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Abstract

In this study we develop a Bayesian non-homogeneous switching state space model to forecast

the annual income distribution of households living in the Netherlands. This Bayesian model

captures the time-varying hidden group structure among households by letting the households’

hidden group membership follow a non-homogeneous hidden Markov model. This transition

model uses either the multinomial logistic regression model or the logistic stick-breaking process

to link the household characteristics at a certain point in time to the hidden clusters, and sample

efficiently from their posterior distribution by using the the Pólya-gamma data augmentation

technique. Moreover, our model uses a separate state space model for each cluster to capture

gradually changing income processes within a cluster, and to deal with households entering the

dataset in the future by setting their previous earnings to the general income of the cluster.

To estimate the model parameters and to compute the h-step ahead distribution forecast, we

have developed and implemented a posterior Markov chain Monte Carlo sampling algorithm, the

block Gibbs sampling, that iterates between sampling the hidden clusters, the Gaussian states,

and the model parameters. Our results demonstrate that the use of these time-varying clusters

and time varying parameters notably improves the forecasting performance. Our models are

more accurate at forecasting the one-step-ahead income distribution than a single state space

model or a non-homogeneous hidden Markov model, even with households entering the dataset

in the forecasting year itself. Especially, our models with ten clusters obtain better results than

the models with fewer clusters.



Contents

1 Introduction 1

1.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Households’ Earnings 5

2.1 Description of the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Model Specification 9

3.1 The Local Level Trend Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Group Membership Transition Model . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Known Number of Groups (Parametric) . . . . . . . . . . . . . . . . . . . 12

3.2.2 Unknown Number of Groups (Non-Parametric) . . . . . . . . . . . . . . . 13

3.2.3 Global-Local Shrinkage Prior . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Bayesian Inference and Forecasting 15

4.1 MCMC Sampling from Posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Updating the Hidden States . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.2 Updating the Gaussian states . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.3 Updating the Parameters of the Local Level Trend Model . . . . . . . . . 19

4.2 Forecast Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Forecasting the h-step-head Income Distribution . . . . . . . . . . . . . . 20

4.2.2 Forecasting Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Evaluation 22

5.1 Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Model Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3 Out-of-Sample Forecasting Performance . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 Group Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4.1 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4.2 Cluster Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.3 Cluster Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4.4 Matching True Earnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.5 Forecasting Household Earnings Distribution . . . . . . . . . . . . . . . . . . . . 30

6 Discussion & Conclusion 35

6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Bibliography 38

Appendix 42

iii



Chapter 1

Introduction

Forecasting the annual income distribution plays an important role in statistically summarising

future earnings, in studying economic inequality, and in being an input into studies of for in-

stance forecasting consumption and savings (Altonji et al., 2022). Therefore, in this thesis we

develop a Bayesian non-homogeneous switching state space model to forecast the annual income

distribution of households living in the Netherlands. This model tries to capture the time-varying

hidden group structure among the households by either using a parametric or non-parametric

non-homogeneous Hidden Markov Model and uses a state space model for each individual cluster

to model the clusters’ overall income and income change over the years. As a result, we are able

to model highly non-linear patterns in the income distribution; to account for a large increase

or decrease in household earnings due to ageing, divorce or job loss; and to capture gradually

changing income processes by using time-varying model parameters. Furthermore, our model

corrects the income distribution forecasts for future changes in the Dutch population by utiliz-

ing a population forecasting model, as these changes also affect the future income distributions.

For example, if we expect to have more low-income elderly people relative to other groups (e.g.

young adults), the average income in the Netherlands will decline.

Many existing Bayesian approaches for income dynamics assume a unique fixed effect to

incorporate heterogeneity among households (Gu and Koenker, 2017; Arellano et al., 2017).

However, we cannot compute a unique fixed effect for each household individually, because

households can leave and enter our panel dataset at any time. They might even leave forever

due to death or emigration, or they might enter to the dataset sometime in the future. Moreover,

our household earnings panel features a large cross-sectional dimension N but short time series T .

A unique fixed effect will introduce a tremendous number of parameters, and in short panel data

models these fixed effect estimators suffer from the “incidental parameters” problem (Neyman

and Scott, 1948) leading to inaccurate estimates and unreliable forecasts. To address these

problems, we divide the households into a finite number of groups with an unknown group

structure in advance, and we let households within a group share the same parameters, as we

expect that these households will have equivalent unit-specific parameters. Hence, our method

tries to optimise the unknown time-varying group structure between households as well as the

parameters associated with these groups simultaneously.

Still, much research on these grouped fixed-effects models assumes that individual group

membership does not vary over time (Bonhomme and Manresa, 2015), while households tend

to transition between groups. They might divorce, lose their jobs, or become older. Thus,

instead of modeling cluster memberships as being time independent, we model them as first

order Markov process by using a discrete-state Hidden Markov model (HMM). A HMM models

a sequence of observations that are drawn conditionally on a fixed number of discrete hidden

states, which were generated by a first-order Markov process (Rabiner, 1989). The HMM can thus

be seen as a time-dependent clustering technique where the hidden states represent the cluster

memberships and the Markov process the temporal dependence. However, the time-homogeneity

of the standard HMM can be limiting, as the transition probabilities may vary over time and

might differ between individual households. Therefore, we relax this assumption and allow

the transition probabilities to be dependent on exogenous variables (e.g. age, education level),

resulting in a non-homogeneous Hidden Markov model (NHMM). In a NHMM, we connect the

1



2 Chapter 1 Introduction

transition probabilities with the coefficients of the exogenous variables through a link function,

typically the multinomial logistic (MNL) or the multinomial probit (MNP). We have chosen to

use MNL over MNP because MNL has a more straight-forward interpretation of the parameters

than MNP. Moreover, it has an efficient conjugate sampling scheme of the MNL parameters,

the Pólya-Gamma data augmentation method, introduced by Polson et al. (2013). This enables

handling much larger datasets. It also enables adding a global local shrinkage prior, in particular

the horseshoe prior (Carvalho et al., 2009), on the coefficients to deal with sparsity in our

exogenous variables (Uddin and Gaskins, 2023).

Nevertheless, the overall household earnings tend to slightly change every year, and thus a

change in income should not always lead to a change in cluster membership. Otherwise, low-

income households will slowly shift towards high-income clusters resulting in empty low-income

clusters. Besides, current earnings will generally depend on previous earnings when a household

has not experienced any life event, such as a divorce or job loss. Consequently, we model the

household earnings as a local level trend model. And, instead of only using a HMM we now

use a switching state space model (SSSM) (i.e. switching linear dynamical system) to model

the household earnings. In a SSSM, the parameters of the state space model (SSM) switch

according to the discrete hidden states of a HMM (Hamilton, 1990). It has an advantage over

auto-regressive panel data models, since we can straightforwardly cope with missing observations

by letting their previous earnings follow the general income of the cluster. Additionally, a SSM

can be regarded as a regression model with time-varying regression coefficients, and hence,

it enables us to capture income processes which gradually change over time. Despite these

advantages the exact inference of the SSSM is intractable, and we require approximate inference

algorithms. Therefore, we use blocked Gibbs sampling to sample the Gaussian states and hidden

states sequentially. Still, a SSSM typically assumes that the number of groups is a known and

fixed quantity, and specifying this number in advance has some significant drawbacks. Therefore,

we also propose a non-parametric switching state space model that uses a hierarchical logistic

stick-breaking process HMM (Teh et al., 2006; Ren et al., 2011) to switch between the infinite

hidden states, and that models each row of the infinite state transition matrix with a logistic

stick-breaking hierarchical Dirichlet process prior (Rigon and Durante, 2021; Linderman et al.,

2015).

In summary, our study examines various approaches to forecast the h-step-ahead annual

household income distribution. We look at a non-homogeneous HMM, a non-homogeoneous

SSSM, and a non-parametric non-homogeoneous SSSM, for which their hidden states follow

a non-homogeneous first-order Markov process using either the multinomial logistic regression

model or the logistic stick-breaking process. Hence, households can transition between a count-

ably (in)finite number of clusters according to their characteristics at that particular point in

time, and the household earnings evolve by letting the cluster parameters follow a local level

trend model. Thus, the common income of the clusters might alter over time and may thereby

prevent certain clusters from emptying out. To estimate the model parameters and to compute

the h-step ahead distribution forecast, we have developed and implemented a posterior Markov

chain Monte Carlo (MCMC) sampling algorithm, the block Gibbs sampling, that iterates be-

tween sampling the hidden states, the Gaussian states, and the model parameters. However,

due to time restrictions, we use a “weak limit” approximation of the non-parametric SSSM that

truncates the number of clusters to a fixed truncation level (Fox et al., 2011a).

Our results show that non-homogeneous SSSMs (NSSSMs) are more accurate at forecasting

the income distribution than a single state space model according to the Anderson Darling test

statistic. This result demonstrates that the use of clusters improves the forecasting performance.
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In addition, our results show that our NSSSMs are better at forecasting the distribution than

non-homogeneous hidden Markov Models, even with households entering the dataset in the

forecasting year itself, so their previous earnings were unknown. Although we truncate the non-

parametric NSSSM to 10 clusters, our weak limit non-parametric models still perform comparably

and sometimes even better than parametric NSSSMs with 10 clusters. The models forecast the

distribution less accurately if they use fewer clusters. Six clusters can still obtain good results,

but in that case it is necessary to pre-define the households based on their household composition

and age.

1.1 Prior Work

In this section we give a concise overview of some prior work related to our thesis, as our study

relates to several disciplines in the literature. Firstly, it relates to the literature on univariate

models of earnings dynamics, which already dates back to early contributions such as Lillard and

Weiss (1979) and MaCurdy (1982). Although prior literature has primarily focused on linear

ARMA-type time series models, recent literature also looks at non-linear earnings processes,

and examines the degree of heterogeneity in the parameters across individuals, mainly to allo-

cate the total error variances into transitory and permanent components (Fernández-Val et al.,

2022). Geweke and Keane (2000) developed a Bayesian model to consider non-normal shocks

using a mixture of three normal distributions. Arellano et al. (2017) specified an age-dependent

non-linear earnings process that separately identifies the distributions of the persistent and the

transitory components by using a quantile-based panel data method. Hu et al. (2019) developed

a semi-parametric state space model by modelling the persistent component through a unit root

process and the transitory component through a semi-parametric model of a higher-order ARMA

process. However, prior work on for example consumption and savings uses family earnings (or

household earnings) and not individual earnings as their input (Altonji et al., 2022). Only a

few studies consider household earnings. Altonji et al. (2021) described an econometric model

of earnings, marriage, and family income by modeling marital transitions. Additionally, most

of these models mentioned primarily focused on directly modeling the transitory and perma-

nent components of individual income shocks, while our model indirectly models the transitory

component through cluster transitions and permanent component through a local linear trend.

Besides, they are aimed at providing statistical insights about the annual earnings, and are not

designed for forecasting an overall income distribution.

Consequently, this thesis also contributes to the sparse panel forecast literature. Wang et al.

(2019) estimated the slope parameters of panel data regressions by using a pooling averaging

method. They achieved an optimal bias-variance trade-off by combining the estimators from

different pooling specifications with appropriate weights. But, their approach assumed regres-

sion with a long-time dimension, while we need a method for a very short time dimension. Liu

et al. (2020), for instance, suggested an empirical Bayes predictor that uses the cross-sectional

information in the panel and Tweedie’s formula (Robbins, 1992) to construct a prior distribu-

tion either parametrically or non-parametrically. This distribution can subsequently be used to

form a posterior mean predictor for each cross-sectional unit. Liu (2022) proposed a dynamic

linear panel data model that draws the individual effect from a Bayesian semi-parametric dis-

tribution. This distribution allows for correlation between the heterogeneous parameters and

the initial conditions utilising the probit stick-breaking process prior (Rodriguez and Dunson,

2011). However, many of these panel data models assume that the households are observable

the full time span, and they do not deal with observations entering the dataset at a later point
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in time. Therefore, our work also relates to the literature on clustering in panel data models,

as we assign such unobserved observations to a matching cluster. One strand of methods to

estimate these latent groups addresses adaptations of the k-means clustering technique (Lin and

Ng, 2012; Bonhomme and Manresa, 2015; Bonhomme et al., 2022). These methods iterate be-

tween estimating the group membership and the model parameters. Su et al. (2016) proposed an

alternative approach, a lasso-type estimator. C-Lasso is a penalized technique that shrinks the

individual level coefficients to the unknown group specific coefficients. This parametric approach

have been further expanded to a non-parametric approach by Su et al. (2019) to allow for time

varying coefficients. Similar to our approach is the use of model based clustering techniques,

such as mixture or hidden Markov models. Whereas Fröhwirth-Schnatter and Kaufmann (2008)

proposed a Bayesian finite-mixture model to group the time series of as panel, Kim and Wang

(2019) proposed an non-parametric mixture model by adopting the Dirichlet process prior. How-

ever, many of these previous studies do not consider individual cluster membership that could

change over time; they do not study time varying model parameters; and they only predict the

parameters for a known time span.

Lastly, we build upon the literature of (non-)parametric Bayesian Switching State Space

Models. While plentiful earlier studies have worked on Bayesian methods for SSSMs (Frühwirth-

Schnatter, 2001; Kim et al., 1999; Ghahramani and Hinton, 2000), there has been little work

on Bayesian non-parametric or non-homogeneous SSSMs (NSSSMs). Recent studies mainly

initiated (non-)parametric Bayesian non-homogeneous HHMs to forecast (multivariate) time

series (Hoskovec et al., 2022; Holsclaw et al., 2017; Koki et al., 2022). Fox et al. (2011a),

for instance, developed a Bayesian Switching Linear Dynamic System with a Gibbs sampling

inference scheme that utilizes a variant of the hierarchical Dirichlet process HMM (HDP-HMM),

the sticky HDP-HMM, to improve control over the number of states. Linderman et al. (2017)

proposed a non-parametric non-homogeneous SSSM for which the transition probabilities depend

on the continuous latent states using the Pólya-gamma auxiliary variable technique. Nassar et al.

(2019) builds on the recurrent SLDS (Linderman et al., 2017) by introducing the tree-structured

stick breaking that generalizes the sequential logistic stick breaking process. Nonetheless, our

work is closely related to the work of Linderman et al. (2017), as they also utilised the Pólya-

gamma data augmentation to model the hidden states via the hierarchical logistic stick breaking

HMM. Therefore, we have applied a similar Gibbs sampling inference scheme, but we have

modified the model in order that households follow the clusters’ variance as well as their mean,

and we have let our transition probabilities depend on exogenous variables instead of the Gaussian

states.

1.2 Thesis Structure

We proceed as follows. In Chapter 2 we give an description of the household earnings dataset and

the population forecasts we use in our models. Chapter 3 describes the local level trend model

and the multinomial logistic model that respectively models the clusters’ general income and the

cluster membership of the households. In Chapter 4, we specify the Markov Chain Monte Carlo

steps we have constructed and implemented to estimate the model parameters and to obtain the

h-step ahead forecasting of the household earnings distribution. The results that show how well

our models forecast are given in Chapter 5. Finally, we conclude our study with an discussion

of our work in Chapter 6.



