
ERASMUS UNIVERSITY ROTTERDAM
Erasmus School of Economics

Master Thesis Analytics and Operational Research in Logistics

A p-step formulation for the Electric
Vehicle Routing Problem

Author:
Nienke Veldkamp (475284)
Supervisor:
R. Spliet
Second assessor:
T. Dollevoet

Abstract

In this thesis, we introduce the p-step formulation of the Electric Vehicle Routing Prob-
lem (EVRP). This formulation is a generalisation of both the arc flow and the set parti-
tioning formulation applied to a general Electric Vehicle Routing Problem with recharging
stations. In this paper, we first give the complete formulation and show how to solve it with
a restricted master problem with two different options for a pricing problem. Both pricing
problems solve the elementary resource constraint shortest path problem, where the battery
capacity is restricted and the length of the path is restricted. The first way we solve the
pricing problem is by constructing the integer programming formulation and putting this
into a solver. The second way we solve the pricing problem is by implementing a bidirec-
tional labelling algorithm. Which we use to quickly identify negative reduced cost variables
which can be added to the linear relaxation of the p-step formulation. Furthermore, our
results show that there are computational improvements to be gained from using a column
generation algorithm in combination with a p-step formulation, as opposed to Arc-flow and
set-partitioning. Lastly, we show that our formulation can be easily extended on to cover
more intricate types of vehicle routing problems.

Keywords: Thesis, VRP, EVRP, Green Logistics, p-step

May 11, 2023

The views stated in this thesis are those of the author and not necessarily those of the
supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Contents

1 Introduction 2

2 Literature Review 3
2.1 Electric Vehicle Routing . 3
2.2 P-step Formulation . 5
2.3 Relation of our Research to the Literature . 6

3 Problem Description 6
3.1 The electric vehicle routing problem . 6
3.2 Integer programming formulation . 7
3.3 Finite formulation . 8
3.4 Complete formulation . 9

4 Solution Approach 10
4.1 Pricing problem . 10
4.2 ESPPRC . 11
4.3 Labelling Algorithm . 12

5 Combined formulation 15
5.1 Combined pricing problem . 15
5.2 Modification to the labelling algorithm . 16

6 Computational results 17
6.1 Master Problem . 17
6.2 Performance LP bounds . 22
6.3 Performance of the pricing problems . 22
6.4 Computation LP solutions combined formulation 24

7 Conclusion 25

A Combined formulation: mathematical notation 28

1

1 Introduction

In our present-day society, climate change and the greenhouse effect have become a hot political
topic. One of the recent reports of the European Commission showed that 27% of the CO2

emissions are caused by road transport (EEA 2021). Furthermore, they also note that, over the
last two decades, while emissions reasonably decreased in other sectors they strongly increased
in the transport sector. To counter this, several governments across the world have implemented
policies and legislation to minimize car emissions. These political decisions have had a significant
impact on the logistics industry. This is why companies have incorporated Green logistics
projects to reduce CO2 emissions.

Reducing emissions can be achieved in two ways. The first way is through better exploitation
of existing resources. By applying more efficient and sophisticated route planning optimization
methods and adopting a smart distribution system it would be possible to achieve this. This
would lead to a decrease in travelling distance and thus reduce emissions(F. Mancini 2013; S.
Mancini 2013). The second way is by introducing innovative, environmentally friendly technolo-
gies. One of the most adapted options in logistics for this is the use of Electric Vehicles (EVs)
in freight deliveries. The second way is, in general, preferred since the first way only leads to a
few percent reduction in emission and the emission level of the vehicles remains high. Moreover,
EVs have several advantages over conventional vehicles, aside from being cleaner: (i) they are
more energy efficient: (ii) they can be powered from renewable energy sources; and (iii) they
are independent of the fluctuating oil price (S. Mancini 2017).

For VRPs the exact approaches that are based on integer or mixed integer programming
have the most success. In the literature there are two formulations that dominate this topic. The
first is an arc-based formulation, that makes use of binary variables to indicate whether an arc
is used or not. The second is a path-based formulation, which used binary variables to indicate
whether a certain path (route) is used. Since both formulations have their strong and weak
points, p-step programming is introduced. This provides a formulation family that includes
both traditional arc-based and path-based formulations. As a result, it is a generalization
that combines arc-based and path-based formulations while also introducing new formulations
(Dollevoet et al. 2020).

For all the aforementioned reasons we decided to focus on creating a p-step formulation
for the electric vehicle routing problem. The Capacitated Vehicle Routing Problem (CVRP)
is a classic optimisation problem. Because of its practical relevance and inherent difficulty,
the VRP is one of the most studied problems in the field of combinatorial optimization. The
Electric Vehicle Routing Problem (EVRP) is in essence the same problem, the only difference
being the type of vehicles. It is the problem of meeting customer demands from a depot using
homogeneous electrical vehicles with limited capacity at the lowest possible cost while visiting
each customer only once. In addition to its numerous extended versions, it has many practical
applications and is extensively researched, see Toth and Vigo (2014).

This thesis is organised as follows. In Section 2 we will elaborate on the relevant literature for
the Electric Vehicle Routing Problem. Then we give a formal problem description in Section 3.
In Section 4, we introduce the methods used in this thesis. We provide the results of our
computational experiments in Section 6. Finally, we conclude our thesis in Section 7.

2

2 Literature Review

As this thesis is mainly concerned with the problem of finding a formulation for the p-step
Electric Vehicle Routing Problem, we will give a compact overview of relevant scientific literature
relating to electric vehicle routing problems. First we need to note that there are two types of
EVs. There is the battery electric vehicle, which only uses power from a battery in the vehicle.
Then there is also a hybrid electric vehicle, which is partially powered by the battery inside the
vehicle and partially by other sources. In this paper we will focus on the battery electric vehicle,
which from this point on will be referred to as electric vehicles or EVs. The additional problems
EVs bring to the VRP are, the limited driving range and the need for intermediate recharging.
The range that EVs can deliver on a fully charged battery is about 160 to 240 kilometres (Feng
and Figliozzi 2013). Whereas conventional vehicles have a range of approximately 480 to 650
kilometres (Young et al. 2013). Thus to accomplish a similar driving distance, EVs have to visit
charging stations more frequently.

2.1 Electric Vehicle Routing

Although limited, the EVRP in the literature can be viewed best as a variant on the Green
Vehicle Routing Problem (GVRP) proposed by Erdoğan and Miller-Hooks (2012). They look
at a vehicle routing problem that considers alternative fuel vehicles, which also includes electric
vehicles, with a limited travel distance that must be recharged during routing. Like the normal
VRP, the GVRP visits each customer exactly once. However, instead of minimizing the costs
the GVRP minimises the total travel distance of each vehicle. Also, the recharging stations
can be visited as many times as necessary by any vehicle in the fleet. Which differs from the
original VRP. To allow those multiple (and possible no) visits to the vertices for the recharging
stations while requiring exactly one visit to the other vertices, the graph is augmented with a
set of dummy vertices, one for each potential visit to a charging station or the depot serving
as a charging station. As a result, the conventional VRP formulation can be used for EVRP
with only minor modifications; the only change to the conventional VRP formulation is the
addition of a constraint requiring that each charging/refuelling station be visited only once.
Additionally, the parameter indicating the allowed distance is changed. In the VRP each node
can only be visited once, while we want charging stations to be allowed to be visited multiple
times.

A more recent paper by Lin et al. (2016) presents a general Electric Vehicle Routing Problem
(EVRP) that determines the optimal routing strategy with the least amount of travel time,
energy cost, and number of EVs dispatched. Furthermore, this is the first EVRP model to
take into account the effect of vehicle load on battery consumption. Like the aforementioned
GVRP, the EVRP considers unrestricted re-charging activities at charging stations. They find
that compared to conventional vehicle VRPs, the EVRP has similar travel time and distance
but long en-route re-charging time, which translates into a considerable amount of additional
labour cost. Moreover, they find that the relative distribution of charging stations to customer
points greatly affects the routing strategies

For a complete survey of recent developments in the EVRP, the readers may refer to Erdelić

3

and Carić (2019). They provide the challenges that have arisen as a result of the incorporation
of electric vehicles into delivery processes are described, as well as electric vehicle characteris-
tics and recent energy consumption models. Several EVRP variants and related problems are
observed. Efficient VRP heuristics and metaheuristics had to be adapted to deal with the new
routing challenges in EVRP. An overview of cutting-edge procedures for dealing with the EVRP
and related issues is provided.

