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Abstract

Precise forecasts of implied volatility provide numerous opportunities to enhance
financial decisions and trading systems. This study investigates a two-step approxi-
mation approach to predict the implied volatility surface. We utilize BS and Heston
models as our parametric implied volatility models. We enhance their performance
with neural networks, namely FNN, LSTM, GRU, and CNN. Our findings reveal that
the BS correction provides better estimations of implied volatility estimates than the
Heston model in terms of RSME. Additionally, time-dependent neural networks out-
performed their benchmarks, particularly FNN. LSTM produced more stable results,
while CNN and GRU displayed unstable performances. We further expand our re-
search by incorporating time-variant covariates, such as VIX, LTP and LTV, realized
volatility, EPU, ADS, term spread, and credit spread, in the neural networks. We
observed that macro-related features worsened the models’ predictions, while money-
ness, time to maturity, VIX, LTP, and LTV significantly improved performance.

The content of this thesis is the sole responsibility of the author and does not reflect
the view of the supervisor, second assessor, Erasmus School of Economics or Erasmus
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1 Introduction

Implied volatility (IV) is an indispensable tool for traders and market makers worldwide,
representing the market’s anticipation of the underlying asset’s future movement. In other
words, it reflects the level of uncertainty or risk that the market associates with an asset’s
future price direction. By definition, IV is the volatility level σ that equates the Black-
Scholes option price to its market price S, for an option with a strike K and a period
to maturity τ . It is critical to distinguish implied volatility from historical volatility,
which is a measure of an underlying asset’s past activity. In contrast, IV reflects the
market’s perception of the asset’s future price direction. For options that are at-the-money
(ATM), a high IV value suggests the expectation of significant anticipated changes in the
underlying asset’s price in the future. Conversely, low IV values indicate the market expects
little or no significant price changes. Additionally, the implied volatility surface (IVS), a
function of the implied volatility of the strike price K and time to maturity τ , is a key
representation of the market’s expectation of an underlying asset’s future price movements.
In practice, the implied volatility surface violates the Black-Scholes model assumptions
as options that are out-of-the-money (OTM) have higher implied volatility than at-the-
money options, creating the so-called "smile." Despite the existence of stochastic volatility
models, such as the Heston model, which accounts for the volatility of the underlying
asset based on a random process, pricing errors can still affect even parametric models
that suggest stochastic volatility behavior. Therefore, the field of IVS prediction requires
further research to improve the precision and robustness of models.

Numerous IV evaluation models have been proposed in recent years, but there is a
growing demand for more accurate and reliable approaches. In this paper, we examine an
innovative two-step approach proposed by Almeida et al. (2022) for improving parametric
implied volatility models. The researchers utilized neural network approximation to en-
hance the estimate of IVS derived from well-known parametric IV models. Neural networks
possess the "universal approximators" property, allowing them to accurately approximate
any Borel measurable function from one finite space to another. The authors successfully
improved the IV estimates of Black-Scholes, Ad-hoc, Heston, Carr and Wu parametric
models for options by reducing the pricing error surface with the neural network output.
Furthermore, they investigated the Black-Scholes and Heston models when analyzing the
options panel, a sequence of implied volatility surfaces, and enhanced the IV values using
a non-parametric technique.

Although Almeida et al. (2022) only examined the Feed Forward Neural Network in
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their study, their research opens up opportunities for expanding this approach to include
a broader range of neural networks. This paper aims to estimate IVS using well-known
parametric models such as the Black-Scholes and Heston models, and subsequently, employ
1D convolutional neural networks (CNN), gated recurrent units (GRU), long short-term
memories (LSTM), and feed-forward neural networks (FNN) for non-parametric correc-
tion. Therefore, the research question is: Can neural networks initially designed for time
series outperform FNN in terms of non-parametric correction of IVS parametric estimates?
By exploring the potential of neural networks in improving IV predictions, this study con-
tributes to the ongoing research on the use of machine learning in financial markets and
provides insights into the effectiveness of different neural network architectures for IVS
prediction. Furthermore, the research focuses specifically on equity option IV, highlighting
the importance of accurate IV predictions in stock options trading.

Our research delves into the comparison of different models for options pricing and their
correction using neural networks. In our analysis, we observe that the Black Scholes model,
which is a simple average implied volatility for a selected period, has a lower pricing error
than the Heston model for American option pricing. This observation is significant for
investors and traders as they rely on accurate options pricing to make informed investment
decisions.

We further explore the effectiveness of non-parametric correction using neural networks.
We find that neural networks that can capture time dependencies, such as LSTM, GRU,
and CNN, show better non-parametric correction in general. However, LSTM exhibits
more stable results than GRU and CNN, which may miss time patterns in the data and
perform worse. CNN is generally better for Black Scholes correction, and GRU is better
for the Heston model.

Incorporating time-varying covariates in the research can improve model correction.
Surprisingly, for the Black Scholes and Heston models FNN, which are not trained to
capture time-dependency, shows significant improvements of non-parametric correction.
This finding suggests that incorporating relevant features can enhance the correction ability
of the models. Among the time-dependent neural networks, we decided to utilize the LSTM
network due to its stability in producing accurate results. Our findings indicate that the
inclusion of features can lead to further improvements in correction accuracy for LSTM
neural networks. Interestingly, we observe that even without incorporating features, LSTM
still outperforms the FNN in terms of pricing accuracy. This suggests that the inherent
capabilities of LSTM in capturing time dependency make it a strong candidate for option
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pricing modeling.
Furthermore, we investigate the impact of macro-factors on the pricing performance

of the models. We find that including macro-factors such as the Aruoba-Diebold-Scotti
business conditions index (ADS), Economic Policy Uncertainty (EPU), term spread, and
credit spread worsens the pricing performance for all models in the stock options prediction
exercise. However, for the selected American-type options, moneyness, left tail probability
(LTP), left tail volatility (LTV) measures of Bollerslev et al. (2015), and the VIX index
calculated for each stock individually can significantly improve the correction exercise.

Our research provides valuable insights for investors and traders who rely on options
pricing for investment decisions. The use of two-step approach of Almeida et al. (2022)
can significantly improve the accuracy of implied volatility estimations, thereby reducing
pricing errors and improving profitability.

The paper is structured as follows: In Section 2, a review of relevant literature is pre-
sented. Section 3 provides an overview of the data, while Section 4 presents the methodol-
ogy employed in this study. Finally, Section 5 reports the empirical results obtained from
the analysis.

2 Literature Review

As implied volatility is a crucial parameter in option pricing and hedging, modeling IV
has been a subject of research for decades. There are two major categories of methods
for modeling IV: parametric and non-parametric. In parametric approaches, the implied
volatility surface (IVS) is modeled by a small number of parameters that are fitted by
market data and asset dynamics. Among parametric approaches, indirect models use a dy-
namic process to determine implied volatility, including Levy, local volatility, and stochas-
tic volatility models. Some notable indirect parametric models include the Merton model
(Merton (1976)), the Heston model (Heston (1993)), the Kou model (Kou (2002)), the
Chockalingam model (Chockalingam and Muthuraman (2011)), and the Kenichiro model
(Shiraya and Takahashi (2017)). Indirect models are simple to implement, but incorporat-
ing time-dependent characteristics increases processing complexity. In contrast to indirect
models, direct methods set IV directly and can be categorized into two groups. The first
group assumes that the IVS’s dynamics change constantly over time (Cont and Da Fon-
seca (2002); Carr and Wu (2016)). The second group takes into account a static surface
depiction of implied volatility and employs either parametric or non-parametric models for
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calculating IVS. The stochastic volatility (SVI) model presented by Gatheral (2004) is one
such model. The research is modeled with a fixed repayment approach while considering
volatility. And subsequently, Gatheral and Jacquier (2014) collectively expand this concept
to provide a surface free of static arbitrage.

Recently, machine learning techniques have been extensively used to improve the accu-
racy of IV predictions. In the study of Horvath et al. (2021), deep neural networks were
employed to optimize a significant number of stochastic volatility models, with IVs and
prices represented as pixels. Cao et al. (2020) examined the connections between the an-
ticipated daily change of the IV S&P 500 index and the index’s daily return, the VIX fear
index, time to maturity, and moneyness. The authors discovered that they could consider-
ably enhance the performance of their analytical model by employing the VIX index and
the daily returns of the index as the primary variables. For feature selection, Zhang et al.
(2021) used three methods: principal component analysis (PCA), variational autoencoder,
sampling the surface, and derived variable predictions using LSTM. In predicting IVS, some
studies have used non-parametric approaches, such as the regression tree model in Audrino
and Colangelo (2010), the long-term short-term memory model with an attention mech-
anism in Chen and Zhang (2019), and the temporal difference backpropagation (TDBP)
model in Bloch and Böök (2020). Zeng and Klabjan (2019) created an IVS by employing a
support vector regression model using high-frequency data alternatives. Meanwhile, Ning
et al. (2021) suggested a method for modeling IVS without time-based arbitrage by using
a variational autoencoder to produce the model parameters for the future date once the
arbitrage-free stochastic model has been calibrated to the IVS data.

