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Abstract

We identify characteristics that provide incremental information on the cross-section of delta-hedged

option returns using a nonparametric approach. We use the adaptive group least absolute shrinkage and

selection operator (LASSO) to select characteristics and estimate the model and assess the robustness of

selected characteristics over time. Many return predictors selected by conventional linear models provide

no incremental information on returns when taking nonlinearities into account. After estimating the

nonparametric model for various tuning parameters, only 8 characteristics are consistently selected to

yield incremental information on delta-hedged option returns. The nonparametric model successfully

achieves dimension reduction while also yielding improvements in out-of-sample Sharpe ratios and pric-

ing errors compared to a conventional linear approach.

The views stated in this paper are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

Identifying factors that influence the movements of stock returns is an important question

in asset pricing. A voluminous literature documents characteristics that explain the cross-

section of stock returns (see, for example, Fama and French (1993, 2008, 2015), Chen et al.

(2011), Hou et al. (2021), Green et al. (2017) and Harvey et al. (2016)) as well as corporate

bonds (Kelly et al. (2020), Bai et al. (2019) and Bektić et al. (2019)). However, equity

option returns have received less attention. Although options are generally perceived as

simply being leveraged positions in the underlying assets, it is commonly accepted that

options contain risk premiums that are not captured by common stock factors. Bakshi

and Kapadia (2003) for example, show that delta-hedged option gains contain a nonzero

volatility risk premium. Thus, an understanding of the characteristics that drive option

returns provides an understanding of the cross-section of variance risk premiums.

Option analysis is traditionally done using linear Fama-Macbeth type regressions or

through linear factor models. Using cross-sectional regressions Goyal and Saretto (2009a)

argue that large deviations between implied volatility and historical volatility are indica-

tive of option mispricing and that this effect cannot be captured by common risk factors.

Cao and Han (2013) use a similar approach and that claim option returns decrease mono-

tonically with idiosyncratic volatility.

Using Fama-Macbeth type linear regressions, Cao et al. (2021) propose a number of

option strategies that provide significant profits even after accounting for stock factors.

Initially, they document a dozen characteristics that can explain the cross-section of

option returns. However, after taking idiosyncratic volatility and option illiquidity into

account those profits become largely insignificant, implying that option returns can be

explained through a more parsimonious model.

Jones (2006) uses a semi-parametric factor model to explain mispricing of put options

in the S&P 500 index but does not succeed in explaining these abnormal excess returns.

Another attempt to explain anomalies in the S&P 500 index option market using factor

models is made by Constantinides et al. (2013) and they conclude that only four factors

are effective at explaining the cross-section of option returns: Jump, volatility jump,

volatility and liquidity. Recent papers such as Horenstein et al. (2020) employ a two-step

factor model by first estimating the number of latent factors necessary to explain the

cross-section of returns and then using principal component analysis (PCA) to estimate

those factors. They find that four factors consisting of firm size, idiosyncratic volatility,

the difference between implied and historical volatilities and market volatility risk explain

the cross-section of equity option returns.

An improvement to the factor model of Horenstein et al. (2020) is made by Büchner

and Kelly (2022) and Goyal and Saretto (2022), who predict option returns using in-

strumented principal component analysis (IPCA) which, unlike Horenstein et al. (2020),
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explicitly permits changes in individual asset behaviour over time. Using the factor model

of Horenstein et al. (2020), Goyal and Saretto (2022) initially find that 14 portfolios con-

structed based on option characteristics yield significant alphas, challenging the efficiency

of option markets. Their paper provides an improvement to the PCA factor model and re-

duces the number of significant alphas down to five. In general, the literature concerning

option factor models implies that a handful of factors suffice to explain the cross-section

of equity option returns (Carr and Wu, 2020; Christoffersen et al., 2018a).

Although popular in empirical asset pricing, linear factor models suffer from several

shortcomings. First, factor models use portfolio sorts to approximate the conditional

mean function of returns for only one characteristic. Portfolio sorts cannot be used to

investigate a large number of characteristics. If we wish to sort assets into portfolios

based on four different characteristics, we would already end up with 44 = 256 different

portfolios. Second, sorts don’t allow us to easily infer information on which characteristics

have incremental information on average returns (Fama and French, 2008). Third, when

we sort portfolios into deciles, we must make the assumption that the expected returns

in each decile are constant. Linear regressions are a possible solution to this. Although

cross-sectional regressions allow us to analyze characteristics jointly, this approach has its

downsides. Most importantly, we have no a priori reason to assume a linear structure in

the conditional mean function of returns. In addition, linear regressions are notoriously

susceptible to outliers, affecting their reliability in out-of-sample predictions.

The assumption of linearity is the Achilles’ heel of literature regarding option return

predictability. We contribute to the literature by introducing nonparametric estimation

into the analysis of option returns. By estimating the model nonparametrically using the

adaptive group least absolute shrinkage and selection operator (LASSO) of Huang et al.

(2010) we allow for nonlinearities in the conditional mean function whilst also analyzing

all characteristics jointly. In our empirical analysis we construct delta-hedged call option

returns over a sample period January from 1996 to March 2021, as well as a multitude of

option characteristics used in previous studies (Cao et al., 2021; Ou and Penman, 1989;

Pontiff and Woodgate, 2008; Richardson et al., 2005; Freyberger et al., 2020; Lakonishok

et al., 1994; Ang et al., 2006; Francis et al., 2004). We can group the option characteristics

into four categories: (1) Past returns; (2) Contract characteristics such as bid-ask spread,

open interest and volume; (3); Measures of volatility, including idiosyncratic volatility,

systemic volatility and the difference between implied and historical volatility; (4) Firm

characteristics such as asset growth, size and earnings per share. We include a total of

57 characteristics.

We first investigate anomalies in the call option market through the standard approach

of sorting portfolios into deciles based on each characteristic and creating long-short

portfolios by taking a long position in the options belonging to the highest decile and a

short position in the options belonging to the lowest decile. After regressing the resulting

2



portfolio returns on the Carhart four-factor model (Carhart, 1997), 34 out of 57 portfolios

yield significant alphas. At first glance, these results imply that option markets suffer from

severe inefficiencies. We also analyze all characteristics jointly using the Fama-Macbeth

type regressions of Cao et al. (2021). We estimate the model on three subsamples. One

where we consider all firms, another where we only consider large firms, and a final sample

where we disregard the smallest decile of firms. In all three cases, the linear model leads

us to believe that the number of characteristics that provide incremental information on

option returns lies between 21 and 29.

Past literature teaches us that a handful of factors should suffice to explain the cross-

section of option returns. So, in our next step, we estimate the adaptive group LASSO

using the entire sample period from 1996 to 2021. Although widely accepted that option

returns are nonlinear in nature (Jones, 2006; Constantinides et al., 2013), our results

provide concrete evidence of nonlinearities in delta-hedged call option returns. When

conditioning on all other characteristics, only 11 characteristics provide incremental in-

formation on option returns. Of these 11 characteristics, 8 are consistently selected when

we vary our tuning parameters. Delta-hedged call option returns increase with dividend

to price ratio, firm size and earnings per share and are negatively related with the num-

ber of new issues shared in the past year, maximum daily return, return on equity, share

turnover and the difference between implied and historical volatility. Our main contention

with current literature is that factor models’ inability to incorporate nonlinearities makes

them unfit to properly explain the cross-section of option returns and that by extension,

the significance of most option return anomalies presented in Cao and Han (2013), Cao

et al. (2021), Horenstein et al. (2020) and Büchner and Kelly (2022) are likely a result of

the factor models themselves.

We examine if the model selects these characteristics consistently over time and

whether the model suffers from time-varying parameters, since we implicitly assume the

model’s coefficients are constant over time. To answer the first question we estimate

the model using a rolling window starting with data from 1996 to 2012. We slide the

window forward by one year and repeat estimation until 2021. We find that dividend to

price, the number of new shares issues in the past year, maximum daily return and the

difference between realized volatility and implied volatility are the only characteristics

that are consistently selected throughout the sample period from 2013 to 2021. We also

investigate time-variation in the model’s parameters by estimating the model once using

data from 1996 to 2006, fixing the selected characteristics and rolling the estimation win-

dow forward by one month. We then estimate the coefficients of the fixed characteristics,

roll the window forward by one month and repeat this process for the remainder of the

sample. We find that the model suffers significantly from time-varying coefficients. For

example, call option returns decrease with a firm’s earnings to price ratio in 2010, but

increase in 2016, only for the effect to become insignificant in the following years.
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To alleviate concerns of in-sample overfitting, we evaluate the model’s performance in

out-of-sample forecasting. We estimate the nonparametric model and the linear model

of Cao et al. (2021) using data from 1996 to 2018. We use the selected characteristics

to predict the following month’s option returns, creating a long-short portfolio by taking

a long position in the ten percent of options with the highest predicted returns and a

short position in the ten percent of options with the lowest predicted returns. We roll

the estimation sample forward by one month and repeat until March 2021. We estimate

both models separately for three different subsamples: all firms, large firms and all but

the smallest firms. In all subsamples the adaptive group LASSO achieves higher Sharpe

ratios and higher relative R2’s. We also compute the relative pricing error (as in Goyal

and Saretto (2022) and Kelly et al. (2020)) and conclude that on average the pricing error

of the nonparametric model is 8.6% lower than the linear model.

While the nonparametric model performs well with regard to out-of-sample pricing

errors, this paper should not be interpreted as an attempt to deprecate existing factor

models. Rather, we provide a glimpse into option analysis through a nonparametric lens.

While our results show that current factor models’ inability to incorporate nonlinearities

is a problem, we acknowledge that the adaptive group LASSO is not a solution. We

add to studies that attempt to measure the dimensionality of delta-hedged call option

returns, but more specifically, we contribute to literature that attempts to incorporate

nonlinearities in the analysis of option returns (Jones, 2006; Brooks et al., 2018) by

identifying a subset of variables that explain the cross-section of option returns using a

nonparametric model.

The remainder of this paper is outlined as follows. Section 2 summarizes our data-set

and defines delta-hedged option returns. Section 3 outlines our methodological approach.

Section 4 examines the cross-section of delta-hedged option returns in an empirical setting

and examines time-variability in the model’s estimated coefficients. Section 5 concludes.

Lastly, section 5 reflects on the methods used and discusses some obstacles encountered

in our empirical analysis.

2 Data

2.1 Option data

We use data from the equity options market from January 1996 to March 2021. Data

on individual option prices are obtained from the IvyDB OptionMetrics database. We

obtain stock returns, prices and credit ratings from the Center for Research on Security

Prices (CRSP) and balance sheet data is acquired from Compustat. We consider options

from all firms in the S&P 500.

We filter the options in the manner proposed by Horenstein et al. (2020). First, we

4



exclude options with a trading volume of zero to avoid illiquid options. We also exclude

options if the bid price is smaller than the ask price or if the midpoint of the bid and ask

quote is less than 0.125 dollars. Third, we only consider options with moneyness between

the range of [0.8, 1.2]. Next, we exclude options that do not adhere to the no-arbitrage

condition: max(0, St −K,St −
∑τ

t=1 e
−rsDt+s −Ke−rτ ) ≤ Ct(τ,K) ≤ St. Furthermore,

options with an expiration date other than the third friday of the month are removed

from the sample. We also exclude options which are not traded on the day the bid and

ask quotes are reported. We filter options with a missing or an abnormal delta that is

outside of the range [0,1] and lastly, we remove options from the Optionmetrics database

with an implied volatility of -99.99. Optionmetrics sets implied volatility to -99.99 if the

option is a special settlement, the options vega is less than half, the underlying stock

price is not available on the CRSP database or because the numerical algorithm used to

compute implied volatility fails to converge. We select options from the resulting list of

filtered call options. Every month for each firm, we choose the option that is closest to

being at the money with more than one month to maturity.

2.2 Delta-hedged option returns

Since options are derivatives of stocks, they are very susceptible to movements in the

underlying asset. In this paper we analyze the returns of delta-hedged options, so that

returns are independent of movements in the underlying asset. We use the approach

of Cao and Han (2013) to obtain delta-hedged option returns which they define as the

change in value of a self-financing portfolio consisting of a long position in a call option

hedged by shorting delta shares in the underlying asset. Consider a call option that is

hedged once at time t over a period [t, t+ τ ]. The change in value of this portfolio is

Π(t, t+ τ) = Ct+τ − Ct −∆C,t+τ [S(t+ τ)− S(t)]

− art+τ

365
[C(t+ τ)−∆C,tS(t+ τ)],

(1)

where Ct and ∆C,t are the price and delta of the call option at time t, S(t) is the price

of the underlying stock at time t, rt is the annualized risk free rate at time t and a is

the number of calendar days between t and t+ τ . Since Π(t, t+ τ) is proportional to the

initial stock price we divide (1) by the absolute value of the securities involved (∆tSt−Ct).

