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Abstract

In this thesis, I have designed an unsupervised GNN for the k-coloring problem where the message-
passing part of the design is inspired by [VCC+17] and the loss function is based on [SBZK22]. Instead of
training only on the usual neural network parameters, I have also allowed the algorithm to train on the
input features, which has to my knowledge not yet been done before. A new set of trainable parameters
needs to be trained for each graph. The best performing method of the algorithm is able to find optimal
colorings for the mycielski graphs and is able to find some optimal colorings for the non-mycielski graphs
but can not match GNN models recently proposed in the literature for the k-coloring problem. Next,
training on the features improves the performance of the algorithm for most graphs. Lastly, I have shown
that the algorithm can be initialized using either a heuristic or a relaxation and that the best performing
method of the algorithm is able to improve on almost all the starting points provided by the heurisics
and on all starting points provided by the relaxation.
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1 Introduction

With the continuing improvements in computational power, machine learning has become an often-used
tool to solve various problems in a range of different fields such as image recognition and natural language
processing. In recent years machine learning has also been applied to combinatorial optimization problems
with varying success. Machine learning can assist in two ways, it can either replace heavy computation by
using some learned fast approximations, or it can explore the space of decisions and try to learn out of this
experience the best-behaving policies [BLP21]. In this thesis, this first way is used to help solve the decision
version of the graph coloring problem (GCP). Namely, I propose and test an unsupervised GNN that works
as a heuristic and tries to find a feasible k-coloring of the graph.

The goal of the GCP is to color a graph, using the minimum number of colors, in such a way that no
two adjacent vertices are colored with the same color. The k-coloring problem, where the question is whether
a graph allows a feasible coloring using k colors, is the decision version of the GCP and can, by decreasing k
until the decision problem returns a no-decision, be used to minimize the number of colors needed to color a
graph. The GCP originates from an old map drawing problem where the question was how many colors are
needed to assign all counties of England a color such that no two neighboring counties are assigned the same
color. Nowadays the GCP remains very interesting as its applications are widespread, many problems such as
scheduling problems [MHH08], register allocation problems [CAC+81], and frequency assignment problems
[PL96] can be formulated as a GCP. However, even with state-of-the-art methods finding optimal solutions
for these problems remains very difficult, not the least because the GCP is an NP-hard problem [Kar72].
Given that the GCP is NP-hard, designing an algorithm that provides optimal solutions in a reasonable time
is improbable. A fast heuristic, however, that nears the optimal solutions is more likely to be found. If this
heuristic also improves on the results of the state-of-the-art methods, problems in many fields could be solved
more efficiently and therefore save a lot of time and costs.

This thesis suggests the above described heuristic. I will use an unsupervised graph neural network (GNN),
where the architecture of the GNN is based on a combination of two papers. The unsupervised loss function
is based on [SBZK22] and the rest of the design is based on the architecture of [VCC+17]. Instead of using
existing features for the initialization as is done in [VCC+17], the features are initialized randomly as is done
in [SBZK22], [LPAL19], and[LLM+22]. However, where these papers do not allow their GNNs to train on
these randomly initialized features and instead train on the neural network parameters, I will train my GNN
both on the randomly initialized features and on the neural network parameters. I do not allow the algorithm
to train on the features and on the parameters at the same time but instead switch between training on the
features and training on the parameters.

I use an unsupervised approach for two reasons. First, an unsupervised approach does not need labeled
training graphs. Second, the loss function of an unsupervised approach is more intuitive, we can simply
derive the loss by summing the (partly) conflicting colors for adjacent nodes. In a supervised approach
we are essentially training the algorithm to only find a specific solution thereby disregarding all the other
solutions, which are either permutations of this solution or are entirely different solutions. I suggest to
not only train on the neural network parameters but also on the features. Normally the starting point,
i.e., the input of a GNN, is fixed. For unsupervised NNs the input features are usually chosen randomly,
[LLM+22], [SBZK22]. However, a better choice of the starting point could improve the performance of a
NN, as [SBK21] remarks. That is why in this thesis I have decided to change the starting point in order to
find potentially better solutions than a random starting point would provide. The training on the features is
the novice part of this design and has to my knowledge not yet been tried for GNNs in application to the GCP.

The goal of this thesis is to examine how well such an extended unsupervised approach performs. In order
to do this I will compare the outcomes of my proposed algorithm against several other algorithms. Another
aspect of this thesis is to explore if the machine learning approach can be combined with already existing
methods, I will therefore combine the algorithm with various heuristics, such as the Recursive Largest First
algorithm [Lei79], the TABUCOL algorithm [HdW87], and with a linear programming relaxation [MDZ08],
to see if the algorithm can improve upon the solution provided by these heuristics or relaxation. Next, I also
try to turn the final colorings of the algorithm that are infeasible into feasible colorings by either using the
TABUCOL algorithm, or by a self-designed color correction heuristic based on the RLF algorithm [Lei79].
To sum up, this thesis has three main research goals.
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1. To construct an unsupervised NN that would work as a heuristic that repeatedly solves the decision
version of the GCP

2. To improve the performance of the obtained NN by optimizing over the features vector

3. To combine the obtained NN with heuristics for the initialization and for turning infeasible solution
into feasible solutions.

The thesis is structured as follows. In section 2, I discuss the relevant literature relating to the GCP and
GNNs and provide necessary background information on (G)NNs. In section 3, I discuss the data used. Next,
in section 4, the methodology is explained. Thereafter, in section 5, I present the results. And finally, section
6, concludes the findings and gives an outlook for possible future research.

2 Background & Literature Review

The graph coloring problem is a well-known problem in literature, and many different approaches have been
tried to solve this problem. However, the use of machine learning for the GCP has not yet been deployed that
often. In this section, both the more classical approaches and the more modern approaches using machine
learning will be discussed. First, in subsection 2.1, I will give a general description and formulation of the
problem. Next, in subsection 2.2, I will relate some heuristic approaches to this study. This will be followed
by an introduction into (graph) neural networks and their specific architectures in subsection 2.3. And lastly,
I will discuss a few machine learning approaches for the GCP in subsection 2.4.

2.1 Formulations

This thesis aims to solve the decision version of the GCP using a machine learning approach. The goal of
the GCP is to find a coloring using the minimum number of colors. That is, to minimize the number of
colors used to assign all vertices of a connected undirected graph a color such that no two adjacent vertices
are assigned the same color. The smallest integer for which a feasible solution can be found is called the
chromatic number (χ). The decision version, the k-coloring problem, of the GCP is: whether or not a graph
G admits a feasible assignment of k colors. Here the goal is to check whether or not a graph can be colored
using k-colors. Using the k-coloring problem the minimization version of the GCP can be solved. Starting
from an upper bound k, obtained via a heuristic, or in the worst case by k = |V |, a series of k-coloring
problems can be solved until the k-coloring problem returns a ”no” result. To guarantee, however, that the
chromatic number is found, the ”no” result of the k-coloring problem either needs to be solved exact, or the
k for the ”yes” result should match a lower bound on the chromatic number. Since in this thesis a heuristic
is used, unless some known lower bounds are met, it can not be guaranteed that the lowest value k, for which
the algorithm is able to find a feasible solution, is indeed the chromatic number. The minimization version of
the GCP can be formulated in many different ways. Next, I present the formulation obtained from [HLS09].
Let G = (V,E) be a graph, and assume that the graph can be colored with at least n colors. Two vertices
v, w ∈ V are said to be adjacent if they are such that (v, w) ∈ E. Next, let yh = 1 if color h = 1, . . . , n is
used and let xih = 1 if vertex i receives color h. Then, the formulation is as follows:

Min.

n∑
h=1

yh (1)

s.t.

n∑
h=1

xih = 1 i = 1, . . . , |V | (2)

xih + xjh ≤ yh (i, j) ∈ E, h = 1 . . . , n (3)

xih ∈ {0, 1} i = 1, . . . , |V |, h = 1 . . . , n (4)

yh ∈ {0, 1} h = 1 . . . , n (5)

As [MT10] notes, however, this formulation has two major drawbacks which render it practically useless.
First, due to the unknown chromatic number χ beforehand, n has to equal an upper bound which will be,
in almost all cases, higher than k. For a solution, then, that uses k colors there are

(
n
k

)
equivalent solutions,

since the model does not distinguish between colors. All these equivalent solutions can again be permutated
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in k! ways, resulting in
(
n
k

)
k! equivalent solutions for a solution of value k. Second, the linear programming

relaxation of the model, obtained by (1)-(5) by replacing (4) and (5), respectively, with

xih ≥ 0, i ∈ V, h ∈ 1, ..., n (6)

yh ≥ 0, h ∈ 1, ..., n (7)

is extremely weak. A feasible solution of value 2, valid for any graph, is simply xi1 = xi2 = 1/2, i ∈ V ; y1 =
y2 = 1;xih = 0; yh = 0, i ∈ V, h > 2. To strengthen this formulation, a few extra constraints can be added
as done by [MDZ08]. To avoid the symmetry of the classical model and eliminate equivalent solutions, they
add the following two constraints to the equations (1)-(5).

xih = 0 ∀i ∀h ≥ i+ 1 (8)

xih ≤
i−1∑

k=h−1

xkh−1 ∀i ∈ V \{1} ∀2 ≤ h ≤ i− 1 (9)

Here, none of the symmetrical k-colorings using colors with labels greater than k are considered. Further-
more, all permutations of sets of the same cardinality are eliminated. As the linear programming relaxation
provides a non-integer solution of the GCP, it might be an interesting starting point for the GCP. Therefore,
I will use the linear programming relaxation consisting of equations (1-3) and (6-9) as a starting point of the
algorithm to see if this can help the performance of the algorithm. How the algorithm is initialized using this
starting point is described in 4.3.1.

2.2 Heuristic approaches

Since finding the chromatic number is NP-Hard [Kar72], exactly solving the minimization problem of the GCP,
equations (1-5), is practically infeasible for most instances. Therefore, through the years, many heuristics
approaches have been developed to (successfully) color graphs. I have chosen to highlight three of these
heuristics, DSatur [Bre79], Recursive Largest First (RLF) [Lei79], and TABCUOL [HdW87]. DSatur, because
of its simplicity and its efficiency O(n2), which makes it useful as an upper bound on the chromatic number.
RLF, because of the multiple ways it can be combined with the proposed algorithm of this thesis. And
TABUCOL, because, first, it is one of the best performing heuristics and thus is useful as a comparison to
the proposed algorithm of this thesis. And second, because it is an improvement heuristic and therefore can,
without many adaptations, be used to try to turn infeasible colorings of the proposed algorithm into feasible
colorings. In the paragraphs below, I will first explain the general workings of the algorithm and thereafter
discuss how and where these heuristics are used in this thesis.

DSatur [Bre79] The DSatur-algoritm uses the saturation degree of the vertices, i.e. the number of different
colors a vertex is adjacent to, to determine which vertex to color next. This algorithm has complexity O(n2)
and is proven optimal for bipartite graphs [Bre79]. The algorithm consists of five steps:

1. Arrange the vertices by decreasing order of degrees

2. Color a vertex of maximal degree with color 1

3. Choose a vertex with a maximal saturation, if there is a tie, choose any such vertex of maximal degree
in the uncolored subgraph

4. Color the chosen vertex with the least possible (lowest numbered) color

5. If all the vertices are colored, stop. Otherwise, return to 3.

Since the DSatur-algorithm finds feasible solutions for every graph and is very efficient in doing so, I have
chosen to use this algorithm as an upperbound for the GCP and use the number of colors the DSatur-
algorithm needs as the starting value of k for the algorithm used in this thesis. The pseudcode of the Dsatur
algorithm can be found in the appendix B pseudocode 4.
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RLF [Lei79] Another influential algorithm is the Recursive Largest First (RLF) algorithm [Lei79]. This
algorithm also colors the graph vertex for vertex but selects the vertex which needs to be colored next in a
different way. The RLF algorithm aims to construct independent sets. The underlying concept behind this is
that every vertex in an independent set can be assigned the same color, since a vertex in an independent set
is not adjacent to any of the other vertices in the independent set. To color the graph with the least number
of colors, the RLF algorithm tries to subdivide all the vertices of the graph in as few independent sets as
possible, because the number of independent sets equals the number of colors needed to color the graph. To
construct these independent sets, such that vertices are subdivided efficiently, the following should be done
according to RLF algorithm:

1. Select the vertex of maximal degree in the graph and create a set S1.

2. Next from all vertices not adjacent to S1, pick the vertex such that the degree of the vertices in the
set of uncolored nodes not adjacent to any colored node is maximal in the set of uncolored vertices
adjacent to S1. Ties are, if possible, broken by choosing the node that has minimal degree in the set of
uncolored nodes not adjacent to the independent set.

3. If the set of uncolored nodes not adjacent to S1 is empty, color all the vertices in S1 with the same
color and exclude these vertices S1 from the graph, and start a new set S2 and continue the recursion.
Do this until all vertices are assigned a color

I will exploit the use of independent sets by the RLF-algorithm when turning an infeasible coloring into a
feasible coloring and color the subgraph consisting of the improperly colored nodes and their edges, using
an adapted version of the RLF-algorithm. In subsection 4.4.1 this is explained in more detail. I will also
use the RLF-algorithm as a starting point of the algorithm proposed in this thesis. Since the colorings of
the RLF-algorithm are always feasible, I will remove one color from the solution and provide this infeasible
solution as a starting point of the proposed algorithm and aim to color the graph in question with one color
less than the number of colors the RLF-algorithm used, see subsection 4.3 for more details.

TABUCOL [HdW87] Both of the previous two heuristics mentioned are constructive heuristics. TABU-
COL [HdW87] on the other hand, uses an improvement heuristic in the form of tabu search. In contrast
to the previous two heuristics, in this approach, a target chromatic number needs to be provided, for which
the algorithm tries to find a feasible coloring. The TABUCOL algorithm, therefore, does not solve the mini-
mization version of the GCP but rather answers the k-coloring problem, using a heuristic approach, just as
is tried in this thesis. Similar to the RLF approach, the TABUCOL algorithm aims to generate independent
sets of vertices. The TABUCOl algorithm is initialized by dividing the vertices over k sets, next the objective
function is defined as the number of edges for which both endpoints are in the same set. If the objective
value becomes zero, a feasible k-coloring is found. Now, until the objective reaches zero or the maximum
number of iterations is met, the following steps are performed:

1. Generate a fixed number of neighbors as follows: select a random vertex from the set of edges for which
both endpoints are in the same set, and move this vertex to a different set

2. Evaluate the objective functions for the neighbors and pick the best one and move to this neighbor.
After the move is made, this move back becomes tabu for some iterations.

Since the TABUCOL algorithm is an improvement heuristic and is also used to solve the k-coloring problem, it
can quite easily be used to improve the resulting infeasible colorings of my proposed algorithm, by initializing
the TABUCOL algorithm using the infeasible colorings (subsection 4.4.2). Similarly, the infeasible colorings
of the TABUCOL algorithm can also be used to initialize my proposed algorithm (subsection 4.3.). It will
be quite interesting to see whether or not both methods, TABUCOL and my proposed algorithm, are able
to improve the infeasible coloring of the other method, since this would give an indication of which method
is stronger.

2.3 Introduction into (graph) neural networks

In this section, I will first introduce the basics of a Neural Network. After that, I will introduce a subgroup
of NN architectures, Graph Neural Networks, and explain the architecture behind a GNN in more detail.
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2.3.1 Neural Network

I retrieved the information of this section from the lecture slides of the course Machine Learning and I used
the paper [GK11].

