (Dunn,

1964). With a null hypothesis of equal performance for groups and an alternative hypothesis of
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unequal performance for groups, we compare the model performances of PLR, SVM, RF, and

XGB with our reference model LR. We adopt the notation of Dunn (1964) for the pair-wise

comparison between model T with samples ni for i = 1, ..., n of models s = 1, ..., S, with S = 5

for our comparison. The models are ranked based on their performances on the data. As we

perform 5× 2 cross-validation to assess the performance of a model for each dataset, we attain

n = 5 performance metrics. If the performance of models is tied, we average the tied ranks and

designate the average to each tie.

zs,s′ =

∑
i Ti,s/

∑
i ni,s −

∑
i′ Ti′,s′/

∑
i′ ni′,s′

σs,s′
∼ N(0, 1),

σs,s′ =

√[
N(N + 1)

12
−

∑w
v=1 u

3
v − uv

12(N − 1)

](
1∑
i ni,s

+
1∑

i′ ni′,s

)
,

with N =
∑S

s=1

∑N
i=1 ns the total sample size of the S models, uv the number of observations

of all S models for v = 1, ..., w with w the total number of tied ranks across all S models.

5 Results

In the following section, we first discuss the results of the D’agustino K-squared test, which tests

normality according to sample skewness and kurtosis. We perform the test on the Boston, Russia

rent, housing prices, advanced house prices, and Saudi data set for the untransformed, square

root, log, and box-cox transformation of the dependent variable for each respective dataset. We

then discuss the performances of LR, PLR, SVM, RF, and XGB on all five datasets for every

transformation, and we assess model performance by comparing the MAE, RMSE, and MedAE

using the Dunn test.

5.1 D’Agostino’s K-squared test

Table 1 shows the D’Agostino K-squared test results, which we use to assess the statistical

resemblance of our dependent variable to a normal distribution based on the sample skewness

and sample kurtosis. The null hypothesis is of similarity to a normal distribution, with the

alternative hypothesis of no similarity. The test is evaluated on a 5% and a 1% significance

level.
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Table 1: The p-values indicating statistical resemblance to a normal distribution according to

the D’Agostino’s K-squared test

Transformation Boston Russia rent Housing prices Advanced house prices Saudi

None 0.000∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗

Square root 0.000∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗ 0.000∗∗

Log 0.001∗∗ 0.000∗∗ 0.332 0.000∗∗ 0.000∗∗

Box-Cox 0.064 0.000∗∗ 0.792 0.000∗∗ 0.000∗∗

Notes: We perform the test on the dependent variable of all five datasets for the untransformed, square root,

Log, and Box-Cox transformation of the dependent variable. ∗An asterisk indicates a significant difference

between a normal distribution and the respective distribution of (un)transformed forms of the dependent

variable for a distinct dataset on a 5% significance level, ∗∗two asterisks indicate significance on a 1%

significance level.

Based on Table 1, we observe that the test statistic for the Box-Cox transformed dependent

variable most often provides an indication for statistical resemblance to a normal distribution,

compared to the other transformations. The log-transformed dependent variable only statis-

tically resembles a normal distribution for the housing prices data set, as indicated by the

insignificance of the test statistic in Table 1. Accounting for the positive skew in the distribu-

tion of our dependent variable compared to a normal distribution, as is discussed in Section 2,

should improve the predictive accuracy of our models.

5.2 Performance of ML models

In the following section, we discuss the results of LR, PLR, SVM, RF, and XGB on the Boston,

Russia rent, housing prices, advanced house prices, and Saudi dataset. The tables below only

show the mean performance metrics over all five folds. For exact numbers per fold, we refer to

Appendix F.

5.2.1 Boston dataset

Table 2 shows the results of all considered models for every transformation of the Boston dataset,

evaluated on MAE, RMSE, and MedAE.

Using transformations on the dependent variable lowers the LR prediction errors based on

all three performance measures. However, only the log transformation shows statistical evi-

dence of the increase in performance for the MAE. The statistical difference compared to the

untransformed form shows transformations can address for LR assumption violations.
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Similar to LR, the PLR and SVM prediction errors are lower when a transformed dependent

variable is used. However, we reject the null hypothesis of equal model performance on a 1% and

5% for PLR only for the log and box-cox transformation, respectively, of the MAE metric. The

box-cox transformation for SVM of the MAE significantly increases the predictive accuracy of

the model on a 1% significance level showing transformations can aid in fitting the hyperplane

of SVM based on MAE.

That said, based on the RMSE and MedAE, none of the models statistically improve using

a transformation on the dependent variable. Specifically, for a transformation on LR to not

statistically improve model performance for the RMSE and MedAE, the transformation does

not fully account for possible outliers, heteroskedasticity, or nonlinear effects. Thus, given

that RMSE penalizes larger mispredictions more severely than the MAE and the MedAE is a

robust performance metric, we cannot conclude that the model performance of our ML models

statistically differs from LR based on transformations of the dependent variable, which suggests

that the transformations do not aid in model performance in the Boston dataset.

Moreover, Table 2 shows that the RF model statistically outperforms LR on all transfor-

mations based on the MAE. The XGB model only outperforms the LR model in case of no

transformation on the dependent variable, using the MAE as a measure of performance. Nei-

ther of the remaining performance measures shows a statistical difference between the benchmark

LR model and the PLR, SVM, RF, and XGB models. As the Boston dataset contains regressors

with possible interaction effects, such as the pupil-teacher ratio, the proportion of uneducated

people, and the crime rate. We require models to account for nonlinear effects in model con-

struction resulting in RF and XGB capturing the interactions between regressors better than

LR, thus significantly outperforming LR. However, transformations can even negatively model

the performance of tree-based algorithms as the log transformation for XGB significantly differs

from the original data based on the higher value for the MAE.

Table 2: Mean of the 5× 2 cross-validated models on the Boston dataset for the MAE, RMSE,

and MedAE

Boston mean absolute error

Transformation LR PLR SVM RF XGB

None 3.767 3.740 3.516 2.377∗ 2.340∗

Square root 3.443 3.463 2.847 2.380∗ 2.562

Log 3.263†† 3.281†† 2.826 2.373∗ 3.006†

Box-Cox 3.318 3.326† 2.768†† 2.412∗∗ 2.599
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Boston root mean squared error

Transformation LR PLR SVM RF XGB

None 6.183 6.124 5.762 3.876 3.923

Square root 5.819 5.900 5.293 4.010 4.261

Log 5.679 5.793 5.190 4.030 5.028

Box-Cox 5.715 5.819 5.162 4.034 4.598

Boston median absolute error

Transformation LR PLR SVM RF XGB

None 6.183 6.169 5.843 3.921 4.008

Square root 5.819 5.864 5.142 3.968 4.411

Log 5.679 5.744 5.120 4.114 5.004

Box-Cox 5.715 5.817 5.088 4.126 4.992

Notes: We perform the test on the dependent variable of all five datasets for the untransformed, square root,

Log, and Box-Cox transformation of the dependent variable. †A dagger indicates a significant difference between

the respective (un)transformed forms of the dependent variable for a distinct dataset on a 5% significance level,

††two daggers indicate significance on a 1%. significance level. ∗An asterisk indicates a significant difference

between LR and the respective model on a 5% significance level, ∗∗two asterisks indicate significance on a 1%.

significance level.

5.2.2 Russia rent dataset

We show the results of all five models on the Russia rent dataset in Table 3. For both the

RF and XGB models, the transformations provide no increase in performance for the three

performance measures. In addition, the box-cox transformation of XGB shows a statistical

difference compared to the untransformed error of the dependent variable, where the error

of the box-cox transformations is higher. This statistical difference indicates transformations

induce negative effects on the formation of proper splits for the tree-based algorithms impacting

predictive accuracy.

For both the LR and PLR models, the log and box-cox transformation show a statistical

difference considering the MAE. However, besides the MAE for none of the other performance

measures, there is enough statistical evidence to reject the null hypothesis of equal model perfor-

mance for the square root, log, and box-cox transformation, which is comparable to the Boston

dataset. A possible explanation for the ineffectiveness of the transformations is the substantial

amount of data points in the tails of the distribution of the dependent variable as described in

Section 3, which can cause heteroskedasticity and nonlinearity.

For the SVM model, both the MAE and MedAE statistically differ for the log-transformed
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dependent variable compared to the original dependent variable on a 5% significance level. As

SVM fits its hyperplane by minimizing the errors outside the margin respective to the hyper-

plane, the mutation of large values in the tails can positively affect the prediction performance

of SVM.