Chapter 2

Households’ Earnings

In this chapter we give a description of the household earnings data and the exogenous covariates,

which we have used in this study. We also briefly describe the results of the population forecasting

model as these results are used to correct the income distribution forecasts for changes in the

future population.

2.1 Description of the dataset

To forecast the household income distribution we use the earnings data of households living in the

Netherlands collected by the non-public micro-data catalogue of statistics Netherlands (CBS).

The household earnings data corresponds to the annual real disposable household income from

December 2011 till December 2020 with December 2020 as reference year. A household’s dis-

posable income consists of the gross income minus current transfers such as alimony from the

ex-spouse, income insurance contributions, health insurance contributions, and taxes on income

and assets. These data files contain the household earnings of more than eight million house-

holds. However, because of the time and memory restrictions of our models and of the closed

CBS environment we only use 106149 randomly selected households to fit our models. We ran-

domly select the households, since we assume that a large enough dataset will be representative

of the entire dataset. Moreover, each year we select some new households, so some households

may have an unknown income for previous years. Nevertheless, we assume that the group of

households with a very low or large income may be difficult to predict, as their income is often

temporary. Therefore, we have not selected the households which had an income lower than

10000 and higher than 100000 euros in the year they are selected. Table 1 gives an overview of

the annual real disposable household income by representing its 10th, 30th, 50th, 70th, and 90th

percentile and its mean (µ̂) for both our training dataset of 106149 households and a dataset of 5

million households in order to demonstrate our dataset its representativeness. First of all, Table

1 the second column illustrates that each year the total number of households varies, because

households enter the dataset at a later point in time. In addition, it shows that the percentiles of

our dataset slightly differ from the population of 5 million households. Our dataset has a smaller

10% and 30% percentile and mean (µ̂), and it has a larger 50%, 70%, and 90% percentile. More-

over, Table 1 shows that the households earnings increases over the years, especially for the

high-income groups. To illustrates how well the income distributions of our dataset correspond

to distributions of the dataset of 5 million households, Figure 1 presents the histograms of the

households earnings for both datasets. Figure 1a demonstrates that our dataset has some odd

peaks around an income of 20000 and 100000 euros, but generally it follows a similar pattern as

in Figure 1b: The overall income has slightly been increased; the distribution has got a fatter

tail due to the dispersion of the high-income households; and the low-income group has slightly

be declined.

Whether households belong to a certain income group can potentially depend on certain house-

hold characteristics. Single-earners might have lower household earnings than dual-earners, and

young households might earn less than middle-age households due to the absence of experience.

Therefore, changes in these characteristics may affect households’ transitions to another income

5
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106149 households 5 million households

N 10% 30% 50% 70% 90% µ̂ 10% 30% 50% 70% 90% µ̂

2011 96323 14.25 24.72 36.99 51.10 74.92 41.23 14.60 25.10 36.83 50.67 74.11 42.12

2012 98357 14.00 24.43 36.59 50.86 75.04 41.07 14.26 24.52 35.98 49.97 73.43 41.48

2013 100188 14.28 24.49 36.62 51.32 75.91 41.79 14.39 24.36 35.71 50.13 73.85 42.08

2014 102144 14.51 24.85 37.14 52.12 77.09 42.16 14.53 24.44 35.76 50.43 74.41 41.89

2015 103460 15.01 25.81 38.57 54.46 80.47 43.93 14.95 25.23 36.90 52.45 77.09 43.42

2016 103901 15.63 26.63 39.81 56.30 83.42 45.47 15.65 26.25 38.38 54.22 79.43 45.18

2017 104383 15.96 27.12 40.78 57.60 85.38 46.55 16.13 27.03 39.68 55.71 81.26 46.47

2018 105032 16.34 27.99 42.24 59.74 88.70 48.81 16.74 28.19 41.41 57.91 84.36 49.07

2019 105535 16.53 28.38 42.97 61.19 90.91 49.39 17.13 28.82 42.50 59.45 86.15 49.72

2020 106149 16.71 28.94 44.10 63.22 94.00 50.96 17.58 29.75 43.91 61.52 89.28 51.53

Table 1: 10th, 30th, 50th, 70th, and 90th percentile, and mean (µ̂) of the household earnings in
euros for our training dataset of 106149 households and a dataset of 5 million households (×1000).

(a) Our training dataset of 106149 households (b) Dataset of 5 million households

Fig. 1: Histograms of the household earnings from our training dataset of 106149 households
and from the dataset of 5 million households for the years 2011, 2016, 2020.

group. In this study, we only look at a small number of household characteristics in order to

limit our computational time and to enable matching these characteristics with those from the

population forecast. The first two columns of Table 2 summarise the number of households

for each characteristic in 2011 and 2020: age, education level, generation and the household

composition. The main income source is given by 26.6% single-earners, 46.4% multiple-earners,

and 27% benefit recipients in 2011 and in 2020 20.4% single-earners, 46.4% multiple-earners, and

33.2% benefit recipients. The characteristics ‘age’, ‘generation’, and ‘education level’ respectively

represent the age, generation, and education level of the household’s main breadwinner, which

is specified as the parent or adult with the highest personal income. We have categorised the

education level into three levels according to the standard educational classification1 given by

CBS. We have used generation instead of the ethnicity, as we had no access to ethnicity because

of its sensitivity. We have grouped the main income source into single-earner, multiple-earners,

and benefit recipients to limit the number of categories. The group of benefit recipients con-

sists of unemployment, social assistance, social welfare, incapacity, pension, and student benefit

recipients. The household composition is categorised into single-person (single), single-parent

(single+), couple without children (couple), couple with children (couple+), and people living

in institutions, facilities and homes (institu(tional)). Figure 2 illustrates the 10th, 30th, 50th,

70th and 90th income percentile of 2011 and 2020 for the five categories over the households

1https://www.cbs.nl/nl-nl/onze-diensten/methoden/classificaties/onderwijs-en-beroepen/

standaard-onderwijsindeling--soi--/standaard-onderwijsindeling-2021

https://www.cbs.nl/nl-nl/onze-diensten/methoden/classificaties/onderwijs-en-beroepen/standaard-onderwijsindeling--soi--/standaard-onderwijsindeling-2021
https://www.cbs.nl/nl-nl/onze-diensten/methoden/classificaties/onderwijs-en-beroepen/standaard-onderwijsindeling--soi--/standaard-onderwijsindeling-2021
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earnings from our training dataset. For clarification, the color transitions imply the percentile

limits. Thus, the boundary between red and orange symbolises the 10th percentile. Figure 2

demonstrates that household earnings significantly varies across age groups, education levels,

and main income sources. It also show that the 50%, 70%, and 90% percentile have increased

over the years, except for benefits recipients and elderly.

(a) 2011 (b) 2020

Fig. 2: The 10%, 30%, 50%, 70%, and 90% income percentile over our training dataset of 106194
households disaggregated across the different categories (age, education level, household compo-
sition, generation, and main income source) for the years 2011 and 2020. The color transitions
denote the income percentiles.

In addition to small annual income shifts, the population structure of the Netherlands also

evolves. For instance, due to an ageing population the number of households above 70+ will

grow. Such a development could affect the overall future household earnings, and therefore, we

must correct our predicted income densities for these demographic changes. We thereby use a

population forecasting model developed by ABF Research2. This model predicts the number of

households from 2020 to 2050 for a different age, household composition, ethnicity, and education

level. The last three columns of Table 2 present the percentages of the number of households

having these characteristics for 2020, 2024, and 2029. It illustrates that the number of households

above 70+ will grow; that more households will live as a single-person household; and that in the

future the Netherlands will have more households with a migration background. As demonstrated

in Table 2, these forecast percentages differ from the percentages of our training dataset. Our

dataset consists of fewer elderly people (9.4% over 22.0%) and more couples with children (33.1%

over 25.4%). As be noted, this forecasting model does not incorporate income source. To adjust

for this category we use the distribution of the main income source from 2020 to determine

how many households are single-earners, multiple-earners, or benefit recipients given the other

categories.

2https://abfresearch.nl

https://abfresearch.nl
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Training dataset Population forecast

2011 2020 2020 2024 2029

Age

20-25 4.4 0.1 3.4 3.2 3.0

25-30 9.7 2.2 6.7 6.4 6.3

30-35 11.5 7.5 7.9 8.0 7.8

35-40 12.7 10.6 7.6 7.9 8.2

40-45 14.9 11.3 7.6 7.6 7.9

45-50 13.8 12.7 8.5 7.5 7.5

50-55 11.7 14.3 9.8 8.8 7.4

55-60 9.6 12.7 9.7 9.5 8.4

60-65 6.7 10.7 8.8 9.2 9.0

65-70 3.4 8.5 8.0 8.2 8.7

70+ 1.6 9.4 22.0 23.7 25.8

Total 100% 100% 100% 100% 100%

Training dataset Population forecast

2011 2020 2020 2024 2029

Education
Level

Low 25.0 24.6 29.9 27.9 25.3

Middle 34.8 34.9 30.8 32.2 34.1

High 40.2 40.5 39.3 39.9 40.7

Total 100% 100% 100% 100% 100%

Generation

Native 77.3 76.9 75.8 73.9 71.4

1e 14.7 14.8 16.4 17.9 19.7

2e 8.0 8.3 7.8 8.3 8.9

Total 100% 100% 100% 100% 100%

Composition

Single 35.8 34.4 38.3 39.3 40.6

Single+ 8.8 8.6 7.4 7.3 7.1

Couple 20.3 22.5 28.4 28.3 27.9

Couple+ 34.0 33.1 25.4 24.6 23.9

Institutional 1.1 1.4 0.5 0.5 0.5

Total 100% 100% 100% 100% 100%

Table 2: Percentages of households (%) having a certain age, education level, generation, and
household composition in our training dataset of 106149 households for the years 2011 and 2020
and in the population forecasts of 2020, 2024, and 2029.



Chapter 3

Model Specification

In this chapter, we discuss our local level trend model (Section 3.1) which has a time-varying la-

tent group structure to introduce non-linearity in the earnings distribution forecasts. This hidden

group structure depends on both the households earnings and their characteristics, and therefore

we model the transition probabilities using a multinomial logistic (MNL) model regarding an

either known or unknown number of groups, as described in Section 3.2.

3.1 The Local Level Trend Model

We consider a panel of household observations {(yit, xit)} with i = 1, . . . , N households in periods

t = 1, . . . , T . yit denotes the logarithm of household earnings; and xit is a P × 1 vector of

exogenous variables. A household can enter and leave the dataset at anytime, and therefore

some yit and xit may be missing over the given time span. To forecast the household earnings,

our model first divide the households into a number of clusters with an unknown group structure

in advance. Such a division aims to ensure that households with an identical income profile and

similar characteristics end up in the same cluster, and thus, they will share the same model

components. Our model consists of a group-specific intercept and trend component, which

respectively represent the average income and income change of a particular group. We assume

that these model components (intercept and trend) vary over time; may differ between the various

clusters; and are auto-correlated within a cluster through time, as current household earnings

heavily depend on previous earnings. Therefore, we model their movement as a local level trend

model with a time-varying hidden group structure:

yit = α
(git)
it + εit εit ∼ N(0, σ2

ε) (3.1)

α
(k)
it = α

(k)
it−1 + θ

(k)
it−1 + η

(k)
it η

(k)
it ∼ N(0, σ2

η(k)) (3.2)

θ
(k)
it = θ

(k)
it−1 + ζ

(k)
it ζ

(k)
it ∼ N(0, σ2

ζ(k)) (3.3)

where ϵit is the observation error term modeled with a normal distribution and featured by

a zero mean and homoskedastic variance (σ2
ε) regardless of time, household, or group member-

ship. α
(git)
it denotes the time-varying group-specific intercept, and θ

(k)
it identifies the time-varying

group-specific trend. α
(k)
it follows a random walk with an extra slope component θ

(k)
it−1 and state

disturbance σ2
η(k) . θ

(k)
it follows a regular random walk with state disturbance σ2

ζ(k) . These state

disturbances are also modeled with a normal distribution and introduce some individual-level

heterogeneity within each group, even over time. As some yit may be unknown at t = 1, we

specify an initialisation equation to initialise α
(k)
i1 and θ

(k)
i1 at t = 1:

α
(k)
i1 ∼ N(µα(k) , σ2

α(k)) θ
(k)
i1 ∼ N(µθ(k) , σθ(k)) (3.4)

Hence, we no longer define µα(k) and µθ(k) for each household individually in order to reduce

the number of parameters in our model, and to enable income forecasting of households entering

the dataset somewhere in the future. The superscript git ∈ {1, . . . ,K} refers to the group

membership of household i at time period t with either a known or an unknown number of

9
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groups K. This group membership depends on the household characteristics (xit) at time point

t, and therefore may vary over time (git−1 ̸= git).

Since the model parameters follow a continuous state space model and the cluster transitions

follow a discrete HMM, we can represent our model as a time-invariant switching linear state

space model (SSSM). Which can be represented respectively by an observation and a state

equation:

yit =
[
1 0

]αgitit
θgitit

+
[
σ2
ε

]
= Hagitit +R (3.5)

a
(k)
it =

α(k)
it

θ
(k)
it

 =

1 1

0 1

α(k)
it−1

θ
(k)
it−1

+

σ2
η(k) 0

0 σ2
ζ(k)

 = Fa
(k)
it−1 +Q(k) (3.6)

where F and H are fixed matrices identical to all households and Q(k) and R respectively contain

the state and observation disturbance(s). The state disturbances in Q(k) are uncorrelated. As

ai1 is an unknown quantity beforehand, we initialise ai1 by sampling from a normal distribution,

and we assume that the initial state disturbances in V
(k)
0 are uncorrelated:

a
(k)
i1 ∼ N

µα(k)

µθ(k)

 ,
σ2

α(k) 0

0 σ2
θ(k)

 = N(µ
(k)
0 , V

(k)
0 ) (3.7)

The main goal of this study is to forecast the future distribution in T + h by estimating the

model parameters (Λ) and the transition distribution parameters (Section 3.2) for k = 1, . . . ,K

by using the sample from period 1 to period T :

Λ = [µα(k) , µθ(k) , σ2
α(k) , σ

2
θ(k) , σ

2
η(k) , σ

2
ζ(k) , σ

2
ε ] βk = [λk, γ1k, . . . , γKk]

We do not aim to forecast the earnings of an individual household. Our panel is rather short,

and these forecasts may be influenced by many unknown factors. Instead of household-specific

parameters we estimate the parameters of distinct clusters that characterise several group of

households in our population, such as elderly or young adults. Households can transition between

these clusters such that they move to the cluster that best represents them at that specific point

in time. We thereby assume that the identified clusters characterise both today’s households and

future households. For instance, the future elderly have a similar income as the elderly of today

adjusted for an annual income change. Figure 3 presents a schematic illustration of our model,

in which the circles symbolises the parameters and the squares the data. Figure 3 illustrates

that we compute a Gaussian states a
(k)
it for each k = 1, . . . ,K. However, only the Gaussian state

belonging to the household’s cluster a
(git)
it affects the household’s predicted income yit at time t.

In addition, we only update a Gaussian state of a cluster if a household belongs to that cluster.