Most researches focus on modeling the implied volatility of European options. The valu-
ation of American-type options is a captivating subject that has garnered significant atten-
tion in the financial industry due to its complexities. Unlike European options, American
options can be exercised at any point in time prior to their expiration date. Consequently,
pricing American options involves determining optimal exercise prices and option prices
simultaneously, which renders the option pricing problem nonlinear (Yan et al. (2022)). As
a result, obtaining analytical solutions for such problems has proven to be a challenging
task. When it comes to determining the implied volatility of an American option, there
are two popular approaches. The first method involves utilizing a de-Americanization
technique, which essentially converts an American option price into its European counter-
part (Burkovska et al. (2018) and Carr and Wu (2010)). However, this method has its
limitations as significant pricing errors may occur due to the inaccurate incorporation of
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the early-exercise premium. In fact, the larger the early exercise premium, the higher the
potential for errors to occur. Furthermore, incorporating dividends can further increase
the margin of error of the de-Americanization method. The second approach involves
a direct calibration process for the American-style pricing model to extract the implied
volatility (Achdou et al. (2004), Lagnado et al. (1997)). In this approach, the implied
volatility is computed by solving a minimization problem, using an iterative search tech-
nique that repeatedly compares a model with market option prices until a suitable value
of volatility is found. Unlike European-style options, the derivative of the option value to
the volatility does not have a closed-form expression for American-style options. Numer-
ous numerical methods are used for American option pricing, including simulation-based
techniques, binomial lattices, partial differential equation (PDE) solution methods, and
integral methods. These techniques have been used extensively in prior research, with
notable contributions by Longstaff and Schwartz (2001), Cox et al. (1979), Brennan and
Schwartz (1977), Muthuraman (2008), Kim (1990), Jacka (1991), and Carr et al. (1992).

Despite the extensive research in this field, American options have not received as much
attention as their European counterparts. Therefore, it becomes intriguing to explore non-
parametric correction approaches, such as the one proposed by Almeida et al. (2022), to
address the gap in implied volatility knowledge for equity options.

3 Data

In contrast to the approach taken by Almeida et al. (2022), this paper examines Ameri-
can call and put options. The present study investigates the predictive power of the implied
volatility surface derived from the options of five leading tech companies - Amazon, Mi-
crosoft, Google, Facebook, and Apple (Figures: 1, 11, 12, 13). By analyzing their panel
data, this research aims to shed light on IVS prediction. To obtain the IVS, we rely on
Option Metrics data, which we rank over a period spanning from December 31, 2018, to De-
cember 31, 2021. Utilizing put-call parity is a commonly employed technique for inferring
implied dividends. However, the put-call parity is not applicable to American-style op-
tions, as the presence of an early-exercise premium renders it invalid (Fodor et al. (2017)).
Consequently, put-call parity only holds for European-style options and we do not utilize
dividends in our research. As a benchmark for the risk-free rate, we download the 3-month
Treasury bill rate from the St. Louis Federal Reserve Economic Data (FRED) database.
To ensure the accuracy and reliability of our dataset, we adopt a rigorous methodology,
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in line with the established academic literature (Almeida et al. (2022); Andersen et al.
(2015)).

Figure 1: Implied volatility surface of Amazon and IBM.

Following the standard practice, we exclude in-the-money (ITM) options from our sam-
ple and focus exclusively on out-of-the-money (OTM) options, which are known to be more
liquid and informative in the context of IVS analysis Andersen et al. (2015). Specifically,
we divide call options into three categories, based on their moneyness: deep OTM, OTM,
and close to ATM, with respective moneyness intervals of [0.8, 0.9), [0.9, 0.97), and [0.97,
1.03). Since the research focuses on OTM options, we excluded ATM options where the
strike price equals the market price of the underlying option and left the category "close to
ATM". For put options, we adopt a similar categorization, but with different moneyness
intervals, namely OTM [1.03, 1.10) and deep OTM [1.10, 1.60). By selecting only short-
term (20-60 days) and long-term (60-240 days) options, we ensure that our sample captures
a broad range of market expectations and is not biased toward any specific time horizon.
As we focus on American-style options, we do not impose any no-arbitrage constraints on
our data. This choice allows us to investigate the full range of price dynamics available to
market participants.

Looking at the data, we can see that among the selected stocks, Amazon stock options
have the highest number of options totaling an impressive 463,985 after filtering. This
figure is more than twice the number of options for any other dataset (Tables: 6, 7, 8,
9), indicating the popularity of Amazon stock among investors. However, while Amazon
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Table 1: Summary of Amazon Stock Option Implied Volatility Statistics

Days to Maturity Moneyness Number Mean IV Std. dev. IV

Short (0.8, 0.9] 25,310 0.345 0.120

Short (0.9, 0.97] 40,519 0.308 0.102

Short (0.97, 1.03] 25,106 0.299 0.090

Short (1.03, 1.1] 39,477 0.330 0.100

Short (1.1, 1.6] 60,002 0.438 0.148

Long (0.8, 0.9] 42,449 0.349 0.120

Long (0.9, 0.97] 54,977 0.314 0.085

Long (0.97, 1.03] 32,856 0.303 0.083

Long (1.03, 1.1] 50,927 0.323 0.084

Long (1.1, 1.6] 91,909 0.412 0.143

Total (0.8, 1.6] 463,985 0.355 0.126

This table provides a summary of the Amazon stock option implied volatility statistics for the
period from December 31, 2018, to December 31, 2021. The table shows the count of options, the
average implied volatility, and the standard deviation of implied volatilities for various time-to-
maturity and moneyness categories. Short-term maturity options are considered as (20, 60] days
to maturity, and long-term options as (60, 240], respectively.

options may be popular, they are also the most volatile in terms of implied volatility, with a
value of 0.126. Higher implied volatility suggests that the market expects a greater degree
of price movement in the underlying stock. Conversely, lower implied volatility indicates
that the market expects less price movement in the underlying stock. On the other hand,
the least volatile options in our dataset belong to IBM, with a standard deviation of the
implied volatility equal to 0.105. This indicates that the market has lower expectations for
price movement in IBM’s stock, making it a potentially safer option for risk-averse investors.
Interestingly, IBM options also have the lowest mean implied volatility compared to other
stocks, with a value of 0.279. In contrast, other stocks have a mean implied volatility higher
than 0.3. This indicates that IBM options are generally less volatile and may provide a
more stable investment opportunity.

It is worth noting that while Amazon options are the most volatile, they do not have the
highest mean implied volatility among all the stocks in our dataset. Apple stock options
have the highest mean implied volatility at 0.364, indicating that the market expects
significant price movements in Apple’s stock over the coming period. When we look at the
data more closely, we can see that the most volatile options in terms of implied volatility
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values are the category of short-term options, with a maturity of 20 to 60 days, and a
moneyness range of 1.1 to 1.6. Moneyness is another important metric that measures
the relationship between the strike price of an option and the current market price of the
underlying asset. A call option with higher moneyness will have a higher market price of the
underlying asset compared to the strike price, making it more likely to be in the money. In
the case of at-the-money (ATM) call options, where the strike price is equal to the current
market price, the moneyness is equal to 1. Moreover, we can observe that across all the
stocks, the group of short-term implied volatility and moneyness from 0.97 to 1.03 has the
least number of options. This suggests that investors may be less interested in options
that are very close to being in the money or out of the money and are instead focusing
on options that are further away from the current market price of the underlying asset.
In conclusion, our data provide valuable insights into the options market for a selection of
popular stocks. By analyzing implied volatility, and moneyness, time to maturity, we can
gain a better understanding of market expectations for each stock.