Comparable to the Boston dataset in Section 5.2.1 for the RMSE and MedAE no transformed

form indicates statistical difference compared to the original form. For the untransformed and

square root transformation, the XGB model outperforms LR on a 5% significance level consid-

ering the MAE. For the MAE of the RF model, it outperforms LR with the square root and log

transformation on a 5% and 1% significance level. Regressors such as provider together with fee

percent and living area along with total area in the Russia rent dataset, have strong interactions

as the types of providers have different incentives for profit margins on the fee percentage. In

addition, the amount of living area is always proportional to the total area of the apartment

and can never be greater than the total area, explaining the statistical difference in the errors of

the RF and XGB models compared to the LR model. However, because transformations on the

dependent variable do not change these relationships between regressors, tree-based algorithms

perform significantly better because they can capture these nonlinear interactions from these

relationships.

Table 3: Mean of the 5× 2 cross-validated models on the Russia dataset for the MAE, RMSE,

and MedAE

Russia mean absolute error

Transformation LR PLR SVM RF XGB

None 13,978 13,870 14,076 2,852 2,775∗

Square root 11,689 11,736 7,311 2,714∗ 2,487∗

Log 11,020†† 11,188† 5,837† 2,720∗∗ 3,985

Box-Cox 11,214† 11,195† 15,031 2,919 14,696†

Russia root mean squared error

Transformation LR PLR SVM RF XGB

None 23,849 23,953 17,996 13,676 13,376

Square root 23,071 23,343 23,595 11,745 11,207

Log 23,849 23,953 17,996 13,676 13,377

Box-Cox 26,073 26,119 34,102 15,868 33,749†
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Russia median absolute error

Transformation LR PLR SVM RF XGB

None 24,152 26,055 33,354 11,837 11,438

Square root 23,071 23,069 26,341 12,594 10,772

Log 23,874 28,023 17,600† 14,111 12,886

Box-Cox 26,052 29,561 34,102 16,346 33,740†

Notes: We perform the test on the dependent variable of all five datasets for the untransformed, square root,

Log, and Box-Cox transformation of the dependent variable. †A dagger indicates a significant difference between

the respective (un)transformed forms of the dependent variable for a distinct dataset on a 5% significance level,

††two daggers indicate significance on a 1%. significance level. ∗An asterisk indicates a significant difference

between LR and the respective model on a 5% significance level, ∗∗two asterisks indicate significance on a 1%.

significance level.

5.2.3 Housing prices dataset

We present the results of our ML models on the housing prices dataset in Table 4. In contrast

to the Boston dataset and Russia rent dataset of Section 5.2.1 and 5.2.2 respectively, transfor-

mations do not aid the predictive accuracy adequately to provide sufficient statistical evidence

for a difference in performance considering any of the three performance measures on a 5%

significance level. This lack of statistical evidence to differentiate model performance indicates

transformations do not aid in improving the accuracy of the LR and PLR models for the housing

prices dataset.

Comparing the original errors to the log transformation using SVM shows a statistical dif-

ference on a 5% significance level for all three performance measures. The error for the log-

transformed dependent variable of the housing prices dataset shows a statistical resemblance to

a normal distribution according to sample skewness and kurtosis as described in Section 5.2.

The symmetrically distributed dependent variable can help SVM properly fit its hyperplane for

the data, as large values in the tails can impact model performance.

Considering the results of Section 5.2.1 and 5.2.2, the LR and PLR model perform substan-

tially better than the RF and XGB models for the housing prices dataset. Occasionally for

higher errors of the RF and XGB models, there is a statistical difference between LR and the

respective models. This statistical difference suggests the presence of linear interactions within

the dataset. Considering the regressors, few relationships can be present between the regressors,

which is a possible explanation for the adequate performance of LR and PLR. Additionally, the

relatively small size of the dataset (546 observations) can influence models such as RF and XGB,

which require an adequate amount of data for tuning hyperparameters.
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Table 4: Mean of the 5× 2 cross-validated models on the Housing prices dataset for the MAE,

RMSE, and MedAE

Housing prices mean absolute error

Transformation LR PLR SVM RF XGB

None 806,331 798,063 1,400,930∗ 803,869 996,333

Square root 785,324 775,927 1,096,404∗ 829,714 989,275

Log 776,418 777,412 786,162†† 847,118 931,368∗

Box-Cox 781,186 782,338 1,186,465 836,486 1,400,666∗∗

Housing prices root mean squared error

Transformation LR PLR SVM RF XGB

None 1,087,766 1,084,324 1,908,550∗∗ 1,187,220 1,273,420

Square root 1,076,395 1,069,330 1,602,060∗ 1,180,254 1,272,056

Log 1,073,415 1,078,097 1,108,022†† 1,190,238 1,310,376

Box-Cox 1,082,541 1,087,233 1,700,165 1,191,146 1,909,215∗∗†

Housing prices median absolute error

Transformation LR PLR SVM RF XGB

None 1,087,766 1,084,324 1,908,553∗ 1,134,353 1,395,486

Square root 1,076,395 1,069,341 1,584,597∗ 1,154,670 1431333∗

Log 1,082,483 1,078,098 1,097,494†† 1,152,968 1,316,620

Box-Cox 1,093,463 1,087,211 1,700,165 1,200,477 1,910,627∗∗

Notes: We perform the test on the dependent variable of all five datasets for the untransformed, square root,

Log, and Box-Cox transformation of the dependent variable. †A dagger indicates a significant difference between

the respective (un)transformed forms of the dependent variable for a distinct dataset on a 5% significance level,

††two daggers indicate significance on a 1%. significance level. ∗An asterisk indicates a significant difference

between LR and the respective model on a 5% significance level, ∗∗two asterisks indicate significance on a 1%.

significance level.

5.2.4 Advanced house prices dataset

Table 5 shows the results for our five models on the advanced house prices dataset. For all three

performance measures, similar to the housing prices dataset of Section 5.2.3, the log transfor-

mation results in lower errors and differs significantly on 5% significance level when compared

to the untransformed metric using the SVM model. For both the LR and PLR models, the er-

rors decrease considering the MAE, while for the RMSE, and the MedAE, the transformations

indicate an adverse effect on performance. This increase in errors due to transformations on the

dependent variable for the RMSE and MedAE indicates LR and PLR mispredict larger errors
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more often. The transformations reduce larger values relatively more compared to small values,

this can cause the larger values to diminish too much, causing a bad model fit as described in

Section 2. As a result of the mispredictions, the RMSE and MedAE increase, although there is

not enough statistical evidence of unequal model performance.

Similar increase in the error of the XGB model as for the Russian rent and housing prices

dataset of Section 5.2.2 and 5.2.3 respectively, using transformations shows differences in per-

formance. Specifically, a statistical difference for the MAE comparing the box-cox and untrans-

formed dependent variable of the XGB model shows the negative effects transformations can

have on the XGB model for the advanced house prices dataset, while the RF model shows little

influence for using transformations on the dependent variable as there is not enough statistical

evidence to differentiate the transformed forms of RF from the untransformed form.

Table 5: Mean of the 5× 2 cross-validated models on the advanced house prices dataset for the

MAE, RMSE, and MedAE.

Advanced house prices mean absolute error

Transformation LR PLR SVM RF XGB

None 20,688 20,077 55,361 16,842 17,063

Square root 18,824 18,453 23,992 16,874 16,611

Log 19,191 18,446 18,453†† 17,028 19,009

Box-Cox 19,631 18,690 22,884 17,040 23,759†

Advanced house prices root mean squared error

Transformation LR PLR SVM RF XGB

None 37,402 35,442 80,632 29,393 28,945

Square root 38,934 35,672 41,603 30,021 28,142

Log 53,188 42,829 30,260†† 30,195 32,866

Box-Cox 60,117 46,046 36,637 30,042 40,073
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Advanced house prices median absolute error

Transformation LR PLR SVM RF XGB

None 37,402 34,698 80,571 30,143 30,116

Square root 38,934 38,199 41,603 29,837 28,773

Log 53,150 49,929 30,869†† 30,939 32,898

Box-Cox 60,093 54,767 37,649 31,166 41,820

Notes: We perform the test on the dependent variable of all five datasets for the untransformed, square root,

Log, and Box-Cox transformation of the dependent variable. †A dagger indicates a significant difference between

the respective (un)transformed forms of the dependent variable for a distinct dataset on a 5% significance level,

††two daggers indicate significance on a 1%. significance level. ∗An asterisk indicates a significant difference

between LR and the respective model on a 5% significance level, ∗∗two asterisks indicate significance on a 1%.

significance level.