Let x describe the input features vector and let y describe the output vector. An artificial neural net-
work (NN) is a function from x to y, that is inspired by the workings of a biological neural network. A
biological neural network roughly works in the following way:

• The brain gets some stimulus from outside the brain

• The receptors translate this stimulus to various signals

• The neural net processes these signals

• The effectors translate these signals into a response

The neural net thus transforms some stimulus into a response. The same is done for an artificial neural
network. An input, which can be various kinds of data, is transformed with a certain goal, the response, in
mind. This goal can be classification, for example, what is pictured on an image, or the goal can be to predict,
for example, who will win the premier league? Or the goal can be something else. The input x and the output
y, thus can be of an entirely different class, the input can be a matrix, where every index corresponds to the
color of a pixel, and the output then can be a description of the image. How does an artificial neural network
do this? This is done by using processing elements. A processing element similar to a neuron in a biological
neural network, can accumulate signals, aggregate these signals, transform this aggregate, and sent out the
transformed aggregate. Multiple processing elements together form a layer. Processing elements of different
layers are connected to each other and form a directed graph, where the nodes are the processing elements
and the edges are the connections between the processing elements. Multiple layers together form a neural
network. Usually signals from a previous layer first undergo an activation function, depending on the design
this can be a function where a threshold value needs to be met in order for the signal to be processed, or
the activation function only dampens/strengthens the signal. An activation function can be very useful to
dampen noise in the network and ensure that only strong signals are processed. The processing elements
make use of a few parameters between accumulating the information of the previous layer and sending the
transformed signals to the next layer. These parameters are of key importance for the network as these can
be adapted and therefore allow the neural network to perform better. These parameters usually consist of
some weight parameters, which are multiplied with the incoming signals, and some bias parameters, which
are added to the incoming signals. In Equation (10) a transformation is shown for one of the processing
elements, j, of layer i. Here, k represents the connections to the previous layer, the β′s are the weight
parameters, h represents the activation function, and aj,k(x

i−1
k ) represent the value of the activation.

xi
j =

K∑
k

βi−1
j,k + βi−1

j,k h(aj,k(x
i−1
k )) (10)

Usually, a neural network consists of three types of layers. An input layer, hidden layers, and an output layer.
The input layer is just like the receptors in the biological neural network. It translates the data such that it
can be processed by the neural network. The hidden layer processes and transforms the data using functions
similar to Equation (10). The output layer is just like the effectors in the biological brain and translates the
output of the hidden layers into the desired form of the output, either being a prediction, classification, or
something else. An overview of a neural network is presented in Figure 1. In this figure, all the nodes of
layer i are connected to all the nodes of layer i + 1 this does, however, not need to be the case, depending
on the goal of the problem it might be advantageous to only connect certain processing elements to each other.

A key component of a NN is the training. The various parameter of the network, such as the β′s de-
scribed above, need to be trained, in other words, estimated, in order for the NN to function as intended.
In order to update the parameters, first the loss, in other words, the objective function to minimize or
maximize during the training, of the current parameters needs to be determined. There are three different
ways that are normally used to determine the loss of a NN: supervised learning, unsupervised learning, and
reinforcement learning. For supervised learning, the data used for training consists of both the input, x,
and the output, y. The x is used as the input of the algorithm and the output of the algorithm ŷ is used
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to calculate the loss with respect to y. Thus, in supervised learning, the loss function indicates how dif-
ferent the output of the algorithm is from the intended output. For unsupervised learning, the data only
consists of the input, x. The x is again used as the input of the algorithm but the loss is calculated by
evaluating the fitness of the output using a target expression tailored to the problem. For reinforcement
learning, the goal of the network is to accurately predict the action space. The input is again x but the loss
is calculated by comparing the prediction with the feedback of the environment of the reinforcement learning.

After calculating the loss, the NN parameters need to be updated. Usually, backpropagation is used for
this. Here using partial derivation, from the loss to the parameters of the network, the specific loss for each
of the parameters of the network can be determined. Next, the parameters are updated using some non-linear
optimization algorithm.
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Figure 1: Overview neural network

2.3.2 GNN

When designing a NN many different architectures can be used. One of the options is Graph Neural Network
(GNN). A problem that is solved using a GNN is beforehand already defined on a graph. The GNN archi-
tecture then exploits the graph structures in its design thereby distinguishing it from other architectures. In
the subgroup of GNN’s, there exist many different kinds of designs all tailored to different problems. In this
part, I will give some key considerations to keep in mind when designing the three different parts of the NN
(the input layer, the hidden layers, and the output layer).

Input layer The input layer is an important part of the algorithm as it determines the way in which the
data can be used in the problem. In order to choose an effective way to input the data in the algorithm, it
is important to get a good understanding of the characteristics of the problem. One of the first things to
look at is, whether or not a graph has an implicit or explicit structure. If the problem is already defined
using a graph, such as the subject of this thesis, the structure is called explicit on the other hand if the
graph has to be constructed out of the problem the structure is called implicit. Next, the goal of the problem
should be taken into consideration. Is the problem on vertex, edge, or graph level? And given the level of
the problem, should the GNN classify, predict, regress, or do something else? In this thesis the goal is to
assign one of the k colors to each vertex therefore the goal is classification and the problem is on node level.
Other characteristics that need to be defined are whether the graph is directed or undirected, homogeneous
or heterogeneous, whether the graph is static or dynamic, meaning that the input features of the graph vary
with time (dynamic) or remain the same over time (static), also the scale of the problem should be considered.
The GCP respectively is undirected, homogeneous, static, and ranges from small to large problems.
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Hidden layers The hidden layers transform the inputted data such that the output layer can generate a
solution for the problem. This is done by using a range of different mechanisms. In [ZCH+18] the authors
differentiate three types of components: a propagation module, a sampling module, and a pooling module,
of which one or more a generally used to transform the data in a GNN. They work as follows:

• Propagation module. The propagation module is used to exchange information between vertices of
the graph in order to capture the information of the features of the vertices as well as the topological
information.

• Sampling module. When the number of vertices and edges is very large, the cost of propagating
the message for all the vertices in a neighborhood can become too expensive. To shrink these costs,
sampling can be used. Depending on the method either the nodes, the layer, or whole parts of the
graph can be sampled.

• Pooling module. The goal of a pooling module is to combine the features of multiple nodes to get
more general features of the graph. This could be some hierarchical information but also topological
information. For the k-coloring problem, for example, it could be very useful to be able to recognize
some structures for which the number of colors is known, such as triangles.

Output layer and loss function Just as for the input layer the output of the algorithm is problem specific
and strongly depends on the level and the goal of the problem. In the case of the GCP, depending on what
precisely the goal is, already many different outputs can be used. One could try to predict χ and let the
output be the prediction for the chromatic number. Or one could try to predict whether or not the graph is
k-colorable, by letting the output equal a boolean representing whether or not the graph is k-colorable. One
could also try to find a feasible k-coloring, as is done in this thesis, then the output should be a coloring of
the graph. Another factor to account for in the output of the algorithm is the way the algorithm is trained.
If the goal is to find a feasible k-coloring for example, a supervised training approach should be able to deal
with the different permutations of the intended solution.

2.4 Some GNN desings

In this subsection I will relate GNN desings to the GCP. I will do this by first introducing three papers that
are strongly related to the goal of this thesis, to use an unsupervised GNN for the GCP, and therefore are
very relevant. I will discuss the designs of these papers separately in subsection 2.4.1, focussing on their
initialization, the computational modules used, and the way in which they determine their loss. Thereafter,
in subsection 2.4.2, I will compare the different components of the architectures of the papers in 2.4.1 in
separate paragraphs. In these separate paragraphs, I will also mention papers where only some parts of the
design are relevant to this thesis.

2.4.1 GNNs for GCP

Rethinking Graph Neural Networks for the Graph Coloring Problem [LLM+22] In this paper,
the authors first establish four rules that make a GNN, denoted by A, powerful in the coloring problem.

1. The input graph contains no equivalent node pairs. Here an equivalent node pair is a pair of two nodes
for which their neighborhoods are isomorphic and the features of the nodes in both neighborhoods
are the same, see Figure 2. If the graph contains equivalent node pairs they advise to assign the
nodes different node attributes. The authors establish this rule because they argue that all aggregation
combination GNN, AC-GNNs, cannot discriminate any equivalent node pair, which in turn means that
the output for such nodes will be very similar and therefore will cause problems when coloring these
nodes.

2. A does not integrate the aggregation and combination function. An aggregation function is a function
that aggregates features from the neighborhood and a combination function is a function that combines
its own features with the features of the neighborhood. If the aggregation function aggregates features
from the neighborhood and the node itself simultaneously, they call an aggregation and combination
function integrated. The authors establish this rule because they say that if two nodes u and v share
the same neighborhood except for each other, that is N(u)\{v} = N(v)\{u}, then these two nodes
cannot be discriminated by an integrated AC-GNNs.
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Figure 2: Equivalent node pair. In this figure nodes C and D are an equivalent node pair.

3. A should be as deep as possible, that is, A should have as many hidden layers as possible, because as
they argue, due to the local nature of an aggregation function, an AC-GNN of L layers cannot detect
the structure of nodes more than L steps away. Given that the depth of a graph, the minimum number
of steps from the two nodes farthest apart from each other, differs from graph to graph, the depth of
the A should be as deep as possible in order to ensure that for every graph the structures of as many
as possible steps away can be detected.

4. Layers should be injective, meaning that a layer maps distinct elements of the input to distinct elements
of the output of a layer. The authors establish this rule because if layer Li−1 discriminates {u, v} layer
Li should also discriminate {u, v}.

Next, the authors try to design a GNN that can solve the k-coloring problem. They do this based on the
four rules described above. For the initialization of the node attributes, they use a centered probability
distribution of k colors, which is initialized randomly in order to eliminate the equivalent node pairs (rule
1). For the hidden layers, they first derive the message of a node by summing the node embeddings of the
previous layer for the neighborhood of the node. Next, they combine the message of this node, multiplied
with a learnable parameter, with the previous embedding of this node, multiplied with a different learnable
parameter, to find the new node embedding of this node. In the output layer, they use an argmax function to
round the node embedding of a node and obtain the final node embedding. The learnable parameters of this
design are the learnable parameters used in the combination function. To train these learnable parameters
they minimize an unsupervised loss function where the loss is derived as follows. For each pair of vertices
that are adjacent, they evaluate the euclidean distance of two vectors and subtract this from a predetermined
margin. They motivate their loss function by stating that the final node embeddings of adjacent nodes should
be as different as possible. In the paper, the authors do not specify if they train new trainable parameters
for each graph or that they train their trainable parameters using some graphs and then use these trained
parameters for the graphs they use when testing the performance of their algorithm. However, when looking
at the time spent on each graph during their testing, one graph, 2 Insertions 4 to be specific, takes way more
time than the other graphs of the same size, which would be illogical if they only need to do one forward
propagation. This indicates to me that they train new parameters for each graph.

Graph coloring meets deep learning: Effective Graph Neural Networks [LPAL19] In this paper,
the authors do not directly build a feasible solution for the GCP but let the algorithm answer the question
of whether a graph is k-colorable? The algorithm uses a color embedding as well as a node embedding as
inputs. The color embedding is a vector of length of the number of colors, and the vertex embedding is
a vector of length of the number of nodes. Both are initialized randomly, the color embedding using the
uniform distribution between 0 and 1, and the vertex embedding using the normal distribution also between
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0 and 1. The algorithm also uses a vertex to vertex adjacency matrix, and a vertex to color adjacency matrix
where every color is connected to every vertex. Next, for the hidden layers the algorithm uses a message
passing scheme, where the adjacent vertices and the colors communicate and update their embeddings for a
number of layers using four learnable message functions:

• color message function, which translates colors embeddings into messages that are intelligible to a vertex
update function;

• vertex message function, which translates vertex embedding into messages;

• vertex updating function, responsible for updating vertices;

• color updating function, responsible for updating colors.

The final embeddings are then used to compute a probability corresponding to the model’s prediction of the
answer to the decision problem: does graph G accept a k-coloring? The model is trained using a supervised
loss function, where the output of the model is compared to the label of the graph. They train the algorithm
using self-made graphs. The authors generate these graphs in pairs where one graph is just k-colorable and
the other, by adding another edge, is k + 1-colorable. The authors chose to generate these graphs which are
borderline k-colorable because this should result in graphs that are very hard to classify.

Graph coloring using physics inspired graphs [SBZK22] The authors of this paper try to find a k-
coloring of a graph. The node embeddings of the first layer are initialized randomly. Then the model follows
(multiple) layers of a recursive aggregation scheme, where each node collects information of its neighbors in
order to compute its new node embeddings. In order to output a coloring they use a softmax function. The
softmax function transforms the real values, in this case the node embeddings, to an output where all the
values sum to 1. The main contribution of this paper is its loss function. They take the dot product of every
node pair and multiply each pair with a penalty. This allows them to train the network unsupervised. The
network parameters are trained for every instance, and when the training is finished, they use a projection
heuristic to map the soft assignments of colors to hard assignments.

2.4.2 Componentwise discussion of GNN literature

Initialization In the three methods above, the initial node embeddings are all initialized randomly. How-
ever, in most GNNs the model uses the node features for the initial embedding. These node features are
often derived from real-world data and therefore can provide various kinds of information about both the
node itself and its relation to other nodes, which in turn can both speed up and improve the accuracy of
the training of the neural network. There are various ways in which node features are used and initialized.
In [DHD+19] the authors point out that one of the advantages of using a GNN is the ability to incorporate
node features into its learning process and show that a GNN works well when there is a strong connection
between node features and the label the node needs to be classified as. They prove this by showing that there
is a performance decrease when they shuffle the node features whilst keeping the labels intact. Furthermore,
they show that for graphs where there are no node features available, one can artificially create them and
that these artificially created node features can perform rather well. Since the initialization for the three
approaches above is random, the node features most likely do not have a strong connection to the node labels.
Adapting these node features such that the node features have a stronger connection to the node labels might
improve the power of the GNNs from the three papers mentioned above. Therefore in this thesis, I will try
to increase the connection between the node features and the final coloring by allowing the network to treat
the initial node embeddings as trainable parameters.

Computation modules There is a vast number of different options for this part of the architecture of
the neural network. When looking at the three papers discussed above, they all use some aggregation and
combination function, which for the GCP seems logical. When we look at whether or not [SBZK22] and
[LPAL19] adhere to the four rules for a powerful GNN for the GCP, we can observe that [LPAL19] adheres
to all rules and that [SBZK22] adhere to three of the four rules. Both papers adhere to the first rule as they
both initialize their node embeddings randomly, therefore, ensuring that no equivalent node pairs exist. Both
papers also adhere to the second rule, as neither integrates their aggregation and combination functions.
However, looking at the third rule, the GNN used in [SBZK22] only has one layer, thereby not being as deep
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as possible. The number of layers is a hyperparameter of their GNN and it can therefore be concluded that,
at least in their case, one layer performed better than the other values they have tried. In [LPAL19], the
authors allow for up to 32 layers and thereby adhere to rule number 3. Both the papers also use layers that
are injective therefore adhering to rule number 4. From this, we can conclude that both papers, [SBZK22]
and [LPAL19], seem to be powerful for the GCP.

