
ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Generalising Invariant Coordinate Selection to

a non-linear dimensionality reduction method

Master Thesis Econometrics and Management Science
Business Analytics & Quantitative Marketing

Author: Christopher Claassen - 456177

Supervisor: dr. Aurore Archimbaud

Second Assessor: dr. Jeffrey Durieux

April 30, 2023

Abstract
Invariant Coordinate Selection (ICS) is a recent unsupervised multivariate method that is
able to reveal the structure of high-dimensional data in a low-dimensional space. This is
achieved by performing the simultaneous diagonalisation of a pair of scatter matrices. In
this paper, we investigate how various kernel techniques can be used to capture non-linear
interactions. We find that both kernel smoothing and reproducing kernels can be used to
generate new pairs. Some numerical issues of using kernels are also addressed which is useful
for practical usage of the method. We show that ICS in combination with kernels compares
favorably to previous methods for the tasks of data visualisation, anomaly detection and
classification. All results can be easily reproduced via a fresh implementation of ICS in Julia.
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1 Introduction

The rate at which new information becomes available to us is ever-growing. Dimensionality
reduction is therefore becoming more important than ever for reducing computation times and
avoiding the so called curse of dimensionality. This latter phenomenon entails that it is often
difficult to intuitively understand all interactions that can occur in a high-dimensional space.
Reducing the amount of dimensions is usually done as a preprocessing step for a subsequent task
such as classification or clustering. A simple form of dimension reduction is data compression
which amounts to discarding dimensions at the cost of a loss of information. A more advanced
type of dimension reduction is achieved by constructing new dimensions in which a task can be
performed more easily than originally possible. The latter type of dimensionality reduction has
an obvious advantage over the former, but it not always possible to be obtained as easily.

The core issue in dimensionality reduction is that a lower dimensional representation can-
not always retain all types of interactions of the higher dimensional original. There is usually
a trade-off between different types of structure because of this. A good example of this is the
trade-off between local and global structure. The local structure represents the relation of an
observation to neighbouring observations, whereas the global structure represents the relation of
an observation to all other observations. The type of structure that is to be retained is com-
monly determined by the subsequent statistical task. For example, data visualisation primarily
requires faithful local structure, whereas something like regression requires more accurate global
structure. The type of structure to be retained is not always as straightforward to diagnose. For
example, classification requires the identification of class membership above all and the form of
this structure can depend on the type of classifier used.

Recently, Tyler et al. (2009) introduced a method called Invariant Coordinate Selection (ICS)
which is able to show various different types of structure in a lower dimensional subspace. ICS
detects specific types of structure in a low-dimensional space via the simultaneous diagonalisation
of two scatter matrices. These scatter matrices generalise the concept of the covariance matrix.
The method can therefore be seen as an extension of the widely used Principle Components
Analysis (PCA; Hotelling, 1933), which performs the diagonalisation of a single scatter matrix.
This scatter matrix is usually taken as the regular covariance matrix. PCA essentially exploits
the covariance structure in order to find a number of orthogonal components. The components
constructed by PCA each represent a certain fraction of the original variance. Subsequent di-
mensionality reduction is then achieved by discarding components that represent little to no
variance. ICS is similar to PCA, but it is different in that not a single covariance structure is
of importance, but that the informational contrast between two different scatters is. The type
of revealed structure is determined by the choice of scatter matrices. Put differently, ICS uses
two matrices that have some form of informational contrast to generate a subspace in which
the structure of that certain type of contrast is identifiable. ICS has been successfully applied
in different contexts such as blind source separation (Nordhausen and Virta, 2019), clustering
(Alfons et al., 2022) and outlier detection (Archimbaud et al., 2018).

A potential drawback of using ICS is that dimensionality reduction via this method will only
capture the linear structure of the data. This is unfortunate because including the non-linear
structure can often improve the performance of subsequent statistical applications. The main
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objective of this paper is therefore to investigate how different techniques can be incorporated into
the ICS framework such that it captures non-linear structure. More specifically, we address how
observational interactions via kernel techniques can be used to obtain suitable scatter matrices
for ICS. This is in contrast to obtaining scatter matrices via parametric interactions as done in
previous works. We find that both the techniques of kernel smoothing and reproducing kernels
can be used in the successful kernelisation of ICS via kernel induced matrix pairs. This is verified
by empirical application via the tasks of data visualisation, anomaly detection and classification.
The wide selection of applications indicates the potential of these kernel methods. Providing
theoretical derivations based on the kernel methods is challenging because the techniques are
build on concepts of functional analysis. The contributions of this paper are therefore primarily
on the applied side, where the theoretical underpinnings are left for future research. A fresh
numerical implementation of the discussed methods is also provided in Julia (Bezanson et al.,
2017) as part of this thesis. The code of this package with accompanying documentation can be
accessed at: https://github.com/CClaassen/SimultaneousDiagonalisation.jl.

The remainder of this paper is structured as follows. We start in Section 2 by giving an
overview of dimensionality reduction methods specified in the literature. Next, we take a closer
look at the simultaneous diagonalisation framework and related methods in Section 3. Following
that, Section 4 explores extensions for ICS in the form of kernel smoothing and reproducing
kernels. Afterwards, Section 5 discusses a new Julia package that contains numerical implemen-
tations of the various methods. Subsequently, various empirical applications of kernel induced
ICS such as data visualisation, anomaly detection and classification are discussed in Section 6.
Section 7 concludes by giving an overview of the paper and discussing directions for future works.

2 Previous Works

One of the earliest and most used methods for dimension reduction is called Principal Compo-
nent Analysis (PCA). It was independently discovered by Pearson (1901) and Hotelling (1933).
The core idea of PCA is to introduce a change of basis such that the data becomes orthogonal
under certain restrictions to the variance. These restrictions to variance are that the variance
contained in the first component is maximal, whilst also iteratively maximising the share of the
remaining variance of subsequent components. This procedure results in the set of principle
components which have the same dimensionality as the original data. Put differently, the prin-
ciple components represent linear combinations that are an exact reconstruction of the original
data. Plain PCA is therefore not actually a strict dimensionality reduction method, but it can
be made one by discarding components. A straightforward way to do so is by discarding the
last few components that represent little to no variance. This approach makes sense if we are
interested in a dimension reduction that retains as much variance as possible. However, retaining
a certain amount of variance is not always sufficient for numerous applications. For example,
Chang (1983) and De Soete and Carroll (1994) show that different clusters are not necessarily
distinguishable by retaining the principal components with the largest variance. It is therefore
useful to consider other methods that are able to retain different types of structure.

Tyler et al. (2009) provide a more recent method called Invariant Coordinate Selection (ICS)
which is able to find different types of structure. The authors derive various properties of the
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method. One of these properties determines the name, as the resulting components can be affine
invariant depending on whether the pair of scatter matrices used are affine equivariant. In that
case, changes to the data like rotation, scaling and translation do not affect the components.
ICS is able to find different types of structure in low dimensional representation which makes
it a suitable dimensionality reduction method. It is able to find this interesting structure by
exploiting the difference in information that two scatter matrices provide. These scatter matrices
generalise the concept of the regular covariance matrix. The type of structure that is found via
ICS is determined by the contrast between the scatter matrices used. It is therefore implied that
the best scatter pairings are application dependent. Many different types of structure can be
found with ICS. This can be seen by the wide variety of possible applications of the methods
such as blind source separation (Nordhausen and Virta, 2019), clustering (Alfons et al., 2022)
and outlier detection (Archimbaud et al., 2018). A good overview of different useful scatter pairs
is given by Nordhausen and Ruiz-Gazen (2022).

A shortcoming of both PCA and ICS is that they are unable to deal with non-linear structure
in the data directly. A potential remedy to this is adding additional data based on non-linear
transformation of the original data, but this is computationally expensive in practice. Moreover,
adding new data seems counter-intuitive to the objective of dimensionality reduction. Fortu-
nately, the literature provides many examples of more efficient methods that can turn linear
methods into non-linear ones. A good example of this is kernel PCA (Schölkopf et al., 1998),
which is a non-linear extension of PCA. Kernel PCA uses the so called kernel trick, which re-
places the scatter used in the standard version with a kernel matrix. This kernel matrix is able
to reproduce the effect of extending the data in various ways. A remarkable result is that kernels
can be used to reproduce the effects of infinitely large non-linear datasets whilst only requiring
a finite amount of computation time. Other examples of the successful kernelisations of linear
methods are discussed in Boser et al. (1992) and Bach and Jordan (2002). Using kernels to
extend ICS to a non-linear method is not yet well-studied, but it will be the focus of this paper.

There also exist non-linear dimension reduction methods that reduce the dimensionality of
the data based on different principles from covariances and kernels. T-distributed Stochastic
Neighbourhood Embedding (t-SNE; Van der Maaten and Hinton, 2008) and Uniform Manifold
Approximation & Projection (UMAP; McInnes et al., 2018) are recent non-linear dimension
reduction methods that primarily aim to retain local structure via pairwise distances. They
are collectively referred to as manifold learning methods because they both attempt to find
a low-dimensional embedding that faithfully represents the close interactions of the original
data. T-SNE achieves this by making use of probability distributions, whereas UMAP relies on
graph theory. The biggest difference in comparison to PCA and ICS is that manifold learning
methods work directly with the desired amount of dimension rather than discarding undesired
components. Another difference is that these methods rely on iterative optimisation of loss
functions which usually becomes quite computationally expensive in practice. T-SNE and UMAP
are both mostly used as general data visualisation tools because of this. A potential application
of the computationally cheaper PCA and/or ICS comes in the form of the initialisation step
that both these manifold learning methods use. Kobak and Linderman (2021) show that a solid
initialisation step is fundamental for a satisfactory performance of these methods.
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Another type of non-linear dimensionality reduction methods comes from the field of machine
learning. The most widely used class of machine learning dimension reduction methods are
referred to as autoencoders (Kramer, 1991). Autoencoders are feedforward neural networks with
a specific structure. The structure consists of two parts: an encoder and a decoder, with the
smallest hidden layer in between them. The smallest layer is called the bottleneck and is vital
in the sense that it allows the network to learn a sparse representation of the input data. The
authors show that using an autoencoder with linear activation functions and a single hidden layer
leads to a result strongly resembling the PCA solution. More complex non-linear structures can
also be retained by changing the activation functions and layer structure of the autoencoder. In
this sense, the use of non-linear activation function in an autoencoder leads to a solution that
can be related to some form of non-linear PCA (Wang et al., 2014). This remarkable association
is promising, but the exact relations are unfortunately not yet well-studied. We will therefore
not focus on the relation between autoencoders and our newly proposed methods. There are
also some drawbacks to using autoencoders. Examples of this are the increased computational
burden and the increased likelihood of overfitting.