Since the survey covers a big variety of related problems we take a look at applied procedures
of the papers with the most similar problems. The research of Pourazarm et al. (2014) compares
a Mixed Integer Program (MIP) with a Dynamic Programming (DP) approach to solve the
EVRP with the possibility of recharging, where they keep in mind both (i) homogeneous and
(ii) in-homogeneous charging functions. For which in case (ii) they find that the DP, results in
optimal solutions with lower computational complexity compared to the MIP for the smaller
instances. For larger instances the DP is outperformed by the MIP.

The green vehicle routing problem discussed by Koç and Karaoglan (2016) uses a heuristic
based exact approach. The Exact algorithm is based on the branch-and-cut algorithm, which
combines several valid inequalities from the literature to improve lower bounds and introduces
a heuristic algorithm based on simulated annealing to obtain upper bounds. The solution ap-
proach is measured in terms of the number of test instances solved to optimality, bound quality,
and computation time required to arrive at the best solution to the various test problems. Their
results show that 55% of the instances with 20 customers can be solved to optimality solved in
a reasonable amount of time, which is about 20 to 30 minutes.

Wen et al. (2016) uses both an exact solver and a heuristic on small instances but only uses
the heuristic for the larger instances. ALNS is able to find high quality solutions to the small
instances containing up to 30 trips. The computational time of ALNS is just a fraction of the
time needed CPLEX for the more challenging instances. The comparison to the MD-VSP results
shows that solving the MD-VSP often does not provide a tight lower bound to the E-VSP. This
is caused by the restricted driving range in the E-VSP that forces vehicles to recharge which
increases deadheading and decreases utilization. The solutions are found within a few seconds
for the small instance and a few minutes for the larger instances.

In Zhang, Gajpal, and Appadoo (2018) two solution methods are proposed; the two-phase
heuristic algorithm and the meta-heuristic based on ant colony system (ACS). Both methods
find solutions to the test instances within reasonable time, less than 30 minutes. They do find
that the ACS algorithm is superior to the two-phase heuristic in obtaining the high-quality
solutions, but it requires more computation time.

For the EVRP proposed in Zhang, Gajpal, Appadoo, and Abdulkader (2018) they also look
at two solution methods and compare these with the outcome of a CPLEX solver. The first
method is an Adaptive large neighbourhood search and the second is an Ant Colony (AC)
algorithm similar to the ACS mentioned in the aforementioned paper. The objective in their
EVRP is to minimize the energy consumption of electric vehicles. For the small instances they
find that the objective and runtime of the AC algorithm outperforms the ALNS, with an average
gap of 3.2% and runtime of 0.9 seconds compared to 10% and 10.2 seconds respectively. For
the larger instances they also find that the AC algorithm outperforms the ALNS with finding

4

an answer in under ten minutes on average.
Lastly, we look at the results of the path based green vehicle routing problem proposed by

Bruglieri et al. (2019). They seek to minimize total travel distance by routing Alternative Fuel
Vehicles based at a depot. To solve their problem they provide a two-phase exact approach, with
each route composed of two or more paths. Each route serves a subset of customers without
the need for intermediate refuelling. They find that their approach outperforms existing exact
methods on benchmark instances and can be generalized to solve other VRPs with Intermediate
Stops. The average run time of their two-phase path method only takes about 6 minutes while
the existing exact formulation and branch-and-cut method take more than 30 minutes to solve.

2.2 P-step Formulation

For VRPs the exact approaches that are based on integer or mixed integer programming have
the most success. In the literature, two formulations dominate this topic. The first is an arc-
based formulation, that makes use of binary variables to indicate whether an arc is used or
not. The second is a path-based formulation, which used binary variables to indicate whether
a certain path (route) is used. To get “the best of both worlds” the p-step formulation can be
used.

Arc flow Set Partitioning
LP weak strong

CPU short long

Table 1: Comparison of the arc-flow and set-partitioning formulations

The P-step formulation for VRPs is a relatively new way of formulating the classic VRP.
The p-step formulation is a generalisation of the acr-flow and set-covering formulation. In
Dollevoet et al. (2020), the p-step formulation is introduced for the Capacitated Vehicle Routing
Problem. They show that, although not monotonically, the LP-bound of the p-step formulation
is increasing in p. By proving that the set partitioning formulation is NP-hard they show that
there does not a strongest compact formulation for the CVRP if P ̸= NP . They provide a
new strongest formulation for the CVRP with a number of variables and constraints limited
by a fixed degree polynomial. Which is the p-step formulation with a degree three and higher.
Moreover, their results indicate that there are computational advantages from using the p-step
formulation, as opposed to the traditional arc-based and path-based formulations.

In Rabbie (2018) they describe the application of an exact algorithm to the solution of a
pricing problem arising from the use of column generation in the context of the capacitated
vehicle routing problem. The p-step formulation is a generalization of the vehicle flow and
set covering formulations. As a result, the corresponding pricing problem is modelled as an
elementary resource-constrained shortest-path problem with a limited number of customers on
a path. They solve their pricing problem by making use of a pulse algorithm. Which they, in
particular, use for quickly identifying negative reduced cost variables which can be added to the
linear relaxation of the p-step formulation.

5

2.3 Relation of our Research to the Literature

The core of the research done in this paper is based on Dollevoet et al. (2020), who introduced the
p-step formulation for Capacitated Vehicle Routing Problems (CVRP). This p-step formulation
can be seen as an arc-flow formulation as well as a set partitioning formulation or anything in
between depending on the size of p.

3 Problem Description

Although the EVRP is a relatively well-known problem we give a short description in Section
3.1. This is for the sake of completeness as well as to introduce the notations we use in this thesis.
Then in Section 3.2 we specify p-steps and provide a new integer programming formulation of
the EVRP which makes use of these p-steps. In Section 3.3 we describe how we obtain a finite
formulation. Furthermore, we provide the complete formulation we use to solve the EVRP in
Section 3.4.

3.1 The electric vehicle routing problem

Consider an undirected graph G = (V, E). Where V = N
⋃

S with N = {0, ..., n + 1} is a set
of locations with 0 representing the starting depot, n + 1 representing the ending depot and
N ′ = {1, ..., n} the set of customers and S = {n + 2, n + 3, ..., n + s, } representing the charging
stations. E = {(i, j) : i, j ∈ N, i ̸= j, i ̸= n + 1, j ̸= 0}. An unlimited amount of vehicles with
battery capacity Q is available. The rate at which the battery decreases is τ , which measures
the consumption rate per km. Each vehicle traverses an elementary path from 0 to n+1, which
we refer to as a route, to satisfy the demand of all customers along the path.

Given these assumptions we can depict an example solution for a set customers N ′ =
{C1, ..., C10} and charging stations S = {S1, .., S4}, this is shown in Figure 1. In this example
solution we have three identical vehicles that are 100% charged when they set out to their route.
The numbers on the arcs represent the battery percentage that is left after traversing an arc.
Additionally we assume that the vehicles are fully charged at the stations thus after visiting the
stations the battery will have 100%.

Figure 1: EVPR solution example

6

3.2 Integer programming formulation

Given the notation, we show a new integer programming formulation. Consider a p-step r to be
a pair (Pr, δr). Where Pr represents an elementary path in G that i) either travels over exactly
p arcs, ergo visiting p + 1 nodes, or ii) starts at 0 and travels over at most p arcs. Additionally,
δr represents the energy left over after visiting all customers on a route prior to arriving at the
first location on Pr. Thus δr is referred to as the prior energy left over of r and we denote q(r)
as the total energy left over of visiting the customers on the p-step r. A p-step is feasible if
q(r) ≥ 0 and in the case, there is no recharge on r the condition that δr > q(r) also needs to be
fulfilled.

In the formulation we use, we connect p-steps to represent routes. These steps can only be
connected if their start/end locations and battery percentages matches. If we want to connect
two p-steps r and s, we need location i ∈ N ′ to be the last location in r and first of s, and the
total battery percentage after leaving i on r to match that of s, that is q(r) = qi. Where qi

is the battery percentage left after the first stop. Furthermore, in our formulation, we impose
that each customer can only be visited once. By doing this, we guarantee that any connection
resulting in a path from 0 to n+1 is elementary and satisfies the battery capacity constraint,
hence represents a route.