In [SBK21], the prequel of [SBZK22], the authors mention in their recommendations for further research
that trying out different architectures such as [VCC+17] might be useful. This architecture is not specifi-
cally designed for the GCP but can be easily adapted for this use. The authors of [VCC+17] initialize their
algorithm using real-world features. Next, they use a learnable weight matrix to transform the size of the
node embeddings from the real-world features size to the desired size for the problem at hand. This node
embedding is then used to derive the attention coefficients. This attention coefficient is a normalized scalar,
indicating the importance of node (B) to node (A). The attention coefficient is normalized in order to make
the coefficients easily comparable across different nodes. Once the attention coefficients are obtained, the
node embeddings are again used, this time to derive the updated node embedding. In the output layer, these
node embeddings are again normalized using the softmax function. To use this as a design for the GCP, the
final node embedding should represent a k-coloring of the graph. This can be done by letting the weight
matrix map the input features from RF to Rk. This then in turn also gives a clear interpretation of the node
features after the weight matrix transformation, namely each feature represents a color. In [LLM+22], it is
mentioned that the power of [VCC+17], is quite poor as the algorithm might not be able to color two adjacent
nodes differently. However, by using the random initialization of the node features instead of the real world
features, the problem with equivalent node pairs should be resolved, and by letting the algorithm train on the
initial node embeddings the discriminatory power of the algorithm could be further strengthened. A great
advantage of the [VCC+17] approach is that it first allows the network for assigning different importances
to nodes of the same neighborhood and then uses these different importances assigned to these nodes when
updating the node embedding. This allows the model to be more receptive to certain nodes, which in the
graph coloring problem could be very useful. For example: Suppose that a node (A) has two nodes in its
neighborhood, one node (B), that is adjacent to many other nodes, and one node (C), that is adjacent to no
other node except for (A). Given that the coloring of (C) is much more flexible than the coloring of (B) we
would like that the model gives (B) more importance than C. Given the right initial node embedding, the
[VCC+17] model could facilitate this. The other papers aggregate the information of the neighborhood and
then use this to update the node embedding and are therefore not able to facilitate this, for these reasons I
have chosen to mainly use the architecture of [VCC+17] with the random features initialization.

Loss function Of the three approaches above, two use an unsupervised loss function [LLM+22], [SBZK22]
and one uses a supervised loss function [LPAL19]. The supervised loss function has two main problems.
First, a supervised loss function needs solutions in order for it to work. This, therefore, results in a ’chicken
or the egg’ situation. In order for the neural network to solve the most difficult GCP problems, it most
likely needs to be trained on these types of problems, this training however requires the solutions for these
problems. Second, even if these solutions are available, it is difficult to use them effectively for training. In
a supervised learning approach, the loss is typically derived by checking if the nodes are classified correctly.
A node thus has to be assigned a label. However, the question remains what should this label be? In the
GCP it is not so much about the coloring of a node, but rather about the coloring of a node with respect to
the coloring of the nodes in its neighborhood. When looking at Figure 3, two different feasible colorings are
shown. Should we now label the middle node as blue as is done in coloring 1, or should we label the node
red as done in coloring 2? When using labels, we are essentially training the algorithm to find exactly that
one solution, whilst there are many other solutions.
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Coloring 1

Coloring 2

Figure 3: Two colorings for the same graph

In [LLM+22] the authors mention the second problem described above as one of the reasons why they have
opted for an unsupervised approach. One way to use the solutions of known graphs is provided in [LPAL19]
where the authors let the network only answer the question of whether k-coloring of the graph is possible.
Here, the label provided to the network is not a coloring, but just a yes or no. The drawbacks of this approach
are clear. First of all, the network does not provide a solution but only states whether or not a solution
is possible. And besides that, the network as in [LPAL19] produces a distribution for multiple chromatic
numbers, which means that for a certain graph, the chromatic number might be 4 with probability 0.1, 5 with
probability 0.7 and 6 with probability 0.2. The two previously mentioned papers use an unsupervised loss
function, [LLM+22] and [SBZK22] both use very intuitive approaches; the authors of [SBZK22] just assign
penalties to adjacent nodes that are (partly) assigned the same coloring, and the authors of [LLM+22] do
something very similar by deriving the euclidean distance between the node embeddings of two neighboring
nodes. Given the intuitiveness of the unsupervised approach and the problems regarding the supervised
approach, I have chosen to use an unsupervised loss function.

3 Data

In order to properly train and evaluate the algorithm various factors are important. First, there are re-
quirements concerning the instances. The instances used to evaluate the performance of the algorithm are
preferably often used in literature as this allows for a comparison with other approaches. Ideally, the instances
used for evaluation would also have different properties regarding their structures, size, and connectedness,
since this would give an indication as to how well the algorithm generalizes. A second factor that needs to
be considered is the computational costs. Although the algorithm uses an unsupervised approach, various
hyperparameters need to be trained which is computationally heavy. Keeping these two factors in mind,
I have chosen to use the instances presented in Table 1. These instances consist of all instances used in
the approaches from [LPAL19], [LLM+22] and [SBZK22], therefore the performance of the algorithm of this
thesis can be compared with the performances of their respective algorithms. I have chosen to add the my-
ciel2, myciel3, and myciel4 graphs in order to evaluate the performance of the algorithm on graphs that are
considered easy because they do not contain triangles. The graphs used in training and evaluation are of
various different types and therefore the performance of the algorithm on a set of different types of graphs
can be evaluated thereby giving an indication of how well the algorithm generalizes. The following types of
graphs are used.

• Book Graphs: Given a work of literature, a graph is created where each node represents a character.
Two nodes are connected by an edge if the corresponding characters encounter each other in the
book. These graphs are created for five classic works: Tolstoy’s Anna Karenina (anna), Dicken’s

13



David Copperfield (david), Homer’s Iliad (homer), Twain’s Huckleberry Finn (huck), and Hugo’s Les
Misérables (jean).

• Game Graphs. The games played in a college football season can be represented by a graph where
the nodes represent each college team. Two teams are connected by an edge if they played each other
during the season.

• Miles Graphs. The nodes represent a set of United States cities and two nodes are connected if the
distance by road mileage, from 1947, between the two cities is smaller than some predetermined value.

• Queen Graphs. Given a n×n chessboard, a queen graph is a graph on n2 nodes, each corresponding
to a square of the board. Two nodes are connected by an edge if the corresponding squares are in the
same row, column, or diagonal. Unlike some of the other graphs, the coloring problem on this graph
has a natural interpretation: Given such a chessboard, is it possible to place n sets of n queens on the
board so that no two queens of the same set are in the same row, column, or diagonal? The answer is
yes if and only if the graph has coloring number n.

• MYC, Mycielski Graphs. Graphs based on the Mycielski transformation. These graphs are easy to
solve because they are triangle free (clique number 2), the coloring number increases in problem size.

• MYC+, a generalization of myciel graphs with inserted nodes to increase graph size but not density

• MIZ, Graphs that are almost 3-colorable, but have a hard-to-find four clique embedded.

Besides the type, the following properties that influence the hardness of coloring are also provided in the
table: the number of vertices, number of edges, and the density of the graph, calculated using Equation (11)

d =
2|E|

|V ||V − 1|
(11)

and the chromatic number, obtained from [Gua15].

For all these graphs, I have removed the vertices which have no edges, and I have removed an edge B-A
if the edge A-B already existed and vice versa. In the methodology, section 4, a detailed explanation is given
which graphs are used for training subsection 4.2 and how the graphs are used for training subsection 4.1.
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name vertices edges density of the graph χ type
anna 138 493 0,052 11 Book
david 87 406 0,109 11 Book
homer 561 1628 0,010 13 Book
huck 74 301 0,111 11 Book
jean 80 256 0,081 10 Book
games120 120 638 0,089 9 Game
mug88 1 88 146 0,038 4 MIZ
queen5 5 25 160 0,533 5 Queen
queen6 6 36 290 0,460 7 Queen
queen7 7 49 476 0,405 7 Queen
queen8 8 64 728 0,361 9 Queen
queen8 12 96 1368 0,300 12 Queen
queen9 9 81 1056 0,326 10 Queen
queen11 11 121 1980 0,273 11 Queen
queen13 13 169 3328 0,234 13 Queen
miles250 128 389 0,048 8 Miles
myciel2 5 5 0,500 3 MYC
myciel3 11 20 0,364 4 MYC
myciel4 23 71 0,281 5 MYC
myciel5 47 236 0,218 6 MYC
myciel6 95 755 0,169 7 MYC
myciel7 191 2360 0,130 8 MYC
1 insertions 4 67 232 0,105 5 MYC+
2 insertions 4 149 541 0,049 5 MYC+

Table 1: Used instances and their properties

4 Methodology

In this thesis, I combine two different approaches for machine learning in order to design a machine learn-
ing approach for the k-coloring problem. In this subsection 4.1, I explain this combined design in detail.
Thereafter, in subsection 4.3, I explain how a relaxation and two heuristics can be used as initialization and
discuss how they can be incorporated into the combined design. Next, in subsection 4.4, I discuss how an
infeasible coloring possibly can be transformed into a feasible coloring, by either using extra color or by using
a heuristic.

4.1 The combined design

The design of the algorithm to solve the k-coloring problem for a large part consists of the elements of two
papers: [VCC+17] for the message passing part of the algorithm and [SBZK22] for the unsupervised loss
function. The general overview of the combined design is as follows. The input features, h, are randomly uni-
formly generated variables that undergo some linear transformations by matrix W and vector a, transforming
the features into a node feature vector of length equal to the number of nodes and width k. Thereafter some
non-linear transformation in the first-order neighborhood is performed on the node feature vector, which
transforms it into a soft assignment of the colors of the nodes. The quality of this soft assignment solution is
then evaluated using the loss function. The algorithm is first trained on a and W, then using predetermined
rules the trainable parameters are switched, and the algorithm is trained on h, depending on the predeter-
mined rules the algorithm, thereafter, switches back and forth between training on a in combination with
W, and h. For each graph, a new set of trainable parameters is trained as in [LLM+22] and [SBZK22].
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Figure 4: flow diagram algorithm

4.1.1 Initialization

The message passing part of the algorithm is mainly based on [VCC+17], here the authors initialize their
neural network with real-world features, and from these features, they try to build a function to the space of
outcomes. They can do this because they use a supervised learning approach, hence they know the outcomes
allowing them to try to build this function. In my design, the initial feature vector is generated randomly,
as is done in [LLM+22], [SBZK22], [LPAL19], and is a learnable parameter. The idea behind this is that I
try to modify the starting point of the algorithm in order to give every node an indication of a coloring. If
real world features would be used instead in a GNN with node embeddings, it is much more likely that two

16



neighboring nodes would have very similar features whereas for the GCP it is important that two adjacent
nodes are as different as possible in order to assign them different colors.

4.1.2 Forward Propagation

Let h, of the length equal to the number of nodes, and width equal to X, where X is the number of features
of a node, be a feature vector. The first step in the network is to transform the feature vector, h, into ḣ.
This is done by a matrix multiplication with weight matrix W. The weight matrix transforms the feature
vector from size (N×X), where N is the number of nodes of the graph and X is the number of features of a
node, to (N×k) where k is the number of colors for which the algorithm tries to find a feasible solution for
the GCP. The weight matrix W is thus of size (X×k). In the [VCC+17] implementation, the function of the
weight matrix W is to assign more importance to certain features of the node than to others, and also to
reduce the dimensionality of the feature vector, making it of the same size as the k thus transforming some
node properties into a vector containing the initial embedding of the color of that node. In the architecture
of this thesis, the function of the weight matrix is mostly similar. The input vector is transformed from X
to k, giving some indication of the coloring of the node. Here, however, the feature/properties of the initial
feature vector, h, have no real-world meaning and are just randomly assigned values.

The next step is to apply some non-linear transformations on the initial node embeddings. These steps
are all the same as in the [VCC+17] paper. To begin with, for every node in the first-order neighborhood, the
attention coefficient is derived. The attention coefficients, ei,j , indicate the importance of node j’s features
to node i’s features. The attention coefficient ei,j is only calculated when node j is in the direct first-order
neighborhood of node i, Ni. The attention coefficient is calculated by multiplying the concatenation of the
feature vectors of the respective nodes by a weight vector a of the size 2k and then applying the LeakyRelu
nonlinearity, see Equation (12) below. Depending on the structure of the graph, some colors are assigned to
many nodes whilst other colors are assigned only to a very limited number of nodes. In the extreme case,
for example, where one node is connected to all the nodes in a graph, the color assigned to this node can
only be used once. The weight vector, a, offers the neural network the ability to make certain colors more
important than other colors.

ei,j = LeakyRelu([ḣi||ḣj ]a
T ) (12)

Where || represents the horizontal concatenation-operation, a ∈ R2k and LeakyRelu, for some fixed parameter
c, represents: {

x if x > 0
cx otherwise

(13)

Thereafter the attention coefficients are normalized by applying the softmax function over ei,j .

αi,j = softmax(ei,j) =
exp(ei,j)∑

k∈Ni
exp(ei,k)

(14)

In the next step, the new feature vector for node i is calculated by multiplying the input feature vector of
node j by its attention coefficients with respect to i, for all of the neighboring nodes and summing over
these nodes see Equation (15). Thereafter, a softmax function, see Equation (16), is applied to every entry
of the vector to ensure that the output vector sums to one, without having negative values for one of its
entries. Multi-head attention, which allows the algorithm to perform the same part from multiple different
starting positions, can also be applied by performing the same three steps, as mentioned above, for different
initial inputs. This can be advantageous because, as [VSP+17] points out, multi-head attention allows the
algorithm to start from different initial starting positions and therefore attend information from different
representations at the same time. If multi-head attention is used, the feature vectors for node i are averaged,
and thereafter the softmax function is applied.

ḧi =
1

z

Z∑
z=1

∑
j∈Ni

αz
i,j ḣ

z
j (15)

...
hi,c =

exp( ¨hi,c)∑
c∈k exp(

¨hi,c)
(16)
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Next, the output vector is evaluated. The loss function is derived from the [SBZK22] paper, which is
one of the features which makes this thesis different from [VCC+17], that is, I use an unsupervised setup
in contrast to that paper. In this thesis, for every edge in the graph, the respective output vectors of these
endpoints are elementwise multiplied with each other and a penalty term G. The loss function here assures
that if two adjacent nodes are assigned the same color, this elementwise product will be non-zero, and if
two adjacent nodes are assigned different colors the elementwise product will be zero, which is exactly as
desired for the GCP where two adjacent nodes cannot be assigned the same color. So, if this loss function is
minimized and the total loss is 0, no two adjacent nodes are assigned the same color and the coloring assigned
to the graph is feasible. The penalty term in my implementation and in the implementation of [SBZK22] is
the same for every edge but could be used to assign a different importance to the loss of an edge.

L = G ∗
∑

(i,j)∈E

...
hi

T ...
hj (17)

4.1.3 Trainable parameters

When designing a neural network, the design options are almost limitless. One would obviously like to pick
the best option and hence find the optimal solution to the problem. However, finding this perfect design is
very difficult. What one ideally would like to do, is not to choose between these design choices, but rather let
this be a variable of the neural network. But when one would do this for all choices, the number of param-
eters would become very large, and the network training optimization problem would become too complex
and therefore untrainable. Therefore often only the weights and biases of a network are used as trainable
parameters. For most approaches, this is a logical choice, especially when the input of the neural network
is fixed, for example, with some properties of a node. Yet, when this is not the case and the inputs of this
network aren’t fixed but instead are random starting points, it is perhaps not as clear what the trainable
parameters should be.

