
The Influence of Cellwise Outliers on
Propensity Score Matching

ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Master Thesis [Econometrics and Management Science]

Author:

Dennis van de Noort

Student number:

494883

Supervisor:

M. Zhelonkin

Second assessor:

A. Naghi

May 1, 2023

Abstract

Propensity score matching is a popular tool in the field of causal inference and particular

treatment evaluation. Unfortunately, it typically relies on ordinary least squares, which is highly

sensitive to outliers. The current literature has sparsely investigated the influence of cellwise

outliers on treatment evaluation methods. Therefore, in this paper, we study the performance of

propensity score estimators when the data is contaminated with different sorts of cellwise outliers.

A robust algorithm with several outlier detection methods and Multiple Imputation is proposed to

deal with these outliers. We see that the robust algorithm with the DDC outlier detection method

performs best when there is no correlation between the outliers. The MacroPCA outlier detection

method performs best when the outliers are correlated. After applying the robust algorithm, the

differences between the propensity score estimators disappear. The robust algorithm is applied

to the datasets used in Canavire-Bacarreza et al. (2021) and reveals that outliers are present in

the datasets. When conducting a sensitivity analysis on the LaLonde (1986) dataset, the classical

estimator breaks down, but the robust estimators perform well.
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1 Introduction

Causal inference is a fundamental concept in many fields, including economics and social sciences. It refers

to the process of identifying the causal relationship between two or more variables. Causal inference is

essential because it allows us to understand the impact of an intervention or treatment on an outcome

of interest. In the field of economics, for example, policymakers often need to make decisions about

the effectiveness of different policy interventions, such as tax policies or education programs. However,

we cannot observe both the treated and untreated outcomes for the same individual, as an individual

can only receive one treatment, which is the fundamental problem in causal inference. Propensity score

matching is a popular tool for solving this problem.

The increase in data availability and computing power in recent years has allowed researchers to

collect and analyze large amounts of data. While this has opened up new research opportunities, it has

also brought new challenges, particularly in the presence of outliers. Classical econometric methods that

assume normal behavior of the data may not be appropriate for causal inference, particularly when outliers

are present. Outliers can distort the estimation of treatment effects and lead to biased conclusions. For

example, estimation within propensity score matching usually relies on Ordinary Least Squares (OLS),

which has a breakdown point of 0%. This means that the presence of a single outlier can cause OLS to

break down. Therefore, researchers need to examine the presence of outliers and deal with them carefully,

increasing the demand for robust estimation techniques.

Outliers used to be seen as rows or observations. Until Alqallaf et al. (2009) proposed a new concept of

cellwise outliers. A new discussion erupted, instead of dealing with entire rows as outliers, only particular

cells had to be dealt with. Several papers examined the influence of these cellwise outliers on propensity

score matching. Canavire-Bacarreza et al. (2021) found that these cellwise outliers had a negative impact

on the bias of the treatment effect estimation. Agostinelli et al. (2015) showed that their robust estimators

perform well under both rowwise as cellwise outliers and mentions the need for a new generation of robust

estimators.

Our research will focus on the influence of cellwise outliers on propensity score matching methods and

propose a robust method. Using a simulation study, we will generate three sorts of outliers: bad leverage

points, good leverage points, and vertical outliers. These outliers will be generated in the treatment

group, in the control group, and in both. On top of that, we use two different contamination types: one

where all outliers are generated independently and one where there is a correlation between the outliers.

We use five different propensity score estimators: logistic regression, classification trees, neural networks,

gradient boosting models, and random forests. We use three different outlier detection methods are used:

Detecting Deviating Cells (Rousseeuw and Van den Bossche, 2018), MacroPCA (Hubert et al., 2019) and

Detection-Imputation (Raymaekers and Rousseeuw, 2019). After finding the cellwise outliers, the values

are imputed using Multiple Imputation. Finally, the results are analyzed based on the bias, the variance,

and the coverage of the coefficients.

The results show that the logistic regression and neural network best estimate the treatment effect

when the outlier detection methods and Multiple Imputation are not used. After applying the outlier
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detection methods and Multiple Imputation, the differences between the propensity score estimators

decreased to a point where there was no superior performer. The DDC method performs best when there

is no correlation between the outliers. The MacroPCA method performs best when there is a correlation

between the outliers. The DI method performs significantly worse than the other two methods. Simulation

results show that using the outliers detection methods and Multiple Imputation substantially improves

the performance of the propensity score estimators.

Our methodology is also applied to the datasets used in Canavire-Bacarreza et al. (2021), and a

sensitivity analysis is conducted on the LaLonde (1986) dataset. The results for the datasets used in

Canavire-Bacarreza et al. (2021) show that the classical estimators show a significant bias in estimating

the treatment effect. When using our robust estimators, the estimated treatment effect is closer to the

true experimental value. Compared to the simulation study, the DI-MI algorithm outperforms the other

two algorithms for these datasets. When conducting the sensitivity analysis, we show that the classical

estimator is sensitive to even the smallest amount of contamination, whereas the robust estimators keep

performing well.

The remainder of this research is organized as follows. In Section 2, already existing literature on this

topic and our contribution to the literature is discussed. After that, we present the methodology used in

this paper. Furthermore, in Section 4, we present the framework for the simulation study. Next, Section

5 gives a description of the real datasets our methodology is applied to. Our main findings are presented

in Section 6. At last, in Section 7, we summarize our results and provide a conclusion.

2 Literature

In this section, literature that is relevant to our research is described. The use of matching methods

for causal inference dates back to the early 20th century when some researchers began recognizing the

importance of controlling for confounding variables in observational studies. One of the earliest examples

of matching can be found in the work of Cochran (1939), who matched cases and controls based on

their ages and other demographic characteristics to investigate the association between smoking and lung

cancer.

Matching methods continued to be developed over the following decades, with some researchers advo-

cating for the use of matching to estimate treatment effects in observational studies. In the early 1970s,

D. Rubin introduced the concept of the potential outcomes framework, which provided a rigorous theo-

retical foundation for estimating treatment effects in observational studies. Matching methods offer one

way of achieving balance between treated and control units in the potential outcome framework. Then,

in a series of papers in the 1970s and 1980s, D. Rubin developed the idea of propensity score matching,

in which units are matched based on their probability of receiving the treatment (the propensity score)

rather than on individual covariates. This approach has the advantage of being able to balance a large

number of covariates simultaneously, and it can also be used to construct weighted estimators that give

more weight to well-matched units (Rubin 1973; Rubin 1977; Rubin 1985; Rubin 2001).

However, it wasn’t until the 1980s and 1990s that matching methods began to gain widespread use in

the causal inference literature (LaLonde 1986; Rosenbaum 1984). Dehejia and Wahba (1999) proposed
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the "propensity score with continuous treatment" approach, which extended the propensity score method-

ology to situations where the treatment variable was continuous rather than binary. This approach has

also been extended to the case of multiple treatments (Imbens 2000) and competing risks (Austin and

Fine 2019).

Estimating the propensity score by machine learning has only been around for 10-15 years. Before

that, it was estimated by logistic or probit regression. Penning et al. (2018) gives an excellent overview

of different ways to estimate the propensity scores using Classification And Regression Trees. Random

forest was first proposed by Zhao et al. (2016). McCaffrey et al. (2004) proposed to use Generalized

Boosted Regression Models. Not until 2018 were neural networks used to estimate the propensity scores

(Kallus and Zhou 2018; Setoguchi et al. 2008).

Rosenbaum and Rubin (1983) were the first to mention that outliers can disproportionately impact

the matching results, mainly when the number of treated units is small. They recommended diagnostic

tests to identify and remove outliers before matching. Stuart (2010) examined the influence of outliers

on propensity score matching and found that the presence of outliers can lead to biased estimates of the

treatment effect. Both recommended identifying and removing those outliers.

Outliers were, until 2009, seen as rows or observations. Alqallaf et al. (2009) introduced the concept of

cellwise outliers. The quality of the match can be affected by the presence of cellwise outliers in the data.

These outliers can have a disproportionate influence on the matching process, leading to poor quality

matches and biased estimates of treatment effects (Canavire-Bacarreza et al., 2021). However, it was not

the first time it was spoken of cellwise outliers. Alfio Marazzi and Werner Stahel brought it up at ETH

Zürich as an open problem. It was believed that the available tools were insufficient at that time.

Finding such cellwise outliers is quite a hurdle. Rousseeuw and Van den Bossche (2018) proposed a

new method for detecting and handling cellwise outliers in data, named DDC. It is a classification method

that uses the Minimum Covariance Determinant (MCD) estimator to identify cells that deviate from the

majority of the data. The method is shown to be highly robust to the presence of outliers and performs

well on a variety of datasets with different types of outliers.

Another cellwise outlier detection method was proposed by Raymaekers and Rousseeuw (2019), named

the DI method. The DI method is a two-step method to handle cellwise outliers in a data matrix: detection

and imputation. In the detection step, the cellHandler technique is used to flag outliers. The cellHandler

technique is also proposed in their paper. In the imputation step, a robust estimator imputes the missing

values in the detected cellwise outliers and updates the covariance matrix. The performance of the DI

method is compared with several existing methods on both simulated and real data sets. The results

show that the DI method performs well in outlier detection and imputation accuracy.

At last, Hubert et al. (2019) introduced MacroPCA. It is an all-in-one PCA method that can handle

different types of data issues, including missing values, cellwise outliers, and row-wise outliers. The

performance of MacroPCA is evaluated on simulated data and real-world datasets. The results show that

MacroPCA outperforms other methods in outlier detection and is computationally efficient.

Several papers already examined the influence of cellwise outliers on matching methods. Canavire-

Bacarreza et al. (2021) examined the relative performance of leading semi-parametric estimators of average
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treatment effects in the presence of outliers. Their most important conclusions were: bad leverage points

bias estimates of average treatment effects, and good leverage points in the control sample do not affect the

estimates of treatment effects. We expand this methodology using different propensity score estimators

and state-of-the-art outliers detection and imputation methods.

Austin (2014) examined different algorithms for forming pairs in matching. For example, nearest

neighbor, optimal or caliper matching. They found that nearest neighbor and optimal matching induced

the same balance in baseline covariates. Furthermore, matching with replacement did not perform su-

perior to caliper matching without replacement. As a result of their conclusions, we only use optimal

matching in our paper.

Gharibzadeh et al. (2018) compared different ways of estimating the propensity score. They found

that the logistic regression model is efficient when correctly specified. It will also outperform any data

adaptive method, like CART or GBM, for modeling the propensity score when the relationship between

the propensity score and covariates is linear and additive. We differ from this paper in that we also

examine the influence of outliers on these estimators.

3 Methodology

In this section, all the methods used for this research are explained. First, the potential outcome frame-

work is described in Section 3.1. Next, the matching methods are defined in Section 3.2. Next, the

propensity score estimators are explained in Section 3.3. Next, the outlier detection methods are de-

scribed in Section 3.4. And at last, the Multiple Imputation method is explained in Section 3.5.

3.1 Potential Outcome Framework

To create a setup for the matching estimators, we rely on the idea of randomized experiments proposed

by Neyman (1923). Rubin (1974) built upon Neyman’s ideas and proposed the potential outcomes

framework for causal inference. He defines causal effect as the difference of potential outcomes defined on

the same observation. In the potential outcome framework, each observation has two potential outcomes

for treatment, Y 0
i and Y 1

i . Y 1
i if the observation is treated and thus is assigned to the treatment group.

Y 0
i if the observation is not treated and is thus assigned to the control group. Each observation does

either receive treatment Ti=1 or does not receive treatment Ti=0. Additionally, each observation has

a set of covariates, which is not affected by the treatment. Therefore, for each observation, we observe

(Yi, Ti ∈ {0, 1}, Xi), where Yi is the outcome: Yi = TiY
1
i + (1− Ti)Y

0
I . Unfortunately, we cannot observe

Y 0
i and Y 1

i simultaneously. To estimate the average treatment effect on the treated, we thus need to

estimate the missing potential outcome for each observation assigned to the treatment group.

3.2 Matching Methods

The potential outcome (Y 0
i ) is not observable when an observation is exposed to treatment. Semi-

parametric treatment effect estimation methods, such as matching, impute this missing potential outcome
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by finding other observations which are similar in terms of covariates but are not exposed to treatment.

To consistently estimate and identify the treatment effect, the following assumptions have to be met:

Assumption 1 (Unconfoundedness)

(Y 0
i , Y

1
i ) ⊥ T |X.

Assumption 2 (Overlap)

0 < P(T=1|X) < 1.

Assumption 3 (Stable Unit Treatment Value Assumption)

Yi = Y t
i , if Ti = t.

The unconfoundedness assumption states that treatment assignment is independent of potential outcomes

given the observed covariates, which ensures that any differences in the outcome between the two groups

can be attributed to the treatment effect. Next, the overlap assumption establishes a positive probability

of receiving treatment for all X. In other words, there should be some similarity between the treated and

control groups in terms of their observed covariate values. If there is no overlap, it becomes impossible to

find pairs of treated and control group observations, making the matching methods ineffective. At last,

the Stable Unit Treatment Value Assumption (SUTVA) states that the potential outcomes of one unit

are not influenced by the treatment assignment to other units. Furthermore, for each unit, no different

variations of each treatment level lead to different potential outcomes (Imbens and Rubin, 2016). See

Imbens (2004) for a discussion on these assumptions.

When estimating the causal effect of a treatment, several different measures of effect can be used,

including the average treatment effect (ATE), the average treatment effect on the treated (ATT), the local

average treatment effect (LATE), the marginal treatment effect (MTE), and others. The LATE was first

introduced by Angrist and Krueger (1991) and was used to estimate the impact of compulsory schooling

on earnings by using a quarter of birth as an instrument for education. The MTE was introduced by

Imbens and Rubin (1997) and measures the effect of treatment for individuals at the margin of treatment

eligibility. The ATT is calculated as the difference between the average outcome for the treated group and

the average outcome for the control group, where both groups consist only of individuals who received the

treatment. Contrary to the ATE, which estimates the average treatment effect for those who did receive

treatment and who did not. The ATT is generally considered a more informative measure of effect when

the treatment is not universally received and there is potential for selection bias. In these situations,

the ATT may provide a more accurate estimate of the effect of treatment. Furthermore, the LATE and

MTE are more specific measures of effect that depend on the individual’s compliance with the treatment

assignment, which is not applicable in this study (Abadie and Imbens 2006, Angrist and Krueger 2001).