5.2.5 Saudi dataset

In Table 5.2.5, we show the results of our models on the Saudi dataset. Comparing the LR and

PLR models considering MAE shows enough statistical evidence for increased performance by

using a square root transformation on the dependent variable. On the contrary, log and box-cox

transformations adversely affect the predictive accuracy of the LR and PLR models where the

transformations excessively shrink large values in the dependent variable, similar to the advanced

house prices dataset of Section 5.2.4 impacting the predictive accuracy of the models. However,

there is insufficient statistical evidence to reject the null hypothesis at a 5% significance level

for any comparisons of the log and box-cox transformations on the dependent variable using the

LR and PLR models.

For the SVM model, the RMSE of the log and box-cox transformation shows a similar

decrease to the LR and PLR model, although, using the Dunn test, we do not reject the null

hypothesis at a 5% significance level. However, considering the MAE for all transformations,

the error improves compared to the untransformed form of the SVM model, although we lack

statistical evidence to confirm these differences. This inclusive evidence considering the MAE

and RMSE indicates the kernel can not fully capture the relationships within the data.

Comparing all transformations using the RF and XGB models considering the MAE shows

more accurate predictions compared to the LR model and is not affected by transformations in

the same ways that LR and PLR are. For the LR and PLR models, the transformations likely

impose some form of nonlinearity in the data, which the RF and XGB models much better

account for. Nonetheless, only the errors of the RF model show enough statistical difference

compared to LR. Additionally, we do not reject the null hypotheses comparing the LR model to
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the RF and XGB models for any transformation by the RMSE and MedAE.

Table 6: Mean of the 5 × 2 cross-validated models on the Saudi dataset for the MAE, RMSE,

and MedAE.

Saudi mean absolute error

Transformation LR PLR SVM RF XGB

None 569,533 494,438 716,461 398,168∗ 416,125

Square root 397,129† 397,862† 590,550 387,639 391,203

Log 2,762,981 2,721,351 556,000 385,055 408,487

Box-Cox 3,481,345 3,392,982 684,246 386,813 411,339

Saudi root mean squared error

Transformation LR PLR SVM RF XGB

None 1,166,962 1,166,780 1,917,321 1,254,933 1,267,401

Square root 848,121 846,375 1,786,940 1,271,980 1,266,051

Log 40,424,019 34,324,718 3,676,007 1,309,123 1,278,626

Box-Cox 52,483,112 43,954,354 5,540,968 1,304,281 1,287,609

Saudi median absolute error

Transformation LR PLR SVM RF XGB

None 1,166,930 1,235,722 1,917,313 1,269,109 1,290,515

Square root 847,901 855,773 1,797,997 1,262,788 1,298,145

Log 4,0149,779 20,375,200 1,999,634 1,287,772 1,559,356

Box-Cox 52,119,316 24,403,280 1,724,667 1,296,320 1,318,775

Notes: We perform the test on the dependent variable of all five datasets for the untransformed, square root,

Log, and Box-Cox transformation of the dependent variable. †A dagger indicates a significant difference between

the respective (un)transformed forms of the dependent variable for a distinct dataset on a 5% significance level,

††two daggers indicate significance on a 1%. significance level. ∗An asterisk indicates a significant difference

between LR and the respective model on a 5% significance level, ∗∗two asterisks indicate significance on a 1%.

significance level.

6 Discussion & conclusion

In this research, we assess the effects of transformations on the dependent variable, specifically

property prices, of real estate data by evaluating the predictive accuracy of machine learning

(ML) models. We evaluate the performance of our ML models on the Boston, Russia rent,

housing prices, advanced house prices, and Saudi dataset using the mean absolute error (MAE),

root mean squared error (RMSE), and median absolute error (MedAE) metric. Results show
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that the predictive accuracy of penalized linear regression (PLR) and support vector machine

(SVM) significantly increases by using transformations on the dependent variable. On the con-

trary, transformations on the dependent variable for random forest (RF) and eXtreme Gradient

Boosting (XGB) occasionally show a significant decrease in performance compared to the errors

of the original data.

Even though the Dunn test for comparison of equal model performance shows inconclusive

results, the use of transformations on the dependent variable occasionally positively influences

the performance of PLR and SVM. Using the log and box-cox transformation on the dependent

variable using the PLR and SVM models significantly outperforms the original data of the

Boston and Russia rent dataset. Because PLR shares a similar model construction to linear

regression (LR), we expect PLR to show similar improvement when using transformations on

the dependent variable as the cost function of PLR shares a similar construction to LR. The

original data of the SVM model occasionally performs worse compared to the LR model, showing

a statistical difference in predictive accuracy. As discussed in Section 2, the wrong kernel and

categorical data in the datasets can explain bad model performance. Although, transformations

on the dependent variable significantly improve the model performance of the SVM model,

specifically for the Boston, Russia rent, housing prices, and advanced house prices using either a

log or box-cox transformation on the dependent variable. However, D’Agostino’s K-squared test

indicates normality according to sample skewness and kurtosis using the box-cox transformation

for the Boston and housing prices dataset. This indication of a normally distributed distribution

did not necessarily translate into a significant improvement in our models.

The RF and XGBmodels show diminishing performance for transformations of the dependent

variable considering our tree-based models. Specifically for Russian rent, housing prices, and

advanced house prices dataset, the box-cox transformation enlarges the error considering the

MAE to the extent of statistical difference with the untransformed dependent variable. This

diminishing performance suggests adverse effects on tree-based algorithms for transformations.

As the tree-based algorithms construct splits by minimizing their criterion, the transformation

can undermine proper splits, impacting model performance. Comparing models by their MAE,

the RF model performs most noteworthy overall, specifically for the Boston and Russia rent

dataset. For the XGB model, a model known for its high predictive accuracy, no clear statistical

evidence suggests higher performance than the LR model. However, all datasets in this research

are small, which is a liability for the model as XGB requires tuning many hyperparameters.

Noteworthy for all datasets, only the MAE metric provides consistent statistical evidence of

unequal model performance. Despite the absence of statistical proof, the errors of the RMSE
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and MedAE differ substantially, comparing the untransformed data to the log and box-cox

transformation using the LR, PLR, and SVM models of the advanced housing prices and Saudi

dataset. Because the Dunn test ranks the whole group of performance measures we compare,

the test is more conservative in rejecting the null hypothesis. Additionally, as the test only

ranks errors within the set and does not consider numerical differences between errors, the

Dunn test fails to perceive these notable differences in performance between models, which is

a disadvantage of using non-parametric tests. Also, for feature engineering, this research limits

itself to a min-max transformation and manual removal of outliers. As the PLR model and the

regression model of SVM are susceptible to outliers, if outliers are still present in the data, this

could influence results as transformations scale outliers more severely. Additionally, the data

sets of this research are relatively small, with less than 1500 data points. Specifically, the XGB

model benefits from large datasets for a better decision of splits and feature importance.

Thus transformations on the dependent variable of the SVM and PLR models can occa-

sionally positively affect predictive accuracy, offering a simple and computationally inexpensive

solution for positively skewed data. However, carefully consider these transformations because

they are only occasionally advantageous. The Saudi dataset shows that transformations can

negatively influence model performance substantially. For tree-based algorithms, transforma-

tions show adverse effects on predictive accuracy. Although tree-based algorithms benefit from

larger datasets, possibly affecting model performance.

For future research, we advise looking into the effects of using transformations with large

datasets, exploring different kinds of transformations and their effects, and performing a con-

trolled experiment using generated data for the PLR and SVM models, as these models show

the most promising benefits from transformations on the dependent variable. Large datasets can

cause different behavior for our models as they are more sensitive to outliers for smaller datasets,

and increased sample size, particularly for the PLR model, helps the estimation of coefficients.

The controlled experiment can provide more conclusive evidence for using transformations on

the dependent variable using the PLR and SVM model as factors impacting model performance,

such as noise and outliers, are known in such an experiment. Additionally, a separate analysis

with solely numerical variables and varying kernels for the effects of transformations on the SVM

model can result in a better exhibition of the performance of SVM for positively skewed data.
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Appendices

A Dependent variables

A.1 Included variables

Table 7: Variables of the Boston dataset

Index Name Description

1 CRIM Crime rate per resident.

2 ZN Land proportionally zoned for residential land for areas above 25,000 square feet.

3 INDUS Proportion of the total business land, which is non-retail per acre.

4 CHAS Dummy if the Charles River touches the regional area.

5 NOX Prts per ten concentration of nitric oxides.

6 RM Average amount of rooms per residency.

7 AGE Proportion of the residencies built before 1940 within the suburb.

8 DIS Weighted distance of the five most approximate centers of employment in Boston.

9 RAD Index for the accessibility for radial highways.

10 TAX Tax rate of the property per $10,000.

11 PTRATIO The ratio of pupil-teacher.

12 B proportion of African Americans in the suburb.

13 LSTAT Proportion of the population classified as lower status. Regarding workers with no high

school education and the proportion of laborers.