This way we can compare the option gain across stocks despite the significant difference

in market prices. Π(t,t+τ)
(∆tSt−Ct)

) is what we refer to as delta-hedged option return.

While delta-hedging allows us to analyze option return predictability independent of

movements in the underlying asset, the act of delta-hedging raises issues that make the

interpretability of results difficult. A noteworthy issue is that we can compute the deltas

in three different ways (Broadie et al., 2009). The first uses an option pricing model

to compute the required hedging portfolio weights. Another method uses the shape of
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the implied volatility smile to compute hedge ratios (Bates, 2005). The third method,

which is the approach we use in our analysis, is to compute deltas from the Black-Scholes

model using implied volatility as a input parameter. While this is the most practical

approach, one should keep in mind that the deltas obtained this way will not be the

same as the ones obtained by the other methods. Formally, delta-hedging also requires

rebalancing, increasing transaction costs and requires us to have more data. Therefore, we

concern ourselves with the practical application of delta-hedging which involves holding

the delta-hedged position for 1 month without rebalancing. The results of the buy-and-

hold strategy are robust to daily rebalancing (Cao et al., 2021).

Table 1 shows summary statistics of our call option data. The data consists of 25

years of delta-hedged option returns for 489 different firms, although not all firms have

call options reported in OptionMetrics throughout the entire sample period. As in Brooks

et al. (2018), Cao et al. (2021) and Büchner and Kelly (2022), our delta-hedged returns

are around -1% on average with an average delta of 0.51. Days to maturity ranges from

47 to 50.

Table 1
Summary of option data

Mean SD Median

Delta-hedged returns (%) -0.9075 3.2549 -1.2866
Days to maturity 48.8684 1.2856 49.0000
K/S 1.0023 0.0168 1.0009
Delta 0.5146 0.0742 0.5210

This table reports summary statistics of the option data from January 1996 to March 2021. Delta-
hedged return is a self-financing portfolio going long in a call option and shorting that option’s delta
of the underlying stock, so as to create a portfolio that is insensitive to movements in the underlying
stock. It is calculated as in Cao and Han (2013) and is defined as delta-hedged gain divided by δtSt−Ct

(see Equation (1)). We also report summary statistics for days to maturity, moneyness (K/S) and the
options’ delta.

2.3 Characteristics

There is a wide range of characteristics that might explain the cross-section of delta-

hedged option returns. We will confine ourselves to characteristics commonly used in

literature regarding the analysis of options (Horenstein et al., 2020; Cao et al., 2021;

Brooks et al., 2018) as well as a variety of characteristics used to explain the cross-

section of stock returns (Freyberger et al., 2020). The characteristics used in this study

are shown in Table 2. A more elaborate explanation of each characteristic is given in

the appendix. Table 3 shows descriptive statistics of the characteristics as well as their

frequency. Note that all firm characteristics are reported yearly with the exception of

past returns and trading frictions.
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Table 2
List of firm characteristics by category

Past returns: Intangibles:
r2−1 Return from 2 to 1 months before prediction hire Employee growth rate
r6−2 Return from 6 to 2 months before prediction rdmve R&D to market capitalization
r12−2 Return from 12 to 2 months before prediction rdsale R&D to sales
r12−7 Return from 12 to 7 months before prediction tan Tangibility
r36−13 Return from 36 to 13 months before prediction

Value-versus-growth:
Investment: at Total assets
ag Asset growth bm The natural logarithm of book to market equity
chinv Change in inventory ch Cash-to-assets ratio
egr Growth in common shareholder equity currat Current assets divided by current liabilities
grltnoa Growth in long-term net operating assets leverage Leverage
invest Property investment lgr % change in total liabilities
issue1Y The 1 year change in shares outstanding s2p Sales-to-price
issue5Y The 5 year change in shares outstanding salesg Sales growth
pchsaleinv % change in inventory size Logarithm of the market value of the firm’s equity
oa Operating accruals pchcurrat % change in current ratio
tef Total external financing

Trading Frictions:
Profitability: baspread Bid-ask spread of the option
chtx Change in tax expense bidask Ratio of the difference between the bid and ask quotes
ep Earnings to price dolvol Natural log of trading volume times price per share
eps Earnings per share dy Dividend to price
gma Gross profitability ivol Stock return idiosyncratic volatility
pchgm % change in sales minus the % change in inventory interest Open interest for the option contract
pchsale % change in sales minus the % change in A/R maxret Maximum daily return
roavol Standard deviation for 16 quarters of income sratio The ratio of systematic volatility over total volatility
profit Profitability stddolvol Standard deviation of daily dollar trading volume
pm Profit margin tvol Total volatility
roeq Return on equity volume Option trading volume
s2c Sales-to-cash impliedvol Difference between implied volatility and realized volatility of the option
sat Sales to total assets
sga2s SG&A to sales
sgr Annual percent change in sales
tb Tax income to book income
turn Share turnover

This table lists the characteristics considered in our option analysis sorted by category. The sample
period is from January 1996 to March 2021.

Table 3
Summary Statistics of Characteristics

Mean Median SD Frequency Mean Median SD Frequency
Past returns: Intangibles:
r2−1 0.02 0.01 (1.40) m tan 0.46 0.46 (0.21) y
r6−2 0.11 0.04 (6.10) m rdmve 0.03 0.01 (0.35) y
r12−2 0.18 0.09 (2.23) m rdsale 0.10 0.03 (0.64) y
r12−7 0.09 0.05 (1.56) m hire 1.08 1.03 (0.31) y
r36−13 0.37 0.14 (4.15) m

Value-versus-growth:
Investment: at 61, 253.58 13, 401.12 (207, 039.43) y
ag 1.18 1.07 (0.97) y size 9.60 9.56 (1.33) y
issue1Y 21.79 0.18 (443.00) y ch 0.09 0.05 (0.10) y
issue5Y 123.09 18.15 (833.71) y currat 1.86 1.46 (1.46) y
chinv 177.72 3.90 (4, 956.32) y bm 0.40 0.32 (1.61) y
grltnoa 1.14 1.07 (5.80) y leverage 0.35 0.50 (14.30) y
tef 0.01 0.02 (0.32) y pchcurrat −0.03 −0.01 (0.87) y
pchsaleinv 1.51 1.06 (16.84) y lgr 1.24 1.06 (2.25) y
egr 701.93 214.30 (4, 311.79) y s2p 514.78 162.44 (2, 751.52) y
invest 0.07 0.04 (0.21) y salesg 1.64 1.08 (42.81) y
oa −74, 647.84 −7, 042.78 (318, 479.39) y

Trading Frictions:
Profitability: ivol 0.017 0.015 (0.01) m
profit 1, 772.47 628.00 (4, 326.34) y bidask −0.13 −0.08 (0.17) m
chtx 24.37 7.20 (732.43) y baspread 0.88 0.07 (3.48) m
pchgm 0.24 0.01 (50.16) y dolvol 217.35 90.24 (676.97) m
pchsale 0.47 −0.00 (42.81) y stddolvol 323.30 191.50 (528.38) m
roeq 0.11 0.15 (2.79) y maxret 0.00 0.00 (0.02) m
ep 89.09 30.75 (621.10) y roavol 195.65 20.14 (762.64) m
eps 3.02 2.39 (5.30) y sratio 0.54 0.56 (0.21) m
gma 7, 282.10 2, 793.10 (13, 884.72) y tvol 0.02 0.02 (0.01) m
sgr 1.64 1.08 (42.81) y interest 2, 991.51 562.62 (13, 823.40) m
tb 0.25 0.30 (0.92) y volume 144.44 15.72 (836.45) m
turn 2, 251, 272.18 1, 759, 190.44 (855, 293.11) y impliedvol m
pm 0.41 0.40 (0.58) y
s2c 50.40 10.87 (678.23) y
sat 0.83 0.65 (0.74) y
sga2s 0.33 0.22 (5.20) y
dy 0.02 0.01 (0.02) y

This table reports the mean, median and standard deviation of the characteristics listed in table 2.
Frequency refers to the frequency at which the characteristic changes. m is monthly and y is yearly. The
sample period is from January 1996 to March 2021.
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3 Methodology

3.1 The conditional mean function and nonparametric estima-

tion

Our aim is to identify characteristics that can predict the delta-hedged option returns

of firm i for i ∈ {1, . . . , N}. This means we are modelling the conditional mean of the

expected returns Rit as a function of S characteristics Cis. Thus, the conditional mean

function of expected returns can be written as

mt(x1, . . . , xS) = E[Rit|X1,it−1 = x1, . . . , XS,it−1 = xS]. (2)

Typically, we sort assets into ten deciles for each firm characteristic and compare the

mean returns across portfolios. While simplistic, portfolio sorts have their downsides.

Problems with portfolio sorts include dimensionality, the assumption that returns do not

vary within portfolios and that they do not let us assess predictability conditional on

other characteristics.

Another approach is to assume a linear form for the conditional mean function. This

implies modelling returns as

Rit = αi +
S∑

s=1

βS,iXs,it−1 + ϵit. (3)

A benefit of linear panel regression is that it allows us to study characteristics jointly.

However, we have no a priori reason to assume a linear form for the conditional mean

function.

To alleviate these issues, we resort to nonparametric estimation. It is impractical to

estimate the conditional mean function fully nonparametrically with this many regressors.

The rate of convergence is slow and coefficients suffer from large estimation errors. As we

study more characteristics, this problem becomes substantially worse. Since we want to

study many characteristics jointly, a possible solution is to assume an additive conditional

mean function:

mt(x1, . . . , xS) =
S∑

s=1

mts(xs). (4)

The main benefit of the additive model is that it greatly reduces the time required to

reach convergence (Horowitz et al., 2006). Additive models do however require us to

impose the restriction

∂2mt(c1, . . . , xs)

∂xs∂xs′
= 0 (5)
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for all s ̸= s′. Thus, cross dependencies between characteristics are not allowed in the

additive framework. Freyberger et al. (2020) try to circumvent this shortcoming by

estimating the nonparametric model for small firms and then separately for large firms,

but it remains time consuming to estimate the nonparametric model multiple times for

different samples based on a given characteristic. We must acknowledge that additivity

is a harsh assumption to make. Nevertheless, it is not as restrictive as Fama-Macbeth

regressions, where we assume the conditional mean function is both additive and linear.

Ultimately, the additive model provides us with econometric advantages that cannot be

understated. Before we describe the nonparametric model in Section 3.3, we first provide

a normalized rank transformation of the characteristics.

3.2 Normalization of characteristics

When analyzing asset returns in the cross-section, the absolute value of a firm’s charac-

teristic is usually not relevant. We care more about its rank relative to other firms in the

cross-section. It is also computationally preferable to have our characteristics take values

within a fixed range for reasons which will become clear in section 3.3. Because of this,

we employ a normalized rank transformation to each characteristic to ensure that each

of the S characteristics Xs,it takes a value between 0 and 1. We use the transformation

proposed by Freyberger et al. (2020).

The transformed characteristics are given by

Fs,t(Xs,it−1) =
rank(Xs,it−1)

Nt + 1
. (6)

Note that rank(mini=1,...,NtXs,it−1) = 1 and rank(maxi=1,...,NtXs,it−1) = Nt such that (6)

always takes values between 0 and 1. Freyberger et al. (2020) show that in large samples,

the rank transformed mean function is interchangeable with Equation (2). They also

show that in smaller samples the transformed conditional mean function performs better

in out-of-sample analysis in both numerical simulations as well as empirical data.

3.3 Adaptive group LASSO

We use the two-step group LASSO approach suggested by Huang et al. (2010). First we

utilize the regular group LASSO procedure to reduce the model’s dimensionality. The

group LASSO still selects too many characteristics in the first step. In the second stage

the adaptive group LASSO achieves consistent model selection. That is to say, it sets the

functions m̃ts to 0 if that characteristic does not provide information on option returns.

Recall that we are modelling the returns Rit as a function of characteristics Xs,it.