4 Methodology

4.1 Error Correction Model

This research investigates a two-step approximation method proposed by Almeida et al.
(2022) in the estimation of the implied volatility surface for equity options. The IVS is a
fundamental tool in options pricing, mapping the implied volatilities σ to moneyness m

and time to maturity τ . While several parametric models have been developed to improve
the estimation of the IVS, they still face significant pricing errors. Therefore, Almeida
et al. (2022)’s two-step approximation method, which combines both parametric and non-
parametric techniques, and has proven potential to enhance the prediction performance
of the IVS, is an interesting tool to apply for further research. In Almeida et al. (2022)
paper, various parametric models were constructed, including the Black Scholes, Heston,
ad-hoc Black Scholes, and Carr and Wu models of implied volatilities. Researchers ex-
tracted implied volatilities estimations of the parametric models and reduced the root
mean squared error (RSME) between the observed implied volatilities of the S&P 500 in-
dex and the parametric IV estimations. In this study, we aim to extend the non-parametric
approach and select the Black Scholes and Heston models as our parametric models. Given
a n-sized cross-section of options i = 1...n over a period of T days, the goal becomes to cal-
ibrate a parametric model p to the observed IVS σ(mi,t, τi,t), resulting in the fitted values
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σ̂p(mi,tτi,t). The error function ϵ̂p(t,mi,t, τi,t) is then computed by comparing the actual
IVs with the estimates produced by the models (1), where i ranges over the moneyness and
times to maturity for each day t.

ϵ̂p(t,mi,t, τi,t) = σ(t,mi,t, τi,t)− σ̂p(t,mi,t, τi,t) (1)

To improve the parametric performance of these estimates, we employ various neural net-
works, including FNN, LSTM, GRU, and 1D CNN, to minimize the error function ϵp for
each neural network l as well as the pricing errors of the parametric models p. Our objec-
tive is to minimize the mean squared error function ϵ̂p (2) by selecting the neural network
function f(.) that minimizes the error most effectively.

ϵ̂l =
1

T

T∑
t=1

1

nt

nt∑
i=1

[ϵ̂p(t,mi,t, τi,t)− f(mi,t, τi,t))]
2 (2)

Finally, the implied volatility surface is determined as the value of the IVS obtained from
the parametric model, along with the adjustments made by non-parametric methods (3).

σ̂l = σ̂p(t,mi,t, τi,t) + f̂(mi,t, τi,t) (3)

To evaluate the pricing performance of the combined models, we use the root mean
squared error metric (Equation 4), which is calculated for both the parametric models and
the BS-FNN, BS-CNN, BS-LSTM, BS-GRU, and Heston-FNN, Heston-LSTM, Heston-
GRU, and Heston-CNN corrections. The models are then compared according to this
metric to determine the best-performing one.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4)

4.2 Parametric Models

In recent years, the financial modeling field has experienced a noteworthy transition
towards utilizing machine learning algorithms. Among these algorithms, neural networks
have emerged as a powerful tool for enhancing the precision of parametric implied volatility
models, thus drawing considerable attention to their application. As a result, our research
is primarily centered around exploring the potential of neural networks for refining two
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parametric implied volatility models: the Black-Scholes model and the Heston model.
These models provide distinct approaches to comprehending implied volatility, and the
objective of our study is to evaluate the efficacy of neural networks in improving their
performance.

4.2.1 Black-Scholes Model

The Black and Scholes (1973) model is based on several key assumptions, including that
the short-term interest rate (r) is known and constant over time. Additionally, it assumes
that the stock price (St) follows a geometric Brownian motion with a constant drift (µ)
and volatility (σ), and that the stock pays no dividends. Other assumptions include the
absence of transaction costs, arbitrage opportunities, and the ability to borrow or lend any
amount at the riskless rate (r). The model also assumes that it is possible to buy or sell
any amount of the stock, including fractional shares.

∂St

St

= µdt+ σdWt (5)

In the formula 5, Wt represents a standard Wiener process, σ is constant instantaneous
volatility, and µ represents expected asset return. Strong parametric assumptions allow
the Black-Scholes model to produce a closed-form solution for the pricing of a European
option. When utilizing the BS model, the following formula may be used to determine the
price of a call option with the following parameters: price S, strike price K, and time to
maturity τ .

C = N(d1)S− N(d2)Ke−rτ (6)

d1 =
1

σ
√
τ

[
ln

(
S

K

)
+ τ

(
r +

σ2

2

)]
(7)

d2 =
1

σ
√
τ

[
ln

(
S

K

)
+ τ

(
r − σ2

2

)
(8)

With the option’s market price of the option, it is feasible to compute the value of IV using
the Black Scholes model: σi = C−1

BS(Ci, St, Ki, τi, r). Volatility being constant over time
is one of the model’s most fundamental assumptions. This is not compatible with reality,
which is why the application of non-parametric approaches to the model will take the form
of IVS into consideration.

The proposed approach can be viewed as an extension of the nonparametric estimation
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of the implied volatility surface. This can be demonstrated by noting that the following
optimization problems are equivalent (Almeida et al. (2022)):

minf(
1

n

n∑
i=1

[σ(mi,t, τi,t)− f(mi,t, τi,t)]
2) (9)

minf(
1

n

n∑
i=1

[σ(mi,t, τi,t)− c− f(mi,t, τi,t)]
2) (10)

where c is any constant. Hence, a direct nonparametric estimation of the implied volatility
surface can be interpreted as a correction of the Black-Scholes model, which predicts a
flat surface when c = â0. However, since the Black-Scholes model does not provide any
information about the shape of the implied volatility surface, correcting it is equivalent to
fitting the surface directly.

4.2.2 Heston Model

The Heston (1993) model is one of the fundamental option pricing models used in
finance. Like other stochastic models, the Heston model assumes that an asset’s volatility
follows a random process rather than a constant or deterministic one. In this model, the
underlying asset price St is correlated with volatility, which follows the square root process
Vt. The Heston model takes into account the return of volatility to the average value after
reaching an extreme. The spot variance Vt is a key parameter in the model, which reverts
to the long-run variance v at a rate m. The volatility of volatility, represented by σv, is
also considered in the model. Additionally, the Heston model utilizes (11, 12) two Wiener
processes, W1,t and W2,t, to simulate the stochastic behavior of the underlying asset price
and its volatility. The Heston model has been widely used in the financial industry due to
its ability to capture the volatility smile and skew observed in options markets

dSt

St

= (r − 1

2
Vt)dt+

√
VtdW1,t (11)

dVt = m(v − Vt)dt+ σv

√
VtdW2,t (12)

To improve the accuracy of option pricing, various extensions of the Heston model have
been proposed, including the inclusion of jumps, stochastic interest rates, and more com-
plex forms of correlation. Despite these extensions, the Heston model remains a popular
choice due to its simplicity and ability to accurately capture the main features of options
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markets. One of the main advantages of the Heston model is its ability to provide closed-
form solutions for option prices. This is achieved through the use of Fourier transform
techniques, which allows for fast and accurate computation of option prices. In addition,
the model’s parameters can be estimated using various techniques, such as maximum likeli-
hood estimation and Bayesian methods. Despite its popularity and usefulness, the Heston
model has some limitations. For example, it assumes that volatility is mean-reverting,
which may not always hold in practice. In addition, the model can be computationally
intensive, particularly when dealing with high-dimensional problems. Nevertheless, the
Heston model remains a valuable tool for option pricing and risk management, and its
extensions and modifications continue to be an active area of research in finance.

4.3 Non-parametric Models

ML algorithms, especially neural networks, are popular in financial modeling due to
their effectiveness in improving the accuracy of implied volatility models. However, network
architecture selection is critical for their performance. We chose several neural networks,
including Feed Forward neural network, LSTM, GRU, and 1D CNN, for their ability to
handle time series data effectively. LSTM and GRU are suitable for modeling sequential
data and can capture long-term dependencies. 1D CNNs detect local patterns and can
capture short-term fluctuations in the data. Utilizing these models, we make predictions
on three-year option panel data, emphasizing the importance of temporal dependencies.