The design above is, as mentioned before, a combination of two papers, [VCC+17] [SBZK22]. In the [VCC+17]
paper, the authors use a supervised approach and their input feature vector consists of properties belonging
to a node. They train on the weight matrix and the weight vector. Yet, in the [SBZK22] paper, the authors
initialize with a random embedding and also train on their neural network. However, the same authors
mention in this paper that finding a good starting point could be helpful. Therefore here the choice is made
to first keep the feature vector, h, fixed and train the neural network parameters, W and a, for some time
and then make a switch and keep the neural network parameters fixed and train on the feature vector. This
switching between trainable parameters is the novice part of this design, and has, as far as I know, not been
done before. When exactly the switch needs to be made is however not so clear. Below, three possible options
for when to make the switch are outlined. All these three options will be tried in order to see which of those
performs best.

• Switch when the neural network parameters are trained for a fixed number of iterations
and thereafter only train on the feature vector. Here, the thought behind the switch is that we
first train the neural network parameters such that they make some sense, thereafter the algorithm is
allowed to change the random input vector in order to adapt this input vector as well as possible to
the patterns learned by the neural network parameters.

• Switch back and forth between neural network parameters and feature vector every time
the loss function reaches a local minimum. For this option, the thinking is somewhat similar to
the first strategy, but here the switch occurs every time a local optimum is reached. The algorithm is
said to be in a local minimum if the loss value has not changed for 1

%mbp iterations, where %mbp is the
percentage of nodes whose gradients are used during the training.

• Switch back and forth every fixed number of iterations. In this case, the intuition is to let the
input vector and the neural network parameters consistently adapt to each other, instead of possibly
overfitting the neural network parameters with regards to the input vector by training until the loss
function does not decrease anymore as is the case with the above introduced local minimum switching.
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4.1.4 Hyperparameters

Besides the trainable parameters, which are optimized in the loop of the algorithm, there are also hyperpa-
rameters, which are optimized outside the loop of the algorithm. In this section, all the hyperparameters
are mentioned and explained. The first hyperparameter is the size of the feature matrix h, here the number
of rows is fixed to be the number of vertices but the number of columns can be changed. The second hy-
perparameter is the value of c in the LeakyReLU equation(13). The third hyperparameter is the number of
multi-head attention heads, which essentially performs the algorithm from a range of different starting posi-
tions and averages the soft assignment results to produce one soft assignment. The fourth hyperparameter
is the percentage of nodes used to derive the loss for the stochastic gradient descent, from now on called
the mini-batch percentage. And the fifth hyperparameter is the learning rate of the optimizer used in the
gradient descent.

4.1.5 Complexity Analysis

In order to get a clear image of the time it takes to run certain instances, the time complexity is a key
component. In this subsection the time complexity of the algorithm is derived. For every step of in Table
2 the complexity of that step is stated. The total complexity is the sum of all the steps, as denoted in the
last row of the table. As can be observed from the table, the forward time complexity strongly depends on
the size of the instance, the number of nodes, and the number of edges, as on k, with k being of a quadratic
degree (step 1, since k ≤ F ). To get a feeling of which variables are most likely to increase the running time,
it might be useful to look at some characteristics of the dataset, see Table 1, the average chromatic number
is 8.08, whilst the average number of nodes is 104 and the average number of edges is 744. Looking at the
total time complexity it cannot be concluded that one of the four factors, k, number of edges, number of
nodes, and number of features, is dominating the time complexity. Here, k is at least quadratic but is way
smaller than the number of nodes which again is way smaller than the number of edges.

step number of basic operations needed step description
1 N*k*F hW

2 2*k*E a(ḣi, ḣj)
3 E LeakyRElu
4 E*N (max when every node is connected to every node) softmax(ei,j)

5 2*E*k
∑

j∈Ni
ai,j ∗ ḣj

6 N*k*k softmax(ḧi)

7 E*k (
...
hi)(

...
hj

T
)

total E*N + N*k*F + 5*E*k + N*k*k + E total complexity

Table 2: Forward complexity, k = number of colors, E = number of edges, N = number of nodes and F =
number of features for a node

4.1.6 Backward Propagation

After propagating forwards and calculating the loss, this loss has to be used to improve the neural network
and hopefully decrease the loss in the next iteration. This is where the backward propagation comes in. The
backward propagation calculates the losses corresponding to the trainable parameters of the neural network.
This is done by continuously partially differentiating every step until the trainable parameters are reached.
In the appendices, appendix C Table 17, the partial derivatives, for every step, are given. After the gradients
of the trainable parameters are determined, the trainable parameters are updated using the Adam algorithm,
pseudocode given in appendices, appendix B pseudocode 2. Regarding the backward time complexity, if the
loss is derived using full gradient descent, then the backward time complexity almost equals the forward time
complexity, going through the network forward or backward makes no difference because the network remains
the same. The backward complexity is slightly higher because for the softmax 3 basic operations extra are
needed. However, if stochastic gradient descent is used, where the batch size equals only a few or even just
one node, the backward time complexity will be much lower than the forward time complexity. The overall
time it takes the algorithm will most likely be determined by the number of iterations that are needed to
find a feasible solution as the forward and backward propagation has to be performed each iteration.
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4.1.7 Escaping local minima

During the training phase, the algorithm can get stuck in some local minima. As mentioned before, in this
algorithm a solution is said to be a local minimum if the loss value after 1

%mbp iterations has not changed.
In order to escape this local minimum multiple strategies can be used. One previously discussed strategy is
to switch the trainable parameters of the neural network. Another strategy is a very simple but often-used
strategy, adding some noise to the neural network. It is difficult to estimate how much noise needs to be
added to the neural network in order to change the solution. Therefore, in this algorithm, the choice is made
to start with adding relatively small noise, and if the solution remains the same, increase the noise bit by bit.
The noise is added to the features completely at the beginning. First, the features of one node are adapted,
and if this results in no change in the loss the next iteration of the algorithm the features of two extra node
nodes are adapted, if this again results in no change in the loss the next time 3 extra nodes are adapted.
This process is repeated until there is a change in the loss when evaluating the the algorithm.

4.1.8 Obtaining a solution

The output vector of the algorithm has non-integer values for every node. In order to turn the output vector
into feasible solutions for GCP, these need to be set to integer values. The algorithm can finish in two
ways. Either the value of the loss function approaches 0 within a predetermined margin, such that a feasible
solution is likely found, or the time limit is reached. In the first case, the output vector of the last iteration
is used to create an integer solution. In the second case, the best-saved output vector is used to create an
integer solution. Since the algorithm ideally improves at each iteration, it is computationally inefficient to
save the best solution for each iteration. Therefore, the output vector is only saved if the corresponding loss
of the output vector is a certain percentage below the corresponding loss value of the previously saved output
vector. In both cases, the output vector is set to an integer value in the same way: the argmax over colors
for the final embedding vector of each node is set to 1, while the other colors are set to 0.

4.2 Training Strategy

In order to get the best results out of this algorithm, decisions about settings and choices have to be made.
In this subsection, the strategy used to train the hyperparameters and make the choices is laid out. Since the
computational costs of hyperparameter training are high, and given that it is wise to split the dataset into
a training and a testing part, the first choice needed to be made is the selection of the dataset. Although I
understand that it is far from optimal to train on only a few graphs, I have made the choice to train only
on 5 graphs and train only for one coloring number per graph. I have done this because I have limited
computational resources and a full training needs to be performed for each graph. In selecting these graphs
I have tried to select as many different types, outlined in the data section, of graphs as possible. From each
type, except for the MIZ type since this type is very similar to the MYC type, I have selected a graph.
Next, I have tried to ensure that the average number of nodes (116.6), edges (873.4), and chromatic number
(8.8) of the training graphs is of the same order as the average number of nodes (104.4), edges (744.3), and
chromatic number (8.08) of all the graphs in Table 1. The selected graphs are: games120, jean, miles250,
queen8 8, and myciel7. The properties of the graphs can be seen below in the Table 3. When training the

name #nodes #edges density χ [Gua15] type
jean 80 254 0.31 10 BOOK
games120 120 638 0.19 9 GAMES
miles250 128 387 0.33 8 MILES
queen8 8 64 728 0.09 9 MYC
myciel7 191 2360 0.08 8 QUEEN

Table 3: Training graphs

hyperparameters, there is a trade-off between computation time and the accuracy of the optimization. To
find the best values for the hyperparameters, ideally, you would want to train all the hyperparameters in all
their different combinations and see which performs best. However, given the number of hyperparameters,
this is impossible, since the computational cost would simply be too high. To reduce the computational costs
of the hyperparameters optimization, all the hyperparameters could be optimized sequentially. This means
that we first determine an order in which we want to optimize the hyperparameters and next fix all but the
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first hyperparameter of that order and then optimize the first hyperparameter. Thereafter, we fix this first
hyperparameter and optimize the second hyperparameter whilst keeping the other hyperparameters fixed.
This is done until all hyperparameters are optimized. Various hyperparameters have a very big influence on
each other. When these are sequentially optimized it could very well be that some good settings are missed.
Therefore, the choice is made to semi-sequentially optimize the hyperparameters. Meaning that some hyper-
parameters, which have a strong influence on each other, will be optimized together. In this algorithm, the
hyperparameters are: the size of h, c, #attention heads, %mbp, and learning rate optimizer. The last two
of these hyperparameters probably strongly influence each other. Therefore it may be necessary to optimize
these hyperparameters together. The other hyperparameters can be optimized sequentially. Since the per-
formance of the optimizer is key in the performance of the algorithm, first the two hyperparameters which
influence this performance are optimized using a grid-search, see Table 4.2. Next the size of h is optimized,
after which α is optimized and lastly #attention heads is optimized.

%mbp learning rate
0.01 0.001
0.031 0.0031
0.1 0.01
0.31 0.031
1

Table 4: grid-search parameters

To pick the best performing hyperparameter I use the following procedure. First, I look at the minimum
loss values obtained during the run of the instances for a certain hyperparameter and next sum these loss
values to find the total loss of the instances for this hyperparameter. Second, I check whether or not (one
of) the instances had very high volatility, a quite low loss value is reached somewhere during the run but
the final loss value is way higher (×2). If (one of) the instances has very high volatility, then, when another
hyperparameter its total loss value is similar, but has way less volatility, this one is chosen instead. Third, in
the case of two or more loss values that are very similar, I factor in the ’potential’ of the instances, meaning
that I look at whether or not the change in the loss value at the end of an instance is zero or if there is still
a (slight) decreasing trend. So the training procedure is the following: First for all 3 methods (oneSwitch,
switchWhenLM and, switchPeriodically) I optimize the %mbp and the learning rate together, by running the
neural network for all 5 training graphs (3) for all 20 combinations. Next, I pick the best combination for
every method, keeping the factors discussed above in mind. Thereafter, for every method, I pick the best
size of h using the best values for %mbp and the learning rate. Following that, I do the same for c with the
best values for %mbp and the learning rate and size of h. Lastly, I pick the best performing value for the
#attention heads. This results in the best performing values of the hyperparameters for the three different
methods.

4.3 Working in combination with heuristics

The algorithm is described above as an isolated heuristic but it can also be used to (possibly) improve
solutions from relaxations or heuristics. Instead of initializing the algorithm randomly, as happens in an
isolated heuristic, it can also be initialized using a heuristic or a relaxation. In this subsection, I first discuss
the way the algorithm is initialized when using a heuristic or relaxation. After this, I provide an explanation
of how the different heuristics and the relaxation, used in this thesis, can be combined with the proposed
algorithm.

4.3.1 Combining the algorithm with heuristics or relaxations in initialization

In order to use either a heuristic or a relaxation together with the algorithm, we can either use the solution of
the algorithm as a starting point for those heuristics and relaxations, or use the solutions of a heuristic or a
relaxation as a starting point for the algorithm. The latter is not straightforward to do since the input features
do not correspond to a solution of the k-coloring problem. To use the heuristic or relaxation as a meaningful
starting point of the algorithm, the output vector must be the same as the heuristic/relaxation solution. To
achieve this, ideally, the corresponding input features and weights of the algorithm are determined. However,
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in practice, this is very difficult because there is no one-to-one mapping of input features and the output
vector since the input of the algorithm is a matrix N×X and the output vector is a matrix of the size N×k.
Another way to achieve that the output vector is the same as the heuristic/relaxation solution is to make use
of the last step before the loss function and add a bias term to the input of the softmax function. By adding
the bias every input of the softmax function can be transformed into the wanted heuristic/relaxation solution.
This works as follows. The algorithm still initializes at a random input vector, and the first forward step
proceeds exactly the same as when the algorithm is initialized randomly. However, instead of calculating
the loss and propagating backward, the output is compared to the heuristic/relaxation solution, and the
needed biases are calculated to ensure the output in the next iteration is the same as the heuristic/relaxation
solution. Here for every node, the following derivation is done. For a problem where three colors are assigned
a node has three features. Let’s say the node has the following output vector before the softmax: [a, b, c]

the output after the softmax is [ ea

ea+eb+ec
, eb

ea+eb+ec
, ec

ea+eb+ec
], the wanted output of the softmax is however

[d,e,f]. Now we add the bias vector [h,i,j] to the input then the equations which need to be solved become:
ea+h

ea+h+eb+i+ec+j = d, eb+i

ea+h+eb+i+ec+j = e, ec+j

ea+h+eb+i+ec+j = f . I solve this system in the following way:

ea+h

ea+h + eb+i + ec+j
= d,

eb+i

ea+h + eb+i + ec+j
= e,

ec+j

ea+h + eb+i + ec+j
= f.

ea+h = ea+h + eb+i + ec+j × d

set ea+h + eb+i + ec+j = ea + eb + ec

ea+h = d× ea + eb + ec

ln ea+h = ln (d× e20)

h = ln (d× ea + eb + ec)− a

i = ln (e× ea + eb + ec)− b

j = ln (f× ea + eb + ec)− c

(18)

In the next iteration, the bias is added to the output before the softmax function, and the loss of the solution
(now the same as the heuristic/relaxation solution) is derived and backpropagated. The algorithm thereafter
continuous in the same way as when it is initialized randomly, see Figure 5.
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Figure 5: heuristic initialization

Relaxation The linear programming relaxation solution found, consisting of equations (1-3) and (6-9), is
used as the initialization for the algorithm. If the number of colors used in the linear programming relaxation
does not match k, some extra colors need to be added to the solution of the linear programming relaxation
in order to match k.
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Recursive Largest First (RLF) The recursive largest first algorithm tries to build independent sets in
order to color the graph. The way in which this is done is described in 2.2. The RLF always produces a
feasible coloring, which means that in order to use it, when initializing the algorithm, the solution has to be
adapted. In this thesis I remove the color least used in the RLF solution and assign a random other used
color to the nodes which were previously assigned the removed color. The pseudocode of this algorithm can
be found in the appendix B pseudocode 3.

TABUCOL In contrast to the other two heuristics, the TABUCOL algorithm does not always produces a
feasible coloring. Therefore, the only thing that needs to be done to use the TABUCOL as an initialization
is to assign the TABUCOL algorithm a chromatic number for which it is not able to solve the GCP in a
given time limit and then use the output of the TABUCOL algorithm for the initialization. The pseudocode
of the TABUCOL algorithm can be found in the appendix B pseudocode 5.

4.4 Improving the output of the neural network

The neural network will not find a feasible solution for every value for k. It would obviously be beneficial if
we could turn an infeasible solution into a feasible solution with or without using extra colors. In this thesis,
I use one method, in subsection 4.4.1, that guarantees a feasible solution but most likely needs some extra
colors, and I use one method, in subsection 4.4.2, that tries to find a feasible solution without needing extra
colors.