The other Gaussian states will follow the clusters’ general income, since we have no knowledge

about what their earnings would have been if the households had been in a different cluster at

that particular time. We only have this information, if a household had belonged to this cluster

somewhere in the past, as demonstrated by a
(2)
i2 in Figure 3. Moreover, Figure 3 shows that the

Gaussian states and the hidden states respectively depend on the model parameters (Λ) and the

multinomial logistic model parameters (βk). Whereas we have discussed the model parameters

in this section, we will describe the latter in the next section.
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Fig. 3: A schematic illustration of our local level trend model with a time-varying hidden group
structure. The circles symbolises the parameters, the squares the data, and the arrows the
dependence.

3.2 Group Membership Transition Model

As group membership varies over time due to changing households’ characteristics, we model

their membership as a K-state non-homogeneous first order Hidden Markov process (NHMM).

In a NHMM, the transition probabilities vary over time as a function of the covariates, as

demonstrated by Figure 3. Additionally, these probabilities depend upon the previous hidden

states by including a set of k = 1, . . . ,K transition regressors (γjk). Nonetheless, to allow for

a more parsimonious approach the p = 1, . . . , P coefficients of the exogenous variables do not

dependent on the previous state, but only on the current state (λkp). Hence, we describe the

dynamics of the hidden clusters by the time-varying transition probabilities πjk(xit) for j, k =

1, . . . ,K. These probabilities depend on the exogenous variables xit and previous state (git−1)

of household i at time point t, and are given by the following multinomial logistic relationship:

πjk(xit) = P (git = k|git−1 = j, xit, β) =
eγjk+xitλk∑K
l=1 e

γjl+xitλl

=
exitβjk∑K
l=1 e

xitβjl

(3.8)

where λk is a P -dimensional vector of coefficients corresponding to the P components of xit =

(xit1, · · ·xitP ), and γjk denotes a k transition regressor representing the intercept from cluster

j to cluster k. We let βjk = (λk, γjk) for all j, k ∈ 1, · · · ,K, and we assign β·K+P to zero for

identifiability. Still, in a non-homogeneous hidden Markov model (NHMM), we do not directly

observe the multinomial data as in multinomial logistic regression. Therefore, we arrange the

sampled hidden cluster memberships git in matrix form Y . Y is a TN by K matrix having git as

entries, and its columns contain the binary representation of the hidden clusters: Yit = [0, 0, 1] if

git = 2. To determine the transition regressor γjk and the coefficients of the exogenous variables

λk, we include the previous group membership in addition to the exogenous variables in matrix

X. As these exogenous variables are not continuous but discrete without an inherent order, we

cannot directly use them in our transition model (Eq 3.8). Therefore, we encode these nominal

data into a binary format using an one-hot-encoding, which results in a total of twenty-five ex-

ogenous variables. By using an one-hot-encoding we can set the variables of unknown household
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to zeros. Thus, the first K columns of X encode the previous group membership in a binary

form, and the second P columns contains the one-hot encoding of the exogenous variables. If an

observation is unknown in the dataset, we set both Yit and Xit to a row of zeros. Therefore, this

data point does not affect the MNL parameters, and its transition probability will be the same

for each cluster.

However, the sampling scheme for the multinomial logistic (MNL) model coefficients βk can

be challenging due to the intractable form of the likelihood and the lack of a conjugate prior

for the coefficients (Wang et al., 2023). Therefore, we adopt the efficient data augmentation

approach proposed by Polson et al. (2013) that enables conjugate sampling of the MNL co-

efficients via Pólya-Gamma distribution. Polson et al. (2013) proved two useful properties of

Pólya-gamma variables. First,

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞

0

e−ωψ
2/2pPG(ω|b, 0)dω (3.9)

where κ = a− b/2 and pPG(ω|b, 0) is the density of the Pólya-Gamma distribution, and second,

p(ω|ψ) ∼ PG(b, ψ), for b > 0. Based on these main results, we can now compute the full

conditional posterior of βk using a normal distribution, which results in a two-step sampling

scheme: a Pólya-Gamma update for the latent variables ωitk and a joint Gaussian update for

MNL coefficients βk ∼ N(mk, Vk). In respectively Section 3.2.1 and 3.2.2, we describe how we

compute mk for either a fixed number of clusters (parametric) or infinite number of clusters

(non-parametric). In addition, in Section 3.2.3 we explain how we have added a shrinkage prior

to the coefficients to handle the many zeros in the exogenous variables.

3.2.1 Known Number of Groups (Parametric)

When the number of clusters is a fixed quantity, we can specify the full conditional posterior for βk

given the other parameters of the model. Thereby, we use the multinomial logistic representation

of the transition probabilities in Eq. 3.8, and we follow the steps of Held and Holmes (2006):

p(βk|β−k, xit) = p(βk|β−k)
T∏
t=1

N∏
i=1

K−1∏
k=1

(πjk(xit))
1[git=k]

= p(βk|β−k)
T∏
t=1

N∏
i=1

K−1∏
k=1

(
exitβk∑K
l=1 e

xitβl

)1[git=k]

= p(βk|β−k)
T∏
t=1

N∏
i=1

(
eηitk

1 + eηitk

)1[git=k]( 1

1 + eηitk

)1[git ̸=k]

= p(βk|β−k)
T∏
t=1

N∏
i=1

(eηitk)1[git=k]

1 + eηitk

(3.10)

where ηitk = xitβk − citk = xitβk − ln(
∑
l ̸=k xitβl). By combining the property of the Pólya-

Gamma distribution in Eq. 3.9 and the full conditional posterior (Eq. 3.10), we assume con-

ditionally conjugate priors for the MNL coefficients βk ∼ N(m0, V0), and hence, conditioning

on the Pólya-Gamma random variables ωitk, the posterior transforms into a single Gaussian

distribution:

βk|Ωk ∼ N(mk, Vk) ωitk|βk ∼ PG(1, ηitk) (3.11)
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where scalars Vk = (X ′ΩkX + V −1
0 )−1 and mk = Vk(X

′((Yk − 1/2) + ΩkCk) + b−1
0 m0). Ωk is a

TN by TN diagonal matrix containing ωitk along the diagonal. m0 and V0 are parameters of the

conjugate prior of the of the form βk ∼ N(m0, V0). Once we have sampled the MNL coefficients

(βk), we can easily obtain the transition probabilities πit(xit) through the logistic relationship

given in Equation 3.8. This leads to a K by K transition matrix for each household i at time t,

where each rows sums to one.

3.2.2 Unknown Number of Groups (Non-Parametric)

Nevertheless, selecting the best number of hidden states is a serious problem for statistical

modeling, and therefore we extend the finite-state HMM to an Hierarchical Dirichlet process

HMM (HDP-HMM) allowing for potentially countably infinite number of hidden states. Instead

of imposing a multinomial logit prior on the rows of the finite state transition matrix, we use

a hierarchical logistic stick-breaking prior. A stick-breaking prior divides a unit-length stick

into infinitely many segments by iteratively breaking off a proportion from the remainder of the

stick, and enables direct sampling despite its infinitely (Sethuraman, 1994). Thereby, the logistic

stick-breaking prior relates each stick-breaking weight to a function of the covariates, the logistic

link function (Rigon and Durante, 2021), and thus, we can define the transition probability from

state j to state k as follows:

p(git = k|git−1 = j, xit) = πjk(xit) =


ξjk(xit)

∏
l<k

(1− ξjl(xit)) k > 1

ξjk(xit) k = 1

(3.12)

where ξjk(xit) is defined as a logistic link function ξjk(xit) =
exitβk

1+exitβk
. And similar to equation

3.10, we can now define the full conditional posterior for βk as follows:

p(βk|β−k, xit) = p(βk|β−k)
T∏
t=1

N∏
i=1

K∏
k=1

(πjk(xit))
1[git=k]

= p(βk|β−k)
T∏
t=1

N∏
i=1

(ξjk(xit))
1[git=k] (1− ξjk(xit))

1[git>k]

= p(βk|β−k)
T∏
t=1

N∏
i=1

(
eβjkxit

1 + eβjkxit

)1[git=k](
1

1 + eβjkxit

)1[git>k]

= p(βk|β−k)
T∏
t=1

N∏
i=1

(eβjkxit)1[git=k]

(1 + eβjkxit)1[git≥k]

(3.13)

And again by applying the Pólya-Gamma data augmentation technique, we can now specify the

full posterior for βk as follows:

βk|Ωk ∼ N(mk, Vk) ωitk|βk, xit ∼ PG(I[git ≥ k], βkxit) (3.14)

where mk = Vk(X
′κ + b−1

0 m0), κ = 1[git = k] − 1[git ≥ k]/2, and Vk = (X ′ΩkX + b−1
0 )−1.

Ωk is again a TN by TN diagonal matrix containing ωitk along the diagonal, and m0 and V0

are parameters of the conjugate prior of the form βk ∼ N(m0, V0). After we have sampled the

MNL coefficients (βk), we can obtain the transition probabilities πit(xit) through the logistic

stick-breaking construction given in Equation 3.12. This leads to a K by K transition matrix for

the current occupied clusters, and we calculate the transition probabilities for a potential new

cluster K + 1 as πj,K+1 = 1−
∑K
k=1 πjk(xit).
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3.2.3 Global-Local Shrinkage Prior

Nevertheless, our exogenous variables x primarily contain zeros, and possibly some predictors

might not have any effect in determining the cluster membership of households. Therefore, we

use a Bayesian variable selection technique in our MNL model, the global-local shrinkage prior,

to cope with this sparseness. As the MNL model has (K − 1) logistic regressions equation,

we express the prior distribution of a regression coefficient as βkp ∼ N(0, δ2kpϕ
2). The local

parameter δkp is the shrinkage parameter of the p predictor for cluster k = 1, . . . ,K− 1, and the

global parameter ϕ2 determines the overall level of shrinkage to all coefficients. We have chosen to

implement the horseshoe prior to sample these global and the local parameters δkp, ϕ
2 ∼ C+(0, 1)

(Carvalho et al., 2009). And we use the data augmentation strategy proposed by Makalic and

Schmidt (2016) to achieve conjugacy of the hyper-parameters. Therefore, we now sample βk

from N(mk, (X
′ΩkX +∆k)

−1). We already defined mk in the previous sections, and ∆k is the

(P +K)× (P +K) diagonal matrix with [(δ1k)
−1, . . . , (δKk)

−1, (δk1ϕ
2)−1, . . . , (δkPϕ

2)−1] on the

diagonal. We set δjk for j = 1, . . . ,K to a fixed value (δjk = 0.01) to account for the prior

variance of the transition regressors (γjk). Namely, households tend to transition towards the

same cluster. As a result, the transition model mainly considers the transition regressors as the

most important coefficients, and it lets the coefficients of the exogenous variables λk shrink to

zero. We sample ϕ2 and δkp for k = 1, . . . ,K − 1 clusters and p = 1, . . . , P predictors from the

following conditional posteriors:

δ2kp|ηkp, βkp, ϕ2 ∼ IG

(
1

2
,

1

ηkp
+
β2
kp

2ϕ2

)
(3.15)

ϕ2|β, δ, ξ ∼ IG

(
(K − 1)P + 1

2
,
1

ξ
+

K−1∑
k=1

P∑
p=1

β2
kp

2δkp

)
(3.16)

ηkp|δkp ∼ IG(1, 1 +
1

δkp
) (3.17)

ξ|ϕ2 ∼ IG(1, 1 +
1

ϕ2
) (3.18)

Here, IG stands for the inverse gamma distribution with probability density of f(x|a, b) ∝
x−a−1e−b/x, x > 0
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Bayesian Inference and Forecasting

In this chapter, we describe how we perform a fully Bayesian inference via a Markov chain Monte

Carlo (MCMC) sampling scheme to obtain samples from the posterior distribution and use them

to approximate the true posterior distribution. In addition, in Section 4.2 we explain how we

compute the h-step-ahead forecast distribution of the household earnings, and how we evaluate

the one-step-ahead forecast distribution against the true income distribution.

4.1 MCMC Sampling from Posterior

For inference in our (non-)parametric non-homogeneous SSSMs, we use a block Gibbs sampler

(Roberts and Sahu, 1997) that groups two or more variables together in a block and update

this block by sampling from the joint distribution of these variables conditioned on all of the

variables, so we can write the joint distribution of observations and hidden states over the model

parameters as follows:

p(g1:T , y1:T , a1:T ) = p(g1)

T∏
t=1

p(gt+1|gt) ·
K∏
k=1

p(a
(k)
1 |g1)

T∏
t=2

p(a
(k)
t |a(k)t−1, gt) ·

T∏
t=1

p(yt|at) (4.1)

where y1:T ; a1:T , and g1:T denote the sequences (of length T ) of the observations and hidden state

variables. As the structure of the model allows for closed form conditional posterior distributions,

we obtain the MCMC samples from the conditional posterior distribution of the parameters by

cycling through the following steps:

1. Calculate the probabilities of the time-varying transition matrix (πjk(xit)) given the tran-

sition distribution parameters β (Section 3.2).

2. Given the model parameters, the Gaussian states, the transition probabilities, and the data,

simulate the hidden states p(g1:T |Λ, a1:T , π, y1:T ) using the the forward filtering, backward

sampling algorithm (Section 4.1.1).

3. Given the hidden states, the model parameters, and the data, simulate the Gaussian states

p(a1:T |g1:T , y1:T ,Λ) using the Kalman Filter and backward sampler (Section 4.1.2).

4. Given the hidden states, the Gaussian states, and the data, sample the model parameters

p(Λ|g1:T , a1:T , y1:T ) (Section 4.1.3)

5. Given the hidden states and the exogenous covariates, sample the transition distribution

parameters p(β|g1:T , x1:T ) using the Pólya-Gamma representation by Polson et al. (2013)

(Section 3.2).

Figure 4 gives a schematic representation of our Gibbs sampling inference scheme. As illus-

trated, to iterate between the sampling states we first require an initialisation of Gibbs sampler.

Therefore, we initialise the MNL parameters β0 and the model parameters Λ0 using their prior

distributions, and we base our initialisation of the hidden states fully on the transition probabili-

ties without knowledge of the Gaussian states. Figure 4 also illustrates that we can update some

parameters several times in succession within a single block, which improves mixing if there is a

strong dependence in the state-process.

15
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Fig. 4: A schematic representation of our block Gibbs sampler hat iterates between sampling
the hidden clusters g1:T , the Gaussian states a1:T , and the model parameters (Λ,β).

4.1.1 Updating the Hidden States

Conditioned on the Gaussian states, the transition matrix, and the data we can jointly update

the hidden states using the forward filtering-backward sampling (FFBS) algorithm (Scott, 2002).

We jointly update these hidden states, as it allows us to avoid mixing problems when individual

sampling states are strongly dependent on one another. We first compute the filtering step to

get the marginal distribution over git given the observations and Gaussian states up to time t as

follows:

p(git = k|y1:t, a1:t,Λ(k)) ∝ p(yit, ait|ait−1,Λ
(k))

K∑
l=1

πlk(xit)p(git−1 = l|a1:t−1, y1:t−1,Λ
(l)) (4.2)

We normalize p(git|y1:t, a1:tΛ(k)) by dividing it by
∑K
k=1 p(git = k|y1:t, a1:tΛ(k)). Once we have

computed the filtered distributions, we can sample from the joint distribution over g1:T by

applying the chain rule (Linderman, 2016):

p(g1:T |y1:T , a1:T ,Λ) ∝ p(gT |y1:T , a1:T ,Λ)
T−1∏
t=1

p(gt|y1:t,Λ, a1:t)p(gt+1|gt, β) (4.3)

Thus, we can sample git in reverse order. We first jointly sample giT ∼ p(giT |y1:T , a1:T ), and
subsequently we sample git given git+1 backwards through:

p(git = k|git+1:T , y1:T , a1:T ) ∝ p(git = k|y1:t, a1:t,Λ(k))πk,git+1(xit) (4.4)

Where git+1 is the most recent sampled cluster at t+1 for household i. We repeat this until we

obtain a value for gi1 for each household i = 1, . . . , N .