In the context of the potential outcome framework, the ATT is defined as follows:

τ = E(Y 1
i − Y 0

i |Xi, Ti = 1). (1)

As mentioned, the matching estimators impute the missing potential outcome by finding observations

with similar covariates and opposite treatment statuses. However, when the number of covariates grows, it
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becomes impractical to match these observations on the covariates because of the curse of dimensionality.

Therefore, it is necessary to convert these covariates into a scaler, p(x). The most common scaler is the

propensity score, which was first introduced by Rosenbaum and Rubin (1983). The propensity score is

defined as p(Xi) ≡ P (Ti = 1|Xi). When conditioning on the propensity score, Xi|p(Xi), the conditional

distribution of both the treatment and control groups are equal. This is known as the balancing hypothesis

and is stated in Assumption 4.

Assumption 4 (Balancing Hypothesis)

(Y 0
i , Y

1
i ) ⊥ T | p(Xi).

If all the assumptions are met, observations with the same propensity score have the same distribution

of covariates independent of treatment status. The accomplishment of a balanced model depends on the

estimation of the propensity score. There are multiple ways to estimate the propensity score. These are

explained in the next section.

3.3 Propensity Score

We estimate the propensity score in five different ways in this paper. Namely, logistic regression, classi-

fication tree, neural network, gradient boosting model, and a random forest. The upcoming subsections

will explain these methods in detail.

3.3.1 Logistic Regression

In this method, a logistic regression model is fitted with the treatment as the dependent variable and the

covariates as the independent variables. The predicted probability from the logistic regression model for

each individual can then be used as the estimated propensity score. The logistic regression model used

to estimate the propensity score can be represented mathematically as follows:

p̂(T = 1|X) =
eX

′B

(1 + eX′B)
, (2)

where p(T=1|X) is the predicted probability of receiving the treatment (T=1) given the observed covari-

ates X.

3.3.2 Classification Tree

Classification trees are commonly used to estimate propensity scores because they are simple, easy to

interpret, and can handle a wide range of covariates. To fit a classification tree, we use a recursive

partitioning algorithm that splits the sample into subsets based on the value of a selected covariate. Let’s

assume the j -th split is based on the value of Xj . The tree is represented by a set of binary decision rules

of the form:

Xj ≤ cj , T = 1, (3)

Xj > cj , T = 0, (4)
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where cj is the threshold value for the j -th split. The prediction for a new individual with covariates X

is obtained by following the path through the tree that corresponds to the individual’s covariate values.

Ŷ denotes the predicted treatment status. In a classification tree, the criterion used to split a leaf node

into two child nodes is based on the reduction in a measure of impurity. Here we use the Gini impurity

because it is computationally efficient and is less sensitive to outliers than other measures. The split aims

to maximize the difference in the treatment status between the two child nodes so that the child nodes

become more homogeneous concerning treatment status. Gini impurity measures the probability that a

randomly chosen individual from the leaf node would be misclassified if we only use the class proportions

in the leaf node to make a prediction. The Gini impurity for a node with k classes is defined as:

Gini = 1−
K∑

k=1

p2k, (5)

where K is the total number of classes and pk is the proportion of individuals in the node with class k. A

split that decreases the Gini impurity is preferred. The estimated propensity score for each i is calculated

as the predicted probability of receiving treatment:

p̂(X) = P (T = 1|X) = Ŷ . (6)

3.3.3 Neural Network

A single-layer feed-forward neural network can be used to calculate propensity scores by training a binary

classification model to predict the treatment status of an individual based on their observed covariates.

This is achieved by training the network to learn the relationship between the observed covariates and

the treatment status so that it can predict the probability of treatment for a new individual based on

their covariate values.

A single-layer feed-forward neural network is a type of artificial neural network that consists of a single

layer of artificial neurons or nodes. The nodes in the network are connected by weighted connections,

where the weight of each connection represents the strength of the relationship between the inputs and

outputs. See Figure 1 for a visual representation.

Figure 1: A single layer feed-forward neural network.
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The nodes in the network process the input data for the network to produce the output. The processing

of the input data starts with the input layer, where the input values are passed through the nodes in the

network and weighted by the connections. The weighted inputs are then transformed using an activation

function, which maps the inputs to a different range of values, typically between 0 and 1. In a single-layer

feed-forward neural network, the activation function is typically a sigmoid function, which has an S-

shaped curve and produces outputs between 0 and 1. The sigmoid activation function can be represented

mathematically as:

êi = f(Xi; θ) =
1

1 + e−zi
, (7)

where zi = θ0 +Σp
j=1θjXij is the weighted sum of the inputs for the i -th individual and θ = θ0, θ1, ..., θp

are the parameters of the model. The transformed inputs are then passed to the output layer, where

the final output is produced by combining the transformed inputs from the activation function. The

activation function is mathematically equivalent to the logistic regression in Equation (2).

The parameters of the model, θ, are learned by training the network on a set of training data, where

the inputs and outputs are known. Next, the network is trained by minimizing a loss function, such as

the cross-entropy loss, which measures the difference between the predicted and actual outputs for each

training example. Finally, the optimization algorithm updates the model’s parameters to minimize the

loss function, and the training process is repeated until convergence.

Once the model has been trained, the estimated propensity scores for each individual can be obtained

by evaluating the model on their observed covariates, Xi, and using the predicted probability of treatment

as the estimated propensity score.

3.3.4 Gradient Boosting Model

In the context of a gradient boosting model (GBM), the propensity score can be estimated as follows:

Let X be a vector of covariates that describe the individual and T be a binary variable indicating

treatment status. The goal is to estimate the conditional probability of treatment given covariates,

denoted as P(T=1|X). The gradient boosting model can be formulated as follows:

F (X) = f1(X) + f2(X) + ...+ fM (X), (8)

where fm(X) are weak learner functions combined to form a strong predictor F(X). The functions fm(X)

are decision trees chosen using 5-fold cross-validation. GBM works by training the weak learners se-

quentially on different parts of the training data, with each model trying to correct the mistakes of the

previous model. The final prediction is then made by combining the weak learners’ predictions, usually

through a weighted sum. Training weak learners and combining their predictions is done iteratively until

a desired level of accuracy is achieved or a maximum number of iterations is reached. The number of

iterations determines the complexity of the model.

The estimated propensity score for individual i can then be calculated as:

êi = P (T = 1|X = xi) = 1/(1 + exp(−F (xi))), (9)

where xi is the vector of covariates for individual i. The gradient boosting model can be trained us-

ing a maximum likelihood estimation approach to minimize the negative log-likelihood of the observed
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treatment status given the estimated propensity scores. The optimization problem can be formulated as

follows:

min
∑

−(Ti log(êi) + (1− Ti) log(1− êi)), (10)

where Ti is the observed treatment status for individual i.

3.3.5 Random forest

Random forest uses an ensemble of decision trees for improved prediction accuracy. The concept is that

multiple independent models produce better results collectively than individually. In classification tasks,

each tree casts a "vote" for the final classification, and the one with the most votes is selected. The

decision trees are created using the same method described in Section 3.3.2. After building the trees, the

propensity score for each individual is calculated in each tree, then averaged to obtain the final propensity

score. The algorithm is summarized in Appendix A (Zhao et al., 2016).

3.4 Outlier Detection Methods

This section provides a detailed explanation of the outlier detection methods used in our research. The

Detecting Deviating Cells (DDC) method is explained in Section 3.4.1, the MacroPCA method is ex-

plained in Section 3.4.2, and the Detection-Imputation method is explained in Section 3.4.3.

3.4.1 Detecting Deviating Data Cells

Rousseeuw and Van den Bossche (2018) proposed the DDC method. In this paper, a summary of the

DDC method is given. However, I refer to the original paper (Rousseeuw and Van den Bossche, 2018) for

a more comprehensive and detailed explanation of the algorithm. The DDC method was the first method

that considered correlations between variables to detect deviating cells in a multivariate sample. It has

no problems with a large number of variables, and there are no limitations on the number of clean rows.

The method first does some prepossessing. It assumes that the data comes from a multivariate

Gaussian distribution N(µ,Σ). The variables should therefore be numerical and take on more than a few

values. It should be numerical data because it calculates the mean and standard deviation of the data,

which are fundamental statistical parameters that require numerical values. Furthermore, the variables

should take on more than a few values because the method is designed to detect small shifts or changes

in the mean of a process. When the data takes on more than a few values, there is more significant

variability in the data, making it easier to detect small shifts or changes in the mean. The method

requires the data to be multivariate Gaussian which is necessary to calculate the control limits, which

are used to determine if the process has shifted. If these assumptions are not met, the DDC method may

not work correctly and produce biased results.

If the variables do not have a Gaussian distribution at their center, they could be transformed man-

ually using a logarithm transformation or more generalized tools for transformations like the Box-Cox

transformation or the Yeo-Johnson methods (Yeo and Johnson, 2000).
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The method itself follows multiple steps. The first step is the standardization of the variables. Then,

for each column j, the location and scale are robustly estimated under the assumption that the variables

are centered. To robustly estimate the location and scale, we use the first step of an algorithm for

M-estimators described on pages 39-41 in Maronna et al. (2006).

For each column j, we robustly estimate the location and scale using:

mj = robLoci(xij) and sj = robScalei(xij −mj), (11)

respectively. The functions robLoc and robScale can be found in Appendix B. Hereafter, we standardize

X into Z by using the following formula:

zij = (xij −mj)/sj . (12)

The second step is to perform univariate outlier detection on all variables formed by Equation (12).

We define a new matrix U with entries defined as follows:

uij =

zij , if |zij |≤ c,

NA if |zij |> c.

(13)

As a result of the standardization presented in Equation (12), Equation (13) serves as a method to

detect column-wise outliers. The cutoff value c is formulated as

c =
√
χ2
1,p, (14)

the value of χ2
1,p is determined as the p-th quantile of the chi-squared distribution with 1 degree of

freedom, where the probability p is set to 0.99.

The third step is for the bivariate relations. If we have two variables, h and j, we calculate their

correlation using the following formula:

corjh = robCorri(uij , uih), (15)

where robCorr can be found in Appendix C. We will only utilize the correlation between variables j and

h when

|corjh|≥ corrlim, (16)

where corrlim is set to 0.5. Any variables j that fulfill Equation (16) for some h ̸= j will be referred to

as "connected" and are deemed to contain valuable information about one another. These variables are

sufficiently correlated to help predict each other. For these variable pairs, we also compute

bjh = robSlopei(uij |uhj), (17)

where robSlope is utilized to calculate the slope of a robust regression line without an intercept term.

This line predicts the value of j from the value of h.

The fourth step is predicting values. We compute ẑij for all cells. For each variable j, we define the

set Hj as the collection of all variables h that fulfill condition (16), which includes variable j itself. For

all i, we then set

ẑij = G ({bjhuih ; h in Hj}) , (18)
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where G is a combination rule which ignores any NA values and will yield a zero result if no remaining

values are left to combine. We use a weighted mean function for G with weights wjh = |corjh|. Equation

(18) offers the benefit of limiting the impact of an outlying cell, zih, on ẑij . This is because |uih| is

constrained by the value of c, and as a result, can only influence a single term in the equation.

The fifth step is deshrinking. It is important to note that a prediction method, such as Equation (18),

tends to shrink the scale of the entries, which is not desirable as this underestimates the variability. One

potential solution would be to reduce the shrinkage applied to the individual terms, bjhuih. However,

this approach would not be effective, as these terms may have different signs for different h. To address

this shrinkage issue, we apply the combination rule first, followed by a different approach to adjust the

level of shrinkage as needed. Therefore, we replace ẑij by aj ẑij where

aj = robSlopei′(zi′j |ẑi′j). (19)

The scaling factor, aj , is determined by regressing the observed values of zj on the shrunk predicted

values of ẑj .

The sixth step is flagging the cellwise outliers. After calculating the predicted values, ẑij , for all cells

in fourth and fifth step, we proceed to compute the standardized cell residuals

rij =
zij − ẑij

robScalei′(zi′j − ẑi′j)
. (20)

In each column, j, we flag any cells with |rij |> c, as defined in Equation (14), as anomalous.

Additionally, we construct an "imputed" matrix, Zimp, which is the same as the original data matrix,

Z, except that any deviating cells or missing values are replaced with their corresponding predicted values,

ẑij . We do not need this additional feature for the DDC method. However, in Section 3.4.2, we need

these imputations, as the DDC method is a part of the MacroPCA method.

The seventh step is flagging the row-wise outliers. If we assume no outliers in multivariate Gaussian

data under the null hypothesis, then the distribution of rij will be similar to a standard Gaussian

distribution. Consequently, we can estimate the cumulative distribution function (CDF) of r2ij by using

the cdf F of χ2
1. This brings us to the following:

Ti =
d

ave
j=1

F (r2ij). (21)

After standardizing the Ti using Equation (12), we flag the rows i that exceed the cutoff value c from

Equation (14).

The eighth and last step is converting the flagged cellwise outliers to NA values and removing the

flagged row-wise outliers from the dataset. These NA values will be later converted to predicted values

by Multiple Imputation. This will be explained in Section 3.5.

3.4.2 MacroPCA

The Missingness And Cellwise & Rowwise Outliers PCA (MacroPCA) method was proposed by Hubert

et al. (2019). In this paper, a summary of the MacroPCA method is given. However, I refer to the

original paper (Hubert et al., 2019) for a more comprehensive and detailed explanation of the algorithm.
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It is the first PCA method that deals with both cellwise and row-wise outliers. Moreover, it can also

handle missing values.

Assuming there are no outliers or missing values, the objective is to reduce the dimensionality of the

data and represent it in a lower-dimensional space, that is,

XN,p = 1Nµ ′
p + TN,k(Pp,k)

′ + EN,p, (22)

where the data matrix is denoted as XN,p. N is the number of rows and p the number of variables. 1N

is a column vector with all values equal to 1, µp is the location vector, TN,k is the score matrix, Pp,k is

the loadings matrix whose columns span the PCA subspace, and EN,p is the error matrix. The reduced

dimension, k, can range from 1 to p, but it is assumed to be small. The µp, TN,k and Pp,k matrices are

unknown, and their estimates will be denoted by mp, TN,p and Pp,k.