4.4.1 Generating a feasible solution using color correction

The input of the color correction algorithm is the integer infeasible output of the algorithm. This out-
put has a number of conflicting edges. The goal is to color one of the nodes of a conflicting edge with
either a color already used in the graph or with an extra color. We can create a new graph, Gconflict

(Nconflict,Econflict+Eno conflict), where the nodes are all the nodes of the conflicting edges, let call these nodes
Nconflict, and the edges are the conflicting edges, Econflict, and all the edges which begin at a node of a con-
flicting edge and end at a node of a different conflicting edge, Eno conflict. For every Econflict in Gconflict we
need to change the coloring of one of the two nodes using the minimum amount of new colors. This is very
similar to the GCP, however, here not all nodes need to be assigned a color. Let us call this new problem,
GCPconflict. To solve the GCPconflict, we can first try to simplify the problem, by looking if we can color one
of the nodes in the conflicting edges using colors already used in the infeasible solution. We do this by looking
if one color is not used in the first order neighborhood of every node in Nconflict. If we find one color that is
not used, we can assign this color to the corresponding node of the conflicting edge, and we can thereafter
remove the node pair corresponding to this conflicting edge and all the edges that are connected to this node
pair from Gconflict, thereby simplifying the GCPconflict. If there are still conflicting edges remaining we have
to find a way to resolve those edges. Given the similarities between the GCP and the GCPconflict we could
try to solve the GCPconflict using one of the heuristics used for the GCP, DSATUR, TABUCOL, and RLF.
Of these three heuristics, the RLF, with some adaptations, probably works best. In the GCPconflict once all
the conflicting edges of a node are resolved, we can remove these conflicting edges and nodes from the graph
thereby simplifying the remaining problem. The TABUCOL algorithm does not allow for removing nodes
and edges during the running of the algorithm and is therefore probably not very useful in this problem.
The DSATUR algorithm colors the graph by coloring the most saturated nodes first, thereby initially quickly
increasing the number of colors used and coloring the nodes that are most connected. Which seems logical
if you need to color every node of the graph, here, however, we have to color only half of the nodes or less,
and we want to pick the half of the nodes which are least connected with each other. Therefore it seems
logical to generate independent sets using an adapted version of the RLF algorithm, where in contrast to
RLF algorithm, we do not pick the node of maximal degree, but the node of minimal degree and try to build
an as big as possible independent set. After each independent set we can remove a lot of nodes and edges
thereby greatly reducing the difficulty of the problem. The pseudocode of the color correction algorithm is
given below.
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Algorithm 1 Color correction algorithm

{C} = are colors used in infeasible solution
for conflicting edge in conflicting edges do ▷ color nodes with existing color where possible

for node in nodes conflicting edge do
if c∈C is not used in first order neighborhood then

color node = c
remove conflicting edge
break

end if
end for

end for
Nconflict = node of a conflicting edge
Econflict = conflicting edges
Nno conflict = edges between Nconflict that are not ∈Econflict

create Gconflict(Nconflict, Econflict+Eno conflict)
colornumber = size {C}
while (number of conflicting edges> 0) do ▷ introduce new color

determine a vertex x of minimal degree in G
colornumber = colornumber + 1
F(x) = colornumber
NN = set of non-neighbors of x
while (cardinality of NN > 0) do

maxcn = 1
ydegree = 1
for (every vertex z in NN) do

cn = number of common neigbors of z and x
if (degree(z) < ydegree or ( degree(z) == ydegree and maxcn(z) < cn)) then

y = z
ydegree = degree(y)
maxcn = cn

end if
end for
if (maxcn == 0) then

y = vertex of maximal degree in NN
end if
F(y) = colornumber
contract y into x
update the set NN of non-neighbours of x

end while
for every node that is not connected to any conflicted edges do

remove node and all edges connected to this node from Gconflict

end for
end while

4.4.2 Generating a feasible solution using TABUCOL

For this approach, the input is again the integer output of the algorithm. Using the algorithm proposed in
this thesis as a hotstart of the TABUCOL algorithm is very straightforward, instead of generating a random
starting solution, we initialize the algorithm using the output of the algorithm. When TABUCOL is used to
improve the infeasible solution it is, however, far from guaranteed that a feasible coloring arises, since, first, it
could be possible that no better solution exists, and second, even though a better solution exists TABUCOL
might not be able to find it.
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5 Computational experiments and results

All the experiments were performed on one laptop. This laptop has an AMD RYZEN 5 4000 series processor
and 16GB RAM memory and it is running on Windows 10. All methods were coded in spyder 5.3.1 using
python 3.8.8. To speed up the time-intensive running process, I have performed the computational experi-
ments with only one random seed. All three methods change their learnable parameters somewhere during
their execution, the equations (19,20,21) indicate when this switch is made for each of the three methods. In
these equations the switchNumber= #nodesInGraph

(#nodesInGraph*mbp) , where mbp is the percentage of nodes for which the

loss is derived.
oneSwitch : switchNumber× 15 (19)

switchPeriodically :
iterationCount

25
(20)

switchWhenLM : if iterations since last switch>switchNumber &
lossi

lossi−10
> 0.99 (21)

For the computational experiments where the mbp < 1, the loss of the whole solution is calculated once
every switchNumber iterations. Furthermore, the penalty term in the loss function, eq (17), is set to 100.
The goal of this section is to answer the three main questions of this thesis.

1. How does the combined design of [VCC+17] and [SBZK22] perform for the k-coloring problem?

2. Does training on the features improve the performance of a GNN for the k-coloring problem?

3. How can heuristics and relaxation be used to aid the algorithm and vice-versa?

In order to answer these questions, this section is laid out in the following way. First, I discuss the training
of the hyperparameters and report the best hyperparameters in subsection 5.1. Next, I answer the first and
second questions in subsection 5.2. In this subsection, I first compare the different methods, oneSwitch,
switchPeriodically and switchWhenLM, of the algorithm with each other and with a method, called onlyAW,
that is exactly the same as these methods except that this method is not allowed to train on the features.
Thereafter, still in subsection 5.2, I compare the best performing method, of the three methods presented in
this thesis, with three neural network approaches for the k-coloring problem: [SBZK22],[LLM+22],[LPAL19]
and thereby try to answer the second question. Following this in subsection 5.3, I give an explanation as
to why the methods introduced so far perform relatively well on one type of graphs, mycielski graphs, and
perform substantially worse on the other types of graphs and introduce an adaptation to the design of the
algorithm. After this, I test this adapted design and once again try to answer the second question. Lastly, in
subsection 5.4, I show how the algorithm performs when it is initialized using a heuristic and show heuristics
can be used to help the algorithm in turning infeasible solutions into feasible solutions.

5.1 Performance of oneSwitch, switchPeriodically, and switchWhenLM on train-
ing graphs

In this subsection, the final results of the hyperparameter optimization are presented. In order to maintain
the balance between the total running time and the accuracy of the results, I have chosen a running time of
20 minutes per instance, since the preliminary results showed that after 20 minutes the loss of the instances
did not change much more. I have also, as explained before, chosen to train the hyperparameters of the
algorithm on only 5 graphs. This is a very small sample of graphs and will therefore most likely not yield
the best settings for the hyperparameters. Interpreting the results of the hyperparameters will also be more
difficult as patterns will be less clear since the patterns can more easily be disturbed by the randomness
of the algorithm when using only a few graphs. I have, however, chosen to do this because including more
graphs would increase the total computation time too much. During the first steps of the hyperparameter
optimization, I noticed that the algorithm was only able to solve the myciel7 graph (for some hyperparameter
settings). However, using the optimization procedure as explained in section 4.1.4 would result in choosing
hyperparameters for which the algorithm was not able to solve the myciel7 graph. Therefore, I have chosen to
optimize the algorithm for both the myciel7 graph and the other graphs, from here on 4trainingGraphs. An
outline of the hyperparameter settings used during hyperparameter optimization and their respective results
can be found in appendices, appendix C Table 18.
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5.1.1 Best performing hyperparameters 4trainingGraphs

method mbp lr ivs leakyReLU #attention heads
oneSwitch 1 0.0031 3 0.1 1
switchPeriodically 1 0.001 9 0.2 5
switchWhenLM 0.31 0.0031 3 0.3 1

Table 5: Best performing hyperparameters obtained for the 4trainingGraphs. Where thembp is the minibatch-
percentage, lr is the learing rate of the optimizer, ivs is the integer by which k is multiplied to determine
the number of features of a node, leakyReLU is the coefficient, c, in the leakyReLU Equation (12) and
#attentionheads is the number of attention heads.

In Table 5 the best performing combination of hyperparameters for each of the three methods is given.
In the appendices, appendix C Table 18, the losses of the training graphs for all used combinations of
hyperparameters can be found. When looking at the mini-batch percentage (mbp), the fraction of nodes
for which the loss is determined, it seems to be that an increase in mbp, independent of the learning rate,
for all three methods improves −or at least does not worsen− the performance of the algorithm, see Figure
6. A possible explanation for this phenomenon might be that a larger mbp provides more information and
therefore leads to a more accurate calculation of the gradient which in its place results in a more accurate
updating of the trainable parameters.
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Figure 6: The total loss, loss of the 4trainingraphs added together, for each combination of the learning rate
and mini-batch percentage, with the mini-batch percentage grouped together.

Next, when looking at the learning rate (lr), Figure 7, I expected a correlation between the lr and the
mbp, where for a low mbp a low lr would work best, and a for a high mbp a high lr might work best because
the higher the mbp the more certainty about the direction of the next step and thus the greater the lr can
be. This seems to be only partially true. For the low mbp, in all three methods, it can be clearly observed
that when the lr increase the performance worsens. However, the contrary does not seem to be the case; for
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the high mbp the high lr are far closer in performance, but the lower lr′s still perform better. Obviously, the
choice for the lr plays a big part in this correlation. Since the problem is highly non-linear the best gradients
at certain moments are the best direction only locally, a too high lr could make too big of a jump in this
locally optimal direction which would not lead to a globally better solution. If I had chosen lr′s that would
have been closer together, the correlation between the lr and the mbp might have been clearer.
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Figure 7: The total loss, loss of the 4trainingraphs added together, for each combination of the learning rate
and mini-batch percentage, with the learning rate grouped together.

As for the input vector size (ivs) and for the leakyRelU parameter x, both do not seem to have a substantial
effect on the performance of the algorithm. The ivs performance probably strongly depends on the random
initialization of its features and the difference between the performances of the ivs for the different methods
can be explained by this. For both the oneSwitch and switchPeriodically methods the leakyReLU parameter
has almost identical results, but for the switchWhenLM method this is not the case. This probably has to
do with the nature of the methods. Where the oneSwitch and the switchPeriodically method switch at a
predetermined point, the switchWhenLM method switches when the local minimum criterion is reached. The
influence of the leakyReLU parameter is very minimal and only changes the loss value a tiny bit. For the
switchWhenLM method this tiny change can, however, result in switching between trainable parameters one
step earlier or later, which in turn can lead to noticeable changes and therefore very different results.
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Figure 8: The total loss, loss of the 4trainingraphs added together, for the different values for the input vector
size (left) and the leakyReLU parameter (right).

When we look at the #attention heads, we see the same pattern occurring for each method. #attention
heads = 1, performs well. Thereafter for # attention heads = 2 the total loss increases quite drastically
and then the total loss decreases for each extra attention head, until at #attention heads = 5, where the
total loss reaches an almost similar value to #attention heads = 1. Increasing the number of attention heads
obviously takes more time and, since the time limit is reached for all graphs used in training, thus worsens the
performance of the algorithm because fewer iterations are performed. However, an increase of the number
of attention heads could also improve the performance of the algorithm. The balance between these two
opposite factors could be a possible explanation for the pattern observed for the number of attention heads.
It could be that initially, the worsening factor outweighs the beneficial factor and that by increasing the
number of attention heads this becomes more balanced.
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Figure 9: The total loss, loss of the 4trainingraphs added together, for the different values for the #attention
heads.

In the figure below, Figure 10, the loss of the graph (y-axis) is plotted against the iteration (x-axis). The
maximum loss of a graph is 100× numberOfEdges, the begin-point and endpoint of every edge then have the
same color. The minimum loss is 0, the begin-point and endpoint of every edge then have a different color.
When we look closely at the figures, we can observe some similar patterns for all methods and graphs. The
algorithm starts with a randomly initialized starting point, which can easily be improved, but quite quickly
afterward the methods do not seem able to approve the solution anymore. When looking at the individual
color values per node at the end of the computational experiment, it seems that most nodes have one color
that has a value >0.97. The very slowly decreasing trend of the graphs at the end of the computational
experiment might therefore be explained by the continuous approaching of a value of 1 for these nodes.

Another pattern visible in all graphs is that the switchWhenLM method, which has a lower mbp than
the other methods, seems to be able to execute far fewer iterations in the time limit. This might seem con-
tradictory as a lower mbp should result in more iterations since the loss of fewer vertices has to be computed.
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When the loss of fewer vertices is computed the loss obviously is also lower, and might even be 0. Therefore
the loss of the whole solution has to be computed sometimes in order to check whether a feasible solution is
found, and also to evaluate the performance of the algorithm. As already explained above, in this algorithm
the loss of the whole solution therefore is calculated 1

mbp times. When this loss is calculated this value is

also added to the figure. The actual iterations of the algorithm are thus 1
mbp times the iterations in the figures.

Another observation that can be made is that the loss of the switchPeriodically and switchWhenLM methods
show quite capricious behavior, most clearly visible in the games120 graph for the switchWhenLM method.
This happens when these methods switch between trainable parameters. In the Adam optimizer, Algorithm
2, there are four possible hyperparameters. The learning rate, the weight decay, and two coefficients β1 and
β2, which are used in combination with the gradients to derive the first and second moments, which in turn
is used to derive the stepsize. In the first iteration of the optimizer, the terms m0 and v0 are 0, therefore the
first step the optimizer makes is not a running average of the first and second moment of the gradients, but
just the first and second moment of the gradient derived from the first iteration multiplied with the β′s, see
Equation (22).

m1 = β1m0 + (1− β1)gt v1 = β2v0 + (1− β2)g
2
t (22)

This, therefore, leads, I think to too big of a first step, resulting in an increase rather than a decrease of
the loss. If both β1 and β2 are increased, this overshooting will happen less, however, this also affects the
performance of the rest of the optimizer. Since this would require entirely new hyperparameter optimization,
I have opted not to change the β′s and leave them at their default values.

(a) games120 (b) jean

(c) miles250 (d) queen8 8

Figure 10: Loss value of best performing hyperparameters, where X = the inputted k. In appendix A, figure
19 the same figures can be found but more zoomed in on the final losses.

5.1.2 Training on myciel7 graph

The best performing hyperparameters for the different methods for the myciel7 graph are in the table below,
Table 6. To pick the best performing hyperparameters, the same rules were used as for the graphs used in
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the 4graphsGroup. However, since for some hyperparameters combinations feasible solutions were found,
the loss of these combinations was obviously the same. When this happened, I picked the hyperparameter
that found the feasible solution the fastest.

method mbp lr ivs leakyReLU #attention heads
oneSwitch 1 0.0031 4 0 3
switchPeriodically 0.031 0.01 6 0 1
switchWhenLM 1 0.01 4 0.2 1

Table 6: The best performing hyperparameters for the myciel7 graph.

