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Abstract
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process. This paper studies the multi-product hedging of downside risk for oil refineries with futures

contracts for the period 1991 − 2020. Herein, we compare our benchmark, the naive hedge, against

three hedging frameworks: the single commodity, fixed proportion and flexible multi-commodity hedg-

ing frameworks. The latter two hedging frameworks model use a vine copula approach which captures

the characteristics of price changes as well as the dependency structures between the prices of oil prod-

ucts. We propose a mixture R-vine copula model and compare it against three vine copula classes

through an out-of-sample test. Our results show that the fixed proportion hedging framework achieves

significantly more risk reduction than the naive hedge for seven of eight risk measures. Furthermore,

we find that the R-vine copula model is preferred for the fixed proportion hedging framework, whereas

for the flexible multi-commodity hedging framework our proposed mixture R-vine copula model is pre-
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1 Introduction

Towards the end of 2022, inflationary price changes became a more prominent news topic on the back of

the COVID-19 crisis and Ukraine war, which led to increased commodity prices, especially in the energy

sector. Moreover, in general, product prices became more volatile due to supply chain issues as well as

personnel shortages. Manufacturing companies therefore were more exposed to the multi-product problem.

This problem entails the risk of not being able to sell their manufactured product for the price imagined at

the moment of procurement of raw materials.

This study focuses on the downside risk for oil refineries. More specifically, we focus on the conversion

of three barrels of crude oil to two barrels of gasoline and one barrel of heating oil (Hale et al. (2002)). This

3 : 2 : 1 ratio is also known as the crack spread. An oil refinery typically buys and sells futures of these

commodities as hedging instruments. A futures contract is a financial contract to buy or sell an asset or

commodity at a specified future date for a specified price. If, for example, a manufacturer shorts a futures

contract, while the price of its manufactured goods decreases over time, then the manufacturer still receives

the pre-determined price in the futures contract. As such, the profit margin of the manufacturer depends on:

spot prices of its input materials and output products as well as futures prices changes. Herein, the quantity

of futures purchased relies on the determined hedge ratios. Hence, improved hedge ratios can reduce the oil

refinery’s downside risk of its profit margin. Downside risk of the profit margin is the risk that spot and

futures prices shift in such a way that the profit of an oil refinery decreases and becomes negative.

In this paper, we examine and compare the hedge effectiveness of three hedging frameworks: the single

commodity, the fixed proportion and the flexible multi-commodity hedging frameworks, against our bench-

mark hedging strategy: the naive hedge. Within the fixed proportion and flexible multi-commodity hedging

frameworks, we study which vine copula model achieves the most risk reduction and we propose a mixture

vine copula model. For our study, we use the spot and futures prices of crude oil, gasoline and heating oil

from 1987 to 2022.

The single commodity hedging framework is a simple hedging solution, where a commodity consumer

generally takes a long futures position and a commodity producer a short position concerning one commodity

(Pindyck (2001)). This framework disregards the possible predicting power of similar trends in the prices

of other input and output products of the manufacturing process. It determines the hedge ratios through

modelling the dependency relation between each commodity spot price and futures price with bivariate cop-

ulae. A bivariate copula is bivariate cumulative distribution function that defines the dependency structure

between two random variables. An advantageous characteristic of a copula is that it can capture tail depen-

dency between variables, which helps measuring the exposure to extreme events. With the 2-dimensional

distribution drawn from bivariate copulae, we determine the hedge ratios which minimise eight downside

risk measures based on Value-at-Risk (VaR), Expected Shortfall (ES) and Lower Partial Moments (LPM).

The fixed proportion hedging framework stems from the 3 : 2 : 1 ratio which is typically used for

production process oil refineries. In 1994, following this rationale a crack spread futures contract was
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introduced on the New York Mercantile Exchange (NYMEX) to lower margin costs, as it would concern

a single trade to hedge three commodities. To determine the single hedge ratio within this framework,

we model the joint distribution of all six variables, meaning both the spot and futures prices of crude oil,

gasoline and heating oil, with a vine copula approach. A vine copula is an approach to define multivariate

distributions based on a constellation of bivariate copulae. After attaining the 6-dimensional distribution,

we minimise the downside risk of the profit margin of the manufacturer through one hedge ratio, restricting

that the purchased futures per commodity are a 3 : 2 : 1 multiple of this hedge ratio.

We apply a flexible multi-commodity hedging framework, which also relies on the 6-dimensional dis-

tribution through the implementation of a vine copula. The difference with the fixed proportion hedging

framework is that the flexible multi-commodity hedging framework relaxes the fixed 3 : 2 : 1 proportion con-

straint. The flexible multi-commodity hedging framework, optimises three hedge ratios to minimise downside

risk measures. We expect that the flexible multi-commodity hedging framework can hedge most effectively,

as it combines the free three hedge ratios with modelling the joint distribution. Hedge effectiveness is the

decrease in downside risk of the hedged profit margin over the downside risk of the unhedged profit margin.

Lastly, we compare our hedging frameworks against a generally hard to beat hedging strategy, namely

the naive hedge (Wang et al. (2015)). The naive hedging strategy hedges all its positions by purchasing

a futures contract equal to its production size. We test the hedging frameworks in an out-of-sample test.

Herein, we examine the hedge ratios over the test windows running from 1991 to 2020.

Besides comparing the four hedging frameworks, we determine the best vine copula models within the

fixed proportion and flexible multi-commodity frameworks. Herein, we evaluate our proposed mixture R-vine

model against canonical (C-), drawable (D-) and regular (R-) vine models. These models are subclasses of

vine copulae. In our proposed mixture vine copula model, we combine at most three bivariate copulae with

a comparable fit to capture the dependency of a single variable pair in a vine copula construction. As such,

we diversify the fit of the vine copula model and aim to improve the approximation of the joint distribution

and subsequently the estimation of hedge ratios.

Contrary to our expectations, our results show that the fixed proportion hedging framework achieves

the significantly highest mean hedge effectiveness for 7 of the 8 downside risk measures. Herein, the fixed

proportion is the only hedging framework to significantly outperform the naive hedging framework. Addi-

tionally, we find that our proposed mixture R-vine copula model is the preferred model within the flexible

multi-commodity hedging framework, while the R-vine copula model is preferred within the fixed proportion

hedging framework.

Section 2 entails the existing literature regarding the topic and the relevance of our study. In Section 3

we report the dataset used for our research. In Section 4, we clarify the general framework of copulae and

explain the methods used for our research. The results of our research are presented in Section 5. Lastly,

the concluding remarks can be found in Section 6.
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2 Literature

In this section we discuss the relevance and contribution of our research with respect to literature.

The multi-product problem has been studied extensively in risk management, where the oil refinery case

is a primary example. Other studied multi-product hedging problems are encountered in the soybean and

kettle industry (Awudu et al. (2016)) as well as in corn-based ethanol production (Dahlgran (2009)).

Initially, the hedging solutions for oil refineries were derived and applied within the mean-variance frame-

work (Haigh & Holt (2002), Alexander et al. (2013)). Over time, new methods for risk management surfaced

such as multivariate copulae. Joe (1996), Bedford & Cooke (2001) and Bedford & Cooke (2002) introduced

the idea of pair-copula decomposition, which was the basis for vine copulae. Hereafter, Aas et al. (2009)

implemented an algorithm to assign a unique copula type to each pair copula and an estimation procedure

for small subclasses of vine copulae, namely C- and D-vine copulae. Estimation of the full vine copula

class became more practical with the introduction of the sequential estimation algorithm in Dissmann et al.

(2013). Moreover, Dissmann et al. (2013) have shown that R-vine models can result in a better fit than C-

and D-vines, due to a greater flexibility.

Vine copulae are constellations of many bivariate copulae. Generally, one copula type is used to describe

the dependency between two variables within a vine copula (Aas et al. (2009), Dissmann et al. (2013)).

However, it is also possible to express a dependency relation between two variables by two or more copula

types to specify the dependency structure more accurate. Existing papers have implemented mixtures in

vine copulas already through the computationally expensive EM -algorithm to reveal hidden dependence

patterns in multivariate data (D. Kim et al. (2013)) or to increase flexibility (Weiß & Scheffer (2015)).

Sukcharoen & Leatham (2017) and Liu et al. (2017) are closely related to our study. Both works study

the hedging performance of copula models for the petroleum complex. The former compares the hedging

performance of the C- and D-vine copulae against more rigid standard multivariate copulae for the weekly

price changes during 1987-2015. Herein, the authors minimise eight measures of downside risk and find that

the D-vine model achieves the best fit and hedging results within a flexible multi-commodity framework. The

latter research focuses on the daily hedging performance between 2012-2016 of a fixed proportion hedging

framework against a flexible multi-commodity hedging framework. This joint distribution is determined

by means of a kernel copula approach, which fits the joint distribution non-parametrically. The authors

find that the relaxation of the crack spread constraint improves the daily hedging performance for the time

period 2012-2016. Furthermore, Ji & Fan (2011) apply a DCC-ECM-MVGARCH model that outperforms

the weekly naive hedge for the oil refinery case. However, in this paper hedge effectiveness is defined as the

reduction in variance.

By contrast, we contribute to the literature by hedging the petroleum complex with three different

hedging strategies with the full range of copula models. We have found a hedging strategy that reduces more

risk on average for seven downside risk measures, including Value-at-Risk, Expected Shortfall and Lower

Partial Moments, than the naive hedge. Moreover, we have been able to deduce the added value of modeling
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the joint distribution with respect to the bivariate distribution. Lastly, we propose an ad-hoc approach for

a mixture vine copula model, which increases hedging effectiveness for the majority of the downside risk

measures within the flexible multi-commodity framework.

3 Data

In this section we discuss and analyse the data and its characteristics used for our research. To study the

hedging of input and output products of an oil refinery, we use the weekly spot and futures price changes

of crude oil, gasoline and heating oil. More specifically, the time series used for the spot price (SC) and

futures price (FC) of crude oil is the West Texas Intermediate (WTI) crude oil at Cushing, Oklahoma. The

spot price of gasoline (SG) and futures price of gasoline (FG) are derived from the regular unleaded gasoline

time series at New York Harbor. From 2006 onwards, we replace the futures prices of gasoline with the

Reformulated Blendstock for Oxygen Blending (RBOB) due to the lack of data availability. Lastly, the spot

price of heating oil (SH) and futures price of heating oil (FH) are represented by No. 2 heating oil at New

York Harbor. Herein, gasoline and heating oil prices have been converted to barrel units.

The data is retrieved from the Datastream database, which started recording price positions in 1986. Our

dataset covers the period from 7 January 1987 until 9 February 2022. Moreover, futures prices have been

constructed by taking the prices of nearest expiring futures contract and rolling them over at expiry date.

If a futures price is not available on Wednesday, we take the available price from the nearest day before. In

Figure 1, we observe stable spot prices in the first half of our dataset and an increase in volatility from 2004

onwards. We also observe a discrepancy between crude oil and the other petroleum products after 2010,

when crude oil trades at a lower price.

Figure 1: Daily spot prices of crude oil, gasoline and heating oil over the period 1987− 2022.

We can link steep increases and declines of prices to macroeconomic events. The volatile price in 2008

can be linked to the financial crisis. The decrease around 2014 was caused by an oversupply of petroleum
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(Mead & Stiger (2015)). The demand decline caused by COVID-19 produced the unique negative spike in

April 2020. Lastly, the recent rise of petroleum prices is due to an increased energy demand after COVID-19

subsided combined with the Ukraine war and the subsequent obstructed supply of Russian oil and gas.

Table 1: Data characteristics regarding the weekly price changes of 6 variables during our sample period: spot price of crude

oil (∆SC), spot price of gasoline (∆SG), spot price of heating oil (∆SH), futures price of crude oil (∆FC), futures price of

gasoline (∆FG) and futures price of heating oil (∆FH). ADF is an abbreviation for the Augmented Dickey-Fuller statistic.

A * in front of the statistic signals 1% significance.

∆SC ∆SG ∆SH ∆FC ∆FG ∆FH

Mean 0.039 0.051 0.052 0.014 0.148 0.050

Median 0.070 0.042 0.073 0.120 0.126 0.084

Min. -14.560 -44.318 -14.776 -14.410 -19.849 -14.784

Max. 14.130 57.456 18.732 14.080 28.938 18.018

Std. Dev. 2.460 3.622 2.883 2.395 3.008 2.736

Skewness -0.325 0.801 -0.061 -0.539 0.019 -0.186

Kurtosis 5.174 47.752 5.141 5.474 8.058 4.787

Jarque-Bera *2,076.0 *174,252.9 *2,018.8 *2,375.8 *4,957.0 *1,759.7

ADF *-22.797 *-23.554 *-42.266 *-21.914 *-21.581 *-22.683

In Table 1, we observe that the spot and futures price changes of gasoline are the most volatile and the

only variables which are positively skewed. Furthermore, the kurtosis of price changes in gasoline spot prices

is relatively high, meaning fat tails in its distribution. Moreover, all variables reject the Jarque-Bera test

at 1% significance, meaning that the price changes are not normally distributed. Lastly, all variables reject

the Augmented Dickey Fuller test at 1%, which signals that the considered time series are stationary. Table

2 presents that for each spot price variable the level of association and correlation with the futures price

changes of the same commodity is the highest, and vice versa. Moreover, all products are related positively.

Table 2: Correlation matrix (left) and the Kendall’s τ matrix (right) of the weekly price changes.

∆SC ∆SG ∆SH ∆FC ∆FG ∆FH

∆SC 1.000 - - - - -

∆SG 0.622 1.000 - - - -

∆SH 0.789 0.638 1.000 - - -

∆FC 0.976 0.632 0.806 1.000 - -

∆FG 0.753 0.892 0.739 0.765 1.000 -

∆FH 0.842 0.669 0.952 0.864 0.793 1.000

∆SC ∆SG ∆SH ∆FC ∆FG ∆FH

∆SC 1.000 - - - - -

∆SG 0.503 1.000 - - - -

∆SH 0.594 0.499 1.000 - - -

∆FC 0.887 0.518 0.609 1.000 - -

∆FG 0.566 0.778 0.554 0.588 1.000 -

∆FH 0.638 0.525 0.846 0.665 0.600 1.000
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4 Methodology

In this section, we set out the hedging frameworks and methods used for our research. Firstly, in Section

4.1, we explain the workings of an oil refinery and the problem setting. Moreover, we elaborate on the three

hedging frameworks. Hereafter, in Section 4.2, we consider the theoretical aspect of the copula framework.

This framework enables us to ultimately model the joint distribution of the six variables. Subsequently, we

explain the estimation procedure of the bivariate and vine copula models in Section 4.3. In Section 4.4, we

set out the sampling procedures of the models. Furthermore, we state how to convert draws from the copula

density into draws from the joint distribution of the price change series in Section 4.5. Ultimately, we discuss

the downside risk objectives of the hedging frameworks in Section 4.6 and the methods to gauge the fit of

our models as well as the performance of our hedging strategies in Section 4.7.

4.1 The hedging framework

An oil refinery uses approximately three barrels of crude oil to produce two barrels of gasoline and one barrel

of heating oil. The production process takes roughly one week, leaving the oil refinery exposed to the price

changes of the volatile oil products market. The conceptual framework of Ji & Fan (2011) sets out the

2-stage hedging cycle, which covers three weeks, meaning 15 trading days, in total. In these three weeks,

the buyer takes the following actions:

• Stage 1 - the planning stage covers the first 2 weeks

– Day 1: Opens long position in crude oil futures, as the buyer plans ahead and prefers certainty

about the price of its input product. The purchase price is wholly locked in, if the buyer acquires

a futures contract of equal size as the crude oil input needed. Similarly, the buyer takes short

positions in gasoline and heating oil futures contracts.

• Stage 2 - the operational stage concerns the last week

– Day 1: Buys crude oil on the spot market to start the cracking process, subsequently closes the

crude oil futures position. If, in the meantime, the crude oil price has decreased, buying on the

spot market is cheaper, while the value of the futures contracts is likely to have declined. If prices

have increased, an oil refinery makes up for the difference through the income generated by the

futures contract.

– Day 5 (last day of operational stage): Sells gasoline and heating oil against spot prices, subse-

quently closes futures positions of the corresponding products.