There are two assumptions needed for this method. First, the data could contain missing values.

We assume that these missing values are missing at random (MAR). This assumption implies that the

pattern of missingness is dependent only on the observed data, not the unobserved data. This is needed

because MacroPCA incorporates ICPCA (Gulrez and Al-Odienat 2015) and MROBPCA (Serneels and

Verdonck 2008) that rely on that assumption. Second, the data could contain row-wise outliers. The

current row-wise robust methods require that at least 50% of the rows are clean, so this assumption is

taken over.

The MacroPCA method consists of two parts. The first part is the DDC method from Section 3.4.1.

Its main goal is to identify cellwise outliers and also give an imputation of these outlying cells. The

second part constructs the principal components. It follows the methodology of the ICPCA algorithm

but uses a variant of the ROBPCA methods for fitting subspaces (Hubert et al., 2005). Throughout the

method, they use the following two notations:

• the NA-imputed matrix Ẍ only imputes the missing values of X.

• the cell-imputed matrix X̄ imputes the missing values of X and has imputed values for outlying

cells that do not belong to outlying rows.

Since we have yet to determine which cells and rows are outlying, these matrices will be updated during

the method. The DDC method indicates the positions of the cellwise outliers in Ic,DDC and flags the

outlying rows in Ir,DDC .

The second part of the MacroPCA method starts by providing an initial indication of which rows are

the least outlying. It uses the cell-imputed matrix X̄
(0)
N,p defined as follows:

1. In all rows, the missing values are replaced by the values ẍ
(0)
i as imputed by the DDC method.

2. In the h rows with the fewest cells flagged by DDC, but not in Ir,DDC , the flagged cells are also

replaced by the imputed values of the DDC method.

Where h is determined as 0.5 ≤ α = h/n < 1. This means we can withstand up to a fraction of 1 − α

outlying rows. To be safe, the default is α = 0.5. The outlyingness for each row is calculated in the same

14



way as in ROBPCA:

outl(x̄(0)
i ) = max

v∈B

|v′x̄(0)
i −mMCD(v′x̄

(0)
i )|

sMCD(v′x̄
(0)
i )

, (23)

where mMCD and sMCD are univariate MCD location and scale estimates, and the set B contains 250

directions through two data points (Rousseeuw and Leroy, 1987). Finally, the indices of the h rows with

the lowest outlyingness and not belonging to Ir,DDC are stored in the set H0.

Next, the number of principal components is chosen. A new cell-imputed matrix is created, X̄(1)
N,p,

which imputes the outlying cells in the rows of H0 and imputes all NAs from the DDC method in the first

part. After that, classical PCA is applied to the x̄
(1)
i with i ∈ H0. From here, the subspace’s appropriate

dimension k can be derived.

Likewise, to the ICPCA method, this step involves an iterative process to estimate the k -dimensional

subspace that fits the data. That is, for Ẍ
(s)
N,p we update all of the imputations of missing cells, whereas

for X̄s
N,p we update the imputations of the outlying cells in the rows of H0 as well as the missing cells in

all rows. The superscript s represents the iteration, with a maximum of 20 or until convergence. After

all iterations we have the NA-imputed matrix Ẍ
(s)
N,p and the cell-imputed matrix X̄s

N,p as well as the

estimated center m
(s)
p and the updated loading matrix P

(s)
p,k . See Hubert et al. (2019) for an extensive

explanation of this iterative subspace estimation.

In robust statistics, performing a re-weighting step after an initial estimate is common practice to

enhance the statistical efficiency without significantly increasing the computational costs. Here the or-

thogonal distance of each X̄s
i to the PCA subspace is used:

ODi = ∥x̄(s)
i − {m(s)

p + (x̄
(s)
i −m(s)

p )P
(s)
p,k(P

(s)
p,k)

′}∥. (24)

The orthogonal distances to the power 2/3 are roughly Gaussian except for the outliers (Hubert et al.,

2005), so we compute the cutoff value:

cod :=
{
mMCD( ¯ODj

2/3
) + sMCD( ¯ODj

2/3
)Φ−1(0.99)

}3/2

. (25)

where mMCD and sMCD are the same as in Equation (23). All cases for which ¯ODi ≤ cod are considered

non-outlying, and their indices are stored in H∗. Any index that is also in Ir,DDC is removed from H∗.

Applying classical PCA to the N∗ rows in H∗ yields a new center m∗
p and a new loading matrix P ∗

p,k.

Next, we want a robust basis for the estimated subspace. We first project the N∗ points of H∗ onto

the subspace, yielding

T̄N∗,k = (X̄N∗,p − 1N∗m∗′

p )P ∗
p,k. (26)

The center and scatter matrix of the scores T̄N∗,k are estimated by the DetMCD method of Hubert et al.

(2012). This results in the final center mp and final loading Pp,k.

The last step is computing the scores, predicted values, and residuals. The scores of X̄N,p as computes

as T̄N,p = (X̄N,p − 1nm
′

d)Pp,k and the predictions of X̄N,p as ˆ̄XN,p = 1nm
′

d + T̄N,p(Pd,k)
′. This yield the

difference matrix X̄N,p − ˆ̄XN,p, which we then robustly scale by column, yielding the final standardized

residual matrix RN,p. Cells with |rij |>
√
χ2
1,0.99 are considered outliers, which is the same cutoff value

as in Equation (14). The flagged outliers are converted to NA values which will be processed by the

Multiple Imputation algorithm from Section 3.5.
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3.4.3 Detection-Imputation Algorithm

The cellHandler technique was first introduced by Raymaekers and Rousseeuw (2019). It detects outlying

cells by combining lasso regression with a step-wise application of constructed cutoff values. The cell-

Handler assumes that the covariance matrix is known. However, most of the time, that is not the case.

That’s why they also propose a Detection-Imputation (DI) method, which alternates between flagging

outliers using the cellHandler technique and updating the covariance matrix. One condition is that this

covariance matrix should be invertible. In this paper, a summary of the DI method is given. However,

I refer to the original paper (Raymaekers and Rousseeuw, 2019) for a more comprehensive and detailed

explanation of the algorithm.

The cellHandler technique starts by standardizing the columns using a robust univariate estimate

of location and scale, resulting in p-variate observation denoted by zi for i=1, ..., n. This ensures the

result will be equivariant to shifting and rescaling. Next to do is to find the cells that are most likely

contaminated. The squared Mahalanobis distance MD2(z, µ,Σ) = (z − µ)′Σ−1(z − µ) measures the

distance between z and the uncontaminated distribution. This concept aims to decrease the Mahalanobis

distance of z by altering only a small number of cells. Mathematically this will look like this:

MD2(z − δ, µ,Σ) = ∥Ỹ − X̃δ∥22, (27)

which is the objective function of a regression without an intercept with Ỹ := Σ−1/2(z−µ) and X̃ := Σ−1/2

with coefficient vector δ. For the proof, I refer to the original paper (Raymaekers and Rousseeuw 2019).

Solving Equation (27) by OLS results in δls = z − µ. However, this replaces the entire row instead of

only the outlying cells. A natural solution to this problem is Lasso:

∥Ỹ − X̃δ∥22+λ∥δ∥1, (28)

where ∥λ∥1= |λp|+...+ |λp|.

The current explanation is incomplete because we have to pay special attention to cells zj that lie

far away. Identifying such far marginal outliers zj is a relatively simple task, as they have a high degree

of univariate outlyingness: Oj = |zj − µj |/
√
Σjj . The λj in the penalty term is weighted with a factor

wj =min(1, 1.5/Oj). This replaces ∥λ∥ in Equation (28) by ∥Wλ∥1 where W := diag(w1, ..., wp). We

transpose Equation (28) to

∥Ỹ − Ẋβ∥22+λ∥β∥1, (29)

where Ẋ := X̃W−1 and β := Wλ. Hereafter we minimize this equation and transform β̂ back to λ̂.

Because Lasso can also remove variables from a model, we use the LAR algorithm from Efron et al.

(2004). This algorithm gives us a ranking of the cells from z, in the order from highest to lowest gradient.

I refer to the original paper to explain how this algorithm works.

After k steps in the LAR algorithm, we have k candidate cells. These candidate cells are the cells

that have the highest absolute correlation with the residual at each step of the LAR algorithm. The

question is whether these k candidate cells are sufficient. In other words, can we update these candidate

cells while keeping the other cells constant so that the remaining row behaves cleanly? On this notion,

16



the k candidate cells are edited to maximize the Gaussian likelihood given the remaining cells. This is

shown by the following theorem:

Theorem 3.1 Let the k-variate θ̂1 be the OLS fit to the regression problem given by

argmin
θ

∥Σ−1/2(z − µ)− (Σ−1/2)·1θ1∥22,

where (Σ−1/2)·1 denotes the first k columns of the matrix Σ−1/2. Then

z1 − θ̂1 = µ1 +Σ12Σ
−1
22 (z2 − µ2).

Here the candidate cells are the first k entries of z, so we denote z = [z1, z2] ,µ = [µ1, µ2], and Σ11 as

the upper left submatrix of Σ of size kxk. The question now is, how many cells should we actually flag?

For this, we use the following theorem:

Theorem 3.2 for every 1 ≤ k ≤ d we have:

1. The residual sum of squares RSSk = ∥Σ−1/2(z−µ)−(Σ·1)θ̂1∥22 of the OLS fit θ̂1 to the first k cells in

the pat hequal the squared partial Mahalanobis distance MD2(z2, µ2,Σ22) = (z2−µ2)
′Σ−1

22 (z2−µ2).

2. For Gaussian data, the difference between two subsequent RSS follows the χ2 distribution with 1

degree of freedom, i.e., ∆k := RSSk−1 −RSSk ∼ χ2(1).

For the proof, I refer to the original paper. The distributional assumption in the second part of Theorem

3.2 is unrealistic but forms a rule of thumb. Compare the δk to a cutoff q and flag the cells with δk > q.

This concludes the cellHandler technique, which is used for the DI method.

The DI method starts by standardizing the columns of the dataset as at the beginning of the cell-

Handler technique. Next, the initial estimators µ̂0 and Σ̂0 are computed. The 2SGS estimator of Leung

et al. (2017) is used. The DI method alternates between the D-step and the I-step.

D-step: Detecting outlying cells across all rows.

The D-step first applies the cellHandler method, which was described above, to each row zi based on the

estimates µ̂t−1 and Σ̂t−1. We now have a ranking for each row of its cells zij based on the gradients. A

non-increasing sequence of criterion values Cij := maxk≥k(j)∆h. If any cells are missing, they are put to

infinity Cih := ∞. If too many cells are flagged, too much information is lost from a variable. Therefore,

a maximum of 25% of the cells of a column can be flagged.

I-step: Re-estimate µ and Σ.

The I-step is the same as one step of the EM algorithm, which assumes that flagged cells are missing.

Within each row, the flagged cells form one of the active sets evaluated by LAR in cellHandler, so the

coefficient θ̂1 from Theorom 3.1 is known. The E-step from the EM algorithm doesn’t need any more

computation. The µ̂t and Σ̂2 are computed similarly to the M-step. The iterative process stops when

both µ̂t−µ̂t−1 and Σ̂t−Σ̂t−1 have reduced to a small value. Hereafter the cellHandler technique is applied

one more time to the converged µ̂t and σ̂t. And at last, the DI method ends with the unstandardization

of µ̂ and Σ̂ using the univariate location and scale estimations derived from the original data columns

and replaces the cellwise outliers detection by the last cellHandler application with NA.
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3.5 Multiple Imputation

There are several ways to deal with missing data. The two most common are imputation and deletion.

While deleting missing data can be a straightforward approach, it can lead to biased results due to the

loss of information. This is because the remaining sample may not be representative, and the resulting

analysis may not accurately reflect the true relationships between variables. Moreover, if the amount of

missing data is substantial, it may lead to reduced statistical power, which can decrease the precision

of the estimates. The main advantage of imputation is that it retains the full sample size, which can

help maintain the sample’s representativeness and increase the precision of the estimates. Additionally,

imputation can also increase the accuracy of the analysis results by preserving the relationships between

variables (Finney and DiStefano 2006; Sterne et al. 2009).

Multiple statistical methods to deal with missing values were reviewed in Newgard and Lewis (2015).

Single imputation methods usually result in standard errors which are too small because it does not

account for the uncertainty of missing values. Multiple Imputation (MI) is better for handling missing

data. It creates multiple imputed datasets and appropriately combines them. The reason why the data

is missing is of significant influence on the risk of bias. According to Rubin (1976), there are three types

of missing data: missing completely at random (MCAR), missing at random (MAR), and missing not at

random (MNAR). When the data are MCAR, the randomness is entirely unrelated to the observed or

unobserved data. Here MI is an appropriate method for handling missing data. When the data is MAR,

MI can still be used. However, the imputation models may need to be more complex. When the data

are MNAR, the data cannot be predicted based solely on the observed data, and one needs to specify a

model for the missing data mechanism. MI can deal with MNAR. However, it assumes that this missing

data model is correctly specified. The imputed data may still be biased when this assumption is not met.

This paper uses the Amelia package from Rstudio (RStudio Team, 2020). Amelia uses a unique

bootstrapping approach called the EMB (Expectation-Maximization with Bootstrapping) algorithm to

draw imputations for missing values. The approach involves applying the EM algorithm to several

bootstrapped samples of the original incomplete data to obtain complete-data parameters. Amelia then

uses these parameters to draw imputed values for each bootstrapped parameter set, replacing the missing

values with these draws (Honaker et al., 2011).

Amelia’s imputation model assumes that observed and unobserved data are multivariate normally

distributed. While this assumption may be a simplistic approximation of the true data distribution,

studies such as Schafer (1997) and Schafer and Olsen (1998) suggest that this model performs as well

as more complex models, even when dealing with categorical or mixed data. The main challenge in

imputation is that we can only observe a portion of the complete dataset, Dobs, and not the entire

dataset, D. Therefore, Amelia assumes that the missing data are missing at random (MAR). Let M be

the missingness matrix, where cells mij take a value of 1 if dij ∈ Dmis (i.e., if the data point is missing)

and 0 otherwise. In other words, M is a matrix that indicates which cells are missing in the dataset.