3 The Simultaneous Diagonalisation Framework

We continue with the methodology section that gives a basic overview of different ways to perform
dimensionality reduction and subsequent visualisation or classification. We start by discussing
the fundamentals of both matrix diagonalisations and scatter matrices that form the building
blocks for the simultaneous diagonalisation of two scatters matrices. Next, we consider two
alternative dimensionality reduction methods that are primarily used for data visualisation. The
section is concluded by taking a look at two different types of classifiers and their evaluation
methods, for which we use the dimension reduction as the preprocessing step.

3.1 Linear dimension reduction via PCA

Pearson (1901) and Hotelling (1933) introduced one of the earliest methods for dimensionality
reduction in the form of Principal Component Analysis (PCA). The objective of PCA is to
find an orthogonal linear transformation of a dataset X that concentrates the most important
variational information in a lower dimensional space. An actual reduction in the amount of
dimensions can subsequently be achieved by discarding components that jointly represent only a
small proportion of the total variance. The original data matrix Xn×p consists of n observation
vectors denoted by xi, or likewise of p parameter vectors denoted by xj . This means that there
are a total of n × p scalar elements in X denoted by xij . The result of dimension reduction
via PCA is then defined by the matrix Yn×r such that r < p holds after discarding some of the
principle components.
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The computation of principle components of the centered data matrix X can be done via
various matrix decompositions. A solid treatment of different matrix decompositions and their
relations is given in Golub and Van Loan (2013). For PCA, we can use the eigendecomposition
of the sample covariance matrix C = 1

n−1X
′X:

C = PΛP−1 = PΛP ′,

where P is an orthonormal matrix with columns containing eigenvectors and Λ is a diagonal
matrix consisting of ordered eigenvalues λi. The eigendecomposition is only defined for certain
square matrices. However, the fact that the covariance matrix is symmetric and positive semi-
definite (PSD) by construction implies that the eigendecomposition is always possible with real
non-negative eigenvalues. Equivalently, the diagonalisation of the covariance matrix can be
obtained by rewriting the factorisation as:

P ′CP = Λ.

The principle components Y are subsequently obtained by multiplying the data with the eigen-
vectors such that Y = XP . This effectively means that Y represents a reflected and/or rotated
version of the original centered data, where the proportion of original variance covered by a
component is given by its corresponding eigenvalue. We can discard the components that corre-
spond to the smallest eigenvalues for the dimensionality reduction. This is done because these
components only represent a small amount of variance.

A drawback of the eigendecomposition is that numerical inaccuracies can force the eigenvalues
to become negative or even complex. This issue can be addressed by instead considering the
Singular Value Decomposition (SVD) of X given by:

X = USV ′,

where U and V are orthonormal matrices with columns consisting of left and right singular
vectors respectively and S is a diagonal matrix containing the ordered non-negative singular
values si. The SVD always exists for any matrix. The relation to the eigendecomposition can
be obtained by looking at the SVDs of

X ′X = V S2V ′,

XX ′ = US2U ′.

X ′X and XX ′ do not have the same dimensionality unless X is square, but they do share
the same non-zero singular values regardless. Only taking those non-zero singular values and
corresponding singular vectors gives the thin factorisation of X. For the thin SVD factorisation
it holds that P = Uthin = Vthin and Λ = 1

n−1S
2
thin . Thus the principle components can be

calculated via the (thin) SVD as well. The advantage of the SVD is that it can form the
eigendecomposition in a more numerically stable way by not explicitly calculating the covariance
matrix.
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The various methods discussed in this section will all be illustrated by making use of the
well-known Iris dataset (Fisher, 1936)1. It is a structurally simple dataset that can be used to
highlight how dimensionality reduction methods differ. The Iris dataset contains 150 flowers
that are equally divided over three types of species. The data consists of four measurements that
are recorded for every flower, such as the length and width of its petals for example. The result
of applying PCA and retaining the first two components on the Iris data is shown in Figure 1
below. The figure shows the difference between the three species fairly well, but the versicolor
and virginica species appear to have some overlap. This is not completely unexpected because
the main objective of PCA has to do with the structure of the covariance rather than any class
label that is not explicitly included in the data. This makes PCA an unsupervised method,
because the class labels are not included in the computation.

Figure 1: A two-dimensional visualisation of the Iris dataset via PCA.

3.2 From covariance matrices to scatter matrices

The original formulation of PCA uses the covariance matrix, but it is also possible to diagonalise
a different matrix in its place. The result of this replacement is that we capture a different type
of structure than the regular covariance provides. An example of this is the diagonalisation of the
strongly related correlation matrix that results in cleansing the effect of different scales. Other
matrices that can be used as a replacement also all share some properties with the covariance
matrix. This generalisation of the covariance matrix is called a scatter matrix (Nordhausen and
Ruiz-Gazen, 2022). It can be seen as a pseudo-covariance because all scatter matrices consist of
symmetric PSD matrices. If we see the scatter as a scatter functional V (FX), it is sometimes
also required to have the affine equivariance property based on the strictness of the definition
used. The affine equivariance property is defined as:

V (FAX+b) = AV (FX)A′,

1The Iris dataset can be accessed via: https://archive.ics.uci.edu/ml/datasets/iris
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where A is a full-rank square matrix and b represents a vector. Using PCA with these scatter
matrices requires a different type of centering. This can be achieved in a similar way via a
corresponding generalisation of a mean to an affine equivariant location functional T for which
it holds that:

T (FAX+B) = AT (FX) + b.

Many different scatter matrices can be defined via various statistical principles. Scatters that
are obtained from the same statistical principle often capture the same type of information. For
example, scatters that capture information of the shape of the underlying distribution of the
data can be derived from statistical moments. The most straightforward one based on second
moments is the standard covariance defined as:

Cov2(X) =
1

n− 1

n∑
i=1

(xi − x̄n)(xi − x̄n)
′,

where n is the amount of observations and x̄n is a vector consisting of elements given by the
sample mean: 1

n

∑n
i=1 xi. It is also possible to use higher order moments, albeit with some

tweaking. It turns out that the so called matrix of fourth moments is also a scatter and it is
defined by:

Cov4(X) =
1

n

n∑
i=1

((xi − x̄n)
′Cov2(X)−1(xi − x̄n))(xi − x̄n)(xi − x̄n)

′.

A different principle to obtain scatters is that of robustness. The aim of robust methods
is to make valid inferences under potential contamination of the data. Two popular related
robust scatters are introduced by Rousseeuw (1985). They are called the Minimum Covariance
Determinant (MCD) and the Minimum Volume Ellipsoid (MVE). These scatters operate by
finding a subset of observations that minimise a certain criteria. The MCD searches for a subset
of proportion α with a minimal covariance determinant, whereas the MVE searches for a subset
of proportion β that yields the minimum volume ellipsoid. The parameters α and β act as the
desired asymptotic breakdown values, which represent the maximum proportions of observations
that may be arbitrarily corrupted before the methods become inconsistent. These values are
both usually not taken below 1

2 out of a robustness point of view. The formulas for the MCDα

and the MVEβ are given by:

MCDα(X) =
cα
nα

nα∑
j=1

(xij − x̄α,n)(xij − x̄α,n)
′,

MVEβ(X) =
cβ
nβ

nβ∑
j=1

(xij − x̄β,n)(xij − x̄β,n)
′,

where cα and cβ are Fisher consistency factors and x̄α,n and x̄β,n are the sample means corre-
sponding to the selected observations. Some additional efficiency can be recovered by extending
the optimal subset such that additional ’inner’ observation are included. This gives the 1-step
reweighted versions of the methods denoted as RMCDα and RMVEβ respectively. We will use
these variants for the remainder of this paper. Determining the subsets that yields minimal ob-
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jective criteria can be done via smart probabilistic enumeration (Rousseeuw and Driessen, 1999)
or more recent deterministic methods (Hubert et al., 2012).

3.3 Using scatter pairs for dimension reduction via ICS

It is interesting to look at how we can use the newly obtained scatter matrices in dimensionality
reduction. The most straightforward approach is to replace the regular covariance used in PCA
with a single different scatter. However, it is perhaps even better to consider the information
of multiple scatters simultaneously. For that purpose, we first recall that PCA makes use of a
single scatter matrix S1 in the standard eigenvalue problem:

S1v = λv,

where v and λ represent an eigenvector and eigenvalue respectively. Using a pair of scatters
instead, say S1 and S2, leads to the generalised eigenvalue problem:

S1v = κS2v,

where v and κ now represent the generalised eigenvector and generalised eigenvalue respectively.
The idea to use the generalised eigenvalue problem for statistical analysis was first introduced
by Caussinus and Ruiz (1990) as generalised PCA. However, the generalised eigenvalue problem
can also refer to other generalisations of the eigenvalue problem. This is partially why it was
renamed in Tyler et al. (2009) to Invariant Coordinate Selection (ICS). This name is due to
the property that the resulting components of ICS are invariant if a pair of affine equivariant
scatters is used. ICS becomes a dimensionality reduction method by first solving the generalised
eigenvalue problem and subsequently extracting only the most important components.

The generalised eigenvalue problem of the pair {S1, S2} is the same as the standard eigenvalue
problem of S−1

2 S1, given that S2 is invertible. However, this inversion is almost never done in
practice due to numerical reasons. We therefore turn to the generalised eigendecomposition of
two matrices. Rewriting this generalised decomposition to diagonalisation form gives:

W ′S1W = Λ1

W ′S2W = Λ2

where W has generalised eigenvectors as its columns and Λ1 and Λ2 are both diagonal matrices.
The fact that S1 and S2 are both scatters ensures that the main entries of the diagonal matrices
are real and non-negative. The simultaneous diagonalisation is often simplified such that one of
the diagonal matrices is equal to identity. This simplification gives the system:

P ′S1P = Λ

P ′S2P = Ip

where Λ is a diagonal matrix consisting of generalised eigenvalues, P has generalised eigenvectors
as its columns and Ip denotes the identity matrix with p columns and rows. This simplification can
essentially be seen as diagonalising S1 after a previous whitening step via S2. The choice of which
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diagonal matrix to simplify influences the eigenvalue ordering given that both matrices are full
rank. This is due to the fact that if λ1 is the first generalised eigenvalue of the pair {S1, S2}, then
1
λ1

is the last generalised eigenvalue of the the pair {S2, S1}. The simultaneous diagonalisation
can be rewritten to a simpler form as S1 = S2PΛP−1. The generalised eigenvalues Λ of a
scatter matrix pair can be seen as generalised relative kurtosis measures (Tyler et al., 2009). An
implication of this is that the components corresponding to the minimal and maximal generalised
eigenvalues represent the largest departures from normality.