Next, we need to make sure the p-steps are connected well. To represent the sequence of p-
steps in our formulation, we introduce ei

r and qi
r. Let ei

r take a value of 1, if i is the first location
on Pr, a value of −1 if i is the last location on Pr and a value of 0 otherwise. Additionally, let
qi

r which is the leftover battery after trips until now be −qi if i is the first location on Pr, q(r)
if i is the last location on Pr and 0 otherwise.

Lastly, let xr be a binary p-step variable, that indicates whether p-step r is used or not.
They have a corresponding used battery percentage dr, where dr is given by

∑
(i,j)∈Pr

dij which
is the used battery on each arc. The EVRP can then be formulated as follows.

min
∑

r∈Rp

drxr (1)

s.t.
∑

r∈Rp

ai
rxr = 2 ∀i ∈ N ′ (2)

∑
r∈Rp

ei
rxr = 0 ∀i ∈ N ′ (3)

∑
r∈Rp

qi
rxr = 0 ∀i ∈ N ′ (4)

xr ∈ {0, 1} ∀r ∈ R (5)

The total battery used is minimized in the objective function (1). Constraints (2) ensure that
every customer is visited exactly once. The constraints (3) and (4), make sure the problem gets
connected. They ensure that if a p-step is chosen and ends at node i then also a p-step that
starts at node i is selected with adequate prior demand. Lastly, constraints (5) represent the
binarity of variables x on the p-step. We will refer to this formulation ((1)-(5)) as the p-step
formulation.

7

3.3 Finite formulation

Since the leftover battery percentage δr is continuous, the number of p-steps in Rp is unlimited
and by extension so are the number of variables of xr. This is the case unless qi = 100% for all
i ∈ N ′. Nonetheless, it is possible to redefine the p-step formulation only to include a limited
number of p-steps. We can achieve this by only considering p-steps for which the prior battery
usage is minimal or maximal. By doing this all other p-steps can be represented as a convex
combination of these two extremes. To obtain the minimal and maximal battery percentage
needed we first determine the p-step. After finding the p-step, we know the distance between
each node we visit and thus how much battery percentage we need to traverse each edge. We
can calculate the minimal and maximal battery we need to start this p step with from that.
Then, if we visit a charging station on the p-step, we only need to calculate usage until the
charging station is visited. This is because after a charging station, the battery will always be
100%. To further clarify this concept we give an illustration in Figures 2 and 3.

Figure 2: Minimal and maximal battery usage of a p-step without visiting a recharge station

Figure 3: Minimal and maximal battery usage of a p-step with visiting a recharge station

In order to be more specific we first note that the p-step formulation will remain valid if the
equalities (4) are replaced by

∑
r∈Rp

qi
rxr ≥ 0 ∀i ∈ N ′ (6)

When (6) is a strict inequality, it can be interpreted as having additional power which is
mistakenly considered as less power by some p-step. The vehicle will return with the additional
∆% at the depot. Besides, this does not affect the LP bounds, as we can lower the mistaken
power to obtain a new solution for which (6) are satisfied with equality without changing the
objective value.

Additionally, binary conditions (5) for the p-step variables are replaced by the arc-flow
version of the binary conditions. For this, we introduce the binary arc-flow variable θij which
indicated whether arc (i, j) ∈ A is used. Additionally, let br

ij be a binary parameter that

8

indicates whether arc (i, j) ∈ A is used by p-step r. This results in (5) being replaced by

∑
r∈Rp

br
ijxr = θij ∀(i, j) ∈ E (7)

xr ≥ 0 ∀r ∈ Rp (8)

θij ∈ {0, 1} ∀(i, j) ∈ E (9)

By using constraints (7) and (9) we allow a single route in a solution to be represented by a
convex combination of several routes, on the condition that every edge in E is selected binarily.
Which is, what enables us to drop the binarity conditions on xr, as shown in (8). We do not
need to enforce xr ≤ 1 for all r ∈ Rp, because this is implied by constraints (2),(3) and (8).

3.4 Complete formulation

To prevent routes starting and ending at a charging station we link the partial routes to the
trucks that will drive them and introduce an additional constraint. The p-step variable xr will
be rewritten as xt

r, which will take a value > 0 if p-step r is driven by truck t. Next, we introduce
variable yt which is 1 if truck t is used. We also introduce parameter ϕr which is the recharge
amount on p-step r. The complete formulation will then be,

min
∑
t∈T

∑
r∈Rp

drxt
r (10)

s.t.
∑
t∈T

∑
r∈Rp

ai
rxt

r = 2 ∀i ∈ N ′ (11)

∑
t∈T

∑
r∈Rp

ei
rxt

r = 0 ∀i ∈ N ′ (12)

∑
t∈T

∑
r∈Rp

qi
rxt

r ≥ 0 ∀i ∈ N ′ (13)

∑
t∈T

∑
r∈Rp

br
ijxt

r = θij ∀(i, j) ∈ E (14)

∑
i∈N ′

∑
r∈Rp

br
0ix

t
r + br

in+1xt
r = 2yt ∀t ∈ T (15)

xt
r ≤ yt ∀r ∈ Rp ∀t ∈ T (16)

xt
r ≥ 0 ∀r ∈ Rp ∀t ∈ T (17)

yt ∈ {0, 1} ∀t ∈ T (18)

θij ∈ {0, 1} ∀(i, j) ∈ E (19)

The objective function (10) minimizes the total battery used over all trucks. Constraints
(11) ensure all customers are visited. Constraints (12) ensure that the p-steps are connected by
the same truck and constraints(13) will see to it that the power left over at the beginning of
the current p-step is at most that of the preceding p-step. Constraints (14) remain relatively
unchanged from (7). Then by adding constraints (15) and (16) we ensure that a complete route
always starts en ends at the depot. If a truck t is selected to drive a route we have to select one
p-step that leaves from the depot and one p-step that returns to the depot. Lastly, constraints

9

(17)-(19) define the bounds on the decision variables.

4 Solution Approach

In the next part of this thesis, we compute the LP bound of the p-step formulation with a
branch-and-bound algorithm to solve the EVRP. This is to compare computation times and
solution values of this formulation with different values of p.

Since the number of variables will increase when p increases, we make use of a column
generation algorithm to compute the LP bounds. By using this algorithm we limit the number
of variables included in the formulation, which yields something called a restricted master
problem (RMP). The RMP is solved and in the next step by solving a pricing problem the next
negative reduced cost variables are searched for. Hence, the algorithm will follow an iterative
process. In each step, at least one negative reduced cost variable is added to the RMP. Unless
no negative reduced costs can be found, in which case the solution to the current RMP is the
optimal solution to the LP relaxation.

For our column generation algorithm, we will use formulation (10)-(19). Where in the RMP
we will perform column generation on the p-step variables x. This means that we will not
include all variables x in the RMP, but we will include all variables θ.

4.1 Pricing problem

The goal of the pricing problem is to identify a feasible p-step with the lowest possible cost.
Take λ, µ, η and π as the dual variables corresponding to constraints (11), (12), (13) and (14)
respectively. For convenience, we define λl = µl = ηl = 0 for l ∈ {0, n+1}. Aside from the route
and customer-related dual variables, we also have to take the dual variables corresponding to
15), into consideration. Since we add all p-steps to all trucks we take the most negative duals,
which we refer to as γ, and add this to the fixed part to the reduced cost. Lastly, for constraints
(16) we do not have a dual variable as the route does not exist yet so this would always be zero.
The reduced cost RC(r) of a given p-step (Pr, δr) such that s is the starting point and f is the
ending point on Pr is.

RC(r) =
∑

(i,j)∈Pr

dij + γ − πij − 2λj − λs + λf − µs + µf + ηsqs − ηf q(r) (20)

Since we defined the reduced costs for a fixed starting node s and final node f where (s ̸= f)
of Pr, we consider so-called (s, f)-pricing problems (Dollevoet et al. 2020). Since we do not
need to consider n + 1 starting node or 0 as a final node, we only construct (n + 1)n pricing
problems.