Based on this, the MAR assumption can be defined as follows: the missingness pattern of D depends

only on the observed values in Dobs and is not related to the unobserved values in Dmis:
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p(M |D) = p(M |Dobs). (30)

When dealing with missing data, MI focuses on the complete-data parameters, θ = (µ,Σ). It is

important to note that the observed data is represented by Dobs and M. Therefore, the likelihood of

the observed data can be expressed as p(Dobs,M |θ). By assuming MAR, we can separate this likelihood

expression into components that depend on the observed data and components that rely on the unobserved

data, allowing for imputation of the missing values:

p(Dobs,M |θ) = p(M |Dobs)p(Dobs|θ). (31)

Since the focus is on the inference of the complete-data parameters, we can express the likelihood as:

L(θ|Dobs) ∝ p(Dobs|θ), (32)

We can rewrite the likelihood using the law of iterated expectations as:

p(Dobs|θ) =
∫

p(D|θ)dDmis. (33)

Given this likelihood and a flat prior on θ, we can derive the posterior as:

p(θ|Dobs) ∝ p(Dobs|θ) =
∫

p(D|θ)dDmis. (34)

The EMB algorithm combines the EM algorithm and bootstrapping to obtain samples from the posterior.

For each sample, the data is bootstrapped to simulate estimation uncertainty, and then the EM algorithm

is applied to find the posterior mode for the bootstrapped data. After obtaining multiple samples from

the posterior of the complete-data parameters, imputations are created by drawing values of Dmis from

its distribution, conditional on Dobs and the drawn values of θ. For more details on the EMB algorithm,

see Honaker and King (2010).

Combining the results from multiple imputed datasets is accomplished using Rubin’s rules. These rules

provide a framework for averaging the estimates across the multiple imputed datasets while accounting

for uncertainty and disagreement in the estimates. The resulting estimates are accompanied by standard

errors that reflect the average uncertainty across the imputed datasets and the disagreement in the

estimated values across the datasets. See Barnard and Rubin (1999) and Marshall et al. (2009) for an

extensive explanation of Rubin’s Rules.

The choice of MI above methods like k-Nearest Neighbours (k-NN) is because MI accounts for the

extra uncertainty imputing values brings. MI also preserves the variability of the data by creating multiple

imputed data sets. And at last, MI is more robust to missing data in the imputation model because it

uses all available data to estimate the missing values (Van Buuren 2018).

4 Simulation Study

In this section, the simulation study conducted for our research is explained. This paper aims to examine

whether the treatment evaluation methods are robust against cellwise outliers. Therefore it is of interest

19



to contaminate the data with cellwise outliers and examine the effect on the performance of the meth-

ods. Another way to analyze treatment evaluation methods’ robustness is by relaxing their assumption.

However, in this study, we use many estimators and methods. Relaxing their assumptions would be

inconvenient because there are so many. That is why we evaluate the estimators and methods where all

assumptions are met.

The simulation setup is as follows:

1. Generate the dataset.

2. Contaminate the dataset with outliers.

3. Calculate the propensity score using LR, CART, NN, GBM, and RF to the datasets from steps 1

and 2 and match them based on the optimal pair matching.

4. Apply MacroPCA, DDC, and DI to datasets from step 3 to detect cellwise outliers and replace

them with NA.

5. Apply Multiple Imputation to datasets from step 4 to impute missing values

6. Calculate the propensity score using LR, CART, NN, GBM, and RF to the datasets from step 5

and match them based on the optimal pair matching.

7. Analyse results from steps 3 and 6.

The remainder of this section will look as follows: in Section 4.1, the model specification is given.

Next, in Section 4.2, the different kinds of outliers and types of data contamination are explained. Next,

in Section 4.3, non-parametric bootstrapping is explained. Last, in Section 4.4, the performance measures

of the methods are presented.

4.1 Model

The Data Generating Process (DGP) is as follows:

T ∗
i = Xi + µi, (35)

Ti = I(T ∗
i > 0), (36)

Yi = βZi + ϵi, (37)

where Zi = (Xi, Ti). The error terms are i.i.d. drawn from a standard normal distribution, that is

τi ∼ N(0, 1) and ϵi ∼ N(0, 1). All covariates are drawn from a multivariate normal distribution with

mean zero such that they are i.i.d. with mean zero, that is, xi ∼ N(0k,Σk). We examine two types

of underlying covariance matrices Σk to examine the robustness of the methods to multiple correlation

structures. Type ALYZ refers to the covariance matrices randomly generated by Agostinelli et al. (2015),

characterized by relatively low correlations. Type A09 is given by
∑

jh := (−0.9)|j−h| and contains both

large and small correlations. The parameters are generated as follows: βi = 1.1i+2ṡign(−1.1i). The sign

function returns the signs of numeric elements. For positive numbers, 1 is returned, 0 is returned for zero,

20



and the value -1 is returned for negative numbers. A sample size of n=400 observations is used, and we

use p=5 covariates for each observation. In total, there are S=100 simulation runs, which enables us to

make claims about the robustness of the estimators we use. We don’t use the subscript of the simulation

run in the remainder of the paper.

4.2 Contamination

In this section, we describe how the data is contaminated. We consider three types of contamination

setups. No contamination, independent contamination, and correlated contamination. Independent con-

tamination is where all the outliers are generated independently. Correlated contamination is where

two variables are always contaminated together. So either both or none are contaminated. The outliers

for the remaining variables are generated independently. Furthermore, there are three types of outliers,

which are shown in Figure 2. Vertical outliers are outliers in the error term. They are away from the

bulk in the y-axis and far away from the regression line. It shows different behavior in the dependent

variable but not in the explanatory variables. Good leverage points are away from the bulk in both the

x-axis and y-axis but are close to the regression line. Bad leverage points are away from the bulk in the

x-axis and are far away from the regression line. It shows different behavior in the explanatory variables

but not necessarily in the dependent variables. At last, also the location of the outliers in the setup is

important. We differentiate between three locations. In the treatment group (T), in the control group

(C), and in both the treatment and control groups (T and C). Examining vertical outliers is impossible

in the correlated contamination case, because we only contaminate one variable in this case. Therefore,

we exclude this option from our research. Concluding, we will examine the performance of the estima-

tors in 33 scenarios. The clean scenario and the contaminated scenario, the contamination scenarios are

characterized by two different covariance matrix types, three different types of outliers (not including the

vertical outliers in the correlated contamination), and three different locations.

Figure 2: Different sorts of outliers in a simple linear regression.

Several different rowwise contamination models exist, but the Tukey-Huber contamination model
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(THCM) is the most common one. Here it is assumed the data is generated from a clear distribution H

with probability 1− ϵ > 0.5 and from a random distribution G with probability ϵ.

X = (1−B)H +BG, (38)

where B ∼ Bernoulli(ϵ).

Under the THCM, the assumption is that an observation either comes from distribution H or distri-

bution G. Methods developed under this assumption either accept the observation or completely remove

it. But there is also the possibility that most of the covariates are clean, but only a few are outlying.

Completely removing such an observation would be a loss of information. This resulted in the develop-

ment of a cellwise outlier model. It was first published by Alqallaf et al. (2009). They propose that a

covariate X is generated as follows:

X = (I-B)W + BZ, (39)

where B is a diagonal matrix. Its diagonal entries can only take the variables one or zero. This results

in a random vector in which some covariates are contaminated, and others are clean. See Figure 3 for

a visual comparison between row-wise (left) and cellwise (right) outliers (Raymaekers and Rousseeuw,

2023).

Figure 3: Rowwise outliers (left) and cellwise outliers (right).

When we contaminate our covariates, the matrix W will be the clean matrix as generated in Section

4.1, and the matrix Z will be the contaminated matrix. For the independent contamination of bad

leverage points and good leverage points, we will create a binary matrix B where 10% of the matrix are

ones. The matrix Z is calculated as follows: Z = W + 3, where 3 is a matrix full of 3’s. When the bad

leverage points are generated, we call the newly generated contamination matrix X*. The new dependent

variable Y* is then generated as follows: Y ∗
i = βZ∗

i + ϵi, where Z* = (X*,T). We use the same methods

for the independent contamination of vertical outliers as for the good and bad leverage points. However,
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we will contaminate with an increase of 10. For the vertical outliers, the number of columns is 1 instead

of 5.

For the correlated contamination, the matrix Z will be the same as in the independent contamination

case. For the binary matrix B, we will set 10% of the matrix to ones. However, the fourth and the fifth

column are highly correlated. So if one of the entries for a given row is 1, the other entry is also 1. The

same holds for zero. The first three rows are generated independently of each other.

In this study, we don’t use binary variables for our covariates. This is because we examine the

influence of outliers on estimating the treatment effect. Making an outlier out of a binary variable is

not possible. As a result, we don’t contaminate our treatment variable as well. Furthermore, we don’t

generate categorical variables for our covariates. This is for two reasons. First, outlier detection in

categorical variables is often more challenging than in continuous variables. This is because categorical

variables do not have a natural order or distance metric that can be used to define outliers in the same

way as continuous variables. Second, the state-of-the-art outliers detection methods we use in this paper

don’t possess the option of calculating the distance between non-numerical variables.

4.3 Non-parametric Bootstrapping

In this study, we implement the non-parametric bootstrap before contaminating the dataset. This is be-

cause bootstrapping relies on resampling the original dataset to generate new datasets that are similar to

the original dataset. This may not be true if there are many outliers. Outliers can have a disproportionate

influence on the resampling process, leading to biased estimates of the statistic of interest.

The non-parametric bootstrap works as follows: We start by sampling with replacement from the

original dataset X = (x1, ..., xn), which results in Xb = (x1b, ..., xnb). Where b = 1, ..., B with B the

number of bootstrap replications. In this simulation study, we use B=100. Hereafter, we calculate the

desired bootstrap statistics by Tb = T (Xb). After completing all the replications, the estimates of the

statistics are averages over all replication, that is, T̄ = 1
B

∑B
b=1 Tb. The standard errors are also calculated

over all replications by σ̂T̄ =
√

1
(B−1)

∑B
b=1(Tb − T̄ ).

Fortunately, only a few assumptions have to be accounted for: random sampling from the original

dataset and independent and identically distributed observations. A disadvantage of the non-parametric

bootstrap is the computational time, which can grow rapidly compared to other methods. Besides non-

parametric bootstrap, the parametric bootstrap also exists. Here the assumption is made that the data

comes from a known distribution, which is why it is unsuitable for this simulation study.

We use the following equations to link the bootstrap to the parameter estimates. We let β̂jbs denote

the j-th parameter in bootstrap run b in simulation run s, which we average over all bootstrap runs:

β̂js =
1

B

B∑
b=1

β̂jbs. (40)

To arrive at the final parameters, these also have to be averaged over all simulation runs:

β̂j =
1

S

S∑
s=1

β̂js. (41)
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The standard errors of the parameter estimates over all simulation runs are calculated as follows:

σ̂βj =

√√√√ 1

S − 1

S∑
s=1

(β̂js − β̂j)2. (42)

In this paper, we use both Multiple Imputation and non-parametric Bootstrapping to improve the

reliability of statistical inference. Multiple Imputation is used to reduce the bias of the estimates by

creating multiple plausible imputations for the missing values. Non-parametric bootstrap can improve

the variability and uncertainty in the estimates from a method by capturing the variation and randomness

in the data, providing more robust and reliable estimates of population parameters and statistics.

To evaluate the performance of the methods, we need more evaluation measures than the estimated

parameter and the standard error. The performance measures used to evaluate our methods are described

in the next section.

4.4 Performance measures

In this section, we will discuss all the performance measures used to examine the performances of the

methods used. Both bias and variance are of great importance when determining the accuracy and

precision of a prediction. Bias refers to the degree to which a model’s predictions differ from the true

values. A high-bias model may consistently under or overestimate the true values, leading to reduced

precision. Conversely, variance refers to the amount of variability in a model’s predictions for different

input values. A high variance model may produce significantly different predictions for similar input

values, leading to overfitting and reduced accuracy (Hastie et al., 2009).

The bias is calculated as follows:

Biasj =
1

S

S∑
s=1

(βijs − β̂js), (43)

where we sum over all simulation runs to end up with a final bias for all parameters.

The variance is calculated as follows:

Variancej = σ2
j =

1

S

1

n− 1

S∑
s=1

n∑
i=1

(βijs − β̂js)
2, (44)

where β̂js is the average for covariate j in simulation run s over all i. It is also important that the

standard error is estimated accurately. That is where the coverage comes in handy. The coverage is

defined as:

Coverage =
1

S

S∑
s=1

I[β̂is − t∗σ̂βi
≤ βi ≤ β̂is + t∗σ̂βi

], (45)

where t∗ is the distribution’s critical value for α=0.05. We will average over all parameters and simulations

to end up with a single value. The parameter is expected to be in the interval in (1-α)% of the time. If

that is the case, the standard errors are accurate. However, this only holds if the parameter estimates do

not vary too much, which is true if the variance is low.

As we generate the outliers ourselves, we know the exact location of an outlier. DDC, MacroPCA,

and DI all flag outliers, so we can evaluate these ODM on their outlier detection accuracy.

OutDec =
1

n1

n∑
i=1

p∑
j=1

Outij , (46)
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where

Outij =

1, if xij is an outlier and correctly detected;

0, otherwise,
(47)

where n1 is the total number of outlying cells. At the end of the simulation, we average the metric over

the simulation runs, resulting in the final outlier detection error.

5 Real Data

This section will use the datasets described in Canavire-Bacarreza et al. (2021). The findings in this paper

are examined based on their robustness and correctness using the methodology from this paper. The

datasets are collected from LaLonde (1986) and Dehejia and Wahba (1999). LaLonde (1986) demonstrated

that traditional econometric methods could produce misleading results if they do not properly account

for the selection bias problem. Matching would be a solution to this problem! Dehejia and Wahba (1999)

and Dehejia and Wahba (2002) showed that applying propensity score matching was a good idea to deal

with the selection bias. Their findings resulted in a low bias. Smith and Todd (2005) disagreed with

this finding and concluded that matching was not the solution to the selection bias problem. Because

matching produced a significant bias when applied to the full LaLonde sample. Dehejia (2005) argued

that the issue was not with the matching method itself but rather with the accuracy of the propensity

score estimation and the lack of covariate balance. Canavire-Bacarreza et al. (2021) suggests that the

problem is with outliers in the data, which disrupt the balance in the covariates. This resulted in the

rejection of the conclusions of Dehejia (2005) that the propensity score was not estimated correctly and

for Smith and Todd (2005) that matching was not an appropriate solution. In this section, we aim to

provide further empirical evidence that the issue of covariate imbalance in treatment effect estimation is

attributed mainly to the presence of outliers. Moreover, using our methodology, we try to enhance the

precision and accuracy of the ATT estimates in the presence of covariate imbalance.