It is important to note that the matrix P is not always orthonormal like in the standard
eigenproblem. This means that P−1 = P ′ does not hold in general. To see this, we can use the
QR decomposition to obtain P = QR. Subsequently, we can rewrite S1 = S2PΛP−1 to

S1 = S2QRΛR−1Q′

= S2QΛR∗Q′,

where the latter equality is just a simplification as RΛR−1 is an upper triangular matrix with
the original generalised eigenvalues on the diagonal. This reveals that the simulaneous diagonal-
isation of two scatter matrices is in fact a simultaneous (upper) triangularisation if we limit P

to being orthonormal, unless R is diagonal. It shows the strong relation to the general simul-
taneous triangularisation that can be achieved via the generalised Schur decomposition. This
decomposition can be rewritten in triangularsation form as

Q′S1Z = T1 = Λ1R1

Q′S2Z = T2 = Λ2R2

where Q and Z are orthonormal matrices, R1 and R2 are upper triangular matrices and Λ =

Λ1Λ
−1
2 is equal to the generalised eigenvalues. The simplified Schur form is given by S1 =

S2ZT1T
−1
2 Z ′. The generalised Schur decomposition is also known as the QZ decomposition. It

is used as an intermediate step in the numerical solution of the generalised eigenvalue problem.
The fact that P is not necessarily orthonormal also implies that the solution to the generalised

eigenproblem cannot be directly retrieved from the Generalised Singular Value Decomposition
(GSVD). To see this, we can write the GSVD in triangularisation form as

U ′S1Q = D1R

V ′S2Q = D2R

where U , V and Q are orthonormal matrices, R is an upper triangular matrix and D = D1D
−1
2

represents the generalised singular values. The simplified form on the GSVD is given by S1 =

S2V DU ′ in case of two square matrices. This is not quite the same form as the generalised
eigenvalue problem, because U is not the same as V in general. Nevertheless, we can obtain
the generalised eigenvalues and eigenvectors via an additional spectral decomposition of V DU ′.
This is possible because PΛP−1 = V DU ′ holds. As such, the GSVD is not necessarily better as
was the case with the regular eigenvalue problem. However, the GSVD does provide a benefit if
either S1 or S2 are not full-rank and/or numerically instable. We will return to this benefit in
the kernel extensions section.
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Turning ICS into a proper dimensionality reduction method requires component selection.
A general method for selecting components resulting from any kind of pair is not yet available
in the literature. This is partially because analytical results are difficult to obtain for scatter
pairings that do not rely on statistical moments. Another factor is that different applications
require different kinds of structure in the components. Most methods are therefore based on the
eigenvalues of the simultaneous diagonalisation. It is also possible to do component selection
based on the components themselves, see Archimbaud et al. (2018) for an example. A general
result is that the interesting components can be found along (a combination of) the first few
and/or last few components. This is because these components correspond to maximal and/or
minimal generalised relative kurtosis values. We will use this method for components selection in
the remainder of the paper. An example of ICS with the first two components of the {Cov4,Cov2}
pair on the Iris dataset is given in Figure 2 below. The figure shows that the different species are
not perfectly separated, which implies that we should try another scatter pair. The invariance
property is highlighted by the fact that the dispersion is mainly along the axes.

Figure 2: A two-dimensional visualisation of the Iris dataset via ICS with {Cov4,Cov2}.

3.4 Non-linear dimension reduction alternatives: t-SNE and UMAP

T-distributed Stochastic Neighbourhood Embedding (t-SNE; Van der Maaten and Hinton, 2008)
and Uniform Manifold Approximation & Projection (UMAP; McInnes et al., 2018) offer non-
linear dimensionality reduction alternatives to ICS. The biggest advantage of using either t-SNE
or UMAP over ICS is that they can capture local structure exceptionally well, but there are
also quite a few drawbacks. The biggest drawback is arguably that the retention of global
structure is often poor. Both methods are primarily used for data visualisation. T-SNE is
arguably the simpler method to explain, as it attempts to fit high dimensional datapoints in
a low-dimensional embedding by making similar observations attract each other and letting
opposites repel. This is achieved by first defining a (different) distribution for the low- and
high-dimensional space, calculating the implied pairwise probabilities of being sufficiently close
and minimising the divergence between those probabilities. The core steps can thus be concisely
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summarised in four formulas as follows:

pj|i =
exp

(
− ||xi−xj ||2

2σ2
i

)
∑

k ̸=i exp
(
− ||xi−xk||2

2σ2
i

) ,
pij =

pj|i + pi|j

2
,

qij =

(
1 + ||yi − yj ||2

)−1∑
k ̸=l (1 + ||yk − yl||2)−1 ,

min. KL(P || Q) =
∑
ij

pij log
pij
qij

,

where P represents the the (Gaussian) probability matrix of similarity between between the
original observations in X, Q represents the the (Student-t) probability matrix of similarity
between between the low-dimensional embeddings Y , and KL represents an abbreviation of the
Kullback-Leibler divergence measure from Kullback and Leibler (1951).

Good performance of the t-SNE method primarily depends on a good initialisation of the
low-dimensional embedding space in order to retain some amount of global structure in addition
to good hyperparameter tuning. PCA is often used for the initial preprocessing step and the
subsequent initialisation. This is done in order to decrease the computational cost and help
with avoiding poor local minima of the loss function. It is interesting to mention here that ICS
can potentially be used as an alternative preprocessing step for t-SNE such that it visualises
different aspects of the underlying data. The most important hyperparameter of t-SNE is called
perplexity. It can effectively be seen as the amount of nearest neighbours because it determines
the individual Gaussian bandwidths σi though maximising the Shannon entropy. T-SNE is only
feasible if the amount of data points and/or embedded dimensions are low due to the high
computational cost of minimising the objective function. Other disadvantages of t-SNE include
the aforementioned poor retention of global structure and the fact that new points cannot be
inserted without rerunning the algorithm from scratch. An example of a t-SNE embedding for
the Iris dataset is given in Figure 3 situated on the next page. T-SNE is able to give a good
representation of the data in the sense that the different flower species are mostly given their
own cluster. However, it can also be seen that the versicolor and virginica species do not strongly
repel each other. The scales of the axes are somewhat arbitrary as they are scaled based on a
combination of the amount of observations and the perplexity hyperparameter.
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Figure 3: A two-dimensional visualisation of the Iris dataset via t-SNE.

UMAP is strongly related to the principles used in t-SNE, but it is instead based on graph
theory. UMAP works similar to t-SNE in the sense that both methods can be seen as n-body
simulation via attraction forces versus repulsion forces. T-SNE uses probabilities to determine
those forces, whereas UMAP opts for weighted graphs. Intuitively, UMAP works by connecting
all points in a weighted graph by basing those weights on the closeness of points in the high
dimensional space. Larger weights correspond to observations being put closer together in the
lower dimensional embedding. UMAP essentially follows the same principles as t-SNE with a
similar objective. As such, it is sufficient to look at the differences in loss function and important
hyperparameters. The UMAP cost function is defined as follows:

∑
e∈E

wh(e) log

(
wh(e)

wl(e)

)
+ (1− wh(e)) log

(
1− wh(e)

1− wl(e)

)
,

where e is a single edge out of the set of all possible edges E in the complete weighted graph rep-
resented by the weights wi(e) in dimension i. The function defined above contains two primary
parts. The first part of the sum is the attraction force and the second part is the repulsion force.
UMAP’s main hyperparameters are setting how many nearest neighbour should be connected
with an edge in the graph and the minimal distance between points in the low-dimensional embed-
ding. The latter hyperparameter is thus mostly used for achieving better looking visualisations
in practice.

The biggest advantage of UMAP over t-SNE is that higher dimensional embeddings are more
feasible with UMAP, but this is at the cost of inherently random initialisation and optimisation
utilised in most implementations. The inability to provide a consistent structural initialisation
also affects the reproducibility of the embedding, which is a drawback of this method. An
issue from T-SNE that is not addressed by UMAP is the lack of global structure retention. An
implication of this is that metric based clustering methods such as k-means work poorly even
though both t-SNE and UMAP graphs show cluster-like output. This is also partially caused by
the fact that the distance between possible clusters in the resulting embedding is not necessarily
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faithful. Figure 4 below shows an example of a UMAP embedding for the Iris dataset. The
embedding is similar to the t-SNE visualisation, especially if we take into account that the
distance between clusters is mostly arbitrary for both methods.

Figure 4: A two-dimensional visualisation of the Iris dataset via UMAP.

3.5 Classification, validation and evaluation metrics

The result of a dimensionality reduction method can be used for multiple subsequent statistical
tasks. One such task is classification which tries to determine which of various classes an ob-
servation belongs to. The simplest form is a binary classifier that determines if an observation
belongs to one group or the other. Not all binary classifiers have a straightforward generalisa-
tion to the multiclass case. An important difference in the case of more than two classes is the
distinction whether or not these classes possess a natural ordering. There is also a difference
between static classifiers that assign a single class per observation and probabilistic classifiers
that provide membership probabilities for all classes. We will continue by discussing both a static
and a probabilistic classifier.

A simple binary static classifier called Support Vector Machines (SVM) is introduced by
Vapnik (1963). The idea behind SVM is to construct a hyperplane that maximises the margin
between all observations xi of two groups represented by labels yi ∈ {−1, 1}. In other words,

this hard-margin SVM finds a coefficient vector

[
w

b

]
such that the restriction

yi(w
′xi − b) ≥ 1

holds for all n observations. The above restrictions need to be relaxed in case the data is not
perfectly linearly separable by a hyperplane. This gives the soft-margin SVM classifier with the
optimisation criteria:

min. λ||w||22 +
1

n

n∑
i=1

max(0, 1− yi(w
′xi − b)),
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where λ is an additional penalty parameter. The optimisation of the loss function is usually
done via the dual problem in practice. The soft-margin SVM classifier is not scale invariant
due to the hinge loss used in the loss function. A generalisation to multiclass SVM on labels
yi ∈ {1, 2, ...,K} can be obtained in multiple ways. One way is to construct K binary SVM
classifiers that each perform one versus rest classification of an individual class. These binary
classifiers are not necessarily disjoint, but any overlapping classification regions can be resolved
by majority voting.

A simple multiclass probabilistic classifier called Multinomial Logistic Regression (MLR) is
introduced by Theil (1969). The MLR model works by modelling the K class membership
probabilities of observations xi as:

Pr(Yi = k|xi) =
exp (x′iβk)∑K
l=1 exp (x

′
iβl)

,

where all βl represent class specific parameters. Class K is usually chosen as the base class by
setting the corresponding βK to 0. It does not matter which class is chosen as the base class,
but picking a base class fixes the scale of the distribution. This allows the model to be fitted via
maximum likelihood estimation of the log-likelihood function given by:

N∑
i=1

K∑
j=1

I[yi = j] Pr(Yi = j|xi).

Actual classification is done by assigning the classes for which the class membership probabilities
are maximal. The resulting decision boundaries are linear just as with SVM, but they are not
necessarily the same. The logistic classifier has an advantage over SVM by being scale invariant.