Note that for ηsqs −ηf q(r) we can rewrite the equation as ηsδr −ηf (δr −
∑

(i,j)∈Pr
qi −qj +ϕj)

which is the current leftover battery minus the charge needed to get to from i to j plus the
recharge amount if j is a recharge station. To simplify, for a route r we can say wj = qi −qj +ϕj

and then w(r) =
∑

(i,j)∈Pr
wj (note that in the case that we visit a charging station we can also

increase the battery percentage). Thus we can rewrite our RC(r) as,

10

RC(r) =
∑

(i,j)∈Pr

dij + γ − πij − 2λj − λs + λf − µs + µf + ηsδr − ηf (δr − w(r)) (21)

In the adjusted formulation, it is easy to see that δr is linear in ηs − ηf . Thus, if ηf ≥ ηs

and the charging station is not visited it is optimal to set δr to the minimal value w(r), then
in the case ηf < ηs and a charging station is not visited it is optimal to set δr to the maximal
value, 100%. Lastly, if a charging station is visited it is always optimal to set δr to the minimal
value. The reason that if ηf < ηs and a charging station is visited it is still optimal to set δr

to the minimal value is that the q(r) is ‘fixed’. For this, we refer back to Figure 3, regardless of
the start minimum after visiting a recharging station the battery will be 100% thus the battery
usage after visiting the station is fixed. The possible optimal values for δr result in two different
scenarios to compute costs for each (s, f)-pricing problem.

For given values for δr, we can derive fixed costs Csf and variable costs cij assigned to each
arc (i, j) ∈ A. The computation of both costs depends on if the minimal or maximal value is
assigned to the prior leftover battery δr. If the minimal value is assigned to δr we get fixed costs
Csf = γ−λs+λf −µs+µf +(ηs−ηf)ws and variable costs for each arc cij = dij −πij −2λj −ηf wj

. Then if the maximal value is assigned to δr we get Csf = γ−λs +λf −µs +µf +(ηs −ηf)∗100%
as fixed costs and cij = dij − πij − 2λj + ηswj as variable costs on the arcs.

Thus the sum of the variable costs per arc and the constant cost Csf are the reduced cost
of the variable associated with a path Pr and end battery percentage δr. A path is feasible if
the battery percentage never exceeds 100% or drops below 0. Also if the starting point is at
the depot, s = 0 the path consists of at most p arcs, otherwise, the path consists of exactly p

arcs. Finding a feasible negative reduced cost can be done by solving an elementary shortest
path problem with resource constraints (ESPPRC). The resource constraint lies in the amount
of battery percentage left, for arc (i, j) a q(r) − wj < 0 is not feasible.

4.2 ESPPRC

To solve our pricing problem we formulate it as an ESPPRC. The first step we took was to
construct a standard integer programming problem. We again consider an undirected graph
G = (N, A). With N = C ∪ S ∪ {0, n + 1} the set of nodes and A the set of arcs. Where
the set A+(i) denotes all outgoing arcs from node i and A−(i) the incoming arcs. The decision
variable xij is 1 if arc (i, j) is used and 0 otherwise. Variable yij represents the current available
energy at j. If there is a recharge station on the route we use ϕj which represents the amount
of battery that is recharged. Since the routes have not been made this means ϕj is a decision
variable that can take any value between 0 and the total battery capacity Q. Parameter δij is
the battery usage on arc (i, j) and cij is the variable cost.

11

min
∑

(i,j)∈A

cijxij (22)

s.t.
∑

(i,j)∈A+(i)
xij −

∑
(j,i)∈A−(i)

xji =


1 if i = s

−1 if i = f

0 otherwise

∀i ∈ V

(23)∑
(i,j)∈A+(i)

xij ≤ 1 ∀i ∈ V

(24)∑
(i,j)∈A

xij ≤ p (25)

yti − δijxij ≥ Q(xti − 1) ∀t, i ∈ N ∀j ∈ N, t ̸= i, i ̸= j

(26)

yti − δijxij − yij ≥ Q(2 − xti − xij) ∀t, i ∈ N∀j ∈ N, t ̸= i, i ̸= j, i ̸= s, i ̸= f

(27)

yti − δijxij + ϕj − yij ≥ Q(2 − xti − xij) ∀t, i ∈ N∀j ∈ S, t ̸= i, i ̸= j, i ̸= s, i ̸= f

(28)

0 ≤ yij ≤ Qxij ∀(i, j) ∈ A

(29)

ϕj ≥ 0 ∀j ∈ S

(30)

xij ∈ {0, 1} ∀(i, j) ∈ A

(31)

As opposed to the ‘normal’ elementary shortest path problem we added the constraints
(25)-(30) to limit the arcs used for the p-step and to make sure we do not exceed the battery
capacity. Constraints (26) guarantee we can reach the next node j from the current node i, if
we use current node i. Constraints (27) ensure that if j is a customer or depot node, current
available energy yij at j is equal to the previous available energy yti at i minus the battery used
dij . Constraints (28) considers the case that j is a charging station, current available energy yij

depends on the previous available energy yti at i minus the used battery δij plus the amount
of energy the vehicle recharged at station j. Constraints (29) enforce that the current available
energy yij never exceeds the maximum capacity.

4.3 Labelling Algorithm

Since the MIP takes a lot of time to solve we will also make use of a bidirectional labelling
algorithm. This algorithm will be based on the algorithm shown in Dollevoet et al. (2020) and
Gschwind et al. (2018), but will have some minor modifications to take into account for the
different requirements we have to meet. The general outline of how the labelling algorithm
works is shown in Figure 4

12

Figure 4: Illustration extension procedure in the labelling algorithm

A partial path corresponding to the label L is represented by PL with as its attributes: the
terminal node N(L), number of arcs A(L), the leftover battery q(L) and the cumulative cost
c(L). Additionally, we will also use a vector U(L) ∈ B|N | to indicate if a node can be reached.
That means Ui(L) = 1 if we already visited node i or extending to node i leads to infeasibility.
To be able to retrieve the path we took in our p-step we keep track of a vector V (L) for which
Vi(L) indicates whether a node i has been visited. The initial forward label L which corresponds
to a partial path starting at s is given by, N(L) = s, A(L) = 0, q(L) = qs, Us(L) = 1 and
Ui(L) = 0 for all i ∈ N \ {s}. A partial path PL corresponding to a forward label L can be
extended along (N(L), j) ∈ A to create a new label L′ corresponding to a new partial path s

through N(L) to j.
To extend partial path PL to PL′ we use the following extension functions, where Fi(L) is a

function that takes the value 1 if extending to node i would lead to a violation in the battery
capacity. For extension function c(L′) in the case we visit a charging station we ‘fix’ the battery
percentages of the preceding nodes to their minimal value. In all other cases, the costs related

13

to battery percentage will be calculated when we merge a forward and backward label.

c(L′) = c(L) + cN(L)j (32)

q(L′) = q(L) − qj (33)

N(L′) = j (34)

A(L′) = A(L) + 1 (35)

Ui(L′) =

1 if i = j

max{Ui(L), Fi(L′)} otherwise
∀i ∈ N (36)

In analogy to the forward label a backward label L is extended in the reverse direction of
an arc (j, N(L)) ∈ A. Since we want to combine forward and backward labels to construct
feasible (s, f) paths we extend a forward label L for which A(L) < p − ⌊p−1

2 ⌋ − 1 along all arcs
(N(L), j) ∈ A such that Uj(L) = 0 and j ̸= f, j ̸= n + 1. With the exception that L is extended
to f in case s is the depot, because then a path may consist of less than p arcs. We extend
a backward label L for which A(L) < ⌊p−1

2 ⌋ in the reverse direction (j, N(L)) ∈ A such that
Uj(L) = 0 and j ̸= s, j ̸= 0. The limits imposed on A(L) for extending the labels ensure that
the longest partial path of both directions differs at most by one arc. Which results in roughly
the same amount of forward and backward labels.

If there are no more labels in the active label pool, we start merging the forward and
backward labels to construct full paths. We can find a feasible path from s to f consisting
of exactly p arcs if we merge a forward label L with A(L) = p − ⌊p−1

2 ⌋ − 1 and a backward
label L′ for which A(L′) = ⌊p−1

2 ⌋ such that the merged path length is exactly p, when (N(L),
N(L′)) ∈ A, the battery capacity is not violated and V (L) and V (L′) do not have any nodes
in common. Where a merge is of L and L′ defined as connecting partial path PL with partial
path PL′ . Where the merged path PL+L′ visits nodes V (L) ∪ V (L′) and has reduced costs
c(L + L′) = c(L) + c(L′) + cN(L)N(L′) However, when s is the depot we can consider all labels
forward labels A(L) ≤ p − ⌊p−1

2 ⌋ − 1 since the length of the partial path does not need to be
exactly p. Note that if f is the depot we can do the same for backward labels which have
A(L) ≤ ⌊p−1

2 ⌋.
A label L with (N(L), A(L), c(L), q(L), U(L)) dominates another label L′ with (N(L′),

A(L′), c(L′), q(L′), U(L′)) if N(L) = N(L′), q(L) ≥ q(L′), U(L) ≤ U(L′), c(L) ≤ c(L′) and
A(L) = A(L′). This means that any feasible extension of the dominated label L′ is also a
feasible extension of the dominant label L. We perform a dominance check every time a new
label is constructed by extension. Normally, L is checked for dominance over all other labels as
well as all other labels against L. However, as explained further below, we can limit the number
of dominance checks.