We estimate the treatment effect on the treated based on LaLonde’s full sample treatment group and

Dehejia and Wahba’s (DW’s) subsample treatment group. For the comparison groups, we use the non-

experimental comparison groups constructed by LaLonde (1986) from the Population Survey of Income

Dynamics (PSID) and the Current Population Survey (CPS). The difference between LaLonde’s and

DW’s samples is that DW excluded observations for which earnings data in 1974 were not obtainable.

The dependent variable is the real income in 1978 (RE78 ). The propensity score for the DW dataset

is estimated using the following equation:

log(treati) = γ1,empAgei + γ2,empAge2i + γ3,empAge3i + γ4,empSchooli + γ5,empSchool
2
i

+ γ6,empMarriedi + γ7,empNoDegreei + γ8,empBlacki

+ γ9,empHispi + γ10,empRE74i + γ11,empRE75i + γ12,empSchooli ×RE74i, (48)

where the variable names are self-explanatory. For the LaLonde dataset, the terms containing RE74 are
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removed. To obtain an estimate of the treatment effect, the following equation is used:

RE78i = β0,emp + β1,empAgei + β2,empAge2i + β3,empEduci + β4,empBlacki + β5,empHispani

+ β6,empNodegreei + β7,empRE75i + β8,empTreati + ϵi. (49)

Hereafter, we will conduct a sensitivity analysis to assess the robustness of the proposed robust

methods. We will use the same LaLonde treatment group as before, but we will now also use the LaLonde

control group. The control group consists of 425 observations, making the dataset 722 observations. To

estimate the propensity score, we use the following equation:

log(treati) = γ1,empAgei + γ2,empAge2i + γ3,empAge3i + γ4,empSchooli

+ γ5,empSchool
2
i + γ6,empMarriedi + γ7,empNoDegreei

+ γ8,empBlacki + γ9,empHispi + γ11,empRE75i, (50)

which is the same as Equation (48), but without RE74. We use Equation (49) to estimate the ATT. To

do the sensitivity analysis, we alter just two observations. For observations 236 and 609, we alter the

ethnicity to black.

Observation RE78 Treat Age Educ Black Hispan Married Nodregree RE75

236 16717.12 1 49 8 1 0 1 1 7285.95

609 30247.50 0 26 8 1 0 1 1 36941.27

Note that we only altered the ethnicity. This could hardly be an extreme case or a clear outlier. The

results are discussed in Section 6.2

6 Results

In this section, the results of the simulation study and the results of the real data are examined. Section

6.1 presents the findings from the simulation study outlined in Section 4, examining several scenarios

that vary in the location of the contamination and the type of contamination. Section 6.2 explores the

outcomes derived from analyzing the datasets described in Section 5.

6.1 Simulation Study Results

This section investigates the impact of outliers on estimating treatment effects in various scenarios by

utilizing different matching estimators and outlier detection methods. Table 1 illustrates the effectiveness

of the estimators in estimating the average treatment effect on the treated (ATT) in both the absence and

presence of outliers. It reports the bias observed across 100 simulations and 100 bootstrap replications

using a sample size of 400 and 5 covariates. The second column corresponds to the clean case without

any outliers. The third through fifth columns represent the presence of bad leverage points in the

treatment group, control group, and both groups, respectively. The sixth through eighth columns display
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Table 1: Simulated bias of Average Treatment Effect on the Treated using the A09 type correlation

structure.

Panel A: Independent contamination Bad Leverage Point Good leverage point Vertical outlier

Estimators: Clean in T and C in T in C in T and C in T in C in T and C in T in C

LR -0.002 0.062 0.111 0.063 0.008 -0.000 -0.001 1.008 1.012 -0.011
CART 0.002 0.091 0.127 0.011 0.007 -0.006 0.009 1.051 1.017 0.013

NN -0.004 0.048 0.137 -0.007 0.005 0.000 -0.001 1.042 1.003 0.014
GBM 0.008 0.114 0.123 0.026 0.007 0.001 0.009 1.044 1.035 0.011
RF 0.009 0.101 0.131 0.012 0.012 0.001 0.015 1.049 1.032 0.020

Panel B: Correlated contamination
LR -0.002 0.046 0.072 0.065 -0.003 0.005 -0.002

CART 0.002 0.053 0.075 0.024 0.003 0.000 0.004
NN -0.004 0.043 0.094 0.013 -0.001 0.006 0.003

GBM 0.008 0.068 0.070 0.040 0.010 0.005 0.011
RF 0.009 0.060 0.092 0.029 0.008 0.010 0.011

the presence of good leverage points, while the ninth through eleventh columns indicate the presence of

vertical outliers.

Table 1 showcases the outcomes for the bias of propensity score estimators, with bold numbers denot-

ing the top-performing method for a specific metric. The results reveal that the LR and NN estimators

exhibit superior performance over the other estimators across all metrics presented in Table 1. Nonethe-

less, we will proceed to analyze all the findings in detail.

First of all, in the absence of outliers, all the estimators demonstrate satisfactory performance, con-

sistent with the findings reported by (Busso et al. 2009; Busso et al. 2014). However, when outliers are

present, the estimates exhibit a more significant bias, mainly when the outliers are bad leverage points

or vertical outliers. In contrast, good leverage points do not result in biased estimates.

Secondly, all estimates show some bias when bad leverage points are present. The size of the bias is

dependent on the location of the outliers. When the outlier is located in the treatment group, it may be

difficult to identify a suitable match. As a result, the resulting comparison group may be systematically

different from the treatment group in ways not accounted for by the matching variables. This can lead

to higher bias in the estimated treatment effect. When the bad leverage point is in the control group,

the magnitude of the bias will be smaller because the outlying observations are less likely to be chosen

as counterfactuals.

Third, the bias is extremely large when there are vertical outliers in the treatment group. Regression

analysis assumes that the relationship between the predictor and outcome variables is linear. In the

presence of vertical outliers, the linear relationship may no longer hold, and the estimator may be biased

in trying to fit a straight line to the data. As a result, the estimated coefficients may be highly sensitive

to vertical outliers, resulting in a significant bias.

Fourth, in the correlated contamination scenario, the LR estimator performs worse than the indepen-

dent contamination scenario compared to the other estimators. A possible explanation for this could be

that two variables are related in the correlated contamination scenario, and their relationship with the

other variables may not be linear. In this case, LR may not be able to capture the non-linear relationship

between the predictors and the outcome, resulting in higher bias. Neural networks, for example, are
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better suited to capturing non-linear relationships, so their bias may not be as affected by the non-linear

relationship between the predictors and the outcome.

Table 2 showcases the outcomes for the variance of propensity score estimators for the ATT, with

bold numbers denoting the top-performing method for a specific metric.

Table 2: Simulated variance of Average Treatment Effect on the Treated using the A09 type correlation

structure.

Panel A: Independent contamination Bad Leverage Point Good leverage point Vertical outlier

Estimators: Clean in T and C in T in C in T and C in T in C in T and C in T in C

LR 0.095 0.347 0.271 0.221 0.104 0.114 0.095 0.307 0.223 0.230
CART 0.096 0.355 0.290 0.239 0.106 0.116 0.095 0.311 0.225 0.233

NN 0.096 0.352 0.298 0.243 0.105 0.116 0.095 0.310 0.224 0.232
GBM 0.095 0.351 0.280 0.232 0.105 0.114 0.095 0.309 0.224 0.232
RF 0.096 0.363 0.295 0.243 0.106 0.115 0.095 0.309 0.224 0.231

Panel B: Correlated contamination
LR 0.095 0.237 0.203 0.172 0.103 0.110 0.095

CART 0.096 0.241 0.215 0.184 0.104 0.112 0.095
NN 0.096 0.240 0.221 0.188 0.104 0.112 0.095

GBM 0.095 0.239 0.208 0.181 0.103 0.110 0.094
RF 0.096 0.243 0.219 0.188 0.104 0.111 0.095

The first thing that is noticeable from Table 2 is that the difference in variances between the estimators

is small. Nevertheless, the LR estimators outperform the other estimators in almost every scenario. A

combination of the lowest bias and the lowest variance would suggest that the LR estimator would be

the most suitable when dealing with outliers.

When there are good leverage points, the magnitude of the variance does not seem to increase by

much. An explanation for this could be that these good leverage points follow the data pattern and are

influential, which can help give accurate predictions. Bad leverage points and vertical outliers refer to

observations that do not follow the data and are influential. As a result, they can shift the relationship

between the explanatory variables and the dependent variable, increasing variance.

Table 3 showcases the outcomes for the coverage of propensity score estimators for the ATT, with

bold numbers denoting the top-performing method for a specific metric. Ideally, this value would be close

to 95%, indicating that the standard errors are accurate.

Table 3: Simulated coverage of Average Treatment Effect on the Treated using the A09 type correlation

structure.

Panel A: Independent contamination Bad Leverage Point Good leverage point Vertical outlier

Estimators: Clean in T and C in T in C in T and C in T in C in T and C in T in C

LR 95.207 97.099 96.946 99.018 93.098 95.249 92.644 5.254 0.176 100.000
CART 92.582 96.315 96.419 99.423 91.180 93.133 88.507 5.318 1.449 100.000

NN 93.708 98.497 94.771 100.000 93.273 95.650 89.416 4.459 1.591 99.340
GBM 92.969 96.964 96.618 98.102 91.736 93.772 89.792 5.460 0.504 99.944
RF 94.558 96.697 94.314 100.000 93.001 93.651 90.978 3.301 0.684 99.387

Panel B: Correlated contamination
LR 95.207 92.300 89.731 94.337 93.030 92.771 88.078

CART 92.582 93.704 89.908 93.508 93.741 92.345 90.970
NN 93.708 94.607 90.684 92.473 93.903 93.505 89.530

GBM 92.969 91.138 92.529 91.781 94.246 92.991 88.359
RF 94.558 89.242 92.350 92.073 93.894 93.669 90.680
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The coverage percentage of the LR estimator in the clean scenario in Table 3 is close to the ideal 95%

value. The other estimator lies further away. Since we employ the bootstrap method, any deviations in

coverage may result from a limited number of bootstrap replications, a restricted number of simulation

runs, or a combination of both. Despite these small deviations, we acknowledge that computational

constraints prevent us from investigating these cases for a larger number of bootstrap replicates and/or

simulation runs. The coverage depends on both the parameter estimates and the variance, as the method

involves computing confidence intervals. A large variance or significant variation in parameter estimates

may lead to incorrect conclusions as the confidence intervals become excessively large and unrealistic.

This is also the case when vertical outliers are present in the treatment group. The large bias from Table

1 now results in an unrealistic and unreliable coverage.

Table 4 shows the outcomes of the simulation study when implementing the outlier detection methods

in combination with Multiple Imputation, now denoted as ODM-MI. The second column indicates a

scenario in which no outliers are present, and the ODM-MI algorithm is applied to assess its performance

under such circumstances. If the bias is low, it implies that utilizing the ODM-MI algorithm does not

impact the treatment effect estimates if no outliers exist in the data. The remaining columns follow the

same interpretation as Table 1.

First of all, as you can see in column 2 in Table 4, the DDC and MacroPCA methods, combined with

Multiple Imputation, perform well in a scenario without outliers. The DI method performs worse in terms

of bias. Where the bias of DDC and MacroPCA is close to 0 in most scenarios, the bias of DI is further

away. Secondly, in Table 1, the LR and NN estimators were superior to the others. After applying the

ODM-MI algorithm, there is no estimator that performs better overall. The contamination in the data

may have introduced bias or increased variability in the different propensity score estimators, making LR

and NN perform better than the others. However, by applying the ODM-MI algorithm, the contaminated

values have been identified and imputed, reducing the impact of the contamination on the estimators. As

a result, the different propensity score estimators have become more similar in their performance, as the

differences caused by the contamination have been reduced. Third, the ODM-MI algorithm reduces the

bias significantly in the scenario where vertical outliers are present in the treatment group. It is reduced

from close to 1 to close to 0. Next, the bias for the bad leverage points is also reduced to a reasonable

magnitude. Fourth, for almost all estimators, the bias is the highest when the outlier is present in the

treatment group. This is a logical conclusion since when an outlier exists in the treatment group, it must

be included in the matching process, resulting in a bias in the estimation of treatment effects. Fifth, when

you compare the independent contamination bias with the correlated contamination bias, it is noticeable

that the ODM-MI algorithm also succeeds in locating the correlated contaminated variables and correctly

imputes them.

Table 5 showcases the outcomes for the variance of propensity score estimators of the ATT after

applying the ODM-MI algorithm. In this table, there are no bold numbers for the best-performing

estimators. This is because the performance of the estimators is very similar, with negligible differences

between them.

The results in Table 5 show considerably different results than in Table 2. Table 2 shows that the
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Table 4: Simulated bias of Average Treatment Effect on the Treated using the A09 type correlation

structure after applying the outlier detection methods and the Multiple Imputation.