Figure 5: Example of the difference between the SVM and MLR classifiers on the Iris dataset.

(a) Decision regions of the SVM classifier. (b) Decision regions of the MLR classifier.

The panels in Figure 5 above give an example of the difference between SVM and MLR
for the Iris dataset. We see that the decision regions of the classifiers are different and that
neither classifier is able to separate the classes perfectly. A good assessment of the classification
performance is obtained via k-fold cross-validation. It consists of randomly partitioning the data
in k equal folds and evaluating individual folds by fitting classifiers to the remaining k− 1 folds.
An additional step of stratification can ensure that the class distribution of all folds are similar
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to the distribution of classes in the complete dataset. This is useful if the distribution of classes
is strongly non-uniform. The panels in Figure 6 below show the 5-fold cross validation results
of both the SVM and the MLR classifiers on the Iris dataset. Five samples of the viriginica
species are discarded to create a small bit of class imbalance. The panels show that the 5-fold
performance of MLR is somewhat better than that of SVM.

Figure 6: Example of the difference between the SVM and MLR classifiers on the Iris dataset.

(a) Confusion matrix of the SVM classifier. (b) Confusion matrix of the MLR classifier.

The table of classification results is also known as the confusion matrix. Binary evaluation
metrics are often given in terms of the entries from this confusion matrix. For the binary
classification case, the confusion matrix and corresponding terminology look as follows:

(Expected \Predicted) Positive Negative
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN ) True Negative (TN )

There are many ways of combining TP , TN , TP and FP into different evaluation metrics, see
Powers (2011) for an overview. The best evaluation metric depends on the application. Some
commonly used evaluation metrics are:

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN
,

Precision (PRC) =
TP

TP + FP
,

Recall (REC) =
TP

TP + FN
,

F-score (F1) =
2

PRC−1 +REC−1 =
2TP

2TP + FP + FN
,

Matthews Correlation (MCC) =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

ACC, PRC, REC and F1 can all take values between 0 (worst) and 1 (best). The MCC
represents the correlation to a perfect binary classifier as it takes values between -1 (worst) and
1 (best). Most binary classification evaluation metrics cannot be easily generalised to the multi-
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class case because they depend on the presence of a single positive class. Table 1 below shows the
results of the 5-fold SVM classifier on the Iris data with different positive classes, where T repre-
sents the total amount of observations. It can be seen that the evaluation metrics are dependent
on the choice of positive class. It is therefore better to aggregate all individual results, of which
the results are shown in Table 2 below. The ’macro’ method refers to averaging all individual
results, the ’weighted’ method is the same as ’macro’ but weighted by class proportions, and the
’micro’ method refers to summing all individual results. Arguably the best scalar metric that is
defined for multiple classes is the multiclass generalisation of the MCC. This MCC essentially
represents the correlation to a perfect multiclass classifier and has output on [-1,1]. The formula
given in Gorodkin (2004) for the multiclass MCC of a confusion matrix C with k classes is:

MCC =
(
∑k

i=1Cii)(
∑k

i=1

∑k
j=1Cij)−

∑
j=i((

∑k
i=1Cij)(

∑k
i=1Cji))√

(
∑k

i=1Cii)2 − (
∑

j=i(
∑k

i=1Cij)2)
√
(
∑k

i=1Cii)2 − (
∑

j=i(
∑k

i=1Cji)2)
.

Table 1: Example of multiclass evaluation metrics for different classes as the positive class.

Positive Class TP TN FP FN T ACC F1 MCC

Setosa 50 95 0 0 145 100.00% 100.00% 100.00%
Versicolor 48 93 2 2 145 97.24% 96.00% 93.89%
Virginica 43 98 2 2 145 97.24% 95.56% 93.56%

Table 2: Example of multiclass evaluation metrics for different aggregation methods

Method TP TN FP FN T ACC F1 MCC

Macro 47.00 95.33 1.33 1.33 145.0 98.16% 97.19% 95.82%
Weighted 47.14 95.24 1.31 1.31 145.0 98.19% 97.24% 95.89%
Micro 141.00 286.00 4.00 4.00 435.0 98.16% 97.24% 95.86%

4 Kernel Method Extensions

We now turn our attention to (statistical) kernel techniques and how they can be used to pro-
vide additional interesting simultaneously diagonalisable matrix pairs. This is done in order to
generate pairs that are able to capture non-linear structure. We first take a more formal look at
scatter matrices. Afterwards, both a non-parametric extension in the form of kernel smoothing,
and a spatial extension in the form of reproducing kernels are discussed. Potentially interesting
kernel pairs for ICS are also considered, where some general differences and numerical issues
concerning the simultaneous diagonalisation of these kernels pairs are addressed.

4.1 Scatters in terms of the inner product

In general terms, a kernel refers to something that contains the core part of some other object.
In statistical terms, a kernel can be conceptually linked to the principle of scatters. However,
kernels are usually defined in relation to the inner product, rather than in terms of statistical
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functionals. It is therefore important to first look at how we can obtain scatter matrices from
inner product spaces in order to construct a basis on which we can build the kernel extensions.

To that end, we first look at forming a scatter matrix S out of a data matrix X that consists
of n rows and p columns. This X is also assumed to be centered for simplicity. It is useful to
realise that we can formally think of the data X as either the set {x1, x2, ..., xn} p-dimensional
vectors that are elements of Rp or the set {x1, x2, ..., xp} n-dimensional vectors that are elements
of Rn. The symbols Rp and Rn denote finite-dimensional vector spaces with different cardinalities
over R. These approaches reflect interpreting the data matrix from either an observational or
parametric perspective. The concept of a scatter matrix now naturally follows by considering
either approach and providing the additional structure of an inner product. In case of the Rn

approach, the inner product is defined as any function ⟨·, ·⟩ : Rn × Rn −→ R that is:

Symmetric: ⟨xi, xj⟩ = ⟨xj , xi⟩,

Bilinear: ⟨αxi + βxj , xk⟩ = α⟨xi, xk⟩+ β⟨xj , xk⟩,

Postive semi-definite: ⟨xi, xi⟩ ≥ 0.

These requirements are similar to the requirement that scatters should be symmetric PSD matri-
ces. In particular, defining the inner product as the scaled dot product ⟨xi, xj⟩ = 1

n−1x
′
ixj fulfills

these requirements and gives the standard covariance scatter S = Σ = 1
n−1X

′X. It has elements
σij that represent the inner products, or covariances, of vectors xi and xj . More formally, we say
that the covariance matrix resides in the inner product space associated with the original vector
space. The definition of a scatter matrix in this interpretation is thus any matrix that can be
formed by associating a proper inner product function. The reverse is also true, in the sense that
any scatter matrix of some data induces a particular inner product space of the corresponding
vector space.

It is important to note that concepts resembling efficiency and robustness can be carried
over. The standard covariance matrix is efficient in this framework in the sense that all possible
dimensions are included and considered to be of equal importance. Put differently, we have not
yet introduced any additional structure by which we could value the information of certain di-
mensions over others. Adding such structure can, for example, diminish the influence of aberrant
dimensions. The previously discussed (R)MCD and (R)MVE estimators can be seen as examples
of this. The additional structure of these methods comes in the form of providing a criteria for
robustness and subsequently adjusting the inner product function accordingly. Recall that in
the case of the (R)MCD, the robustness criteria is provided by the subset of h observations that
yield the lowest determinant of the corresponding covariance matrix. Afterwards, the (R)MCD
excludes all observations that are not within a certain robust distance from the center of those
observations. This leads to a inner product function that is similar to the usual dot product
as before, but with the exclusion of certain dimensions that do not fit the robustness criteria.
Consequently, the (R)MCD does not induce an inner product space for the original vector space,
but for its subspace that contains the subset of h innermost observations.
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4.2 Kernel smoothing

Considering the robust scatters as inner products essentially leads to a form of weighted covari-
ance matrices, even though the weights are obtained in a sophisticated manner. An alternative
non-parametric weighting scheme for capturing non-linear structure can be obtained by looking
at pairwise interactions in the data. We consider the Rp approach and adjust the inner product
function by looking at the distance between individual observations. A so called kernel smooth-
ing function k : Rn −→ R is then used to transform the pairwise distances into relative weights.
This technique is usually referred to as kernel smoothing, but it was originally known as Parzen-
Rosenblatt window estimation (Rosenblatt, 1956; Parzen, 1962). It can be seen as a form of
weighted moving average, which means that the name of weighting kernels is also appropriate.

The weighting kernel function determines the type of non-linearity that can be captured.
Any proper symmetric probability density function can be used as a weighting kernel function.
Some commonly used examples of weighting kernel functions k(u) that can be used for obtaining
weights are defined as follows:

Support within unit ball:

Uniform : k(u) =
1

2
,

Triangular : k(u) = 1− |u|,

Epanechnikov : k(u) =
3

4
(1− u2),

Quartic : k(u) =
15

16
(1− u2)2,

Triweight : k(u) =
35

32
(1− u2)3,

Tricube : k(u) =
70

81
(1− |u|3)3,

Cosine : k(u) =
π

4
cos(

π

2
u),

Infinite support:

Gaussian : k(u) =
1√
2π

e−
1
2
u2
,

Logistic : k(u) =
1

eu + 2 + e−u
,

Sigmoid : k(u) =
2

π

1

eu + e−u
,

Silverman : k(u) =
1

2
e

|u|√
(2 sin(

|u|√
(2)

+
π

4
),

where u represents d(xi, xj) that is the distance between observations xi and xj for which the
weight is calculated. An important difference is that some kernels only assign weight to ’effective’
nearest neighbours from within the bounded support, whereas others assign some positive weight
to any other observation. A graphical overview of this distinction can be seen in Figure 7 on the
next page. The figure only shows the right sides of the functions due to pairwise distances being
non-negative. It can be seen that several kernel functions are similar to other kernel functions.
They can roughly be divided into three groups: discontinuous kernels, bounded support kernels,
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and infinite support kernels. The differences between the provided weights within these groups
are relatively small. Nevertheless, it should be noted that even small differences between functions
on an individual scale can have a significant effect on the overall result.

Figure 7: An overview of the relative weights given by certain kernel functions.