14 MEDV Median value of the homes within the suburb in $1000.

Table 8: Variables of the Russia rent dataset

Index Name Description

1 metro Name of the nearest metro station.

2 price The price for the monthly rent of the apartment.

3 A way Method to indicate how to reach the nearest metro station.

4 views Number of visits the apartment got.

5 provider Variable to indicate if a person or agency rents the apartment.

6 fee percent Percent of the fee the person or agency acquires for the rent.

7 storey The story the apartment is located at.

8 minutes The number of minutes a walk takes for the nearest metro station.

9 storeys The total amount of stories.

10 living area Living area of the apartment in square foot.

11 kitchen area The total footage of the kitchen.

12 total area Total footage of the apartment.
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Table 9: Variables of the Housing prices dataset

Index Name Description

1 price Monetary value of the house.

2 area Area of the house in square foot.

3 bedrooms Bedrooms in the house.

4 bathrooms Bathrooms in the house.

5 stories Stories of the house.

6 mainroad yes/no variable to indicate if the residency is connected to the main road.

7 guestroom True/false variable indicates whether the house contains a guest room.

8 basement True/false variable indicates whether the house contains a basement.

9 hotwaterheating True/false indicates whether the house has a hot water heater.

11 airconditioning True/false variable to indicate whether the house has air conditioning.

12 parking variable to indicate the number of parking spots designated to the house.

13 prefarea True/false variable indicates whether the location lies within a preferred area. Re-

garding workers with no high school education and the proportion of laborers.

14 furnishingstatus Variable to indicate the furnishing status in the residency.
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Table 10: Included variables of the advanced house prices dataset

Index Name Description

1 SalePrice The sale price of the property in dollars.

2 MSSubClass The class of the building.

3 MSZoning The zoning classification of the house.

4 LotFrontage Feet connected in feet to the property.

5 LotArea The size of the lot in square feet.

6 Street Road type access.

8 LotShape Shape of the property.

9 LandContour Flatness of the property.

10 Utilities Available type of utilities.

13 Neighborhood Amount of physical locations that are within the limits of Ames city.

16 BldgType Type of the dwelling.

17 HouseStyle Style of the dwelling.

18 OverallQual Quality of the finish for the material overall in the building.

19 OverallCond The condition rating of the house.

20 YearBuilt Construction date of the house.

21 YearRemodAdd Remodel date.

26 MasVnrType Type of masonry veneer.

27 MasVnrArea Area of masonry veneer in square feet.

28 ExterQual Material quality of the exterior.

29 ExterCond Current condition of the exteriors material.

32 BsmtCond Current condition of the basement.

33 BsmtExposure Walls are garden or walkout level.

34 BsmtFinType1 Finishing quality of basement.

35 BsmtFinSF1 Square footage of finishing area.

38 BsmtUnfSF Square footage of the unfinished area.

39 TotalBsmtSF Square footage of basement.

42 CentralAir Indicated of central air conditioning.

44 1stFlrSF Square footage of the first floor.

45 2ndFlrSF Square footage of the second floor.

46 LowQualFinSF Square footage finishing area of low quality.

47 GrLivArea Above-ground square footage of the living area.

48 BsmtFullBath Bathrooms in the basement.

49 BsmtHalfBath Half bathrooms in the basement.

50 FullBath Bathrooms above ground.

51 HalfBath Half bathrooms above ground.

52 BedroomAbvGr Total sum of the bedroom area.

53 KitchenAbvGr Total sum of kitchens area.

54 KitchenQual Quality of the kitchen.

55 TotRmsAbvGrd Total number of rooms excluding the bathroom above ground.

57 Fireplaces Total sum of fireplaces.

62 GarageCars Total number of cars that fit in the garage.

63 GarageArea Size of the garage in square feet.

66 PavedDrive Binary variable to indicate if a paved driveway is present.
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Table 11: Included variables of the advanced house prices dataset

Index Name Description

67 WoodDeckSF Square footage of wood deck.

68 OpenPorchSF Square footage of open porch.

69 EnclosedPorch Square footage of enclosed porch.

70 3SsnPorch Square footage of three season porch area.

71 ScreenPorch Square footage of screen porch.

72 PoolArea Square footage of pool.

76 MiscVal Value of the MiscFeature variables.

77 MoSold Month the property is sold in.

78 YrSold Year the property is sold in.

80 SaleCondition The integrity of the sale.

Table 12: Variables of the Saudi dataset

Index Name Description

1 Villa price Price of the villa.

2 neighborhood name Name of the neighborhood the villa is located.

3 administritive area Area of administration for the villa.

4 city Name of the city where the villa is located.

5 rooms The number of bedrooms within the villa.

6 bathrooms The number of bathrooms within the villa.

7 sqm The size of the villa in square meters.

8 elevator Binary variable to indicate whether the villa contains an elevator.

9 bool Binary variable to indicate whether the villa contains a pool.

10 driver Binary variable to indicate whether the villa contains a driver room.

11 garden Binary variable to indicate whether the villa contains a garden.
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A.2 Excluded variables

Table 13: Excluded variables of the advanced house prices dataset

Index Name Description

7 Alley Alley type access.

11 LotConfig Lot configuration.

12 LandSlope The slope of the property.

14 Condition1 Closeness to the main road or railroad.

15 Condition2 Closeness to the main road or railroad if a second is present.

22 RoofStyle Type of the roof.

23 RoofMatl Material of the roof.

24 Exterior1st Covering on the exterior of the house.

25 Exterior2nd Covering on the house’s exterior if there is more than one material.

30 Foundation Foundation type.

31 BsmtQual Basement height.

36 BsmtFinType2 Second finishing quality of basement if present.

37 BsmtFinSF2 Square footage of second finishing area if present.

40 Heating Heating type.

41 HeatingQC Quality and condition of heating.

43 Electrical Type of electrical system.

56 Functional the rating of functionality for the home.

58 FireplaceQu Quality of the fireplace.

59 GarageType The location of the garage.

60 GarageYrBlt Building year of the garage.

61 GarageFinish Type of interior finishing in the garage.

64 GarageQual Quality of the garages finishing.

65 GarageCond Condition the garage is in.

73 PoolQC Quality of the pool.

74 Fence State of the fence.

75 MiscFeature Features not explicitly represented in the dataset.

79 SaleType Kind of sale.
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B Descriptive statistics

Table 14: Descriptive statistics of the Boston dataset

Index Name minimum maximum mean median stddev

1 CRIM 0.00632 88.9762 3.584139 0.26169 8.564433

2 ZN 0 100 11.25245 0 23.23484

3 INDUS 0.46 27.74 11.1511 9.69 6.828175

4 CHAS 0 1 0.068493 0 0.252838

5 NOX 0.385 0.871 0.554757 0.538 0.11531

6 RM 3.561 8.78 6.287589 6.209 0.703802

7 AGE 2.9 100 68.61624 77.3 28.09913

8 DIS 1.1296 12.1265 3.783876 3.1523 2.098631

9 RAD 1 24 9.485323 5 8.688469

10 TAX 187 711 407.4403 330 167.9035

11 PTRATIO 12.6 23 18.5 19.1 2.200348

12 B 0.32 396.9 356.6009 391.34 90.88268

13 LSTAT 1.73 76 12.87955 11.45 7.797416

14 MEDV 5 67 22.68219 21.2 9.484262

Table 15: Descriptive statistics of the Russia rent dataset

Index Name minimum maximum mean median stddev

2 price 14000 500000 43759.51 38000 33240.91

4 views 4 5174 418.1958 103 936.7971

6 fee percent 0 100 37.97578 50 26.8841

7 storey 1 74 6.670588 6 4.289651

8 minutes 0 47 8.752941 7 4.712275

9 storeys 1 95 13.41453 12 6.319007

10 living area 6 37 20.58754 20 5.610522

11 kitchen area 3 37 11.37093 10 8.086495

12 total area 1 57 37.26367 37 6.145091

Table 16: Descriptive statistics of the Housing prices dataset

Index Name minimum maximum mean median stddev

1 price 1750000 13300000 4766729 4340000 1870440

2 area 1650 16200 5150.541 4600 2170.141

3 bedrooms 1 6 2.965138 3 0.738064

4 bathrooms 1 4 1.286239 1 0.50247

5 stories 1 4 1.805505 2 0.867492

12 parking 0 3 0.693578 0 0.861586
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Table 17: Descriptive statistics of the advanced house prices dataset