Interpreting the different performances of the various hyperparameters for this single graph is not entirely
straightforward. It obviously does not help that there is only one graph which due to the random nature of
the algorithm produces somewhat capricious results. The optimal hyperparameters are also quite different
from the 4traingGrpahs. One of the explanations could be that fine-tuning the hyperparameters on graphs
for which the algorithm in its current state is unable to find solutions is very different than fine-tuning the
algorithm for graphs it is able to find solutions for.

One of the patterns that did became clear for me was that the higher (0.01,0.031) learning rates for all
three methods seem to perform better as can be seen in Figure 11. In this figure and for the other figures
in this subsubsection the y-axis for the switchPeriodically graph is not the total loss but the time it took for
the myciel7 graph to run. If the time here is 1200s, no feasible solution has been found.
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Figure 11: For the oneSwitch and switchWhenLM methods I only show the loss when the time limit is reached.
For the switchPeriodically method I show the loss as well as the time it took to find a feasible solution for
the myciel7, if the time for a combination is 1200, no feasible solution was found for this combination. For
all three methods, the respective loss or time is shown for each combination of learning rate and mini-batch
percentage, with the combinations with the same mini-batch percentage grouped together.

Next, for the mini-batch percentage, Figure 12, it seems that it does not matter so much since, for all
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three methods, across the different mini-batch percentages, the best loss value is very similar.
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Figure 12: For the oneSwitch and switchWhenLM methods I show the loss when the time limit is reached.
For the switchPeriodically method I show the loss as well as the time it took to find a feasible solution for
the myciel7, if the time for a combination is 1200, no feasible solution was found for this combination. For
all three methods the respective loss or time is shown for each combination of learning rate and mini-batch
percentage, with the combinations with the same learning rate grouped together.

When looking at the ivs in Figure 13, the middle (3,4,6) values seem to perform better than the high
and low values (1,9) for all three methods. The ivs largely determines the number of parameters of the
network, the number of parameters is roughly targetNumber×number of nodes×ivs. A bigger ivs might
allow the network to more delicately change its direction to the solution. However, since the inputvector
itself is randomly initialized, it also adds more chaos to the network, making it more difficult to find the
solution. Hence, it is not strange to say that balance is key.
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Figure 13: For the oneSwitch(left) and switchWhenLM (left) methods I show the loss when the time limit
is reached for each of the different input vector sizes. For the switchPeriodically method (right) I show the
time it took to find a feasible solution for the myciel7 for each of the different input vector sizes, if the time
for a combination is 1200, no feasible solution was found for this combination.

If we look at the leakyReLU value in Figure 14, all values are almost identical, as was also the case for the
other 4trainigGraphs. Only for the switchPeriodically method, the leakyReLU value of 0.3 has a significantly
different value to the other values. I do not have a clear interpretation for this result.
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Figure 14: For the oneSwitch(left) and switchWhenLM (left) methods I show the loss when the time limit is
reached for each of the different leakyReLU parameters. For the switchPeriodically method (right) I show
the time it took to find a feasible solution for the myciel7 for each of the different leakyReLU parameters, if
the time for a combination is 1200, no feasible solution was found for this combination.

Lastly, if we look at the #attention heads, Figure 15, it seems that for the switchPeriodically and switch-
WhenLM methods #attention heads = 1, performs best. For the oneSwitch method this is not the case,
here the #attention heads = 3, performs best.
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Figure 15: For the oneSwitch(left) and switchWhenLM (left) methods I show the loss when the time limit
is reached for each of the different #attention heads. For the switchPeriodically method (right) I show the
time it took to find a feasible solution for the myciel7 for each of the different #attention heads, if the time
for a combination is 1200, no feasible solution was found for this combination.

5.2 Performance of oneSwitch, swichtPeriodically, and switchWhenLM on test
graphs

In this subsection, I present the result of the different methods on the test graphs, which are all the graphs
in Table 1. These are graphs of various types. In the hyperparameter optimization, I noticed a difference
between the mycielski graphs and the non-mycielski graphs and have therefore chosen to train two different
models. The best hyperparameters settings for the different methods can be found in Table 7. I have used
the mycielski settings only to test the mycielski graphs, Table 8, and I have used the non-mycielski settings
for both the mycielski graphs and the non-mycielski graphs, Table 10. In Table 1, also the hyperparameter
settings for a method not mentioned before, onlyAW can be found. This method is completely similar to the
other methods except that I do not allow this method to train on the features. In doing so I can evaluate
whether or not it is beneficial to train on the features. The hyperparameters of the onlyAW method are
optimized using exactly the same procedure and settings as the other methods. An overview of the results
can be found in the Appendices, appendix C Table 18.

mycielski
method mbp lr ivs leakyReLU #attention heads
oneSwitch 1 0.0031 4 0 3
switchPeriodically 0.031 0.01 6 0 1
switchWhenLM 1 0.01 4 0.2 1
onlyAW 0.031 0.031 6 0 1

non-mycielski
method mbp lr ivs leakyReLU #attention heads
oneSwitch 1 0.0031 3 0.1 1
switchPeriodically 1 0.001 9 0.2 5
switchWhenLM 0.31 0.0031 3 0.3 1
onlyAW 0.031 0.01 4 0.1 1

Table 7: Hyperpameter settings for all the methods

In Table 8 the results of the different methods on the mycielski graphs are presented. Since almost all
methods found feasible colorings for the graphs, the time it took to find these k-colorings is presented instead
of the loss. If the time equals the time limit of 1200s, the method did not find a feasible coloring for the
graph, in this case the loss at the time limit can be found between the brackets. For these cases where no
feasible k-colorings were found before the time limit, the number of conflicting edges after rounding, ce, and
the number of conflicting edges after a first-order neighborhood color correction, cn, can be found as well as
the chromatic number, kcc, found after the whole color correction algorithm. The first-order neighborhood
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color correction consists of checking whether or not, for a conflicting edge, one of the nodes can be assigned
an existing color that is not yet used in its neighborhood.

Now, if we look at the performances of the different methods we notice that both the switchPeriodically
and switchWhenLM methods are able to find feasible solutions for all the problems within the time limit.
The oneSwitch and onlyAW methods, however, were not able to find feasible solutions for all graphs, the
oneSwitch method was not able to solve the 2 insertions 4 graph, the myciel6 and myciel7 graph, and the
onlyAW method was not able to solve the myciel7 graph. For all graph-method combinations, where no
feasible solution was found before the time limit, a feasible k-coloring was found either after rounding or
after a first-order neighborhood color correction with the target k number of colors. Next if we look at the
influence of training on the feature vector we see that the switchPeriodically method performs much better,
switchWhenLM substantially better, and the oneSwitch method worse, than the onlyAW method. Clearly,
we can not conclude that training on the features is always better than not training on the features. However,
when used properly we can conclude that training on the features can greatly enhance the performance of the
algorithm on the mycielksi graphs. This seems particularly true when we keep switching between training
on the features and training on the other parameters, as both the methods where this continuous switch-
ing happens, switchPeriodically and switchWhenLM, clearly outperform the methods where this continuous
switching does not happen oneSwitch and onlyAW. An explanation for this result could be that when con-
tinuous switching is used the set of parameters that is fixed is better because the fixed parameters have been
recently trained on and therefore maybe better adapted to provide a lower coloring, which in term allows a
more accurate training of the current trainable parameters.

graph properties oneSwitch switchPeriodically switchWhenLM onlyAW
graph nodes edges χ k loss ce cn k-cc time ce cn k-cc time ce cn k-cc time ce cn k-cc
1 insertions 4 67 232 5 5 269s - - - 23s - - - 66s - - - 118s - - -
2 insertions 4 149 541 5 5 1200s (106) 1 0 5 56s - - - 179s - - - 496s - - -
myciel2 5 5 3 3 0.94s - - - 0.29s - - - 0.88s - - - 0.39s - - -
myciel3 11 20 4 4 6.95s - - - 0.72s - - - 1.58s - - - 3.55s - - -
myciel4 23 71 5 5 48.4s - - - 2.28s - - - 9.91s - - - 9.86s - - -
myciel5 47 236 6 6 777s - - - 11.31s - - - 63s - - - 54s - - -
myciel6 95 755 7 7 1200s (206) 2 0 7 33.9s - - - 290s - - - 460s - - -
myciel7 191 2360 8 8 1200s (18) 0 0 8 149s - - - 1198s - - - 1200s (24) 0 0 8

Table 8: Performance on myciel graphs. For a given k, I report the results of the algorithm. If the algorithm
found a feasible solution for the given targetNumber, I report only the time it took to find this solution. If
the time limit of 1200s was reached I report the time and between brackets the final loss. For the graph
method combinations where no feasible solutions are found I also report, the number of conflicting edges
after rounding, ce, the number of conflicting edges after first-order neighborhood color correction, cn, and
the chromatic number after the whole color correction algorithm, k−cc. The chromatic number χ is obtained
from [Gua15].

Next, it stands out that the switchPeriodically method clearly outperforms the other methods and is sub-
stantially faster on all graphs. As mentioned above, the methods using continuous switching perform better
than the methods that do not use continuous switching. The performance gap between the switchPeriodically
method and the switchWhenLM could possibly be explained by the fact that the switchWhenLM method
first needs to get stuck into a local minimum in order for it to switch and therefore might not profit as much
from the performance-benefits of switching. In Table 9, this method is compared with the methods from
the authors of [SBZK22], [LLM+22] and [LPAL19]. In [SBZK22] and [LPAL19] no time is mentioned, so
comparing the time it took to find the k-colorings is difficult. But it can be concluded that at least the algo-
rithm is able to find colorings for the same k as these two methods. Next, when comparing with [LLM+22],
they are much faster in solving these graphs for their respective target k. Comparing the running times is,
however, difficult since a lot of factors affect the running time, such as the computational power and the way
the neural network is implemented.
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graph properties switchPeriodically [SBZK22] [LLM+22] [LPAL19]

graph nodes edges chi k time k ce X greedy k ce X greedy

1 insertions 4 67 232 5 5 23s - - - - - 5

2 insertions 4 149 541 5 5 56s - - - 4 1 (101s) 5

myciel5 47 236 6 6 11.31s 6 0 6 6 0 (0.01s) 6

myciel6 95 755 7 7 33.9s 7 0 7 7 0 (0.01s) 7

myciel7 191 2360 8 8 149s - - - - - 8

Table 9: Comparison with other methods. I compare the best performing method with three neural network
approaches for the GCP. For the [SBZK22] approach, I report their target k, the number of conflicting edges
and the chromatic number after their color correction algorithm, Xgreedy. For [LLM

+22] approach, I report
their target k, and their number of conflicting edges for this k and between brackets the time it took to find
these solutions. For the [LPAL19] approach, I report their chromatic number after their color correction
algorithm, Xgreedy. If for an approach-graph combination, a ’ - ’ is reported this approach did not consider
this graph.

In Table 10, the performance of the different methods on the mycielski as well as on the non-mycielski
graphs are presented, using the hyperparameters settings of the non-mycielski training graphs. The table
shows the loss of the algorithm at the time limit. If the loss is 0, a feasible k-coloring is found, the time it
took to find this feasible k-coloring can then be found between brackets. The rest of the notation is similar
to Table 8: the conflicting edges after rounding, ce, the conflicting edges after first-order neighborhood color
correction, cn, and the chromatic number after the whole color correction algorithm, k − cc.

A few things stand out when observing the results of these methods in general. First, for all methods
solutions are found for mycielski graphs only. For all the other graphs the loss remains far from zero and the
number of conflicting edges after rounding is also quite far from desired. Second, the difference between ce
and cn is striking. The only difference between these two solutions is that for cn the color of some wrongly
colored nodes is changed if in their first-order neighborhood no node was colored using that color. This
procedure is very simplistic and changing this color influences no other edges since this color is not used in
this neighborhood. Ideally, the algorithm should be able to change the color of these nodes quite easily since
this lowers the loss function. This big difference between ce and cn indicates that the algorithm is not very
good at finding these ’easy’ changes of colors.

Now, if we start to compare these methods with each other, we can observe that when we look at the
loss and the number of conflicting edges after rounding, the three methods, where training on the features
is allowed, oneSwitch, switchPeriodically, switchWhenLM outperform the method, where this is not allowed,
onlAW. For almost all graphs the oneSwitch, switchPeriodically and switchWhenLM have a substantially
lower loss and number of conflicting edges. This is especially true for the book, games and miles graphs for
which the losses and number of conflicting edges for the oneSwitch, switchPeriodically and switchWhenLM
methods are much lower than the losses and number of conflicting edges for the onlyAW method. The onlyAW
method performs better on the myciel5, myciel6, and myciel7 graphs than the oneSwitch, switchPeriodically
and switchWhenLM graph, but this is not the case when the hyperparameter settings for the mycielski graphs
are used, Table 8. However, when we look at the total number of colors needed and the total number of
conflicting edges after first-order neighborhood correction, the performance gap between the onlyAW method
and the other methods shrinks. The total number of colors needed is not an ideal indicator since it does not
reflect potential advantages/disadvantages for particular types of graphs, but it allows for a comparison of
the performance of the methods in a more general way and therefore is still used here. The total number
of colors needed is only slightly lower for the oneSwitch and switchWhenLM method, and even a bit higher
for the switchPeriodically method. However, some optimal coloring solutions, respectively the 1 insertions 4,
2 insertions 4, david, anna and mugg88 1 graphs using the oneSwitch method, 1 insertions 4, 2 insertions 4
and mugg88 1 graphs using the switchPeriodically method, and the 1 insertions 4, 2 insertions 4, games120
graph and the myciel7 graph, are found that were not found for the onlyAW method. The metrics cn and
the k − cc are, however, maybe not the best metrics to judge the performance of the methods, since these
are not direct results of the algorithm but indirect results. Taking the above into account, we can conclude
that training on features seems beneficial for the loss, the number of conflicting edges and in most cases also
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the final coloring number.
Next, if we compare the oneSwitch, switchPeriodically and switchWhenLM methods with each other, it

seems that the oneSwitch method performs the best. It has the lowest total loss, the lowest ce the lowest
cn, and the lowest k − cc. The performance of the switchWhenLM method is, however, not far from the
performance of the oneSwitch method. Which makes it difficult to conclude if switching only once is the best
choice or if switching more often is the best choice.

graph properties oneSwitch switchPeriodically switchWhenLM onlyAW
nodes edges chi k loss ce cn k-cc loss ce cn k-cc loss ce cn k-cc loss ce cn k-cc