We can overlook the time from decision to operation and the production time for oil refinery process,

because the actual sale of these contracts can be executed simultaneously. This concept will not alter the

downside risk measures of the profit margin, but it will make the entire decision-making process clearer. This
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sequence of actions results in the following profit margin for the refiner for a specific time window (rolling

window sample) t

π(λ) = −SC
2 +

2

3
SG
2 +

1

3
SH
2 + λC(−FC

1 + FC
2 )− 2

3
λG(−FG

1 + FG
2 )− 1

3
λH(−FH

1 + FH
2 ), (1)

where π(λ) is the profit margin of the oil refinery for the hedge ratios λ = (λC , λG, λH). The indices represent

the week {1, 2} in which the product is bought or sold against the spot price or futures price. Because the

changes in future and spot prices belong to our dataset, we can rewrite Equation (1) as

π(λ) = −SC
2 +

2

3
SG
2 +

1

3
SH
2 + λC∆FC − 2

3
λG∆FG − 1

3
λH∆FH ,

where ∆FC = (−FC
1 + FC

2 ), ∆FG = (−FG
1 + FG

2 ) and ∆FH = (−FH
1 + FH

2 ). We subtract the sum of spot

prices in week 1 (SCGH
1 ) from both sides, as

π(λ)− SCGH
1 = −SC

2 +
2

3
SG
2 +

1

3
SH
2 + λC∆FC − 2

3
λG∆FG − 1

3
λH∆FH − SCGH

1 ,

where SCGH
1 = −SC

1 + 2
3S

G
1 + 1

3S
H
1 . This transformation allows us to establish the formula for the hedged

portfolio Y (λ) as sum of variable price changes, as follows

Y (λ) = −∆SC +
2

3
∆SG +

1

3
∆SH + λC∆FC − 2

3
λG∆FG − 1

3
λH∆FH , (2)

where Y (λ) = π(λ) − SCGH
1 , ∆SC = (−SC

1 + SC
2 ), ∆SG = (−SG

1 + SG
2 ) and ∆SH = (−SH

1 + SH
2 ). Then,

we define the objective function for time window t to minimise downside risk with hedge ratios as

λ∗ = argmin
λ

Risk(Y (λ)), (3)

where Risk is the downside risk measure of choice, for example Value-at-Risk (VaR) or Expected Shortfall

(ES). Ultimately, we aim to find these optimal hedge ratios by optimisation over the joint distribution of

Y (λ) for each time frame t. In this paper, we examine the performance of three hedging strategies searching

the optimal hedging ratios in three unique hedging frameworks: the single commodity-, the fixed proportion-

and the flexible multi-commodity hedging framework. These three models differ in the flexibility towards

the hedging exercise and the information considered for determining the hedging ratios. We determine our

hedge ratios based on a rolling window making steps of one week from t is 16 October 1991 to 7 August

2019. This construction provides 1452 models and hedge ratios per hedging framework to test, as shown in

Figure 2.

Figure 2: Estimation and test windows of our rolling window model for the hedge strategies. Herein, the estimation window

used to estimate our models and hedge ratios covers 250 weeks and the test window covers 130 weeks.
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4.1.1 The single commodity hedging framework

The single commodity hedging framework optimises hedge ratios based on the changes in spot and future

prices of each commodity individually. The rationale behind this model stems from the fact that the spot

and futures prices of the same petroleum product exhibit the strongest correlation. This hedging model is

flexible per commodity, as λC , λG and λH are free parameters in Equation (2). When determining the hedge

ratio for one of the petroleum products, the historical price changes of the other products will not be taken

into account. We can define the objective functions of this model, as follows

λC∗ = argmin
λC

Risk(YC(λ
C)),

λG∗ = argmin
λG

Risk(YG(λ
G)),

λH∗ = argmin
λH

Risk(YH(λH)),

given hedged portfolio distributions Y (λi) for each commodity i

YC(λ
C) = −∆SC + λC∆FC ,

YG(λ
G) = ∆SG − λG∆FG,

YH(λH) = ∆SH − λH∆FH ,

where the sign of crude oil contracts is opposed to gasoline and heating oil. This is due to the fact that we

protect the crude oil position against rising prices, while we hedge the products that the oil refinery sells

against declining prices. The total hedged portfolio in the single commodity hedging framework follows the

formula,

Y (λ∗) = YC(λ
C∗) +

2

3
YG(λ

G∗) +
1

3
YH(λH∗), (4)

where λ∗ = (λC∗, λG∗, λH∗).

4.1.2 The fixed proportion hedging framework

Given that the proportions of the production process of an oil refinery are known in advance, we consider to

optimise the hedge ratio for this fixed 3 : 2 : 1 proportion. This fixed proportion assumes that hedge ratios

λC , λG, λH are multiples of each other. For implementation, we can thus remove two degrees of freedom by

using λf , which provides the fixed proportion hedge ratio

λf∗ = argmin
λf

Risk(Yf (λ
f )),

given the hedge portfolio distribution

Yf (λ
f ) = −∆SC +

2

3
∆SG +

1

3
∆SH + λf (∆FC − 2

3
∆FG − 1

3
∆FH), (5)

where one degree of freedom is left in λf .
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4.1.3 The flexible multi-commodity hedging framework

The flexible multi-commodity hedging framework optimises hedge ratios λ as described in Equation (2) and

(3). Herein, three degrees of freedom are present in λC , λG and λH , while historical information of all

variables is jointly considered to determine the joint distributions over which the hedge ratios are optimised.

4.2 Theoretical copula framework

From the previous section, we would like to investigate the multivariate distribution Y (λ) for rolling window

sample t. Herefore, we use vine copula methodology, which can model complex dependencies amongst higher

dimensions. To understand a vine copula, we first describe the copula framework and the bivariate copula,

in general.

Copulae are multivariate cumulative distribution functions (CDFs) that define the structure of depen-

dencies between random variables X = (X1, X2, ..., Xd). The d-dimensional copula can be decomposed to

d univariate marginal distributions and a multi-dimensional copula, according to Sklar (1959). If we let

F (x) be a joint distribution with marginal distributions F1, ..., Fd, there exists a copula C that links these

marginal distributions as

F (x1, ..., xd) = C(F1(x1), ...Fd(xd)), (6)

F (x1, ..., xd) = Pr(X1 ≤ x1, ..., Xd ≤ xd),

where copula C can be defined as C: [0, 1]d −→ [0, 1], which is a CDF with d univariate marginal distributions.

The copula is unique when the univariate marginal distribution Fi is continuous for each random variable,

as

C(u1, ..., un) = F (F−1
1 (u1), ..., F

−1
n (ud)),

where F−1
i is the inverse of Fi and observations ui are distributed U(0, 1).

For our multivariate problem, it is possible to use a multivariate copula from one copula type, similar

to the multivariate copula models in Embrechts et al. (2001). These multivariate copulae strictly impose

one copula type, such as Gaussian, Student-t or Clayton (see Appendix A), on all variables. However, these

models are inflexible, as the dependencies amongst multiple variables are then to be modeled through one

or two copula parameters, depending on the copula type. To achieve a more tailored fit, Aas et al. (2009)

introduced a pair-copula construction method based on bivariate copula as building blocks, which can equip

copula types and parameters to the dependency structures per variable pair.

4.2.1 Bivariate copula structure

A bivariate copula is a copula with d = 2 dimensions, such that it models the dependence structure between

two variables. We define the bivariate cumulative distribution functions for the used 36 copula types in

Appendix A. Different copula types and families can capture unique dependency characteristics. For example,

the Gaussian copula is symmetric and not able to capture tail dependence, while the symmetrical Student-t
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copula can capture tail dependence in both tails with a second copula parameter. Furthermore, a certain

group of copula types, the Archimedean copula family comprises the tail-asymmetric Clayton and Gumbel

copula types. Each copula type has at least one copula parameter, which shapes the bivariate distribution.

The difference in symmetry can be observed from the scatter plots in Figure 3.

Figure 3: Three scatter plots with different measures of tail dependence where copula defines the dependence structure on

3,000 random observations on bivariate copulae. All scatter plots have a linear correlation of roughly 0.9. From left to right

a.) Clayton copula that exhibits lower tail dependence b.) Gaussian copula that exhibits no tail dependence c.) Gumbel cop-

ula that exhibits upper tail dependence. The scatter plots of all the copula types applied in this research are provided in

Appendix A.

From Sklar’s theorem in Equation (6), it is possible to derive the joint density function f12(x1, x2) and

conditional density f1|2(x1|x2), as

f1,2(x1, x2) = c1,2(F1(x1), F2(x2))f1(x1)f2(x2),

f1|2(x1|x2) = c1,2(F1(x1), F2(x2))f2(x2),

where c1,2(F1(x1), F2(x2)) represents the pair-copula density for marginal CDFs Fi(xi). Furthermore, f1(x1)

and f2(x2) provide the marginal density functions. Through a constellation of these functions with more

dimensions, we ultimately construct the joint density of a vine copula.

4.2.2 Vine copula structure

With the previously described bivariate copulae, we define a multivariate model to simulate Y (λ) with six

random variables for our oil refinery instance. From here on, we refer to the observed price changes in spot and

future prices as random variables X = (X1, X2, ..., X6), which means in practice X1 = ∆SC , X2 = ∆SG,

X3 = ∆SH , X4 = ∆FC , X5 = ∆FC and X6 = ∆FH . Vine copulae allow us to construct multivariate

distributions from bivariate copulae, by defining the marginal distributions of the random variables as well

as the unconditional- and conditional dependence of the pairs of random variables of concern. Herein, we

have the flexibility to assign the best fitting copula types to specify the dependence structure between random

variable pairs.
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To describe the 6-dimensional distribution of (X1, ..., X6), we first define the 3-dimensional distribution

(X1, X4, X6) and its joint density function f(x1, x4, x6), as an example. Figure 4 shows that, when consid-

ering X1, X4 and X6, we can construct multiple vine copula models. The difference between the two vines is

the order of the variables in tree T1, which consequently leads to a different T2. A tree is a connected acyclic

graph with node set N and edge set E, denoted as T = (N,E). Herein, each edge e represents a pair-copula

density ci,j(Fi(xi), Fj(xj)) based on two (conditional) marginal CDFs: Fi, Fj from variable i and j, while

the edge label provides its subscript. Each node n in tree T1 provides a marginal CDF corresponding to its

subscript variable. For example, node n1 in Figure 4 expresses the marginal CDF of variable X1: F1. In

higher trees (Tr, r ≥ 2), each node presents a conditional marginal CDF. In this case, the marginal CDF does

not exactly correspond to the subscript of the node, but to a combination of the variables included in the

subscript. Herein, the variable(s) in the common node of the previous tree are included in the conditioning

set, while the remaining variable is in the conditioned set. For example, node n4,6 in Figure 4a provides the

conditional marginal CDF F6|4, where variable 6 is in the conditioned set and variable 4, the common node

in T1, is in the conditioning set. A node in higher trees does not uniquely define the marginal CDF. For

instance, node n4,6 in Figure 4b provides the conditional marginal CDF F4|6, as the bivariate copula (edge)

is conditional on variable 6. In Figure 4b, variable 6 is the common node in T1.

Figure 4: Graphical examples of an R-vine for a 3-dimensional vine for variables (X1, X4, X6). Herein, the graph on the left

a.) also resembles a part of the 6-dimensional R-vine in Figure 5, while the graph on the right b.) is an R-vine with a differ-

ent structure, but equivalent joint density function f(x1, x4, x6) as a.).

We encounter these different conditional marginal CDFs in Equations (7) and (8), which provide the

joint density for these three variables. In total, the joint density for three variables can be defined in three

different formulas due to copulas being symmetrical. We give two examples: the graph in Figure 4a leads to

f(x1, x4, x6) =c1,4(F1(x1), F4(x4)) · c4,6(F4(x4), F6(x6))

c1,6|4(F1|4(x1|x4), F6|4(x6|x4))

f1(x1) · f4(x4) · f6(x6),

(7)

where we make a simplifying assumption that all bivariate copulae of conditional distributions in vine copulae

are not dependent on the variables that they are conditioned on. It is found in Stoeber et al. (2013) that this

simplifying assumption leads to satisfactory vine copula approximations, such that we use ci,j|q(·, ·) instead

of ci,j|q(·, ·|xq). Using the factorisation of the vine copula depicted in Figure 4b, the same joint density can
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also be defined as

f(x1, x4, x6) =c1,6(F1(x1), F6(x6)) · c4,6(F4(x4), F6(x6))

c1,4|6(F1|6(x1|x6), F4|6(x4|x6))

f1(x1) · f4(x4) · f6(x6).

(8)

We have shown that the smallest vine copula (d = 3) has multiple factorisations. In both factorisations, all

possible variable pairs are included in the conditioned sets of the edges, which is a characteristic of a vine

copula.

We expand the 3-dimensional vine to a 6-dimensional vine copula through a graphical example provided

in Figure 5. Herein, the nodes and edges in Trapezoid 1 resemble the vine copula model in Figure 4a. The

Figure 5: Graphical example of an R-vine for 6-dimensional vine, where Trapezoid 1 secludes a 3-dimensional vine.

graphical vine models in Figure 4 and 5 are called regular vines (R-vines). For example, the joint density

function of the corresponding vine specification in Figure 5, V = {T1, ..., T5}, is mathematically defined as

follows

f(x1, x2, x3, x4, x5, x6) =c1,4(F1(x1), F4(x4)) · c4,6(F4(x4), F6(x6)) · c5,6(F5(x6), F5(x6)) · c3,6(F3(x3), F6(x6))

c2,5(F2(x2), F5(x5)) · c1,6|4(F1|4(x1|x4), F6|4(x6|x4)) · c4,5|6(F4|6(x4|x6), F5|6(x5|x6))

c3,5|6(F3|6(x3|x6), F5|6(x5|x6)) · c2,6|5(F2|5(x2|x5), F6|5(x6|x5))

c1,5|4,6(F1|4,6(x1|x4, x6), F5|4,6(x5|x4, x6)) · c3,4|5,6(F3|5,6(x3|x5, x6), F4|5,6(x4|x5, x6))

c2,3|5,6(F2|5,6(x2|x5, x6), F3|5,6(x3|x5, x6))

c1,3|4,5,6(F1|4,5,6(x1|x4, x5, x6), F3|4,5,6(x3|x4, x5, x6))

c2,4|3,5,6(F2|3,5,6(x2|x3, x5, x6), F4|3,5,6(x4|x2, x5, x6))

c1,2|3,4,5,6(F1|3,4,5,6(x1|x3, x4, x5, x6), F2|3,4,5,6(x2|x3, x4, x5, x6))

f1(x1) · f2(x2) · f3(x3) · f4(x4) · f5(x5) · f6(x6),
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which is one of 23, 040 possible R-vine tree structures for a 6-dimensional joint distribution. Following

Morales-Napoles (2010), the number of different decompositions of R-vine tree sequences grows as d! x

2(d−2)(d−3)/2−1 with dimension d.

In general, R-vines consist of linked trees, where the edges in one tree become the nodes of the next tree

by means of conditioning. If the following conditions are met, the set of graphs V = (T1, ..., Td−1), is an

R-vine tree sequence on d variables:

• Tree T1 has an edge set E1 and node set N1 = {1, ..., d}

• For r ≥ 2, Tr is a tree with node set Nr of which the number of nodes is equal to number of edges of

the edge set Er−1

• For {a, b} ∈ Er for r = 2, ..., d−1, it must hold that |a∩ b| = 1. According to this proximity condition,

an edge between two nodes in tree Tr can only exist if the associated edges in Tr−1 have a common

node. We can deduce the association between these nodes by their common subscript

To build an R-vine V , it is necessary to specify d−1 unconditional bivariate copulae (edges) between variables

in tree T1. For Tr with r ≥ 2 in the R-vine, it is necessary to specify d− r bivariate copulae conditional on

the variables in the conditioning and conditioned set of the common node.

Within the class of R-vines, there exist two subclasses: C-vines and D-vines. These vine copula con-

structions are known for their simple and interpretable construction. A C-vine tree sequence resembles a

star, because in each tree there is one root node, which is connected with all remaining nodes. This subclass

is often used when there is one pivot variable. The trees in a D-vine tree structure are paths, where each

node has a maximum degree of 2. This structure is used when modelling variables with a clear sequence or

order. Both subclasses comprise d!
2 unique vine tree sequences each. For our instance d = 6, this results

in 360 different vine tree sequence per subclass, which means that each subclass represents approximately

1.5% ( 360
23,040 ) of the total possible R-vine tree sequences. We search all R-vine structures to find the best

fitting vine, which means a substantial increase in the number of C- and D- vine structures. Moreover,

for our instance, it is likely that our data contains three ’pilot’ pairs, namely the spot-futures pair of each

commodity. This could indicate that although C- and D- vines are more interpretable, they may not be

optimal.

4.3 Estimation procedure

During the estimation procedure, we fit the model based on joint density, which concerns defining the vine

tree sequence, the copula types and the copula parameters parameters for each edge in the vine tree. For the

estimation procedure we differentiate across the three frameworks: the single commodity hedging framework

with Y (λ) having two dimensions in Section 4.3.1, the fixed proportion- and the flexible multi-commodity

hedging framework where Y (λ) has six dimensions in Section 4.3.2. Furthermore, in Section 4.3.3, we explain
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the estimation procedure of our proposed mixture R-vine model used for the fixed proportion and the flexible

multi-commodity hedging framework.