4.3.1 Feedforward Neural Network

The concept of FeedForward, which is a type of artificial neural network, was initially
proposed by Rosenblatt (1958). FeedForward neural networks (FNN) have a layered archi-
tecture, with the first layer representing the input layer and the last layer representing the
output layer. In their recent study, Gu et al. (2020) presented a framework that describes
the architecture of FNN and estimated five models with various hidden layers. The first
layer consists of 32 neurons, and the deep neural network’s five hidden layers are composed
of 32, 16, 8, 4, and 2 neurons, respectively. The structure of each hidden layer in a neural
network can be described as a geometric pyramid rule. To stream information between the
input and hidden layers, a set of units is used to determine the weighted sum of the neurons
from the previous layer. The output layer is then activated through a nonlinear function.
We adopt the exponential linear unit (eLU) functional form as the activation function for
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the inner layers as we are predicting errors that can take negative values. ELUs, unlike
ReLUs, possess negative values that can drive the mean unit activations to be closer to
zero, similar to batch normalization, but with reduced computational complexity (Clevert
et al. (2015)). In the output layer linear activation function is utilized as it doesn’t have
boundaries and gives an opportunity to predict the most accurate value for the parametric
error. To prevent overfitting in our FNN model, we employ regularization strategies such
as learning rate shrinkage, as proposed by Kingma and Ba (2014), and the early stopping
strategy, as described by Prechelt (1998). In addition to the regularization techniques, we

Figure 2: FNN architecture depicted in the figure (Gu et al. (2020)).

also investigate the adaptive moment estimation algorithm (Adam), a first-order gradient
optimization method of stochastic objective functions, as developed by Kingma and Ba
(2014). The Adam optimization technique is preferred over stochastic gradient descent
(SGD) as it converges more quickly and requires less fine-tuning. As the FNN model needs
to estimate a large number of parameters, the Adam optimization technique is an ideal
choice. The learning rate, a tuning parameter for the Adam method, is determined for each
parameter using the first and second-moment gradient estimations. We use the "learning
rate shrinkage" proposed by Kingma and Ba (2014) to manage it.

4.3.2 Long-short-term-memory Neural Network

Long-Short Term Memory (LSTM) is a variant of Recurrent Neural Networks (RNN)
that has gained widespread popularity in recent years due to its ability to learn long-
term dependencies. RNNs are effective in handling sequential data but are limited by the
vanishing and exploding gradient problem, which occurs when the gradients become too
small or too large to be effectively propagated through time. LSTM solves this problem
by introducing a gating mechanism that allows the network to selectively retain or forget
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information over time.

Figure 3: The LSTM architecture depicted in the figure (Ntakaris et al. (2019)).

The LSTM architecture was first introduced by Hochreiter and Schmidhuber (1997).
Since then, many researchers have worked on improving and popularizing the technique.
The core of the LSTM architecture is the memory cell, which stores information over time.
Each neuron in the LSTM network has three gating mechanisms: the input gate, the output
gate, and forget gate. These gates are controlled by sigmoid activation functions and act
as switches that regulate the flow of information into and out of the memory cell. The
input gate of an LSTM neuron determines which information from the current input and
previous hidden state is relevant and should be stored in the memory cell. The forget gate,
on the other hand, determines which information stored in the memory cell should be kept
or discarded. Finally, the output gate controls the output of the cell and decides which
information should be passed on to the next hidden state. Overall, the LSTM architecture
has proven to be highly effective in a wide range of applications due to its ability to model
complex, long-term dependencies in sequential data.

4.3.3 Gated Recurrent Unit Neural Network

As we already stated, the traditional RNN architecture suffers from the vanishing gra-
dient problem, which hinders its ability to capture long-term dependencies. This issue
prompted the development of more sophisticated RNN variants, such as the Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures.
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Figure 4: GRU cell architecture depicted in the figure (Huang et al. (2019)).

Introduced by Chung et al. (2014), the GRU is a promising alternative to the LSTM that
offers a simpler architecture while still being capable of capturing long-term dependencies.
Unlike the LSTM, which has three gates, the GRU has only two gates: the update gate and
the reset gate. These gates act as switches that control the flow of information between the
current input, previous hidden state, and current hidden state. The update gate determines
how much information from the previous state should be passed on to the current state,
while the reset gate determines how much information from the previous state should be
ignored. By selectively passing information to the output based on the input and previous
state, the GRU is able to effectively model sequential data while being computationally
less expensive than the LSTM. By offering a more computationally efficient alternative
to the LSTM, the GRU represents a valuable addition to the arsenal of deep learning
practitioners.

4.3.4 1D Convolutional Neural Network

The 1D Convolutional Neural Network (CNN) is an architecture that has revolutionized
pattern recognition tasks and is not often using particularly with time-series data, opening
opportunities for further research. It has a unique structure consisting of three main layers,
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namely the convolutional layer, the pooling layer, and the fully connected layer. This neural
network was first proposed by LeCun et al. (1989), and since then, it has evolved to become
a powerful tool for researchers and practitioners alike.

Figure 5: The CNN 1D architecture depicted in the figure (Pérez-Enciso and Zingaretti
(2019)).

The convolutional layer applies a mathematical operation known as convolution to the
input data using a set of filters or kernels. These kernels are essentially small matrices of
weights that slide over the input data and produce a feature map that highlights specific
patterns or features in the input data. The pooling layer then downsamples the feature
maps by reducing their spatial resolution, increasing the network’s translational invariance,
and retaining only the most critical features. Finally, the fully connected layer applies a
non-linear activation function to the output of the pooling layer and performs classification
or regression on the resulting feature vector.

In 1D CNNs, the convolution operation is applied only in one direction, typically along
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the time axis in time-series data. This unique property of 1D CNNs allows them to capture
temporal dependencies in the data, making them particularly useful for analyzing time-
series data. By learning features that are invariant to changes in time, 1D CNNs can
effectively identify trends and patterns in time-series data that would be challenging to
detect using other traditional methods.

4.4 Implementation Details

4.4.1 Parametric Models

In this study, we utilize implied volatility data from Option Metrics to estimate the
Black Scholes implied volatility and compare it to the non-parametric approach. Our find-
ings show that the Black Scholes implied volatility is just the average of the historical
data, consistent with the non-parametric approach (4.2.1). To estimate the Heston model
parameters, we analyze a sequence of cross-sectional data over a period of T days, with nt

observations each day. These observations include implied volatilities, strikes, and times to
maturity. We use the non-parametric spot variance estimator proposed by Todorov (2019)
and estimate the structural parameters of the Heston model on the training dataset de-
noted by ξ = (v, κ, σv, ρ) by minimizing the sum of squared differences between the observed
implied volatilities and those predicted by the Heston model for each day and each observa-
tion. This can be expressed mathematically as

∑T
t=1

∑nt

j=1[σj,t−σH(ξ, V̂t, St, Kj,t, τj,t, rt)]
2.

Once we find the constant structural parameters, we estimate the implied volatility from
Heston model prices.

4.4.2 Non-parametric Models

The dataset used for our study consists of 2 years of implied volatility surface (IVS) data
for each stock option in the training set and 1 year of data for testing. This proportion of
data is utilized for all the parametric and non-parametric models in our study. To further
lower the MSE of our predictions, we incorporate a validation set, which is equal to 20%
of the training dataset, and use the MSE and early stopping techniques on the validation
MSE. The use of a validation set helps in reducing overfitting, and the early stopping
technique helps in stopping the training of the model when the validation error starts to
increase.

In order to tune the hyperparameters of our neural network, we use a wide range of
values for each hyperparameter. Following the approach used in Gu et al. (2020), we
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employ a geometric rule for the hidden layers (4.3.1), and tune the number of hidden
layers from 1 to 5. Additionally, we tune the learning rate from 1e-1 to 1e-3, and set the
batch size in the neural network to a constant value of 128. To reduce the mean squared
error (MSE) of our predictions, we also tune the dropout rate from 0.1 to 0.5, and select
the epoch value from a list of 200, 300, or 500 epochs. To increase the predictive power
of our model, we introduce L1 regularization and tune the penalty from 0.001 to 1. In
total, there are 21 hyperparameters that are tuned via the Optuna library (Akiba et al.
(2019)). By automating the process of hyperparameter tuning, Optuna can help improve
the performance and generalization of machine learning models, reduce the time and cost of
model development, and facilitate the reproducibility and transparency of research results.
The number of trials in the Optuna library is set to 100. The optimized hyperparameters
allow us to obtain a more accurate and robust neural network model for predicting implied
volatilities.

For the LSTM and GRU models, we consider a range of hyperparameters to optimize
their performance. Specifically, we use 8 time periods in the LSTM and GRU architecture
for training, we tune the number of LSTM/GRU units from 32 to 64, the number of dense
units between 32 and 64, the dropout rate from 0 to 0.5, and the learning rate from 0 to
0.5. We utilize the Optuna library to efficiently tune the hyperparameters of our models,
and due to computational constraints, the number of trials is set to 10.

For the CNN model, we set the number of epochs to 100, and select 8-time steps for
prediction. We then tune the number of convolutional layers between 32 and 64, kernel
sizes between 3 and 5, and the number of dense units between 32 and 64. Additionally, we
tune the dropout rate from 0 to 0.5, and the learning rate from 0.0001 to 0.1. To efficiently
search the hyperparameter space, we utilize the Optuna library with 50 trials.