Index Name minimum maximum mean median stddev

1 SalePrice 34900 755000 181166.7 163500 79589.23

2 MSSubClass 20 190 56.91937 50 42.35913

4 LotFrontage 0 313 57.64369 63 34.73089

5 LotArea 1300 215245 10526.12 9477 10007.81

18 OverallQual 1 10 6.102688 6 1.382576

19 OverallCond 1 9 5.573398 5 1.10701

20 YearBuilt 1872 2010 1971.361 1973 30.18573

21 YearRemodAdd 1950 2010 1984.875 1994 20.64373

26 MasVnrType 0 1600 103.0159 0 180.8379

35 BsmtFinSF1 0 5644 444.8746 384 456.4259

38 BsmtUnfSF 0 2336 567.3301 476 441.8624

39 TotalBsmtSF 0 6110 1058.178 992 439.663

44 1stFlrSF 334 4692 1163.055 1088 387.2214

45 2ndFlrSF 0 2065 347.6885 0 436.983

46 LowQualFinSF 0 572 5.880772 0 48.77156

47 GrLivArea 334 5642 1516.624 1466 526.4613

48 BsmtFullBath 0 3 0.425913 0 0.519141

49 BsmtHalfBath 0 2 0.057202 0 0.238172

50 FullBath 0 3 1.566506 2 0.551069

51 HalfBath 0 2 0.384562 0 0.503378

52 BedroomAbvGr 0 8 2.866988 3 0.81762

53 KitchenAbvGr 0 3 1.046864 1 0.22099

55 TotRmsAbvGrd 2 14 6.518952 6 1.629518

57 Fireplaces 0 3 0.61337 1 0.645462

62 GarageCars 0 4 1.769125 2 0.746327

63 GarageArea 0 1418 473.4328 480 213.6402

67 WoodDeckSF 0 857 94.23639 0 125.4917

68 OpenPorchSF 0 547 46.72777 25 66.35314

69 EnclosedPorch 0 552 21.89593 0 61.191

70 3SsnPorch 0 508 3.430737 0 29.40694

71 ScreenPorch 0 480 14.9111 0 55.55823

72 PoolArea 0 738 2.776017 0 40.30121

76 MiscVal 0 15500 43.44866 0 497.5353

77 MoSold 1 12 6.329428 6 2.702302

78 YrSold 2006 2010 2007.813 2008 1.327789
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Table 18: Descriptive statistics of the Saudi dataset

Index Name minimum maximum mean median stddev

1 Villa price 2850 57000000 1770375 1300000 2028901

5 rooms 1 7 4.708009 5 1.199202

6 bathrooms 1 7 5.14387 5 1.344227

7 sqm 22 5450 367.905 312 233.0112

8 elevator 0 1 0.210489 0 0.407801

9 bool 0 1 0.128987 0 0.335304

10 driver 0 1 0.145996 0 0.353227

11 garden 0 1 0.034018 0 0.181341
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C Hyperparameters

Table 19: Tuning hyperparameters for PLR

Hyperparameter Search space Description

C [log(0.00001),log(50)] Penalization parameter on features

l1 ratio [0, 1] Weight term for use of l1 and l2 term

Table 20: Tuning hyperparameters for SVM

Hyperparameter Search space Description

C [log(0.001), log(10)] Regularization parameter

gamma [0,1] Gamma is the fitting parameter of SVM.

Overall higher values of gamma cause SVM

to overfit on individual data points.

Table 21: Tuning hyperparameters for RF

Hyperparameter Search space Description

criterion [squared error, absolute error, Friedman

mse, poisson]

Impurity criterion for splits

max depth [2, 10] Max depth of decision tree

max features [2, 20] Maximum number of features to consider

n estimators [50,500] Number of trees in the forest

Table 22: Tuning hyperparameters for XGB

Hyperparameter Search space Description

gamma [0.5 , 6] Penalty term which penalizes XGBoost on excessive greedy splits

learning rate [0.2, 1] Parameter shrink the influence of the sequentially built tree, which trains

on the misclassification error of the previous tree. Lower values make

XGBoost more conservative.

max depth [2, 11] Max depth of decision tree

n estimators [30, 250] Number of sequentially build trees

subsample 0.8 Sample available for an individual tree to train on. Lower values prevent

individual trees to overfit on the data.
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D Distributions

(a) No transformation

(b) Square root transformation

Figure 7: Density plots of all transformed forms of the Boston dataset
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(c) Log transformation

(d) Box-cox transformation

Figure 7: Density plots of all transformed forms of the Boston dataset
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(a) No transformation

(b) Square root transformation

Figure 8: Density plots of all transformed forms of the Russian rent dataset
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(c) Log transformation

(d) Box-cox transformation

Figure 8: Density plots of all transformed forms of the Russian rent dataset
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(a) No transformation

(b) Square root transformation

Figure 9: Density plots of all transformed forms of the housing prices dataset
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(c) Log transformation

(d) Box-cox transformation

Figure 9: Density plots of all transformed forms of the housing prices dataset
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(a) No transformation

(b) Square root transformation

Figure 10: Density plots of all transformed forms of the advanced house prices dataset
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(c) Log transformation

(d) Box-cox transformation

Figure 10: Density plots of all transformed forms of the advanced house prices dataset
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(a) No transformation

(b) Square root transformation

Figure 11: Density plots of all transformed forms of the Saudi dataset
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(c) Log transformation

(d) Box-cox transformation

Figure 11: Density plots of all transformed forms of the Saudi dataset
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E Performance metrics

In this research, we opt for four metrics to indicate model performance. These are MAE, RMSE,

and MedAE. The MAE determines the error by summing the absolute value of the subtraction

for the true outcome yi with the estimated value ŷi and dividing by the total number of data

points N . Which denotes the error as

MAE =
1

N

N∑
i=1

|ŷi − yi|.

The RSME takes the root of the mean squared error, calculated as

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2.

Last, the MedAE compares the group of the errors yi and ŷi and then takes the median of the

errors as a metric. We calculate MedAE using

MedAE = Median(|y1 − ŷ1|, |y2 − ŷ2|, ..., |yn − ŷn|).
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F Results

F.1 Boston dataset

Table 23: Results of the 5× 2 cross-validated models on the no transformation Boston dataset

for the MAE, RMSE, and MedAE

None Boston mean absolute error

Fold LR PLR SVM RF XGB

1 3.7581 3.8538 3.6583 2.6609 2.5953

2 3.6600 3.6560 3.7056 2.1874 2.8217

3 4.1445 3.9274 3.5959 2.5102 2.3290

4 3.7959 3.6985 3.3280 2.3120 2.2554

5 3.4781 3.5643 3.2936 2.2129 1.9972

None Boston root mean squared error

Fold LR PLR SVM RF XGB

1 5.7393 5.7463 5.8131 4.0033 4.2988

2 6.0034 6.1348 6.3015 4.1619 4.9031

3 8.6351 8.0942 6.8785 4.6480 4.3285

4 5.1609 5.2189 4.9612 3.2989 3.0166

5 5.3746 5.4263 4.8552 3.2668 3.0698

None Boston MedAE

Fold LR PLR SVM RF XGB

1 5.7393 5.8285 5.4948 3.9574 4.2988

2 6.0034 6.0040 6.0015 3.7995 4.4523

3 8.6351 8.3500 7.0229 5.3395 4.4477

4 5.1609 5.2352 5.2468 3.3088 2.9357

5 5.374566 5.4292 5.4470 3.2020 3.9032
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Table 24: Results of the 5× 2 cross-validated models on the square root transformation Boston

dataset for the MAE, RMSE, and MedAE

Square root Boston mean absolute error

Fold LR PLR SVM RF XGB

1 3.4186 3.5423 2.8589 2.6901 2.8329

2 3.4802 3.5343 3.0697 2.2915 2.6748

3 3.6795 3.5782 3.0369 2.5993 2.8748

4 3.5408 3.5017 2.7416 2.1838 2.4146

5 3.0955 3.1591 2.5284 2.1350 2.0125

Square root Boston root mean squared error

Fold LR PLR SVM RF XGB

1 5.3531 5.4840 4.7349 4.1833 4.4683

2 5.8932 6.0327 5.6872 4.2828 4.8720

3 7.9153 7.7447 7.0027 5.2382 5.0368

4 4.9595 5.1211 4.5036 3.1806 3.3810

5 4.9745 5.1190 4.5342 3.1631 3.5466

Square root Boston MedAE

Fold LR PLR SVM RF XGB

1 5.3531 5.4324 4.6093 3.9387 4.6075

2 5.8932 5.9820 5.7045 4.1182 4.3333

3 7.9153 7.7896 6.2422 5.3172 5.8268

4 4.9595 5.1125 4.5673 3.1527 3.6585

5 4.9745 5.0017 4.5862 3.3121 3.6303
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Table 25: Results of the 5× 2 cross-validated models on the log transformation Boston dataset