Firstly, we convert our observed price change series (X1, ..., X6) into marginally uniformly distributed

pseudo-observations (Z1, ..., Z6) for copula inputs of all our applied copula models. In general, there are

two options with regard to modelling the marginal distribution: parametric and non-parametric estimation

methods. Because misspecification of the parametric model is non-robust and because the non-parametric

approach performs better overall than the parametric approach (G. Kim et al. (2007)), we opt to apply the

non-parametric approach of Genest et al. (1995).

In all three hedging frameworks, we estimate the pseudo-observations Zi of commodity price changes in

i by their scaled empirical distribution functions F̂i(x), defined as follows

F̂i(x) =
1

T + 1

T∑
t=1

1Xi,t≤x, (9)

where {Xi,t}Tt=1 represents the observations of Xi in a given period. In our instance, this period includes

T = 250 price changes in commodity i. More specifically, we transform one price change observation Xi,t to

Zi,t as follows

Zi,t = F̂i(Xi,t). (10)

Subsequently, we can define Zi = F̂i(Xi) as the pseudo data for variable i, representing the normalised rank

of the whole rolling window sample for the respective variable.

4.3.1 The bivariate copula models for the single-commodity framework

We discuss the estimation procedure for the bivariate copula of the 2-dimensional single commodity hedging

model from Section 4.1.1. Herein, it is specified which variables are connected, as illustrated in Figure 6.

Therefore, we estimate which copula type-parameter(s) combination best describes the bivariate distribution

of the spot and future price changes of crude oil, gasoline and heating oil, respectively.

Figure 6: Graphical representation of the single commodity hedging framework.

We select the copula type-parameter(s) combination by applying maximum pseudo likelihood estimation

for all copula types mentioned in our list in Appendix A. Herein, we pick the copula type with the lowest

Akaike Information Criterion (AIC) based on the pseudo data derived in Equation (10), given by

Θ̂f ;i,j = argmin
Θf;i,j

AIC(Θf ;i,j) AIC(Θf ;i,j) = −2

T∑
t=1

log{cf ;i,j(Zi,t, Zj,t; Θi,j)}+ 2k, (11)

where k is the number of parameters in copula parameter(s) Θi,j , which belongs to variable pair {i, j}.

These parameters set the copula density function of copula type f : cf (·, ·; Θi,j). Furthermore, Zi,t provides
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the pseudo-observations of Zi, where t iterates from the first to the last observation T within Zi. Θ̂f ;i,j

represents the copula parameters of copula type f with the highest AIC for the pseudo-observations. In

the single commodity hedging framework the variables {i, j} are the pairs {{1, 4}, {2, 5}, {3, 6}}. Manner

(2007) and Brechmann (2010) reported reliable performance of this information criterion for the selection

of bivariate copulae. The papers note that identification performance is related positively with dependence

and sample size. When weak dependence is present, the AIC might be unsatisfactory.

4.3.2 Estimation procedure vine copula

In this section, we expand the estimation procedure to six dimensions of the vine copula model for the fixed

proportion and flexible multi-commodity hedging framework. Besides finding the best fitting copula type and

parameters per variable pair, we determine the tree structure for all trees in the vine structure. We visually

deduce this increase in complexity, when we compare the vine copula in Figure 5 to the bivariate copulae

needed in the single hedging framework in Figure 6. In Section 4.3.3, we expand the selection possibilities

by allowing to assign more than one copula type per variable pair, provided certain conditions are met.

A method to find the optimal order of the vine tree sequence is to estimate the log-likelihood of all possible

tree sequences for all copula types for every edge and optimize the corresponding parameters. However, we

know in advance that this is computationally too expensive. As such, we follow the algorithm of Dissmann

et al. (2013), which has been found as a good indicator of the rank of full log-likelihood for vine copula

models. This algorithm relies on repeating three steps for each tree: defining the tree structure, selecting

and estimating the best copula types and parameters and, lastly, generating conditional pseudo-observations.

In each step, we first describe how to initialise the algorithm for the first tree T1. Subsequently, we explain

how this step is performed in higher order trees.

Step 1: Defining a tree structure

Our starting point is to find the structure of the first layer, such as tree T1 in Figure 5. For every R-vine,

the estimation of the first tree, T1, deviates slightly from the higher tree estimations Ti for i = {2, ..., 5}.

This is due to the fact that the pseudo-observations of T1 are the empirical marginal CDFs of the variables

(Z1, ..., Z6) from Equation (10) and no variables have been paired yet. The structure of T1 is selected from

a complete graph (see Figure 7a), whereas the structure of higher order trees is partially pre-defined by the

conditions of a vine copula in Section 4.2.2 (see Figure 7b and 7c).

Copula type specifications in the first tree generally have the biggest impact on model fit (Dissmann

et al. (2013)). Therefore, it is important to define the dependence relation between random variable pairs

with large dependencies. The automated sequential method constructs a vine copula specification based on

Kendall’s τ . Kendall’s τ measures dependence between bivariate samples independently from an assumed

distribution. To measure the dependence in our sample, we calculate the empirical Kendall’s τ̂ for the

pseudo-observations of each pair {i, j}, which is based on concordant and discordant observation pairs C
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and D, as

τ̂i,j =
C −D

C +D
,

C =

T−1∑
t1=1

T∑
t2=t1+1

1sign(zi,t1−zi,t2 )=sign(zj,t1−zj,t2 )
,

D =

T−1∑
t1=1

T∑
t2=t1+1

1sign(zi,t1−zi,t2 ) ̸=sign(zj,t1−zj,t2 )
,

where (z1,t, ..., z6,t) represent the pseudo-observations from the data set for a rolling window sample with t1

being the first observation of the estimation window and T the last. Concordance is the level of association

between two variables. Concordance is higher when large values of zi are observed alongside large values of

zj . We select the edges by applying the minimum spanning tree (MST) algorithm (Prim (1957)), which is

explained in Appendix B. The resulting path has the largest sum of absolute empirical Kendall’s τ̂ij for a

tree, while satisfying the R-vine conditions as given in Section 4.2.2. This can be exemplified for tree T1 as

(N1, E1) = argmax
E1

∑
e={i,j}in spanning tree

|τ̂i,j |,

where N1 represents the node set and E1 represents the edge set of T1.

Figure 7: One graphical example of potential model selection of a.) T1, b.) T2 and c.) T3 of the 6-dimensional R-vine given

in Figure 5. Herein, the solid lines represent the selected edges, whereas the dashed lines show the other possible connections.

This procedure is also applicable for higher order trees, where Kendall’s τ̂ is estimated over conditional

pseudo-observations zi|D instead of zi, where D represents the conditioning set.

Step 2: Selection of best copula type and parameter(s) for each edge in the tree

After defining the tree structure of T1 similar to the example in Figure 7a, we determine the best fitting

copula type and parameter(s) for each of the edges {i, j} in (N1, E1) in tree T1. An edge of tree T1 represents

the joint distribution between variable i with empirical marginal distribution Zi and j with Zj . For each edge,

we apply the maximum pseudo likelihood estimation of Equation (11) for all copula types as described in

Section 4.3.1. The difference with the procedure of Section 4.3.1 is that for T1, we estimate the parameter(s)
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for the five variable pairs in E1, which include {{1, 4}, {2, 5}, {3, 6}, {4, 6}, {5, 6}} in the example of Figure

7a.

The copula types and parameters in higher trees are determined in a similar way. The difference is that

the pseudo-observations are conditional on the variables in the common node in previous tree Tr−1, see Step

3. We group these common node variables in conditioning set D. Therefore, we estimate the optimal copula

parameters for each copula type f in higher trees, as

Θ̂f ;i,j|D = argmin
Θf;i,j|D

AIC(Θf ;i,j|D)

AIC(Θf ;i,j|D) = −2

T∑
t=1

log{cf ;i,j|D(Zi|D,t, Zj|D,t; Θi,j|D)}+ 2k,

(12)

where the subscript (f ; i, j|D) refers to copula type f for edge ei,j|D. Zi|D,t represents the conditional

pseudo-observations with t being the observation index within Zi|D. The remaining parameters are defined

in Equation (11). For this edge, the copula type f and corresponding parameters Θ̂f ;i,j|D with the lowest

AIC are estimated and selected.

Step 3: Transforming pseudo data with copula specifications

The specifications of the tree structure and bivariate copulae of T1 allow us to estimate the conditional

distribution Zi|j . These conditional marginal distributions are necessary to detect the structure and copula

types directly in T2 and indirectly in the higher order trees Tr for r = {3, 4, 5}. The marginal conditional

distributions can be expressed as partial differentiated copulae. Based on the pairs in T1, we define the CDF

of pseudo-observations pair (Zi, Zj) as

Cf ;i,j(zi, zj ; Θ̂f ;i,j), (13)

where (f ; i, j) provides the copula type f for edge ei,j selected in Step 2 and Θ̂f ;i,j presents the copula

parameters estimated in Equation (11). Hereafter, we define the CDF of Zi conditional on (Zj = zj) with

the hf ;i,j(·, ·)-function as

hf ;i,j(zi, zj ; Θ̂f ;i,j) =
∂ Cf ;i,j(zi, zj ; Θ̂f ;i,j)

∂ zj
, (14)

where the first term in the h-function is always the conditioned variable and the second term the conditioning

variable. The h-function differs per edge. Finally, we apply the hf ;i,j(·, ·)-function to (Zi, Zj) such that

Zi|j = hf ;i,j(Zi, Zj ; Θ̂f ;i,j). (15)

Zj|i can be derived in a similar way with the same copula Cf ;i,j due to copula symmetry.

As mentioned before, all edges from T1 are nodes in T2 and these nodes can only be connected if the

corresponding edges in T1 share a node. For T2, this leads to less possible pairs than in the complete graph

of T1, see Figure 7a and 7b. Only when there are multiple possible tree structures in higher order trees, we

apply the MST algorithm from Step 1. The algorithm selects the path with the largest cumulative absolute
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empirical Kendall’s τ̂ij over the conditional pseudo-observations. If the tree is a path, where each node has

a maximum degree of 2, then the tree structure is uniquely defined for higher trees.

Figure 8: In depth example of model selection step from T1 to T2 in Figures 7a and 7b. Herein, the arrows represent the

marginal conditional distributions that can be derived from each pair via Equations (13)-(15).

Figure 8 illustrates how the procedure decides which node pairs should be connected in T2. The MST

algorithm computes the Kendall’s τ̂ of possible edges between nodes n3,6 and n4,6 over pseudo-observations

(Z3|6, Z4|6), between n3,6 and n5,6 over (Z3|6, Z5|6) and between n4,6 and n5,6 over (Z4|6, Z5|6). In our

example, the tree with the largest cumulative Kendall’s τ̂ excludes the edge between nodes n3,6 and n4,6.

Furthermore, the crossed-out marginal conditional distributions are the pseudo-observations which could also

have been derived from the copula specifications of T1. However, these pseudo-observations are conditional

on a node which is not shared in T1 and therefore not used to determine higher order trees.

In higher trees Tr, r ≥ 3, Kendall’s τ̂ is estimated over the conditional marginal distributions Zi|j,D,

derived from the tree Tr−1. This is achieved in a similar way as in described by Equations (13)-(15). In this

case Cf ;i,j|D(zi|D, zj|D; Θ̂f ;i,j|D) is the CDF of (Zi|D, Zj|D) as derived in Equation (12) and subsequently

applying the corresponding h-function to (Zi|D, Zj|D) as follows

hf ;i,j|D(zi|D, zj|D; Θ̂f ;i,j|D) =
∂ Cf ;i,j|D(zi|D, zj|D; Θ̂f ;i,j|D)

∂ zj|D
,

Zi|j,D = hf ;i,j|D(Zi|D, Zj|D; Θ̂f ;i,j|D),

(16)

where conditioning set D includes r − 2 variables.

The path of T3 defined over the the marginal conditional distributions generated by the edges of T2 is

shown in Figure 7c. The resulting path has a D-vine structure, as every node has at most two edges. Hence,

this vine tree structure is uniquely defined in higher trees.

To specify the whole vine tree structure, we iterate over Step 1,2 and 3 until the tree consists of one edge

for which we then define the copula type and estimate parameters. For our oil refinery instance, we end up

with the specification of the full vine V = {T1, ..., T5} with 15 defined edges. We estimate full log-likelihood

and AIC of V by summing the log-likelihood and AIC of all edges in V as determined in Step 2.
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4.3.3 Bivariate mixture in mixture R-vine model

The underlying dependency pattern between two variables in a vine copula is unknown, therefore we ap-

proximate the bivariate relation by assigning the best fitting copula type based on AIC in Sections 4.3.1 and

4.3.2. In this section, we explain the estimation procedure of our proposed mixture R-vine copula model.

This mixture R-vine copula model uses multiple bivariate copulae to approximate the dependency structure

between two variables.

In Manner (2007) and Brechmann (2010), it is found that AIC is the best indicator for copula type

selection. In some cases, it is found that the blanket test based on empirical copula is superior (Brechmann

(2010)). However, this selection test is computationally too expensive to implement. Therefore, AIC is a

reliable selection criterion, but not strictly optimal. Although distinction between copula types increases

with increasing dependence, we encounter copula types with similar fit to the pseudo-observations with

strong dependence. In some cases, we come across copula types with higher log-likelihood, which are not

selected as its AIC is higher due to the use of more parameters. As such, we assign multiple copula types

with the lowest AIC to a variable pair. Our proposed mixture R-vine copula model is also motivated by

Bates & Granger (1969) which concluded that a mixture of projections typically outperforms an individual

projection.

We propose two conditions that copula types must meet, before we assign them to a variable pair in

addition to the copula type with the lowest AIC. Firstly, at most three copula types may be assigned to each

edge. Secondly, the copula type must score at most 1% higher AIC than the copula type with the lowest

AIC. We substantiate this 100%−1% = 99% inclusion criterion by our expectation that adding copula types

with higher AICs to deteriorate the approximation of the dependency structure. Furthermore, we choose to

assign bivariate copula combination within R-vine structures, as R-vines also allow C- and D-vine structures.

With this set-up, we incorporate distinct differences of copula types in estimation.

We translate these conditions into our estimation procedure by adapting Step 2 and 3 from Section 4.3.2.

In Step 2, we label the best fitting copula type f1 = f with corresponding parameters Θ̂f1;i,j|D based on the

AIC. Copula type f1 is assigned to the corresponding edge ei,j|D. Moreover, we examine whether copula

types with the second and third lowest AIC, f2 and f3, fall within the 1% range from f1 in terms of AIC.

We assign the copula type(s) that suffice(s) these conditions also to edge i, j|D.

In Step 3, we adjust the manner that we derive pseudo-observations. In Equation 16, we defined Zi|j,D by

transforming all pseudo-observations (Zi|D, Zj|D), with function hf ;i,j|D(·, ·; Θ̂f ;i,j|D). If there are multiple

copula types assigned to one edge, we derive the pseudo-observations from these copula types with equal

weight. This does not aggravate the computational burden, while we add copula types which we consider

to have an equivalent fit. If two copula types are assigned to an edge, we transform half of the pseudo-

observations with hf1;i,j|D(·, ·; Θ̂f1;i,j|D) and the other 125 pseudo-observations with hf2;i,j|D(·, ·; Θ̂f2;i,j|D).
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For (Zi|D, Zj|D), we define CDF and corresponding h-function for f1 as

Cf1;i,j|D(zi|D, zj|D; Θ̂f1;i,j|D), with hf1;i,j|D(zi|D, zj|D; Θ̂f1;i,j|D) =
∂ Cf1;i,j|D(zi|D, zj|D; Θ̂f1;i,j|D)

∂ zj|D
.

Moreover, we define the CDF and corresponding h-function for f2 as

Cf2;i,j|D(zi|D, zj|D; Θ̂f2;i,j|D), with hf2;i,j|D(zi|D, zj|D; Θ̂f2;i,j|D) =
∂ Cf2;i,j|D(zi|D, zj|D; Θ̂f2;i,j|D)

∂ zj|D
,

On observation-level, we assign half of the observations t randomly to set Tf1 and the remaining observations

to Tf2 , such that conditional pseudo-observations are derived from hf1;i,j|D(·, ·) or hf2;i,j|D(·, ·) as follows

Zi|j,D,t =


hf1;i,j|D(Zi|D,t, Zj|D,t; Θ̂f1;i,j|D), if t ∈ Tf1

hf2;i,j|D(Zi|D,t, Zj|D,t; Θ̂f2;i,j|D), if t ∈ Tf2 .

(17)

Similarly, we derive one third of the pseudo-observations from each copula type, if three copula types are

assigned to one edge.

Figure 9: Scatter plots based on variable pair (X1, X4), where a.) shows the normalised ranked pairs of the respective vari-

ables (upper left panel), b.) provides the simulated dependency structure for the best fitting single copula type-parameters

(upper right panel), c.) exhibits the simulated dependency structure for the second best fitting single copula type-parameters

(bottom left panel) and d.) presents the simulated dependency structure for the best fitting copula type-parameters mixture.