The selection of optimal hyperparameters for our models plays a crucial role in the
performance of our neural network models. The use of the Optuna library allows us
to efficiently search the hyperparameter space (Table: 10) and obtain an optimal set of
hyperparameters for our models. By tuning the hyperparameters of our FNN, LSTM,
GRU, and CNN models, we are able to improve the predictive accuracy and robustness of
our models and obtain better results for predicting implied volatilities.

4.5 Time-Varying Covariates

The present study aims to enhance the predictive accuracy of our model by incorporating
time-varying features. As financial markets are highly dynamic and ever-changing, it is
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imperative to consider the changes in covariates over time for making accurate forecasts.
Following the approach of Almeida et al. (2022), we have included seven time-varying
variables in our analysis.

One of the most significant time-varying variables that we have included in our study
is the CBOE Volatility Index (VIX), also referred to as the "fear index." The VIX serves
as a crucial leading indicator of the U.S. stock market, reflecting market participants’
expectations of volatility over the next 30 days. It is a vital benchmark of market sentiment
and risk, and its inclusion in our analysis could enhance the accuracy of our forecasting
model. We have incorporated the CBOE VIX index for all stocks except Microsoft, for
which we have used the standard VIX index. Since the VIX index captures both diffusive
and jump risks, we have also included a separate measure of market jump risk developed
by Bollerslev et al. (2015). The method involves calculating the likelihood that the index
will fall by 10% or more over the following week (left tail probability or ltp) as well as the
predicted (risk-neutral) return volatility caused by substantial negative price surges (left
tail volatility or ltv). We have relied on Bollerslev et al. (2015) research to calculate both
left-tail volatility and left-tail probability for each stock in Matlab. Additionally, we have
incorporated realized volatility, which measures the historical variation in a security’s price
over a specified period, using 10-day realized volatility data from OptionMetrics.

Apart from time-varying variables, we have also incorporated macroeconomic factors
into our model. Similar to Almeida et al. (2022) approach, we have used the Economic
Policy Uncertainty (EPU) index developed by Baker et al. (2016), which draws on news-
paper archives from Access World NewsBank service. The EPU index captures the level
of uncertainty about economic policy that may affect future economic activity. By incor-
porating the EPU index into our model, we could capture the impact of economic policy
changes on stock prices. We have also included the Aruoba-Diebold-Scotti (ADS) business
conditions index, published by the Federal Reserve Bank of Philadelphia, in our analysis
(Aruoba et al. (2009)). The ADS index provides a summary of the current state of the U.S.
economy, offering insight into the direction and amplitude of the business cycle. The in-
clusion of the ADS index in our model could help us capture the impact of macroeconomic
factors on stock prices. Furthermore, we have considered the first differences between the
term spread and credit spread features. The term spread reflects the difference between
the 10-year Treasury rate and the 3-month Treasury rate, while the credit spread indicates
the difference between the yield on Moody’s Seasoned Baa Corporate Bonds and the yield
on the 10-year Treasury. The incorporation of these features could help us capture the
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impact of interest rates on stock prices.
To assess the impact of features on the output, we employ an altered version of the

permutation feature importance technique. The concept of feature importance has gained
immense popularity in recent years due to its ability to provide insights into the relative
contributions of different factors toward the prediction of a target variable. In particular, we
use the feature importance metric of Gu et al. (2020). The Iin is determined by the change
in the RMSE metric resulting from lowering all values of feature n to zero while keeping the
other model estimates and features constant. The RMSE feature importance is a powerful
tool for identifying significant features that aid in the prediction of implied volatilities.
A feature that has a low Iin can be considered insignificant since its removal does not
significantly affect the predictive performance of the model. Conversely, a feature with a
high Iin is a strong indicator of its importance in improving the accuracy of the model.
This information is critical for model interpretation, variable selection, and ultimately, the
development of more accurate predictive models.

Our research focuses on utilizing well-established characteristics of the implied volatility
surface to explore the predictive ability of implied volatility in capturing its non-linear
dynamics (Andersen et al. (2015). These characteristics have been studied in Almeida et al.
(2022) specifically and include the level, term structure, skew, and skew term structure.
The level of the implied volatility surface pertains to the average implied volatility of short-
term at-the-money options. On the other hand, the term structure represents the difference
between the average implied volatility of long- and short-term ATM options. The skew
is defined as the difference between the average implied volatility of short-term OTM put
and call options. Finally, the skew term structure is the difference between the long- and
short-term skew, where the long-term skew is defined in a similar manner as the short-term
skew. We evaluate the root mean square error (RMSE) of the level, term structure, skew,
and skew term structure by comparing the observed implied volatility characteristics with
the predicted ones. This approach enables us to assess the accuracy of our predictions in
summarizing the behavior of the implied volatility surface.

5 Empirical Results

5.1 Option Panel Performance

The study is structured into two distinct segments: namely the assessment of perfor-
mance in the option panel and the examination of performance in the presence of time-
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varying covariates. In this section, we elaborate on the findings of the former, particularly
on the options panel performance, which involves a thorough analysis of the time to matu-
rity and moneyness effect on parametric error. Additionally, we delve into the performance
of options that have been categorized based on moneyness and time to maturity, thereby
providing a more nuanced understanding of the efficacy of the models employed in this
study.

The research focused on estimating implied volatility for American options using various
models. The results (Table: 2) showed that a historical average can be a better estimation
of implied volatility for American options. The Black-Scholes model outperformed the
stochastic Heston model for every stock. Most research on implied volatility forecasting of
American-type options is performed mostly under constant volatility and there are fewer
studies under stochastic volatility due to the nature of equity options (Chockalingam and
Muthuraman (2011)). The superior performance of the constant volatility model over a
stochastic one for stock options was identified in the current research. However, the non-
parametric correction showed its effectiveness for both Black Scholes and Heston implied
volatility models. Furthermore, introducing neural networks improved the performance of
both parametric models.

Table 2: Summary of Black Scholes and Heston model corrected performance

Black Scholes Heston
No NN FNN LSTM GRU CNN No NN FNN LSTM GRU CNN

AAPL 0.089 0.066 0.067 0.068 0.066 0.119 0.097 0.069 0.064 0.061
AMZN 0.112 0.100 0.069 0.073 0.066 1.670 0.583 0.464 1.155 1.185
GOOGL 0.100 0.084 0.060 0.060 0.056 0.182 0.107 0.081 0.121 0.122
MSFT 0.087 0.062 0.062 0.079 0.063 0.149 0.063 0.065 0.057 0.064
IBM 0.073 0.067 0.059 0.127 0.122 0.199 0.091 0.071 0.065 0.122

The table provides a summary of the pricing performance of the FNN, LSTM, GRU, and 1D
CNN neural networks combined with Black Scholes and the Heston model measured in RMSE
(root mean squared error). The pricing performance is measured from 31 December 2020 to 31
December 2021.

Concluding from the combined results, the parametric models were outperformed by
neural network correction. CNN neural network showed the lowest RMSE of implied
volatility estimation for Google options for the Black Scholes model. Regarding the He-
ston model, the best-performing model in terms of RMSE turned out to be GRU neural
network, applied to Microsoft options prices. However, across both Black Scholes and
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Heston correction time-series-dependent neural networks did not always outperform FNN,
which is less computationally expensive and nevertheless provided decent results.

It is worth noting that The 1D CNN Black Scholes model consistently showed lower
estimation error than the FNN benchmark, but performance seems to deteriorate for small
datasets such as IBM options, where GRU neural networks struggle too. We can see that
GRU neural network for the Heston model showed very consistent results, outperforming
benchmarks, FNN, and LSTM in four out of five instruments, only falling behind with
Google options. Overall, across both models and different instruments, GRU and CNN
models are performing very well, drastically reducing the RMSE of the estimation in most
cases. We can see that LSTM performed as a very stable neural network, providing RMSE
reduction every single time, however, often falls behind GRU and CNN in terms of the
magnitude of the provided reduction.