Suppose each characteristic Xs,it takes values between [a, b]. Let a = ξ0 < ξ1 < · · · <
ξK = b be a partition of [a, b] into K sub intervals Ik = [ξK−1, ξK) for k = 0, 1, . . . , K. In
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the adaptive group LASSO, we estimate functions over these K parts of the characteristic

distribution. Following Freyberger et al. (2020), we will refer to the interpolation points

ξ0, . . . , ξK−1 as knots and let ξk =
k
K

for all k = 1, . . . , K − 1. Because the characteristics

are rank normalized, the interpolation points correspond to quantiles of the characteristic

distribution and in a sense we can interpret Ik as the kth portfolio.

To re-iterate, we are modelling the returns

Rit =
S∑

s=1

m̃ts(X̃s,it−1) + ϵit, (7)

where m̃ts are mean functions for a single characteristic s and X̃s,it−1 are the normalized

rank transformed characteristics. We want to set the functions m̃ts to 0 for a given char-

acteristic if that characteristic does not give us information on option returns. We’ve

partitioned the characteristics into K subintervals so that we can estimate the functions

m̃ts with a quadratic function for each interval. In particular, we use splines to approxi-

mate m̃ts (Huang et al., 2010). Using this approximation, the nonparametric components

are defined as the sum of spline basis functions:

m̃ts(x̃) ≈
K∑
k=1

βtskpk(x̃), (8)

where pk(x̃) are basis functions and βtsk are the parameters we wish to estimate. We

can choose the amount of subintervals K ourselves. The larger K, the more precise the

approximation is but it also increases the number of parameters and the variance in our

estimates.

The K × S vector of coefficient estimates βt is given by:

β̃t = argmin
βsk:s=1,...,S;k=1,...,K

N∑
i=1

(
Rit −

S∑
s=1

K∑
k=1

(βskpk(X̃s,it−1)

)2

+ λ1

S∑
s=1

( K∑
k=1

β2
sk

) 1
2

, (9)

with λ1 being a penalty parameter. Intuitively the idea of the group LASSO procedure

is simple. The first sum in Equation (9) is simply the sum of squared residuals. The

second part penalizes coefficients based on their magnitude. With all characteristics

being normalized between 0 and 1, the second part of (9) penalizes coefficients that do

not provide incremental information on the conditional mean function. Note that unlike

regular LASSO, group LASSO does not penalize the coefficients βsk individually, but

instead penalizes all coefficients related to a given characteristic.

While we achieve dimension reduction in the first step it still selects too many charac-

teristics, including ones with no predictive power. The second step ensures that we only

select characteristics that provide incremental information on returns. We first obtain
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the following weights by setting

wts =


(∑K

k=1 β
2
sk

)− 1
2

if

(∑K
k=1 β

2
sk

)− 1
2

> 0

∞ if

(∑K
k=1 β

2
sk

)− 1
2

= 0.

(10)

Here we define that 0 · ∞ = 0, such that characteristics not selected in the first step are

also not selected in the second step. The model is then solved for

β̂t = argmin
βsk:s=1,...,S;k=1,...,K

N∑
i=1

(
Rit −

S∑
s=1

K∑
k=1

βskpk(X̃s,it−1

)2

+ λ2

S∑
s=1

(
wts

K∑
k=1

β2
sk

) 1
2

. (11)

The choice of penalty parameters λ1 and λ2 in (9) and (11) determines how much we value

a better fit at the cost of additional parameters. A larger penalty parameter means we

are less likely to include characteristics into our model. In our empirical application we

use the Bayesian information criterion for both λ1 and λ2 which is the number of model

parameters times Log(NT ). Our choice of basis function is a second order spline unless

specified otherwise, that means p1(X̃s,it−1) = 1, p2(X̃s,it−1) = X̃s,it−1, p3(X̃s,it−1) = X̃2
s,it−1

and pk(X̃s,it−1) = max(X̃s,it−1 − ξk−3, 0)
2 for any k > 3. Lastly, while the betas in

Equations (9) and (11) are time-varying, we will work under the assumption that the

conditional mean function is time-invariant since this allows us to pool the observations

across time. This leads to more precise parameter estimates and more reliable modelling

of the conditional mean function (Gu et al., 2020). In the following section we discuss a

way to create confidence bands for the conditional mean function to give us a pragmatic

feeling for estimation uncertainty.

3.4 Confidence bands

Although we are usually interested in estimation uncertainty surrounding coefficient es-

timates, it is useful to have an idea of the estimation uncertainty surrounding the con-

ditional mean function itself. It is important to emphasize that the following confidence

bands do not affect which characteristics the adaptive group LASSO selects. They merely

provide us with a feeling for the uncertainty in the estimated conditional mean function.

Remember that we assume the model

m̃t(x̃1, . . . , x̃S) =
S∑

s=1

m̃ts(x̃s). (12)

However, due to the assumption of additivity the levels of the functions m̃ts(x̃s) are
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unidentified. This is because

m̃t(x̃1, . . . , x̃s) =
S∑

s=1

m̃ts(x̃s) =
S∑

s=1

(
m̃ts(x̃s) + αs

)
(13)

holds for any combination of αs that satisfies
∑S

s=1 αs = 0. Thus, the functions m̃ts are

only identified up to a constant. Note that these constants are only relevant when we try

to plot the conditional mean function for a given characteristic. Freyberger et al. (2020)

propose the use of estimates and confidence bands for the functions m̃ts −
∫
m̃ts(x̃s)dx̃s.

This means we normalize the functions m̃ts(x̃s) such that they integrate to zero. These

confidence bands would also allow us to test for hypotheses that are independent of the

levels of the functions m̃ts.

We briefly present uniform confidence bands as proposed in Freyberger et al. (2020).

Recall that we estimate m̃ts using a sum of basis functions
∑S

s=1 β̂tskpk(x̃s). Let p̃k(x̃s) =

pk(x̃s)−
∫
pk(x̃s)dx̃s and denote p̃(x̃s) as (p̃1(x̃s), . . . , p̃K(x̃s))

′. Define the K ×K covari-

ance matrix of
√
n(β̂ts−βts) as Σts. Let Σ̂ts be the heteroscedasticity consistent estimator

of Σts and define the standard error of
∑K

k=1 β̂tskp̃k(x̃s) =

√
p̃(x̃s)′Σ̂tsp̃(x̃s) = σts(x̃s). We

can then write the uniform confidence band for the function m̃ts(x̃s)−
∫
m̃ts(x̃s)dx̃s as[

K∑
k=1

β̂tskp̃k(x̃s)− dtsσts(x̃s),
K∑
k=1

β̂tskp̃k(x̃s) + dtsσts(x̃s)

]
, (14)

where dts is a constant. dts is chosen such that

P

(
sup

x̃s∈[0,1]

∣∣∣∣Z ′p̃(x̃s)

σ̂ts(x̃s)

∣∣∣∣ ≤ d̂ts|Σ̂ts

)
= 1− α. (15)

The left hand side of (15) is computed using simulations. Define Lts as[∑K
k=1 β̂tskp̃k(x̃s)− dtsσts(x̃s),

∑K
k=1 β̂tskp̃k(x̃s) + dtsσts(x̃s)

]
. Assuming that the condi-

tions in Belloni et al. (2015) are met, we get that

P

(
m̃ts(c̃s)−

∫
m̃ts(c̃s)dc̃s ∈ Lts ∀ c̃s ∈ [0, 1]

)
(16)

approaches 1− α as the size of the sample increases.

4 Empirical application

4.1 Portfolio sorts

We devote to section to assessing the predictive power of each characteristic listed in Table

2 using portfolio sorts. Every month we sort firms into deciles for each characteristic and

create equally weighted portfolios by going long in the option returns corresponding to
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firms belonging to the highest decile and taking a short position in those in the lowest

decile. We then regress these monthly portfolio returns on the Carhart four-factor model

(Carhart, 1997) and report the resulting alphas and their corresponding t-statistics in

Table 4. In total 34 out of 57 characteristics have significant alphas at a 95% confidence

level. This first pass implies that option markets exhibit massive inefficiencies.

4.1.1 Portfolios based on option characteristics

Let us first take a closer look at the portfolios sorted on option characteristics. These

are sorted on the ratio of the difference between the bid and ask quotes (bidask), bid-ask

spread of the option (baspread), open interest of the option contract (interest) and the

option trading volume (volume). Table 4 shows that there exists a premium on options

with a higher absolute spread in the bid and ask quotes (baspread), a lower open interest

and on options with a higher trading volume but not on options with a higher ratio

between the bid and ask quotes (bidask).

These findings are not entirely in line with those in Brooks et al. (2018) since they

conclude that portfolios based on the ratio between bid and ask quotes have a significant

negative premium, whereas we find no significant relationship at all. The premium on

illiquidity (lower open interest) is extensively documented in previous literature. Christof-

fersen et al. (2018b) find that the daily risk-adjusted return spread for illiquid options

over liquid options is 3.4 percent. They argue that market makers hold large and risky

net-long positions and that the illiquidity premium compensates for this risk. At first

glance, our results seem to agree that this illiquidity premium exists.

4.1.2 Portfolios based on volatility

Volatility is arguably the most important variable in pricing options and there are nu-

merous papers dedicated to the relation between volatility and option returns (Cao and

Han, 2013; Bakshi and Kapadia, 2003; Goyal and Saretto, 2009a,b). Our analysis fo-

cuses on the effects of idiosyncratic, systemic and total volatility, as well as the difference

between implied and realized volatility. Cao and Han (2013) conclude that average call

option return is negative and that it decreases monotonically as idiosyncratic volatility

increases. Their call options portfolios of firms belonging to the highest decile of idiosyn-

cratic volatility earn, on average, one and a half percent less per month than portfolios

of stocks in the lowest decile. Additionally, they find that the reverse is true for sys-

temic risk. Delta-hedged option return for stocks increases monotonically as systematic

risk increases. Cao et al. (2021) report the same inverse relationship between idiosyn-

cratic volatility and option returns. Brooks et al. (2018) find a negative relationship for

both idiosyncratic volatility and systemic risk. Additionally, their call option returns

decrease monotonically with the difference between implied and realized volatility. A
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similar option pricing anomaly is presented in Goyal and Saretto (2009a). They hypoth-

esize that large deviations between implied volatility and realized volatility can be used

to predict option returns. They argue that implied volatility and historical volatility are

mean-reverting by nature and thus excessive implied volatility shows an overpricing of

the option which the market eventually corrects, leading to lower option returns in the

near future. Returning to the effects of systemic risk, Duan and Wei (2009) show that

after controlling for total volatility, higher systemic risk leads to an increase in implied

volatility. If the mean-reverting nature of posited by Goyal and Saretto (2009a) holds,

the results of Duan and Wei (2009) imply a negative relationship between systemic risk

and option returns.

Moving on to our findings, we observe a significant negative relation between delta-

hedged option return and the idiosyncratic volatility (ivol) of the underlying stock, as well

as a negative alpha of -0.16 for total volatility of the underlying stock (tvol) indicating

a negative premium on options on stocks with higher volatility in the past 16 months.

On the other hand, we find a positive relation for systemic risk (sratio). All of these

findings align with Cao and Han (2013) and Cao et al. (2021). We do not observe the

negative premium for systemic risk documented in Brooks et al. (2018). When it comes

to the difference between realized volatility and implied volatility, we add to the findings

of Goyal and Saretto (2009a) and observe that an overestimation of implied volatility

leads to lower option returns in the near future. The alpha for impliedvol is -1.36 and

of the 57 characteristics we assess, the risk premium of implied volatility has the largest

t-statistic at -10.67.

4.1.3 Portfolios based on past returns

Momentum is a well known anomaly in stock returns and was incorporated into the Fama

French 3 factor model by Carhart (1997). A wide body of research documents that stocks

which performed well in the recent past have a tendency to do so in the future and that

stocks exhibit a long term (36+ months) reversal. The results of Brooks et al. (2018)

imply that a momentum anomaly is also present in option returns, as they find positive

returns for both 12 month and 36 month momentum portfolios. A similar conclusion is

drawn in Heston et al. (2022), stating that options with high historical returns in the past

6 to 36 months continue to exhibit those returns in the near future. They find that unlike

stocks, option returns are not followed by long-term reversal nor do they exhibit short-

term reversal. This momentum effect in option returns is subject to dispute as Jones et al.

(2020), who analyse momentum, reversal and seasonality, find that options do exhibit a

significant short-term reversal. While the effect is robust over time, they argue it could

be explained by other option factors with emphasis on the difference between implied and

realized volatility. They note that a higher option return this month increases the implied
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volatility of the option relative to its historical volatility. Due to their mean-reverting

nature implied volatility and thus the option’s price decreases in the following month.