for the MAE, RMSE, and MedAE

Log Boston mean absolute error

Fold LR PLR SVM RF XGB

1 3.2715 3.3669 2.7409 2.5458 3.6598

2 3.4044 3.4217 2.9716 2.3358 2.9052

3 3.3975 3.3210 2.9436 2.6911 3.0418

4 3.3725 3.3564 2.9780 2.2867 2.6467

5 2.8710 2.9380 2.4978 2.0064 2.7783

Log Boston root mean squared error

Fold LR PLR SVM RF XGB

1 5.1544 5.3797 4.7067 3.8055 4.6632

2 5.8790 5.9687 5.3878 4.3432 5.4030

3 7.6397 7.5883 6.9069 5.4285 6.3832

4 4.9108 5.1420 4.4161 3.4534 4.4751

5 4.8123 4.8886 4.5342 3.1214 4.2160

Log Boston MedAE

Fold LR PLR SVM RF XGB

1 5.1544 5.2536 4.6598 3.9036 5.1072

2 5.8790 5.8935 5.3143 4.3280 5.2476

3 7.6397 7.6293 6.8219 5.6563 6.3754

4 4.9108 5.0286 4.2638 3.4276 4.1961

5 4.8123 4.9133 4.5387 3.2540 4.0920
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Table 26: Results of the 5 × 2 cross-validated models on the box-cox transformation Boston

dataset for the MAE, RMSE, and MedAE

Box-Cox Boston mean absolute error

Fold LR PLR SVM RF XGB

folder 3.3191 3.4041 2.7193 2.6661 2.8045

2 3.4279 3.4461 2.8417 2.3219 2.6621

3 3.4857 3.3951 2.9490 2.7893 2.7630

4 3.4220 3.4019 2.9451 2.2952 2.4402

5 2.9356 2.9825 2.3838 2.0091 2.3241

Box-Cox Boston root mean squared error

Fold LR PLR SVM RF XGB

1 5.2118 5.4179 4.6919 4.0369 4.4629

2 5.8813 5.9715 5.4548 4.3126 5.2037

3 7.7149 7.6362 6.9090 5.3166 5.5561

4 4.9151 5.1349 4.4999 3.2780 3.9527

5 4.8537 4.9371 4.2552 3.2247 3.8126

Box-Cox Boston MedAE

Fold LR PLR SVM RF XGB

1 5.2118 5.3609 4.5928 4.0804 4.5492

2 5.8813 5.9971 5.4204 4.1563 5.3190

3 7.7149 7.7032 6.5560 5.7434 6.0867

4 4.9151 5.0608 4.5232 3.4322 5.0811

5 4.8537 4.9608 4.3478 3.2183 3.9233
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F.2 Russia rent dataset

Table 27: Results of the 5 × 2 cross-validated models on the no transformation Russia rent

dataset for the MAE, RMSE, and MedAE

None Russia rent mean absolute error

Fold LR PLR SVM RF XGB

1 13323.15 13398.09 13253.88 2462.34 2496.21

2 14918.92 14794.12 15275.00 3292.92 3199.59

3 14308.21 14247.61 13820.72 2576.32 2227.27

4 13860.33 13535.82 13155.61 2947.51 2837.23

5 13476.93 13375.58 14872.58 2980.92 3114.62

None Russia rent root mean squared error

Fold LR PLR SVM RF XGB

1 18542.66 18792.80 28229.32 7722.43 9477.58

2 32414.97 32222.00 39811.61 13080.12 10152.79

3 30636.27 30523.75 36552.75 11151.76 7561.21

4 20902.22 20798.05 29929.97 13965.47 16123.97

5 18265.05 18289.94 31714.68 8546.55 13207.59

None Russia rent MedAE

Fold LR PLR SVM RF XGB

1 18542.66 28034.47 28236.46 7467.66 8565.22

2 32414.97 32282.66 39919.64 14068.40 9258.41

3 30636.27 30640.74 36754.46 11496.87 9217.89

4 20902.22 20986.85 29942.24 14977.24 16419.71

5 18265.05 18329.74 31915.84 11174.81 13726.80
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Table 28: Results of the 5× 2 cross-validated models on the square root transformation Russia

rent dataset for the MAE, RMSE, and MedAE

Square root Russia rent mean absolute error

Fold LR PLR SVM RF XGB

1 10950.61 11283.13 6537.98 2199.55 2724.33

2 12874.80 12835.71 8496.63 3379.45 2843.01

3 11902.33 11909.07 7271.96 2593.68 1749.58

4 11393.90 11306.15 6906.81 2775.07 2916.29

5 11321.68 11347.29 7442.79 2624.81 2203.38

Square root Russia rent root mean squared error

Fold LR PLR SVM RF XGB

1 16716.00 17388.71 16932.97 7493.56 9468.37

2 31689.79 31789.78 31200.36 15344.09 10887.11

3 30035.48 30109.52 29058.05 13605.03 8385.83

4 19532.00 19572.78 20666.07 14580.78 15061.55

5 17382.35 17855.83 20119.30 7699.94 12233.11

Square root Russia rent MedAE

Fold LR PLR SVM RF XGB

1 16716.00 16658.32 22248.04 7282.58 8402.41

2 31689.79 31894.94 35017.98 15378.09 8983.34

3 30035.48 30038.41 29292.30 15114.30 7559.62

4 19532.00 19407.66 22538.62 15603.28 15898.51

5 17382.35 17349.11 22607.73 9591.02 13017.38
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Table 29: Results of the 5 × 2 cross-validated models on the log transformation Russia rent

dataset for the MAE, RMSE, and MedAE

Log Russia rent mean absolute error

Fold LR PLR SVM RF XGB

1 10277.49 10636.20 5130.02 2209.27 3566.16

2 12231.25 12229.20 7399.88 3474.34 4837.09

3 11181.48 11301.65 6079.02 2870.43 2900.46

4 10723.42 11020.00 5724.17 2750.79 3538.38

5 10687.15 10753.64 4850.41 2299.34 5081.18

Log Russia rent root mean squared error

Fold LR PLR SVM RF XGB

1 17276.04 17479.07 8331.97 7774.51 8897.19

2 32370.72 32284.24 29340.65 18041.55 22378.86

3 30647.49 30594.36 27026.83 19784.32 8727.79

4 20259.87 20604.57 15888.32 15039.22 14526.89

5 18692.35 18803.34 9390.05 7741.23 12353.09

Log Russia rent MedAE

Fold LR PLR SVM RF XGB

1 17274.50 27205.52 8638.97 7482.20 10029.81

2 32291.64 38882.39 28089.44 18452.63 10341.75

3 30579.56 31009.71 27067.42 18240.47 12884.48

4 20404.76 21207.55 14931.25 15452.67 12946.57

5 18820.79 21808.4742 9271.84 10928.85 18229.82
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Table 30: Results of the 5× 2 cross-validated models on the box-cox transformation Russia rent

dataset for the MAE, RMSE, and MedAE

Box-Cox Russia rent mean absolute error

Fold LR PLR SVM RF XGB

1 10338.93 10381.69 14140.03 2226.34 13799.79

2 12308.71 12224.09 16023.65 3933.92 15765.33

3 11287.25 11196.92 14757.43 3296.99 14373.58

4 11029.72 11040.60 14216.08 2815.70 13856.32

5 11106.99 11133.03 16017.72 2323.60 15686.64

Box-Cox Russia rent root mean squared error

Fold LR PLR SVM RF XGB

1 19653.89 19690.47 29116.92 8546.16 28742.56

2 34003.22 33924.54 40545.57 23648.86 40227.34

3 32193.48 32101.41 37274.70 23569.30 36970.42

4 22650.90 22806.01 30866.26 15548.30 30511.43

5 21863.57 22071.25 32705.13 8025.03 32293.20

Box-Cox Russia rent MedAE

Fold LR PLR SVM RF XGB

1 19666.15 26917.60 29116.92 8089.89 28732.15

2 33845.27 34392.94 40545.57 23739.30 40184.87

3 32079.49 32422.77 37274.70 24014.09 36922.82

4 22630.04 24250.08 30866.26 15969.94 30525.34

5 22039.66 29822.97 32705.13 9915.93 32334.55
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F.3 Housing prices datasets