In Figure 9 we observe the impact of combining bivariate copulae to approximate variable pair (X1, X4).

Herein, the simulated dependency structure in Figure 9b is derived from the Tawn type 2 copula that had an
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AIC of −629.7. The simulated observations in Figure 9c are generated from the Student-t copula that scored

an AIC of −629.3 on the normalised pairs of X1 and X4 in Figure 9a. Transforming pseudo-observations with

both copula types, as described in Equation (17), results in Figure 9d. These figures show that copula types

with similar AICs can have different dependency structures (see Figures 9b and 9c). Figure 9d resembles

both the outer pseudo-observations above the diagonal as in Figure 9b as well as the tail density as in Figure

9c.

With respect to the vine tree structure, the first tree is always identical to the standard R-vine copula,

as this is defined on the Kendall’s τ̂ metric over the same empirical marginal CDFs. However, higher order

tree structures could differ, as these are also based on the different pseudo-observations possibly derived with

the copulae combinations in the earlier trees.

4.4 Sampling

In the previous section, we defined the bivariate copulae, vine copula and vine copula mixture models, as

well as the corresponding estimation procedures. In this section, we provide the sampling procedure for

these three instances. These sampled multivariate distributions follow the dependence structure of the six

variables as (Z1, ..., Z6) as in the proposed models.

4.4.1 Bivariate copula sampling in the single commodity hedging framework

With the specifications derived in Section 4.3.1, we sample the 2-dimensional joint distribution of each of

the commodity spot and futures price changes. We apply a Monte Carlo simulation method by drawing

observations six times from a standard uniform distribution, meaning Ui ∼ U(0, 1) for i = {1, ..., 6}. These

observations are not tied to a marginal distribution of one of the variables. Subsequently, we apply the

inverse of the h(·)-function given in Equation 16 to impose proper cross-sectional dependence. The inverted

h-function is the probability integral transform of Rosenblatt (1952), which generates samples from the

copula, as follows

Zi = Ui,

Zj = h−1
f ;i,j(Uj , Ui),

where Ui, Uj are the simulated distributions of variables i, j which are transformed such that (Zi, Zj)∼ Cf ;i,j .

We provide an example of how to draw the two marginal distributions from edge e1,4 in Figure 6. The

marginal distribution of, in this case, the spot price changes of crude oil is simulated as Z1 = U1. We simulate

Z4 with copula type Cf ;1,4 and copula parameter(s) Θ̂f ;1,4 determined during the estimation procedure in

Section 4.3.1, from the inverted h(·)-function,

Z4 = h−1
f ;1,4(U2, U1; Θ̂f ;1,4), where hf ;1,4(zi, zj) =

∂ Cf ;1,4(zi, zj ; Θ̂f ;1,4)

∂ zj
.
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It does not matter whether we use U2 or U4, as both present observations standard uniformly distributed.

The standard uniform variables Z2, Z5 and Z3, Z6 of variable pairs X2, X5 and X3, X6 can be simulated in

similar fashion.

4.4.2 Vine copula sampling

We draw the 6-dimensional joint distribution from the determined model consisting of vine tree sequence V ,

its copula types and corresponding copula parameters. To derive the univariate standard uniform samples

Zi for variable i, we apply the sampling algorithm from Dissmann et al. (2013). This sampling algorithm

can be applied from multiple starting nodes and is therefore not unique.

To demonstrate the sampling procedure, we explain it in a 4-dimensional setting, as shown in Figure 10.

This vine copula has both a star-shaped in T1 graph and a path-graph in T2, giving a complete overview.

Similar to Section 4.4.1, we draw observations four times from a standard uniform distribution, meaning

Ui ∼ U(0, 1) for i = {1, ..., 4}. These observations drive the randomness, while the sampling algorithm

ensures the multivariate dependency structure of the transformed draws mimics the historical dependency.

Figure 10: An example of a 4-dimensional R-vine copula.

We initialise the sampling algorithm in T1 by assigning a simulated observations vector U1 to standard

uniform variable 4, such that

Z4 = U1.

Hereafter, we draw the second variable sharing edge e3,4 with variable 4 by applying the probability integral

transform, as

Z3 = h−1
f ;3,4(U2, U1), where hf ;3,4(zi, zj) =

∂ Cf ;3,4(zi, zj ; Θ̂f ;3,4)

∂ zj
. (18)

Furthermore, Θ̂f ;3,4 presents the estimated copula parameter(s) of this edge. To derive the other draws, we

determine the conditional standard uniform variable Z4|3 in higher tree T2 at node n3,4 as

Z4|3 = hf ;3,4(Z4, Z3),

where the same h-function as in Equation (18) is used. From node n3,4, we traverse over edge e2,4|3 by
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deriving Z2|3, representing node n2,3, with our third simulated observations vector U3, as

Z2|3 = h−1
f ;2,4|3(U3, Z4|3), where hf ;2,4|3(zi, zj) =

∂ Cf ;2,4|3(zi, zj ; Θ̂f ;2,4|3)

∂ zj
. (19)

With Z2|3, we can derive Z2, as follows

Z2 = h−1
f ;2,3(Z2|3, Z3), where hf ;2,3(zi, zj) =

∂ Cf ;2,3(zi, zj ; Θf ;2,3)

∂ zj
.

Moreover, we derive Z2|3,4 belonging to n2,4|3 with the same h-function as in Equation (19), as

Z2|3,4 = hf ;2,4|3(Z2|3, Z4|3).

With the derivation of Z2|3,4 we have arrived in T3. We derive the other node in tree T3 with remaining

observations U4 as

Z1|3,4 = h−1
f ;1,2|3,4(U4, Z2|3,4), where hf ;1,2|3,4(zi, zj) =

∂ Cf ;1,2|3,4(zi, zj ; Θf ;1,2|3,4)

∂ zj
.

With these transformed observations, we can move down the vine to node n1,3 in T2 and derive Z1|3 as

Z1|3 = h−1
f ;1,4|3(Z1|3,4, Z4|3), where hf ;1,4|3(zi, zj) =

∂ Cf ;1,4|3(zi, zj ; Θf ;1,4|3)

∂ zj
.

Ultimately, Z1 in T1 is derived as follows

Z1 = h−1
f ;1,3(Z1|3, Z3), where hf ;1,3(zi, zj) =

∂ Cf ;1,3(zi, zj ; Θf ;1,3)

∂ zj
.

All standard uniform variables (Z1, ..., Z4) follow the dependency structure of the vine copula model and

approximate that of the observed variables (X1, ..., X4).

In a similar fashion, we can generate a random sample from 6-dimensional vine copulae. We sample six

independent standard uniform variables (U1, ..., U6) and set the first node of the variable equal to Z1 = U1.

Then draw the second standard uniform by the probability transform integral, Z2 = h−1
f ;1,2(U2|U1). Hereafter,

proceed to the next tree by deriving the conditional marginal distribution Z1|2 = hf ;1,2(h
−1
f ;1,2(U1|U2)|U2) and

the node that shares an edge with this node n1,2: Z3|2 = h−1
f ;1,3|2(U3|hf ;1,2(h

−1
f ;1,2(U1|U2)|U2)). Subsequently,

the next standard uniform variable is defined as: Z3 = h−1
f ;2,3(h

−1
f ;1,3|2(U3|hf ;1,2(h

−1
f ;1,2(U1|U2)|U2))|U2). We

proceed until all six standard uniform variables are simulated.

4.4.3 Sampling from bivariate copula mixtures in the mixture R-vine model

To generate the draws of the six standard uniform variables for our mixture R-vine model, we traverse the

vine structure similarly as in Section 4.4.2. The difference lies in the sampling on the bivariate level, which

is similar to the procedure of drawing conditional pseudo-observations in Section 4.3.3. From this estimation

procedure, we know the fitted bivariate copulae combination entailing Cf1,i,j and possibly Cf2,i,j and Cf3,i,j

for each edge. Herein, when sampling an edge, we assign each draw zi,s from Zi to a copula type fv through

s. As such, similar to the procedure in Section 4.3.3, half of the samples s are randomly assigned to set
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Sf1 and the other half are assigned to set Sf2 , in case two copula types are assigned to one edge. If three

copula types are assigned to one edge, then one third of the samples are assigned to each copula type Cfv

for v ∈ {1, 2, 3}. A sample for Zi is derived with copula type Cfv as follows

Zi,s = h−1
fv ;i,j

(Zi|j,t, Zj,t), where
∂ Cfv,ij(zi|j,s, zj,s; Θ̂fv,ij)

∂ zj,s
, if s ∈ Sfv .

We apply this for every s, until all paired draws in (Zi|j , Zj) are transformed.

4.5 Conversion to weekly price changes

In Section 4.4, we have shown how to generate the draws (Z1, ..., Z6) from the copula density for both the

bivariate copula and vine copula model. We apply the quantile function from the price change time series in

Equation (10) to convert these draws to simulated observations from the joint distribution of price changes

(X̃1, ..., X̃6), as

X̃i = F̂−1
i (Zi)

where F̂−1
i is the inverse of the empirical distribution function of Equation (10).

4.6 Downside risk measure objectives

In this section, we estimate the hedge ratios λ introduced in the hedging frameworks in Section 4.1. For

the single commodity hedging framework, we determine λC∗, λG∗ and λH∗ for commodity draws separately.

In the fixed proportion and flexible multi-commodity framework, the hedge ratios are determined over the

profit margins Y (λ) from Equations 5 and 2, respectively. The observations of these profit margins are based

all six of the price changes draws (X̃1, ..., X̃6) jointly.

We optimise the hedge ratios for eight downside risk-objectives: minimum-VaR (at 1%, 5% and 10%),

minimum-ES (at 1%, 5% and 10%), minimum-Lower Partial Moments (LPM2 and LPM3). Herein, we

minimise the downside risk measures of Y (λ) by performing the numerical Nelder-Mead search method

(Nelder & Mead (1965)), where only the hedge ratios can be adjusted. This results in optimal hedge ratios.

The downside risk measures are defined in Equations (20), (21), (22) and (23) for confidence level α.

This allows us to evaluate the hedge ratios’ sensitivity to the downside risk measures. Value-at-Risk (VaR)

is a quantile and measures the largest potential loss over a certain period of time, which is one week in our

paper, as

V aRα = F−1
L (α), (20)

where α is the confidence level (0, 1). Expected Shortfall (ES) measures the expected loss given that losses

exceed the VaR, therefore this risk measure is also known as the conditional VaR, as

ESα = E(Y |Y ≤ V aRα) =
1

1− a

∫ 1

α

V aRudu, (21)
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where α is the confidence level (0, 1). The second Lower Partial Moment (LPM2), which is also known as

semivariance, measures the variability of Y (λ) that falls below zero, as

LPM2 =

∫ 0

−∞
−Y 2dF (Y ). (22)

Furthermore, we measure the third Lower Partial Moment (LPM3) as

LPMn =

∫ 0

−∞
(−Y )ndF (Y ), (23)

where n = 3 signals the is the risk tolerance of the hedger. Herein, n = 1 represents risk-neutral behavior

and n > 1 represents risk-averse behavior. Thus, LPM3 penalises losses in the profit margin Y (λ) stronger

than LPM2.

4.7 Performance measures

With the model specifications derived in Section 4.3 and derived hedge ratios from Section 4.6, we can assess

which hedge strategy has the best performance for a 130-week out-of-sample test window.

We test the optimal hedge ratios out-of-sample by measuring hedge effectiveness (Ederington (1979)) for

a test period of 130 weeks following the estimation period, as

Hedge Effectiveness =

(
1− Risk(Y (λ̂∗))

Risk(Y (0))

)
,

where Y (λ̂) is the income of the hedged portfolio (as given in Equations (4), (5) and (2)) for the optimised

hedge ratios λ̂ and Y (0) the income of the portfolio that was not hedged. Furthermore, Risk is the downside

risk measure of concern.

Although hedge effectiveness against the unhedged portfolio allows us to compare the hedge strategies,

we do not deem this strategy a competing benchmark. Therefore, we also compare our strategies against

a naive hedging strategy Y (1), which holds a hedge ratio of λ = 1, for every commodity and every rolling

time window. This strategy states that a trader with a long (short) position in the spot market should

simultaneously sell (buy) an equal amount of futures.

To test if a hedging strategy is significantly better, we apply the paired-t test. Via this paired t-test, we

examine the performance in hedge effectiveness between hedging strategies per downside risk measure. We

state the null hypothesis that the out-of-sample hedging effectiveness for two hedging strategies is equal, as

H0 : µd = 0 H1 : µd ̸= 0,

where H1 gives the alternative hypothesis, µd represents the true mean difference between the hedge effec-

tiveness of the hedging strategies. We compute the test statistic as follows

t =
d̄− 0

σ̂

√
n ∼ tn−1(α/2),
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where d̄ represents the mean of 1452 sample differences between the hedging effectiveness of strategy A

and strategy B. Furthermore, σ̂ provides the sample standard deviation of the differences between the

hedge effectiveness of the tested hedging strategies. Moreover, n = 1452 is the number of out-of-sample test

observations. The critical value for the test statistic with two-tailed significance α/2 is derived from the

t-distribution with n− 1 degrees of freedom.

As we roll through our time window, we attain a sample to compare three hedging frameworks for eight

downside risk measures over time periods differing in volatility and trends. Herein, the fixed and flexible

multi-commodity hedging frameworks are modeled with four different vine copula models.

5 Results

In this section we examine which of the hedging strategies discussed in the previous section performs best.

Firstly, in Section 5.1, we discuss the in-sample fit of our models. Hereafter, we analyse which vine copula

model is preferred for modelling the joint distribution in Section 5.2 by comparing out-of-sample HE. In

Section 5.3, we show which hedging strategy has superior out-of-sample performance. Ultimately, we provide

further analysis of our models in Section 5.4. Herein, we observe the drivers of the difference between the

fixed proportion and flexible hedging frameworks, the sensitivity to an extreme observation, the impact of

reducing the rebalancing of hedge ratios, the consequence of reducing the number of draws and the sensitivity

of the mixture R-vine copula model to the inclusion criterion.

5.1 In-sample fit

We observe that on average the R-vine copula models have the highest log-likelihood with 1343.7 to the

estimation sample in Table 3. In Section 4.3, we discussed the differences between the applied models,

wherein we noted that vine copulae estimate 15 bivariate dependency structures against 3 in the single

commodity hedging framework. In Table 3, we determine that the number of parameters increases faster

than the log-likelihood and information criteria on average. This emphasises that modelling the dependencies

between the commodities spot and futures price changes is at the core of the in-sample fit of the models.

Table 3: Average log-likelihood, AIC, BIC and average number of parameters of the single commodity hedging framework,

C-,D-, R- and mixture R-vine copula models over the rolling window samples.

Log-likelihood AIC BIC Number of parameters

Single commodity 1013.4 -2014.8 -1998.1 6

C-vine 1314.4 -2584.7 -2523.3 22

D-vine 1337.8 -2632.3 -2571.7 22

R-vine 1343.7 -2645.0 -2585.8 21

Mixt. R-vine 1342.1 -2629.1 -2531.9 28
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Table 4: Average hedge ratios and standard deviations (in brackets) for each commodity within the hedging frameworks with

3 hedge ratios. The hedge ratio trajectories of the single commodity and flexible multi-commodity framework for each risk

measure are presented in Appendix C, respectively.