As specified in Equation 4.2, this approach requires a value for p(yit, ait|ait−1, git = k,Λ(k)). But

we will face a problem, if we fully follow the computation steps defined in Linderman (2016)

that specified p(yit, ait|ait−1, git = k,Λ(k)) as:

p(yit, ait|ait−1,Λ
(k)) =

p(yit|ait, σ2
ε)p(ait|ait−1, Q

(k)) t > 1

p(yi1|ai1, σ2
ε)p(ai1|µ

(k)
0 , V

(k)
0 ) t = 1

(4.5)

Namely, for t > 1 households tend to transition to a cluster for which their Gaussian states

best match the state disturbances Q(k). As a results, a household does not transition to the

cluster that best corresponds to its income at that point in time. Moreover, the difference

between ait and ait−1 can only be calculated if the households belong to the same cluster at t

and t−1. Otherwise, we calculate the difference between two Gaussian states while not actually

succeeding each other. Thus, we can only compute p(ait|ait−1, Q
(k)), if ait and ait−1 belong to

k. Nevertheless, a household can transition between clusters, so their Gaussian states might not
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belong to the same cluster (agitit , a
git−1

it−1 , git ̸= git−1). Therefore, we define a heuristic approach to

compute p(yit, ait|ait−1, git = k,Λ(k)).

p(yit, ait|Λ(k)) = p(yit|ait,t, σ2
ε)p(ait,1|µ

(k)
0 , V

(k)
0 )

t−1∏
q=1

p(ait,q+1|ait,q, Q(k)) (4.6)

where ait = [ait,1, . . . , ait,t] are the Gaussian states up to time t. This heuristic approach works

well in practise, but we refer to Section 6.1.2 for a more time efficient approach.

4.1.1.1 Non-Parametric

The forward filtering-backward sampler can not directly applied to HMMs with infinite states,

because we need to compute the sum over an infinite number of clusters. Therefore, we have im-

plement the beam sampling algorithm that combines a slice sampler with the forward-backward

algorithm (Gael et al., 2008). It restricts the number of reachable clusters at each MCMC itera-

tions to a finite number by introducing an auxiliary slice variable uit ∼ U(0, πgit−1,git). This slice

variable truncates the sum over the infinite number of clusters to a finite number of clusters by

imposing an restriction on the transition probabilities, 0 < uit < πgi,t−1,git , and we can compute

the filtering step of the FFBS algorithm as follows:

p(git = k|y1:t, a1:t,Λ(k)) ∝ p(yit, ait|ait−1,Λ
(k))

∞∑
l=1

1[uit < πlk(xit)]p(git−1 = l|yi1:t−1, ui1:t−1,Λ
(l)) (4.7)

and in the backward step we sample git for t = T, . . . , 1 as:

p(git = k|gi,t+1:T , y1:T , a1:T ,Λ(k)) ∝ (git = k|yit, ui,1:T , a1:t,Λ
(k))1[uit < πk,git+1

(xit)] (4.8)

However, Fox et al. (2011b) showed that applications of the beam sampler result in slower

mixing rates compared to a truncated approximation of the forward filtering-backward sampler,

for which we fix a truncation level for the logistic stick-breaking process (LSBP) such that the

sum in Equation 4.7 is no longer infinite. Besides, we also experienced that the probability of

moving from one cluster to another cluster decreases drastically, so that most households remain

in the first cluster. Therefore, we mainly examine a weak limit truncation of LSBP-HMM that

fixes the truncation level to a given number, so that we can continue to use the forward filtering-

backward sampler.

4.1.1.2 Label Switching

A potential problem in Bayesian analysis of HMMs is the Label Switching Problem (Jasra et al.,

2005), especially, when we use exchangeable priors for the state specific parameters, as no prior

information is available for the hidden states. This problem arises if the posterior distribution

is invariant to permutations of the state labels, as this leads to identical marginal posterior

distributions of the state specific parameters. Any pair of states could swap labels, while the

likelihood remain identical, which makes the generated MCMC samples non-identifiable. Ac-

cording to Meligkotsidou and Dellaportas (2011) and Holsclaw et al. (2017) NHMMs are less

likely to be affected by this issue than HMMs, as the hidden states are depended on exogenous

covariates. Therefore, we decided not to address this problem. We refer to Section 6.1.2 for some

solutions to this problem and to future research to implement them.

4.1.2 Updating the Gaussian states

Conditioned on the discrete hidden states and the model parameters, our dynamical process sim-

plifies to a time-varying linear state space model. We can then perform a blocked Gibbs update
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for the entire Gaussian state sequence, a1:T , using forward filtering-backward sampling algorithm

(Carter and Kohn, 1994; Frühwirth-Schnatter, 2004), similar as we used in Section 4.1.1. We

can compute the marginal ‘filtered’ distribution p(a
(k)
it |yi1:t, gi1:t,Λ) = N(a

(k)
it |µ(k)

it , V
(k)
t ) using

the Kalman filter, where µ
(k)
it and V

(k)
t are the filtered mean and covariance, respectively for

k = 1, . . . ,K. The Kalman filter consists of iterating forward in time, starting from t = 1 by

using µ
(k)
0 , V

(k)
0 , F , Q(k), H, and R as its input:

K
(k)
1 = V

(k)
0 HT(HV

(k)
0 HT +R)−1

µ
(k)
i1 = µ

(k)
0 +K

(k)
1 (yi1 −Hµ

(k)
0 )

V
(k)
1 = (I −K

(k)
1 H)V

(k)
0

P
(k)
1 = FV

(k)
1 FT +Q(k)

We proceed until we have computed µ
(k)
it and V

(k)
t for t = 2, . . . , T :

K
(k)
t = P

(k)
t−1H

T(HP
(k)
t−1H

T +R)−1

µ
(k)
it = Fµ

(k)
it−1 +K

(k)
t (yit −HFµ

(k)
it−1)

V
(k)
t = (I −K

(k)
t H)P

(k)
t−1

P
(k)
t = FV

(k)
t FT +Q(k)

After we have computed the filtering densities p(at|y1:t, g1:t) for t = 1, . . . , T , we proceed back-

ward in time to draw a joint sample from the backward kernel p(at|at+1, y1:t, g1:t) = N(at|mit, Lt)

with:

C
(k)
t = VtF

T(FVtF
T +Q(k))−1

m
(k)
it = µ

(k)
it + C

(k)
t (a

(k)
it+1 − Fµ

(k)
it )

L
(k)
t = (I − C

(k)
t F )P

(k)
t

Initially, we generate a sample from the filtering density at time T , a
(k)
iT ∼ N(µ

(k)
iT , V

(k)
T ), and

then continue to use a
(k)
it+1 for sampling a

(k)
it ∼ N(m

(k)
it , L

(k)
t ) until we reach a

(k)
i1 for i = 1, . . . , N

households and k = 1, . . . ,K clusters. However, yit is not always known. Households might not

be in the dataset at time t, or they may not belong to cluster k at time t (git ̸= k). Therefore,

we cannot calculate yit−HFµ
(k)
it−1, and we compute µ

(k)
it by Fµ

(k)
it−1 in the forward filtering step

(Durbin and Koopman, 2012). In the backward sampling step we consider two approaches. We

compute m
(k)
it either by µ

(k)
it (1) or by µ

(k)
it + C

(k)
t (a

(k)
it+1 − Fµ

(k)
it ) (2). In option (1) compared

to option (2), the Gaussian states of the missing observations will follow the general income of

the cluster without being influenced by the Gaussian states forward in time, similarly to h-step-

ahead Gaussian states aiT+h. Therefore, the households’ group membership will be determined

more by the cluster’s general income than by the vagaries of the households’ income. Moreover,

by using option (1) we assume that the current households earnings only depend on previous

earnings and not on upcoming earnings, and therefore the current earnings of a household are

only affected by the earnings we actually know at the time t. Nonetheless, with option (2) we

assume that the future household earnings resemble the past earnings, and therefore, we include

information about the future earnings households into the past earnings.

Now that we have obtained a Gaussian state a
(k)
it for all k = 1, . . . ,K, we can define the Gaussian

state given git (ait). However, as we already discussed in Section 4.1.1, we cannot determine the

hidden state git of the households on p(agitit |a
git−1

it−1 ). These Gaussian states may be far apart if
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git ̸= git−1, making Q(k) no longer correspond. Besides, we cannot directly compare a
(git)
it for

t = 2, . . . , T with µ
(k)
0 for k = 1, . . . ,K, as the clusters’ overall income may have shifted in the

upcoming years. Therefore, we require to define the Gaussian states as a vector both containing

the previous and current Gaussian states of cluster git up to time t. Hence, given the hidden

state git we define the Gaussian state ait = [agitit,1, . . . , a
git
it,t] for t = 1 . . . , T . Suppose household

i belongs to cluster l at t = 1, and cluster m at t = 2, its Gaussian states are ai1 = [a
(l)
i1,1] and

ai2 = [a
(m)
i2,1, a

(m)
i2,2].

4.1.3 Updating the Parameters of the Local Level Trend Model

Conditioned on the Gaussian states, the hidden states, and the data, we can sample the model

parameters Λ(k) for k = 1 . . . ,K from their posterior densities. Since we assume that the initial

state disturbances V
(k)
0 are uncorrelated, we place a separate inverse gamma prior IG(ν0, δ0) on

V
(k)
0 which results in the following posterior distribution given µ

(k)
0 :

p(V
(k)
0 |µ(k)

0 , ai1,1) = IG(ν(k), δ(k))

ν(k) = ν0 +
|C(k)

1 |
2

δ(k) = δ0 +
∑
i∈C(k)

1

(ai1,1 − µ
(k)
0 )(ai1,1 − µ

(k)
0 )T

where the set C
(k)
1 implies the set of households belonging to cluster k on time t = 1, |C(k)

1 |
defines the number of household in k at t = 1, and ai1,1 denotes the Gaussian state at t = 1 for

household i. We model µ0 using a Normal prior N(ma(k) , ba(k)) given the initial state noise V
(k)
0 .

Thus, we sample from the posterior given V
(k)
0 :

p(µ
(k)
0 |V (k)

0 , ai1,1) = N(µ(k)
a0 ,Σ

(k)
a0 )

Σ(k)
a0 = (b−1

a(k) + |C1(k) |(V (k)
0 )−1)−1

µ(k)
a0 = Σ(k)

a0 (b
−1
a(k)ma(k) + (V

(k)
0 )−1

∑
i∈C(k)

1

ai1,1)

where the set C1(k) and ai1,1 are already defined above. To improve parameter inference, in

practise we iterate multiple times between sampling µ
(k)
0 given V

(k)
0 and V

(k)
0 given µ

(k)
0 before

moving to the next sampling stage, as illustrated in Figure 4. Similar to initial state noises V
(k)
0 ,

we also assume that the state disturbances in Q(k) are uncorrelated. Therefore, we place an

inverse gamma prior IG(ν0, δ0) on the variances in Q(k), and we define its posterior distribution

as follows:

Q(k) = IG(ν(k), δ(k))

ν(k) = ν0 +
|C(k)
t |
2

δ(k) = δ0 +

T∑
t=2

∑
i∈C(k)

t

(ait,t − Fait−1,t−1)(ait,t − Fait−1,t−1)
T

Where the set C
(k)
t contains the households i belonging to cluster k at t and t−1 for t = 2, . . . , T ,

C
(k)
t represents its cardinality, and ait,t and ait−1,t−1 imply the Gaussian states at t and t−1 for

household i. Lastly, we additionally place an inverse gamma prior IG(ν0, δ0) on the measurement
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noise covariance R, for which we assume it is shared by all clusters. The posterior distribution

is given by σ2
ε ∼ IG(νε, δε) where

νε = ν0 +
TN

2

δε = δ0 +

T∑
t=1

N∑
i=1

(yit −Hait,t)(yit −Hait,t)
T

where ait,t denotes the Gaussian states and yit represents the log household earnings for house-

hold i = 1, . . . , N at time points t = 1, . . . , T .

4.2 Forecast Evaluation

In this section, we describe how we compute the h-step ahead annual household income dis-

tribution and how we compare this distribution forecast with the true distribution from the

data.

4.2.1 Forecasting the h-step-head Income Distribution

As our posterior predictive density cannot be found in closed form, we sample from the posterior

distribution numerically by following the iterative procedure of our MCMC algorithm described

in Section 4.1. At the r-th iteration of our algorithm, the Gibbs sampler has computed model

Mr having model parameters Λr and the transition distribution parameters βr. In order to

predict the h-step ahead forecasting distribution, we sample the households earnings yriT+h for

i = 1, . . . , N households and for r = 1, . . . , R different MCMC draws by following the steps listed

below:

1. Sequentially sample the hidden states gr1:T from p(gr1:T |y1:T , βr, ar1:T , xit) and the Gaussian

states from p(ar1:T |y1:T ,Λr, gr1:T ) for a given number of iterations up to time T , as described

in Section 4.1.

2. Determine the hidden states grT :T+h|xT :T+h, βr, gT by grit = argmaxk π
r
git−1,k

(xit) for t =

T + 1, . . . , T + h.

3. Run the Kalman filter to compute µ
(k)
it and V

(k)
t for t = 1, . . . , T + h, i = 1 . . . , N , and

k = 1, . . . ,K by using the model parameters Λr, the hidden states gr1:T and the data y1:T

up to time T .

4. Sample the Gaussian states arit ∼ N
(
Fµ

(grit)
it−1, FV

(grit)
t−1 FT +Q

(grit)
r

)
for t = T +1, . . . , T +h

given the hidden states grT+1:T+h.

5. Sample the predicted household income yrit ∼ N(arit, σ
2
εr ) for t = T + 1, . . . , T + h and

i = 1, . . . , N

Now, the h-step ahead forecasting distribution for MCMC draw r is given by all N predicted

household earnings for T + h (yrT+h).