Table 31: Results of the 5 × 2 cross-validated models on the no transformation housing prices

dataset for the MAE, RMSE, and MedAE

None housing prices mean absolute error

Fold LR PLR SVM RF XGB

1 886254.39 892294.95 1496450.93 862925.87 1073114.40

2 781471.82 755698.43 1435879.52 779058.73 1069256.99

3 735796.66 733156.16 1334813.71 793615.42 903901.77

4 845117.27 821948.04 1383356.44 826820.55 910211.13

5 783013.67 787217.21 1354148.12 756926.22 1025181.31

None housing prices root mean squared error

Fold LR PLR SVM RF XGB

1 1250276.054 1259665.92 2091360.61 1288836.84 1278506.23

2 1036543.83 1014759.19 1988036.28 1182649.00 1624991.04

3 962422.78 959215.66 1675889.47 1057992.60 988677.08

4 1071118.08 1051552.67 1818104.55 1250713.83 1196034.48

5 1118468.27 1136426.93 1969360.43 1155905.60 1278893.45

None housing prices MedAE

Fold LR PLR SVM RF XGB

1 1250276.05 1259665.92 2091377.34 1217120.66 1464049.07

2 1036543.83 1014759.19 1988037.08 1196699.63 1624991.04

3 962422.78 959215.66 1675877.02 924381.28 1177419.47

4 1071118.08 1051552.67 1818109.72 1159206.61 1194670.70

5 1118468.27 1136426.93 1969362.61 1174357.11 1516301.25
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Table 32: Results of the 5× 2 cross-validated models on the square root transformation housing

prices dataset for the MAE, RMSE, and MedAE

Square root housing prices mean absolute error

Fold LR PLR SVM RF XGB

1 865000.07 863999.89 1225152.65 866573.49 985895.90

2 753395.05 721744.35 1081480.46 782102.63 972230.42

3 728021.96 727720.21 1013925.66 787677.11 837920.17

4 833727.76 809722.38 1087753.27 893536.07 1098634.24

5 746474.04 756447.34 1073710.07 818682.93 1051693.98

Square root housing prices root mean squared error

Fold LR PLR SVM RF XGB

1 1223023.72 1225458.72 1773997.87 1210848.65 1267810.20

2 1017615.87 992389.52 1656374.41 1188456.93 1431803.55

3 958208.02 957339.88 1369610.48 1059825.67 1069571.00

4 1088030.89 1065634.88 1532466.03 1241444.02 1138823.97

5 1095095.56 1105828.96 1677850.84 1200695.14 1452268.81

Square root housing prices MedAE

Fold LR PLR SVM RF XGB

1 1223023.72 1225458.63 1735109.52 1207731.58 1371897.95

2 1017615.87 992389.50 1652766.08 1202314.04 1431803.55

3 958208.02 957339.75 1347150.35 939066.52 1245787.25

4 1088030.89 1065634.88 1532466.03 1241444.02 1452904.87

5 1095095.56 1105882.46 1655493.53 1182794.23 1654272.41
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Table 33: Results of the 5 × 2 cross-validated models on the log transformation housing prices

dataset for the MAE, RMSE, and MedAE

Log housing prices mean absolute error

Fold LR PLR SVM RF XGB

1 10277.49 10636.20 5130.02 2209.27 3566.16

2 12231.25 12229.20 7399.88 3474.34 4837.09

3 11181.48 11301.65 6079.02 2870.43 2900.46

4 10723.42 11020.00 5724.17 2750.79 3538.38

5 10687.15 10753.64 4850.41 2299.34 5081.18

Log housing prices root mean squared error

Fold LR PLR SVM RF XGB

1 17276.04 17479.07 8331.97 7774.51 8897.19

2 32370.72 32284.24 29340.65 18041.55 22378.86

3 30647.49 30594.36 27026.83 19784.32 8727.79

4 20259.87 20604.57 15888.32 15039.22 14526.89

5 18692.35 18803.34 9390.05 7741.23 12353.09

Log housing prices MedAE

Fold LR PLR SVM RF XGB

1 17274.50 27205.52 8638.97 7482.20 10029.80

2 32291.64 38882.39 28089.44 18452.63 10341.75

3 30579.56 31009.71 27067.42 18240.47 12884.48

4 20404.76 21207.55 14931.25 15452.67 12946.57

5 18820.79 21808.47 9271.84 10928.85 18229.82
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Table 34: Results of the 5 × 2 cross-validated models on the box-cox transformation housing

prices dataset for the MAE, RMSE, and MedAE

Box-Cox housing prices mean absolute error

Fold LR PLR SVM RF XGB

1 837308.15 835842.52 1292871.89 892561.78 1496308.83

2 755293.01 752348.59 1194951.12 789105.15 1431482.34

3 743697.06 747645.53 1114526.32 774413.17 1337781.93

4 814223.98 811712.84 1144752.89 897513.04 1383702.84

5 755407.38 764109.38 1185224.36 828835.51 1354055.23

Box-Cox housing prices root mean squared error

Fold LR PLR SVM RF XGB

1 1191793.81 1189711.82 1888779.37 1212569.82 2077627.11

2 1036448.52 1039530.01 1770643.25 1217851.76 2006897.38

3 978785.80 984368.23 1442973.35 1062286.59 1672544.12

4 1130921.15 1137492.42 1578339.27 1242856.33 1820314.69

5 1074754.75 1085064.17 1820087.40 1220164.75 1968692.77

Box-Cox housing prices MedAE

Fold LR PLR SVM RF XGB

1 1169209.06 1189711.82 1888779.37 1212569.82 2085713.16

2 1084724.01 1039533.42 1770643.25 1217851.76 2006897.38

3 983151.61 984265.96 1442973.35 1055877.04 1671571.33

4 1156909.42 1137494.46 1578339.27 1242856.33 1820260.86

5 1073321.15 1085049.21 1820087.40 1273231.12 1968692.77
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F.4 Advanced house prices dataset

Table 35: Results of the 5× 2 cross-validated models on the no transformation advanced house

prices dataset for the MAE, RMSE, and MedAE

None advanced house prices mean absolute error

Fold LR PLR SVM RF XGB

1 20339.85 20664.60 54695.66 17274.82 16227.89

2 20416.46 19203.48 56057.98 15946.46 17452.55

3 22557.17 22780.02 61830.27 19548.97 19387.00

4 19752.49 18228.35 49835.21 15113.45 14747.48

5 20372.89 19509.37 54383.82 16324.39 17500.50

None advanced house prices root mean squared error

Fold LR PLR SVM RF XGB

1 30427.88 30653.00 85707.03 28428.16 25212.33

2 36070.54 33071.78 76206.20 32256.74 34255.17

3 40550.92 42181.47 97352.99 35988.85 36881.37

4 50424.20 42673.60 68981.72 26938.51 23178.79

5 29535.82 28629.30 74911.55 23350.29 25196.93

None advanced house prices MedAE

Fold LR PLR SVM RF XGB

1 30427.88 31035.35 85592.86 28739.80 26151.67

2 36070.54 33067.83 76206.20 32120.16 34438.37

3 40550.92 41084.71 97316.34 38476.82 39136.28

4 50424.20 39669.44 68975.04 26835.80 24883.92

5 29535.82 28634.87 74764.31 24540.78 25968.35
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Table 36: Results of the 5×2 cross-validated models on the square root transformation advanced

house prices dataset for the MAE, RMSE, and MedAE

Square root advanced house prices mean absolute error

Fold LR PLR SVM RF XGB

1 18689.81 18821.94 25327.71 17409.16 15393.26

2 18537.85 17739.01 23537.47 15761.64 16480.91

3 20633.66 20788.04 28448.00 19846.23 19940.77

4 18146.45 17407.38 19650.79 15143.35 15205.35

5 18109.16 17509.13 22997.77 16211.02 16037.06

Square root advanced house prices root mean squared error

Fold LR PLR SVM RF XGB

1 28545.29 29852.86 45021.63 29460.64 27439.77

2 37403.92 33418.02 36025.99 32599.99 31062.01

3 37278.91 37569.10 56574.35 38357.96 35784.71

4 64604.10 51896.64 32662.33 25380.34 23379.03

5 26838.73 25621.04 37732.81 24306.80 23045.29

Square root advanced house prices MedAE

Fold LR PLR SVM RF XGB

1 28545.29 28603.73 45021.63 29360.65 24894.91

2 37403.92 34662.15 36025.99 30843.71 34732.16

3 37278.91 37276.07 56574.35 39244.36 35777.87

4 64604.10 64038.97 32662.33 25949.88 25417.96

5 26838.73 26415.97 37732.81 23785.09 23045.29
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Table 37: Results of the 5× 2 cross-validated models on the log transformation advanced house