Although the findings of Jones et al. (2020) are robust over time and significant, we do

not observe any indication of short-term reversal. While there seems to be a correlation

between delta-hedged option returns and the recent momentum of the underlying stock,

this is only apparent in momentum factors from 2 to 12 months before return prediction.

For r6−2 and r12−2 we find significantly alphas. However, unlike Brooks et al. (2018) and

Heston et al. (2022), we observe that these excess portfolio returns are in fact negative.

Strong performance of the underlying asset in the past year seems to result in lower

option returns. The t-statistic of 0.20 for the alpha of r36−12 also implies that option

returns do not depend on past performance of the underlying stock from over a year ago.

This disputes the existence of long-term momentum observed in Brooks et al. (2018) and

Heston et al. (2022).

4.1.4 Portfolios based on firm characteristics

Finally, we explore option return predictability with regard to firm characteristics com-

monly used in analysis of stock returns. Both Cao et al. (2021) and Brooks et al. (2018)

include firm fundamentals in their analysis of option return predictability. Cao et al.

(2021) find that delta-hedged option returns decrease with cash holdings and new share

issues in the past year and increase with size and profitability. Brooks et al. (2018) in-

clude 93 characteristics. Of these characteristics, 27 corresponds with firm characteristics

included in our analysis.

Table 4 shows that 29 portfolios sorted on firm fundamentals yield significant alphas.

As in Cao et al. (2021), our findings support the notion that delta-hedged option returns

decrease with cash holdings (ch) and yearly percentage change in outstanding shares

(Issue1Y ) and increase with size and profitability (profit). In addition, Table 4 implies

that option returns also increase with earnings to price (ep), earnings per share (eps),

gross profitability (gma), return on equity (roeq), sales to cash (s2c), dividend to price

(dy), total assets (at) and leverage. Option returns decrease with increases in asset

growth (ag), growth in long term not operating assets (grltnoa), capital expenditures and

inventory (invest), percentage change in sales (pchsale), share turnover (turn), percentage

growth rate in annual sales (salesg), the annual percentage change in sales (sgr), the

ratio of current assets over liabilities (currat) and with the annual percentage change in

total liabilities (pchcurrat). The majority of these results correspond with Brooks et al.

(2018). Aside from minor differences in significance, the only noteworthy dissimilarity is

the negative risk premium that we observe for capital expenditures and inventory. This

risk premium is significantly positive in their results.
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Table 4
Carhart 4-factor alphas

H-L Alpha t-statistic H-L Alpha t-statistic

Past returns: Intangibles:

r2−1 −0.00 −0.05 −0.49 tan −0.10 −0.13 −1.64∗

r6−2 −0.30 −0.31 −2.52∗∗ rdmve −0.17 −0.20 −2.04∗∗

r12−2 −0.27 −0.30 −2.35∗∗ rdsale −0.18 −0.24 −2.32∗∗

r12−7 −0.13 −0.14 −1.17 hire −0.32 −0.31 −3.59∗∗∗

r36−12 0.01 0.02 0.20
Value-versus-growth:

Investment: at 0.82 0.82 8.62∗∗∗

ag −0.21 −0.23 −2.64∗∗∗ size 1.02 0.95 10.46∗∗∗

issue1Y −0.31 −0.34 −4.75∗∗∗ ch −0.43 −0.42 −5.24∗∗∗

issue5Y −0.04 −0.05 −0.82 currat −0.49 −0.48 −5.38∗∗∗

chinv −0.02 −0.05 −0.73 bm 0.03 0.03 0.31
grltnoa −0.17 −0.19 −2.16∗∗ leverage 0.25 0.23 2.91∗∗

tef −0.51 −0.50 −6.30∗∗∗ pchcurrat 0.10 0.07 0.83
pchsaleinv −0.19 −0.21 −2.70 lgr −0.13 −0.14 −1.65∗

egr −0.01 −0.00 −0.03 s2p 0.73 0.69 8.06∗∗∗

invest −0.28 −0.29 −3.95∗∗∗ salesg −0.37 −0.39 −4.36∗∗∗

oa −0.59 −0.60 −6.32∗∗∗ dy 0.71 0.73 8.87∗∗∗

Profitability: Trading Frictions:

profit 0.89 0.84 9.97∗∗∗ bidask 0.04 0.00 0.01
chtx 0.03 0.02 0.25 baspread 0.23 0.14 3.03∗∗∗

pchgm −0.18 −0.10 −1.18 dolvol 0.28 0.26 3.55∗∗∗

pchsale −0.15 −0.05 −0.65 stddolvol 0.16 0.10 1.34
roeq 0.29 0.30 4.34∗∗∗ maxret −0.02 −0.09 −1.20
ep 0.84 0.80 8.44∗∗∗ roavol 0.70 0.64 7.34∗∗∗

eps 0.47 0.44 5.67∗∗∗ sratio 0.15 0.11 1.69∗

gma 0.89 0.84 9.30∗∗∗ tvol −0.16 −0.16 −2.02∗∗

sgr −0.38 −0.39 −4.36∗∗∗ interest −0.30 −0.34 2.98∗∗

tb 0.13 0.11 1.31 volume 0.24 0.21 1.94∗

turn −0.81 −0.80 −8.90∗∗∗ impliedvol −1.40 −1.36 −10.67∗∗∗

pm 0.12 0.13 1.57 ivol −0.22 −0.22 −3.03∗∗∗

s2c 0.18 0.12 1.60
sat −0.21 −0.28 −3.31∗∗∗

sga2s −0.15 −0.15 −1.55

This table reports mean returns of long-short portfolios sorted on the characteristics described in Table
2 going long in the highest decile of firms and taking a short position in the lowest decile. Monthly
long-short portfolio returns are regressed on the Carhart 4-factor model. We report the resulting alphas
with their corresponding t-statistic. T-statistics at a significance level of 90%, 95% and 99% are indicated
with one, two and three asterisks respectively. The sample period is from January 1996 to March 2021.

4.2 Fama-Macbeth regressions

The univariate portfolio sorts in Table 4 fail to take correlations between firm charac-

teristics into account. In this section we analyze the predictability of all characteristics

jointly by performing Fama-Macbeth regressions. The resulting slope coefficients for each

characteristic and their corresponding t-statistic are presented in Table 5. Since size is a

well-known predictor of asset returns, the regression is performed separately for all firms,

large firms and for all but the smallest firms. The univariate portfolio sorts would lead us

to believe that up to 34 characteristics can be used to predict future option returns. This

is close to the 23 characteristics with significant slope coefficients in the first two columns

of Table 5. The most noteworthy characteristics are asset growth, change in inventory,

share turnover, sales to cash, total assets, size, dividend to price, volume, idiosyncratic

volatility, total volatility and the difference between implied and realized volatility.

Again the relation between delta-hedged returns and idiosyncratic volatility is nega-

tive, but now that we consider all characteristics jointly the relation is positive for total

volatility. The slope coefficient for the difference between implied and realized volatility

is -0.350 with the largest t-statistic of -88.01. We also find positive slope coefficients for
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total assets and size. Larger firms have higher delta-hedged option returns on average.

For smaller firms, which tend to have a higher percentage growth in total assets (ag), the

slope coefficient is negative at a 99% significance level. When analyzing all characteristics

jointly, we do find a short term reversal effect (r2−1) which is more in line with Jones

et al. (2020). However, we no longer observe any momentum effect past 6 months.

The third column of Table 5 shows the slope coefficients when only large firms are

taken into consideration. For every option month observation, we select only those firms

whose size is above the mean. In this case, only 21 characteristics provide incremental

information on option returns. The slope coefficients with t-statistics larger than 15 in

the first column are still significant at a 99% confidence level and their signs do not

change. When we only consider large firms asset growth no longer yields incremental

information on option returns. Since asset growth tends to vary more among smaller

firms this indicates it is perhaps not asset growth itself that is a relevant characteristic,

so much as its correlation with size. There are only thirteen characteristics that selected

in each of the three samples based on firm size: chinv, invest, pchsale, gma, at, size, dy,

ep, eps, s2p, volume, tvol and impliedvol. This is notably less than the 23 characteristics

we select when we use all firms in the sample. Still, we know the linear model has

significant drawbacks. Most importantly, there is no reason to assume that the conditional

mean function is linear. In the next section we circumvent this by estimating the model

nonparametrically using the adaptive group LASSO.

Table 5
Slope Coefficients of Fama-Macbeth Regressions

All firms Large firms No tiny firms

Slope t-statistic Slope t-statistic Slope t-statistic

ag −0.140∗∗∗ −14.097 −0.031 −0.983 −0.142∗∗∗ −15.338

issue1Y −0.042 −1.236 −0.025 −0.624 −0.026 −0.499

issue5Y 0.017 0.208 −0.006 −0.038 0.004 0.011

chinv 0.121∗∗∗ 10.531 0.050∗∗ 2.559 0.138∗∗∗ 14.475

grltnoa 0.045 1.468 0.041∗ 1.706 0.101∗∗∗ 7.735

tef −0.031 −0.700 −0.014 −0.185 −0.052∗∗ −2.031

pchsaleinv −0.048∗ −1.652 −0.005 −0.025 −0.049∗ −1.839

egr −0.021 0.327 −0.014 −0.188 −0.029 −0.628

invest −0.082∗∗∗ −4.810 −0.074∗∗∗ −5.556 −0.095∗∗∗ −6.890

profit 0.049∗ 1.705 0.025 0.642 −0.029 0.650

chtx −0.019 0.246 0.014 0.189 0.016 0.184

pchgm −0.053∗ 1.972 0.026 0.710 0.046∗ 1.621

pchsale −0.101∗∗∗ −7.245 −0.048∗∗ −2.352 −0.093∗∗∗ −6.551

gma −0.070∗∗∗ −3.461 −0.242∗∗∗ −59.601 −0.177∗∗∗ −23.877

sgr −0.017 −0.215 −0.005 −0.023 0.009 0.063

tb −0.011 0.086 0.026 0.702 0.012 0.101

turn −0.097∗∗∗ −6.759 −0.024 −0.587 −0.065∗∗∗ −3.213

pm 0.037 0.962 −0.061∗∗∗ −3.812 −0.005 −0.016

s2c 0.119∗∗∗ 10.100 0.011 0.120 0.098∗∗∗ 7.317

sat 0.023 0.366 0.102∗∗∗ 10.635 0.045 1.517

sga2s −0.005 −0.014 0.158∗∗∗ 25.612 0.074∗∗∗ 4.192

ch 0.032 0.715 −0.024 −0.577 0.033 0.827
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Table 5
Slope Coefficients of Fama-Macbeth Regressions (Continued)