4.2.2 Forecasting Criteria

To evaluate our forecasting performance, we look at four different test statistics. We first look at

two individual forecast performance statistics that compare the one-step ahead forecast ŷriT+1 for

models r = 1, . . . , R against its true realisation yit. Although, we are not particularly interested
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in forecasting individual households, we look at these test statistics to still give an indication of

how well our model perform for households individually. To evaluate the point forecasts, we use

the Root Mean Square Forecast Error (RMSFE), which we calculate for each model r apart:

Lr(ŷ1:N,T+1, y1:N,T+1|λr, βr) =
1

N

N∑
i=1

(ŷriT+1 − yiT+1)
2 (4.9)

In addition, we use the continuous ranked probability score (CRPS) to compare the forecasting

performance of individual household. CRPS examines the performance of the density forecast

by computing the squared difference between the individual forecast cumulative distribution

function, FT+1
i (y), over the R models and the empirical CDF of the observation:

CRPST+1 =
1

N

N∑
i=1

∫ ∞

0

(FT+1
i (y)− 1[yiT+1 ≤ y])2dy (4.10)

Secondly, we analyse two distribution forecast performance statistics that compare the one-step

ahead empirical forecast distribution F̂ rT+1 for models r = 1, . . . , R against the true distribution

FT+1 (hypothesized distribution): the Cramer-von Mises test (CVM) and Anderson darling

test (AD). Both criteria are used for judging the goodness of fit of a hypothesized cumulative

distribution function compared to a given empirical distribution function. Since Anderson-

Darling test is a modification of the Cramer-von Mises test, we can define their quadratic EDF

statistics measure as follows:

Q2 = n

∫
[Fn(x)− F (x)]2ϕ(x)dF (x) (4.11)

where ϕ(x) is a weight function, Fn is the empirical cumulative distribution function (CDF),

and F is the hypothesized CDF. When ϕ(x) = 1, we consider the CVM statistic, and when

ϕ(x) = [F (x)(1 − F (x))]−1, we consider the AD statistic. Thus, CVM has more power against

deviations in the middle, as it measures the mean squared difference between the empirical

distribution and the hypothetical CDF. AD places more weight on observations in the tails of

the distribution. As our hypothesized distribution is also an empirical cumulative distribution

function, we use for both tests their 2-sample test variant to compare F̂ rT+1(x) against the

empirical FT+1.



Chapter 5

Evaluation

In this chapter we discuss the forecasting results for the different models we described in Chapter

3. We start this chapter by a short description about our implementation. Then in Section 5.2

we describe the initialisation of our models, and we explain our baseline models. In Section 5.3

we give an overview of the out-of-sample one-step -ahead forecasting performance of all models

we consider in this study. In Section 5.4 we look in more depth to one model in particular

to illustrate how the clusters are formed. In the last section, we try to forecast the future

household earnings distribution from 2020 to 2029 and uses the population forecasts to correct

these distribution for changes in the population.

5.1 Model Implementation

We have implemented our models entirely ourselves. It is written in Python, and it only uses

Numpy1 and Scipy2 for fast matrix computations. Our programming code can be found on

https://github.com/lhmeijer/NSSSM. Our implementation is programmed in the object ori-

ented way such that we can use similar function without writing a lot of duplicate code. Our

implementation contains a class for hidden Markov models, switching state space models and

also mixture models. These classes are set up very flexibly so that one can easily add additional

variables to the model; switch to another transition model; and use various distributions (e.g

normal inverse Wishart) to model the model parameters.

5.2 Model Initialisation

As the initialisation of prior values can have a strong effect on the results, we use informa-

tive priors to estimate the model parameters, primarily based on the data and not on some

prior knowledge. Therefore, we initialise the state disturbances using Q(k) ∼ IG(ν0, δ0), where

α = 10, β = [10, 10] for k = 1, . . . ,K, and the observation distribution using R ∼ IG(10, 10).

For the initial distribution ai1 ∼ (µ
(k)
0 , V

(k
0 ) for i = 1, . . . , N , we use some information from the

dataset of 5 million households. Hence, we initialise V0 ∼ IG(ν0, δ0), where α = 10, β = [10, 10]

for k = 1, . . . ,K, and µ0 ∼ N(m
(k)
a , b

(k)
a ), where b

(k)
a = [1, 0.1] for k = 1, . . . ,K, andm

(k)
a = [x, 0].

x is the 100/K cumulative log percentile over the dataset of 5 million households. Hence, for

K = 4, m
(1)
a = [9.612, 0], m

(2)
a = [10.356, 0], m

(3)
a = [10.706, 0], and m

(4)
a = [11.231, 0]. We have

initialised the coefficients of the transition model βk ∼ N(m0, V0), where m0 = [0, . . . , 0] and V0

is a B ×B diagonal matrix with 0.1 on the diagonal.

Due to time restrictions our posterior results are maximally based on 1550 MCMC draws. For

the different section below we use a different number of draws which we discarded as burn-in, as

for some models we only need a few iterations to already achieve good results. In order to repro-

duce our results, we set the seed value to 1 (Numpy). Furthermore, due to our time constraints

we have only considered a switching state space model with K = 4 (SSSM-4-NT), K = 6 (SSSM-

6-NT), K = 8 (SSSM-8-NT), and K = 10 (SSSM-10-NT), and we have truncated the logistic

1https://numpy.org/
2ttps://scipy.org
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stick-breaking process to K = 10 (TN-SSSM-10-NT) and K = 20 (TN-SSSM-20-NT) clusters.

We also look at a model that uses beam sampling instead of the forward filtering-backward sam-

pler (N-SSSM-20-NT). In addition, from our experience we concluded that the models began to

perform poorly when we added the transition regressors γjk to the transition distribution (Eq.

3.8). Therefore, we only added these regressors to a model that considers six clusters (SSSM-6-

T). Besides, we also examine whether the models perform differently by adding a regularisation

term to the transition distribution (SSSM-4-R-NT, SSSM-6-R-NT, SSSM-8-R-NT, SSSM-10-R-

NT, etc.). Finally, we study how the models will perform when the missing observation follow

option 2 (m
(k)
it = µ

(k)
it + C

(k)
t (a

(k)
it+1 − Fµ

(k)
it ) instead of option 1 (m

(k)
it = µ

(k)
it ) in the backwards

sampling step of forward filtering-backward sampling step. As the previous Gaussian states are

always modified based on earnings in future, we call these models the modified backwards (MB)

models (MB-SSSM-6-T, MB-SSSM-6-NT, etc.). To compare the forecasting performance of our

models, we propose the following baseline models:

• There is only one discrete hidden state (K = 1), which reduces our model to a standard

state space model.

• There are six predefined fixed discrete hidden clusters, which reduces our model to six

separated standard state space models (Fixed K = 6). We have based these predefined

clusters on household composition and age. Cluster one consists of singles under 65; cluster

two of single-parents under 65; cluster three of couples under 65; cluster four of couples

with children under 65; cluster five of singles above 65; and cluster six of couples above 65.

• The state disturbances σ2
η(k) and σ

2
ζ(k) are set to zero, which reduces our model to a Hidden

Markov model (HMM): yit = µ
(git)
α + µ

(git)
θ t+ εit, where εit ∼ N(0, σ2

ε(k))

5.3 Out-of-Sample Forecasting Performance

Table 3 represents the one-step ahead (yT+1) forecasting performance for the different models

stated in Section 5.2 over an out-of-sample dataset of 25000 randomly selected households. It

presents the performance for both known y1:T and unknown y1:T to show how well our models

perform if we only cluster our households based on their household characteristics and if we

determine their income based on the general income trend of the cluster they belong to. It

mainly shows how well the models are able to predict the household earnings of newcomers.

Table 5.2 also presents the performance for a higher (1300-1550) and lower (250-500) number

of MCMC iterations to give a indication how well our models already perform despite being

trained for less time. For the baseline models K = 1 and K = 6 we experienced that they

converge even with a small number of MCMC draws. Therefore, their results in Table 3 are

based on respectively 30 to 80 and 85 to 135 MCMC iterations. As we have described in Sec-

tion 4.1.3, we evaluate our individual one-step ahead forecasts using the Root Mean Squared

Forecast Error (RMSFE) and the continuous ranked probability score (CRPS) to respectively

examine the point forecast and the density forecast. And to assess our one-step ahead forecast

distribution, we use the Cramer-von Mises (CVM) and the Anderson Darling (AD) test statistic.

From Table 3 we conclude that the models have more accurate results when y1:T are known

than when y1:T are unknown. Which is reasonable as the current income is mainly based on

the previous income, if a household does not transition to another cluster. From Table 3 we

can see that the baseline model (Fixed K=6), MB-SSSM-10-NT, and MB-TN-SSSM-10-NT are
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Known yT 1300-1550 Unknown yT 1300-1550 Unknown yT 250-500

RMSFE CRPS CVM AD RMSFE CRPS CVM AD RMSFE CRPS CVM AD

K=1 0.480 0.144 4.198 55.46 0.728 0.369 198.4 1869

Fixed K=6 0.464 0.136 3.024 38.28 0.570 0.254 11.28 121.7

HMM-6-NT 0.778 0.399 102.3 662.4 0.778 0.399 102.1 662.6 0.778 0.399 102.3 663.1

HMM-6-R-NT 0.772 0.275 156.6 1079 0.772 0.274 156.7 1080 0.772 0.275 157.0 1081

SSSM-6-T 0.547 0.152 7.501 104.0 0.724 0.302 110.3 746.7 0.718 0.296 87.78 601.3

SSSM-6-R-T 0.512 0.150 6.302 75.54 0.723 0.305 156.8 1041 0.723 0.302 162.8 1075

SSSM-6-NT 0.519 0.157 1.941 25.89 0.583 0.255 24.37 238.4 0.579 0.253 22.30 229.4

SSSM-6-R-NT 0.531 0.160 2.024 28.93 0.578 0.249 20.95 191.5 0.581 0.251 21.85 194.1

SSSM-4-NT 0.535 0.166 4.659 52.37 0.586 0.257 36.37 295.2 0.590 0.259 38.86 305.1

SSSM-4-R-NT 0.535 0.167 4.808 53.26 0.587 0.257 37.01 296.2 0.588 0.258 38.60 312.9

SSSM-8-NT 0.538 0.163 2.038 30.29 0.590 0.257 15.42 153.0 0.566 0.240 10.24 114.2

SSSM-8-R-NT 0.527 0.159 1.810 24.66 0.580 0.254 16.35 164.0 0.601 0.266 24.29 241.0

SSSM-10-NT 0.534 0.158 1.873 27.17 0.571 0.242 7.872 94.56 0.573 0.240 7.925 74.50

SSSM-10-R-NT 0.532 0.161 2.777 33.81 0.571 0.246 6.475 74.00 0.577 0.241 11.80 100.3

TN-SSSM-10-NT 0.523 0.156 3.113 33.97 0.553 0.242 12.78 120.9 0.569 0.238 11.70 136.6

TN-SSSM-10-R-NT 0.524 0.164 1.554 18.16 0.560 0.241 10.13 118.1 0.561 0.243 11.92 108.9

TN-SSSM-20-NT 0.586 0.159 7.153 71.90 0.582 0.237 18.67 129.2 0.598 0.239 24.08 172.4

TN-SSSM-20-R-NT 0.535 0.161 5.852 43.07 0.564 0.243 46.79 387.6 0.621 0.276 65.29 509.0

N-SSSM-20-NT 0.713 0.272 73.98 611.9 0.734 0.368 136.9 1326 0.729 0.357 123.6 1131

MB-SSSM-6-T 0.552 0.153 8.086 103.4 0.721 0.300 74.96 522.2 0.716 0.289 55.66 392.4

MB-SSSM-6-NT 0.519 0.142 1.727 19.56 0.572 0.235 40.07 401.0 0.569 0.234 45.02 400.4

MB-SSSM-10-NT 0.485 0.141 1.350 15.30 0.531 0.229 17.70 190.3 0.550 0.252 33.75 326.8

MB-SSSM-10-R-NT 0.502 0.140 1.899 23.41 0.575 0.241 69.85 525.0 0.535 0.221 20.01 218.2

MB-TN-SSSM-10-NT 0.463 0.142 1.394 11.81 0.507 0.230 17.37 196.7 0.540 0.231 21.01 248.0

Table 3: Forecasting performance of various models based on the root mean squared forecasting
error (RMSFE), the continuous ranked probability score (CRPS), the Cramer-von Mises (CVM)
and the Anderson Darling (AD) test statistic for known and unknown previous earnings y1:T and
for a low and high number of MCMC iterations. The best performing model according to each
metric has been display using bold text.

performing best. Probably the baseline model performs better than the other models, because it

has less parameters to optimise than the other models, and therefore it makes a better parameter

estimate. MB-SSSM-10-NT and MB-TN-SSSM-10-NT are performing better than the models

without backward sampling for unknown data points, as they make better use of all income

information both past and future earnings.

From Table 3 we see that SSSM-10-NT, and SSSM-10-R-NT and the baseline model (Fixed

K=6) are performing rather well, although the previous earnings y1:T are unknown, especially

on the Cramer-von Mises (CVM) and the Anderson Darling (AD) test statistic. However, these

models are less good at predicting individual earnings than the models using option 2 in the

backward sampling step. Table 3 also illustrates that for most models the performance increases

when we consider more MCMC iterations, only for some models the performance decreases, such

as the models MB-SSSM-10-R-NT, SSSM-8-NT, and SSSM-10-NT. We may have optimized the

parameters that they too closely correspond to the training dataset. Hence, overfitting makes

the models less capable of predicting the earnings of the households in the test dataset.

Moreover, Table 3 shows that the baseline model (Fixed K = 6) is performing quite well with

only six clusters compare to model SSSM-6-NT. It additionally forecasts the earnings much bet-

ter than the other baseline models. A hidden Markov model (HMM) is less accurate at estimating

the earnings than a switching state space model, but a HMM performs better than the state

space model (K = 1) if the previous earnings are unknown. Hence we conclude that household

clustering definitely affects the model performance, especially for households entering the dataset

or a cluster some time in the future. From Table 3 we can also conclude that beam sampling
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(Section 4.1.1.1) worsen the prediction accuracy significantly, and as Fox et al. (2011b) already

suggested, we can better use a “weak limit” truncation of the logistic stick breaking process,

particularly for 10 clusters. Namely, TN-SSSM-10-NT and TN-SSSM-10-R-NT have better re-

sults than TN-SSSM-20-NT and TN-SSSM-20-R-NT. It is possible that 1550 MCMC iterations

is insufficient for K = 20. Nevertheless, between TN-SSSM-10-NT and SSSM-10-NT we do not

see major result differences. SSSM-10-NT and SSSM-10-R-NT just forecast a bit better than

TN-SSSM-10-NT and TN-SSSM-10-R-NT. However, TN-SSSM-10-NT is performing best over

all models on the CVM and AD test statistic if we only use the 100 to 150 MCMC iterations:

CVM of 1.005 and AD of 11.230.

In general, from Table 3 we conclude that the models with 10 clusters are performing better

than the models with a lower number of clusters. Hence, it seems that with more clusters we

can better distinguish the different households and income groups. We also conclude that the

models without transition regressors (γjk) (SSSM-6-NT, SSSM-6-R-NT) have lower forecasting

statistics than model with these regressors (SSSM-6-T, SSSM-6-R-T). Because of these regres-

sors households may tend to stay in the same cluster even more, and whether they transition to

another cluster is primarily determined by which cluster it came from rather than what charac-

teristics the households have. Nonetheless, we cannot directly conclude from Table 3 whether the

models are better able to identify the groups when we add a regularisation term to the transition

equation. Their results are almost comparable. Possibly 25 exogenous covariates is too few to

actually see a significant difference.