prices dataset for the MAE, RMSE, and MedAE

Log advanced house prices mean absolute error

Fold LR PLR SVM RF XGB

1 17635.74 17750.95 19624.39 17693.23 19904.50

2 18886.51 18073.00 17218.82 15424.16 16731.37

3 19904.81 19770.34 21375.91 20132.60 22540.37

4 22235.45 19776.11 16049.11 15231.64 17387.16

5 17290.27 16860.74 17995.06 16657.50 18482.13

Log advanced house prices root mean squared error

Fold LR PLR SVM RF XGB

1 27148.50 28614.56 30427.53 29305.91 35929.98

2 45423.07 38082.92 26694.32 31895.21 30525.53

3 33983.71 33032.57 41303.08 39965.61 44025.94

4 133884.52 89692.58 25699.02 25458.89 26677.55

5 25498.87 24722.54 27176.87 24351.68 27169.55

Log advanced house prices MedAE

Fold LR PLR SVM RF XGB

1 27340.24 29393.83 30531.18 29957.38 35802.47

2 45545.50 38506.06 27855.19 30404.44 30532.39

3 33587.76 33559.65 41446.81 40604.66 44377.43

4 133830.79 123201.78 26858.73 28603.91 26717.90

5 25443.95 24984.67 27654.45 25124.52 27060.93
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Table 38: Results of the 5 × 2 cross-validated models on the box-cox transformation advanced

house prices dataset for the MAE, RMSE, and MedAE

Box-Cox advanced house prices mean absolute error

Fold LR PLR SVM RF XGB

1 17420.54 17642.83 23883.63 17802.17 25931.87

2 19119.78 18336.27 21680.63 15637.43 21251.73

3 19862.49 19668.02 27056.86 19640.62 27591.80

4 24473.78 20950.54 19749.72 15393.03 21942.90

5 17280.00 16850.34 22049.63 16725.13 22079.41

Box-Cox advanced house prices root mean squared error

Fold LR PLR SVM RF XGB

1 26893.17 28579.29 38700.42 30448.59 42626.60

2 47859.88 39040.36 31001.62 31023.94 32775.31

3 33433.38 32198.53 50123.20 39224.00 56933.89

4 166984.82 105885.31 29566.06 24894.66 33306.11

5 25415.95 24527.75 33793.30 24620.08 34721.82

Box-Cox advanced house prices MedAE

Fold LR PLR SVM RF XGB

1 27207.06 29560.31 38767.74 31685.65 43740.01

2 48014.12 43640.14 32767.28 29537.31 41298.32

3 33069.27 32765.62 52294.83 41840.13 55676.82

4 166832.13 143098.28 30361.03 27464.06 33174.98

5 25344.56 24770.70 34053.23 25300.92 35213.01
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F.5 Saudi dataset

Table 39: Results of the 5 × 2 cross-validated models on the no transformation Saudi dataset

for the MAE, RMSE, and MedAE

None Saudi mean absolute error

Fold LR PLR SVM RF XGB

1 593943.23 494414.01 655857.39 368150.23 378454.19

2 512252.32 512833.44 809605.41 469791.45 476181.51

3 563732.83 498564.67 723695.12 388615.43 397157.50

4 592192.46 465126.71 706570.50 372251.36 400737.56

5 585545.84 501252.23 686577.34 392033.98 428093.70

None Saudi root mean squared error

Fold LR PLR SVM RF XGB

1 1058263.40 1057052.05 1380991.90 781494.51 786482.54

2 1840816.64 1842473.72 3524202.82 2807194.00 2648110.74

3 1087525.40 1086484.51 1633752.83 828687.74 1024138.00

4 861970.64 860714.44 1379103.14 744851.65 752494.83

5 986235.61 987176.70 1668552.09 1112438.70 1125781.05

None Saudi MedAE

Fold LR PLR SVM RF XGB

1 1057941.79 983643.29 1381033.49 846010.73 787437.82

2 1841840.40 2330458.24 3524229.19 2827097.84 2649626.75

3 1087290.26 972896.19 1633756.63 824713.59 947126.75

4 861077.11 815386.43 1379033.82 760025.78 774135.23

5 986502.91 1076227.33 1668510.30 1087695.92 1294249.65
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Table 40: Results of the 5 × 2 cross-validated models on the square root transformation Saudi

dataset for the MAE, RMSE, and MedAE

Square root Saudi mean absolute error

Fold LR PLR SVM RF XGB

1 405330.8905 403392.6032 525936.2921 357632.0053 366592.5742

2 358251.8757 356936.759 684856.0277 467046.5576 445134.8176

3 423548.8923 430661.6596 608665.8624 365157.6157 399039.1615

4 387875.4637 387800.5712 576093.5977 364277.5855 360934.4086

5 410636.8369 410517.6814 557198.4203 384080.927 384315.2558

Square root Saudi root mean squared error

Fold LR PLR SVM RF XGB

1 916220.95 918100.52 1244282.59 836005.71 794749.68

2 733916.33 729329.19 3453575.96 2944921.93 2595098.61

3 979530.14 971669.49 1503397.21 814255.01 1067862.91

4 690600.71 690781.28 1196613.09 709069.76 686856.54

5 920337.95 921993.20 1536833.07 1055646.37 1185686.88

Square root Saudi MedAE

Fold LR PLR SVM RF XGB

1 915991.25 917344.21 1246739.40 844112.21 777440.45

2 729338.96 706658.70 3461846.83 2872764.56 2712933.08

3 980007.35 970269.72 1510621.46 846107.48 1078609.96

4 690780.51 695481.16 1201000.44 691961.90 745209.05

5 923387.49 989109.05 1569775.28 1058992.76 1176532.47
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Table 41: Results of the 5 × 2 cross-validated models on the log transformation Saudi dataset

for the MAE, RMSE, and MedAE

Log Saudi mean absolute error

Fold LR PLR SVM RF XGB

1 412284.97 412949.5787 390974.53 350085.63 370830.00

2 12145021.52 11930454.43 1183439.00 474564.27 486485.57

3 454500.14 455500.35 452960.60 371940.26 407866.23

4 391447.06 395703.95 365192.95 347802.83 357431.32

5 411650.94 412146.16 387430.83 380880.99 419823.02

Log Saudi root mean squared error

Fold LR PLR SVM RF XGB

1 954827.63 985340.9113 941447.67 835046.95 788407.53

2 198379198.80 167700422.20 14540484.19 3018122.25 2665501.27

3 1072574.81 1080746.38 1118169.60 909016.19 1099174.29

4 730040.26 774075.68 707828.56 716090.95 704418.66

5 983454.91 1083006.07 1072104.14 1067340.37 1135627.37

Log Saudi MedAE

Fold LR PLR SVM RF XGB

1 954461.22 965176.69 937898.21 844140.56 2267818.74

2 196998515.30 98127040.64 5770828.79 2953313.67 2715831.15

3 1074796.56 1043421.03 1598198.56 909229.60 1015735.26

4 730094.46 745144.41 677368.33 666734.48 724175.36

5 991025.50 995215.53 1013875.74 1065441.30 1073217.51
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Table 42: Results of the 5 × 2 cross-validated models on the box-cox transformation Saudi

dataset for the MAE, RMSE, and MedAE

Box-Cox Saudi mean absolute error

Fold LR PLR SVM RF XGB

1 412286.36 413377.41 390476.95 353390.20 376413.45

2 15735536.72 15286341.53 1827286.46 473997.05 467710.13

3 455183.47 456219.97 453877.13 371428.05 417682.55

4 391739.02 396531.97 360860.01 347889.36 380805.00

5 411978.73 412440.39 388730.85 387360.13 414085.73

Box-Cox Saudi root mean squared error

Fold LR PLR SVM RF XGB

1 955454.80 986846.55 938964.65 835679.24 839923.17

2 258669950.10 215841064.40 23873637.63 3028906.19 2742569.48

3 1075349.20 1083919.74 1121596.24 876498.02 1050613.51

4 730792.25 773807.06 698454.89 703912.76 692458.82

5 984013.54 1086133.84 1072187.13 1076407.24 1112480.88

Box-Cox Saudi MedAE

Fold LR PLR SVM RF XGB

1 956650.80 969829.34 938964.65 844880.80 874040.51

2 256839114.30 118264834.50 4966923.51 2961402.28 2837229.15

3 1077880.94 1042524.90 1121596.24 910116.98 1037500.48

4 730969.89 745231.83 658718.31 679302.08 807271.63

5 991965.47 993980.17 937130.91 1085895.45 1037833.67
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