The region that contains the effective neighbours is usually adjusted by scaling the distance
function by a non-negative scalar bandwidth parameter λ such that u(xi, xj , λ) = 1

λd(xi, xj). The
bandwidth effectively controls the efficiency-robustness trade-off because it scales the region from
which potential neighbours are selected. The result is called a local covariance (Nordhausen et al.,
2015) as it replaces every point with a normalised weighted linear combination of its (effective)
neighbours. The local covariance matrix is subsequently calculated over those newly constructed
points. The same linear combinations can also be used to obtain a location estimate. We will
refer to the local covariance as ’LCov’ from now on. In mathematical terms, the kernelised
version of the LCov can be defined as

LCov(X,λ) =
1

n− 1

n∑
i=1

n∑
j=1

k( 1λd(xi, xj))∑n
j=1 k(

1
λd(xi, xj))

(xi − x̄n)(xj − x̄n)
′

=
1

n− 1

n∑
i=1

n∑
j=1

k∗(
1

λ
d(xi, xj))(xi − x̄n)(xj − x̄n)

′,

where k∗ denotes that the relative weights given by the kernel function k are normalised by their
sum. The corresponding inner product function is a weighted version of the usual dot product,
where the normalised weights are determined by the kernel functions.

We can extend the kernelised LCov in two ways. The first way is to set individual λi such
that they become inversely proportional to how densely the region surrounding observation i

is populated. The effect of this asymmetry is that points without many close neighbours are
then unilaterally forced towards farther neighbours. However, adjusting individual λi for already
densely populated regions yields little effective change for reasonable computation cost of their
distribution. We therefore look at an alternative to setting all λi individually.

19



We propose to calculate λi via an initial global λ with a subsequent individual refinement
step. This is achieved by first calculating the pairwise distances for a global bandwidth λ, looking
at the implied amount of effective neighbours for each point, and then scaling individual λi such
that at least a proportion of α% points is considered to be within unit distance of every point.
This leads to a local covariance that uses λ for densely populated regions and guaranteeing
at least ⌊αn⌋ effective neighbours for more sparsely populated regions. The individual scaling
required can easily be obtained by partially sorting the implied pairwise distances of the initial λ.
Using these newly constructed λ

(α)
i gives an adaptive local covariance, or ALCov, which follows

a similar idea to the 1-step re-weighted robust covariance methods. The formula of ALCovα is

ALCovα(X,β, λ) =
1

n− 1

n∑
i=1

n∑
j=1

K∗(
β

λ
(α)
i

d(xi, xj))(xi − x̄n)(xj − x̄n)
′,

where β ∈ (0, 1] is an additional parameter to add some refinement to kernels that only offer
support within the unit ball. The idea behind the β parameter is to add some differentiation in
relative weight to points that are on the edge of the unit ball. It can be set equal to 1 for kernels
that offer infinite support.

The second way to extend LCov is to increase the robustness by replacing the local weighted
mean that constructs new points with a more robust version such as the weighted geometric
median. The weighted geometric median y can be found via the following criteria:

argmin
y∈Rp

p∑
i=1

||w′
ixi − y||2,

where the relative weights wi are again given by a kernel function. It corresponds to the point
that minimises the weighted distance between all points. There is no closed form expression for
y, but it can be found via the Weiszfeld algorithm (Weiszfeld, 1937) which is a form of iteratively
reweighted least squares. The geometric median attains an asymptotic breakdown value of 50%,
but it is not necessarily amongst the set of points over which it is calculated. A combination of
adaptively scaling an individual λ and using a robust plug-in estimator gives the adaptive robust
local covariance, or ARLCovα, defined as:

ARLCovα(Y, β, λ) =
1

n− 1

n∑
i=1

n∑
j=1

(yi − ȳn)(yj − ȳn)
′,

where Y represents the collection of weighted geometric medians. The α, β and λ parameters are
implicitly included in this definition via the kernel function that determines the relative weights
that are used for the weighted geometric median.

4.3 Reproducing kernels

The term statistical kernel is also used for various other types of techniques than the one described
in the previous section. A particularly useful one is called the reproducing kernel and it is based
on the theory of integral operators. Ghojogh et al. (2021) give a good overview of the theory
behind reproducing kernels. Reproducing kernels are mainly used for extending methods that
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only capture linear information to the non-linear case. They have already been successfully used
for kernelising several linear methods of which the most prominent methods are kernel PCA
(Schölkopf et al., 1998) and kernel SVM (Boser et al., 1992). The reproducing kernel is used to
generalise the inner product to allow for infinitely large sets of elements. For the construction
of these reproducing kernels, we start with providing additional types of structure to the inner
product space of the Rp approach. The first type of structure is that of a norm function || · || :
Rp −→ R that has the following properties:

Non-negativity: ||xi|| ≥ 0,

Linearity: ||αxi|| = ||α||||xi||,

Triangle inequality: ||xi + xj || ≤ ||xi||+ ||xj ||.

The most common norm function is the Euclidean norm ||x|| =
√

x2i + ...+ x2n as it represents
the regular notion of distance. Defining the norm is essential in the sense that exchanging norm
functions yields different reproducing kernels.

The other type of required structure is that the space must be complete with respect to its
norm, which results in a complete metric space. This formally means that any Cauchy sequence
of elements of the space cannot converge to something outside of these elements. Adding the
requirement that the inner product induces the norm gives a Hilbert space H. It is defined as
an inner product space that is complete with respect to a norm which is induced by its inner
product. The elements of Hilbert spaces are functions and features. A feature ϕ is a map of
element-wise functional transforms of another vector, such as ϕ(xi) = [1 xi x2i ]

′ for example.
Hilbert spaces can therefore be seen as a generalisation of the standard vector space to a function
space.

We can now use the dot product to define a corresponding inner product for features in this
Hilbert space, which becomes ⟨xi, xj⟩ = ϕ(xi)

′ϕ(xj). Something remarkable is that dimensional-
ity of the mapping of feature ϕ(xi) is allowed to be infinitely dimensional in H. Using the inner
product of infinitely many elements would be practically infeasible if not for the kernel trick.
The kernel trick consists of replacing the inner product of feature maps in Hilbert space with the
inner product of a certain kernel function. In mathematical terms, this can be represented as:

⟨ϕ(xi), ϕ(xj)⟩H = ⟨κxi , κxj ⟩Rp = κ(xi, xj),

where xi and xj are both observations of the original data. The Riesz representation theorem
(Riesz, 1907) ensures that there always exists a unique kernel function κ that achieves this. This
result is called the reproducing property because some inner product in functional Hilbert space is
reproduced by another inner product in regular vector space. The main appeal of the kernel trick
is that features do not need to be formed explicitly, as the same inner products can be obtained
via kernel functions. A kernel that has the reproducing property induces the Reproducing Kernel
Hilbert Space (RKHS), which is a subspace of H. It is a subspace because it only spans the
part of H that can be reproduced via (kernel) function evaluations. The reproducing kernels are
therefore also known as RKHS kernels.
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There are many different types of kernel functions possible that all reproduce different types
of feature maps. Asserting which features are reproduced by a specific kernel can be done by
using Mercer’s conditions (Mercer, 1909). Some common examples of kernel functions κ(xi, xj)

that can be used are:

Linear : κ(xi, xj ; c) = (x′ixj + c),

Polynomial : κ(xi, xj ; c, d) = (x′ixj + c)d,

Laplacian : κ(xi, xj ;σ) = exp(−||xi − xj ||
σ

),

Gaussian : κ(xi, xj ;σ
2) = exp(−||xi − xj ||2

2σ2
),

Rational : κ(xi, xj ;α, γ) = (1 +
||xi − xj ||2γ

α
),

Cosine : κ(xi, xj) = cos(π|xi − xj |),

NeuralNet : κ(xi, xj) = arcsin(
x′ixj√

(1 + x′ixi)(1 + x′jxj)
),

Mahalanobis : κ(xi, xj ;P ) = exp(−(xi − xj)
′P (xi − xj)),

where {c, d, α, γ, σ, σ2, P} are all kernel specific parameters. The reproduced feature map of
the polynomial kernel is a feature map of all powers and cross products up to order d. By
contrast, the reproduced feature map of the Gaussian kernel consists of infinitely many power
interactions. The regular covariance matrix is proportional to the Linear kernel in the sense
that it gives proportional results. An interesting note is that new reproducing kernels can be
constructed from the (infinite) sum and/or product of ’base’ reproducing kernels. This is akin
to the concept that more sophisticated function can be written as a Taylor series expansion.
Exchanging the norm function also yields a new valid kernel as mentioned previously. This can
be seen by comparing the definitions for the Gaussian and Laplacian kernels given above. These
kernels are essentially the same outside of the norm used.

The relation between covariance matrices and reproducing kernels can be made more formal.
Mercer’s theorem (Mercer, 1909) states that any kernel matrix that has the reproducing property
can exclusively be found among symmetric PSD matrices. The reverse is also true, as the Moore-
Aronzajn theorem (Aronszajn, 1950) states that every symmetric PSD matrix induces some
particular RKHS. As such, a reproducing kernel allows for the fast calculation of inner products
between (in)finitely large features. The reproduced features consist of non-linear transformations
of the original data. A subsequent (simultaneous) diagonalisation then provides the orthogonal
projection of those non-linear features without ever forming them explicitly.

4.4 Kernel pairs and numerical considerations

The previously discussed kernel methods provide scatters that capture non-linear structure in
the data. We now consider the practical differences between using ICS with either scatter or
kernel matrices. For the remainder of this section, we treat the kernelised versions of the LCov as
a scatter. This is because the most important difference for ICS is that scatter pairs provide up
to p components, whereas reproducing kernel pairs provide up to n components. For data with
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fewer parameters than observations (p < n), this means that using reproducing kernels does not
directly reduce the dimensionality of the original space. Rather, the dimensionality reduction
occurs in comparison to the feature space instead. The fact that the original feature map can be
infinite dimensional also means that the estimation has a form of automatic regularisation. This
is because we only extract the projections of a finite amount of components from the infinite
dimensional feature map. The regularisation is even necessary as it is not feasible to directly
decompose matrices of infinite size.

A drawback of using either weighting or reproducing kernel matrices for ICS is that the
components resulting from kernel methods will not be affine invariant. This is because any
data transformation has a non-linear effect on the result via the kernel function. The weighting
kernels are the most straightforward to incorporate because they can be used in place of other
robust scatters. Pairs like {LCov,Cov2} and {ALCovα,Cov4} can be tried with different kernel
functions and parameter settings for example. The most important parameter to set for ALCov
is the amount of guaranteed neighbours. This can be done via a grid search over different
percentages of observations. The required computational time for trying different settings is
much lower in comparison to methods like the RMCD.

An advantage of obtaining components generated via reproducing kernels is that they are
automatically centered in feature space as part of the estimation. A drawback of using ICS
with reproducing kernels is that transformation–retransformation of new datapoints is no longer
directly possible. This is due to the feature projection step that prohibits an exact reconstruction.
Interesting pairs can be obtained by considering different forms of informational contrast such
as linearity versus non-linearity and a kernel versus its generalisation. This leads to pairs such
as {Gaussian, Linear} and {Rational, Gaussian} respectively. The Hadamard product ⊙ can
also be used to generate new pairs. This element-wise matrix product retains the PSD property
as a consequence of the Schur product theorem (Schur, 1911). It can effectively be seen as
adjusting the kernel to reproduce a different feature map. Optimally performing parameters for
RKHS kernels can be obtained via cross-validation. A good value for the norm scaling parameter
that most kernels use can be obtained via the median heuristic, which is thoroughly studied in
Garreau et al. (2017).