1 insertions 4 67 232 5 5 0 (283s) - - 5 0 (153s) - - 5 0 (157s) - - 5 100 1 0 5
2 insertions 4 149 541 5 5 101 1 0 5 0 (385s) - - 5 0 (496s) - - 5 311 3 2 6
anna 138 493 11 11 1276 30 3 13 1376 29 4 13 1064 28 3 13 2230 57 4 13
david 87 406 11 11 2115 74 0 11 1616 37 3 13 2413 117 1 12 2446 146 1 12
games120 120 638 9 9 2696 66 0 9 2973 62 1 10 2926 54 0 9 4787 169 3 10
homer 561 1628 13 13 5187 146 9 15 8176 156 9 17 5922 153 7 15 10465 300 12 17
huck 74 301 11 11 1511 82 0 11 1759 100 1 12 1502 57 0 11 1938 125 0 11
jean 80 256 10 10 1107 45 1 11 1003 49 0 10 875 48 1 11 1796 86 0 10
miles250 128 389 8 8 1981 57 3 10 2151 56 7 11 2110 60 3 10 3367 137 3 10
mug88 1 88 146 4 4 267 6 0 4 383 8 0 4 0 (873s) - - 4 1136 17 1 5
myciel2 5 5 3 3 0 (0.83s) - - 3 0 (2.2s) - - 3 0 (0.94s) - - 3 0 (0.76s) - - 3
myciel3 11 20 4 4 0 (5.5s) - - 4 0 (11s) - - 4 0 (5.34s) - - 4 0 (6.8s) - - 4
myciel4 23 71 5 5 0 (696s) - - 5 0 (45s) - - 5 0 (27s) - - 5 0 (29s) - - 5
myciel5 47 236 6 6 100 1 0 6 100 1 1 7 0 (241s) - - 6 0 (125s) - - 6
myciel6 95 755 7 7 12 - - 7 0 (1004s) - - 7 0 (1083s) - - 7 0 (676s) - - 7
myciel7 191 2360 8 8 710 3 1 9 2274 3 1 9 588 1 0 8 1206 10 7 10
queen5 5 25 160 5 5 1232 12 11 8 1734 21 18 8 1004 10 10 7 2099 51 14 8
queen6 6 36 290 7 9 2353 89 3 11 2418 74 6 12 2175 75 5 11 2402 75 3 11
queen7 7 49 476 7 10 3534 128 9 12 3092 37 11 13 4012 128 7 13 3447 136 5 12
queen8 8 64 728 9 13 4669 200 3 14 4636 173 6 15 4885 226 3 15 4970 310 23 17
queen8 12 96 1368 12 14 8703 331 25 17 9187 271 39 18 8578 402 23 17 9469 153 3 15
queen9 9 81 1056 10 12 7471 234 26 16 7606 232 17 16 7450 257 32 16 7895 356 23 15
queen11 11 121 1980 11 14 12574 442 57 19 13868 636 66 19 13202 427 52 19 13005 557 42 20
queen13 13 169 3328 13 17 19586 549 44 22 24533 986 35 22 19657 778 51 21 19469 733 49 22
sum 2505 17863 194 214 77185 2496 195 247 88885 2931 225 258 78363 2821 198 247 92538 3422 195 254

Table 10: Performance methods in comparison with onlyAW method. For a given k, I report the results of
the algorithm. I report the loss value at the moment the time limit is reached, if the loss value is zero, the
algorithm has found a feasible k-coloring, and the time it took to find this k-coloring is reported between
brackets. For the graph method combinations where no feasible solutions are found I also report, the number
of conflicting edges after rounding, ce, the number of conflicting edges after first-order neighborhood color
correction, cn, and the chromatic number after the whole color correction algorithm, k − cc. The chromatic
number χ is obtained from [Gua15]. Lastly, a number is bold when the optimal coloring is obtained.

In Table 11, the results of the oneSwitch method are compared with the methods from the authors of
[LLM+22], [SBZK22] and [LPAL19]. Here similar to Table 9 the target k for the methods of the authors is
provided as well as the number of conflicting edges and or their chromatic number after some color correction.
The oneSwitch method is clearly outperformed by the algorithm of [LLM+22] and [SBZK22]. As a rough
indicator of quality, the total number of colors found by each algorithm is used to compare the algorithms,
as mentioned above this not a perfect indicator since it does not reflect the performance for particular types
of graphs. For the graphs in common with [SBZK22] the sum of all the colors for the oneSwitch method is
156 whilst the sum of the algorithm of [SBZK22] is 123. For the graphs in common with [LLM+22], where
[LLM+22] has no conflicting edges, the sum of all the colors for the oneSwitch method is 108 whilst the
sum of the algorithm of [LLM+22] is 95. The sum of the oneSwitch method for the graphs in common with
[LPAL19] is closer 216 and 206 respectively. It is clear that the other methods perform better, especially on
the non-mycielski graphs.
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graph properties oneSwitch [SBZK22] [LLM+22] [LPAL19] TABUCOL

nodes edges chi k loss ce cn cc k ce χgreedy k ce χgreedy k

1 insertions 4 67 232 5 5 0 (283s) 0 0 5 - - - - - 5 5

2 insertions 4 149 541 5 5 101 1 0 5 - - - 4 1 5 5

anna 138 493 11 11 1276 30 3 13 11 0 11 11 0 12 11

david 87 406 11 11 2115 74 0 11 - - - 11 0 12 11

games120 120 638 9 9 2696 66 0 9 - - - 9 0 - 9

homer 561 1628 13 13 5187 146 9 15 - - - 13 0 15 13

huck 74 301 11 11 1511 82 0 11 - - - 11 0 11 11

jean 80 256 10 10 1107 45 1 11 10 0 10 10 0 10 10

miles250 128 389 8 8 1981 57 3 10 - - - - - - -

mug88 1 88 146 4 4 267 6 0 4 - - - - - 4 4

myciel2 5 5 3 3 0 (0.83s) 0 0 3 - - - - - - -

myciel3 11 20 4 4 0 (5.5s) 0 0 4 - - - - - - -

myciel4 23 71 5 5 0 (696s) 0 0 5 - - - - - - -

myciel5 47 236 6 6 100 1 0 6 6 0 6 6 0 6 6

myciel6 95 755 7 7 12.3 0 0 7 7 0 7 7 0 7 7

myciel7 191 2360 8 8 710 3 1 9 - - - - - 8 -

queen5 5 25 160 5 5 1232 12 11 8 5 0 5 5 0 8 5

queen6 6 36 290 7 9 2353 89 3 11 7 1 8 - - 11 8

queen7 7 49 476 7 10 3534 128 9 12 7 4 9 7 9 10 8

queen8 8 64 728 9 13 4669 200 3 14 9 2 10 8 2 13 11

queen8 12 96 1368 12 14 8703 331 25 17 12 2 13 12 0 15 12

queen9 9 81 1056 10 12 7471 234 26 16 10 3 12 9 6 16 11

queen11 11 121 1980 11 14 12574 442 57 19 11 19 15 11 21 17 -

queen13 13 169 3328 13 17 19586 549 44 22 13 27 17 13 33 21 -

sum 2505 17863 194 214 77185.3 2496 195 247 108 58 123 147 72 206 147

Table 11: Comparing with other approaches. I compare the best performing method with three neural
network approaches for the GCP. For the [SBZK22] approach, I report their target k, the number of conflicting
edges, and the chromatic number after their color correction algorithm, Xgreedy. For [LLM+22] approach,
I report their target k, and their number of conflicting edges for this k and between brackets the time it
took to find these solutions. For the [LPAL19] approach, I report their chromatic number after their color
correction algorithm, Xgreedy. A number is bold when the optimal coloring is obtained.

5.3 Adapted model

The difference between the performance of the mycielski graphs and the non-mycielski graphs is striking. The
mycielksi graphs are graphs that have a maximum clique number of 2. The graphs therefore do not contain
any triangles or even more connected structures. A reason for the poor performance on the non-mycielski
graphs could be this structural difference between the graphs. To further investigate whether this is the
problem, I made a few graphs myself consisting of very simple structures, see figure 17. The idea behind the
triangle and crown graphs is that in a triangle two vertices have the same common neighbor, and that for a
crown graph the two bottom vertices have multiple common neighbors. These common neighbors influence
the node embedding of the two adjacent vertices. In the case of the triangle, if two nodes have an exactly
similar feature matrix, these nodes will be colored exactly the same, despite their adjacency, because they
have exactly the same neighborhood.
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Figure 16: triangle and crown graphs

I have used the same settings as used for the non-mycielski graphs, 7, to generate the results visible
in 5.3. A few things stand out when analyzing these graphs. The oneSwitch method is not able to find
a feasible coloring for any of these graphs. The switchPeriodically method is able to find solutions for the
crown2, crown3, triangle1, and triangle3 graphs but is unable to find solutions for the crown3 and triangle3
graphs. The switchWhenLM method is able to find solutions for all but the triangle3 graph. Although the
switchPeriodically and switchWhenLM methods are able to solve some methods, the algorithm is stuck at
the same solution value for a lot of iterations.

(a) crown1 (b) crown2 (c) crown3

(d) triangle1 (e) triangle2 (f) triangle3

Figure 17: loss against iteration for crown and triangle graphs

For the oneSwitch the final coloring is the following:
0 0.5 0.5
0 0.5 0.5
1 0 0
1 0 0

 (23)

Looking at the final coloring, it is clear how the coloring should change: if both the first and the second nodes
changed their coloring of the second and third color a bit, the loss would be less. However, the algorithm
cannot get out of this state. The fact that the neural network has only one layer and thus is too simplistic
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could be a reason for such inferior performance.

In order to solve this problem, I have tried to add an extra set of learnable parameters to the algorithm. This
learnable parameter matrix W2 is of the size (N ×targetNumber) and is added to the algorithm before apply-
ing the last softmax function. The output of the network before the softmax function is pointwise multiplied
with this weight matrix. The weight matrix W2 is a learnable parameter at the same moments as when
the feature matrix is a learnable parameter. The results, using the switchPeriodically method with lr =0.2,
mpb =1, ivs=4, leakyReLU=0.2 and #attention heads=1, on the crown and triangle graphs for this adapted
model are presented in Figure 18. I have chosen to use the switchPeriodically method and hyperparameters
based on some preliminary results. Here it can clearly be observed that the adapted algorithm is much better
at coloring these simple graphs. Only for the crown2 graph, the loss has a plateau at some point, but the
adapted algorithm is able to navigate its way out of this plateau quickly.

(a) crown1 (b) crown2 (c) crown3

(d) triangle1 (e) triangle2 (f) triangle3

Figure 18: loss against iteration for crown and triangle graphs

The results of the adapted algorithm are presented in Table 12. In this table, the adapted method is
compared against the best performing method oneSwitch and the method where training on the features is
not allowed. The adapted model clearly outperforms the oneSwitch and onlyAW methods. What is surprising
though, is that the model is not able to solve the myciel6 and myciel7 graphs. The algorithm seems to be
stuck in a local minimum and not able to move out of this local minimum. For most graphs where no feasible
solution is found this seems to be the case. Looking at the loss of these graphs, where no feasible solutions
are found, we can observe that the loss for all, but the queen13 13 graphs, is 100× the number of conflicting
edges. This can only be the case when two adjacent nodes in the graph are assigned fully the same color.
Now, if we look at the conflicting edges, after a first-order neighborhood color correction, we see that, for most
graphs, the number of conflicting edges remains the same, this tells us that the nodes, which are assigned
the wrong color, can not easily be assigned a different color without causing a new conflicting edge. This
in term proves that indeed a local minimum is found since changing a color of a node will not immediately
result in a lower loss. Contrary to the oneSwitch and onlyAW method, the adapted method is able to color
a graph in such a way that almost no ’easy’ color changes, color changes using a first-order neighborhood
color correction, can be made. This seems to indicate that the adapted method is a (lot) more powerful than
the other methods. Besides that the gap between ce and cn has substantially decreased, the overall number
of cn has also decreased a lot. This indicates that the adapted method not only resolves these ’easy’ color
changes but also seems to be able to resolve some other color changes.
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graph properties oneSwitch adapted onlyAW
graphname nodes edges chi k loss ce cn cc loss ce cn cc loss ce cn cc
1 insertions 4 67 232 5 5 0 (283s) 0 0 5 0 (26s) - - 5 100 1 0 5
2 insertions 4 149 541 5 5 101 1 0 5 0 (65s) - - 5 311 3 2 6
anna 138 493 11 11 1276 30 3 13 100 1 1 12 2230 57 4 13
david 87 406 11 11 2115 74 0 11 200 2 2 13 2446 146 1 12
games120 120 638 9 9 2696 66 0 9 0 (155s) - 9 4787 169 3 10
homer 561 1628 13 13 5187 146 9 15 400 4 4 16 10465 300 12 17
huck 74 301 11 11 1511 82 0 11 0 (89s) - - 11 1938 125 0 11
jean 80 256 10 10 1107 45 1 11 0 (117s) - - 10 1796 86 0 10
miles250 128 389 8 8 1981 57 3 10 100 1 1 9 3367 137 3 10
mug88 1 88 146 4 4 267 6 0 4 0 (13.5s) - - 4 1136 17 1 5
myciel2 5 5 3 3 0 (0.83s) 0 0 3 0 (0.34s) - - 3 0 (0.76s) - - 3
myciel3 11 20 4 4 0 (5.5s) 0 0 4 0 (1.5s) - - 4 0 (6.8s) - - 4
myciel4 23 71 5 5 0 (696s) 0 0 5 0 (12s) - - 5 0 (29s) - - 5
myciel5 47 236 6 6 100 1 0 6 0 (46s) - - 6 0 (125s) - - 6
myciel6 95 755 7 7 12.3 0 0 7 200 2 2 8 0 (676s) - - 7
myciel7 191 2360 8 8 710 3 1 9 200 2 2 9 1206 10 7 10
queen5 5 25 160 5 5 1232 12 11 8 600 6 6 7 2099 51 14 8
queen6 6 36 290 7 9 2353 89 3 11 0 (206s) - - 9 2402 75 3 11
queen7 7 49 476 7 10 3534 128 9 12 300 3 3 11 3447 136 5 12
queen8 8 64 728 9 13 4669 200 3 14 0 (340s) 0 0 13 4970 310 23 17
queen8 12 96 1368 12 14 8703 331 25 17 700 7 4 15 9469 153 3 15
queen9 9 81 1056 10 12 7471 234 26 16 800 8 6 14 7895 356 23 15
queen11 11 121 1980 11 14 12574 442 57 19 1300 13 11 18 13005 557 42 20
queen13 13 169 3328 13 17 19586 549 44 22 3958 39 23 20 19469 733 49 22
sum 2505 17863 194 214 77185.3 2496 195 247 8858 88 65 236 92538 3422 195 254

Table 12: adapted method compared with oneSwitch and onlyAW. For a given k, I report the results of the
algorithm. I report the loss value at the moment the time limit is reached, if the loss value is zero, the
algorithm has found a feasible k-coloring, and the time it took to find this k-coloring is reported between
brackets. For the graph method combinations where no feasible solutions are found I also report, the number
of conflicting edges after rounding, ce, the number of conflicting edges after first-order neighborhood color
correction, cn, and the chromatic number after the whole color correction algorithm, k − cc. The chromatic
number χ is obtained from [Gua15].