The labels will be stored in separate dynamic programming matrices one for forward labels
and one for backward labels. The matrix will have n rows, corresponding to the nodes and
p + 1 rows, to indicate the number of arcs. This means row i column j contains a list of all
labels with i as its terminal node and with A(L) = j − 1. Also by using this way of storing
labels we indirectly keep track of both N(L) and A(L). This also means they do not have to
be checked explicitly for dominance as we only compare labels from the same matrix entry. We

14

will also order the labels based on reduced costs to limit the number of dominance checks we
have to perform even further. This is because if the top label is dominated we will only save
the dominant label and if it is not we do not need to check dominance for the other labels in
the list. This in turn also helps with how many merges we have to attempt since we only want
merges that result in a partial path with negative reduced costs.

5 Combined formulation

In Section 3 we showed what the p-step formulation would look like for a vehicle routing problem
with electric vehicles. However, in most EVRPs there are also capacity constraints that need
to be taken into account as the EVRP is most commonly seen as an extension of the CVRP
problem. Thus in this section, we will give the combined p-step formulation of the CVRP as
shown in Dollevoet et al. (2020) and our formulation as shown in Section 3.4. To achieve this
we need to redefine our p-step first. Since we also need to take capacities into account we add
vr as an additional value which we need to remember per p-step, (Pr, δr, vr). Where we define
vr as the cumulative demand of the customers on a route before arriving at the first location on
Pr. Thus we refer to vr as the prior demand of r and by g(r) we denote the total demand of the
customers that are visited on p-step r. Adding capacity to the p -steps results in an additional
feasibility condition on the p-steps, namely 0 ≤ vr + g(r) ≤ G where G stands for the truck
capacity.

We also need to take into account that two p-steps r and s can be connected only if the
demand of the first location of s is the same as that of the last location of r, that is vr + g(r) =
vs + gi where gi is the demand of location i. To represent this connectivity in our formulation
we introduce gi

r. Let gi
r be equal to vr + gi if i is the first location on the p-step, −vr − g(r) if i

is the last location and 0 otherwise. If we formulate this as a constraint for our problem we get∑
t∈T

∑
r∈Rp gi

rxt
r = 0 for all i ∈ N ′. Similar to how it is explained in Dollevoet et al. (2020)

we have a finite amount of options if we formulate each p-step as a linear combination of the
maximal and minimal demand together with the maximal and minimal prior leftover battery
needed for each p-step. Thus we have four combinations of extremes; I) minimal battery and
minimal demand, II) minimal battery and maximal demand, III) maximal battery and minimal
demand and IV) maximal battery and maximal demand. Thus, we can relax these equalities to
inequalities without the p-step formulation becoming invalid. So, we need to add

∑
t∈T

∑
r∈Rp

gi
rxt

r ≥ 0∀i ∈ N ′ (37)

to our formulation. For the complete mathematical formulation, we refer to Appendix A.

5.1 Combined pricing problem

Since Equation (37) is added to the main problem we also need to incorporate it into the pricing
problem. Let ϕ be the dual corresponding to this constraint. Here as well, for convenience, we
define ϕl = 0 for l ∈ {0, n + 1}. Thus reduced costs RC(r) of a given p-step (Pr, δr, vr) such

15

that s is the starting point and f is the ending point of Pr is given by,

RC(r) =
∑

(i,j)∈Pr

dij + γ − πij − 2λj − λs + λf − µs + µf + ηsδr − ηf (δr − w(r))

− ϕs(vr + gs) + ϕf (vr + g(r))
(38)

Similar to the duals for battery percentage, we can recognise that ϕf − ϕs is linear in prior
demand vr. Hence, we let prior demand vr be the minimum value, 0, if ϕf ≥ ϕs otherwise, we
assign the maximum value G − D(R).

These reduced costs can be decomposed into multiple scenarios of (s, f)-pricing problems
similar to what we did in Section 4.1 and like they did in Dollevoet et al. (2020). We can break
the reduced cost for each (s, f)- pricing problem up into fixed costs and variable costs that are
influenced by which arcs are used. Both of these are dependent on if the maximum or minimum
battery percentage is assigned as explained in Section 4.1. In this case, it will also depend on
if the minimal or maximal value is assigned to prior demand.

First, we look at the case that the minimum value is assigned to δr, if we also assign the
minimum value to prior demand vr we get:

Csf = γ − λs + λf − µs + µf + (ηs − ηf)ws + (ϕf − ϕs)gs

cij = dij − πij − 2λj − ηf wj + ϕf gj

Then if we assign the maximum value to vr we get:

Csf = γ − λs + λf − µs + µf + (ηs − ηf)ws + (ϕf − ϕs)G

cij = dij − πij − 2λj − ηf wj − ϕsgj

Second, we look at the case in which we assign the maximum value to δr, if we assign the
minimum value to prior demand vr we get:

Csf = γ − λs + λf − µs + µf + (ηs − ηf)100% + (ϕf − ϕs)gs

cij = dij − πij − 2λj + ηswj + ϕf gj

Then if we assign the maximum value to vr we get:

Csf = γ − λs + λf − µs + µf + (ηs − ηf)100% + (ϕf − ϕs)G

cij = dij − πij − 2λj + ηswj − ϕsgj

Which results in the (s, f)-pricing problem having four different scenarios each.

5.2 Modification to the labelling algorithm

The new pricing problem can still be solved as an ESPPRC with a labelling algorithm. If we
store an additional value in our label for capacity we can use the labelling algorithm given
in Section 4.3. To illustrate; a partial path corresponding to label L is represented by PL =
{N(L), A(L), q(L), c(L), U(L), V (L), g(L)} where g(L) represents the cumulative demand and

16

all other attributes remain as previously defined in Section 4.3. Next, we also need to add the
extension function

g(L′) = g(L) + gj (39)

to extend the partial path PL to PL′ . Lastly, we would also need to update our dominance rule
by including the condition that if a label L dominates L′, g(L) ≤ g(L′) must hold. The rest of
the labelling algorithm will remain unchanged.

6 Computational results

This section presents and discusses the computational results of the p-step formulation. In
Section 6.1 we show the LP bounds of the p-step formulation for a few values of p and if the
bound could be obtained through enumeration within the time limit we show these computation
times. In this subsection we also look at the relationship between instance size, number of p-
steps and the size of p. Next in Section 6.2 we show how close the LP bounds of the smaller
instances perform when compared to the optimal solution. Then in Section 6.3 we compare
the performance, measured in time, of our two approaches to the pricing problem. Lastly, in
Section 6.4 we show the LP bounds of the combined p-step formulation for a few instances

To obtain these results we use some benchmark instances that were introduced in Schneider
et al. (2014) for computational tests. These data sets were created by using the most commonly
used Solomon data sets. The data sets are categorized into three different types. First, there is
Clustered (c), c101C10. Second, there is Random (r), r102C10. Lastly, there is RandomClus-
tered (RC), rc102C10. The smaller instances are also indicated by the number of customers in
the data set, for example, C10 means 10 customers. All data sets contain the locations of the
customers, their demands and they also contain time windows and the corresponding service
time. Furthermore, the instances contain the range of the vehicles, the capacity, the refuelling
rate and indicate whether a node is a charging station, a customer or the depot. The datasets
also contain fuel consumption rate however this is 1.0 in all data sets thus we take it as one unit
of fuel equals one unit of distance. In the first few experiments, we will only use the location
and range of the trucks from these data sets and in Section 6.4 we will also use the demand and
capacity given.

Our algorithms are implemented in Java using the IDE Eclipse 2020-06 (version 2.3.200)
and are executed on a PC with 3 GHz Intel Core i5-8500 processor and 16 GB RAM. We use
CPLEX 20.1 with default settings to solve the RMP at each iteration of the column generation
algorithm.

6.1 Master Problem

We show the LP bounds of the p-step formulation as shown in Section 3.4 we find in Table 2.
We have included a few of the smaller problems as this allows us to compute the LP bounds
within a reasonable time. We decided to impose a time limit of one hour, 3600 seconds. To
compute the LP bounds we ran both the complete problem with enumeration over all feasible
p-steps and the column generation algorithm, which give the same bounds if both are found

17

within the time frame. If we did not find an LP bound within this time frame the algorithm
was stopped and we denote this with a − in the table.