It is important to note that the numerical rank of reproducing kernels can decrease due to
different factors. One numerical rank is always lost due to the required centering in feature
space and further numerical ranks can be lost due to observations being colinear in feature
space. The latter mostly occurs when the data does not provide sufficient distinct information to
completely fill the feature space. The fact that kernel matrices are always singular means that a
direct generalised eigendecomposition will run into unexpected results like negative or complex
eigenvalues. We can resolve this by using the GSVD as shown by Archimbaud (2018). Given a
kernel pair {K1,K2} with rank(K2) = r < n, it is still possible to decompose Vn×rDr×rU

′
r×n as

given by the GSVD for the required solution.
The computation of ICS with kernel pairs is straightforward in the sense that the kernel pair

just replaces the scatter pair. However, one kernel matrix is often of much more lower numerical
rank than the other in practice. An unfortunate result of this is that even the GSVD method can
run into numerical problems in that situation, based on experimentation with different kernel
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pairs. This issue can be addressed via the reduced rank simultaneous diagonalisation discussed
in Yu and Yang (2001). Given a kernel pair {K1,K2} with rank(K2) = r < n, the reduced
rank procedure consists of whitening K2 via the first r singular vectors and subsequently using
that to transform and decompose K1 separately. The rank reduced simultaneous diagonalisation
therefore consists of the following two modified SVD steps:

S
− 1

2
r×rP

′
r×nK2Pn×rS

− 1
2

r×r = Ir×r,

Q′
r×rK

∗
1Qr×r = Λr×r.

The matrices Sr×r and Pn×r represent the restricted singular values and singular vectors of
K2, and the matrices Λr×r and Qr×r are the restricted singular values and singular vectors of

K∗
1 = (S

− 1
2

r×rP
′
r×nK1Pn×rS

− 1
2

r×r). The required generalised eigenvectors are subsequently given by

the matrix Tn×r = Pn×rS
− 1

2
r×rQr×r, with the corresponding generalised eigenvalues contained in

the diagonal matrix Λr×r.
Another consequence of numerical rank deficiency imbalance is that kernel pairs cannot be

reversed for the inverted results in general. Based on experimentation with various kernel pairs,
we recommend to apply the reduced rank simultaneous diagonalisation via whitening of the
kernel matrix with lowest rank. Additionally reversing the order of the remaining components is
sometimes also useful in that case. The goal of this reversion is to move important components
to the front. Subsequently, we can also discard any components exceeding numerical rank of the
kernel matrix with the highest rank. We find that the most interesting components can be found
along either the first or last few components in general.

5 A New Julia Package: SimultaneousDiagonalisation.jl

The original numerical implementation of ICS is written in the R programming language by
Nordhausen et al. (2008). The package is designed for the use of ICS with scatter matrices.
Some initial testing reveals that it is unable to deal with the additional numerical issues that
arise from using kernel matrices. This means that a new numerically stable implementation of
ICS is required for using the various kernel induced pairings. An additional benefit of creating a
new implementation can come in the form of using a more modern faster programming language
that handles large datatsets more efficiently.

A fresh code implementation of PCA, ICS and other related methods is created in the Julia
programming language Bezanson et al. (2017) as part of this thesis. Julia is a relatively new
dynamically typed programming language with multiple dispatch which makes it fitting for
scientific computing with large datasets. The package is called "SimultaneousDiagonalisation.jl"
and can be downloaded at: https://github.com/CClaassen/SimultaneousDiagonalisation.
jl. The primary function of the package is to obtain scatter and kernel pairs, accomplish the
diagonalisation, and do component selection. The package can also be used for classification and
evaluation in addition to generating figures like the ones seen in this paper.

A quick summary of the package is that it contains implementations for 8 scatter matrices,
11 smoothing kernels, 19 reproducing kernels, 10 component selection methods, 3 classifiers
and 30 classification evaluation metrics. Appendix A contains more details and a table of all
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functions per source file. An important implementation detail is that the sign ambiguity of
the eigenvectors is broken by setting the signs such that the absolute largest entry is positive.
Moreover, kernel matrices are decomposed via the rank reduced SVD procedure by default for
numerical stability. The matrix decompositions are done by calling the appropriate functions
from LAPACK (Anderson et al., 1999). Some of the more complex methods such as SVM2,
t-SNE3 and UMAP4 are included via bindings to separate packages.

The most important function of the Julia package is the ics function. This function computes
the diagonalisation of the scatter or kernel pair and subsequently performs component selection
if desired. A similar procedure is followed for the decomposition of a single scatter or kernel via
the gpca function. These functions allow for the decompositions to be done via several methods.
The default choices depend on if a simultaneous diagonalisation is required and whether the pair
consists of kernels or not. The default method that is used to simultaneously decompose a pair of
kernel matrices in a numerically stable way is given in Algorithm 1 below. The method is equal
to the generalised eigendecomposition if the matrix Bn×n is full rank. Moreover, the method is
equal to the standard eigendecomposition if the matrix Bn×n is taken to be the identity matrix.
The positions of An×n and Bn×n should be reversed if An×n has a lower rank than Bn×n as

mentioned before. The components can be computed via Yn×r = Vn×rΛ
1
2
r×r after running the

rank reduced SVD method. The square roots of the eigenvalues are used in the kernel case as
this standardises the data in feature space.

Algorithm 1: (Vn×r,Λr×r) = RankReducedSVD(An×n,Bn×n)
Input: Kernels or Scatters An×n and Bn×n

1: Compute rank(Bn×n) = r
2: Compute Pn×r and Sr×r via the thin SVD of Bn×n: P ′

r×nBn×nPn×r = Sr×r

3: Compute Tn×r = Pn×rS
− 1

2
r×r

4: Compute A∗
r×r = T ′

r×nAn×nTn×r

5: Compute Qr×r and Λr×r via the SVD of A∗
r×r: Q′

r×rA
∗
r×rQr×r = Λr×r

6: Compute Vn×r = Tn×rQr×r

7: Fix the signs of Vn×r

Output: Generalised Eigenvectors Vn×r, Generalised Eigenvalues Λr×r

We conclude this section by looking at a demonstration of the package. Our goal is to reduce
the dimensionality of the Iris dataset by using kernel PCA via two different kernels. Kernel PCA
with kernel K is the same as ICS with the kernel pair {K, I}, where the identity matrix I is also
referred to as the white noise kernel. The command lines that are used for the demonstration
are visible in Figure 8 situated on the next page. The procedure is to obtain the data and
make the decomposition via either the ics or gpca functions. Next, we standardise the data
such that we can make a SVM based scatter-wise contour plot. Subsequent evaluation is done
by both calling the classifier directly and using stratified cross-validation. An interesting note
here is that Kernel PCA with the rational kernel is able to classify all species perfectly. The
resulting plot is shown in Figure 9 on the next page, where the clear differences between the
results of the kernels can be seen. The bottom left part contains the results of the Linear kernel

2The source code for the SVM package can be found at: https://github.com/JuliaML/LIBSVM.jl
3The source code for the t-SNE package can be found at: https://github.com/lejon/TSne.jl
4The source code for the UMAP package can be found at: https://github.com/dillondaudert/UMAP.jl
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with corresponding eigenvalues κi and the top right part contains the results of the Rational
kernel with corresponding eigenvalues λj . The non-diagonal entries of the figure contain pair-
wise scatter plots of certain components. The diagonal entries of the figure contain comparisons
of the shape of individual components to the shape of the normal distribution. This is of interest
if we want to base our component selection on (non-)normality of the data.

Figure 8: A small demonstration of the package.

Figure 9: Pair-wise scatters of kernel PCA with two different kernels on the Iris data.

6 Empirical Applications

We now turn our attention to applying the previously discussed methods and extensions to
different datasets. We compare the performance of the various kernel induced pairs against each
other and alternative widely used scatter pairs. This is done in order to assess whether capturing
non-linear structure can be useful in practice. All figures and tables are reproducible by calling
the appropriate functions from the package.
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6.1 Data visualisation: Wine data

We first analyse the performance of our newly proposed kernel induced methods for data visual-
isation. This is done by using the Wine dataset5. The data consists of 129 wine samples with a
chemical study determining 13 measurements for all samples. Ten wine samples are taken from
a different cultivar than the rest. The goal is therefore to see if we can identify these outliers.
In particular, we look at whether we are able to visualise this difference in two dimensions. A
t-SNE visualisation of the Wine data is given in Figure 10 below. T-SNE is able to reveal that
the structure is fairly simple in the sense that the outliers are positioned together. However,
we would not be able to easily see this if the data was to be unlabeled. We therefore turn to a
different dimensionality reduction method in the form of ICS.

Figure 10: A two-dimensional visualisation of the Wine data via t-SNE.

Further analysis is done by extracting components of ICS with various scatter pairings and
running a linear classifier on the result. For the comparison, we consider the first, second and
last components produced by all different setups. A small caveat here is that outlier detection
is rarely done in a supervised context in practice. Nevertheless, it makes sense to do so here out
of a practical evaluation perspective. Moreover, a simple linear classifier that is almost parallel
to an axis is an indication that the structure is potentially also visible without labeling. The
visualisation results of various scatter pairings on the Wine data can be found in Appendix B,
of which we will discuss the best results here next.

5The Wine dataset can be accessed via: https://archive.ics.uci.edu/ml/datasets/Wine
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Figure 11: Best subspaces of Wine data for different PCA and ICS methods.

(a) Best visualisation using PCA {Cov2}. (b) Best visualisation using ICS {Cov2,MCD50}.

The best visualisation results of the {Cov2,I} and {Cov2,MCD50} scatter pairings are shown in
the panels of Figure 11 above. The subscript of the MCD denotes the proportion of observations
over which the MCD is minimised in percentages. The I denotes that an identity matrix is
used such that the pair simplifies to classic PCA. The left panel shows that we can perfectly
separate the outliers if we use supervision with PCA. The arrows in the panel denote the two
main directions of point dispersion. The fact that there are multiple arrows implies that it
would be hard to find all outliers consistently if we do not have access to the labeling. The
right panel shows the best result of using the {Cov2,MCD50} pair, which is also able to separate
the outliers under supervision. We again encounter multiple dispersion directions such that
consistent unsupervised outlier detection would be difficult.