All firms Large firms No tiny firms

Slope t-statistic Slope t-statistic Slope t-statistic

at 0.172∗∗∗ 21.298 0.237∗∗∗ 57.389 0.189∗∗∗ 27.089

size 0.194∗∗∗ 26.881 0.101∗∗∗ 10.365 0.227∗∗∗ 39.185

currat −0.012 −0.097 −0.023 −0.545 −0.024 −0.422

pchcurrat 0.027 0.520 0.016 0.255 0.009 0.065

bm −0.046 −1.504 −0.013 −0.171 −0.011 −0.084

oa −0.002 −0.003 0.017 0.293 −0.009 −0.059

leverage −0.024 −0.400 −0.021 −0.466 −0.024 −0.426

dy 0.286∗∗∗ 58.508 0.109∗∗∗ 12.006 0.232∗∗∗ 40.946

rdmve 0.038 1.030 −0.064∗∗∗ −4.120 −0.034 −0.898

rdsale −0.036 −0.920 0.021 0.433 0.004 0.014

roeq −0.067∗∗∗ −3.261 −0.034 −1.155 −0.062∗∗∗ −2.883

ep −0.055∗∗ −2.140 0.166∗∗∗ 28.156 0.114∗∗∗ 9.958

eps 0.078∗∗∗ 4.378 0.075∗∗∗ 5.709 0.126∗∗∗ 12.124

hire 0.029 0.609 0.002 0.005 0.024 0.430

lgr 0.076∗∗∗ 4.097 0.026 0.672 0.059∗∗∗ 2.626

salesg 0.017 0.215 −0.005 −0.026 0.009 0.063

tan 0.073∗∗∗ 3.862 0.015 0.233 0.025 0.491

s2p −0.052∗ −1.961 −0.166∗∗∗ −28.011 −0.133∗∗∗ −13.523

volume 0.244∗∗∗ 42.539 0.058∗∗∗ 3.431 0.189∗∗∗ 27.167

bidask 0.040 1.119 0.094∗∗∗ 9.027 0.072∗∗∗ 3.907

interest 0.013 0.121 −0.21 −0.427 −0.003 −0.005

r2−1 −0.049∗ −1.713 0.002 0.003 −0.036 −0.999

r6−2 −0.060∗∗ −2.558 −0.029 −0.837 −0.072∗∗∗ −3.907

r12−2 0.003 −0.005 −0.041∗ −1.720 0.009 0.057

r12−7 −0.035 −0.895 0.019 0.372 0.002 −0.002

r36−12 0.032 0.721 0.003 0.007 0.011 0.089

baspread −0.078∗∗∗ −4.385 −0.024 −0.604 −0.054∗∗ −2.228

dolvol 0.062∗∗∗ 2.746 0.021 0.445 0.035 0.907

ivol −0.096∗∗∗ −6.618 −0.077∗∗∗ −5.979 −0.040 −1.200

tvol 0.104∗∗∗ 7.762 0.095∗∗∗ 9.125 0.056∗∗ 2.338

sratio −0.008 −0.041 0.005 0.028 0.012 0.105

stddolvol −0.006 −0.041 −0.036 −1.307 −0.022 −0.374

maxret −0.053∗∗ −2.000 0.029 −0.856 −0.043 −1.403

roavol −0.050∗ −1.773 0.004 0.017 −0.033 −0.828

impliedvol −0.350∗∗∗ −88.010 −0.165∗∗∗ −27.809 −0.286∗∗∗ −62.247

This table presents Fama-Macbeth slope coefficients of the characteristics in Table 2 with their cor-

responding t-statistic. 90%, 95% and 99% significance are denoted by one, two and three asterisks

respectively. Large firms refers to firms with a market value above average. Tiny firms are defined as the

smallest 10% of firms based on market value. The sample period is from January 1996 to March 2021.

4.3 Selected characteristics in the adaptive group LASSO

Now we examine characteristic selection of the adaptive group LASSO for a variety of

sample periods and firm sizes. A comparison between the out of sample performance of

the adaptive group LASSO and the linear model is done in Section 4.5. The purpose of

this section is to provide some insights into the characteristics that the nonparametric

model selects and the relation between those characteristics and delta-hedged call option

returns.

18



Table 6
Selected Firm Characteristics in Nonparametric Model

Firms All All All All All Large firms No tiny firms
Sample Full Full Full 2015-2021 1990-2015 Full Full
Knots 15 10 5 10 10 10 10

Sample Size 65618 65618 65618 27181 38437 32985 58942
# Selected 11 11 11 11 13 6 10

Sharpe Ratio 0.0992 0.0727 0.0112 -0.4311 0.3631 0.4019 0.2013

Characteristics # Selected (1) (2) (3) (4) (5) (6) (7)

ag 1 ag
baspread 3 baspread baspread baspread

dy 7 dy dy dy dy dy dy dy
ep 2 ep ep
eps 4 eps eps eps eps

interest 1 interest
issue1Y 5 issue1Y issue1Y issue1Y issue1Y issue1Y
maxret 5 maxret maxret maxret maxret maxret
pchgm 1 pchgm
pchsale 3 pchsale pchsale pchsale
profit 3 profit profit profit
r6−2 1 r6−2

r12−2 2 r12−2 r12−2

r12−7 3 r12−7 r12−7 r12−7

rdsale 1 rdsale
roeq 4 roeq roeq roeq roeq
s2c 3 s2c s2c s2c
sga2s 2 sga2s sga2s
size 6 size size size size size size
sratio 1 sratio

stddolvol 1 stddolvol
turn 7 turn turn turn turn turn turn turn

impliedvol 7 impliedvol impliedvol impliedvol impliedvol impliedvol impliedvol impliedvol

Never selected: at, bidask, bm, ch, chinv, chtx, currat, dolvol, gma, grltnoa, hire, invest, ivol, issue5Y ,
leverage, lgr, oa, pchcurrat, pchsaleinv, pm, r2−1, r36−12, rdmve, roavol, s2p, salesg, sat, sgr, tan, tb, tef,
tvol and volume. This table reports selected characteristics in the nonparametric model (11) as well as
in-sample Sharpe ratio for different amounts of interpolation points (knots), sample periods and different
selections of firms. Large firms refers to firms with an above average market value, whereas tiny firms
are the smallest 10% of firms based on market value. The sample period is from January 1996 to March
2021.

We estimate the model in Equation (11) with 15 knots using the entire sample period.

The selected characteristics and in-sample Sharpe ratio are shown in Table 6. As expected

the group LASSO selects less characteristics than the linear model. Model (1) shows that

only 11 characteristics provide incremental information on option returns, as opposed

to the 23 characteristics selected by the Fama-Macbeth regression. With the exception

of issue1Y and r12−2, each of the 11 selected characteristics is also significant at a 99%

confidence level in the linear model.

The characteristics the adaptive group LASSO selects varies slightly depending on the

number of interpolation points. With 15 interpolation points the group LASSO selects the

bid-ask spread of the option, dividend to price ratio, earnings per share, yearly percentage

change in outstanding shares, maximum daily return, profitability, return from 12 to 2

months before prediction, return on equity, size, share turnover and the deviation of

the option’s implied volatility from its historical volatility. Using 10 knots, return from

12 to 2 months before prediction is replaced by the percentage change in sales minus
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the percentage change in A/R. While there are minor differences in models (1), (2) and

(3), it is reasonable to assume that the number of interpolation points is not extremely

important.

To illustrate why the nonparametric model reduces the number of selected charac-

teristics, the unconditional mean functions of asset growth, total assets and tangibility

are plotted alongside their conditional mean functions in Figure 1. We initially found

that each of these characteristics yield significant return premiums in univariate portfolio

sorts. Even after considering all characteristics jointly in the linear model, we found that

asset growth, total assets and tangibility had significant slope coefficients. On the left

panels of Figure 1 we see the unconditional mean functions of asset growth, total assets

and tangibility. Firms with low asset growth and tangibility and high total assets have

higher expected returns. This is in line with the results of the univariate portfolio sorts,

where we found a equally weighted monthly portfolio return of -0.21 for asset growth,

-0.10 for tangibility and a significant positive return of 0.82 for total assets. The Fama-

Macbeth regression in Table 5 also shows a negative premium of -0.140 for asset growth

and a positive premium of 0.172 for total assets, although the option premium for tan-

gibility is positive at 0.073 when all characteristics are considered in a linear regression.

When we condition on all other characteristics in the nonparametric model we obtain the

conditional mean function plotted on the right hand side of the panel. We now observe

that firms with low asset growth do not yield higher option returns than firms with high

asset growth. Total assets appears to have no influence on option returns at all and if

tangibility were to be a selected characteristic, its relation with delta-hedged option re-

turns is seemingly opposite when we condition on other characteristics. Firms with high

tangibility actually have slightly higher returns than firms with low tangibility.

To illustrate the effects selected characteristics have when we allow for nonlinear

relationships we plot the mean functions of dividend to price (dy), size and earnings per

share (eps) in Figure 2. Although the conditional plots on the right hand side are not

identical to the unconditional mean function on the left hand side. Their relation with

respect to option returns does not change drastically. Average returns still increase when

dividend to price increases, regardless of whether we condition on other characteristics

or not. We observe a similar effect for size. It appears that not every characteristic has

a significant nonlinear interaction with delta-hedged returns as both of their conditional

mean functions could be approximated by a somewhat linear function. However, the

conditional mean function of earnings per share shows the need for nonlinearities in the

model. Expected returns increase steadily with earnings to price up to 0.75, after which

subsequent increases in earnings to price actually lead to a decrease in average returns.
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Figure 1
Unconditional and conditional mean function: Asset growth (ag), total assets (at)
and Tangibility (tan)
Effect of normalized asset growth (ag), total assets (at) and tangibility (tan) on expected returns.
The left figures present the unconditional relation between the given characteristic and option
returns. The right figures report the association after conditioning on every characteristic. The
95% confidence bands are shown in red. The sample period is from January 1996 to March
2021.

21



Figure 2
Unconditional and conditional mean function: Dividend to price (dy), size and
earnings per share (eps)
Effect of normalized Dividend to Price (dy), size and earnings per share (eps) on expected re-
turns. The left figures present the unconditional relation between the given characteristic and
option returns. The right figures report the association after conditioning on every characteris-
tic. Their 95% confidence bands are shown in red. The sample period is from January 1996 to
March 2021.
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Figure 3
Unconditional and conditional mean function: Return from 12 to 7 months before
prediction (r12−7), % change in sales minus the %change in A/R (pchsale) and share
turnover (turn)
Effect of normalized return from 12 to 7 months before prediction (r12−7), % change in sales
minus the % change in A/R (pchsale) and share turnover (turn) on expected returns. The left
figures present the unconditional relation between the given characteristic and option returns.
The right figures report the association after conditioning on every characteristic. Their 95%
confidence bands are shown in red. The sample period is from January 1996 to March 2021.
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Figure 4
Unconditional and conditional mean function: The difference between implied and
realized volatility (impliedvol), idiosyncratic volatility (ivol) and the 1 year change
in shares outstanding (issue1Y )
Effect of normalized 1 year change in shares outstanding (Issue1Y ), idiosyncratic volatility (ivol)
and implied volatility (impliedvol) on expected returns. The left figures present the uncondi-
tional relation between the given characteristic and option returns. The right figures report the
association after conditioning on every characteristic. Their 95% confidence bands are shown
in red. The sample period is from January 1996 to March 2021.
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Figure 3 plots mean functions for returns from 12 to 7 months before prediction

(r12−7), the percentage change in sales minus the percentage change in A&R (pchsale)

and share turnover (turn). Surprisingly, the unconditional plots of r12−7 and pchsale are

almost identical. Both characteristics were previously not selected by the portfolio sort

method with t-statistics of -1.17 and -0.65 respectively. However, pchsale is selected by

the Fama-Macbeth regression with a t-statistic of -7.245. In the adaptive group LASSO

both characteristics are selected in three out of the seven models. The plots in Figure

3 show the unconditional and conditional mean function of model (1), which does not

select either characteristic. When we condition on all other characteristics, the relation

between r12−7 and pchsale with call option returns does not change. Firms with low

past returns have lower expected delta-hedged option returns in the future. As past

returns increase, the expected option returns increase as well. This effect persists until

we reach firms in the top 30%-40% of past earners. After this point, further increases

in past returns vastly decrease option returns. The top percentile of past earners also

achieve the lowest delta-hedged option returns. We see the same relationship, albeit

smoother, in the conditional mean function but the effect both characteristics have on

option returns is now insignificant. Since we observe no short term reversal (r2−1) in any

of the nonparametric models and any long-term momentum (r36−12) can also be ruled

out, it is safe to say our results disagree with the conclusions of Heston et al. (2022)

and Jones et al. (2020). The only momentum we observe is between 12 and 2 months

before prediction. Except for model (2), every model selects one of three momentum

characteristics: r6−2, r12−2 and r12−7. It appears these three momentum characteristics

are somewhat interchangeable. In this sense, our results do agree with the aforementioned

papers in that momentum can be used as a predictor of option returns. Unfortunately, we

cannot conclusively determine which momentum characteristic is the true predictor since

our selection is inconsistent. Since correlation between these characteristics is extremely

high, it is probable that each of them will suffice as a predictor of call option returns.

Turning our attention to the plots for share turnover, we notice that the slope coefficient

of -0.097 of the linear model is not entirely inaccurate. This may be because effect of

share turnover on returns is close to linear even in the nonparametric model. Although

share turnover is not generally considered as a return predictor in the literature, it is

selected in all seven nonparametric models.

Lastly, we direct our attention to Figure 4, where we plot the mean functions for yearly

percentage change in outstanding shares (issue1Y ), idiosyncratic volatility (ivol) and the

difference between implied and realized volatility (impliedvol). The alpha of impliedvol

had a t-value -10.67 and the slope coefficient of impliedvol was -0.35 with a t-value of

88.01. It is no surprise that this characteristic is selected in all seven nonparametric mod-

els. We do however observe that the linear model heavily underestimates the magnitude

of the slope coefficient. On average, firms with the highest difference between implied
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and realized volatility (a higher implied volatility relative to realized volatility) have call

option returns that are 1% lower than firms with the lowest difference. The difference be-

tween implied and realized volatility was already found to be a predictor of delta-hedged

returns in Goyal and Saretto (2009a). Horenstein et al. (2020) also incorporate it as one

of the four factors in their model. Our results agree that options with an overestimated

implied volatility are overpriced and yield lower delta-hedged returns in the near future.