Table 3 illustrates that some models are performing rather well despite unknown previous earn-

ings y1:T . To obtain an even better understanding in how well these model perform, Figure 5

presents their empirical cumulative distributions (ECDFs) against the true ECDF of the test

dataset of 25000 households. Figure 5a presents the ECDFs of the baseline models with a single

cluster, six fixed clusters, a HMM, and a regularized HMM. It shows that the ECDF of fixed

K = 6 follows the true ECDF fairly well. It also shows that without clustering the model is

unable to match the true distribution properly. Figure 5b presents the ECDFs of the four models

considering six clusters. It shows that with six clusters we are still quite capable of matching the

true distribution, but we overestimate the low-income groups. Figure 5c displays the ECDFs of

the models considering 10 clusters. It illustrates that indeed these models are best at match-

ing the true distribution when the previous earnings are unknown. Lastly, Figure 5c shows the

ECDFs of the models considering 10 clusters with option 2 in the backward sampling step. It

illustrates that just as with six clusters we overestimate the low-income groups.

5.4 Group Membership

In this section we look in more depth to model SSSM-10-R-NT. As demonstrated in Table

3 SSSM-10-R-NT is performing relatively well for both known y1:T and unknown y1:T . We

included similar tables and figures for model SSSM-10-NT, MB-SSSM-10-NT, and TN-SSSM-

10-NT respectively in Appendix 1, but we will not elaborate on their comparison. The figures

and tables which we present in this section are based on the predicted cluster memberships

and predicted household earnings over 250 MCMC iterations (1300-1550) for which the previous

household earnings were unknown. In most figures we only present the 50% percentile over these

MCMC iterations, because we hardly see any difference between the 5% and 50% percentile and
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(a) Baseline Models (b) SSSMs 6 Clusters

(c) SSSMs 10 Clusters (d) MB-SSSMs 10 Clusters

Fig. 5: Empirical Cumulative Distribution Functions (ECDFs) of various models against the
true ECDF of the test dataset.

the 50% and 95% percentile. We have included the 5% and 95% percentile in the appendix for

comparison.

5.4.1 Model Parameters

We start this section by presenting the estimated model parameters for k = 1, . . . ,K in Table

4 and Table 5. These tables give the 5%, 50%, and 95% over the r = 1300, . . . , 1550 model

parameters (Λr) in order to show their deviation between the MCMC iterations. Table 4 displays

the estimates of the initialisation distributions for the different clusters k = 1, . . . , 10 specified

in Equation 3.4, and Table 5 shows the estimated state and observation disturbances for k =

1, . . . , 10 specified in Equation 3.1. We can see from Table 4 that cluster 5 and 6 and clusters 7

and 8 have a similar distribution for the group-specific intercept, but their group-specific trend

differ. Clusters 5 and 7 have a negative trend, while clusters 6 and 8 have a positive trend. Table

4 also shows that the model parameters are rather similar across the MCMC iterations and that

the variance for both intercept and trend are relatively small, except for cluster 4. In addition,

the trend of cluster 4 is much larger than the trend of other clusters. From Table 5 we can see

that the state disturbances are quite small, except for cluster 4, and again they are similar over

the MCMC iterations.
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µα σ2
α µθ σ2

θ

K 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95%

1 9.5515 9.5541 9.5568 0.0109 0.0113 0.0118 -0.0022 0.0004 0.0031 0.0045 0.0047 0.0048

2 9.7600 9.7730 9.7850 0.0530 0.0560 0.0600 -0.0110 -0.0050 0.0010 0.0080 0.0080 0.0090

3 10.0370 10.0410 10.0460 0.0380 0.0400 0.0410 0.0110 0.0140 0.0170 0.0050 0.0050 0.0050

4 10.174 10.1880 10.2000 0.6590 0.6710 0.6860 0.0870 0.0900 0.0920 0.0030 0.0030 0.0030

5 10.3362 10.3439 10.3521 0.0651 0.0683 0.0717 -0.0106 -0.0066 -0.0035 0.0069 0.0072 0.0074

6 10.3763 10.3836 10.3928 0.0615 0.0644 0.0677 0.0115 0.0139 0.0168 0.0055 0.0057 0.0059

7 10.7343 10.7454 10.7574 0.0876 0.0913 0.0955 -0.0187 -0.0163 -0.0130 0.0039 0.0040 0.0042

8 10.7932 10.7988 10.8044 0.0603 0.0626 0.0653 0.0063 0.0094 0.0119 0.0042 0.0043 0.0045

9 10.9782 10.9854 10.9924 0.0657 0.0679 0.0703 0.0092 0.0120 0.0143 0.0044 0.0045 0.0047

10 11.1836 11.1886 11.1933 0.0399 0.0412 0.0426 0.0053 0.0093 0.0143 0.0045 0.0046 0.0047

Table 4: The 5%, 50%, and 95% percentile of the estimates of the model parameters (µ
(k)
α , σ2

α(k) ,

µ
(k)
θ , σ2

θ(k)) for k = 1, . . . , 10 over 250 MCMC iterations for model SSSM-10-R-NT.

K 1 2 3 4 5 6 7 8 9 10 σ2
ε

σ2
η(k)

5% 0.0106 0.0139 0.0140 0.1902 0.0167 0.0159 0.0229 0.0153 0.0171 0.0151 0.0041

50% 0.0108 0.0143 0.0143 0.1925 0.0170 0.0162 0.0236 0.0156 0.0175 0.0156 0.0042

95% 0.0110 0.0147 0.0147 0.1948 0.0174 0.0166 0.0243 0.0160 0.0179 0.0159 0.0043

σ2
ζ(k)

5% 0.0029 0.0038 0.0029 0.0020 0.0035 0.0030 0.0029 0.0029 0.0032 0.0033

50% 0.0030 0.0040 0.0030 0.0021 0.0036 0.0031 0.0030 0.0030 0.0032 0.0034

95% 0.0030 0.0041 0.0030 0.0021 0.0037 0.0032 0.0030 0.0031 0.0033 0.0036

Table 5: The 5%, 50%, and 95% percentile of the state disturbances estimates (σ2
η, σ2

ζ) for
k = 1, . . . , 10 and the 5%, 50%, and 95% percentile of the observation disturbance estimates over
250 MCMC iterations for model SSSM-10-R-NT.

5.4.2 Cluster Transitions

We also look at how the households in our dataset transition from one cluster to another cluster

over the years. Figure 6 illustrates a Sankey diagram of these cluster flows. The numbers in the

diagram correspond to the numbers in Table 4 and 5. Thus, cluster 1 denotes the lowest-income

group and cluster 10 indicates the highest-income group. The size of the vertical bars indicates

the size of the clusters. Thus, we see that some clusters are larger than other, in particular

cluster 4. The thickness of the horizontal illustrates the number of households flowing from one

cluster to another cluster. We see that in general households remain in the same income group

over time and only some households transition to another cluster. From cluster 1 households

primarily transition to cluster 2 and 4. From cluster 2 households move to cluster 4. From

cluster 3 they shift to cluster 4, 6, and 7. From cluster 4 they transition to all other clusters

evenly. From cluster 5 households mainly transition to cluster 4 and 7. From cluster 6 they shift

to cluster 4 and 7. From cluster 7 they move to cluster 3, 4, 5, 8, 9, and 10. From cluster 8

households shift to 4, 7, and 9; from cluster 9 to 4, 7, 8 and 10; and from cluster 10 to 4, 7 and 9.

Hence, in general high-income groups may still transition to other high- or middle-income-groups

but hardly to low-income-groups, and low-income groups shift to other low- or middle-income

groups but barely to high-income groups. Nevertheless, notable is cluster 4, as many households

from all clusters regularly transition to it and many also leave it. Cluster 4 seems to be a

remaining income group into which households end up if they are poorly identifiable or do not

match another income group.
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Fig. 6: A Sankey Diagram of the cluster transitions over the years 2011 to 2019 for model
SSSM-10-R-NT. The clusters are ordered: the lowest cluster number represents the lowest-income
cluster, and the highest cluster numbers implies the highest-income cluster.

5.4.3 Cluster Characteristics

In this sub-section we examine how the household characteristics are distributed among the clus-

ters. Figure 7 illustrates 5 diagrams that illustrate the number of households in a cluster summed

over all years (2011-2019) that has a certain household characteristic: household composition,

education level, generation, main income source, and age. Again, the numbers in the diagram

correspond to the numbers in Table 4 and 5. Figure 7a illustrates that cluster 1, 2, 3 and 6

mainly consist of single households; that cluster 5, 8, 9 and 10 primarily contain couples; and

cluster 4 and 7 consists of all different household compositions. Figure 7b shows that cluster

1, 2, 3, and 8 mainly contain low and middle educated households; cluster 6 and 10 consists of

high educated households; and cluster 4, 7, and 9 are not necessarily identifiable by education

level. From Figure 7c we cannot clearly identify which clusters represent a specific generation.

Only cluster 1 has relatively more first generation households compared to the other clusters.

Figure 7d illustrates that cluster 1, 2 and 5 primarily consists of benefit recipients; that cluster

6 and 3 contain single earners; and that cluster 8, 9 and 10 consists of multiple earners. Again

cluster 4 and 7 are difficult to identify based on the main income source. For Figure 7e we have

merged some age categories in order to simplify and clarify the diagram. Figure 7e shows that

in our dataset 70+ households mainly transition to cluster 2, 4 and 5; that young households

(20-30) shift to cluster 4; and that cluster 3, 8 and 10 mainly consists of households between the

age (30-50). In conclusion, cluster 1 consists of single benefit recipients between 25 to 70 with a

low education level. Cluster 2 contains single 50+ benefit recipients. Cluster 3 consists of single

households between 20 and 50 with a low or middle education level. Cluster 4 is not identifiable

based on these categories. Cluster 5 consists of 50+ couples receiving a benefit with low or

middle education level. Cluster 6 contains high educated single households without children.

Cluster 7 mainly consists of multiple earners between the ages of 30 to 60. Cluster 8 contains

low or middle educated multiple-earners between the ages of 20 to 50 with children. Cluster 9

consists of middle or high educated multiple-earners with or without children. And cluster 10
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contains high educated multiple-earners with children. Hence, this group division reasonably

corresponds to the results we presented in Figure 2, such as couples earning more than single

households, or high educated households earning more than low educated households.

(a) Household Composition (b) Education Level

(c) Generation (d) Main Income Source

(e) Age

Fig. 7: 5 diagrams representing the number of households with a certain household characteristic
in a particular cluster k = 1, . . . , 10 for model SSSM-10-R-NT, respectively, household composi-
tion, education level, generation, main income source, and age.

5.4.4 Matching True Earnings

Lastly, we look at how well a cluster represents its true earnings. Therefore, we compare the

median calculated over the true earnings with the median computed over the predicted earnings

for each cluster individually and the years 2011, 2015, and 2019. These results are presented
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in Table 6. In Appendix 1 we also look at the 5% and 95% percentile. Table 6 shows that in

2011 the predicted median of cluster 1, 2, 3, 5, 7, and 8 closely matches the true median of that

respective cluster. In 2015 the predicted median of cluster 1, 3, 4, 8, 9, and 10 closely matches

the true median. In 2019 only for cluster 3 and 6 we are still getting close to the true median. For

the other clusters, our predictions are often lower than the true earnings. For cluster 2, 5 and 8

we even estimate that the earnings will decline, while in reality the earnings increase. Probably

because for these clusters the household earnings declined between the years 2011 and 2012.

Table 6 also shows that the earnings of cluster 4 households will increase at an unrealistic rate.

This rate mainly represents the rate of an individual household in cluster 4 rather than the group

rate. Which might be due to the selection of the dataset that some groups are unrepresented in

some years. Nevertheless, eventually Table 6 shows that the model SSSM-10-R-NT is reasonable

good at predicating the median household earnings without knowing a household’s previous

income (y1:T ). Mainly for the year 2019, we underestimate the median income of most clusters.

1 2 3 4 5 6 7 8 9 10

2011
median(ŷ) 14.10 17.54 22.96 26.57 31.07 32.33 46.43 48.97 59.0 72.29

median(y) 14.32 17.64 23.01 34.51 32.3 30.45 44.05 47.66 55.24 68.43

2015
median(ŷ) 14.13 17.17 24.29 37.98 30.24 34.21 43.5 50.86 61.94 74.94

median(y) 14.64 18.32 23.92 37.83 32.17 32.04 45.16 51.49 59.59 73.04

2019
median(ŷ) 14.16 16.84 25.7 54.41 29.46 36.17 40.74 52.8 65.03 77.75

median(y) 15.49 19.58 25.45 44.68 34.17 34.02 49.35 58.1 68.0 80.21

Table 6: Median calculated over the predicted households earnings ŷ and median computed over
the true household earnings for cluster k = 1, . . . , 10, the years 2011, 2015, and 2019, and model
SSSM-10-R-NT using the 50% percentile over the 250 MCMC draws.

5.5 Forecasting Household Earnings Distribution

In this last section, we try to forecast the household earnings from 2020 to 2029, and use the

population forecasts to correct the income distribution forecasts for a changing population. We

first apply the steps described in Section 4.2.1 to obtain a prediction for 1.6 million households

yiT+h h = 1, . . . , 10 (1). This dataset consists mainly of existing households which we extrapo-

late through time, but also consists of imaginary households that enter the dataset in the future.

We assumed that households leave the dataset when they are older than 85, and we randomly

select a small number of household (5%) that lose their jobs, get divorced, get married, or get

a job. We then select all households having a certain age, household composition, generation,

education level, and main income source (2). We determine the distribution for this group by

grouping the household in particular income bins (3). We divide these bins by the total number

of households (4), and multiply these frequency bins by the number of households given by the

population forecast (5). If we now sum up these bins across all 831 groups and divide them by

the total number of households in the population forecast, we obtain a new income distribution

corrected for changes in the population. Unfortunately, these distributions were rather erratic,

and therefore we use a smooth spline approximation (Dierckx, 1975) to smooth the households

earnings distributions.

Figure 8 and 9 represents these forecasting distributions for 2020, 2024, and 2029; for respec-

tively the baseline model (Fixed K = 6) and model SSSM-10-R-NT; and for different clusters
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K = 1, . . . ,K. We cannot compare the distribution of 2020 against the distribution of 2020

presented in Figure 1b, as the x-axis of these distributions is in log scale and their population

structures differ. In Appendix 1, we have presented similar figure for the models SSSM-10-NT,

and TN-SSSM-10-NT, but we will not discuss these figures further. We have trained SSSM-10-

R-NT and the baseline model respectively on 1550 and 135 MCMC draws with a burn-in sample

of 1300 and 85 iterations. Looking at Figure 8a, it shows that the peak of 10.7 log earnings

will move towards 10.1 log earnings. This is probably because we get more elderly in the future

population and since their household earnings will decline (see Fig. 8b and 8d (K5 and K6)), the

overall income will also decrease. Moreover, Figure 8a demonstrates that the household earnings

above 10.3 will become more dispersed over a larger income range. This is consistent with the

trend we already saw between the years 2011 and 2020 in Figure 1. In Figure 9a we also see

a similar trend, although in this figure its tail even gets fatter, primarily, because of cluster 4.

As presented in Figure 9b, 9c, and 9d, cluster 4 tends to shift quickly to the right. Despite the

fact that a fatter tail might be realistically in the future, the size of this shift is rather unlikely.

Figure 9a also has a similar peak around 10.5 as Figure 8a, but it only shifts a little to the left.