Table 2: LP solutions

p
Instance 1 2 3 4 5 n+1
c101C5 167.746 175.173 178.775 200.169 200.169 200.169
c103C5 136.431 136.965 138.751 138.751 139.163 139.163
c206C5 164.556 165.977 174.31 191.645 201.164 201.164
r105C5 117.617 118.825 123.924 134.946 134.946 134.946
r202C5 114.459 114.459 114.459 114.459 114.459 114.459
r203C5 151.205 151.521 153.040 174.369 174.369 174.369
rc105C5 150.201 151.201 163.59 165.668 165.668 165.668
rc108C5 155.553 156.528 174.099 206.94 216.667 216.667
rc204C5 97.215 97.431 103.115 126.124 131.853 131.853
c101C10 200.132 211.980 204.921 212.816 220.716 −
c104C10 215.866 219.449 224.252 235.820 240.977 241.36
c202C10 162.085 163.675 176.635 175.827 178.254 226.091
c205C10 192.875 193.844 199.766 207.692 217.987 219.078
r102C10 171.396 172.491 174.034 179.458 187.005 227.078
r103C10 120.824 122.537 121.800 125.676 127.627 −
r203C10 165.420 165.682 178.034 181.958 181.115 196.097
rc102C10 326.748 339.811 358.211 410.489 414.549 415.839
rc108C10 253.555 254.839 306.133 324.799 324.846 335.507
rc201C10 195.335 197.420 207.265 221.375 236.965 261.666
rc205C10 247.451 255.350 256.002 290.304 317.112 324.758
c103C15 209.559 210.296 211.062 221.439 228.0544 −
c106C15 203.524 223.838 223.838 223.838 − −
c202C15 278.244 278.481 285.059 287.123 316.429 343.312
c208C15 215.756 215.971 220.202 226.620 235.623 262.795
r102C15 234.691 259.227 259.227 263.107 271.288 −
r105C15 192.027 193.089 194.648 195.429 202.683 233.923
r202C15 226.812 228.251 227.062 228.949 236.326 −
r209C15 218.196 218.650 218.372 218.650 246.972 252.008
rc103C15 209.754 210.287 236.803 237.418 260.709 263.288
rc108C15 243.493 247.553 256.318 272.653 281.539 333.683
rc202C15 224.353 231.037 241.625 274.961 279.812 327.804
rc204C15 220.651 220.940 243.183 − − −

The first thing we note in Table 2 is that some instances do not allow our algorithms to
determine the LP bounds within the time constraint. This is why we only choose to use the cases
for which we can compute the LP bounds within the time frame in the remaining experiments.
Then from the results in the Table 2 we can see that for every instance, the LP bound for a
certain p is always lower than or equal to the LP bound of the same instance for an integer
multiple of p. We find that for all instances with five customers, C = 5, that the LP bound is
monotonically non-decreasing. Then in most instances with ten or fifteen customers, eight out
of eleven and nine out of twelve respectively, we find it is even monotonically increasing when
p increases.

18

This is, what we expected to find since it was found to be the case for the Capacitated
Vehicle Routing Problem in the literature (Dollevoet et al. 2020). From this, we can conclude
that our EVRP p-steps formulation acts in a similar fashion to the CVRP with p-steps.

In Table 3 we also show the computation times in seconds needed to construct the LP bounds
of the p-step formulation if we do not use column generation. We only show the computation
times for p = 1, ..., 5 as for n + 1 we were unable to construct the LP values within reasonable
time for C = 10 and C = 15. We show this to both draw a better comparison with how much
our column generation algorithm can improve the computation time and to further illustrate
the trade-off between Set Partitioning and Arc-flow when it comes to getting the LP bounds.

Table 3: Computational time in seconds of enumeration

p
Instance 1 2 3 4 5
c101C5 0.293 0.232 0.208 0.416 0.255
c103C5 0.181 0.241 0.428 0.344 0.312
c206C5 0.192 0.222 0.273 0.25 0.25
r105C5 0.194 0.321 0.264 0.433 0.267
r202C5 0.155 0.242 0.282 0.286 0.296
r203C5 0.203 0.479 0.489 0.568 0.598
rc105C5 0.185 0.431 0.543 0.370 0.381
rc108C5 0.211 0.304 0.286 0.286 0.298
rc204C5 0.281 0.384 0.597 0.530 0.466
c101C10 0.674 2.483 18.355 72.347 137.629
c104C10 0.496 1.833 5.845 16.558 34.773
c202C10 0.667 3.132 28.582 92.93 85.716
c205C10 0.455 1.611 5.532 16.454 34.282
r102C10 0.577 1.542 3.43 12.113 22.313
r103C10 0.429 2.476 36.491 254.13 380.559
r203C10 0.542 3.15 14.346 28.673 40.109
rc102C10 0.434 1.714 3.544 5.058 12.238
rc108C10 0.452 2.117 2.255 3.375 9.424
rc201C10 0.696 4.386 12.019 15.98 20.884
rc205C10 0.409 1.416 4.784 8.146 12.294
c103C15 1.774 25.692 439.696 1718.289 −
c106C15 1.200 40.018 1024.214 − −
c202C15 2.099 43.650 150.254 169.440 289.908
c208C15 1.477 18.732 159.039 631.405 737.775
r102C15 4.848 288.901 2418.978 − −
r105C15 2.134 56.939 416.859 506.296 680.099
r202C15 2.556 46.722 441.004 1322.243 −
r209C15 2.414 53.585 418.221 819.277 1392.94
rc103C15 1.383 36.326 216.183 287.305 382.603
rc108C15 3.508 46.442 149.096 178.291 218.923
rc202C15 3.203 39.021 197.364 252.630 370.073
rc204C15 2.492 109.989 1489.42 − −

From Table 3 we find that for a higher number of customers that have to be visited, the
run-time increases drastically when p increases. In most cases with fifteen customers, it already

19

becomes impossible to solve through enumeration within a reasonable amount of time.
Since we did not include capacity or time windows in this problem it is hard to draw

an exact comparison between our findings and those of Schneider et al. (2014) because our
problem allows more solutions since there are fewer restrictions on the p-steps. However, since
our solution values are slightly below their finding we believe our algorithm gives decent bounds
for the problem without time window and capacity constraints.

We also looked at the possibility that how fast the algorithm ran could be related to the
number of feasible p-steps. Because, even though they have the same number of customers, they
might not have the same number of charging stations thus the number of feasible p-steps does
not have to be equal. Furthermore, the number of feasible p-steps does not have to be equal
among instances of the same size as this is heavily dependent on the locations of the customers.

In Figure 5 we plot the relationship between solution time and the number of p-steps for
varying sizes of p when there are ten customers. The horizontal axis corresponds to the solution
time and the vertical axis to the number of p steps. Where p = 1 is denoted by the circles,
p = 2 by the triangles and p = 3 by the squares. From this figure, we can see that the amount
of p-steps increases with p. We find that for p = 1 and p = 2 both the solution times and the
number of feasible p-steps are approximately the same. For some instances of p = 3 this also
seems to be the case but there is a larger deviation in number of feasible p-steps.

Figure 5: CPU compared to the number of p-steps for C = 10

From Figure 5 we can clearly see that when the number of feasible p-steps exceeds a certain
point, approximately 3800, the run-time starts to increase more drastically. We find that one
of the instances has more than two times the number of feasible p-steps as all other instances.
This confirms our statement that because of the charging stations and different distances, the
solution times are heavily dependent on the specific instance when it comes to solution time.

To further explore this we also looked at different instance sizes with the same value for p.
In Figure 6 we plot the relationship between solution time and the number of feasible p-steps
for p = 1. Where C = 10 is denoted by the circles, C = 5 by the triangles and C = 15 by the
squares.

From this figure, we can see that the computation time seems to depend more on the size of

20

Figure 6: CPU compared to the number of feasible p-steps for p = 1

the instance than on how many partial routes we consider. As we saw when looking at Figure 5,
we see that for p is one most instances have similar size and computation times. We only see
that if the set of allowed p-steps is much larger it can impact the computation time for the
observation for C = 15 at approximately 5.8 seconds.