Table 3: Black Scholes and Heston model corrected performance for Amazon stock options

Black Scholes Heston
No NN FNN LSTM GRU CNN No NN FNN LSTM GRU CNN

All 0.112 0.100 0.069 0.073 0.066 1.670 0.583 0.464 1.155 1.185
DOTMC 0.114 0.114 0.079 0.070 0.078 1.721 0.593 0.830 1.250 1.201
OTMC 0.093 0.077 0.061 0.061 0.061 1.940 0.178 0.211 1.674 1.673
ATM 0.062 0.064 0.054 0.053 0.054 2.524 0.214 0.160 2.458 2.432
OTMP 0.070 0.075 0.061 0.060 0.061 0.332 0.334 0.234 0.253 0.227
DOTMP 0.135 0.123 0.090 0.083 0.080 0.419 0.342 0.220 0.304 0.261
Short 0.108 0.089 0.068 0.069 0.065 2.021 0.495 0.501 1.607 1.513
Long 0.115 0.108 0.070 0.068 0.069 0.326 0.301 0.206 0.299 0.234

The table provides a summary of the pricing performance of the FNN, LSTM, GRU, and 1D CNN
neural networks combined with Black Scholes and the Heston model measured in RMSE (root
mean squared error) per category. The definition of each category can be found in 3.The pricing
performance is measured from 31 December 2020 to 31 December 2021.

If we study the non-parametric correction by categories in Table:3, we can notice the
following results. For all options data categories, the CNN and LSTM models performed
best in estimating option prices for the Black Scholes and Heston models, respectively.
Notably, without the inclusion of neural networks, the difference in RMSE between the
Black Scholes and Heston models is striking, with the latter exhibiting RMSE values that
are four to ten times higher. This is in contrast to previous research conducted by Almeida
et al. (2022) which found that the Heston model outperformed the Black Scholes model for

22



European-type options. Our results indicate that the Black Scholes estimation of implied
volatility (IV) through averaging across periods is a better estimation of IV for stock
options than a stochastic Heston model for all categories. Furthermore, introducing a
non-parametric correction can also significantly reduce RMSE for each category. However,
even with this correction, the Black Scholes model still outperforms the Heston model.
Interestingly, the neural network correction did not improve the parametric models to the
same extent.

The GRU neural network achieved the absolute minimum RMSE of 0.054 when applied
to the Black Scholes model in the at-the-money option category. In the on-the-money
call options and deep on-the-money call options categories, LSTM, GRU, and CNN neural
networks showed the greatest reduction in RMSE for the Black Scholes model. These
models reduced the error rate to the range of 0.06 to 0.08. On the other hand, FNN and
LSTM neural networks exhibited the most consistent results for the Heston model on-the-
money call options. The FNN neural network achieved the minimum RMSE of 0.593 for
deep out-of-the-money calls in the Heston model, which represents a reduction in RMSE of
almost 66%. Our analysis also considered options with short and long maturities. LSTM,
GRU, and CNN models were found to perform well when applied to the Black Scholes
model, achieving a significant reduction in RMSE. Conversely, the best performers for the
Heston model were the FNN and LSTM models. In the at-the-money options category, the
GRU neural network achieved the absolute minimum RMSE for the Black Scholes model.

However, both GRU and CNN models failed to achieve a significant RMSE reduction
for the Heston model. Across on-the-money put and deep put options, LSTM, GRU, and
CNN performed fairly well, showing consistent RMSE reductions in both models. In terms
of comparing the models, we found that the GRU and CNN models dominated in terms of
RMSE reduction for the Black Scholes model. In contrast, the LSTM model exhibited the
best performance for the Heston model, dominating five out of eight categories. The FNN
model also performed well, achieving the best scores in the remaining two categories. The
tables for other stock options can be found (11, 12, 13, 14). We receive similar results,
where LSTM showed stable performance, whereas GRU and CNN models showed unstable
results, showing the best results across categories and worse results compared to the FNN
for the small datasets. FNN was the leading performer in some option categories. Overall,
our results highlight the importance of considering different neural network models when
estimating option prices and underscore the superior performance of the Black Scholes
model correction compared to the Heston model for equity options.
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Figure 6: Prediction of Black Scholes, Black Scholes-FNN, Black Scholes-LSTM and Black
Scholes-GRU in the Google option panel from 31 December 2020 to 31 December 2021.

In figures 14, 15, 16, 17, 18, 19, 20, 21 we examine the observed and predicted im-
plied volatility values across various stock options, using data from the test period be-
tween December 31, 2020 and December 31, 2021. The Black Scholes model predicts
constant implied volatility across all options, which is consistent with its theoretical as-
sumptions. However, Black Scholes corrected results capture the observed pattern of the
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implied volatility smile slightly flatter than Heston’s correction. This is in contrast to the
findings of Almeida et al. (2022), who reported that the non-parametrically corrected Hes-
ton model outperformed the FNN Black Scholes model in generating the implied volatility
smile, which is characterized by a U-shaped curve.

Our analysis reveals that the GRU and CNN corrected models exhibit a bias in their
predicted IV values compared to the observed IV. In particular, the implied volatility smiles
for Google stock options (Figure: 16) show a clear difference between the corrected models
and the observed IV. We observe that the time-dependent neural networks used for the
Black Scholes correction generate a wider range of predicted IV values compared to the
FNN, while still partially resembling the implied volatility smile. For the Heston model
correction, the pure Heston model and its corrections also do not fully reproduce the implied
volatility smile (17). This highlights the limitations of the Heston model in capturing the
complexity of American-type options IV and the need for alternative stochastic approaches
for it.

5.2 Time-Varying Covariates Performance

In our study, we sought to investigate the impact of time-varying features on the accu-
racy of IV predictions. To that end, we employed neural network correction models and
observed that incorporating the selected list of time-varying features led to worse results
compared to models without such features. However, upon deeper investigation, we found
that when macroeconomic features were included, all features had zero importance values.
This led us to conduct an iterative process of exclusion, removing macroeconomic features
one by one, until non-zero feature importance values were revealed for all the stocks options
IV predictions when we omitted EPU, ADS, term spread, and credit spread.

Our results suggest that macroeconomic data does not necessarily improve the predic-
tion of IV for stock-based options, which is consistent with previous research Almeida et al.
(2022). To further explore this topic, we displayed the feature importance of Apple stock
in 11. Interestingly, our findings revealed that moneyness is the most crucial feature for
both Black Scholes and Heston model correction. The left tail probability and left tail
volatility followed as the second and third most important features for Heston correction,
while ltv and VIX index were the second and third most important features for the Black
Scholes model. We also observed that feature importance values were higher for Black
Scholes correction than for Heston, indicating that features have a more significant impact
on Black Scholes prediction than in the stochastic Heston model. Furthermore, for stock
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Figure 7: Prediction of Heston, Heston-FNN, Heston-LSTM and Heston-GRU in the
Google option panel from 31 December 2020 to 31 December 2021.

options, features affect the more challenging prediction model (Heston) compared to the
better-predicted average estimation of IV. Overall, our findings highlight the importance of
carefully selecting relevant features for stock-based option IV prediction and suggest that
incorporating macroeconomic data may not necessarily improve the accuracy of prediction
models.

26



Figure 8: Feature importance of Apple Stock correction of Black Scholes and Heston model
from 31 December 2020 to 31 December 2021. Features include: moneyness, ltv, ltp, vix,
time to maturity (ttm), and realized volatility (rvol), which definitions can be found in
Section 3.

To assess the performance of various models for time-varying covariates, we selected
FNN, FNN with features (FNN+F), LSTM, and LSTM with features (LSTM+F). The
FNN serves as the benchmark model, and LSTM is the most robust time-dependent neural
network. The selection of LSTM is based on our desire to achieve superior prediction results
on average. Our analysis of the Apple stock performance reveals that FNN based model
with features outperforms other models for Black Scholes correction, exploiting all data
variables present in the Apple stock. Meanwhile, LSTM without features outperforms
models with features for all options for the Heston model.