Although the relation implied by the group LASSO does not seem entirely linear, it is in

line with the conclusions drawn from both the portfolio sorts and Fama-Macbeth regres-

sion. The difference between a call option’s implied volatility and its realized volatility

in the past month appears to be a strong indicator of a firm’s expected delta-hedged

returns. Next, we take a look at idiosyncratic volatility. Recall that Cao and Han (2013)

claim delta-hedged returns decrease as idiosyncratic volatility increases. These findings

are supported by Cao et al. (2021). Both studies rely on Fama-Macbeth regressions. In

Table 4 we found a significant negative alpha of -0.22. The Fama-Macbeth coefficient

for idiosyncratic volatility in Table 5 is also negative and significant at -0.096. The left

hand side of Figure 4 shows the negative relation found in the literature. Only when we

condition on all other characteristics and account for nonlinearities do we see that id-

iosyncratic volatility has no effect on delta-hedged returns. While we cannot conclusively

determine why idiosyncratic volatility appears as an empirical irregularity in portfolio

sorts, it is likely that the significant alpha is a result of the factor model’s failure to

take into account some form of aggregate risk. The last characteristic we examine is

the yearly percentage change in outstanding shares. It is the only characteristic selected

in the adaptive group LASSO that is not selected in the linear model, despite having a

significant alpha. Although conditioning on all other characteristics in the linear model

led us to believe that the effect of issue1Y is insignificant, the nonparametric conditional

mean function shows that returns are not effected by changes in the range of [0, 0.4] but

they decrease as the number of newly issued shares increases beyond 0.4.

We briefly return to the objective of this paper, which is to find characteristics that

provide incremental information on delta-hedged option returns. We sorted options into

deciles based on each characteristic and created long-short portfolios with a long position

in the highest decile and a short position in the lowest decile. 34 of these trading strategies

have returns that cannot be explained by a traditional factor model. Our contention with

these results and by extension the conclusions in Horenstein et al. (2020) and Büchner and

Kelly (2022) is that the significance of most of these anomalies is most likely a result of

the factor models in question and not of inefficiencies in the market. After accounting for

nonlinearities and modelling the conditional mean function directly we find that only eight

characteristics consistently provide incremental information on option returns: Dividend

to price ratio, earnings per share, percentage change in outstanding shares, maximum

daily return, return on equity, size, share turnover and the difference between implied

26



and historical volatility.

4.4 Time-variation in selected characteristics

In Section 3.3 we opted to pool the observations across time to decrease estimation

uncertainty (Gu et al., 2020). By doing this, we implicitly assume that the betas in

Equations (9) and (11) do not vary over time. However, literature regarding asset returns

documents that the conditional mean function is time-varying for equities in the cross-

section (see, for example, Ghysels (1998) and Dangl and Halling (2012)). We devote

this section to examine if the estimated coefficients of the models in Table 6 are in fact

time-varying by nature.

Ideally, we would estimate Equation (9) and (11) separately for each time observation

t. Unfortunately we do not have enough firms in the cross-section to achieve reliable

coefficient estimates this way. Instead, we will estimate the adaptive group LASSO using

a rolling window with 100 time observations, which is equivalent to around 10 years of

data. We estimate the adaptive group LASSO using an initial estimation sample from

January 1996 to June 2006 and fix the selected characteristics. Subsequently, we roll

the window forward by one month and run the adaptive group LASSO again using only

those characteristics. This is repeated until the entire sample has been exhausted. Using

the initial sample period, the adaptive group LASSO selects seven characteristics: Size,

issue1Y , dy, ep, r36−12, maxret and impliedvol. The resulting time-varying conditional

mean functions for each selected characteristic are shown in Figures 5, 6 and 7.

In Figure 5 we see that the conditional mean function for size and the one year

change in outstanding shares is not constant throughout time. Small firms have lower

expected option returns but this effect seems most prominent during 2006 to 2012 and

dissipates over time. Towards the year 2020 size has a much smaller effect on expected

option returns. The bottom panel plots the conditional mean function for the change in

outstanding shares, which actually displays opposite developments over time. In 2008,

firms at the extreme ends of the spectrum exhibit the lowest average option returns, with

the highest returns obtained by firms in the middle. Over time, firms that issued more

shares obtained significantly lower returns, with an all time low of -0.15 in 2018, whereas

firms which decreased their outstanding shares achieved returns of more than 0.05 from

2014 till 2021.

Figure 6 shows that the conditional mean function with regard to dividend to price

does not vary over time. During the entire sample period, firms earn higher option returns

when their dividend to price ratio increases relative to other firms in the cross-section.

We see time-variation in the effect of earnings to price. During the start of the sample

period, option returns are negatively correlated with a firm’s earnings to price ratio. From

2006 to 2014 firms with the highest earnings to price ratio consistently achieve the lowest
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Figure 5
Time varying conditional mean function of size and the one year change in out-
standing shares
Influence of size and the one year percentage change in outstanding shares (issue1Y ) on expected
returns over time. The sample period is from December 2006 to March 2021.

expected returns. It is not until 2016 that the curve flattens and the effect of earnings to

price on returns becomes less noticeable. After 2018, firms with a low earnings to price

ratio no longer yield higher option returns than firms with a high earnings to price ratio.

Figure 6
Time varying conditional mean function of dividend to price and earnings to price
Influence of dividend to price (dy) and earnings to price (ep) on expected returns over time.
The sample period is from December 2006 to March 2021.

Figure 7 plots the conditional mean function of returns from 36 to 12 months before

prediction, maximum daily return and the difference between implied and realized volatil-

ity. The surface plot for r36−12 shows that, at the start of the sample, firms in the upper

quantile yield higher option returns. Option returns decrease as long-term momentum

decreases. Over the next six years the effect long-term momentum has on delta-hedged

option returns levels and firms with high momentum start to yield similar option returns
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Figure 7
Time varying conditional mean function of maximum daily return, return 36 to 12
months before prediction and the difference between implied and realized volatility
Influence of maximum daily return (maxret), return 36 to 12 months before prediction (r36−12)
and difference between implied and realized volatility (impliedvol) on expected returns over
time. The sample period is from December 2006 to March 2021.

to firms with low momentum. In the following four years momentum actually decreases
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a firm’s expected option returns. In Section 4.1.3 we discussed that both Brooks et al.

(2018) and Heston et al. (2022) find a positive long-term effect of momentum on option

returns. While we observe this effect in the beginning of our sample, the positive re-

lation between long-term momentum and option returns is not robust over time. Next

we look at the conditional mean function of maximum daily return which remains fairly

constant throughout the entire sample period. Firms with low maximum daily return

in the previous month consistently yield higher delta-hedged call option returns in the

following month and those option returns appear to decrease linearly with increases in

maximum daily return. This effect persists throughout the entire sample period but is

less pronounced during the later stages. Moving on to the effect of implied volatility,

more specifically, the difference between realized volatility and implied volatility, hardly

any changes can be seen during the entire 13 year sample. Options whose implied volatil-

ity is significantly higher than their realized volatility yield far lower option returns than

options with implied volatility below their historical volatility. Again, the explanation

for this phenomenon is that an option’s implied volatility tends to mean-revert to its

realized volatility. An option with a higher implied volatility is thus overpriced and with

time the market corrects that price back until the implied volatility equals the options

realized volatility. This decrease in the option’s price is inevitably associated with lower

option returns. On the other end of the spectrum, options with an underestimated im-

plied volatility will likely increase in price in the following months. Based on magnitude,

size, dividend to price and the difference between implied and realized volatility have the

strongest effect on average expected call option returns.

Although the decision to pool the observations of Equation (9) across time is a near

necessity, we must conclude that the assumption of constant betas in the nonparametric

model does not hold. To further investigate whether time varying coefficients are nega-

tively impacting our model, we assess if model selection is consistent throughout time.

We estimate the nonparametric model using data from January 1996 to December 2011,

roll the sample forward by one year and select characteristics again. We repeat this till

the end of the sample. Characteristics selection over time is shown in Figure 8. Ideally

we would see consistent model selection over the entire ten year estimation period from

2012 to 2021. This is not the case. Results are only partially in line with the selected

characteristics in Table 6. For instance, issue1Y , profit, dy, maxret and impliedvol are

selected in at least five out of ten years. These characteristics were also selected consis-

tently when we considered the entire sample period in Table 6. however, share turnover,

which was selected in all seven nonparametric models, is only selected in two out of ten

years and return on equity is selected in just four years. What is most surprising is that

size, eps, ep and baspread are not selected at all. Even though they were chosen in seven,

four, two and three out of the seven models in Table 6 respectively. Figure 8 implies that

profit, gma, bm, dy, maxret and impliedvol are consistently selected by the nonparamet-
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Figure 8
Selected characteristics in nonparametric model with rolling window selection
Characteristics are selected using the adaptive group LASSO with a sample period from January
1996 to December 2011. The sample is then repeatedly rolled forward by one year. Selected
characteristics in each year are shown in green.

ric model over time, while Table 6 indicates that gma and bm have no predictive power

on returns when we consider the entire sample. We do observe that the nonlinear model

consistently selects less characteristics than the linear model shown in Figure 9, although

the linear model obtains more consistent model selection in general.
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Figure 9
Selected characteristics in linear model with rolling window selection
Characteristics are selected using a linear model with a sample period from January 1996 to
December 2011. The sample is then repeatedly rolled forward by one year. Selected character-
istics in each year are shown in green.

4.5 Out-of-sample analysis

While we provided arguments for benefits of the nonparametric model over linear models,

it is crucial to study the efficacy of each approach in practice. We split the sample into two

parts, using data from 1996 to 2018 to select characteristics. The selected characteristics

of each model are then used to predict the next month’s option returns. We create a

hedged long-short portfolio using the realized option returns of that month, going long in

the ten percent of firms with the highest predicted returns and shorting the ten percent

of firms with the lowest predicted option returns. We roll the estimation sample forward
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by one month and repeat the process for the remainder of the sample. We report average

returns, standard deviation, Sharpe ratio, skewness and kurtosis of the out-of-sample

hedge portfolios. We follow Lewellen (2014) to assess predictability by regressing the

monthly realized returns on monthly predicted returns. We report the average β’s and

R2s of this regression. Lastly we report the average pricing error as it is defined in Goyal

and Saretto (2022).

Table 7
Out-of-sample return prediction of the adaptive group LASSO for different knots

Model LASSO LASSO LASSO LASSO LASSO LASSO LASSO LASSO
Firms All All All All All All All All
Sample 1996-2018 1996-2018 1996-2018 1996-2018 2012-2018 2012-2018 2012-2018 2012-2018
Knots 20 15 10 5 20 15 10 5
# Selected 12 12 13 12 7 9 11 8

Long-Short Portfolio

Mean Return 0.17 0.24 0.17 0.14 0.06 0.07 0.17 0.13
SD 1.50 1.46 1.19 1.40 1.17 1.34 1.23 1.40
Sharpe Ratio 0.40 0.58 0.51 0.35 0.18 0.19 0.47 0.32
Skewness 1.09 2.36 1.10 1.46 0.20 0.21 0.45 -0.40
Kurtosis 6.99 12.83 7.11 8.11 5.40 4.33 4.94 5.53
β 0.14 0.18 0.13 0.12 -0.03 0.06 0.15 0.13
R2 -0.22% 0.26% 0.49% 0.10% -0.18% -0.12% -0.23% -0.13%
Pricing error 77.76% 78.44% 79.20% 80.56% 82.25% 81.66% 81.00% 81.91%

Long Leg

Mean Return -1.00 -0.85 -0.93 -0.94 -1.02 -1.13 -1.12 -1.08
SD 1.98 2.21 2.04 2.10 1.94 1.83 1.85 1.88
Sharpe Ratio -1.75 -1.33 -1.58 -1.56 -1.93 -2.13 -2.10 -1.99
Skewness 1.90 1.86 1.76 1.77 2.20 1.83 2.11 1.96
Kurtosis 9.30 7.91 8.16 8.26 10.29 12.05 11.59 10.48
β 3.02 1.90 2.44 2.66 2.56 3.43 3.41 3.10
R2 -0.76% -0.92% -0.96% -0.80% -0.27% -0.27% -0.26% -0.25%
Pricing error 92.02% 92.41% 92.26% 92.95% 98.27% 97.35% 97.69% 97.78%

Short Leg

Mean Return 1.17 1.09 1.11 1.09 1.08 1.20 1.29 1.21
SD 1.81 1.75 1.73 1.76 1.94 1.61 1.58 1.69
Sharpe Ratio 2.25 2.17 2.21 2.14 1.83 2.58 2.82 2.47
Skewness -2.48 -2.52 -2.63 -2.72 -2.67 -0.76 -0.83 -0.99
Kurtosis 12.13 11.39 11.87 12.73 13.44 5.90 6.38 5.85
β 0.85 0.76 0.78 0.77 0.95 1.17 1.25 1.19
R2 0.53% 1.16% 1.20% 0.87% -1.31% -1.35% -1.70 % -1.08%
Pricing error 81.53% 81.56% 80.45% 78.79% 79.06% 75.96% 75.21% 75.67%

This table reports out of sample results for hedge portfolios going long in the decile of firms with the
highest predicted returns and taking a short position in the lowest decile of predicted returns. The
out-of-sample period is from January 2019 to March 2021. Characteristics to predict returns are selected
using the adaptive group LASSO with data from 1996 to 2018 or from 2012 to 2018. The selected
characteristics are then fixed and the estimation window is rolled forward by one month to estimate the
model again and create hedge portfolios for that month. We repeat this for the remaining out-of-sample
period. The average return, standard deviation, Sharpe ratio, skewness and kurtosis of the resulting
hedge portfolios are reported, as well as the average β and R2 from regressions of realized returns on
predicted returns. We also report the model’s relative pricing error as its defined in Goyal and Saretto
(2022).