Next, we look at the case that p = 2 in Figure 7. From this figure, we can again see that
the number of customers has a bigger influence on computation time. Like in Figure 6 we see
that for C = 5 and C = 10 the computation times and the number of p-steps are kind of
clustered. All instances with five customers are solved in 0.15 to 0.4 seconds and the instances
with ten customers take between 1.1 and 4.4 seconds. However, when we look at C = 15 we
find an outlier that again takes at least twice as long to solve than all other instances. Which
even further confirms the statement that the performance of the algorithm is dependent on the
instance.

Figure 7: CPU compared to the number of feasible p-steps for p = 2

What we can also see from both of these figures is how much the computation time can blow
up for larger instances and how many more p-steps we have to look at when p increases.

21

6.2 Performance LP bounds

Since if we generate all p-steps and then solve for the LP relaxation for instances with five
customers our model solves in a matter of seconds we decided to solve the problem to integer
optimality. In Figure 8 we show the relative gap between the LP bound and the optimal value
for some instances with five customers for different p-steps. On the vertical axis, we show the
gap in percentages and on the horizontal axis, we show the corresponding size of p. Then in
the legend we show which line corresponds to which problem instance with C = 5 customers.

Figure 8: Gap in % LP and optimal value

As we can see from the results in Figure 8 we can establish that the set partitioning formu-
lation (p = 1) gives the worst bound when compared to larger values of p. We also see that in 6
out of the 8 cases, we look at we see the biggest improvement when we go from p = 3 to p = 4.
This indicates that using p-steps can result in a much tighter bound without having to resort
to using the set-partitioning formulation i.e. p = n + 1 which is not shown in this figure as all
instances for C = 5 had the same value for p = 5 and p = 6.

6.3 Performance of the pricing problems

For the restricted master problem we started with not all possible p-steps as variables but only
a small, but feasible, set of p-steps that were constructed in a greedy way. As p increases
the computational times also significantly increase. We tried to counter this by using column
generation, for which we made two methods of generating said columns. Next, we illustrate
the computational performance of these two methods on the benchmark instances that we were
able to solve within our time limit, i.e. 3600 seconds.

When computing the LP bounds with column generation we find two opposing effects that
influence the computation time of the pricing problems. The first effect we find is that as p

increases it causes the worst-case number of computations of the labelling algorithm to grow
exponentially. Larger values of p will also have a similar effect on the MIP pricing problem.
Since there is a bound on the length of the path we solve the MIP for, if p is small there are
fewer possible ways to construct paths of length p. While if p is larger we need the worst-case

22

number of computations will increase. The second effect we find is that when p increases the
number of (s, f)-pricing problems decreases from quadratic in customers, n2, to one. However
as the number of iterations until convergence influences the speed of the column generation
algorithm the computation times do not necessarily have to increase when p increases.

Table 4 provides the computational times in seconds of the instances, which names are
provided in the first column. The second column denotes which pricing problem we used to
solve the instance. Where MIP means we used the exact formulating of the ESPPRC denoted
in Section 4.2 by implementing it in Java and CPLEX. And labelling means that we used the
labelling algorithm as described in Section 4.3. The last six columns on the first row indicate
which size for p was chosen.

Table 4: Time comparison pricing algorithms in seconds

p
Instance 2 3 4 5 n+1

c104C10 MIP 22.566 28.564 32.003 39.707 520.233
Labelling 0.357 2.910 7.239 9.785 290.458

c202C10 MIP 11.552 13.871 16.064 22.373 420.233
Labelling 1.654 1.997 6.636 10.969 254.273

c205C10 MIP 23.683 29.499 37.157 34.608 441.969
Labelling 0.394 1.977 5.702 11.547 199.943

r102C10 MIP 10.873 11.742 12.63 11.073 455.191
Labelling 1.101 1.793 7.567 8.434 310.047

r203C10 MIP 14.476 13.852 17.636 12.777 302.011
Labelling 1.815 2.704 6.389 9.721 187.538

rc102C10 MIP 5.637 6.672 9.821 12.284 290.702
Labelling 1.088 1.873 6.761 9.691 120.028

rc108C10 MIP 7.981 8.252 8.464 8.603 135.783
Labelling 1.136 1.202 2.775 3.137 45.839

rc201C10 MIP 10.698 11.156 11. 507 11.532 134.658
Labelling 5.055 5.497 6.339 7.111 87.398

rc205C10 MIP 5.007 5.544 5.657 5.759 64.627
Labelling 1.332 1.845 2.425 3.658 48.494

c202C15 MIP 19.795 21.511 124.374 233.864 1535.375
Labelling 2.976 3.258 27.431 111.266 923.111

c208C15 MIP 19.744 20.570 127.902 330.142 2543.286
Labelling 1.881 3.129 7.124 84.817 1297.696

r105C15 MIP 18.379 20.966 58.539 84.242 1928.233
Labelling 2.406 5.445 39.787 44.140 688.433

r209C15 MIP 18.142 20.466 64.804 227.351 677.042
Labelling 2.991 4.140 28.764 110.547 320.311

rc103C15 MIP 12.054 27.387 56.339 139.701 463.008
Labelling 6.586 19.251 33.127 79.297 237.202

rc108C15 MIP 20.054 23.996 45.495 124.518 382.157
Labelling 1.257 6.965 20.073 63.260 236.529

rc202C15 MIP 16.455 18.640 20.858 223.034 888.919
Labelling 2.007 2.527 8.919 110.153 462.656

From Table 4 we find that generally, the computational times for the pricing problem are

23

faster when we use the labelling algorithm compared to the MIP algorithm. This, however, is
probably the result of the fact that the MIP algorithm only adds one p-step per iteration while
the labelling algorithm adds all p-steps that have negative reduced costs. Keeping this in mind
we find that both approaches are successful in speeding up the algorithm when we compare it to
the case that we just enumerate over all p-steps. We find that once p ≥ 3 the column generation
algorithm significantly speeds up the algorithm as without it we were not always able to find
the LP bound within the time frame. Thus we show the potential gains that can be obtained
from using column generation.

6.4 Computation LP solutions combined formulation

Lastly, we want to show the computation times of the LP bounds for the combined formulation.
For this, we use some of the same instances we used in our previous computational experiments,
this time including the demand per customer. Table 5 shows the LP bounds of the p-step
formulation for a selection of instances that visit fifteen customers. We included some of the
same instances we used in our experiments in Section 6.3, as indicated by the first column.
We computed the bounds for low values of p, namely p = 2, 3, 4, 6 as indicated by columns 2
through 5. Then in the last column, we show the best bound found in the literature (Kucukoglu
et al. 2021; Schneider et al. 2014) (note: these bounds do include time windows).

Table 5: LP solutions combined model

p
Instance 2 3 4 6 best bound
c202C15 296.975 298.649 302.074 341.024 383.610
c208C15 250.837 251.121 259.312 297.436 300.550
r105C15 227.785 229.279 232.024 234.513 336.150
r209C15 245.683 246.301 257.619 271.51 358.00
rc103C15 252.591 251.806 265.345 299.167 397.67
rc108C15 292.102 299.952 292.807 320.291 370.25
rc202C15 282.46 276.91 287.748 372.639 394.39

We find that the combined problem is also strictly increasing in p for most of these instances.
We also see that multiples of p are always larger or equal, i.e. the LP bound for p = 2 is smaller
or equal to that of p = 4, z2 ≤ z4. Since all solutions were found within a reasonable time, less
than 3600 seconds, we can say that there is some merit to be found in using a p-step formulation
for the EVRP which also has capacity constraints as well.

To illustrate the impact the additional conditions of demands and capacity has on the run
time we plotted the difference in Figure 9. Where on the horizontal axis we show the size of p

and on the vertical axis the increase in computational time in seconds. We see that for most
instances, five out of seven, the runtime will increase quite evenly with p. These increases all
seem to be reasonable with the problem size. However, for two of the instances, we note a far
steeper increase. This brings us back to our previously mentioned point of how dependent the
performance is on each individual instance.

With the results shown in Figure 9 we further want to highlight that improving the efficiency

24

Figure 9: Increase in computation times in seconds

of the pricing algorithms or even using heuristics can save more time for these problems that
are more complex.

7 Conclusion

This thesis covers the formulation of the p-step problem for the Electric Vehicle Routing prob-
lem. This formulation can be seen as a generalised version of both the arc-flow and set parti-
tioning formulation. We constructed a restricted master problem and pricing problems to solve
this p-step formulation with column generation.