However, when we analyze the options categories individually, we notice that FNN with
features, LSTM, and LSTM with features models perform better than others for Black
Scholes correction. FNN without features does not perform better than the other models.
Moreover, we can conclude that models that incorporate time series characteristics through
their structure (as LSTM) or time-varying covariates (as FNN with features) perform bet-
ter in the option panel. For the Heston model, we observe the superior performance of FNN
with features among the categories, leading to an intriguing insight that a model which
does not take into account time-series patterns by its construction as FNN with features
outperforms the LSTM neural network, which is explicitly built for time series data. Over-
all, our findings indicate that the inclusion of time-varying covariates significantly improves
FNN’s performance, while it only provides slight improvements in time-dependent neural
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Table 4: Black Scholes and Heston model corrected performance of time-varying features
for Apple stock options

Black Scholes Heston
No NN FNN + F LSTM + F No NN FNN + F LSTM + F

All 0.088 0.066 0.055 0.067 0.071 0.119 0.097 0.071 0.069 0.081
DOTMC 0.066 0.066 0.043 0.052 0.062 0.121 0.034 0.048 0.251 0.115
OTMC 0.067 0.068 0.061 0.055 0.073 1.939 1.938 0.058 1.739 0.096
ATM 0.073 0.074 0.062 0.063 0.335 2.441 0.157 0.066 0.412 0.099
OTMP 0.068 0.138 0.065 0.064 0.053 0.334 0.390 0.078 0.252 0.072
DOTMP 0.088 0.072 0.071 0.071 0.068 0.379 0.285 0.075 0.255 0.077
Short 0.101 0.091 0.066 0.075 0.075 1.919 1.085 0.098 1.252 0.090
Long 0.082 0.078 0.055 0.065 0.067 0.232 0.164 0.073 0.131 0.073

The table provides a summary of the pricing performance of the FNN, FNN + F, LSTM, and
LSTM + F combined with Black Scholes and the Heston model measured in RMSE (root mean
squared error) per category. The pricing performance is measured from 31 December 2020 to 31
December 2021.

networks. Therefore, we can conclude that our research demonstrates the effectiveness of
incorporating time-varying covariates in implied volatility forecasting.

Figure 9: Prediction of Black Scholes FNN and Black Scholes FNN after including time-
varying covariates from 31 December 2020 to 31 December 2021.

In Figures 9 and 10 we can see that after introducing the features into the neural
networks, the range of implied volatility values becomes wider for both Black Scholes and
Heston model correction exercise.
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Figure 10: Prediction of Black Scholes FNN and Black Scholes FNN after including time-
varying covariates from 31 December 2020 to 31 December 2021.

Table 5: Implied volatility characteristics of Apple option for Black Scholes and Heston
corrected models.

BS +FNN + F +LSTM+ F H +FNN + F +LSTM
Level 0.053 0.019 0.014 0.042 0.013 0.145 0.067 0.062 0.034
TS 0.003 0.001 0.004 0.011 0.002 0.041 0.041 0.051 0.004
Skew 0.091 0.016 0.095 0.152 0.095 0.090 0.095 0.094 0.092
Skew TS 0.012 0.003 0.015 0.029 0.011 0.007 0.002 0.012 0.011

The table provides a summary of the RSME of implied volatility characteristics of FNN, FNN with
features, LSTM, and LSTM with features combined with Black Scholes and the Heston model.
The measures are calculated from 31 December 2020 to 31 December 2021.

When we analyze the RSME of implied volatility characteristics, we reveal that the
LSTM neural network, which was chosen as the benchmark for time-dependent neural
networks, is outperformed by the FNN correction method that incorporates time-varying
covariates. The surprising outcome of this study is that the neural network trained to learn
from time patterns failed to outperform the Black Scholes and Heston FNN models with
features in terms of level, term structure, skew and skew term structure characteristics.
This observation is supported by the data presented in Table 5.
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6 Conclusion

In this research, we extend the nonparametric correction of implied volatility models
introduced by (Almeida et al. (2022)). Our goal is to investigate the performance of
American-type options for major technology companies, including Amazon, Apple, Google,
Microsoft, and IBM. Unlike Almeida et al. (2022), who focused on European options, we
apply our methodology to American options. After filtering our data, we estimate both the
Black-Scholes model and the Heston model. Our analysis reveals that the simple average of
implied volatility performs better for American options than the simulated Heston implied
volatility model. However, introducing neural networks significantly enhances the accuracy
of implied volatility estimates.

Our results demonstrate that Feedforward Neural Networks consistently provide decent
results in improving implied volatility for both models. However, we have discovered that
the Long Short-Term Memory neural network correction yields even more stable results
in predicting implied volatility and outperforms its benchmark, the FNN. This finding
is significant as it demonstrates that the unique architecture of LSTM networks enables
them to learn the temporal patterns of the data and make more accurate predictions.
Interestingly, we have found that the Gated Recurrent Unit and Convolutional Neural
Network are more sensitive to the size of the dataset, with worse results for smaller datasets
but some of the best results for larger datasets. This finding suggests that these types of
neural networks may require a certain level of data complexity to function optimally. The
study indicates that the research question about the superior performance of time-based
neural networks compared to FNNs has been confirmed.

However, to fully appreciate the implications of this conclusion, it is essential to con-
sider the broader context of the research. One possible avenue for future research is to
utilize a broader range of hyperparameters to tune neural networks. In this study, we
only considered a limited set of hyperparameters, as LSTM, GRU, and CNN networks are
computationally expensive. Furthermore, a larger number of neural networks can be used
for non-parametric correction. As recent studies (citeTransformers) have suggested, the
rising popularity of transformer neural networks can be employed as an additional source
of time series-dependent neural networks to tune. As our results demonstrated the superior
performance of Black Scholes-based correction for American-type options, further research
could lead to the discovery of stochastic volatility models as PDE and non-PDE-based
methods (?), which would outperform models under constant volatility for equity options
with two-step approximation approach of .
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Overall, our findings demonstrate the effectiveness of non-parametric correction of im-
plied volatility models for American options, when combined with neural networks. The
insights gained from this study can be applied in various financial settings, including option
pricing, risk management, and portfolio optimization. Our findings provide practitioners
with a powerful tool to enhance their decision-making processes and achieve superior fi-
nancial outcomes.
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Appendix

Figure 11: Implied volatility surface of Apple.

Figure 12: Implied volatility surface of Google.

Figure 13: Implied volatility surface of Microsoft.
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Table 6: Summary of Apple Stock Option Implied Volatility Statistics

Days to Maturity Moneyness Number Mean IV Std. dev. IV

Short (0.8, 0.9] 2384 0.300 0.101
Short (0.9, 0.97] 7402 0.246 0.083
Short (0.97, 1.03] 4793 0.236 0.078
Short (1.03, 1.1] 7150 0.271 0.096
Short (1.1, 1.6] 5362 0.376 0.145
Long (0.8, 0.9] 7000 0.251 0.072
Long (0.9, 0.97] 8255 0.247 0.072
Long (0.97, 1.03] 5049 0.237 0.075
Long (1.03, 1.1] 7722 0.275 0.089
Long (1.1, 1.6] 11378 0.337 0.117
Total (0.8, 1.6] 66602 0.279 0.105

This table provides a summary of the Apple stock option implied volatility statistics for
the period from December 31, 2018, to December 31, 2021. The table shows the count of
options, the average implied volatility percentage, and the standard deviation of implied
volatilities percentage for various time-to-maturity and moneyness categories. Short-term
maturity options are considered as (20, 60] days to maturity, and long-term options as (60,
240], respectively.

37



Table 7: Summary of Google Stock Option Implied Volatility Statistics

Days to Maturity Moneyness Number Mean IV Std. dev. IV

Short (0.8, 0.9] 9833.0 0.296 0.090
Short (0.9, 0.97] 20952.0 0.259 0.082
Short (0.97, 1.03] 14325.0 0.254 0.070
Short (1.03, 1.1] 22383.0 0.296 0.089
Short (1.1, 1.6] 24978.0 0.394 0.133
Long (0.8, 0.9] 16321.0 0.287 0.093
Long (0.9, 0.97] 25635.0 0.271 0.078
Long (0.97, 1.03] 17156.0 0.261 0.076
Long (1.03, 1.1] 25674.0 0.300 0.081
Long (1.1, 1.6] 35866.0 0.372 0.117
Total (0.8, 1.6] 213346.0 0.308 0.108

This table provides a summary of the Google stock option implied volatility statistics for
the period from December 31, 2018, to December 31, 2021. The table shows the count of
options, the average implied volatility percentage, and the standard deviation of implied
volatilities percentage for various time-to-maturity and moneyness categories. Short-term
maturity options are considered as (20, 60] days to maturity, and long-term options as (60,
240], respectively.
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Table 8: Summary of Microsoft Stock Option Implied Volatility Statistics

Days to Maturity Moneyness Number Mean IV Std. dev. IV

Short (0.8, 0.9] 5598.0 0.297 0.077
Short (0.9, 0.97] 9139.0 0.249 0.080
Short (0.97, 1.03] 4392.0 0.249 0.083
Short (1.03, 1.1] 8717.0 0.287 0.088
Short (1.1, 1.6] 13912.0 0.410 0.123
Long (0.8, 0.9] 14683.0 0.267 0.070
Long (0.9, 0.97] 13580.0 0.263 0.075
Long (0.97, 1.03] 6339.0 0.261 0.078
Long (1.03, 1.1] 11964.0 0.295 0.085
Long (1.1, 1.6] 31152.0 0.369 0.098
Total (0.8, 1.6] 119679.0 0.313 0.106