VaR 1% VaR 5% VaR 10% ES 1% ES 5% ES 10% LPM2 LPM3

Crude oil

Single commodity
1.009 1.034 1.044 0.932 1.017 1.027 1.021 0.957

(0.073) (0.038) (0.035) (0.109) (0.050) (0.038) (0.032) (0.063)

C-vine
1.049 1.083 1.088 0.945 1.037 1.056 1.044 0.972

(0.165) (0.124) (0.122) (0.288) (0.176) (0.156) (0.161) (0.255)

D-vine
1.047 1.084 1.091 0.940 1.041 1.064 1.044 0.961

(0.150) (0.104) (0.103) (0.296) (0.169) (0.140) (0.154) (0.259)

R-vine
1.085 1.094 1.094 0.991 1.081 1.090 1.073 1.011

(0.154) (0.120) (0.114) (0.326) (0.175) (0.151) (0.160) (0.273)

Mixt. R-vine
1.077 1.095 1.096 0.999 1.082 1.090 1.074 1.019

(0.143) (0.119) (0.114) (0.272) (0.163) (0.143) (0.148) (0.228)

Gasoline

Single commodity
1.036 1.068 1.074 1.019 1.061 1.068 1.070 1.082

(0.113) (0.072) (0.064) (0.182) (0.085) (0.071) (0.069) (0.170)

C-vine
1.042 1.094 1.089 0.998 1.069 1.084 1.070 1.060

(0.130) (0.112) (0.100) (0.142) (0.112) (0.103) (0.101) (0.122)

D-vine
1.044 1.101 1.099 1.005 1.078 1.092 1.077 1.053

(0.195) (0.110) (0.090) (0.242) (0.146) (0.117) (0.122) (0.182)

R-vine
1.056 1.097 1.095 1.023 1.087 1.096 1.086 1.076

(0.159) (0.111) (0.091) (0.176) (0.122) (0.107) (0.106) (0.135)

Mixt. R-vine
1.058 1.102 1.097 1.032 1.092 1.100 1.090 1.085

(0.156) (0.112) (0.092) (0.180) (0.121) (0.108) (0.108) (0.142)

Heating oil

Single commodity
1.071 1.063 1.032 1.055 1.072 1.056 1.046 1.041

(0.120) (0.082) (0.042) (0.161) (0.099) (0.070) (0.064) (0.123)

C-vine
1.075 0.987 0.975 1.057 0.996 0.986 0.991 0.983

(0.289) (0.257) (0.223) (0.487) (0.367) (0.332) (0.320) (0.421)

D-vine
1.038 1.042 1.045 0.965 1.009 1.032 1.021 0.976

(0.313) (0.205) (0.186) (0.557) (0.360) (0.290) (0.298) (0.456)

R-vine
1.107 1.072 1.067 1.102 1.095 1.092 1.082 1.081

(0.263) (0.220) (0.200) (0.498) (0.340) (0.293) (0.293) (0.412)

Mixt. R-vine
1.122 1.070 1.061 1.155 1.113 1.098 1.091 1.115

(0.300) (0.218) (0.191) (0.541) (0.360) (0.300) (0.299) (0.418)

The C-vine copula has one variable in each tree that is connected with all other variables, hence the

C-vine only models one spot-futures pair directly in the first tree. Moreover, we observe that the difference

between the D- and R-vine is small, although the R-vine allows for 22, 680 more vine tree structures. We

contribute this to the fact that the D-, R- and mixture R-vine include all three spot-futures pair directly

in the first tree for all 1452 samples. We conclude that limiting the C-vine from modelling the spot-futures
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Table 5: Average hedge ratios and standard deviations (in brackets) for the fixed proportion hedging framework with one

hedge ratio. The hedge ratio trajectories of the fixed proportion hedging framework derived over the R-vine copula for each

risk measure are presented in Appendix C.

VaR 1% VaR 5% VaR 10% ES 1% ES 5% ES 10% LPM2 LPM3

C-vine
1.057 1.078 1.071 1.030 1.063 1.067 1.058 1.074

(0.137) (0.106) (0.098) (0.165) (0.119) (0.108) (0.111) (0.154)

D-vine
1.049 1.097 1.094 1.001 1.069 1.083 1.071 1.060

(0.182) (0.106) (0.094) (0.233) (0.143) (0.119) (0.125) (0.204)

R-vine
1.084 1.102 1.094 1.069 1.097 1.098 1.091 1.113

(0.163) (0.114) (0.100) (0.201) (0.137) (0.121) (0.120) (0.178)

Mixt. R-vine
1.093 1.104 1.096 1.077 1.102 1.101 1.094 1.118

(0.164) (0.117) (0.100) (0.203) (0.137) (0.122) (0.122) (0.185)

pairs in the first tree hampers its log-likelihood score. Based on the scores in Table 3, we expect the D-, R-

and mixture R-vine models to determine the joint dependency structure of the variables the best. Therefore,

the D-, R- and mixture R-vine model are expected to forecast the most accurate draws.

In Tables 4 and 5, we observe that the average hedge ratios are slightly higher than 1 for most models

and risk measures. This means that on average the oil refinery holds more futures than the commodities it

eventually buys or sells against the spot price. As such, an average hedge ratio of 1.02 means that it holds

a position that is 2% larger in futures (either long or short) than in the commodity.

We note that for ES 1% the hedge ratios are the lowest on average for all commodities except heating

oil in Tables 4 and 5. Furthermore, we find that the standard deviation of the heating oil hedge ratios is

the highest for every vine copula, which is likely to follow from the fact that heating oil has the lowest

weight (one third) in the joint distribution of the profit margin in Table 4. Subsequently, a more articulate

position in heating oil is needed for similar impact on the profit margin. For the single commodity hedging

framework, we do not observe this phenomenon, because the hedge ratios are determined separately. Within

this framework, we also notice that the volatility of the hedge ratios is related to the volatility of the price

changes of the underlying commodity, as the least volatile commodity, crude oil, also has the least volatile

hedge ratios for each risk measure objectives in Table 4. With regard to the mixture R-vine model, we

observe that the average hedge ratios are close to the average hedge ratios of the R-vine model, especially for

crude oil and gasoline in Table 4 and the fixed proportion framework in Table 5. The average hedge ratios

and standard deviation for heating oil in Table 4 are generally higher than those of the R-vine model. This

suggests that through the mixture R-vine model, the model holds a more protective position in heating oil

futures. Lastly, we note for the fixed proportion hedging framework in Table 5 that all average hedge ratios

are greater than 1 combined with low standard deviation relative to the hedge ratios of the corresponding

vine copula in the flexible multi-commodity hedging framework in Table 4.
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5.2 Vine copula comparison

In this section, we examine which of the vine copulae attains the best hedging results by modelling the

multivariate joint distribution for the fixed proportion and flexible multi-commodity hedging framework. In

Section 5.1, we deduced that the R-vine copula has the best in-sample fit in terms of average AIC followed

closely by the mixture R-vine and D-vine copulae. We observe a similar ranking in out-of-sample performance

in within the flexible multi-commodity framework in Table 6 and the fixed proportion framework in Table 7.

Table 6: Mean and median hedge effectiveness of the C-, D-, R- and mixture R-vine model for eight downside risk measures,

where the hedge ratios were determined by the flexible multi-commodity framework. Bold numbers are the highest values per

downside risk measure.

VaR 1% VaR 5% VaR 10% ES 1% ES 5% ES 10% LPM2 LPM3

C-vine
Mean 20.333 39.315 42.397 18.351 30.677 35.726 55.180 52.029

Median 19.769 39.008 42.963 20.927 32.702 36.304 56.406 66.213

D-vine
Mean 21.809 39.607 43.003 19.436 30.877 35.952 55.310 52.824

Median 20.823 38.984 42.716 20.212 32.369 36.889 57.053 64.387

R-vine
Mean 21.803 39.525 42.876 19.257 30.933 35.995 55.406 52.213

Median 20.450 39.066 43.222 19.921 32.620 36.739 56.776 64.350

Mixt. R-vine
Mean 21.906 39.601 42.896 19.911 30.966 36.075 55.580 54.026

Median 20.629 39.101 43.079 21.002 32.951 36.784 57.135 64.951

A mean hedge effectiveness (HE) of 20.333 achieved by the C-vine model for the risk measure VaR 1%

means that the C-vine model on average reduces VaR 1% with 20.333% more than the unhedged portfolio,

where the hedge ratios equal zero. We compare the HE metrics across models directly, because the measures

are relative to the same unhedged portfolio. For example, if we compare meanHE between the C- and D-vine

for ES 5%, we find that the hedge based on D-vine copula results in 30.877− 30.677 = 0.200 HE percentage

points (pp) higher. Moreover, the median HE represents the HE observation separating the higher half

from the lower half. Although we focus on the mean HE, we are able to recognise a heavily skewed mean

by a period of extremely low HE, if the mean is much lower than the median. This is the case for LPM3 in

Table 6, for example.

In the flexible multi-commodity framework, we see that the mixture R-vine copula achieves the highest

average HE for five risk measures, while the D-vine performs the best for the three remaining VaR risk mea-

sures (see Table 6). The t-statistics in Table 8 show that the HE of the C-vine copula model is significantly

worse than the all other vine copula models for all risk measures, except LPM3. Furthermore, we observe

that the performance of the D- and R-vine is close, such that we can not state that the mean HE is unequal

for five of the risk measures. Although the D-vine achieves the highest average HE for the three VaR risk

measures, it is only significantly better for VaR 10% with respect to the R- and mixture R-vine models. We

observe that the mixture R-vine model scores significantly better than all other vine copula models on four

non-VaR risk measures in Table 8. As such, if we are restricted to pick one vine copula model for all risk
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measures within the flexible commodity framework, then we prefer the mixture R-vine model.

Table 7: Mean and median HE of the C-, D- and R-vine model for eight risk measures, where the hedge ratios were deter-

mined following the fixed proportion framework. Bold numbers are the highest mean and median values per risk measure.

VaR 1% VaR 5% VaR 10% ES 1% ES 5% ES 10% LPM2 LPM3

C-vine
Mean 21.487 40.214 43.505 22.332 31.911 36.753 56.838 63.817

Median 21.318 40.233 44.154 22.269 32.429 37.583 58.299 70.493

D-vine
Mean 22.883 40.190 43.569 23.704 32.255 36.828 56.860 64.040

Median 23.107 39.962 44.671 25.307 33.135 37.880 58.605 69.749

R-vine
Mean 22.718 40.251 43.506 23.590 32.432 36.984 57.054 64.549

Median 22.567 40.256 44.308 24.246 33.566 37.661 58.819 70.460

Mixt. R-vine
Mean 22.734 40.186 43.534 23.570 32.400 36.964 57.010 64.348

Median 22.631 40.028 44.437 24.652 33.670 37.660 58.798 70.365

In the fixed proportion hedging framework, we also observe the inferior out-of-sample hedging perfor-

mance of the C-vine relative to the other vine copulae in Table 7. Contrary to the flexible multi-commodity

hedging framework, we examine that the R-vine achieves on average the highest HE for five of the risk

measures, whereas the D-vine achieves this for three risk measures. For the VaR 1%, 5% and 10% as well as

the ES 1% risk measures we do not reject the null hypothesis that the mean HE of the D-, R- and mixture

R-vines are equal in Table 8.

Although the absolute differences in mean HE between the R- and the mixture R-vine models for the

remaining four risk measures are small, the t-test indicates a significantly better hedging performance by

the R-vine model. This is due to the fact that the differences in HE between these two models are tested

throughout our time period of 1452 weeks.

Thus, for the fixed proportion hedging framework, we conclude that the R-vine either achieves better

or equivalent hedging performance than the other vine copula models for each risk measure. Therefore, we

determine the hedge ratios in the fixed proportion commodity hedging framework over the joint distribution

forecasted from the R-vine model. Furthermore, we derive the hedge ratios in the flexible multi-commodity

framework from the mixture R-vine copula, when comparing hedging strategies in the next section.
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Table 8: T-statistics from two-tailed paired t-test, where the positive (negative) t-statistic indicates a better performance

for the model left (top) of the statistic. Left hand side provides the t-statistic based on the HE in flexible multi-commodity

hedging framework, whereas the right hand side shows the HE in the fixed proportion hedging framework. The asterisks, *,

** and ***, represent the rejection of the equal HE at 10%, 5% and 1% significance, respectively.

VaR 1% D-vine R-vine Mixt. R-vine D-vine R-vine Mixt. R-vine

C-vine -7.095*** -7.830*** -8.747*** -9.431*** -9.968*** -10.609***

D-vine - 0.046 -0.643 - 1.458 1.290

R-vine - - -0.920 - - -0.202

VaR 5% D-vine R-vine Mixt. R-vine D-vine R-vine Mixt. R-vine

C-vine -3.179*** -2.462** -3.196*** 0.369 -0.569 0.461

D-vine - 1.087 0.079 - -1.103 0.080

R-vine - - -1.107 - - 1.390

VaR 10% D-vine R-vine Mixt. R-vine D-vine R-vine Mixt. R-vine

C-vine -6.376*** -5.226*** -5.357*** -1.005 -0.003 -0.495

D-vine - 1.785* 1.543 - 1.443 0.731

R-vine - - -0.281 - - -0.693

ES 1% D-vine R-vine Mixt. R-vine D-vine R-vine Mixt. R-vine

C-vine -4.068*** -3.681*** -6.575*** -6.786*** -8.479*** -9.205***

D-vine - 1.029 -2.537** - 0.853 0.904

R-vine - - -4.851*** - - 0.310

ES 5% D-vine R-vine Mixt. R-vine D-vine R-vine Mixt. R-vine

C-vine -2.122** -3.013*** -3.400*** -6.855*** -12.376*** -11.634***

D-vine - -1.058 -1.542 - -5.220*** -4.133***

R-vine - - -1.166 - - 2.402**

ES 10% D-vine R-vine Mixt. R-vine D-vine R-vine Mixt. R-vine

C-vine -4.298*** -5.963*** -7.462*** -2.673*** -9.899*** -8.944***

D-vine - -1.330 -3.615*** - -8.787*** -7.345***

R-vine - - -4.173*** - - 2.691***

LPM2 D-vine R-vine Mixt. R-vine D-vine R-vine Mixt. R-vine

C-vine -1.649* -3.326*** -5.936*** -0.596 -8.166*** -6.422***

D-vine - -2.296** -5.627*** - -7.825*** -5.798***

R-vine - - -6.262*** - - 4.600***

LPM3 D-vine R-vine Mixt. R-vine D-vine R-vine Mixt. R-vine

C-vine -1.946* -0.581 -4.677*** -1.848* -8.452*** -6.083***

D-vine - 2.012** -3.559*** - -6.493*** -3.574***

R-vine - - -5.922*** - - 5.902***

5.3 Out-of-sample performance of hedging strategies

In this section, we discuss and compare the hedging performance of the hedge ratio estimations within the

single commodity hedging framework based on 3 paired copulae, the fixed proportion hedging framework

based on the R-vine copula and flexible multi-commodity hedging framework based on the mixture R-vine

copula. We abbreviate each of these hedging strategies as the single, fixed and flexible hedge. Moreover, we
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compare these hedges against our benchmark hedging strategy: the naive hedge.

Table 9 shows that the fixed hedge achieves the best out-of-sample hedging performance for all risk

measures, except VaR 10%. Furthermore, we see that the naive hedge is a competitive strategy, as it ranks

best for VaR 10% and second-best for ES 1%, ES 5%, ES 10%, LPM2 and LPM3. Least preferred is the

single hedge, because it has the lowest mean HE for five risk measures.

Table 9: Mean and median HE of the four hedging strategies for eight risk measures, where the single hedging strategy is

based on 3 paired copulae, the fixed hedging strategy is based on the R-vine copula model and the flexible hedging strategy

is based on the mixture R-vine model.

Naive Single Fixed Flexible

Mean Median Mean Median Mean Median Mean Median

VaR 1% 20.865 19.910 20.261 20.185 22.718 22.567 21.906 20.629

VaR 5% 39.203 39.253 39.057 38.632 40.251 40.256 39.601 39.101

VaR 10% 43.657 44.643 43.363 43.666 43.506 44.308 42.896 43.079

ES 1% 20.865 19.910 18.023 20.354 23.590 24.246 19.911 21.002

ES 5% 31.086 31.679 30.476 31.827 32.432 33.566 30.966 32.951

ES 10% 36.172 36.770 35.910 36.380 36.984 37.661 36.075 36.784

LPM2 56.216 56.782 55.454 56.766 57.054 58.819 55.580 57.135

LPM3 63.078 68.744 56.324 57.085 64.549 70.460 54.026 64.951

We conclude from Table 9 that risk reduction with respect to the unhedged portfolio is more difficult

when measuring risk over more extreme downside observations, such as VaR 1% and ES 1%. For both VaR

and ES, we see a positive relation between observations considered and mean HE. In our instance, VaR

1%, 5% and 10% consider the profit margin of the lowest, 6th lowest and 13th lowest observation in the

test window, respectively. Whereas, ES 1%, 5% and 10% measure the average profit margin of the lowest,

6 lowest and 13 lowest observations in the test window, respectively. The LPM2 and LPM3 risk measures

consider the moments of all negative profits in the test windows, where LPM3 penalises extreme negative

values from the profit margin stronger than LPM2. Supposing half of the profit margins is negative for

the observations in the test window, then the LPM risk measures are determined over these 65 negative

observations. Hence, it appears that measuring with a risk metric that concerns more negative observations

leads to a larger risk reduction relative to no hedging.

Due to the fact that we traverse 1452 test windows, the seemingly small differences in average HE

between the hedges are almost all significantly unequal with 90%, 95% and 99% confidence for the paired

t-tests in Table 10.
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Table 10: T-statistics from two-tailed paired t-test, comparing four hedging strategies in pairs, which consist of the strategies

to the left and directly above the statistic. The positive (negative) t-statistic indicates a better performance for the model

left (top) of the statistic. The asterisks, *, ** and ***, represent the rejection of the equal HE at 1%, 5% and 10% signifi-

cance, respectively.