The best visualisation result of using a kernel smoothing induced pair is shown in the panels
of Figure 12 on the next page. In particular, we use the ALCov via the Epanechnikov kernel
in combination with the Cov4 scatter. The left panel shows that the regular points form an
ellipse-like form and that the outliers are dispersed differently. The arrows indicate that this is
roughly in a direction orthogonal to the main axis of the normal points. It is therefore not hard
to identify potential outliers in this picture. This is a good result given that ICS did not use any
information of the labels in the computation. An even clearer picture is obtained by rotating the
result via PCA. The right panel shows the effect of this, where the classification boundary is now
almost parallel to the x-axis. A practical detail is that the ALCov nearest neighbour parameter
was set via a grid search over equally spaced values without touching the scale parameter. The
value that gives the best visualisation is found at a proportion of 95% of the total number of
observations. It is therefore not hard to find this visualisation in practice with this method. We
find that pairings containing the ARLCov were not able to generate interesting visualisations in
this application.
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Figure 12: Best subspaces of Wine data for pairs containing ALCov.

(a) Best visualisation using Epanechnikov kernel. (b) Rotated visualisation using Epanechnikov kernel.

Figure 13: An alternative two-dimensional visualisation of the Wine data via t-SNE.

We now investigate whether we can use the components of kernel induced ICS as a pre-
processing step for a different visualisation method. For that purpose, we generate a t-SNE
embedding based on the first two and last two components of kernel induced ICS in Figure 13
given above. T-SNE now clearly displays that outliers are structurally different from normal
observations. This could not be seen in the initial t-SNE embedding of Figure 10 which is based
on PCA preprocessing. The new figure shows that it is possible to highlight different types of
structure with t-SNE if we use a few components of ICS for the initialisation. It can be a good
idea to investigate in future works whether using ICS with t-SNE is better than using PCA with
t-SNE in general. This is because it appears that the benefits of using ICS here are not only
that the computational burden is reduced, but also that a different type of structure is revealed.
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6.2 Anomaly detection: Wisconsin Breast Cancer data

The next task we evaluate our methods on is anomaly detection. For this context, we use the
Wisconsin Breast Cancer (WBC) data6. The WBC dataset consists of 357 benign breast cancer
cases, whereas the other 21 included cases are malignant. There are a total of 30 measurements
per sample. The goal is obviously to find whether we can isolate the malignant cases from the
benign ones. Finding such structure can help in screening future cases. Figure 14 below shows
that UMAP is unable to cluster all malignant cases together. Unfortunately, we also cannot find
a matrix pairing for ICS that perfectly separates the two cases in two dimensions. It is therefore
a better idea to expand the analysis to the situation where we retain more than two dimensions.

Figure 14: A two-dimensional visualisation of the WBC data via UMAP.

A thorough analysis of the performance of ICS on this data can be done by evaluating
different matrix pairings. For the smoothing kernel induced pairs, we pick the Epanechnikov
kernel from the unit ball support group and the Gaussian kernel from the infinite support group,
both with different setups. The scale parameter of LCov is set by optimisation, whereas the
nearest neighbour parameter of ALCov is again set via grid search over equally spaced proportion
values. These methods are compared with various other scatter pairs found in the literature.
Table 3 on the next page shows the results of using a linear SVM classifier via stratified 10-fold
cross-validation on 5 components of all these matrix pairings. These 5 components consists of
the first 3 in addition to the last 2 components. The best score per evaluation metric is in
bold, where we treat the malignant class as the primary class in all evaluations. All pairs score
well on accuracy, but this not a useful metric for this application due to the significant class
distribution imbalance. Arguably the most important evaluation metrics are recall and F-score
in this case. This is because would like to classify all malignant cases as malignant (=recall)
whilst not classifying any benign cases as malignant (=F-score). Modified PCA using Cov4
performs the best of all traditional scatter pairings. The table shows that parameter tuning is
essential for good performance of pairs containing a kernel. A non-optimised parameter can give
very poor results, as is evident with the last pair in the table. The ALCov pair containing the

6The WBC dataset can be accessed via: https://archive.ics.uci.edu/ml/datasets/breast+cancer+
wisconsin+(diagnostic)
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Epanechnikov kernel with 10% guaranteed nearest neighbours performs the best overall by quite
a margin. However, the absolute performance is still not exactly satisfactory.

Table 3: Results of stratified 10-fold classification for 5 components of various scatter pairs (in %).

Evaluated Pair ACC PRC REC F1 MCC

{Cov2,I} 96.83 80.00 57.14 66.67 66.07
{Cov4,I} 97.09 81.25 61.90 70.27 69.47
{Cov4,Cov2} 96.03 100.0 28.57 44.44 52.36
{Cov2,MCD90} 97.35 100.0 52.38 68.75 71.38
{Cov2,MCD50} 96.56 90.00 42.86 58.06 60.77
{MCD50,MCD90} 96.56 100.0 38.10 55.17 60.63
{G_LCov,Cov2} 96.83 80.00 57.14 66.67 66.07
{G_ALCov10,Cov2} 97.09 85.71 57.14 68.57 68.63
{E_LCov,Cov2} 96.83 80.00 57.14 66.67 66.07
{E_ALCov10,Cov2} 97.62 83.33 71.43 76.92 75.93
{G_ALCov90,Cov2} 96.56 78.57 52.38 62.86 62.51
{E_ALCov90,Cov2} 94.71 60.00 14.29 23.08 27.52

Table 4: Results of stratified 10-fold classification for 20 components of various scatter pairs (in %).

Evaluated Pair ACC PRC REC F1 MCC

{Cov2,I} 98.41 89.47 80.95 85.00 84.28
{Cov4,I} 98.94 94.74 85.71 90.00 89.57
{Cov4,Cov2} 97.62 80.00 76.19 78.05 76.82
{Cov2,MCD90} 97.62 83.33 71.43 76.92 75.93
{Cov2,MCD50} 98.15 88.89 76.19 82.05 81.35
{MCD50,MCD90} 96.83 76.47 61.90 68.42 67.18
{G_LCov,Cov2} 98.41 89.47 80.95 85.00 84.28
{G_ALCov10,Cov2} 98.41 89.47 80.95 85.00 84.28
{E_LCov,Cov2} 98.41 89.47 80.95 85.00 84.28
{E_ALCov10,Cov2} 99.21 95.00 90.48 92.68 92.29
{G_ALCov90,Cov2} 98.94 100.0 80.95 89.47 89.47
{E_ALCov90,Cov2} 98.15 88.89 76.19 82.05 81.35

For this reason, it makes sense to expand the amount of components we retain from all pairs.
Table 4 above shows the adjusted results of retaining the first 20 components, with the best
results per metric in bold. All methods gain a considerable boost in performance, but this is at
the cost of quite a few extra dimensions. The best performing matrix pair is still the same one as
with 5 components, but some other scatter pairings come much closer in terms of performance
now. Kernel induced pairs score somewhat better overall than the traditional scatter pairs. This
is partially because the information provided by the MCD does not seem to be of much use with
this dataset. The table once again shows that good performance of pairs containing a kernel is
dependent on the kernel parameter settings.

The choice for picking these specific components are motivated via the classification results
on the panels of Figure 15 given on the next page. The amount of components to retain are
manually chosen. They are picked in such a way that the total amount of missclassifications
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of the best method increases by a factor of 3 for each further reduction step. Put differently,
the step from 5 to 20 dimensions reduces the amount of missclassifications threefold, and the
latter’s missclassifications are three times that of the original data. This is done to show the
trade-off between performance and dimensionality reduction. Based on the results in all these
tables, it would be wise to retain 20 components rather than 5 via the {E_ALCov10,Cov2} for
this application. This incurs a loss in performance when compared to the original, but it could
still be acceptable for an application like preliminary screening. We can also choose to retain
fewer components, but this does not seem sensible in an application like this. Dimensionality
reduction should not be applied in case we absolutely want maximal performance, but there
is also the danger of overfitting to our available data. Switching to a computationally simpler
method such as PCA is possible, but this is also at the cost of quite a bit of performance. In
summary, we have seen that using kernel induced scatters compares favorably to other scatter
pairs in applications like this.

Figure 15: Overview of confusion tables for the best results and the orginal

(a) Best results for 5 components. (b) Best results for 20 components.

(c) Best results for original 30 components.

32



6.3 Classification: word embbeding data - Word2Vec, GloVe and FastText

The last task we use for the evaluation of our methods is classification. The datasets we will use
for this purpose are generated by various deep learning models. In particular, we consider word
embeddings generated by Word2Vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014), and
FastText (Bojanowski et al., 2017). A word embedding is a vector representation of a word that is
constructed in such a way that further analysis can be improved. For example, words with similar
meanings get vector representations with small angles between them. The most important thing
to know is that word embedding models primarily rely on contextual information for a good
representation. More details on the construction and inner workings can be found in the papers
that introduced these word embeddings models. We sample 601 word embeddings from pre-
trained versions of the three models that all have a dimensionality of 300 each. These words are
all labeled as being part of one of eleven (unbalanced) classes. Some classes are expected to be
strongly interconnected, such as the group consisting of countries and the group consisting of
the corresponding capitals.

It is often the case that a particular application does not actually require the full 300 dimen-
sions needed to train millions of words and their interactions. Put differently, it is likely that the
inherent dimensionality of only part of the data is much lower than 300. Another challenge is
that it is not always clear which model should work best for a given application. These are the
issues that we will attempt to address via dimensionality reduction for this application. Figure
16 below shows a t-SNE embedding of the Word2Vec data. It can be seen that multiple clusters
form, but also that various clusters attract observations from different classes. T-SNE is also
unable to strongly separate some groups like countries and capitals for example. Perhaps we can
remedy this by using the contrast between non-linear structures provided by reproducing kernel
induced ICS.

Figure 16: A two-dimensional visualisation of the Word2Vec data via t-SNE.
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We judge the performance of the three word embedding models by using stratified 10-fold
cross-validation in combination with the linear SVM classifier. We evaluate retaining different
amounts of components for various different kernel pairings. Amongst the investigated setups
are also the original data, standard PCA via the linear kernel and various other forms of kernel
PCA. Comparison is done by calculating the multiclass MCC instead of using the aggregation
of binary classification metrics. We are primarily interested in whether the non-linear contrast
of reproducing kernels can be used to improve the results. This results in kernel pairings like
{Gaussian,Linear} and {Rational, Linear⊙Gaussian}. This latter pair is used to analyse whether
using the Hadamard product can be beneficial.

Tables 5, 6 and 7 show all relevant evaluation results with the best results per column in
bold. The tables are situated on the next page. The ’All’ column represents all components up to
numerical rank and the ’Best’ column represents the best result of an exhaustive search over the
first 20 components. We first notice that general performance initially rises as components are
added, and it then seemingly declines after a certain amount of components. The optimal amount
of components seems to be around 15 for most methods. It can also be seen that Word2Vec does
not really benefit from using two kernels as opposed to one, whereas the other two models do.
The best result per model is achieved by kernel pairs and it is interesting to see that these are
different pairs for every model. Next, it is remarkable that certain kernel pairs have worse than
random performance when all components are used. This is an indication that there are still
numerical rank deficiencies that lead to significant noise. We should therefore be careful with
selecting components for reproducing kernel induced ICS. A last remark is that the performance
of the complete original data is lower than that of one or more kernel pairs for all models.