The introduction of electric vehicles to the vehicle routing problem had one major challenge,
which was the limited reach due to battery restrictions and the possibility of expanding the
reach by visiting a charging station. To limit this restriction we also considered the possibility
of visiting recharge stations on our route. Which came with a minor challenge of making sure
the vehicles returned to the depot and not the recharge station. In further research assigning
p-steps to vehicles could be done more efficiently as the way we currently do it generates a lot
of unnecessary variables which slows down the algorithm.

We partially solved the slowness of the algorithm by using column generation. We found
that the pricing problem can be solved in a significantly shorter time, both if we use a labelling
algorithm and if we use an exact solver. But in further research, these methods could also be
constructed in a more efficient way. As an example, the labelling algorithm could be modified
to solve the problem in a heuristic way by not saving all labels but only one. Once this heuristic
does not find any reduced costs we would revert back to the exact labelling algorithm. Or one
could explore other heuristic-based methods. Furthermore, while tackling pricing problems,
various strategies such as k-cycle elimination or ng-route relaxation may be used to speed up
the process.

Nevertheless, we found evidence of potential advantages in using p-steps as the bounds seem
to form a tighter gap on the optimal value as p increases even if computation time also slightly

25

increases. These potential advantages are especially noteworthy for the larger instances where
the difference in the solution value for some values of p is very small compared to the set
partitioning bounds that are found.

We also took the first step towards extending the formulation by incorporating capacity
constraints. Although we found this formulation to be more complex, we still found that
in this case there is also merit to be obtained from using the p-step formulation as we can
compute decent bounds within a reasonable amount of time. Furthermore, like with the p-
step formulation that only takes the driving distance and recharges into account, it is possible
to further improve the solution methods by implementing more of the current state-of-the-art
algorithms.

Since this thesis covers the p-step formulation for electric vehicles the formulation could be
extended to create more complete vehicle routing problems. For example by including time
windows to make it an EVRPTW. Furthermore, if we one was to include time windows into
the problem we could also look at a non-linear charging function and different types of charging
stations, e.g. fast-charging and normal charging stations. Additionally, one could look into
more efficient ways of solving the p-step formulation.

26

References

Bruglieri, M., Mancini, S., Pezzella, F., & Pisacane, O. (2019). A path-based solution approach
for the green vehicle routing problem. Computers & Operations Research, 103, 109–122.

Dollevoet, T., Munari, P., & Spliet, R. (2020). A p-step formulation for the capacitated vehicle
routing problem (tech. rep.).

EEA. (2021). Annual european union greenhouse gas inventory 1990-2019 and inventory report
2021 [Accessed: 2022-05-22].

Erdelić, T., & Carić, T. (2019). A survey on the electric vehicle routing problem: Variants and
solution approaches. Journal of Advanced Transportation, 2019.

Erdoğan, S., & Miller-Hooks, E. (2012). A green vehicle routing problem. Transportation re-
search part E: logistics and transportation review, 48 (1), 100–114.

Feng, W., & Figliozzi, M. (2013). An economic and technological analysis of the key factors
affecting the competitiveness of electric commercial vehicles: A case study from the usa
market. Transportation Research Part C: Emerging Technologies, 26, 135–145. https:
//doi.org/https://doi.org/10.1016/j.trc.2012.06.007

Gschwind, T., Irnich, S., Rothenbächer, A.-K., & Tilk, C. (2018). Bidirectional labeling in
column-generation algorithms for pickup-and-delivery problems. European Journal of
Operational Research, 266 (2), 521–530.

Koç, Ç., & Karaoglan, I. (2016). The green vehicle routing problem: A heuristic based exact
solution approach. Applied Soft Computing, 39, 154–164.

Kucukoglu, I., Dewil, R., & Cattrysse, D. (2021). The electric vehicle routing problem and its
variations: A literature review. Computers & Industrial Engineering, 161, 107650.

Lin, J., Zhou, W., & Wolfson, O. (2016). Electric vehicle routing problem [Tenth International
Conference on City Logistics 17-19 June 2015, Tenerife, Spain]. Transportation Research
Procedia, 12, 508–521. https://doi.org/https://doi.org/10.1016/j.trpro.2016.02.007

Mancini, F. (2013). High resolution time-to-depth conversion using 3d grid tomography. ASEG
Extended Abstracts, 2013 (1), 1–4. https://doi.org/10.1071/ASEG2013ab305

Mancini, S. (2013). Multi-echelon freight distribution systems: A smart and innovative tool for
increasing logistic operations efficiency [Cited by: 3]. https://www.scopus.com/inward/
record.uri?eid=2-s2.0-84881004013&partnerID=40&md5=5aa06bfbcf6bef16add3d85919eae8f7

Mancini, S. (2017). The hybrid vehicle routing problem. Transportation Research Part C: Emerg-
ing Technologies, 78, 1–12.

Pourazarm, S., Cassandras, C. G., & Malikopoulos, A. (2014). Optimal routing of electric ve-
hicles in networks with charging nodes: A dynamic programming approach. 2014 IEEE
International Electric Vehicle Conference (IEVC), 1–7.

Rabbie, J. (2018). A pulse algorithm for column generation for a generalized vehicle routing
formulation (Master’s thesis). Erasmus University Rotterdam.

Schneider, M., Stenger, A., & Goeke, D. (2014). The electric vehicle-routing problem with time
windows and recharging stations. Transportation science, 48 (4), 500–520.

Toth, P., & Vigo, D. (2014). Vehicle routing: Problems, methods, and applications. SIAM.

27

https://doi.org/https://doi.org/10.1016/j.trc.2012.06.007
https://doi.org/https://doi.org/10.1016/j.trc.2012.06.007
https://doi.org/https://doi.org/10.1016/j.trpro.2016.02.007
https://doi.org/10.1071/ASEG2013ab305
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881004013&partnerID=40&md5=5aa06bfbcf6bef16add3d85919eae8f7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881004013&partnerID=40&md5=5aa06bfbcf6bef16add3d85919eae8f7

Wen, M., Linde, E., Ropke, S., Mirchandani, P., & Larsen, A. (2016). An adaptive large neigh-
borhood search heuristic for the electric vehicle scheduling problem. Computers & Op-
erations Research, 76, 73–83.

Young, K., Wang, C., Wang, L. Y., & Strunz, K. (2013). Electric vehicle battery technologies.
Electric vehicle integration into modern power networks (pp. 15–56). Springer.

Zhang, S., Gajpal, Y., & Appadoo, S. (2018). A meta-heuristic for capacitated green vehicle
routing problem. Annals of Operations Research, 269 (1), 753–771.

Zhang, S., Gajpal, Y., Appadoo, S., & Abdulkader, M. (2018). Electric vehicle routing problem
with recharging stations for minimizing energy consumption. International Journal of
Production Economics, 203, 404–413.

A Combined formulation: mathematical notation

The complete combined mathematical formulation is given by:

min
∑
t∈T

∑
r∈Rp

drxt
r (40)

s.t.
∑
t∈T

∑
r∈Rp

ai
rxt

r = 2 ∀i ∈ N ′ (41)

∑
t∈T

∑
r∈Rp

ei
rxt

r = 0 ∀i ∈ N ′ (42)

∑
t∈T

∑
r∈Rp

qi
rxt

r ≥ 0 ∀i ∈ N ′ (43)

∑
t∈T

∑
r∈Rp

gi
rxr t ≥ 0∀i ∈ N ′ (44)

∑
t∈T

∑
r∈Rp

br
ijxt

r = θij ∀(i, j) ∈ E (45)

∑
i∈N ′

∑
r∈Rp

br
0ix

t
r + br

in+1xt
r = 2yt ∀t ∈ T (46)

xt
r ≤ yt ∀r ∈ Rp ∀t ∈ T (47)

xt
r ≥ 0 ∀r ∈ Rp ∀t ∈ T (48)

yt ∈ {0, 1} ∀t ∈ T (49)

θij ∈ {0, 1} ∀(i, j) ∈ E (50)

28

	Introduction
	Literature Review
	Electric Vehicle Routing
	P-step Formulation
	Relation of our Research to the Literature

	Problem Description
	The electric vehicle routing problem
	Integer programming formulation
	Finite formulation
	Complete formulation

	Solution Approach
	Pricing problem
	ESPPRC
	Labelling Algorithm

	Combined formulation
	Combined pricing problem
	Modification to the labelling algorithm

	Computational results
	Master Problem
	Performance LP bounds
	Performance of the pricing problems
	Computation LP solutions combined formulation

	Conclusion
	Combined formulation: mathematical notation