VaR 1% Single Fixed Flexible

Naive 4.457*** -15.086*** -8.216***

Single - -12.229*** -11.537***

Fixed - - 5.440***

VaR 5% Single Fixed Flexible

Naive 1.333 -9.395*** -3.393***

Single - -12.802*** -5.831***

Fixed - - 8.275***

VaR 10% Single Fixed Flexible

Naive 3.444*** 1.992** 7.697***

Single - -1.632 5.161***

Fixed - - 6.985***

ES 1% Single Fixed Flexible

Naive 7.898*** -15.167*** 2.890***

Single - -13.042*** -4.816***

Fixed - - 11.995***

ES 5% Single Fixed Flexible

Naive 8.335*** -20.575*** 1.586

Single - -20.554*** -6.019***

Fixed - - 24.657***

ES 10% Single Fixed Flexible

Naive 6.608*** -18.390*** 1.795*

Single - -26.602*** -3.488***

Fixed - - 26.437***

LPM2 Single Fixed Flexible

Naive 11.223*** -19.164*** 7.094***

Single - -24.589*** -1.965**

Fixed - - 21.610***

LPM3 Single Fixed Flexible

Naive 16.252*** -14.489*** 11.657***

Single - -19.692*** 4.453***

Fixed - - 13.943***

5.3.1 Value-at-Risk

For the VaR 1% risk measure, we observe that the HE for the naive hedge is constant for many consecutive

test windows with approximately one shift per year in Figure 11 (top). The other hedges follow these shocks,

which suggests that the shifts originate from change in risk measured in the unhedged portfolio. Besides

the simultaneous shifts, we notice negative HE during two stints: from June 2001 to March 2003 and from

April 2013 to March 2015. During the first stint, there were two occurrences of the worst unhedged returns,

where the spot price of crude oil rose harder than petroleum products combined. Both returns driving the

HE below zero happened simultaneously with a crude oil futures price increase that was weaker than the

futures price changes of the petroleum products. Hence, the margins of the spot and futures prices moved in

opposite directions, which is called basis risk. In these occasions, the only possibility to compensate losses

is by taking a negative position in futures, which is a speculative position. We find that these constant

negative HE stints only occur for the VaR 1% and ES 1% as these both exclusively measure the single worst

observation of the hedged and unhedged portfolios.

We see the three strategies achieving distinctive results at the end of our rolling window period in Figure

13 (top). The hedging performances of the strategies are driven by the hedge ratios for the worst observation

in the test windows: the week of 22 April 2020. During this week the price of crude oil tumbled below zero

US dollars ($) for the first time ever. Simultaneously, the spot price of gasoline decreased less substantially

than crude oil and heating oil. As a result, the unhedged refining margin improved. However, the change for
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the futures margin overshadowed this increase, as crude oil decreased with 12$, while gasoline and heating

oil declined with 3$ and 8$, respectively. For this instance, a lower position in crude oil futures improves the

hedge. We observe in the hedge ratio trajectories in Appendix C that the fixed hedge results in the highest

HE during this period (see Figure 11) with the fixed hedge ratio between 0.8 − 0.9. The flexible hedge

realises HE similar to the naive hedge with λC around 0.9, λH at approximately 1 and λG also between

0.8− 0.9. The single hedge performs worst, with λC over 1, while λG and λH were set to roughly 0.95.

We examine that all four hedging strategies result in strictly positive HE for VaR 5% in Figure 11

(middle). Moreover, we observe a steep upward trend peaking in mid-2005, which subsequently decreases

quickly. We contribute this phenomenon to the occurrence of a few extreme losses for the unhedged portfolio

on the back of hurricane Katrina, which we further investigate in Section 5.4.2. These losses are hedged

adequately with positions in futures, hence the VaR 5% is substantially lower for the unhedged portfolio and

the HE peaks.

For the VaR 10% risk measure, we find in Tables 9 and 10 that the naive hedge has a significantly higher

HE than the three ’actively’ managed hedging strategies. The naive hedge is most often the strategy with

the highest HE (31%) for this risk measure, while he single and flexible hedge attain the lowest HE most

often for 25% and 36% of the samples, respectively (see Figure 21 in Appendix D). Herein, we note that the

average difference in HE between the strategy with the lowest HE and highest HE is the biggest for the

flexible hedge at 4.760pp. The lower risk reduction from the ’actively’ managed hedging strategies suggests

that it is difficult to converse the optimal in-sample hedge ratio(s) for the 10% quantile into out-of-sample

HE. We contribute this to the fact that it is rarely the case that this 10% quantile observation happens with

similar price movements as the 13th lowest observation in the test window. Moreover, we observe a steep

upward trend from early-2010 to late-2011 in Figure 11 (bottom). This trend is caused by the unhedged

portfolio losing more than 5$ in five weeks between September 2012 and February 2013. These losses enter

the test windows for the rolling window samples in early-2010, which boost HE in the following period. In

comparison to the VaR 10% hedged portfolios, we notice a less steep climb for the VaR 5% HE, as for the

VaR 5% the hedged portfolio is also affected by the losses.
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Figure 11: Out-of-sample HE in percentages over time for four hedging strategies: the naive, single, fixed and flexible hedge.

The graph displays the reduction in Value-at-Risk (VaR) at 99% (top), 95% (middle) and 90% (bottom) confidence levels for

the test windows of 130 weeks starting from the rolling window sample date on the horizontal axis.
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5.3.2 Expected Shortfall

When minimising for ES, we reduce the average loss of the 1%, 5% and 10% worst observations of the profit

margin, respectively. Tables 9 and 10 present that the fixed hedge achieves a higher mean HE with 99%

confidence with respect to every other hedging strategy for each of the ES risk measures.

Figure 12 (top) shows that the strategies with free hedge ratios, the single and flexible hedge, score lower

HE for ES 1% in the period spanning 2005 − 2009. This is caused by the price movements on the back of

hurricane Katrina in the last week of August 2005. More specifically, gasoline spot prices decreased with

44$ in combination with gasoline futures prices declining just 9$, which triggered the hedge ratios to move

strongly for the single and flexible hedges (see Appendix C). Herein, the crude and heating oil hedge ratios of

the flexible hedge are even set below zero. Again, we examine the effect of excluding the Katrina observation

in the estimation window in Section 5.4.2.

For the ES 5% and 10% risk measures, we observe that the hedging strategies follow a similar pattern in

HE in Figure 12 (middle and bottom) as well as in hedge ratios in Appendix C. Herein, the risk reduction

with respect to the respective unhedged portfolios is approximately 5pp higher for ES 10%. For both risk

measures, we find that the fixed hedge has the lowest mean HE approximately 5% and the second lowest

for roughly 12% of the samples, while the fixed hedge achieves the highest risk reduction for more than 40%

of the samples (see Figure 21 in Appendix D).
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Figure 12: Out-of-sample HE in percentages over time for four hedging strategies: the naive, single, fixed and flexible hedge.

The graph displays the reduction in Expected Shortfall (ES) at 99% (top), 95% (middle) and 90% (bottom) confidence levels

for the test windows of 130 weeks starting from the rolling window sample date on the horizontal axis.
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5.3.3 Lower Partial Moments

The LPM risk measures assess the variability of the negative profit margins. Herein, losses of the profit

margin are taken to the power of 2 and 3 for LPM2 and LPM3, respectively. This means that LPM3 is

more sensitive to extreme losses than LPM2. We examine that for both risk measures the fixed hedge has a

significantly higher mean HE. We find that the fixed hedge has the lowest HE in 6% and 8% of the samples

for LPM2 and LPM3, respectively.

The single and flexible hedge have significantly lower HE than the naive hedge. Visually, we can derive

from Figure 13 that these hedging strategies’ risk reductions lack on the back of the extreme losses when

the hurricane Katrina observation enters the estimation window. For the flexible hedge minimising LPM3,

this causes gasoline hedge ratios to rise up to 1.5, whereas the crude and heating oil hedge ratios take even

more extreme positions below 0.0 based on in-sample loss reduction. This leads to the flexible hedge to add

more than 125pp LPM3 risk with respect to the unhedged portfolio at its minimum around February 2007.

Figure 13: Out-of-sample HE in percentages over time for four hedging strategies: the naive, single, fixed and flexible hedge.

The graph displays the reduction in Lower Partial Moments (LPM), LPM2 (top) and LPM3 (bottom), for the test windows

of 130 weeks starting from the rolling window sample date on the horizontal axis.
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5.4 Sensitivity analysis

In this section, we analyse the consequences of the decisions made in the process of conducting the research.

Firstly, we focus on the impact of modelling with vine copula models instead of 3 paired copulae. Hereafter,

in Section 5.4.2, we observe the impact of removing an extreme observation from our estimation window.

Subsequently, we examine reducing the times of rebalancing the hedge ratios in Section 5.4.3. Moreover,

in Section 5.4.4, we observe the effect of determining the hedge ratios on 10, 000 sampled draws instead of

100, 000. Lastly, we discuss the inclusion criterion in Section 5.4.5.

5.4.1 Impact of vine copulae and the fixed proportion constraint

Table 9 shows that the hedging strategies based on vine copulae, the fixed and flexible hedge, achieve more

risk reduction than the strategy based on 3 paired copulae, the single hedge, for most risk measures. However,

we can not directly gauge the impact of the vine copulae, as the fixed hedge is also affected by its 3 : 2 : 1

fixed proportion constraint on the hedge ratios and the flexible hedge is derived over the mixture R-vine

copula model. Hence, in this section, we compare the HE based on the R-vine copula as described in Section

4.3.2 against the HE based on 3 paired copulae as described in Section 4.3.1. We compare the performance

of both of these copula models, with and without the fixed proportion constraint.

Table 11: Mean and median HE of four hedging strategies for eight risk measures. The hedging strategies are either based

on 3 paired copulae or the R-vine copula and are either subject to the fixed proportion constraint (Fixed) or not (Flexible).

Means are bold for the copula model with the highest HE for each risk measure within the Fixed and Flexible group.

3 paired copulae R-vine copula

Flexible Fixed Flexible Fixed

Mean Median Mean Median Mean Median Mean Median

VaR 1% 20.261 20.185 21.522 20.869 21.803 20.450 22.718 22.567

VaR 5% 39.057 38.632 39.943 40.512 39.525 39.066 40.251 40.256

VaR 10% 43.363 43.666 43.768 45.265 42.876 43.222 43.506 44.308

ES 1% 18.023 20.354 22.524 22.116 19.257 19.921 23.590 24.246

ES 5% 30.476 31.827 31.681 32.557 30.933 32.620 32.432 33.566

ES 10% 35.910 36.380 36.598 37.215 35.995 36.739 36.984 37.661

LPM2 55.454 56.766 56.577 57.697 55.406 56.776 57.054 58.819

LPM3 56.324 57.085 63.585 69.671 52.213 64.350 64.549 70.460

Table 11 presents three phenomena. Firstly, applying the fixed proportion constraint on the respective

copula models increases the average HE significantly (see t-statistics in Table 22 in Appendix E.1). Secondly,

hedging performance based the R-vine copula results in higher mean HE than for similar models based on 3

paired copulae for the vast majority of risk measures. Lastly, the hedging strategy based on 3 paired copulae

without fixed proportion constraint improves more in HE by applying the fixed proportion constraint than

by replacing the 3 paired copulae with the R-vine copula model. Herein, we also observe that the median

HE is at least 0.6pp and at most 12.6pp higher for the models with fixed proportion constraint compared
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to the same copula model without the proportion constraint. This suggests that the lower mean HE for

models without the proportion constraint is not only due to extremely low HE results.

5.4.2 Sensitivity to the extreme observation hurricane Katrina

Sections 5.3.2 and 5.3.3 presented a low reduction of risk from the single- and flexible hedges for the ES

1%, LPM2 and LPM3 risk measures in the rolling window samples from September 2005 to June 2010. This

period corresponds to the period in which the extreme spot price movement (-44$) after hurricane Katrina

is present in the estimation window. The essence of risk management is to reduce the risk exposure for

any situation by being prepared for extreme events. Hence, we do not eliminate such an observation from

the estimation and test windows. However, in hindsight, we could deem the Katrina observation to be an

unrealistic outlier with respect to the contemporary price movements. As such, given the notable hedging

performance, we examine the effect of removing this observation from the estimation windows.

Table 12: Mean and median HE of the four hedging strategies for eight risk measures based on the estimation set without

the Katrina observation.

Naive Single Fixed Flexible

Mean Median Mean Median Mean Median Mean Median

VaR 1% 20.874 19.910 20.414 20.225 22.753 22.515 22.101 20.875

VaR 5% 39.199 39.253 39.073 38.603 40.216 40.274 39.579 39.013

VaR 10% 43.651 44.632 43.363 43.689 43.498 44.396 42.976 43.079

ES 1% 20.874 19.910 19.472 22.974 23.306 21.998 22.792 22.071

ES 5% 31.086 31.685 30.788 31.839 32.414 33.560 31.315 33.011

ES 10% 36.170 36.770 35.992 36.457 36.991 37.611 36.205 36.853

LPM2 56.210 56.780 56.243 57.134 57.109 58.725 56.494 57.790

LPM3 63.072 68.693 62.163 66.357 64.523 71.048 63.518 68.868

We analyse to what extent the occurrence of this extreme downward price movement of a spot price

and smaller decline in futures price after hurricane Katrina drives the hedging performance of each hedging

strategy. We compare the HE without the Katrina observation in our estimation Table 12 to the model that

includes it for the estimation of hedge ratios Table 9. The hedging performance for the naive is equivalent

for both estimation sets as this strategy is not affected by extreme price movements.

For the flexible hedge, we see that the mean risk reduction for ES 1%, LPM2 and LPM3 improved with

approximately 3pp, 1pp and 11pp, respectively, by removing the Katrina observation from the estimation

windows. For the single hedge, we observe the HE increase with 1pp and 6pp for ES 1% and LPM3. Visually,

these changes are evident for LPM3, when comparing the period 2005 − 2010 in Figure 14 against Figure

13 (bottom). We see a similar improvements for ES 1% and LPM2 in Figure 20 Appendix E.2, while the

changes in the remaining risk measures are smaller. Moreover, Table 23 in Appendix E.2 shows that for the

single and flexible hedges the HE is significantly higher for all ES, LPM risk measures as well as the VaR

1% risk measure. By contrast, we observe that for the fixed hedge the estimation set including the Katrina
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observation leads to significantly higher HE for ES 1% and significantly lower for ES 10% and LPM2. This

is extra motivation to use the fixed hedge when extreme price movements are observed.

Figure 14: Out-of-sample HE in LPM3 for the four hedging strategies, where the observation of hurricane Katrina is re-

moved from the estimation windows.

In the ranking amongst hedge strategies, the removal of the Katrina observation results in the flexible

hedge surpassing the naive hedge in overall hedging performance. Table 24 in Appendix E.2 shows that the

flexible hedge attains significantly higher HE than the naive hedge for six risk measures with 99% confidence.

This is a shift from Table 10, which presents that for the risk measures ES 1%, ES 10%, LPM2 and LPM3 the

naive hedge reduced significantly more risk than the flexible hedge. Moreover, the flexible hedge outperforms

the single hedge for seven of the risk measures with 99% confidence based on the estimation set without

the Katrina observation. This suggests that the flexible hedge performs significantly worse when an extreme

observation is included in the estimation set. Ultimately, the fixed proportion hedging strategy remains the

hedging strategy with the highest average HE for all risk measures except VaR 10%.

5.4.3 Monthly rebalancing

In this section, we compare the performance of weekly rebalancing of hedge ratios against 4-weekly rebal-

ancing. This idea is driven by the fact that with weekly rebalancing only one observation of 250 is replaced

per rolling window sample. We examine how decreasing rate of adjusting hedge ratios to every four rolling

window samples affects the hedging performance.

Table 13 provides that the fixed hedge strategy still achieves the highest mean HE of the hedge strategies

that rebalance their hedge ratios, which does not include the naive hedge. Moreover, we note that the 4-

weekly HE in Table 13 is similar to results based on weekly rebalancing in Table 9. We find three significant

differences in HE in Table 25 in Appendix E.3. The single hedge rejects the null hypothesis of equal mean

HE for weekly and 4-weekly rebalancing for ES 1%, preferring 4-weekly rebalancing with a 95% confidence
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interval. The flexible hedge rejects the null hypothesis for LPM3 with a 99% confidence interval and achieves

a higher mean HE by rebalancing weekly. For the majority of the risk measures there is no significant

difference in hedging performance between weekly and 4-weekly rebalancing. In practice, there is another

argument to be made for 4-weekly rebalancing, namely the transaction costs related to adjusting hedge

ratios.

Table 13: Mean and median HE of the four hedging strategies, which rebalance every four weeks, for eight risk measures

based on the estimation set without the Katrina observation.