The FastText embeddings should be preferred over Word2Vec and GloVe for the application
of classifying the word embeddings. This is because FastText achieves the best performance of
all methods with only 16 components via the {Gaussian,Linear} kernel pair. A solid result is
that these 16 components perform better in cross-validation than the 300 dimensional original.
FastText therefore benefits from reproducing kernels fairly well, but the differences in evaluation
metrics between the different methods are somewhat small. Nevertheless, it is an indication that
using ICS for classification can benefit from capturing non-linear interactions. A small caveat
here is that the MCC represents a correlation such that small differences can still be impactful
at this sample size. A more detailed overview of the best classification result given by FastText
can be accessed in Appendix C. The primary takeaway of that classification table is that the
classifier is able to separate all classes well, except for the class consisting of drinks and the class
consisting of foods. Most drinks are classified as food instead. This is perhaps because these
groups of words are almost always used in the same context as the other. It should also be noted
that there are many more samples of the food class than there are of the drinks class.
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Table 5: Word2Vec: MCC of stratified 10-fold validation for various pairings and components (in %).

Evaluated Pair \Components 5 10 15 25 50 100 All Best

Original Data 30.35 54.29 63.58 69.35 82.49 87.64 90.31 67.85
{Linear,I} 85.20 89.96 89.18 89.00 87.08 86.12 77.41 91.08
{Gaussian,I} 85.00 89.91 89.16 88.80 87.27 86.14 -1.03 91.08
{Rational,I} 83.15 88.41 89.18 88.98 88.61 86.69 -0.92 89.94
{Gaussian,Linear} 84.06 90.69 91.26 88.60 86.32 86.31 76.93 91.26
{Rational,Linear} 81.41 88.60 88.99 86.35 86.89 86.11 67.79 89.57
{Rational,Gaussian} 83.32 89.74 90.88 88.42 86.32 85.75 -6.85 90.88
{Rational, Linear⊙Gaussian} 80.79 88.60 91.07 88.42 86.32 87.65 -7.25 91.45

Table 6: GloVe: MCC of stratified 10-fold validation for various pairings and components (in %).

Evaluated Pair \Components 5 10 15 25 50 100 All Best

Original Data 46.33 58.11 67.57 74.11 81.75 88.21 90.50 70.52
{Linear,I} 84.47 90.12 89.17 88.8 87.27 87.45 82.21 90.34
{Gaussian,I} 79.60 88.41 89.36 89.35 88.61 85.92 -1.06 89.36
{Rational,I} 81.60 84.98 86.52 89.36 88.03 89.73 -0.59 88.41
{Gaussian,Linear} 85.04 90.32 89.36 88.6 86.54 87.64 82.08 90.91
{Rational,Linear} 84.81 89.56 88.41 89.55 86.74 87.45 80.58 89.56
{Rational,Gaussian} 64.86 90.94 91.07 89.93 89.35 89.73 -5.81 92.03
{Rational, Linear⊙Gaussian} 82.57 90.55 91.85 91.46 89.55 84.03 -18.83 91.85

Table 7: FastText: MCC of stratified 10-fold validation for various pairings and components (in %).

Evaluated Pair \Components 5 10 15 25 50 100 All Best

Original Data 37.46 65.82 65.94 72.61 83.45 88.02 90.68 71.84
{Linear,I} 83.11 89.59 91.46 90.50 89.18 87.27 81.06 91.65
{Gaussian,I} 83.69 89.57 91.83 90.46 89.37 87.65 -1.06 92.02
{Rational,I} 73.79 85.38 85.74 89.93 89.92 88.60 -1.48 88.42
{Gaussian,Linear} 82.17 91.13 91.85 90.13 88.61 86.32 80.93 92.21
{Rational,Linear} 85.21 91.49 91.66 87.67 86.55 84.79 76.35 92.02
{Rational,Gaussian} 86.16 89.39 91.07 90.31 89.94 88.97 -6.85 91.64
{Rational, Linear⊙Gaussian} 79.02 87.86 90.53 88.78 88.02 84.05 -14.75 91.68
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We close this section by briefly looking at using ICS with reproducing kernels for preprocessing
purposes. In particular, we look at the difference between PCA and ICS for the initialisation of a
t-SNE visualisation. Figure 17 below shows the result of using t-SNE via a PCA initialisation on
the original FastText data. The figure shows that the classes are less easily distinguishable when
compared to the t-SNE visualisation of Word2Vec data previously seen in Figure 16. An improved
t-SNE visualisation of the FastText data via an ICS initialisation can be seen in Figure 18 below.
The initialisation consists of using ICS with the first 16 components of the {Gaussian,Linear}
pair because that was the best performing setup in the cross-validation analysis. The resulting
clusters are now much tighter, although some observations are still attracted towards the wrong
class. Some notable changes are the clearer split between capitals and countries, and the link
between the animal and food classes. These results are an indication that reproducing kernel
induced ICS is able to provide non-linear structure that PCA is unable to represent.

Figure 17: A two-dimensional visualisation of the FastText data via t-SNE.

Figure 18: An improved two-dimensional visualisation of the FastText data via t-SNE.
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7 Conclusion

In this paper, we generalised Invariant Coordinate Selection to a non-linear dimensionality re-
duction method via kernelisation. This was done by first studying the relevant literature and
providing an overview of the simultaneous diagonalisation framework. The next step consisted of
providing extensions in the form of kernel techniques and addressing practical numerical issues
concerning these extensions. A new Julia package that implements all these methods was also
discussed. We have seen that the results of these newly introduced kernel pairs compare favor-
ably to the results of previously used scatter pairs. More specifically, we have empirically verified
that this is the case for applications like data visualisation, anomaly detection and classification.

The starting point of this paper is Invariant Coordinate Selection. It is a method that is able
to reveal structure in a low-dimensional space. ICS works by using the informational contrast
between two scatter matrices. These scatter matrices can be thought of as a generalisation of
the standard covariance matrix and they are able to capture different kinds of structure. The
potential of ICS lies in the fact that there are many types of scatters, and that these can all be
combined for revealing various types of structures. However, a drawback of ICS is that it is only
able to deal with linear structure. It is this limitation that is addressed in this paper.

The first main contribution of this thesis comes in the form of providing additional pairs for
use in the simultaneous diagonalisation framework. These new pairs make use of kernels to allow
for capturing non-linear structure. Both the extensions of smoothing kernels and reproducing
kernels are used to provide kernel induced scatters that can form pairings for ICS. Some practical
details on the implementation of these kernels techniques are also given. This is part of the
second main contribution of this thesis, which consists of providing a numerically stable way to
practically apply ICS with kernels pairings. A brand new Julia package was created for that
purpose as part of the process. Using kernels for ICS comes with its own set of challenges. The
most noteworthy ones are the requirement of kernel parameter optimisation and the existence
of noisy components due to kernel matrix rank deficiency. It is unfortunate that not all nice
properties of ICS with scatters carry over to ICS with kernels, but the results of using kernel
methods are promising nonetheless.

The work done in this thesis builds on that of many others, and much more can still be
achieved. We see three primary directions for future works that use ICS with kernel pairs.
The first direction concerns component selection. More work on determining which components
should be extracted from ICS with kernels is needed and it could be interesting to see whether
this differs from component selection using scatter pairs. The second direction comes in terms
of the kernels themselves. It would be useful to analyse the effect of jointly optimising kernel
hyperparameters via cross-validation further. This poses a big computational burden, but that
can be mitigated by using the Nyström approximation (Li et al., 2010) that is already supported
by the package. For the last direction, we note that it could be useful to investigate the use
of (kernel induced) ICS as a preprocessing step for t-SNE. This can be fruitful because the
initialisation step is of fundamental importance to the type of structure uncovered by t-SNE
(Kobak and Linderman, 2021). We have already briefly seen the potential of it in this thesis.
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Appendices

A Code Overview

The complete SimultaneousDiagonalisation.jl package consists of 15 source files and the accom-
panying module file. The package was originally written in Julia version 1.7.3, but is also
tested and confirmed to be working on the latest stable release which is Julia version 1.8.5
at the time of writing. Any breaking changes caused by dependencies should not occur be-
fore the release of Julia version 2.0. A short description of all source files is given below.
An overview of all functions defined in the package can be seen in two tables on the next
two pages. More details about individual functions can be found in the documentation of
the package. The function all_experiments() from the file experiments.jl reproduces all fig-
ures and tables from the paper. The complete package can be accessed and downloaded at:
https://github.com/CClaassen/SimultaneousDiagonalisation.jl.

Short description of all source files:
- SimultaneousDiagonalisation.jl contains the main module of the package.
- factorisatons.jl contains the main methods to compute PCA and ICS.
- component_selection.jl contains functions related to component selection.
- normality_tests.jl contains functions for univariate normality tests.
- scatters.jl contains functions for computing various scatter matrices.
- smoothing_kernels.jl contains functions for using smoothing kernels.
- reproducing_kernels.jl contains functions for using reproducing kernels.
- kernel_manipulation.jl contains functions for transforming kernels.
- classification.jl contains functions related to classification.
- evaluation.jl contains functions for evaluating classification results.
- external_methods.jl contains bindings to external methods.
- figures.jl contains functions for plotting different types of figures.
- data_manipulation.jl contains functions for transforming data.
- utilities.jl contains various useful auxiliary functions.
- external_data.jl contains functions for loading external data.
- experiments.jl contains functions for replicating all results from the paper.
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Figure 19: Overview of all implemented functions from the SimultaneousDiagonalisation.jl package per source file (1/2).

Functions in bold are exported by the package.

Functions in italics are used as part of larger functions.

Functions with an underline have multiple definitions, for example for optional arguments.
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Figure 20: Overview of all implemented functions from the SimultaneousDiagonalisation.jl package per source file (2/2).

Functions in bold are exported by the package.

Functions in italics are used as part of larger functions.

Functions with an underline have multiple definitions, for example for optional arguments.
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B Wine Data: Visualisation of Multiple Pairs

Figure 21: First, second and last components of {Cov2,I} and {Cov4,Cov2} pairs.

Figure 22: First, second and last components of {Cov2,MCD50} and {MCD90,MCD25} pairs.
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Figure 23: First, second and last components of {LCov,Cov4} and {ALCov90,Cov4} pairs,
making use of the Gaussian kernel.

Figure 24: First, second and last components of {LCov,Cov4} and {ALCov95,Cov4} pairs,
making use of the Epanechnikov kernel.
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C FastText: Detailed Classification Table

Figure 25: Overview of best FastText classification results.
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