Panel A: Independent contamination Bad Leverage Point Good leverage point Vertical outlier

Estimators: Clean in T and C in T in C in T and C in T in C in T and C in T in C

DDC
LR 0.006 -0.006 -0.025 0.008 0.007 -0.001 -0.004 0.062 0.008 0.008

CART -0.000 -0.005 -0.027 0.007 0.003 -0.007 -0.007 0.069 0.004 0.013
NN 0.002 -0.004 -0.025 0.011 0.009 -0.001 -0.013 0.075 0.006 0.014

GBM 0.007 -0.004 -0.024 0.008 0.008 -0.001 -0.004 0.073 0.007 0.017
RF 0.002 -0.011 -0.026 0.006 0.001 -0.003 -0.013 0.070 0.003 0.011

DI
LR -0.072 -0.073 -0.098 -0.071 -0.004 -0.007 -0.006 0.057 0.015 -0.033

CART -0.072 -0.075 -0.099 -0.071 -0.016 -0.011 -0.009 0.059 0.026 -0.027
NN -0.069 -0.073 -0.099 -0.071 -0.008 -0.012 -0.001 0.057 0.026 -0.028

GBM -0.068 -0.072 -0.096 -0.065 -0.005 -0.011 -0.002 0.062 0.027 -0.027
RF -0.069 -0.072 -0.099 -0.069 -0.005 -0.009 -0.017 0.076 0.030 -0.026

MacroPCA
LR -0.029 -0.006 -0.048 -0.013 0.002 0.003 -0.008 -0.018 -0.028 -0.026

CART -0.024 -0.003 -0.045 -0.011 0.015 0.004 -0.023 0.004 -0.021 -0.012
NN -0.027 -0.002 -0.046 -0.010 0.008 0.010 -0.023 -0.001 -0.027 -0.018

GBM -0.022 0.001 -0.044 -0.004 0.004 0.013 -0.025 0.001 -0.020 -0.014
RF -0.022 0.004 -0.045 -0.003 0.004 0.011 -0.017 0.004 -0.020 -0.011

Panel A: Correlated contamination
DDC

LR 0.006 -0.005 -0.019 0.006 0.003 -0.009 -0.012
CART -0.000 -0.007 -0.019 0.003 0.001 -0.012 -0.001

NN 0.002 -0.002 -0.015 0.009 0.001 -0.012 0.001
GBM 0.007 -0.003 -0.013 0.004 0.005 -0.008 -0.005
RF 0.002 -0.008 -0.020 0.003 0.004 -0.012 -0.006

DI
LR -0.072 -0.080 -0.083 -0.072 -0.006 -0.006 -0.013

CART -0.072 -0.079 -0.086 -0.073 -0.001 -0.007 -0.005
NN -0.069 -0.081 -0.085 -0.075 -0.002 -0.003 -0.005

GBM -0.068 -0.081 -0.085 -0.071 -0.008 -0.008 -0.002
RF -0.069 -0.083 -0.080 -0.073 -0.006 -0.001 -0.012

MacroPCA
LR -0.029 -0.013 -0.035 -0.014 0.001 -0.034 -0.028

CART -0.024 -0.010 -0.035 -0.006 0.011 -0.005 -0.005
NN -0.027 -0.008 -0.037 -0.008 0.003 -0.034 -0.003

GBM -0.022 -0.004 -0.031 -0.005 0.006 -0.031 -0.007
RF -0.022 -0.003 -0.031 -0.003 0.002 -0.020 -0.000

variances were relatively constant for the estimators. However, they varied significantly across the outliers

(bad leverage point, good leverage point, and vertical outlier) and where the outlier occurred (T&C, T

and C). After applying ODM-MI, the variances for the bad leverage points are the same as in the clean

scenario. The good leverage points in the treatment and control sample show larger variances, but not

as high as before applying ODM-MI. The results from the independent and correlated contamination

scenarios are comparable, which means that the ODM-MI algorithm can also find the outliers in the

contaminated scenario and accurately predict them. The DI outlier detection method, combined with MI,

has a high bias and a low variance, suggesting that DI does not capture the complexity of the underlying

data when the dataset is contaminated. While the following result has been found, its confirmation and

further details will be presented at the end of this section by the findings of Table 7.

Table 6 showcases the outcomes for the variance of propensity score estimators, with bold numbers

denoting the top-performing method for a specific metric.
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Table 5: Simulated variance of Average Treatment Effect on the Treated using the A09 type correlation

structure after applying the outlier detection methods and the Multiple Imputation.

Panel A: Independent contamination Bad Leverage Point Good leverage point Vertical outlier

Estimators: Clean in T and C in T in C in T and C in T in C in T and C in T in C

DDC
LR 0.010 0.012 0.012 0.010 0.129 0.032 0.031 0.046 0.011 0.026

CART 0.010 0.013 0.012 0.011 0.135 0.035 0.032 0.047 0.011 0.027
NN 0.011 0.012 0.012 0.010 0.130 0.034 0.031 0.047 0.012 0.026

GBM 0.010 0.012 0.012 0.010 0.129 0.033 0.031 0.046 0.011 0.026
RF 0.010 0.012 0.012 0.010 0.129 0.034 0.031 0.046 0.011 0.026

DI
LR 0.010 0.012 0.012 0.011 0.086 0.020 0.034 0.044 0.013 0.032

CART 0.011 0.012 0.013 0.011 0.089 0.022 0.036 0.045 0.014 0.033
NN 0.011 0.012 0.012 0.011 0.087 0.021 0.035 0.043 0.013 0.032

GBM 0.010 0.012 0.012 0.010 0.087 0.021 0.035 0.043 0.013 0.033
RF 0.011 0.012 0.012 0.011 0.088 0.021 0.035 0.044 0.013 0.032

MacroPCA
LR 0.010 0.014 0.015 0.010 0.121 0.022 0.016 0.034 0.011 0.021

CART 0.010 0.015 0.015 0.011 0.125 0.023 0.018 0.035 0.011 0.022
NN 0.010 0.014 0.015 0.010 0.120 0.022 0.017 0.035 0.011 0.022

GBM 0.010 0.014 0.015 0.010 0.119 0.022 0.017 0.034 0.011 0.022
RF 0.010 0.014 0.015 0.010 0.125 0.023 0.017 0.035 0.011 0.022

Panel A: Correlated contamination
DDC

LR 0.010 0.012 0.012 0.010 0.073 0.024 0.020
CART 0.010 0.013 0.013 0.011 0.075 0.026 0.023

NN 0.011 0.012 0.012 0.010 0.075 0.025 0.021
GBM 0.010 0.012 0.012 0.010 0.073 0.024 0.021
RF 0.010 0.012 0.012 0.010 0.075 0.025 0.021

DI
LR 0.010 0.012 0.012 0.010 0.062 0.020 0.026

CART 0.011 0.013 0.013 0.011 0.065 0.021 0.028
NN 0.011 0.012 0.012 0.010 0.064 0.020 0.026

GBM 0.010 0.012 0.012 0.011 0.064 0.020 0.026
RF 0.011 0.012 0.012 0.010 0.066 0.020 0.027

MacroPCA
LR 0.010 0.013 0.013 0.010 0.055 0.016 0.013

CART 0.010 0.014 0.014 0.011 0.057 0.017 0.015
NN 0.010 0.013 0.014 0.010 0.055 0.016 0.014

GBM 0.010 0.013 0.014 0.010 0.055 0.016 0.014
RF 0.010 0.013 0.014 0.010 0.057 0.016 0.013

Table 6 shows us the coverage after applying ODM-MI. Again it is noticeable that DI performs worse.

Because the coverage is a combination of the bias and the square root of the variance, the scenarios

where the coverage is low, for example, a good leverage point in the treatment sample when using DI,

is explained by the fact that the bias and/or the variance is high. Unfortunately, the coverage is lower

than the ideal value of 95% in almost all scenarios.

Table 7 shows the outlier detection performance of the outlier detection methods. Where the outlier

detection methods are in the first column. The table looks the same as the previous tables, except there

is no clean scenario column.

The expectations from the previous results are confirmed in Table 7. The DI method is worse at

finding outliers than the other two methods. When the data is independently contaminated, the DDC
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Table 6: Simulated coverage of Average Treatment Effect on the Treated using the A09 type correlation

structure after applying the outlier detection methods and the Multiple Imputation.

Panel A: Independent contamination Bad Leverage Point Good leverage point Vertical outlier

Estimators: Clean in T and C in T in C in T and C in T in C in T and C in T in C

DDC
LR 88.842 95.280 86.230 91.007 94.048 91.569 96.173 96.951 87.860 97.319

CART 89.497 93.969 87.466 89.093 92.215 91.251 96.451 96.305 88.878 96.114
NN 86.242 94.874 85.113 90.215 93.539 98.529 93.474 96.261 86.334 96.248

GBM 87.504 93.247 85.986 89.077 92.882 99.520 94.038 96.190 87.040 96.547
RF 90.563 93.045 85.005 91.819 93.594 90.412 96.186 96.819 91.695 98.460

DI
LR 79.645 83.740 79.464 84.541 76.974 81.836 81.364 91.655 87.928 89.780

CART 80.438 83.080 78.113 84.338 78.631 85.853 88.138 90.590 87.553 87.139
NN 80.923 83.205 76.563 80.097 73.395 83.889 85.333 90.495 86.254 89.502

GBM 83.328 82.914 81.874 83.539 77.546 83.768 87.385 91.324 86.919 88.141
RF 82.756 86.823 79.950 83.025 76.224 84.200 84.263 94.193 87.985 90.373

MacroPCA
LR 89.583 91.752 92.854 91.743 90.526 89.571 90.748 96.929 90.688 95.895

CART 90.492 91.585 92.056 91.517 98.156 88.219 93.543 95.167 90.346 95.217
NN 89.726 94.535 93.071 91.721 94.777 87.297 94.047 96.194 90.325 96.152

GBM 88.626 92.916 91.427 93.018 95.011 90.674 95.096 96.142 91.237 95.309
RF 88.383 93.530 91.110 92.501 96.567 94.860 93.865 96.938 93.405 94.190

Panel A: Correlated contamination
DDC

LR 88.842 88.881 89.480 92.602 89.523 93.879 96.185
CART 89.497 88.231 91.610 92.111 90.860 96.058 95.817

NN 86.242 88.960 90.380 90.449 88.649 94.162 94.756
GBM 87.504 86.435 88.950 89.572 91.627 93.531 95.593
RF 90.563 89.147 90.466 94.077 87.036 94.681 96.067

DI
LR 79.645 81.239 82.741 81.332 71.016 77.389 86.175

CART 80.438 83.082 84.693 82.595 71.637 72.609 88.822
NN 80.923 81.541 84.064 79.252 71.015 79.509 88.315

GBM 83.328 84.916 81.865 80.333 69.671 72.823 88.357
RF 82.756 78.949 82.243 84.078 72.256 73.144 89.482

MacroPCA
LR 89.583 96.913 93.835 91.208 95.093 91.031 94.418

CART 90.492 94.310 93.374 92.267 92.759 91.523 94.235
NN 89.726 96.279 92.405 92.318 93.670 90.453 94.072

GBM 88.626 95.198 92.032 90.795 93.895 90.071 92.551
RF 88.383 95.446 93.359 93.353 92.861 90.314 95.626

Table 7: Simulated outlier detection performance using the A09 type correlation structure.

Panel A: Independent contamination Bad Leverage Point Good leverage point Vertical outlier

Outlier Detection Methods: in T and C in T in C in T and C in T in C in T and C in T in C

DDC 0.981 0.995 0.994 0.962 0.992 0.991 0.612 0.996 0.605
DI 0.897 0.895 0.894 0.877 0.866 0.884 0.153 0.232 0.107

MacroPCA 0.923 0.992 0.977 0.910 0.988 0.976 0.727 1.000 0.705
Panel B: Correlated contamination

DDC 0.979 0.995 0.985 0.967 0.987 0.987
DI 0.897 0.895 0.890 0.870 0.857 0.878

MacroPCA 0.980 0.997 0.995 0.959 0.994 0.990

method best detects outliers. When the data is correlated contaminated, the MacroPCA method is better

at finding outliers. The outlier detection ratio is also related to outcomes in the previous tables. When

the ratio is low, the ODM-MI algorithms perform worse. This highlights the importance of high-quality

outlier detection methods.

To conclude, the DDC method is best at finding outliers when the contamination is independent.
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The MacroPCA method is best at finding outliers when the contamination is correlated. It depends on

the data structure which method is more suitable. The LR and NN estimators are the most accurate

propensity score estimators without the ODM-MI algorithm. There does not stand out an estimator in

terms of variance.

In this section, we use the A09 correlation structure. The results for the treatment variable with

the ALYZ correlation structure can be found in Appendix D and are comparable to the results in Table

(1)-(7). The results from this section are only for the coefficient of the ATT variable. We also had five

covariates in this simulation study. The results for these variables are not included in this paper due to

space constraints but are available upon request.

6.2 Real Data Results

In this section, we examine the datasets described in Section 5. We begin by applying the ODM-MI

algorithm to the data used in Canavire-Bacarreza et al. (2021). Table 8 shows the ATT for LaLonde’s

and DW’s treatment samples in column 1. The comparison groups are PSID and CPS and are given

in column 2. Column 3 gives us the experimental ATT presented in the original paper from LaLonde

(1986). The 4th column gives us the estimated ATT using only propensity score matching. Finally,

columns 5-7 give us the ATT using the ODM-MI algorithm. The first thing that is noticeable from Table

Table 8: Treatment effect estimates of the LaLonde and DW samples using the outlier detection

methods and Multiple Imputation.

Treatment Comparison Experimental Estimated DDC-MI DI-MI MacroPCA-MI

Group Group ATT ATT ATT ATT ATT

LaLonde [297] PSID [2490] 886 -2857 -1436 -2519 -1545

LaLonde [297] CPS [15992] 886 -710 -63 -538 -341

Dehejia & Wahba [185] PSID [2490] 1794 793 693 1732 1013

Dehejia & Wahba [185] CPS [15992] 1794 803 998 1346 1173

8 is that the estimated ATT without ODM-MI is highly biased. Secondly, when applying the ODM-MI

algorithms, a significant improvement is made, especially for the CPS dataset. This suggests that there

is a large number of outliers present in the data. The results from the complete regression, including

standard errors, for all datasets are given in Appendix D. These tables show that all parameters change

in magnitude and, for some outlier detection methods, also in significance when applying the ODM-MI

algorithm. This is another reason to suspect that these datasets are contaminated with outliers.

Figure 4 shows us the distance-distance plots for all datasets calculated using the MacroPCA method.

The figure reveals the presence of some outliers, which are the observations above the cutoff of the

orthogonal distance and score distance. Especially for the CPS control group dataset, the number of

outliers is large. This would also suggest why the ODM-MI algorithm significantly improves the results

for the datasets.