Additionally, we can see a small peak around 9.8 log earnings in 2029, which is probably due to

the smooth spline approximation. We do not detect this peak clearly in earlier years. In both

Figure 8 and 9, we notice that the distributions become taller and narrower over time. Which

might be due to households shifting to another clusters over time, and therefore, their income is

only based on the general cluster income trend instead of their previous known earnings.

(a) Total forecasted distributions by baseline
model for 2020, 2024, and 2029

(b) Forcasted distributions by baseline model for
the clusters K = 1, . . . , 6 and 2020

(c) Forcasted distributions by baseline model for
the clusters K = 1, . . . , 6 and 2024

(d) Forcasted distributions by baseline model for
the clusters K = 1, . . . , 6 and 2029

Fig. 8: Forecasted Household Earnings Distributions for the baseline model with fixed six clusters
K = 1, . . . , 6.
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(a) Total forecasted distributions by SSSM-10-
R-NT for 2020, 2024, and 2029

(b) Forcasted distributions by SSSM-10-R-NT
for the clusters K = 1, . . . , 10 and 2020

(c) Forcasted distributions by SSSM-10-R-NT
for the clusters K = 1, . . . , 10 and 2024

(d) Forcasted distributions by SSSM-10-R-NT
for the clusters K = 1, . . . , 10 and 2029

Fig. 9: Forecasted Household Earnings Distributions for model SSSM-10-R-NT with K =
1, . . . , 10 clusters.

To get a better idea of the percentiles of these distributions, Figure 10 and 11 presents the 10%,

30%, 50%, 70%, and 90% percentile of respectively the baseline model and the model SSSM-

10-R-NT, in a similar fashion as in Figure 2. For clarification, the color transitions imply the

percentile limits. In appendix 1 we have included similar figures for model SSSM-10-NT and

TN-SSSM-10-NT. The right figures (Fig. 10b and 11b) display the percentiles computed over the

distribution given in Figure 8 and 9, and the left figures (Fig. 10a and 11a) show the percentiles

calculated over the predicted household earnings of 1.6 million households uncorrected for the

population changes. With these figures we demonstrate the influence of the population forecasts.

The ‘True’ percentiles imply the percentiles calculated over 1.6 million households in 2020. From

Figure 10a and 11a we conclude that both models are relatively well in predicting the 10%, 30%,

50%, and 70% percentiles of 2020, but overestimate the 90% percentile. However, from Figure

10b and 11b we see that the percentiles will be slightly lower if we correct the distributions for

population changes, primarily, because the population forecasts expect to contain more elderly

than our dataset of 1.6 million households (Appendix 1). Figure 8 demonstrates that the 10%,

30%, 50%, and 70% percentile predicted by the baseline model will decline or remain roughly the

same, and the 90% percentile will increase, but looking at the clusters in particular the 10%, 30%

and 50% percentile of cluster 1 to 4 will increase, especially the earnings of household belonging

to cluster 4 (couples with children under 65). For cluster 5 and 6 all percentiles decreases and

for cluster 1, 2, and 3 only the 90% percentile does. Figure 11 illustrates a similar pattern as

in Figure 8. The 10%, 30% and 50% decreases over time, but the 70% and 90% increases. The



Chapter 5 Evaluation 33

90% percentile even grows at an unrealistic rate, which is primarily due to the unreal growth

of cluster 4 and somewhat cluster 7. The percentiles of the other clusters only slightly change

over time, which is also fairly similar to the percentiles representing in Table 1. The percentiles

presented in Table 1 slightly changes over time, but for low-income households (10%/30%) less

than for high-income households (70%/90%).

(a) Uncorrected for population forecasts (b) Corrected for population forecasts

Fig. 10: 10%, 30%, 50%, 70%, and 90% percentiles for 2020, 2024, 2029 and clusters K = 1, . . . , 6
forecasted by the baseline model with six fixed clusters. The color transitions denote the income
percentiles.
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(a) Uncorrected for population forecasts (b) Corrected for population forecasts

Fig. 11: 10%, 30%, 50%, 70%, and 90% percentiles for 2020, 2024, 2029 and clusters K =
1, . . . , 10 forecasted by model SSSM-10-R-NT. The color transitions denote the income percentiles.
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Discussion & Conclusion

In this chapter we briefly discuss some possible improvements and future work for both our

experiments and our models (respectively Section 6.1.1 and 6.1.2), and we end this chapter with

a conclusion in Section 6.2.

6.1 Discussion

6.1.1 Experiments

Even though we have presented the forecasting performance of many different models, our eval-

uation approach has some limitations. We did not use one or multiple synthetic dataset(s) to

compare the performance of our model. Such an experimental set up would allow us to as-

sess the performance of our models in a controlled environment and hence obtain insight in the

models’ working on predefined aspects, such as finding the correct clusters and accurately esti-

mating the model parameters. Now we have applied our models directly on household earnings

data, for which the clusters and parameters are fully unknown, and therefore, we are not sure

to what extent our models are able to estimate the correct parameters and groups. Another

limitation of our approach is that we did not use a structured experiment to assess whether the

parameters really converged. Although, we have looked at the performance for both 250-500

and 1300-1550 MCMC iterations, it is still a small indication. For some models we even get a

better result for a small number than for a large number of MCMC draws. A line plot over

the 1550 iterations would have given more information about the convergence of our models.

We were limited by how much data we were allowed to get out of the secure CBS micro data

environment, and therefore we have chosen not to take this out of the environment. In addition

to model convergence, we also did not examine the model initialisation in a structured way. The

initialisation of the clusters and prior distributions may have had a lot of influence on the results.

Therefore, for future research we recommend looking at different initialisation processes using

different seed values, to be able to distinguish the effect of the initialization from other factors

such as the number of the clusters or the regularisation term. Another point of discussion is our

use of frequentist evaluation metrics instead of Bayesian evaluation metrics, such as Expected

log-predictive density or Watanabe-Akaike Information Criteria. We were mainly interested in

evaluating the predicted earnings distribution and not the performance of individual household

forecasts. Therefore, we have chosen to use the Cramer-von Mises and the Anderson Darling

test statistics. And lastly it would have been interesting to compare our model results against

a baseline from the literature instead of our predefined baselines, so we could show whether our

models match or even exceed the state-of-the-art.

6.1.2 Models

Although some of our models are performing quite well, they still have a number of limitations.

First of all we truncate the non-parametric SSSMs to a fixed truncation level, K = 10 or

K = 20, which is a rather low number for a dataset of 106149 households. It would have

been better to set this number K to 1000 or higher, so that the clusters later in the stick

breaking process will get such a small probability that only a few households will end up in

35
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these clusters. However, due to time and memory limitations we were not able to test such a

model. All experiments had to be performed in the CBS micro data environment where relatively

little memory and computational power is available. Moreover, Gibbs sampling can suffer from

slow convergence in high dimensional spaces leading to an overall high computational cost. We

already limited the computation time by using a small number of MCMC iterations, and saw no

real improvements by iterating much longer. As an alternative to Gibbs sampling Variational

Bayesian (VB) inference methods may be used to lower the computation time. Rather than

collecting a set of samples, these methods attempt to find a tractable distribution that most

closely matches the true posterior and subsequently try to solve an optimization problem over

this tractable distribution to approximate the true posterior. Nevertheless, Gibbs sampling is

easy to implement and may have higher accuracy.

Moreover, Variational Bayesian (VB) methods avoid the label-switching problem. Because

our hidden states depend on exogenous covariates, the label-switching problem is less likely to

occur. Still, it would be better to cope with the label-switching problem and to rule out that this

problem leads to inaccurate results. For computing the earnings distribution this might not be so

much of an issue, but for computing the individual household earnings it does matter, because we

may cluster the households wrongly. Another approach to deal with the label switching problem

would be to enforce an ordering among the initial state parameters as µ
(1)
0 < . . . < µ

(K)
0 , or

to use informative priors, which both lead to better identification of the MCMC samples. The

latter approach might even improve our model performance, since we could define the clusters

in such a way that they are more distinctive.

Another change that may improve computation time would be to compute p(y, a) in a differ-

ent way. Instead of iterating over t, we could calculate p(yit, ait|Λ(k)) as p(ait|F t−1µ
(k)
0 )p(yit|ait,t)

p(ait,t|ait,t−1, Q
(k)). Rather than comparing ait,1 with µ

(k)
0 , we could compare ait,t with F

t−1µ
(k)
0 .

This approach could also improve cluster allocations, as ait,t always contains information about

the actual households’ income, while ait,1 does not. In Section 5.4 we saw that some clusters

have a relative large income growth. This growth represents the growth of an individual house-

hold instead of the general change of the cluster. As a result, the predicted income of new

entrants is relatively high compared to their actual income. For instance, the income of young

working households often grow faster than the earnings of older working households. We may

improve this by splitting the trend component into a permanent and transitory trend component:

θ
(k)
it = θ

(k)
it−1 + ρ(k)c

(k)
it + ζ

(k)
it . Where c

(k)
it represents the time a household belongs to cluster k in

binary form, and where ρ(k) corresponds to the transitory trend component.

Another point of discussion is our dataset of 106149 households we used for training our

models. This dataset has some odd peaks in its income distributions and has a rather low

number of households for some categories (e.g. age 20-25, 70+). We would have been better off

using a larger dataset that would represent all groups well. However, due to time and memory

constraints we were not able to use a larger dataset. Hence, instead of randomly selecting some

households, we should have chosen our dataset more precisely so that it properly represented all

groups.

It would probably be better to have the income trend component (θit) not vary over time:

α
(k)
it = α

(k)
it−1 + θ(k)t+ η

(k)
it . Often the initial value of θit adopts the difference between 2011 and

2012, which is negative in some clusters. In subsequent years it remains negative, while these

years have a positive income growth. In addition, a longer time series would capture this trend

even better.

Finally, it would have been interesting to generate a dataset that exactly matches the pop-

ulation forecast instead of correcting the earnings distribution afterwards (Section 5.5). With
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such an approach it might not be needed to smooth the distributions and we may obtain more

accurate results.

6.2 Conclusion

In this study we have developed a Bayesian (non-)parametric non-homogeneous switching state

space model to forecast the earnings distribution of households living in the Netherlands. Our

models try to simultaneously capture a time-varying hidden group structure among the house-

holds and optimise a separate state space model associated with each group. As a result, we

are able to model highly non-linear patterns in the annual income distribution; to account for a

large increase or decrease in household earnings due to ageing, marriage, or job loss; and to cap-

ture gradually changing income processes by using time-varying model parameters. Our results

demonstrate that the use of these time-varying clusters and time varying parameters notably

improve the forecasting performance. Our models are more accurate at forecasting the one-step-

ahead income distribution than a single state space model or a non-homogeneous hidden Markov

model, even with households entering the dataset in the forecasting year itself. Especially, our

models with ten clusters obtain better results than the models with fewer clusters. Moreover, our

results show that the clusters, which our models identify, match the prior knowledge about in-

come groups, such as couples generally earning more than singles or young households commonly

earning less than middle-age households. Nevertheless, we do not see a significant performance

difference between models using a regularisation term or the models which do not, and we cannot

strongly conclude whether our models using the logistic stick-breaking process are performing

more accurately than the models using a multinomial logistic model as cluster transition model.

We recommend future research to study these differences in more depth. Furthermore, we con-

clude that the modified backward models (option 2 in backward sampling step) forecast the

individual households earnings better than the models using option 1 (m
(k)
it = µ

(k)
it ), since these

models make use of the previous earnings to a greater degree. However, the models using option

1 are better at predicting the households earnings of newcomers, since these models are better at

identifying the various clusters. Finally, notable is the performance of the baseline model with

six fixed clusters. This baseline model is performing relatively well. Besides this model is much

faster in practise, as it does not need to determine the hidden clusters.
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Appendix

Group Membership

In this section we give a more in depth insight in how the models SSSM-10-NT, TN-SSSM-10-NT

and MB-SSSM-10-NT perform for the different clusters and years. We have trained the SSSM-

10-NT on 1550 MCMC with a burn-in sample of 1300 MCMC iterations. We have used 150

MCMC draws and a burn-in sample of 100 MCMC draws for training model TN-SSSM-10-NT.

We trained MB-SSSM-10-NT on 1550 MCMC samples with a burn-in sample of 1300 iterations.

µα σ2
α µθ σ2

θ

K 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95%

1 9.5489 9.5518 9.5545 0.0108 0.0112 0.0116 -0.0042 -0.0009 0.002 0.0046 0.0048 0.0050

2 9.7455 9.7576 9.7694 0.0472 0.0507 0.054 0.0026 0.0071 0.0123 0.0073 0.0077 0.0081

3 10.0333 10.04 10.0456 0.0403 0.0426 0.0456 0.0134 0.0167 0.0197 0.0051 0.0053 0.0055

4 10.1367 10.1576 10.1708 0.6123 0.6264 0.6392 0.0856 0.0893 0.0931 0.0031 0.0032 0.0033

5 10.3661 10.3937 10.4059 0.0601 0.0622 0.0649 -0.0132 -0.0103 -0.0081 0.0041 0.0042 0.0044

6 10.422 10.4329 10.4422 0.0675 0.072 0.0758 0.0074 0.01 0.0132 0.0053 0.0055 0.0057

7 10.6959 10.7014 10.7097 0.034 0.0402 0.0453 0.0048 0.0081 0.0122 0.0055 0.006 0.0063

8 10.934 10.9982 11.0386 0.0655 0.0703 0.0732 -0.0102 -0.0006 0.0067 0.004 0.0049 0.0052

9 11.0493 11.0657 11.0976 0.0507 0.0524 0.0738 -0.0095 0.0186 0.0242 0.004 0.0047 0.0051

10 11.07 11.0949 11.1288 0.0513 0.0643 0.0712 -0.0134 -0.005 0.024 0.004 0.0044 0.0048

Table 7: The 5%, 50%, and 95% percentile of the estimates of the model parameters (µ
(k)
α , σ2

α(k) ,

µ
(k)
θ , σ2

θ(k)) for k = 1, . . . , 10 over 250 MCMC iterations for model SSSM-10-NT.

K 1 2 3 4 5 6 7 8 9 10 σ2
ε

σ2
η(k)

5% 0.0101 0.0144 0.0129 0.1995 0.0189 0.0162 0.0158 0.0165 0.0139 0.0143 0.0038

50% 0.0105 0.0149 0.0135 0.2027 0.0210 0.0165 0.0170 0.0172 0.0146 0.0183 0.0040

95% 0.0107 0.0152 0.0139 0.2052 0.0219 0.0169 0.0175 0.0179 0.0194 0.02 0.0041

σ2
ζ(k)

5% 0.003 0.0037 0.0031 0.0021 0.0026 0.0029 0.0035 0.0033 0.0032 0.0032

50% 0.0031 0.0039 0.0032 0.0021 0.0027 0.0029 0.0036 0.0035 0.0034 0.0033

95% 0.0033 0.004 0.0033 0.0022 0.0027 0.003 0.0038 0.0037 0.0037 0.0035

Table 8: The 5%, 50%, and 95% percentile of the state disturbances estimates (σ2
η, σ2

ζ) for
k = 1, . . . , 10 and the 5%, 50%, and 95% percentile of the observation disturbance estimates over
250 MCMC iterations for model SSSM-10-NT.