This table provides a summary of the Microsoft stock option implied volatility statistics
for the period from December 31, 2018, to December 31, 2021. The table shows the count
of options, the average implied volatility percentage, and the standard deviation of implied
volatilities percentage for various time-to-maturity and moneyness categories. Short-term
maturity options are considered as (20, 60] days to maturity, and long-term options as (60,
240], respectively.
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Table 9: Summary of IBM Stock Option Implied Volatility Statistics

Days to Maturity Moneyness Number Mean IV Std. dev. IV

Short (0.8, 0.9] 2384.0 0.299 0.101
Short (0.9, 0.97] 7402.0 0.246 0.083
Short (0.97, 1.03] 4793.0 0.236 0.078
Short (1.03, 1.1] 7150.0 0.271 0.096
Short (1.1, 1.6] 5362.0 0.376 0.145
Long (0.8, 0.9] 7000.0 0.251 0.072
Long (0.9, 0.97] 8255.0 0.247 0.072
Long (0.97, 1.03] 5049.0 0.237 0.075
Long (1.03, 1.1] 7722.0 0.275 0.089
Long (1.1, 1.6] 11378.0 0.337 0.117
Total (0.8, 1.6] 66602.0 0.279 0.105

This table provides a summary of the IBM stock option implied volatility statistics for
the period from December 31, 2018, to December 31, 2021. The table shows the count of
options, the average implied volatility percentage, and the standard deviation of implied
volatilities percentage for various time-to-maturity and moneyness categories. Short-term
maturity options are considered as (20, 60] days to maturity, and long-term options as (60,
240], respectively.
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Table 10: Summary of Amazon Stock Option Implied Volatility Statistics

Model Hyperparameter Values

FNN

hidden layer 1, 2, 3, 4, 5
learning rate 1e-1, 1e-2, 1e-3
batch size 128

dropout rate 0.1, 0.2, 0.3, 0.4, 0.5
epoch 200, 300, 500

penalty 0.001, 0.01, 0.1, 1

LSTM

lstm units 32, 64
dense units 32, 64
dropout rate 0.1, 0.2, 0.3, 0.4, 0.5
learning rate 0.1, 0.2, 0.3, 0.4, 0.5

GRU

gru units 32, 64
dense units 32, 64
dropout rate 0.1, 0.2, 0.3, 0.4, 0.5
learning rate 0.1, 0.2, 0.3, 0.4, 0.5

CNN

conv filters 32, 64
kernel size 3, 4, 5
dense units 32, 64
dropout rate 0.0001, 0.001, 0.01, 0.1

The tables provides summary of hyperparameters used to tune the FNN, LSTM, GRU and CNN
neural network for pricing correction exercise.

Table 11: Black Scholes and Heston model corrected performance for Apple stock options

Black Scholes Heston
No NN FNN LSTM GRU CNN No NN FNN LSTM GRU CNN

All 0.089 0.066 0.067 0.068 0.066 0.119 0.097 0.069 0.064 0.061
DOTMC0.066 0.066 0.052 0.047 0.043 0.121 0.034 0.251 0.485 0.478
OTMC 0.067 0.068 0.055 0.052 0.054 1.939 1.938 1.739 0.052 0.054
ATM 0.073 0.074 0.063 0.064 0.060 2.441 0.157 0.412 2.315 2.214
OTMP 0.068 0.138 0.064 0.066 0.061 0.334 0.390 0.252 0.204 0.195
DOTMP0.088 0.072 0.071 0.070 0.066 0.379 0.285 0.255 0.225 0.185
Short 0.101 0.091 0.075 0.072 0.071 1.919 1.085 1.252 1.548 1.344
Long 0.082 0.078 0.065 0.069 0.061 0.232 0.164 0.131 0.122 0.104

The table provides a summary of the pricing performance of the FNN, LSTM, GRU, and 1D CNN
neural networks combined with Black Scholes and the Heston model measured in RMSE (root
mean squared error) per category.
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Table 12: Black Scholes and Heston model corrected performance for Google stock options

Black Scholes Heston
No NN FNN LSTM GRU CNN No NN FNN LSTM GRU CNN

All 0.100 0.084 0.060 0.060 0.056 0.182 0.107 0.081 0.121 0.122
DOTMC0.085 0.085 0.051 0.047 0.051 0.374 0.296 0.206 0.205 0.180
OTMC 0.066 0.066 0.045 0.047 0.046 1.555 0.177 0.270 1.315 1.304
ATM 0.059 0.062 0.044 0.208 0.044 2.429 0.186 0.234 2.295 2.301
OTMP 0.072 0.074 0.051 0.049 0.051 0.320 0.036 0.235 0.191 0.153
DOTMP0.116 0.111 0.069 0.073 0.065 0.219 0.141 0.117 0.109 0.103
Short 0.102 0.092 0.052 0.057 0.052 0.065 0.481 0.313 0.456 0.412
Long 0.098 0.087 0.061 0.057 0.061 1.267 0.588 0.510 0.298 0.777

The table provides a summary of the pricing performance of the FNN, LSTM, GRU, and 1D CNN
neural networks combined with Black Scholes and the Heston model measured in RMSE (root
mean squared error) per category.

Table 13: Black Scholes and Heston model corrected performance for Microsoft stock
options

Black Scholes Heston
No NN FNN LSTM GRU CNN No NN FNN LSTM GRU CNN

All 0.087 0.062 0.059 0.127 0.122 0.199 0.091 0.071 0.065 0.122
DOTMC0.046 0.049 0.057 0.078 0.055 1.694 0.114 0.108 1.513 1.474
OTMC 0.046 0.070 0.049 0.066 0.047 1.957 0.196 0.076 0.564 0.689
ATM 0.049 0.054 0.048 0.049 0.044 2.161 0.098 0.0657 0.066 0.314
OTMP 0.050 4.410 0.049 0.049 0.049 0.325 0.211 0.098 0.154 0.278
DOTMP0.082 0.062 0.065 0.079 0.062 1.286 0.314 0.096 0.063 0.065
Short 0.102 0.054 0.069 0.079 0.061 1.885 0.110 0.124 0.091 0.316
Long 0.079 0.068 0.062 0.088 0.070 0.336 0.564 0.478 0.312 0.890

The table provides a summary of the pricing performance of the FNN, LSTM, GRU, and 1D CNN
neural networks combined with Black Scholes and the Heston model measured in RMSE (root
mean squared error) per category.
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Table 14: Black Scholes and Heston model corrected performance for IBM stock options

Black Scholes Heston
No NN FNN LSTM GRU CNN No NN FNN LSTM GRU CNN

All 0.073 0.067 0.059 0.127 0.122 0.199 0.091 0.071 0.065 0.122
DOTMC0.055 0.054 0.039 0.131 0.111 0.277 0.241 0.165 0.162 0.111
OTMC 0.044 0.050 0.038 1.846 1.963 2.216 0.787 0.314 0.341 1.963
ATM 0.047 0.056 0.042 1.829 1.852 2.128 0.190 0.457 0.338 1.852
OTMP 0.060 0.062 0.051 0.287 0.116 0.336 0.385 0.249 0.351 0.116
DOTMP0.090 0.102 0.075 0.324 0.297 0.742 0.562 0.388 0.353 0.297
Short 0.075 0.077 0.060 1.775 1.521 2.138 0.512 0.952 0.500 1.521
Long 0.071 0.079 0.054 0.044 0.061 0.211 0.209 0.183 0.187 0.061

The table provides a summary of the pricing performance of the FNN, LSTM, GRU, and 1D CNN
neural networks combined with Black Scholes and the Heston model measured in RMSE (root
mean squared error) per category.
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Figure 14: Prediction in the Apple option panel from 31 December 2020 to 31 December
2021.
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Figure 15: Prediction in the Apple option panel from 31 December 2020 to 31 December
2021.
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Figure 16: Prediction in the Amazon option panel from 31 December 2020 to 31 December
2021.
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Figure 17: Prediction in the Amazon option panel from 31 December 2020 to 31 December
2021.
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Figure 18: Prediction in the Microsoft option panel from 31 December 2020 to 31 December
2021.
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Figure 19: Prediction in the Microsoft option panel from 31 December 2020 to 31 December
2021.
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Figure 20: Prediction in the IBM option panel from 31 December 2020 to 31 December
2021.
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Figure 21: Prediction in the IBM option panel from 31 December 2020 to 31 December
2021.
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