Single Fixed Flexible

Mean Median Mean Median Mean Median

VaR 1% 20.287 20.063 22.755 22.364 21.787 20.433

VaR 5% 39.093 38.339 40.200 40.044 39.516 38.968

VaR 10% 43.308 43.500 43.496 44.571 42.850 42.985

ES 1% 18.190 20.464 23.512 24.154 19.918 20.920

ES 5% 30.503 31.713 32.424 33.620 30.911 32.938

ES 10% 35.908 36.312 36.984 37.672 36.051 36.823

LPM2 55.472 56.713 57.055 58.842 55.599 57.154

LPM3 56.457 58.231 64.598 70.584 54.529 65.343

5.4.4 Downsizing vine copula draws

In this section, we examine the effect of downsizing the number of observations drawn during sampling in

Section 4.4. The results presented thus far were based on 100, 000 draws from the vine copula model for each

variable, which each presents a forecast. Our expectation is that in general a larger forecast sample helps to

estimate hedge ratios more accurately, such that the determined hedge ratios pronounce the model better.

Table 14: Mean and median HE of the four hedging strategies for eight risk measures based on the hedge ratios optimised

over 10, 000 in sample draws instead of 100, 000 as in Table 9.

Single Fixed Flexible

Mean Median Mean Median Mean Median

VaR 1% 20.211 20.126 22.147 22.038 20.461 19.179

VaR 5% 39.067 38.668 40.076 40.047 39.305 38.507

VaR 10% 43.212 43.779 43.462 44.529 42.781 43.154

ES 1% 18.071 20.287 23.326 24.054 19.459 20.625

ES 5% 30.497 31.895 32.391 33.567 30.897 32.843

ES 10% 35.910 36.346 36.965 37.557 36.029 36.786

LPM2 55.473 56.745 57.029 58.803 55.549 57.068

LPM3 56.429 57.717 64.405 70.474 54.310 65.225

Table 14 provides that the fixed hedge ranks the best amongst actively managed hedges in average HE in

line with Table 9. When comparing the single hedge over 10, 000 draws to the hedges over 100, 000 draws, we

find that the downsizing only impacts the hedge significantly for VaR 10% (see Table 15), for which 100, 000
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draws are preferred. Moreover, when analysing the same comparison for the fixed hedge, we observe that

the hedges over 100, 000 draws result in significantly higher mean HE for every risk measure, except VaR

10%. Lastly, for the flexible hedge, we also prefer to determine the hedge ratios over 100, 000 draws instead

of 10, 000 draws for VaR 1%, 5% and ES 1%, 5%, 10%, while for the remaining risk measures we do not

observe a significant difference in HE. Concluding, we prefer to optimise hedge ratios over 100, 000 draws

for the three hedging strategies in Table 14, as either the mean HE is significantly higher than the hedging

strategies based on 10, 000 draws or we are not able to state that hedging performance differs significantly

for each risk measure.

Table 15: T-statistics from two-tailed paired t-test, comparing the hedging performance of the single, fixed and flexible

hedges based on 100, 000 draws in Table 9 to the strategies based on 10, 000 draws in Table 14. The positive (negative) t-

statistic indicates a better performance for strategies based on 100, 000 (10, 000) draws. The values in brackets represent the

p-values. The asterisks, *, ** and ***, represent the rejection of the equal HE at 10%, 5% and 1% significance, respectively.

Single Fixed Flexible

VaR 1% 0.481 (0.631) 5.383*** (0.000) 9.500*** (0.000)

VaR 5% -0.187 (0.852) 2.851*** (0.004) 3.257*** (0.001)

VaR 10% 2.803*** (0.005) 0.852 (0.394) 1.349 (0.178)

ES 1% -0.670 (0.503) 3.228*** (0.001) 2.867*** (0.004)

ES 5% -1.404 (0.160) 2.938*** (0.003) 2.297** (0.022)

ES 10% 0.069 (0.945) 2.525** (0.012) 2.709*** (0.007)

LPM2 -1.009 (0.313) 2.487** (0.013) 1.150 (0.250)

LPM3 -0.902 (0.367) 3.415*** (0.001) -1.157 (0.248)

5.4.5 Sensitivity of the mixture vine copula with respect to inclusion criterion

In this section, we examine the impact of the inclusion criterion on in-sample fit and hedging performance.

For the flexible hedge in Sections 5.2 and 5.3, we applied an AIC threshold of 99% of the copula type with

lowest AIC as inclusion criterion. We find that this threshold increases the average HE within the flexible

multi-commodity framework significantly for all risk measures except the VaR measures.

Table 16: Average log-likelihood, AIC, BIC and average number of parameters of the mixture R-vine copula models for AIC

thresholds 95%, 98% and 99% and the R-vine model over the rolling window samples.

Log-likelihood AIC BIC # of parameters # of multi-copula pairs

Mixt. R-vine 95% 1328.6 -2579.5 -2442.7 39 5.8

Mixt. R-vine 98% 1339.8 -2616.3 -2505.0 32 3.7

Mixt. R-vine 99% 1342.1 -2629.1 -2531.9 28 2.4

R-vine 1343.7 -2645.0 -2585.8 21 -

In Table 16, we observe the logical consequence of lowering the AIC threshold, namely a decreasing log-

likelihood, AIC and BIC as well as an increase in the average number of copula types used to define the vine

copula. We see that the mixture R-vine model with a 95% AIC threshold on average has 39− 21 = 18 more
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copula parameters than the R-vine model. This increase in copula parameters is caused by the 5.8 pairs

with multiple copula types assigned within the vine copula. This increase also directly decreases the AIC

and BIC which penalise additional used parameters. In terms of log-likelihood, we find that the decrease of

the 98% and 99% mixture R-vine score lower than the R-vine, but higher than the D-vine in Table 3.

Tables 17 and 18 show that an inclusion condition of 98% leads to either a significantly lower mean HE

or a similar HE, for which the null hypothesis can not be rejected in both hedging frameworks with respect

to the 99% R-vine mixture model (see Table 26 in Appendix E.4). We observe similar results for the R-vine

model based on the 95% inclusion criterion, with the exception that this model results in a significantly

higher HE for the VaR 5% risk measure.

Table 17: Average HE for the R-vine and mixture R-vine copula models in the flexible multi-commodity framework. 99%,

98% and 95% indicate the inclusion criterion based on AIC for the mixture R-vine models.

R-vine Mixt 99% Mixt 98% Mixt 95%

Mean Median Mean Median Mean Median Mean Median

VaR 1% 21.803 20.450 21.906 20.629 21.221 20.243 19.748 19.483

VaR 5% 39.525 39.066 39.601 39.101 39.672 39.152 39.841 39.677

VaR 10% 42.876 43.222 42.896 43.079 42.853 42.929 42.942 43.075

ES 1% 19.257 19.921 19.911 21.002 18.926 20.760 17.580 19.973

ES 5% 30.933 32.620 30.966 32.951 30.829 32.670 30.905 33.100

ES 10% 35.995 36.739 36.075 36.784 36.015 36.795 36.053 36.711

LPM2 55.406 56.776 55.580 57.135 55.488 57.171 55.476 56.886

LPM3 52.213 64.350 54.026 64.951 53.203 64.381 52.454 63.737

Within the fixed proportion framework, we find that mean HE decreases strictly and significantly with

each decrease in the inclusion criterion for the risk measures ES 1%, ES 5% and ES 10%, LPM2 and LPM3.

Furthermore, for VaR 10%, we observe similar hedging performance from each (mixture) R-vine model. For

VaR 1%, both the 99% mixture R-vine and R-vine model obtain significantly higher HE than the other

mixture R-vine models.

Table 18: Average HE for the R-vine and mixture R-vine copula models in the fixed proportion framework. 99%, 98% and

95% indicate the inclusion criterion based on AIC for the mixture R-vine models.

R-vine Mixt 99% Mixt 98% Mixt 95%

Mean Median Mean Median Mean Median Mean Median

VaR 1% 22.718 22.567 22.734 22.631 22.344 22.246 21.455 20.119

VaR 5% 40.251 40.256 40.186 40.028 40.185 40.082 40.401 40.517

VaR 10% 43.506 44.308 43.534 44.437 43.515 44.348 43.525 44.262

ES 1% 23.590 24.246 23.570 24.652 23.096 23.654 22.433 20.832

ES 5% 32.432 33.566 32.400 33.670 32.321 33.545 32.017 33.682

ES 10% 36.984 37.661 36.964 37.660 36.952 37.723 36.911 37.771

LPM2 57.054 58.819 57.010 58.798 56.979 58.789 56.949 58.446

LPM3 64.549 70.460 64.348 70.365 64.205 70.350 63.929 69.396
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In conclusion, we find that the 99% mixture R-vine model achieves significantly higher HE than the other

models within the flexible hedging framework (see Table 26). Moreover, in the fixed proportion hedging

framework the R-vine model attains the highest HE for ES 5%, ES 10%, LPM2 and LPM3. Only for VaR

5% the 95% mixture outperforms the R-vine model. In general, we observe that the hedging performance

decreases when the inclusion criterion is set to 98% or lower. This suggests that the setting the inclusion

criterion to 99% is the sweet spot of the trade-off between adding additional copula types to define a variable

pair and adding copula types with a strong fit.

6 Conclusion

The importance and relevance of hedging oil and oil related products for oil refineries have increased in recent

years. In the last decade, with the rise of the vine copula, the modelling of such multi-product problems has

improved. Sukcharoen & Leatham (2017) found that the D-vine performed best for hedging the downside

risk of eight measures on a weekly basis within the flexible multi-commodity framework, while Liu et al.

(2017) examined that for the daily hedging the flexible multi-commodity hedging framework outperformed

the fixed proportion hedging framework based on a kernel copula model.

In our research, we evaluate three hedging strategies whether they can beat the naive hedge benchmark.

These hedging strategies are based on three hedging frameworks: the single commodity, the fixed proportion

and the flexible multi-commodity hedging framework. Within the latter two hedging frameworks, we examine

whether the R-vine, which allows for additional vine copula structures besides the C- and D-vine, performed

better than the C- and D-vine. Moreover, we propose a mixture R-vine copula model, which models bivariate

dependence structures by multiple copula types under the condition that these copulae have an equivalent

in-sample fit.

Our results show that the fixed hedge is the best hedging strategy, as it achieves the highest mean HE

significantly for 7 of the 8 downside risk measures, beating the naive hedge. Behind the fixed hedge, the

naive hedge achieves the highest average HE for the majority of the risk measures. Moreover, the single

hedge scores the lowest risk reduction for 6 of the 8 risk measures, making it the least preferred hedging

strategy for our problem.

In terms of vine copula models for the fixed proportion hedging framework, we find that the R-vine model

is significantly preferred over the other vine copulae for four of the downside risk measures, while for the

remaining four risk measures the hedging performance is indistinguishable for the D-, R- and mixture R-vine

model. In the flexible multi-commodity hedging framework, we conclude that our proposed mixture R-vine

model leads to significantly higher mean HE for all risk measures except the VaR risk measures.

Further analysis shows the benefit of modelling the dependency between all variables through vine copulae

with respect to only modelling the spot-futures pair through three bivariate copulae. We observe this

phenomenon in both the flexible hedging framework and the fixed proportion framework. Furthermore,
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we find that the application of the fixed proportion constraint boosts the hedging performance more than

drawing the samples from an R-vine instead of 3 paired copulae. Our study concludes that a single extreme

lower tail observation, such as hurricane Katrina, deteriorates the hedging performance of the single and

flexible hedge for the majority of the risk measures. Removing this observation from the estimation window

increased the mean HE of the single and flexible hedge significantly. Moreover, we find that adjusting

the rebalancing period from weekly to 4-weekly leads to similar results. By contrast, adjusting the draw

sample from 100, 000 to 10, 000 draws for the fixed hedge leads to significantly lower mean HE for every

risk measure except VaR 10%. Ultimately, we showed that lowering the AIC threshold below 99% generally

does not improve hedging performance for most risk measures.

A limitation of our study are that we did not derive the drivers of the hedging performance of our proposed

mixture R-vine model. As such, it would be interesting to study in further research why the mixture R-vine

model increased performance in the flexible hedging framework but not in the fixed proportion framework. A

related compelling starting point for future research would be the application and testing of mixture bivariate

copulae in a risk management setting. Herein, we would also further explore more thoughtful methods to

determine the inclusion criterion. Furthermore, we would like to investigate the hedging performance of

our models in other multi-product settings and extend the oil refinery problem with additional petroleum

products, such as kerosene and diesel which can be simultaneously produced from crude oil. Lastly, the

hedging results of the model in the near future are interesting, given the unprecedented price movements in

oil products since 2020.
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7 Appendix

A Copula types

We use the R package ’VineCopula’ for the calculation of the copula types. Moreover, we visualise the

copula types by simulation of observations in scatter plots in Figures 15 and 16. All copulae are defined

for a bivariate instance, as we only apply bivariate copulae (pair-copulae) in our research. Hereafter, we

list all copula types, the corresponding tail dependence and copula parameter bounds in Table 19 and 20.

Ultimately, we provide the CDFs of the copula types

Figure 15: Scatter plots of 3,000 random observations on bivariate copulae. From left to right: Independence copula, Gaus-

sian copula, Student-t copula, Clayton copula, Gumbel copula, Frank copula, Joe copula, BB1 copula and BB6 copula (all

with a Kendall’s τ̂ 0.8).
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Figure 16: Scatter plots of 3,000 random observations on bivariate copulae. From left to right: BB7 copula with a Kendall’s

τ̂ 0.8, BB8 copula, Tawn type 1 copula and Tawn type 2 copula with τ̂ 0.7

Table 19: Part 1 of evaluated copula families, the corresponding tail dependence and copula parameter bounds.

Copula type Tail Dependence LB1 UB1 LB2 UB2

1 Independence copula None - - - -

2 Gaussian copula None -1 1 - -

3 Student-t copula Both -1 1 2 Inf

4 Clayton copula LTD 0 28 - -

5 Gumbel copula UTD 1 17 - -

6 Frank copula None -35 35 - -

7 Joe copula UTD 1 30 - -

8 BB1 copula Both 0 7 1 7

9 BB6 copula UTD 0 6 1 8

10 BB7 copula Both 1 6 0 75

11 BB8 copula UTD 1 8 0.0001 1

12 Rotated Clayton copula 180° UTD 0 28 - -

13 Rotated Gumbel copula 180° LTD 1 17 - -

14 Rotated Joe copula 180° LTD 1 30 - -

15 Rotated BB1 copula 180° Both 0 7 1 7

16 Rotated BB6 copula 180° LTD 0 6 1 8

17 Rotated BB7 copula 180° Both 1 6 0 75

18 Rotated BB8 copula 180° LTD 1 8 0.0001 1
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Table 20: Part 2 of evaluated copula families, the corresponding tail dependence and copula parameter bounds.

Copula type Tail Dependence LB1 UB1 LB2 UB2

19 Tawn type 1 copula UTD 1 Inf 0 1

20 Rotated Tawn type 1 copula 180° LTD 1 Inf 0 1

21 Tawn type 2 copula UTD 1 Inf 0 1

22 Rotated Tawn type 2 copula 180° LTD 1 Inf 0 1

23 Rotated Clayton copula 90° None - - - -

24 Rotated Gumbel copula 90° None - - - -

25 Rotated Joe copula 90° None - - - -

26 Rotated BB1 copula 90° None - - - -

27 Rotated BB6 copula 90° None - - - -

28 Rotated BB7 copula 90° None - - - -

29 Rotated BB8 copula 90° None - - - -

30 Rotated Clayton copula 270° None - - - -

31 Rotated Gumbel copula 270° None - - - -

32 Rotated Joe copula 270° None - - - -

33 Rotated BB1 copula 270° None - - - -

34 Rotated BB6 copula 270° None - - - -

35 Rotated BB7 copula 270° None - - - -

36 Rotated BB8 copula 270° None - - - -

A.1 Gaussian copula

The CDF of the Gaussian copula is defined as,

C(u1, u2; θ) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√
1− θ

exp

{
−s2 − 2θst+ t2

2(1− θ2)

}
dsdt,

where θ = ρ ∈ (−1, 1) and Φ−1 is the inverse of the normal distribution function.

A.2 Student-t copula

The CDF of the Student-t copula is defined as the inverse of,

Tv(u1, u2; θ) = Tv(u1, u2; s) +

∫ arcsin(θ)

sπ
2

(
1 +

u2
1 + u2

2 − 2u1u2sin(t)

vcos2(t)

)
dt,

where θ ∈ (−1, 1), s = sign(θ) and v > 0 represents the degree of freedom. Furthermore, Tv(u1, u2; s) is

defined as,

Tv(u1, u2; s) =


Tv(min{u1, u2}), if s = 1

max{0, Tv(b1)− Tv(−b2)}, if s = −1.
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A.3 Clayton copula

The CDF of the Clayton copula is defined as,

C(u1, u2; θ) = (u−θ
1 + u−θ

2 − 1)−
1
θ ,

if u−θ
1 + u−θ

2 − 1 < largevalue to prevent overflow, otherwise min(u1, u2).