We would expect that more knots allow for a better approximation of the conditional

mean function and thus better out-of-sample return prediction. Table 7 shows that

this is not the case in practice. In regard to average returns and Sharpe ratios the
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nonparametric model with 20 knots yields worse results than with 15 and 10 knots. Due

to the potential of time-variation in the models parameters as discussed in Section 4.4

the model is estimated using two different samples. One with a sample period from

1996 to 2018 and a more recent sample period from 2012 to 2018. Reducing the sample

period aims to minimize the estimation error from time variability in the parameters

with the obvious downside of a smaller sample size. This drawback is most noticeable

for the models with 15 and 20 knots. The more knots we use the more parameters we

need to estimate and logically we require a larger sample to achieve precise estimates.

Unfortunately the results for the models with 5 knots and 10 knots do not improve when

we consider the shorter sample period. Sharpe ratios as well as R-squared’s are equal or

lower compared to when the entire sample is used. if the shorter sample period has any

benefit in regard to parameter consistency over time, it is entirely offset by the increased

estimation uncertainty due to a lack of observations.

In Table 6 we saw that in-sample model selection is not entirely consistent across

different numbers of knots. This is no different out of sample and Table 7 shows that the

ideal number of interpolation points appears to be between 10 and 15. In Section 4.3 we

considered the adaptive group LASSO with quadratic splines. While intuitive, there are

endless orders of splines to choose from. We estimate the nonparametric model for five

different orders of splines and present the results in Table 8. Although the highest order

spline yields the highest Sharpe ratio of 1.28, Sharpe ratios do not increase monotonically

with an increase in spline order. In fact, the fourth order spline yields worse out-of-sample

Sharpe ratios than the third, second and even first order spline. Surprisingly, the first

order spline, which equates to a linear conditional mean function, yields competitive

Sharpe ratios to the quadratic spline. This stands in contrast with the negative R2 of

-1.15% that it obtains for the long-short hedge portfolio, while every higher order yields

R2’s of at least 0.30%. It is difficult to draw definitive conclusions from the R2 values

since out-of-sample predictability is very low even in the most optimistic scenario. In any

case, a higher order spline does not necessarily yield better out-of-sample results. Because

of this, we will restrict ourselves to a quadratic spline with ten knots when comparing

out-of-sample prediction between the nonparametric and the linear model.

Turning to the primary purpose of this section, we examine whether the nonparametric

model provides exclusive benefits in out-of-sample prediction. Table 9 reports the results

for the adaptive group LASSO with 10 knots and a quadratic spline alongside results

of the linear model. In columns 1 and 2 we consider out-of-sample performance of the

nonlinear and the linear model using the entire sample period from 1996 to 2018 and

taking all firms into consideration. Regarding long-short portfolios, the nonparametric

model consistently yields higher Sharpe ratios, has betas closer to 1 and achieves better

R2s than the linear model. The nonparametric model achieves an annual Sharpe ratio of

0.51, which is 76% higher than the linear model. We see the linear model’s tendency to

34



Table 8
Out-of-sample return prediction of the adaptive group LASSO for different orders

Model LASSO LASSO LASSO LASSO LASSO
Firms All All All All All
Sample 1996-2015 1996-2015 1996-2015 1996-2015 1996-2015
Knots 10 10 10 10 10
Order 1 2 3 4 5
# Selected 11 10 9 9 11

Long-Short Portfolio

Mean Return 0.35 0.33 0.28 0.21 0.40
Standard Deviation 1.40 1.24 1.21 1.12 0.99
Sharpe Ratio 0.87 0.92 0.82 0.64 1.39
Skewness 0.83 -0.30 -0.16 -0.41 1.08
Kurtosis 6.14 5.77 6.28 7.36 5.73
β 0.27 0.26 0.23 0.18 0.29
R2 -1.15% 0.30% 0.33% 0.62% 0.30%
Pricing error 97.59% 96.44% 95.87% 94.71% 98.85%

Long Leg

Mean Return -0.36 -0.43 -0.48 -0.47 -0.42
Standard Deviation 0.99 0.98 0.94 0.95 0.98
Sharpe Ratio -1.27 -1.50 -1.77 -1.69 -1.47
Skewness 0.38 0.59 0.58 0.58 0.51
Kurtosis 2.90 3.24 3.27 3.19 2.96
β 1.04 1.36 1.61 1.55 1.32
R2 -5.55% -3.45% -2.84% -1.62% -2.06%
Pricing error 92.61% 93.76% 92.40% 91.94% 92.40%

Short Leg

Mean Return 0.72 0.75 0.76 0.67 0.77
Standard Deviation 1.02 1.05 1.03 0.91 0.86
Sharpe Ratio 2.45 2.49 2.58 2.58 3.08
Skewness -0.44 -0.07 -0.03 -0.72 -0.42
Kurtosis 2.88 4.24 4.41 3.99 3.09
β 0.48 0.49 0.50 0.45 0.52
R2 1.36% 1.40% 1.34% 1.76% 1.77%
Pricing error 105.69% 102.37% 106.53% 104.84% 108.21%

This table reports out of sample results for hedge portfolios going long in the decile of firms with the
highest predicted returns and taking a short position in the lowest decile of predicted returns. The
out-of-sample period is from January 2016 to December 2018. Characteristics to predict returns are
selected using the adaptive group LASSO with data from 1996 to 2015. The selected characteristics are
then fixed and the estimation window is rolled forward by one month to estimate the model again and
create hedge portfolios for that month. We repeat this for the remaining out-of-sample period. The
average return, standard deviation, Sharpe ratio, skewness and kurtosis of the resulting hedge portfolios
are reported, as well as the average β and R2 from regression of realized returns on predicted returns.
We also report the model’s relative pricing error as its defined in Goyal and Saretto (2022).

overfit to the data. The linear model selects 23 characteristics while the nonparametric

model only requires 13 characteristics to predict the cross-section of returns. The LASSO

obtains higher average returns as well as a lower standard deviation. The portfolio

returns of the nonlinear model have a much higher kurtosis than the linear model. This

may indicate that the nonparametric model is better in predicting the extreme end of

returns. When we consider the long and short legs separately we find that the nonlinear

model performs very well at predicting the short leg of returns. Its Sharpe ratio is 46%

higher than the linear model and the R2 is 1.20%, whereas the linear model has an R2

of -1.30%, which implies that the linear model predicts worse than just using a simple

mean. However, the opposite is true for the long leg of returns. Here the nonlinear
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Table 9
Out-of-sample comparison between the nonparametric and linear model

Model LASSO Linear LASSO Linear LASSO Linear LASSO Linear
Firms All All size > d5 size > d5 size > d1 size > d1 All All
Sample 1996-2018 1996-2018 1996-2018 1996-2018 1996-2018 1996-2018 2006-2018 2006-2018
Knots 10 - 10 - 10 - 10 -
# Selected 13 29 8 18 11 30 11 30

Long-Short Portfolio

Mean Return 0.17 0.13 0.22 0.23 0.03 -0.43 0.19 0.19
SD 1.19 1.53 1.70 2.61 1.74 1.33 0.88 1.14
Sharpe Ratio 0.51 0.29 0.44 0.31 0.07 -1.12 0.75 0.57
Skewness 1.09 -0.22 -0.92 0.62 -0.34 -0.59 -0.05 -0.23
Kurtosis 7.11 4.26 5.13 4.25 4.53 5.83 4.53 6.93
β 0.13 0.01 0.23 0.06 0.02 -0.05 0.19 0.02
R2 0.49% -0.24% 0.34% -0.88% 0.02% -0.73% 0.14% 0.06%
Pricing error 79.20% 86.84% 78.51% 82.83% 82.35% 93.38% 78.44% 84.45%

Long Leg

Mean Return -0.93 -0.71 -1.03 -0.64 -1.02 -1.11 -0.98 -0.96
SD 2.04 2.35 2.06 1.83 1.71 2.15 1.70 1.70
Sharpe Ratio -1.58 -1.04 -1.74 -1.22 -2.08 -1.79 -2.00 -1.97
Skewness 1.76 2.09 0.43 1.56 0.26 2.97 2.84 0.88
Kurtosis 8.16 10.00 6.10 7.76 3.73 15.56 14.88 5.20
β 2.44 0.10 4.46 0.67 3.54 0.15 3.86 0.16
R2 -0.96% 1.27% -3.95% 0.96% -0.95% 0.90% -3.38% 1.79%
Pricing error 92.26% 82.65% 87.53% 76.61% 93.96% 83.06% 92.37% 83.14%

Short Leg

Mean Return 1.11 0.84 1.25 0.87 1.06 0.68 1.17 1.15
SD 1.73 1.92 1.88 1.92 1.46 2.39 1.71 1.56
Sharpe Ratio 2.21 1.51 2.31 1.57 2.51 0.99 2.38 2.56
Skewness -2.63 -2.80 -1.11 -0.30 -0.81 -2.46 -2.69 -0.91
Kurtosis 11.87 14.81 7.86 4.75 4.92 11.05 12.76 5.57
β 0.78 0.81 1.20 0.28 0.84 0.45 0.95 0.72
R2 1.20% -1.30% 0.50% -0.11% 0.27% -1.30% 0.63% -4.31%
Pricing error 80.45% 97.23% 76.68% 83.22% 83.00% 119.11% 78.78% 98.47%

This table reports out of sample results for hedge portfolios going long in the decile of firms with the
highest predicted returns and taking a short position in the lowest decile of predicted returns. The out-
of-sample period is from January 2019 to March 2021. Additionally, the model is ran separately for large
firms (size > d5) and for all except the smallest firms (size > d1). Characteristics to predict returns are
selected using either the adaptive group LASSO or a linear model with data from 1996 to 2018 or from
2012 to 2018. Those characteristics are then fixed and the estimation window is rolled forward by one
month to estimate the model again and create hedge portfolios for that month. We repeat this for the
remaining out-of-sample period. The average returns, standard deviations, Sharpe ratios, skewness and
kurtosis of the resulting hedge portfolios are reported, as well as the average β and R2 from regressions
of realized returns on predicted returns. We also report the model’s relative pricing error as its defined
in Goyal and Saretto (2022).

model does not yield accurate predictions. On average, delta-hedged returns during the

out-of-sample period are negative at -0.88. At a reasonable level of predictability, we

expect the mean returns of the long leg to be higher than -0.88, instead the nonlinear

model has an average return of -0.93 in the long leg. We could expect to outperform this

by randomly selecting firms each month. While a beta of 1 is ideal, we obtain a beta

of 2.44, which indicates that the nonlinear model heavily underestimates the expected

return dispersion (Lewellen, 2014). The linear model actually outperforms the nonlinear

model in the long leg, with an average monthly return of -0.71 and an R-squared of 1.27%.