In summary, our analysis of this dataset suggests that the standard propensity score matching method
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is inadequate and that the robust method is preferable. However, it should be noted that the original

conclusion drawn from the outcomes in LaLonde (1986), Dehejia and Wahba (1999), and Dehejia and

Wahba (2002) were shown to be incorrect, as discussed in Canavire-Bacarreza et al. (2021). These results

suggest that the rejection of the original conclusion could have been achieved by using robust propensity

score matching instead.

(a) LaLonde-PISD dataset. (b) LaLonde-CPS dataset.

(c) DW-PISD dataset. (d) DW-CPS dataset.

Figure 4: Distance-Distance plot for various datasets.

In Table 9, the results for the sensitivity analysis on the LaLonde (1986) dataset are shown. The

classical estimators’ results are displayed in columns 2 and 3. And the results for the robust estimators

are shown in columns 4-9. In columns 2 and 3, the treatment and black variables become insignificant.

On top of that, the variables Age and Hispanic change sign. This shows that the classical estimator is

sensitive to the smallest amount of contamination. For the robust estimators, the only difference is the

significance of the treatment variable for the MacroPCA-MI algorithm. Overall the robust methods are

a bit affected in magnitude, but not quite as much as the classical one.
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Table 9: Regression results for the robust propensity score estimator in the clean and contaminated case.

Classic DDC-MI DI-MI MacroPCA-MI

Dependent variable: RE78 Clean Contaminated Clean Contaminated Clean Contaminated Clean Contaminated

Constant 3,103.17 2,148.34 13,389.94∗∗ 12,310.10∗∗ 10,628.57∗ 10,601.21∗ 3,583.64 6,207.71

(3,914.87) (4,114.95) (5,296.40) (5,243.51) (5,597.14) (5,732.06) (4,546.33) (4,448.48)

Age −35.34 2.94 −469.09 −304.90 −214.76 −374.31 −147.85 −261.57

(228.75) (241.14) (413.84) (404.98) (442.77) (450.15) (281.40) (277.77)

Age squared 1.21 0.68 8.87 5.61 2.99 6.71 3.00 5.05

(3.81) (4.04) (8.42) (8.23) (9.12) (9.30) (5.18) (5.14)

Education 283.23 276.81 −64.33 −123.95 −143.72 −314.13 375.73∗ 251.38

(197.03) (204.49) (185.02) (189.01) (195.03) (192.24) (213.54) (210.03)

Black −1,669.81∗ −926.48 −1,885.76∗∗∗ −2,297.67∗∗∗ −1,830.76∗∗∗ −1,880.63∗∗∗ −1,819.02∗∗ −1,820.14∗∗

(853.58) (907.57) (607.77) (610.56) (598.28) (610.11) (746.89) (715.69)

Hispanic −82.75 190.71 −703.20 −812.53 −928.09 −982.92 −104.03 −869.93

(1,128.71) (1,200.96) (840.44) (840.83) (800.77) (811.55) (1,034.27) (988.47)

No degree −246.46 −105.20 −849.68 −903.40 −681.08 −960.01 310.49 126.39

(789.20) (814.56) (619.73) (620.18) (591.87) (587.42) (725.91) (710.40)

RE75 0.19∗∗∗ 0.18∗∗∗ 0.01 0.14 0.12∗∗∗ 0.11∗∗∗ 0.50∗∗∗ 0.60∗∗∗

(0.05) (0.05) (0.20) (0.21) (0.03) (0.03) (0.12) (0.11)

Treatment 953.47∗ 693.39 212.70 217.13 597.76∗ 269.11 435.00 806.81∗

(505.87) (524.37) (363.00) (362.88) (347.22) (346.47) (439.68) (434.90)

Observations 594 594 594 594 594 594 594 594

R2 0.06 0.04 0.03 0.04 0.06 0.05 0.07 0.08

Adjusted R2 0.04 0.03 0.02 0.03 0.04 0.03 0.05 0.06

Residual Std. Error (df = 585) 6,160.40 6,385.81 4,418.17 4,417.46 4,218.19 4,215.49 5,347.99 5,292.61

F Statistic (df = 8; 585) 4.38∗∗∗ 2.95∗∗∗ 2.30∗∗ 3.07∗∗∗ 4.32∗∗∗ 3.67∗∗∗ 5.12∗∗∗ 6.01∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

7 Conclusion

This paper aimed to examine the influence of outliers on propensity score matching and provide a robust

method. To solve this question, we performed a simulation study. We used five different propensity score

estimators, used two sorts of contamination types: independent and correlated, used three different kinds

of outliers: good leverage points, bad leverage points, and vertical outliers, and let them occur in three

different places: in the treatment group, in the control group and both, and use two correlation structures

for the variables. For the robust method, we used DDC, DI, and MacroPCA to find the outliers and

impute them using Multiple Imputation. After applying the robust method, the matching procedure,

and the estimation of the treatment effect using Ordinary Least Squares, the performance of the methods

was evaluated based on the bias, variance, and coverage of the parameters.

The simulation study showed that the outliers affected the propensity score matching estimators.

Especially the bad leverage points biased the estimates. This is because these kinds of outliers completely

distort the distribution used to find good counterfactuals and create suitable matches. Vertical outliers

also show this property when they are located in the treatment group. When located in the control group,

the outlying values are not used for matching, thus not influencing the bias. Overall, the neural network

outperforms the other estimators regarding the performance measures. These differences mitigate when

the ODM-MI algorithm is applied. The estimators now perform almost equally. The DDC and MacroPCA

methods outperform the DI method. These methods significantly reduce the influence of the outliers to
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the point where the bias is nearly removed. The DDC performs better in the independent contamination

scenario, and the MacroPCA outperforms the other methods in the correlated contamination scenario.

The correlation structures of the variables used in the simulation do not influence the simulation study

results.

In addition to our simulation study, our methodology was also applied to real datasets. When applying

our robust propensity score matching methods to the datasets used in Canavire-Bacarreza et al. (2021), we

found that the data was contaminated with outliers. The robust estimators’ usage moved the treatment

effect’s prediction to the true experimental value. Remarkably, the DI method outperforms the DDC and

MacroPCA methods using this dataset. This puts even more emphasis on the importance of the used

dataset when performing a robustness analysis. When conducting sensitivity analysis on the LaLonde

(1986) dataset, the results show that the classical estimator is sensitive to even the smallest amount

of contamination. The robust estimators are affected but return the same significance for all but one

variable.

The present paper has some limitations, particularly in the simulation study. Although we used

sufficient bootstrap replications and simulation runs, increasing them could lead to more accurate results.

Furthermore, we did not explore high-dimensional datasets, which are becoming the standard with the

current data availability.

The outliers contamination scenarios we used in this paper were relatively simple. An interesting

direction would be examining whether the robust counterpart would also capture complex/realistic con-

tamination scenarios.
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Appendix A

Algorithm for calculating propensity score and proximity matrix based on random forest.

Suppose that the total sample size, including treated and control subjects, is n and that the total

number of trees in the random forest is B. Let (S1, . . . , Sn) denote the propensity score vector.

Initialize: set Si = 0 for i = 1, . . . , n.

For b = 1, . . . , B, do

• Using all data, grow a tree with treatment as output and all other covariates as inputs. At each

split, search over m randomly selected inputs. No pruning.

• Propensity score calculation:

– Compute the percentage of treated observations si for the terminal node to which the ith

subject belongs.

– Update: Si = Si + si

End do.

Average: Si = Si/B

Appendix B

For the location, we use Tukey’s biweight function given by:

W (t) =

{
1−

(
t

c

)2
}2

I(|t|≤ l), (51)
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where l=3 is a tuning constant. Given a univariate dataset X = {x1, ..., xn}, we start from the initial

estimates for scale and location, m1 and s1 respectively:

m1 =
n

med
i=1

(xi), (52)

s1 =
n

med
i=1

|xi −m1|, (53)

where the function med(X ) is the median of X. Subsequently, we calculate the robust location estimate

as follows:

robLoc(X) = (

n∑
i=1

wixi)/(

n∑
i=1

wi), (54)

where the weights are given by wi = W ((xi −m1)/s1).

To estimate the robust scale, we assume that X has already been centered by subtracting robLoc(X ),

which means we only need to focus on the deviations from zero. Starting from the initial estimate

s2 = medi(|xi|), we then compute the scale estimate

s = robScale(X) = s2

√
1

δ

n
ave
i=1

ρ

(
yi
s2

)
, (55)

where the function ave(X ) stands for the average of X and the constant δ=0.845 ensures consistency for

Gaussian data. The function ρ(t) is defined as: ρ(t) = min(t2, b2), where b=2.5.

Appendix C

A robust correlation measure for bivariate relations, where the computation is performed for all i in

which neither uij nor uih is NA.

The subsequent methods are bivariate, meaning they involve two data columns, referred to as j and

h. To compute the correlation, we begin with an initial estimate:

ρ̂jh = ((robScalei(zij + zih))
2 − (robScalei(zij − zih))

2)/4, (56)

where the estimate is limited to a range between -1 and 1. The estimated correlation coefficient ρjh

represents a tolerance ellipse around the point (0,0) with the same coverage probability p as described in

equation 14. Then robCorr is defined as the basic product-moment correlation of the data points (zij , zih)

that fall within the ellipse.

Regarding the slope, we assume that the columns have already been centered, but they don’t need to

be normalized. The initial estimate for the slope is:

bjh = medni=1(
zij
zih

), (57)

where any fractions with a zero denominator are removed before proceeding, for each value of i, we

calculate the raw residual rijh as the difference between zij and the product of bjh and zih.

Lastly, we compute the ordinary least-squares regression line without an intercept on the data points

for which the absolute value of the raw residual (rijh) is less than or equal to c times the robust scale,

where c is a constant described in equation 14. We then define robSlope as the slope of the regression

equation.

|rijh|≤ c× robScalei′(ri′jh). (58)
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Appendix D

Table 10: Regression results from the LaLonde-PSID dataset.

Intercept Age Age2 Educ Black Hispan Nodegree RE75 Treat

Clean -7524.05 855.73** -14.63*** 360.79 279.56 1979.44 -242.55 0.27*** -2856.80***

5751.10 342.40 5.54 266.80 970.59 1480.10 1066.52 0.07 774.40

DDC 4192.17 202.18 -4.66 -20.72 -519.80 1181.29 -1063.51 0.67*** -1436.07

4073.72 231.40 3.74 195.17 647.46 975.68 744.48 0.07 586.30

DI -1992.20 253.28 -4.72 547.72** 609.53 2549.97** -656.72 0.37*** -2518.90

5098.75 298.04 4.90 268.16 778.42 1160.78 908.71 0.06 614.78

MacroPCA -1465.79 536.97** -9.73 73.67 -202.60 1188.01 -828.04 0.55*** -1545.20

4052.24 248.25 4.03 202.42 748.64 1056.90 755.69 0.06 556.96

Table 11: Regression results from the LaLonde-CPS dataset.

Intercept Age Age2 Educ Black Hispan Nodegree RE75 Treat

Clean -4011.88 319.14 -4.75 351.05* 625.91 2139.84* 616.28 0.37*** -710.35

4531.46 274.55 4.71 208.02 915.94 1247.64 854.37 0.06 550.55

DDC 8116.41* -237.47 3.01 -37.99 -966.93 -702.87 -272.89 0.80*** -63.42

3860.54 184.86 3.03 214.90 900.19 1161.04 730.89 0.05 387.83

DI 4074.77 -31.97 0.45 240.59 -784.17 -342.97 -404.32 0.39*** -538.36

4537.89 251.65 4.16 221.66 930.34 1220.60 919.14 0.07 556.72

MacroPCA 6156.08* -106.77 1.10 102.52 -1194.32 -815.57 -200.79 0.61*** -340.78

3605.44 219.23 3.74 217.83 883.76 1325.67 769.88 0.06 480.74

Table 12: Regression results from the Dehejia and Wahba-PSID dataset.

Intercept Age Age2 Educ Black Hispan Nodegree RE74 RE75 Treat

Clean -9766.25 616.28 -10.28* 447.97* 1428.77 2323.64 -79.09 0.24** 0.24* 792.94

6089.55 376.86 6.13 257.90 1018.96 1761.77 1106.29 0.09 0.12 809.17

DDC 2782.07 67.06 -1.94 76.86 -375.88 309.24 -561.44 0.18 0.57*** 692.79

4682.65 302.75 5.03 231.59 741.45 1342.11 887.79 0.11 0.10 612.36

DI 4339.99 -90.87 0.50 109.43 -795.00 -431.51 -655.21 0.91*** -0.12 1732.24***

4936.64 303.20 4.87 199.98 838.19 1362.53 863.74 0.07 0.09 612.74

MacroPCA -285.85 227.81** -4.29 140.27** -84.57 426.32 -856.47 0.13 0.55*** 1013.33

4465.36 270.53 4.40 204.58 861.60 1429.52 860.68 0.09 0.12 652.27
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Table 13: Regression results from the Dehejia and Wahba-CPS dataset.

Intercept Age Age2 Educ Black Hispan Nodegree RE74 RE75 Treat

Clean -2649.52 263.66 -4.42 475.47* -1851.08 -658.23 57.53 0.02 0.48*** 803.36*

5460.49 328.39 5.44 265.31 1240.11 2011.78 1158.51 0.11 0.15 437.31

DDC 7852.44** -307.79 4.11 90.58 -1556.77 -1260.71 -35.09 0.20* 0.56*** 998.01*

3954.29 218.70 3.83 246.31 775.85 1238.13 966.79 0.11 0.14 528.94

DI 1259.85 -209.75 2.63 621.22 -1314.18 671.76 15.14 0.38*** 0.30** 1345.53*

7149.47 291.21 4.72 380.50 1036.59 1558.55 1109.80 0.11 0.14 698.32

MacroPCA 4602.95 -251.48 3.17 343.82 -985.45 -243.30 46.93 0.02 0.64*** 1173.27**

4141.72 250.15 4.20 240.46 951.57 1792.75 931.55 0.13 0.15 566.12

.
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Appendix E

Table 14: Simulated bias of Average Treatment Effect on the Treated using the ALYZ type correlation

structure.