A.4 Gumbel copula

The CDF of the Gumbel copula is defined as,

C(u1, u2; θ) = exp

{
−
[
(−log u1)

θ + (log u2)
θ
]− 1

θ

}
,

for δ > 1.

A.5 Joe copula

The CDF of the Joe copula is defined as,

C(u1, u2; θ) = 1−
(
ūθ
1 + ūθ

2 − ūθ
1ū

θ
2

) 1
θ ,

for δ ≥ 1 and ū = 1− ū.

A.6 Frank copula

The CDF of the Frank copula is defined as,

C(u1, u2; θ) = −1

δ
log

(
1− (1− e−θu1)((1− e−θu2)

1− e−θ

)
.

A.7 BB1, BB6, BB7, BB8 copulae

The BB1, BB6, BB7 and BB8 copulae are also known as the Clayton-Gumbel, Joe-Gumbel, Joe-Clayton

and Joe-Frank copula, respectively. These copulae are instable for large parameters, therefore upper bounds

are set at approximately 7. The CDF of the BB1 copula is defined as

C(u1, u2; θ, δ) = (1 + ((u−θ
1 − 1)δ + ((u−θ

2 − 1)δ)
1
δ )−

1
θ ,

where it becomes a Clayton copula for δ = 1 and a Gumbel copula for θ = 0.

The CDF of the BB6 copula is defined as

C(u1, u2; θ, δ) = 1− (1− exp(−[(−log(1− ūθ
1))

δ + (−log(1− ūθ
2))

δ]
1
δ ))

1
θ ,

where θ, δ ≥ 1 and ū = 1− ū. The CDF of the BB7 copula is defined as

C(u1, u2;λL, λU ) = 1− (1− [[1− u1)
−κ]−γ + [1− (1− u2)

κ]−γ − 1]−
1
γ )

1
κ ,
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where γ is a function of the lower tail dependence coefficient λL and κ is a function of the upper tail

dependence coefficient λU . The parameters are defined as follows γ = − 1
log2(λL) and κ = − 1

log2(2−λU ) . Both

tail dependence coefficients are within the range (0, 1).

The CDF of the BB8 copula is defined as

C(u1, u2; θ, δ) = δ−1
(
1− [1− (1− (1− δ)θ)−1(1− (1− δu1)

θ)(1− (1− δu2)
θ]

1
θ

)
,

where θ ≥ 1 and δ ∈ (−1, 1). The BB8 copula converges to the Frank copula for θ− > ∞ and a Joe copula

for δ = 1.

A.8 Tawn type 1 & 2 copulae

The Tawn copulae are an extension of the Gumbel copula and known as extreme value copulae with 3 copula

parameters (Tawn (1988)). However, our copulae are reduced to 2 parameter copulae.

C(u1, u2; θ1, θ2) = C(u1, u2)
A(w),

w =
log(u1)

log(u1u2)
,

A(t) = (1− θ2)(1− t) + (1− θ1)t+ [(θ1(1− t))δ + (θ2t)
δ]

1
δ ,

where θ1, θ2 ∈ [0, 1] and δ ≥ 1. The Tawn type 1 (2) refers to the CDF where θ1 = 1 (θ2 = 1).

A.9 Rotated copulae

We apply the 90°, 180° and 270° rotated copula types of the earlier mentioned copula types f , as follows

Crotated-180°,f (u1, u2; θ) = u1 + u2 − 1 + Cf (1− u1, 1− u2; θ),

Crotated-90°,f (u1, u2; θ) = u2 − Cf (1− u1, u2;−θ),

Crotated-270°,f (u1, u2; θ) = u1 − Cf (u1, 1− u2;−θ).

B Minimum Spanning Tree algorithm

To find the tree with the maximum sum of dependence measured with Kendall’s τ , Dissmann et al. (2013)

propose the minimum spanning tree (MST) algorithm of Prim (1957). For each tree we assess the possible

edges and estimate the corresponding empirical Kendall’s τ̂ again as described in Section 4.3.2. To align our

objective of finding the graph with the highest cumulative Kendall’s τ with MST, we compute and assign

weight wi,j = 1− τ̂i,j to edge {i, j}.

The MST algorithm for tree T = (N,E), where N is the node set consisting of 6 nodes representing the

6 variables in T1 and E represents the edge set follows:
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• Initialise by randomly picking a node n1 in node set N ;

• Identify all neighboring nodes to n1 and add edge connected to node n2 with the smallest weight to

current tree T ;

• Repeat by identifying all neighbors of nodes already in T and add edge with the smallest weight

connected to an isolated node. An isolated node is a node not yet connected with another edge;

• Iterate until all nodes are covered by T .

Once a lower tree Tr is specified in vine V , the algorithm for Tr+1 becomes simpler, as the available

nodes for Tr+1 are the edges in Tr. This limits the number of possible trees Tr+1.
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D Hedge effectiveness statistics

Table 21: Additional HE statistics for Table 9. Left hand side shows the number of times (in %) a hedge strategy is in rank

4 (lowest HE) to 1 (highest HE) over the whole dataset for each risk measure. Right hand side presents the average HE

difference to the strategy with the highest HE for the samples with the corresponding rank.

VaR 1% Naive Single Fixed Flexible VaR 1% Naive Single Fixed Flexible

4 29 34 18 19 4 5.467 9.490 4.656 5.896

3 32 20 22 26 3 4.875 4.404 3.424 4.213

2 24 21 23 32 2 3.142 1.735 1.902 2.434

1 15 24 37 23 1 - - - -

VaR 5% Naive Single Fixed Flexible VaR 5% Naive Single Fixed Flexible

4 34 28 14 24 4 5.337 5.970 4.209 4.741

3 22 31 18 29 3 3.618 3.323 2.971 3.246

2 24 21 31 25 2 1.146 1.559 2.228 1.924

1 20 20 37 23 1 - - - -

VaR 10% Naive Single Fixed Flexible VaR 10% Naive Single Fixed Flexible

4 19 25 19 36 4 4.429 4.156 4.254 4.760

3 21 27 27 25 3 2.837 2.624 2.757 2.729

2 29 27 28 15 2 1.258 1.348 1.368 1.559

1 31 21 25 24 1 - - - -

ES 1% Naive Single Fixed Flexible ES 1% Naive Single Fixed Flexible

4 36 25 12 27 4 9.507 22.070 6.327 16.292

3 21 30 27 22 3 8.404 8.624 4.674 5.221

2 20 22 31 27 2 3.191 2.094 3.277 3.649

1 24 23 30 23 1 - - - -

ES 5% Naive Single Fixed Flexible ES 5% Naive Single Fixed Flexible

4 27 39 05 29 4 3.494 4.142 1.995 3.280

3 24 35 12 29 3 3.542 2.226 1.410 1.942

2 22 10 42 26 2 0.478 0.940 0.639 1.614

1 28 16 41 15 1 - - - -

ES 10% Naive Single Fixed Flexible ES 10% Naive Single Fixed Flexible

4 26 28 06 40 4 2.681 2.626 1.255 1.983

3 25 37 12 26 3 1.778 1.529 0.947 1.326

2 18 21 40 22 2 0.311 0.716 0.527 0.720

1 31 13 43 13 1 - - - -

LPM2 Naive Single Fixed Flexible LPM2 Naive Single Fixed Flexible

4 27 27 06 40 4 2.778 3.921 0.811 3.283

3 26 35 15 25 3 2.016 2.550 1.292 1.728

2 17 23 36 24 2 0.389 0.574 0.687 0.777

1 31 15 43 11 1

LPM3 Naive Single Fixed Flexible LPM3 Naive Single Fixed Flexible

4 23 35 08 34 4 6.535 14.447 1.983 28.708

3 27 28 19 25 3 4.695 16.764 4.023 5.885

2 22 18 30 29 2 1.805 1.048 2.470 2.473

1 28 19 42 11 1 - - - -
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E Additional information sensitivity analysis

E.1 Impact of vine copulae and the fixed proportion constraint

Table 22: T-statistics from two-tailed paired t-test, comparing the HE based on 3 paired copulae without and with fixed

proportion constraint (3-Flex and 3-Fixed, respectively) and the HE based on R-vine copula model without and with fixed

proportion constraint (R-Flex and R-Fixed, respectively). The positive (negative) t-statistic indicates a better performance

for model left (top) of the statistic. The asterisks, *, ** and ***, represent the rejection of the equal hedging effectiveness at

10%, 5% and 1% significance, respectively.

VaR 1% 3-Fixed R-Flex R-Fixed

3-Flex -9.298*** -10.860*** -12.229***

3-Fixed - -2.145** -9.601***

R-Flex - - -6.178***

VaR 5% 3-Fixed R-Flex R-Fixed

3-Flex -10.385*** -4.866*** -12.802***

3-Fixed - 4.092*** -3.278***

R-Flex - - -9.335***

VaR 10% 3-Fixed R-Flex R-Fixed

3-Flex -4.908*** 5.145*** -1.632

3-Fixed - 8.183*** 3.210***

R-Flex - - -7.216***

ES 1% 3-Fixed R-Flex R-Fixed

3-Flex -12.511*** -2.986*** -13.042***

3-Fixed - 9.012*** -8.376***

R-Flex - - -12.968***

ES 5% 3-Fixed R-Flex R-Fixed

3-Flex -20.047*** -5.506*** -20.554***

3-Fixed - 10.385*** -13.274***

R-Flex - - -24.547***

ES 10% 3-Fixed R-Flex R-Fixed

3-Flex -22.831*** -1.643 -26.602***

3-Fixed - 11.987*** -11.602***

R-Flex - - -25.943***

LPM2 3-Fixed R-Flex R-Fixed

3-Flex -18.892*** 0.698 -24.589***

3-Fixed - 13.209*** -14.157***

R-Flex - - -21.759***

LPM3 3-Fixed R-Flex R-Fixed

3-Flex -17.480*** 6.197*** -19.692***

3-Fixed - 12.214*** -12.970***

R-Flex - - -13.509***
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E.2 Additional information excluding the hurricane Katrina observation in es-

timation

Figure 20: Out-of-sample hedging effectiveness (HE) in percentages for 4 hedging strategies where the observation after hur-

ricane Katrina is removed from the estimation windows. The graph displays the reduction in ES 1% (top) and LPM2 (bot-

tom).
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Table 23: T-statistics from two-tailed paired t-test, comparing performance of Table 9 including hurrican Katrina in esti-

mation to the performance in Table 12 of the single, fixed and flexible hedge. The positive (negative) t-statistic indicates a

better performance for estimation excluding (including) the observation of hurricane Katrina. The values in brackets repre-

sent the p-values. The asterisks, *, ** and ***, represent the rejection of the equal hedging effectiveness at 10%, 5% and 1%

significance, respectively.

Single Fixed Flexible

VaR 1% 2.211** (0.027) 0.555 (0.579) 6.018*** (0.000)

VaR 5% 0.829 (0.407) -0.837 (0.403) -1.048 (0.295)

VaR 10% 0.286 (0.775) -0.035 (0.972) 2.390** (0.017)

ES 1% 12.986*** (0.000) -3.445*** (0.001) 14.007*** (0.000)

ES 5% 14.002*** (0.000) -1.327 (0.185) 13.328*** (0.000)

ES 10% 10.676*** (0.000) 1.993** (0.046) 11.401*** (0.000)

LPM2 15.187*** (0.000) 4.456*** (0.000) 14.348*** (0.000)

LPM3 15.658*** (0.000) -0.262 (0.793) 13.036*** (0.000)

Table 24: T-statistics from two-tailed paired t-test, comparing 4 hedging strategies in pairs over the dataset without the Ka-

trina observation in the estimation windows, which consist of the strategies to the left and directly above the statistic. The

positive (negative) t-statistic indicates a better performance for the model left (top) of the statistic. The asterisks, *, ** and

***, represent the rejection of the equal hedging effectiveness at 1%, 5% and 10% significance, respectively.

VaR 1% Single Fixed Flexible

Naive 2.825*** -13.127*** -10.032***

Single - -11.648*** -10.444***

Fixed - - 3.912***

VaR 5% Single Fixed Flexible

Naive 0.996 -8.737*** -3.178***

Single - -12.156*** -4.768***

Fixed - - 7.554***

VaR 10% Single Fixed Flexible

Naive 3.235*** 1.886* 7.000***

Single - -1.556 4.086***

Fixed - - 5.754***

ES 1% Single Fixed Flexible

Naive 3.967*** -12.666*** -8.973***

Single - -9.308*** -9.335***

Fixed - - 2.848***

ES 5% Single Fixed Flexible

Naive 3.541*** -18.232*** -3.508***

Single - -16.916*** -5.783***

Fixed - - 16.752***

ES 10% Single Fixed Flexible

Naive 3.553*** -16.212*** -0.776

Single - -24.572*** -3.799***

Fixed - - 18.403***

LPM2 Single Fixed Flexible

Naive -0.699 -16.959*** -5.089***

Single - -15.61*** -3.558***

Fixed - - 11.357***

LPM3 Single Fixed Flexible

Naive 4.261*** -13.956*** -3.566***

Single - -10.163*** -6.367***

Fixed - - 8.771***
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E.3 Monthly rebalancing

Table 25: T-statistics from two-tailed paired t-test, comparing the weekly rebalancing performance of Table 9 to the 4-weekly

rebalancing performance in Table 13 of the single, fixed and flexible hedge. The positive (negative) t-statistic indicates a bet-

ter performance for weekly (monthly) rebalancing. The values in brackets represent the p-values. The asterisks, *, ** and

***, represent the rejection of the equal hedging effectiveness at 10%, 5% and 1% significance, respectively.

Single Fixed Flexible

VaR 1% -0.367 (0.713) -0.582 (0.561) -1.037 (0.300)

VaR 5% -0.805 (0.421) 1.035 (0.301) -1.269 (0.205)

VaR 10% 1.197 (0.231) 0.278 (0.781) -0.721 (0.471)

ES 1% -2.004** (0.045) 1.323 (0.186) 0.063 (0.950)

ES 5% -1.629 (0.103) 0.612 (0.541) -1.916* (0.056)

ES 10% 0.230 (0.818) 0.030 (0.976) -1.395 (0.163)

LPM2 -1.250 (0.212) -0.182 (0.856) 0.854 (0.393)

LPM3 -1.608 (0.108) -1.579 (0.115) 2.654*** (0.008)
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E.4 Inclusion criterion

Table 26: T-statistics from two-tailed paired t-test, where the positive (negative) t-statistic indicates a better performance

for the model left (top) of the statistic. Left hand side provides the t-statistic based on the HE in flexible multi-commodity

hedging framework, whereas the right hand side shows the HE in the fixed proportion hedging framework. The asterisks, *,

** and ***, represent the rejection of the equal HE at 10%, 5% and 1% significance, respectively.

VaR 1% 98% 99% R-vine 98% 99% R-vine

95% -9.812*** -13.32*** -12.157*** -9.086*** -11.476*** -11.484***

98% - -5.732*** -4.410*** - -4.961*** -4.434***

99% - - 0.920 - - 0.202

VaR 5% 98% 99% R-vine 98% 99% R-vine

95% 2.213** 3.082*** 3.593*** 4.190*** 4.107*** 2.626***

98% - 1.001 2.008** - -0.020 -1.235

99% - - 1.107 - - -1.390

VaR 10% 98% 99% R-vine 98% 99% R-vine

95% 1.265 0.611 0.866 0.240 -0.220 0.438

98% - -0.633 -0.352 - -0.492 0.244

99% - - 0.281 - - 0.693

ES 1% 98% 99% R-vine 98% 99% R-vine

95% -8.281*** -12.897*** -8.041*** -6.074*** -9.815*** -9.526***

98% - -7.449*** -1.979** - -6.457*** -5.638***

99% - - 4.851*** - - -0.310

ES 5% 98% 99% R-vine 98% 99% R-vine

95% 1.689* -1.195 -0.499 -9.629*** -11.008*** -11.651***

98% - -4.363*** -2.761*** - -4.850*** -6.089***

99% - - 1.166 - - -2.402**

ES 10% 98% 99% R-vine 98% 99% R-vine

95% 1.479 -0.809 1.706* -3.429*** -4.286*** -5.764***

98% - -3.133*** 0.847 - -1.493 -3.681***

99% - - 4.173*** - - -2.691***

LPM2 98% 99% R-vine 98% 99% R-vine

95% -0.416 -3.147*** 1.743* -2.193** -4.534*** -7.538***

98% - -3.825*** 2.633*** - -3.228*** -6.733***

99% - - 6.262*** - - -4.600***

LPM3 98% 99% R-vine 98% 99% R-vine

95% -5.122*** -7.884*** 0.803 -5.592*** -8.119*** -11.769***

98% - -4.089*** 3.463*** - -4.360*** -8.793***

99% - - 5.922*** - - -5.902***
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