Forecasting Household Earnings Distribution

In this section we give the forecasting results over the years 2020 to 2029 of the models SSSM-

10-NT and TN-SSSM-10-NT. We have trained the SSSM-10-NT on 1550 MCMC with a burn-in

sample of 1300 MCMC iterations. We have used 150 MCMC draws and a burn-in sample of 100

MCMC draws for training model TN-SSSM-10-NT.

42
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µα σ2
α µθ σ2

θ

K 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95%

1 9.5455 9.5517 9.5545 0.0095 0.0103 0.011 0.0008 0.003 0.0062 0.0047 0.0049 0.0056

2 9.746 9.7571 9.8124 0.0357 0.0473 0.0534 0.0101 0.0138 0.0182 0.0046 0.0069 0.0075

3 10.0308 10.0885 10.1227 0.0444 0.7912 0.815 -0.0004 0.1205 0.1274 0.0042 0.0045 0.0051

4 10.1226 10.1503 10.2499 0.0382 0.0462 0.7785 -0.0149 0.0097 0.12 0.0039 0.0046 0.0053

5 10.2237 10.2503 10.296 0.0388 0.0421 0.0455 -0.0194 0.0074 0.0104 0.0041 0.0042 0.0049

6 10.5923 10.6703 10.6853 0.0268 0.0595 0.0729 -0.0277 -0.02 0.0078 0.0054 0.0062 0.0069

7 10.6883 10.6957 10.8512 0.0324 0.0349 0.0734 -0.0297 0.0058 0.0199 0.005 0.0052 0.0062

8 10.8545 10.8652 10.8826 0.0486 0.0586 0.0679 -0.0295 0.0068 0.0161 0.0039 0.0042 0.0058

9 11.0481 11.0563 11.0669 0.0401 0.0424 0.0474 0.0082 0.0109 0.0147 0.0045 0.0048 0.0054

10 11.2207 11.2377 11.2692 0.0345 0.0388 0.0436 -0.0093 -0.0036 0.0036 0.0052 0.0054 0.0062

Table 9: The 5%, 50%, and 95% percentile of the estimates of the model parameters (µ
(k)
α , σ2

α(k) ,

µ
(k)
θ , σ2

θ(k)) for k = 1, . . . , 10 over 250 MCMC iterations for model TN-SSSM-10-NT.

K 1 2 3 4 5 6 7 8 9 10 σ2
ε

σ2
η(k)

5% 0.014 0.0202 0.0173 0.0197 0.0222 0.02 0.019 0.0217 0.0183 0.0204 0.0058

50% 0.0159 0.0216 0.2356 0.0283 0.0255 0.0225 0.022 0.0237 0.0209 0.0237 0.0069

95% 0.0186 0.0256 0.2437 0.2294 0.0296 0.0241 0.0292 0.0278 0.0228 0.0263 0.0078

σ2
ζ(k)

5% 0.0034 0.0036 0.0026 0.0025 0.0031 0.004 0.0037 0.0036 0.0038 0.0038

50% 0.0037 0.0044 0.0027 0.0036 0.0033 0.0041 0.004 0.004 0.0042 0.0043

95% 0.0053 0.0056 0.0038 0.0044 0.0042 0.0047 0.005 0.005 0.005 0.0053

Table 10: The 5%, 50%, and 95% percentile of the state disturbances estimates (σ2
η, σ

2
ζ) for

k = 1, . . . , 10 and the 5%, 50%, and 95% percentile of the observation disturbance estimates over
250 MCMC iterations for model TN-SSSM-10-NT.

µα σ2
α µθ σ2

θ

K 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95%

1 8.863 9.0492 9.1784 0.2907 2.796 3.2394 0.0795 0.4589 0.509 0.0547 0.1302 0.1549

2 9.067 9.2631 9.4272 0.3423 0.4162 1.8373 -0.1345 0.16 0.448 0.0224 0.0302 0.3803

3 9.3168 9.519 9.5229 0.0127 0.0138 1.815 -0.1615 0.0029 0.1323 0.0092 0.0104 0.3769

4 9.5184 9.5606 9.6607 0.0126 0.228 0.8661 -0.15 0.0271 0.1915 0.0089 0.0656 0.3159

5 9.5909 9.7216 10.0187 0.1087 0.3068 0.7298 -0.0869 0.0758 0.167 0.0026 0.0584 0.324

6 10.0104 10.0298 10.174 0.1082 0.1105 0.6591 -0.0523 0.0124 0.1032 0.0025 0.0026 0.2975

7 10.38 10.3894 10.4031 0.0453 0.0487 0.0522 0.0338 0.0384 0.0442 0.0159 0.0169 0.0177

8 10.4519 10.4913 10.5309 0.0421 0.0454 1.0244 -0.0634 -0.0476 -0.0375 0.0141 0.0149 0.0564

9 10.5262 10.8212 10.9218 0.061 0.5215 1.0636 -0.0673 -0.0396 -0.0147 0.0157 0.0388 0.0562

10 10.9362 10.9421 10.9543 0.0867 0.0878 0.0892 0.0148 0.0155 0.0161 0.0021 0.0022 0.0022

Table 11: The 5%, 50%, and 95% percentile of the estimates of the model parameters (µ
(k)
α ,

σ2
α(k) , µ

(k)
θ , σ2

θ(k)) for k = 1, . . . , 10 over 250 MCMC iterations for model MB-SSSM-10-NT.

K 1 2 3 4 5 6 7 8 9 10 σ2
ε

σ2
η(k)

5% 0.435 0.1587 0.0267 0.0254 0.0198 0.02 0.0613 0.0521 0.051 0.0231 0.0059

50% 1.5464 0.2507 0.0299 0.2128 0.2257 0.0207 0.0656 0.0554 0.1918 0.0236 0.0061

95% 1.804 2.7933 2.5115 0.8754 0.846 0.7673 0.0733 0.1522 0.213 0.0252 0.0067

σ2
ζ(k)

5% 0.0603 0.0197 0.0124 0.0119 0.0013 0.0012 0.0161 0.0118 0.0126 0.0011

50% 0.1034 0.0301 0.0143 0.0843 0.0838 0.0013 0.0186 0.0127 0.0323 0.0011

95% 0.1153 0.5256 0.4487 0.4661 0.4906 0.5013 0.0208 0.0582 0.061 0.0011

Table 12: The 5%, 50%, and 95% percentile of the state disturbances estimates (σ2
η, σ

2
ζ) for

k = 1, . . . , 10 and the 5%, 50%, and 95% percentile of the observation disturbance estimates over
250 MCMC iterations for model MB-SSSM-10-NT.
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Fig. 12: A Sankey Diagram of the cluster transitions over the years 2011 to 2019 for model
SSSM-10-R-NT 5% percentile.

Fig. 13: A Sankey Diagram of the cluster transitions over the years 2011 to 2019 for model
SSSM-10-R-NT 95% percentile.
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Fig. 14: A Sankey Diagram of the cluster transitions over the years 2011 to 2019 for model
SSSM-10-NT.

Fig. 15: A Sankey Diagram of the cluster transitions over the years 2011 to 2019 for model
TN-SSSM-10-NT.
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Fig. 16: A Sankey Diagram of the cluster transitions over the years 2011 to 2019 for model
MB-SSSM-10-NT.

1 2 3 4 5 6 7 8 9 10

2011
median(ŷ) 14.06 17.32 22.83 26.22 30.83 32.07 45.9 48.66 58.61 71.93

median(y) 14.29 17.43 22.92 34.17 32.09 30.22 43.62 47.47 54.95 68.08

2015
median(ŷ) 13.96 16.74 23.95 37.44 29.77 33.75 42.9 50.3 61.0 73.83

median(y) 14.61 18.18 23.8 37.38 31.95 31.84 44.76 51.28 59.17 72.62

2019
median(ŷ) 13.85 16.02 25.06 53.23 28.57 35.33 39.85 51.62 63.34 75.61

median(y) 15.45 19.39 25.23 44.17 33.9 33.78 48.97 57.86 67.52 79.66

Table 13: Median calculated over the predicted households earnings ŷ and median computed
over the true household earnings for cluster k = 1, . . . , 10, the years 2011, 2015, and 2019, and
model SSSM-10-R-NT using the 5% percentile over the 250 MCMC draws.

1 2 3 4 5 6 7 8 9 10

2011
median(ŷ) 14.15 17.75 23.06 26.89 31.34 32.62 47.0 49.24 59.47 72.69

median(y) 14.35 17.91 23.13 34.86 32.54 30.72 44.51 47.82 55.6 68.81

2015
median(ŷ) 14.28 17.59 24.6 38.51 30.75 34.66 44.29 51.36 62.66 76.36

median(y) 14.67 18.5 24.09 38.23 32.37 32.33 45.61 51.69 59.95 73.44

2019
median(ŷ) 14.47 17.64 26.3 55.4 30.27 37.01 41.95 53.8 66.27 80.77

median(y) 15.53 19.74 25.63 45.32 34.41 34.35 49.79 58.37 68.58 80.69

Table 14: Median calculated over the predicted households earnings ŷ and median computed
over the true household earnings for cluster k = 1, . . . , 10, the years 2011, 2015, and 2019, and
model SSSM-10-R-NT using the 95% percentile over the 250 MCMC draws.
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(a) Household Composition (b) Education Level

(c) Generation (d) Main Income Source

(e) Age

Fig. 17: 5 diagrams representing the number of households with a certain household characteristic
in a particular cluster k = 1, . . . , 10 for model SSSM-10-NT, respectively, household composition,
education level, generation, main income source, and age.
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(a) Household Composition (b) Education Level

(c) Generation (d) Main Income Source

(e) Age

Fig. 18: 5 diagrams representing the number of households with a certain household charac-
teristic in a particular cluster k = 1, . . . , 10 for model TN-SSSM-10-NT, respectively, household
composition, education level, generation, main income source, and age.
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(a) Household Composition (b) Education Level

(c) Generation (d) Main Income Source

(e) Age

Fig. 19: 5 diagrams representing the number of households with a certain household charac-
teristic in a particular cluster k = 1, . . . , 10 for model MB-SSSM-10-NT, respectively, household
composition, education level, generation, main income source, and age.
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1 2 3 4 5 6 7 8 9 10

2011
median(ŷ) 14.07 17.29 22.92 25.78 32.66 33.97 44.41 59.72 63.95 65.82

median(y) 14.28 17.71 23.72 33.51 32.01 31.32 44.23 56.57 62.23 61.02

2015
median(ŷ) 14.02 17.8 24.53 36.79 31.31 35.36 45.85 59.35 69.13 65.25

median(y) 14.61 18.06 25.31 36.34 32.82 32.95 48.13 59.25 66.9 64.51

2019
median(ŷ) 13.96 18.33 26.2 52.65 30.0 36.83 47.38 59.25 74.87 63.96

median(y) 15.52 19.38 27.13 42.39 35.74 35.2 54.8 63.15 73.84 72.46

Table 15: Median calculated over the predicted households earnings ŷ and median computed
over the true household earnings for cluster k = 1, . . . , 10, the years 2011, 2015, and 2019, and
model SSSM-10-NT.

1 2 3 4 5 6 7 8 9 10

2011
median(ŷ) 14.07 17.29 24.08 25.63 28.28 43.11 44.21 52.32 63.35 76.02

median(y) 14.4 19.47 33.99 27.33 27.04 40.22 45.18 47.49 62.87 68.32

2015
median(ŷ) 14.24 18.32 37.78 29.29 29.17 39.26 45.09 53.9 66.49 75.41

median(y) 14.71 20.13 37.9 28.22 27.89 40.46 48.55 49.69 66.96 72.95

2019
median(ŷ) 14.41 19.37 62.55 30.38 30.07 35.63 46.01 55.32 69.57 74.35

median(y) 15.64 21.25 45.56 29.9 29.97 42.54 54.57 54.39 73.29 82.40

Table 16: Median calculated over the predicted households earnings ŷ and median computed
over the true household earnings for cluster k = 1, . . . , 10, the years 2011, 2015, and 2019, and
model TN-SSSM-10-NT.

1 2 3 4 5 6 7 8 9 10

2011
median(ŷ) 8.51 10.61 13.62 14.18 16.65 22.68 32.56 36.02 50.06 56.5

median(y) 33.24 22.1 14.23 27.53 27.45 22.92 41.8 24.47 42.38 54.07

2015
median(ŷ) 52.37 19.58 13.78 16.38 23.22 23.67 38.07 29.75 42.92 60.13

median(y) 36.3 24.91 14.79 27.59 27.97 23.45 43.94 24.55 43.55 57.49

2019
median(ŷ) 326.05 37.06 13.95 18.36 27.91 24.93 44.22 24.41 36.28 64.01

median(y) 40.34 28.94 15.94 30.49 30.82 24.64 48.07 25.65 48.3 63.33

Table 17: Median calculated over the predicted households earnings ŷ and median computed
over the true household earnings for cluster k = 1, . . . , 10, the years 2011, 2015, and 2019, and
model MB-SSSM-10-NT.

Age 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70 70+

100% 0.90 2.02 7.18 10.9 11.7 12.9 14.1 12.8 11.0 7.99 8.55

Household Composition Single+ Single+ Couple Couple+ Institutional

100% 30.7 9.35 24.4 33.1 2.4

Education Level Low Middle High

100% 23.3 35.0 41.7

Generation Native 1e 2e

100% 77.3 14.0 8.70

Main Income Source Single Multiple Benefit

100% 21.6 47.0 31.3

Table 18: Percentages of households (%) having a certain age, education level, generation, house-
hold composition, and main income source in our forecasting dataset of 1.6 million households
for the year 2020.
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(a) Total forecasted distributions by SSSM-10-
NT for 2020, 2024, and 2029

(b) Forcasted distributions by SSSM-10-NT for
the clusters K = 1, . . . , 10 and 2020

(c) Forcasted distributions by SSSM-10-NT for
the clusters K = 1, . . . , 10 and 2024

(d) Forcasted distributions by SSSM-10-NT for
the clusters K = 1, . . . , 10 and 2029

Fig. 20: Forecasted Household Earnings Distributions for model SSSM-10-NT withK = 1, . . . , 10
clusters.
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(a) Total forecasted distributions by TN-SSSM-
10-NT for 2020, 2024, and 2029

(b) Forcasted distributions by TN-SSSM-10-NT
for the clusters K = 1, . . . , 10 and 2020

(c) Forcasted distributions by TN-SSSM-10-NT
for the clusters K = 1, . . . , 10 and 2024

(d) Forcasted distributions by TN-SSSM-10-NT
for the clusters K = 1, . . . , 10 and 2029

Fig. 21: Forecasted Household Earnings Distributions for model SSSM-10-NT withK = 1, . . . , 10
clusters.

(a) Uncorrected for population forecasts (b) Corrected for population forecasts

Fig. 22: 10%, 30%, 50%, 70%, and 90% percentiles for 2020, 2024, 2029 and clusters K =
1, . . . , 10 forecasted by model SSSM-10-NT. The color transitions denote the income percentiles.
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(a) Uncorrected for population forecasts (b) Corrected for population forecasts

Fig. 23: 10%, 30%, 50%, 70%, and 90% percentiles for 2020, 2024, 2029 and clusters K =
1, . . . , 10 forecasted by model TN-SSSM-10-NT. The color transitions denote the income per-
centiles.
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