This is reaffirmed by the pricing errors which are 10% higher for the LASSO.
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We also compare out of sample performance large firms (size > d5) and all but the

smallest firms (size > d1) in columns 3 to 6. In general, the results are consistent with

our previous findings. The nonlinear model gives better Sharpe ratios, betas closer to

1 and higher R2s but is unable to predict accurately in the long leg. It appears that

nonlinearities are important when predicting call option returns, but the adaptive group

LASSO is only able to achieve this in the extreme negative end of returns. Columns 7

and 8 consider an sample period from 2006 to 2018 rather than the full period of 1996 to

2018. The results are similar to columns 1 and 2. To summarize, the long-short portfolio

returns of the nonparametric model consistently have higher Sharpe ratios, higher R2s

than the linear model. The adaptive group LASSO also yields lower pricing errors.

5 Conclusion

We apply the adaptive group LASSO to find characteristics that provide incremental

information on expected call option returns. (1) We analyze whether characteristics

have incremental predictive power on expected returns. (2) We document whether the

influence and selection of characteristics varies over time and lastly (3) we compare the

performance of the adaptive group LASSO with the conventional linear approach in out-

of-sample forecasting.

A summary of the results is as follows: (1) Considering a total of 57 characteristics, the

number of characteristics required to explain the cross-section of expected delta-hedged

call option returns is in the range of 6 and 13 depending on the sample period, number

of interpolation points, order of spline and which firms are taken into consideration. (2)

The influence of characteristics on expected returns, as well as the selection of those

characteristics varies considerably over time. (3) In every sub-sample, the amount of

characteristics the nonlinear model selects is less than half that of its linear counterpart.

The nonparametric model obtains out-of-sample Sharpe ratios that are between 37%

and 75% higher than those of the linear model. this effect is robust with respect to

the number of interpolation points and the order of spline that we choose. Results are

also robust with regard to firm size. Characteristics that are consistently selected to

have incremental information on option returns are: The one year percentage change in

outstanding shares, maximum daily return, the difference between implied and realized

volatility, size, dividend to price ratio and share turnover. Although we find some level of

predictability in option returns, our results show that much of the profitability in option

returns documented in the extant literature can be explained through a nonparametric

model. The implication is that, although imperfect, option markets still appear to exhibit

an extraordinary level of efficiency and that pricing options using a framework based on

the efficient market hypothesis is not entirely unreasonable.
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Appendix

A.1 Characteristics

1. ag: Asset growth, computed as the year-on-year percentage change in total assets

(Cao et al., 2021).

2. at: Total assets.

3. baspread: Bid-ask spread of the option.

4. bidask: The ratio of the difference between the bid and ask quotes of option to the

midpoint of the bid and ask quotes at the end of previous month.

5. bm: The natural logarithm of book equity for the fiscal year-end in a calendar year

divided by market equity at the end of December of that year (Cao et al., 2021).

6. ch: Cash-to-assets ratio defined as the value of corporate cash holdings over the

value of the firm’s total assets. Cao et al. (2021).

7. chinv: Change in inventory.

8. chtx: Change in tax expense.

9. currat: Current assets divided by current liabilities (Ou and Penman, 1989).

10. dolvol: Natural log of trading volume times price per share from month t − 2

(Chordia et al., 2001).

11. dy: Dividend to price.

12. egr: Growth in common shareholder equity.

13. ep: Earnings to price.

14. eps: Earnings per share.

15. gma: Gross profitability.

16. grltnoa: Growth in long-term net operating assets.

17. hire: Employee growth rate.

18. impliedvol: Difference between implied volatility and realized volatility of the op-

tion, where realized volatility is calculated as the historical volatility over the last

trading month.
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19. interest: The open interest for the option contract on the trading date preceding

the portfolio formation date.

20. invest: Annual change in gross property, plant, and equipment, plus annual change

in inventories, all scaled by lagged total assets (Chen and Zhang, 2010).

21. issue1Y : The change in shares outstanding from 11 months ago as in Pontiff and

Woodgate (2008).

22. issue5Y : The 5-year real change in outstanding shares (Cao et al., 2021).

23. ivol: Stock return idiosyncratic volatility (Ang et al., 2006).

24. leverage: Computed as the sum of total debt and the par value of the preferred

stock minus deferred taxes and investment tax credit, divided by market equity as

in Vasquez and Xiao (2020).

25. lgr: Annual percent change in total liabilities (Richardson et al., 2005).

26. maxret: Maximum daily return.

27. oa: Operating accruals (Bandyopadhyay et al., 2010).

28. pchcurrat: Percent change in current ratio.

29. pchgm: Percent change in sales minus the percent change in inventory.

30. pchsale: Percent change in sales - the percent change in A/R.

31. pchsaleinv: Percent change in inventory.

32. pm: Sales minus costs of goods sold to sales (Freyberger et al., 2020).

33. profit: Profitability, calculated as earnings divided by book equity in which earn-

ings are defined as income before extraordinary items.

34. r2−1: Return from 2 to 1 months before prediction (Freyberger et al., 2020).

35. r6−2: Return from 6 to 2 months before prediction (Freyberger et al., 2020).

36. r12−2: Return from 12 to 2 months before prediction (Freyberger et al., 2020).

37. r12−7: Return from 12 to 7 months before prediction (Freyberger et al., 2020).

38. r36−13: Return from 36 to 12 months before prediction (Freyberger et al., 2020).

39. rdmve: R&D to market capitalization.

40. rdsale: R&D to sales.
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41. roavol: Standard deviation for 16 quarters of income before extraordinary items

divided by average total assets (Francis et al., 2004).

42. roeq: Return on equity.

43. s2c: Sales-to-cash is the ratio of net sales to Cash and Short-Term Investments

(Freyberger et al., 2020).

44. s2p: Sales-to-price is the ratio of net sales (SALE) to the market capitalization as

of December (Freyberger et al., 2020).

45. salesg: Sales growth is the percentage growth rate in annual sales following Lakon-

ishok et al. (1994) (Freyberger et al., 2020).

46. sat: Sales to total assets (Freyberger et al., 2020).

47. sga2s: SG&A to sales is the ratio of selling, general and administrative expenses

to net sales.

48. sgr: Annual percent change in sales (Lakonishok et al., 1994).

49. size: The Natural Logarithm of the market value of the firm’s equity (Cao et al.,

2021).

50. sratio: The ratio of systematic volatility over total volatility. Total volatility (tvol)

is the standard deviation of daily stock returns over the previous month and sys-

tematic volatility is calculated by
√
tvol2 − ivol2

51. stddolvol: Monthly standard deviation of daily dollar trading volume (Chordia et al.,

2001).

52. tan: We follow Freyberger et al. (2020) and define tangibility as (0.715 × total

receivables + 0.547 × inventories + 0.535 × (property, plant and equipment) +

cash and short-term investments) / total assets (at).

53. tb: Tax income to book income.

54. tef : Total external financing, computed as net shares issuance plus net debt is-

suance minus cash dividends, scaled by total assets (Cao et al., 2021).

55. turn: Share turnover.

56. tvol: Total volatility is the standard deviation of the residuals from a regression of

excess returns on a constant as in Ang et al. (2006) (Freyberger et al., 2020). We

use one month of daily data and require at least fifteen non-missing observations.

57. volume: Option trading volume on the previous trading date.
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A.2 Discussion

There are several limitations when dealing with the cross-section of option returns. This

section provides a extensive summary of the potential roadblocks one encounters when

trying to identify characteristics with predictive power, as well as suggestions to circum-

vent these problems.

Data

Unlike equity stock prices, it is notoriously difficult to find a reliable database of equity

option prices. As in this paper, most academic papers resort to the IvyDB OptionMetrics

database. Unfortunately, it is not a database without flaws. To start, option data in

OptionMetrics available to academics does not begin until 1996, whereas we have access

to stock prices from 1960 onwards. Second, OptionMetrics does not provide a list of all

historical option prices. For various months, numerous firms have no reported option

prices listed in the OptionMetrics database despite having options listed at those times.

Third, OptionMetrics applies a price correction to account for the early exercise premium

of American style options. Although not hugely problematic, for options that are not

deeply out of the money, this correction algorithm is mostly a black box.

OptionMetrics mostly provides us with the dependent variable y. A more pressing

issue in the data-collection of cross-sectional analysis is the construction of our design

matrix X. When we consider 57 characteristics, we will inevitably have observations with

missing values in our design matrix. The number of missing characteristics determines the

severity of the problem, but technically one missing observation introduces unnecessary

bias into the model. There are several ways to approach this problem. The simplest and

probably most intuitive solution is the one applied in this paper, which is to remove any y

observations with missing x values. While this allows for smooth regression, it does force

us to throw away a substantial portion of our option observations. Another approach

could be to run the regression despite missing variables. Bennett (2001) argues that if

more than 10% of data is missing, we are introducing significant bias into estimation. I

would argue that the benefit of included dependent variables with missing x values, solely

for the purpose of adding more data into the model, is completely overshadowed by the

bias it introduces. Not to mention the effects it has on the interpretability of results.

Another idea is to use some form of interpolation to fill in the missing data entries in the

design matrix, although this is rarely done and almost exclusively in the case of missing

y variables (Kohn and Ansley, 1986).

Models in conventional literature

This paper compares the nonparametric model with individual portfolio sorts and linear

Fama-Macbeth regressions, both of which are still commonly used in the analysis of equity
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option returns. However, factors models are by far the preferred model of choice for most

academic papers. Although factor models are notoriously bad in out-of-sample prediction.

If we truly want to evaluate the efficacy of a nonparametric model it is only fair to assess

out-of-sample prediction alongside the predictions of a well-known factor model. I’ve

constrained myself to a linear model for three reasons. Because of its simplicity, ease

of interpretation and because there are countless adaptations of factor models in the

known literature. With each proposed method claiming exclusive upsides that only their

factor structure provides. In that sense, the simple linear regression approach carries

less baggage and provides a clear comparison between a nonlinear and a linear approach.

Generally, linear models tend to perform comparable to factor models, but we cannot

draw fair conclusions about the adaptive group LASSO without comparing it to factor

models used in recent years. The performance of the adaptive group LASSO should be

compared to a factor model as proposed in Büchner and Kelly (2022), Horenstein et al.

(2020) or Goyal and Saretto (2022).

Runtime

I have refrained from mentioning runtime in this paper because in part it is a function

of the hardware at someones disposal and their level of programming skill. However, I

do find it important to mention the runtime of the nonparametric model here to put the

results into perspective. A numerical solver or the algorithm of Yuan and Lin (2006)

is required to find a solution to Equation (9) and (11). Matlab R2020b was used to

estimate the models in this paper. Matlab is known to have a slow compiler compared

to intermediate-level languages such as c++ and even compared to high-level languages

such as python and R. However, writing your code in any of these languages will not solve

the core problem. The runtime of any numerical solver will increase exponentially with

the amount of variables it has to estimate. A huge benefit of the linear model is that with

57 characteristics, we only have to estimate 58 coefficients. In the case of the adaptive

group LASSO with 20 knots we are forced to estimate 20 × 57 = 1140 characteristics.

To put this into perspective, estimating the linear model in column 2 of Table 9 took

3 seconds, while the nonlinear model in column 1 took over 18 hours. Estimating the

nonlinear model with 20 knots using a numerical solver takes between two to four days.

The rate of convergence of the algorithm of Yuan and Lin (2006) is generally faster but

extremely inconsistent.

Limitations of empirical analysis and suggestions

The results in section 4.5 imply that there is a nonlinear structure in the extreme negative

end of delta-hedged option returns. We were unable to outperform the simple linear

model in the long leg of returns. There is a strong possibility that this is caused by
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the unusual out-of-sample period of January 2019 to March 2021. The World Health

Organization announced the global pandemic on the 30th of January 2020, which means

around half of our out-of-sample period is during an exceptional crisis. It is safe to

say this has significant impact on the accuracy of our model’s forecasts. Two simple

suggestions follow: (1) Perform out-of-sample analysis over numerous sample periods to

assess robustness of empirical results. The downside is that the sample period post-2018

contains a relatively large percentage of the total number of observations. (2) A more

relevant approach would be to incorporate a time-varying element into the adaptive group

LASSO since we find that coefficients vary significantly over time. Our iteration of the

adaptive group LASSO is unable to capture this effect. For completeness, a simulation

study should be performed to not only evaluate the predictability of the model in a

controlled environment, but also to make an informed choice of tuning parameters. I

have only employed the Bayesian information criterion to select characteristics because

of runtime complications. A model with different penalty parameters would likely select

different characteristics.
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