Panel A: Independent contamination Bad Leverage Point Good leverage point Vertical outlier

Estimators: Clean in T and C in T in C in T and C in T in C in T and C in T in C

LR 0.001 -0.188 -0.686 0.284 -0.003 -0.007 0.004 1.046 1.028 0.022
CART 0.004 -0.203 -0.692 0.278 0.003 -0.015 0.007 1.070 1.015 0.055

NN 0.007 -0.207 -0.713 0.290 -0.003 -0.006 0.003 1.054 1.023 0.057
GBM -0.001 -0.216 -0.680 0.251 -0.001 -0.003 -0.003 1.050 1.031 0.032
RF 0.004 -0.276 -0.737 0.282 -0.002 -0.002 0.005 1.070 1.018 0.051

Panel B: Correlated contamination
LR 0.001 0.030 -0.454 0.302 -0.008 -0.005 -0.001

CART 0.004 -0.004 -0.455 0.320 -0.010 -0.004 0.006
NN 0.007 -0.006 -0.485 0.335 -0.014 -0.004 0.004

GBM -0.001 -0.045 -0.466 0.279 -0.016 -0.004 -0.002
RF 0.004 -0.041 -0.506 0.309 -0.009 0.002 0.004

Table 15: Simulated variance of Average Treatment Effect on the Treated using the ALYZ type

correlation structure.

Panel A: Independent contamination Bad Leverage Point Good leverage point Vertical outlier

Estimators: Clean in T and C in T in C in T and C in T in C in T and C in T in C

LR 0.096 0.348 0.270 0.263 0.105 0.109 0.096 0.310 0.227 0.233
CART 0.098 0.362 0.291 0.266 0.108 0.112 0.097 0.313 0.228 0.237

NN 0.098 0.362 0.298 0.268 0.108 0.112 0.097 0.313 0.229 0.239
GBM 0.097 0.354 0.274 0.262 0.106 0.109 0.097 0.311 0.228 0.235
RF 0.097 0.368 0.292 0.268 0.108 0.110 0.097 0.312 0.227 0.236

Panel B: Correlated contamination
LR 0.096 0.300 0.238 0.235 0.104 0.108 0.096

CART 0.098 0.313 0.258 0.239 0.106 0.110 0.097
NN 0.098 0.313 0.265 0.243 0.106 0.111 0.097

GBM 0.097 0.305 0.242 0.237 0.105 0.108 0.096
RF 0.097 0.315 0.259 0.243 0.106 0.109 0.096

Table 16: Simulated coverage of Average Treatment Effect on the Treated using the ALYZ type

correlation structure.

Panel A: Independent contamination Bad Leverage Point Good leverage point Vertical outlier

Estimators: Clean in T and C in T in C in T and C in T in C in T and C in T in C

LR 91.365 89.087 32.586 81.808 87.983 83.537 86.770 5.002 5.239 100.000
CART 89.480 88.586 35.825 83.613 88.357 83.151 90.971 4.302 2.094 100.000

NN 95.149 89.480 33.382 84.986 88.942 86.285 90.051 5.137 2.603 100.000
GBM 89.487 87.289 33.969 84.232 86.785 83.514 89.926 4.966 3.318 100.000
RF 94.169 86.778 30.257 82.816 88.212 82.410 89.780 3.362 1.665 100.000

Panel B: Correlated contamination
LR 91.365 93.580 50.892 79.599 91.673 90.355 88.184

CART 89.480 92.932 53.497 77.319 91.199 87.338 90.378
NN 95.149 92.309 51.291 75.591 90.647 86.416 90.604

GBM 89.487 92.413 50.006 79.612 91.204 89.213 90.268
RF 94.169 90.714 50.448 77.845 92.425 91.596 89.532
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Table 17: Simulated bias of Average Treatment Effect on the Treated using the ALYZ type correlation

structure after applying the outlier detection methods and the Multiple Imputation.

Panel A: Independent contamination Bad Leverage Point Good leverage point Vertical outlier

Estimators: Clean in T and C in T in C in T and C in T in C in T and C in T in C

DDC
LR -0.031 -0.108 -0.038 -0.018 -0.062 -0.018 -0.041 0.034 0.092 -0.020

CART -0.030 -0.113 -0.037 -0.023 -0.059 -0.019 -0.045 0.047 0.091 -0.008
NN -0.030 -0.113 -0.034 -0.018 -0.064 -0.011 -0.044 0.040 0.095 -0.013

GBM -0.032 -0.113 -0.038 -0.023 -0.060 -0.015 -0.047 0.038 0.090 -0.017
RF -0.030 -0.117 -0.036 -0.019 -0.073 -0.024 -0.044 0.047 0.097 -0.013

DI
LR -0.003 -0.081 -0.080 -0.067 -0.090 -0.030 -0.135 -0.040 -0.036 -0.102

CART -0.004 -0.078 -0.076 -0.072 -0.010 -0.024 -0.139 -0.037 -0.028 -0.101
NN 0.004 -0.071 -0.070 -0.067 -0.050 -0.018 -0.138 -0.034 -0.020 -0.095

GBM -0.001 -0.078 -0.080 -0.077 -0.040 -0.027 -0.137 -0.039 -0.034 -0.103
RF -0.004 -0.081 -0.080 -0.076 -0.027 -0.047 -0.147 -0.037 -0.032 -0.107

MacroPCA
LR -0.003 -0.127 -0.071 -0.031 -0.016 -0.018 -0.042 0.073 0.030 -0.037

CART -0.004 -0.146 -0.074 -0.033 -0.014 -0.013 -0.042 0.102 0.032 -0.019
NN 0.003 -0.140 -0.072 -0.025 -0.060 -0.011 -0.043 0.102 0.043 -0.020

GBM -0.000 -0.143 -0.073 -0.033 -0.018 -0.020 -0.046 0.090 0.034 -0.031
RF -0.006 -0.168 -0.085 -0.033 -0.028 -0.027 -0.054 0.091 0.032 -0.035

Panel A: Correlated contamination
DDC

LR -0.031 -0.051 -0.020 -0.007 -0.099 -0.142 -0.041
CART -0.030 -0.057 -0.015 -0.008 -0.104 -0.133 -0.048

NN -0.030 -0.056 -0.014 -0.009 -0.100 0.133 -0.050
GBM -0.032 -0.057 -0.018 -0.010 -0.098 -0.140 -0.051
RF -0.030 -0.052 -0.004 -0.005 -0.100 -0.133 -0.048

DI
LR -0.003 -0.078 -0.079 -0.074 -0.048 -0.032 -0.123

CART -0.004 -0.074 -0.082 -0.074 -0.052 -0.032 -0.122
NN 0.004 -0.072 -0.071 -0.064 -0.048 -0.023 -0.116

GBM -0.001 -0.080 -0.081 -0.073 -0.055 -0.033 -0.125
RF -0.004 -0.082 -0.083 -0.074 -0.073 -0.047 -0.125

MacroPCA
LR -0.003 -0.107 -0.045 -0.029 -0.171 -0.186 -0.035

CART -0.004 -0.118 -0.055 -0.021 -0.163 -0.180 -0.035
NN 0.003 -0.108 -0.051 -0.016 -0.164 -0.177 -0.031

GBM -0.000 -0.110 -0.053 -0.027 -0.171 -0.184 -0.037
RF -0.006 -0.135 -0.060 -0.022 -0.182 -0.192 -0.037
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Table 18: Simulated variance of Average Treatment Effect on the Treated using the ALYZ type

correlation structure after applying the outlier detection methods and the Multiple Imputation.

Panel A: Independent contamination Bad Leverage Point Good leverage point Vertical outlier

Estimators: Clean in T and C in T in C in T and C in T in C in T and C in T in C

DDC
LR 0.010 0.040 0.019 0.016 0.026 0.020 0.018 0.052 0.016 0.029

CART 0.011 0.043 0.021 0.018 0.028 0.023 0.019 0.055 0.018 0.030
NN 0.011 0.042 0.021 0.017 0.027 0.022 0.018 0.053 0.017 0.030

GBM 0.010 0.040 0.019 0.017 0.027 0.020 0.018 0.053 0.017 0.030
RF 0.011 0.042 0.020 0.017 0.028 0.022 0.019 0.053 0.017 0.030

DI
LR 0.009 0.014 0.013 0.011 0.041 0.019 0.020 0.026 0.012 0.021

CART 0.010 0.016 0.014 0.013 0.044 0.021 0.023 0.027 0.013 0.021
NN 0.010 0.015 0.013 0.012 0.042 0.020 0.021 0.027 0.013 0.021

GBM 0.010 0.015 0.013 0.012 0.041 0.019 0.021 0.026 0.012 0.021
RF 0.010 0.015 0.013 0.012 0.043 0.020 0.021 0.027 0.013 0.021

MacroPCA
LR 0.009 0.039 0.021 0.013 0.019 0.017 0.014 0.043 0.014 0.026

CART 0.010 0.046 0.024 0.015 0.021 0.019 0.016 0.045 0.014 0.027
NN 0.010 0.044 0.024 0.014 0.020 0.019 0.014 0.044 0.014 0.027

GBM 0.010 0.041 0.022 0.014 0.020 0.018 0.015 0.043 0.014 0.026
RF 0.010 0.043 0.024 0.014 0.020 0.019 0.015 0.045 0.015 0.027

Panel A: Correlated contamination
DDC

LR 0.010 0.040 0.018 0.017 0.022 0.019 0.016
CART 0.011 0.045 0.021 0.018 0.025 0.023 0.018

NN 0.011 0.042 0.019 0.017 0.025 0.021 0.017
GBM 0.010 0.041 0.019 0.017 0.023 0.020 0.017
RF 0.011 0.042 0.020 0.017 0.024 0.021 0.017

DI
LR 0.009 0.015 0.013 0.011 0.032 0.017 0.018

CART 0.010 0.016 0.014 0.013 0.036 0.020 0.019
NN 0.010 0.015 0.013 0.012 0.035 0.019 0.018

GBM 0.010 0.015 0.013 0.012 0.033 0.018 0.018
RF 0.010 0.016 0.013 0.012 0.034 0.018 0.018

MacroPCA
LR 0.009 0.039 0.020 0.012 0.016 0.015 0.013

CART 0.010 0.045 0.025 0.014 0.018 0.018 0.014
NN 0.010 0.042 0.024 0.013 0.018 0.017 0.013

GBM 0.010 0.040 0.021 0.013 0.017 0.016 0.013
RF 0.010 0.044 0.024 0.013 0.018 0.017 0.013
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Table 19: Simulated coverage of Average Treatment Effect on the Treated using the ALYZ type

correlation structure after applying the outlier detection methods and the Multiple Imputation.

Panel A: Independent contamination Bad Leverage Point Good leverage point Vertical outlier

Estimators: Clean in T and C in T in C in T and C in T in C in T and C in T in C

DDC
LR 85.751 85.094 76.649 90.121 84.916 81.992 95.452 88.494 81.831 97.485

CART 85.465 85.673 79.112 90.254 86.710 85.548 95.879 89.002 81.130 98.636
NN 87.504 84.445 80.085 93.077 86.359 87.187 96.780 87.999 85.128 97.405

GBM 87.001 83.915 77.425 90.354 87.144 83.351 93.969 87.391 83.789 97.635
RF 86.393 84.951 79.437 90.380 81.749 83.427 93.823 87.411 85.365 95.435

DI
LR 91.801 87.508 80.948 87.655 70.169 80.070 88.157 93.521 85.260 86.716

CART 91.643 89.101 85.400 86.177 70.430 80.063 87.428 94.749 86.577 90.717
NN 92.113 87.960 84.195 86.071 71.066 80.449 87.296 94.267 87.053 87.457

GBM 90.666 88.516 83.419 85.024 72.539 80.176 84.347 93.364 89.177 88.854
RF 92.541 88.461 84.373 84.785 79.808 80.404 84.511 95.335 85.338 86.334

MacroPCA
LR 91.596 91.315 73.495 90.793 80.631 89.464 94.049 88.615 82.485 94.566

CART 91.376 88.891 73.341 91.193 85.619 82.120 94.981 88.477 82.987 94.176
NN 91.779 88.323 72.601 91.866 87.563 87.733 96.785 87.035 85.046 94.289

GBM 90.042 88.647 77.226 90.341 82.249 83.380 92.947 87.993 84.790 94.704
RF 92.715 86.039 71.518 89.880 88.854 87.961 94.075 89.801 84.476 94.051

Panel A: Correlated contamination
DDC

LR 85.751 93.672 93.642 91.257 72.684 84.968 92.017
CART 85.465 93.101 93.798 93.583 76.630 88.903 95.183

NN 87.504 91.902 94.401 94.048 71.708 84.689 93.968
GBM 87.001 91.099 95.275 94.167 73.673 86.630 89.453
RF 86.393 91.754 95.146 93.127 71.655 89.535 93.191

DI
LR 91.442 86.266 81.016 81.719 80.775 84.199 82.870

CART 91.277 88.791 84.371 84.710 87.218 86.906 84.640
NN 92.186 87.682 84.396 84.826 87.848 89.190 83.073

GBM 90.242 85.408 81.108 86.182 83.800 85.759 83.159
RF 92.532 87.427 84.357 84.401 89.615 84.789 80.505

MacroPCA
LR 91.596 89.445 84.574 89.258 74.457 80.721 90.279

CART 91.376 90.162 83.395 91.507 79.210 80.539 91.687
NN 91.779 91.818 85.831 92.829 78.798 82.744 90.816

GBM 90.042 88.500 84.151 89.110 75.303 89.052 89.616
RF 92.715 87.527 86.106 91.604 73.024 83.731 88.585

Table 20: ALYZ independent contamination outlier detection

Panel A: Independent contamination Bad Leverage Point Good leverage point Vertical outlier

Outlier Detection Methods: in T and C in T in C in T and C in T in C in T and C in T in C

DDC 0.878 0.932 0.889 0.887 0.771 0.719 0.831 0.896 0.893

DI 0.805 0.850 0.893 0.766 0.815 0.803 0.638 0.708 0.781

MacroPCA 0.804 0.746 0.753 0.856 0.824 0.860 0.873 0.942 0.838

Panel B: Correlated contamination

DDC 0.870 0.830 0.780 0.785 0.768 0.801

DI 0.904 0.944 0.892 0.751 0.810 0.799

MacroPCA 0.803 0.735 0.749 0.748 0.617 0.744
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