In Table 13, the adapted method is compared against the methods of the authors of [LLM+22], [SBZK22]
and [LPAL19]. The adapted method performs worse than the [LLM+22] and [SBZK22] methods. For the
graphs in common with [LLM+22], where the [LLM+22] method finds a feasible coloring, the sum of colors
used in the adapted method is 107 whilst the sum for the [LLM+22] method is 95. For the graphs in common
with [SBZK22] the sum of the colors used in the adapted method is 143 whilst the sum of the [SBZK22]
method is 123. However, the sum of the colors used in the adapted method is equal to the sum of the colors
used in the [LPAL19] method, for the graphs they have in common, 206 vs 206.
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graph properties adapted [SBZK22] [LLM+22] [LPAL19]

graphname nodes edges chi k loss ce cn k-cc k ce X greedy k ce X greedy

1 insertions 4 67 232 5 5 0 - - 5 - - - - - 5

2 insertions 4 149 541 5 5 0 - - 5 - - - 4 1 5

anna 138 493 11 11 100 1 1 12 11 0 11 11 0 12

david 87 406 11 11 200 2 2 13 - - - 11 0 12

games120 120 638 9 9 0 - 9 - - - 9 0 -

homer 561 1628 13 13 400 4 4 16 - - - 13 0 15

huck 74 301 11 11 0 - - 11 - - - 11 0 11

jean 80 256 10 10 0 - - 10 10 0 10 10 0 10

miles250 128 389 8 8 100 1 1 9 - - - - - -

mug88 1 88 146 4 4 0 - - 4 - - - - - 4

myciel2 5 5 3 3 0 - - 3 - - - - - -

myciel3 11 20 4 4 0 - - 4 - - - - - -

myciel4 23 71 5 5 0 - - 5 - - - - - -

myciel5 47 236 6 6 0 - - 6 6 0 6 6 0 6

myciel6 95 755 7 7 200 2 2 8 7 0 7 7 0 7

myciel7 191 2360 8 8 200 2 2 9 - - - - - 8

queen5 5 25 160 5 5 600 6 6 7 5 0 5 5 0 8

queen6 6 36 290 7 9 0 - - 9 7 1 8 - - 11

queen7 7 49 476 7 10 300 3 3 11 7 4 9 7 9 10

queen8 8 64 728 9 13 0 0 0 13 9 2 10 8 2 13

queen8 12 96 1368 12 14 700 7 4 15 12 2 13 12 0 15

queen9 9 81 1056 10 12 800 8 6 14 10 3 12 9 6 16

queen11 11 121 1980 11 14 1300 13 11 18 11 19 15 11 21 17

queen13 13 169 3328 13 17 3958 39 23 20 13 27 17 13 33 21

sum 2505 17863 194 214 8858 88 65 236 108 58 123 147 72 206

Table 13: Adapted design in comparison with other neural network approaches for the k-coloring problem. I
compare the adapted method with three neural network approaches for the GCP. For the [SBZK22] approach,
I report their target k, the number of conflicting edges, and the chromatic number after their color correction
algorithm, Xgreedy. For [LLM+22] approach, I report their target k, and their number of conflicting edges
for this k and between brackets the time it took to find these solutions. For the [LPAL19] approach, I report
their chromatic number after their color correction algorithm, Xgreedy.

5.4 Performance in combination with heuristic/relaxation

In Table 14 the results of the algorithm in combination with a hotstart are presented. I set the time limit
for the TABUCOL algorithm to 100 seconds. Next, I have selected the graphs for which TABUCOL did not
find the optimal solutions within 100 seconds, since these are the graphs for which a hotstart in combination
with TABUCOL can be tried. These graphs are: homer, queen8 8, queen9 9, queen11 11, queen13 13.

If we look at the results in Table 14, we can observe a few things. First, we can see that the algorithm
is not able to turn the infeasible solutions of the heuristics and relaxation into feasible solutions, except for
the adapted method in combination with the starting point obtained via the relaxation. Second, we can
observe that oneSwitch method is able to improve on 10 out of the 15 starting points, the switchPeriodically
method on 9 out of the 15 starting points, switchWhenLM method on 10 out of the 15 starting points,
and the adapted method on 14 out of the 15 starting points. All methods improve on all starting points
of the relaxation as expected. More interestingly, all methods are also able to improve on some of the
TABUCOL and RLF starting points. The adapted algorithm is particularly successful as it decreases almost
all losses quite substantially. Another observation worth pointing out is that when using the relaxation as
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the initialization the losses of the algorithm are much lower than when using a random initialization, as can
be seen in 15. Here, only the graph-method combination queen13 13-adapted method has a higher loss when
using the relaxation as a starting point.

TABUCOL RLF relaxation

homer k=11 k=12 k=13

queen8 8 k =9 k=11 k=13

queen9 9 k=10 k=12 k=12

queen11 11 k=13 k=14 k=14

queen13 13 k=15 k=17 k=17

oneSwitch

TABUCOL RLF relaxation

graphname begin end begin end begin end

homer 900 900 100 100 31150 4276

queen8 8 700 536 300 203 7262 2666

queen9 9 1300 1000 500 300 9669 4438

queen11 11 600 600 1700 908 16605 8005

queen13 13 1000 1000 1300 1300 19508 13640

switchPeriodically

TABUCOL RLF relaxation

graphname begin end begin end begin end

homer 900 900 100 100 31150 6214

queen8 8 700 600 300 300 7262 2065

queen9 9 1300 1200 500 300 9669 3992

queen11 11 600 600 1700 1220 16605 9101

queen13 13 1000 1000 1300 1300 19508 16707

switchWhenLM

TABUCOL RLF relaxation

graphname begin end begin end begin end

homer 900 900 100 100 31150 7124

queen8 8 700 600 300 203 7262 2510

queen9 9 1300 1000 500 300 9669 4300

queen11 11 600 600 1700 1020 16605 11509

queen13 13 1000 1000 1300 1300 19508 17798

adapted

TABUCOL RLF relaxation

graphname begin end begin end begin end

homer 1000 800 100 100 31150 300

queen8 8 500 300 300 100 7262 0 (911s)

queen9 9 900 600 500 200 9669 500

queen11 11 700 300 1700 500 16605 1200

queen13 13 1300 700 1300 693 19508 4552

Table 14: Performance algorithm using a heuristic/relaxation as initialization. In this table, I report the
target number, k, for the combination of the initialization method and graph. Next, I report the loss of the
algorithm, when the time limit was reached, for each of the three methods in combination with a hotstart
using two heuristics, TABUCOL [HdW87] and recursive largest first [Lei79] and one relaxation [MDZ08]

.

oneSwitch switchPeriodically switchWhenLM adapted
graph relaxation random relaxation random relaxation random relaxation random
homer 4276 5187 6214 8176 7124 5922 300 400
queen8 8 2666 4669 2065 4636 2510 4885 0 0
queen9 9 4438 7471 3992 7606 4300 7450 500 800
queen11 11 8005 12574 9101 13868 11509 13202 1200 1300
queen13 13 13640 19586 16707 24533 17798 19657 4552 3985

Table 15: Comparison between initializing the starting position randomly (random) and initializing the
starting position using the LP-relaxation of [MDZ08]

In Table 16, the results of using the algorithm as input for TABUCOL are presented. The loss of
the method at the time limit is reported. Following this, the number of conflicting edges after a first-
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order neighborhood color correction cn is reported, and next the time it took TABUCOL to eliminate these
conflicting edges and find a feasible solution is reported. Also, the chromatic number when using TABUCOL
to solve the graph is reported with the time it took to solve the graph between brackets. I gave TABUCOL
20 minutes to solve a graph for a given color k, starting at χ, and if it not succeeded increased k by one and
let it try again, until TABUCOL was able to find a feasible solution.

If we look at the results of the combination of TABUCOL and the methods, Table 16, we can observe that
TABUCOL is able to solve every infeasible solution provided by the methods proposed in this thesis using
very little time. The TABUCOL method alone, the last column of Table 16, however, is also very quick in
solving the graphs and also solves graphs for a lower chromatic number than the k used when in combination
with the methods of this thesis. From this, we can conclude that although TABUCOL is able to easily use
and resolve the infeasible outputs of the methods proposed in this thesis, it is more beneficial to just use
TABUCOL. In Table 10, we have already seen that the output of the algorithm can be used to find feasible
colorings and in Table 16, we have seen that TABUCOL can also find feasible colorings using the output of
the algorithm. Therefore we can conclude that the output of the algorithm can successfully be used to find
feasible colorings.

graph properties oneSwitch switchPeriodically switchWhenLM adapted onlyAW TABUCOL
graphname nodes edges chi k loss cn TC loss cn TC loss cn TC loss cn TC loss cn TC
1 insertions 4 67 232 5 5 0 (283s) 0 - 0 (153s) - - 0 (157s) - 0 (26s) - 100 0 0s 5 (0.14s)
2 insertions 4 149 541 5 5 101 0 0s 0 (385s) - - 0 (496s) - 0 (65s) - 311 2 0.19s 5 (1.78s)
anna 138 493 11 11 1276 3 2.0s 1376 4 4.8s 1064 3 4.4s 100 1 1.68s 2230 4 3.8s 11 (2.77s)
david 87 406 11 11 2115 0 0s 1616 3 1.03s 2413 1 0.93s 200 2 3.1s 2446 1 0.49s 11 (5.08s)
games120 120 638 9 9 2696 0 0s 2973 1 0.54s 2926 0 0s 0 (155s) - 4787 3 0.31s 9 (0.64s)
homer 561 1628 13 13 5187 9 212s 8176 9 466s 5922 7 160s 400 4 160s 10465 12 328s 13 (304s)
huck 74 301 11 11 1511 0 0s 1759 1 0.20s 1502 0 0s 0 (89s) - - 1938 0 0s 11 (0.173s)
jean 80 256 10 10 1107 1 0.83s 1003 0 0s 875 1 6.7s 0 (117s) - - 1796 0 0s 10 (0.62s)
miles250 128 389 8 8 1981 3 1.2s 2151 7 17s 2110 3 1.6s 100 1 2.6s 3367 3 0.84s 8 (3.86s)
mug88 1 88 146 4 4 267 0 0s 383 0 0s 0 (873s) - 0 (13.5s) - - 1136 1 0.04s 4 (0.12s)
myciel2 5 5 3 3 0 (0.83s) 0 0 0 (2.2s) 0 0 0 (0.94s) - 0 (0.34s) - - 0 (0.76s) - 3 (0.01s)
myciel3 11 20 4 4 0 (5.5s) 0 0 0 (11s) 0 0 0 (5.34s) - 0 (1.5s) - - 0 (6.8s) - 4 (0.01s)
myciel4 23 71 5 5 0 (696s) 0 0 0 (45s) 0 0 0 (27s) - 0 (12s) - - 0 (29s) - 5 (0.01s)
myciel5 47 236 6 6 100 0 0s 100 1 0.12s 0 (241s) - 0 (46s) - - 0 (125s) - 6 (0.17s)
myciel6 95 755 7 7 12.3 0 0s 0 (1004s) - - 0 (1083s) - 200 2 0.49s 0 (676s) - 7 (1.11s)
myciel7 191 2360 8 8 710 1 1.0s 2274 1 1.03s 588 0 0s 200 2 3.0s 1206 7 1.3s 8 (24.1s)
queen5 5 25 160 5 5 1232 11 0.06s 1734 18 0.10s 1004 10 0.35s 600 6 0.08s 2099 14 0.19s 5 (0.10s)
queen6 6 36 290 7 9 2353 3 0.15s 2418 6 0.23s 2175 5 0.19s 0 (206s) - - 2402 3 0.16s 7 (17.3s)
queen7 7 49 476 7 10 3534 9 0.31s 3092 11 0.57s 4012 7 0.46s 300 3 0.75s 3447 5 0.57s 7 (53.8s)
queen8 8 64 728 9 13 4669 3 0.55s 4636 6 0.63s 4885 3 0.63s 0 (340s) 0 4970 23 3.7s 9 (173s)
queen8 12 96 1368 12 14 8703 25 2.8s 9187 39 4.7s 8578 23 5.2s 700 4 9469 3 0.57s 12 (62.8s)
queen9 9 81 1056 10 12 7471 26 4.6s 7606 17 2.5s 7450 32 5s 800 6 3.2s 7895 23 2.6s 10 (1133s)
queen11 11 121 1980 11 14 12574 57 21s 13868 66 26s 13202 52 28s 1300 11 11s 13005 42 15s 13 (265s)
queen13 13 169 3328 13 17 19586 44 21s 24533 35 25s 19657 35 25s 3958 23 48s 19469 49 26s 16 (85.2s)
sum 2505 17863 194 214 77185.3 195 88885 225 78363 182 8858 65 92538 195 199 (2.134s)

Table 16: Performance of the color correction using TABUCOL. In this table I report the loss values at
the time limit, if the loss value is 0 a feasible solution is found and the time it took to find this value is
reported between brackets. Next, I report the number of conflicting edges after the first-order neighborhood
color correction, cn, and I report the time it took TABUCOL to eliminate these conflicting edges and find
a feasible solution, TC. Lastly, I report the results of running the TABUCOL algorithm alone where the
number is k and the time it took to find the k-coloring is reported between brackets.

6 Conclusion and further recommendations

In this thesis, I have presented a new algorithm inspired by [SBZK22] and [VCC+17]. I combined these two
papers into one design and proposed to not only train on the normal neural network parameters but also on
the input features. The goal of this thesis was to answer the following three research questions:

1. How does the combined design of [SBZK22] and [VCC+17] perform for the k-coloring problem?

2. Does training on the features improve the performance of a GNN for the k-coloring problem

3. How can heuristics and relaxation be used to aid the algorithm and vice-versa?

To answer the first question, I have tested the methods oneSwitch, switchPeriodically and switchWhenLM on
a range of different graph types and found that the methods performed well on the mycielski graphs, where
optimal colorings for all mycielski graphs were found. On the non-mycielski graphs, however, the methods
oneSwitch, switchPeriodically and switchWhenLM did not perform well, here the methods could not match
the performance of the algorithms proposed by the authors of [SBZK22], [LLM+22] and [LPAL19]. The
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adapted model, which resulted from an analysis as to why the algorithm did perform poorly on the non-
mycielski graphs, performed a lot better than the methods oneSwitch, switchPeriodically and switchWhenLM,
and managed to find some feasible solutions for non-mycielski graphs. The adapted method matched the per-
formance of the algorithm of [LPAL19], but still performed worse than the algorithms of [SBZK22], [LLM+22].

To answer the second research question, I compared the performance of the oneSwitch, switchPeriodically and
switchWhenLM methods with a method where training on the features was not allowed, onlyAW. For both
the mycielski and non-mycielski graphs training on features, when used properly, seemed to substantially
improve the performance of the algorithm, for the mycielski graphs the feasible solutions were found faster,
and for the non-mycielski graphs the loss at the time limit and the number of conflicting edges after rounding
were lower.

In order to answer the last research question, I have used two heuristics RLF [Lei79], TABUCOL [HdW87]
and one linear programming [MDZ08] as an initialization for the algorithm. All the starting points provided
to the algorithm could be used and all methods, oneSwitch, switchPeriodically, switchWhenLM and adapted
were able to improve on some of the starting points. Especially the adapted method was able to make some
substantial improvements. Using the relaxation as a starting point of the algorithm improved the final loss
for 19 out of 20 graph-method combinations. How much of this improvement is due to the lower loss of
the starting point would require further experimentation. Next, I have also combined the output of the
algorithm with TABUCOL and shown that TABUCOL was able to find feasible k-colorings for the outputs
of the algorithm. However, TABUCOL alone was also able to find such coloring. Therefore the usefulness
of combining the proposed algorithm with a heuristic would require further experimentation. I have also
designed a color correction algorithm inspired by the RLF algorithm which was able to turn the infeasible
colorings into feasible colorings.

Limitations The first set of limitations has to do with how the algorithm is implemented and trained. I
trained the hyperparameters of the algorithm on a very small set of graphs and also tested the algorithm on
a small set of graphs. This in turn makes it difficult to assess the true performance of the proposed algorithm
for the k-coloring problem. Next, I have chosen to train a limited set of hyperparameters, the weight decay
of the optimizer, the rules when to make a switch of trainable parameters, and the rules for the method
to move out of a local minimum, were all not a hyperparameter but all greatly impact the performance of
the algorithm. Another important factor that impacted the performance of the proposed algorithm is the
computational power of the computer used to run the proposed algorithm. The second set of limitations
has to do with how the algorithm is designed. Since the proposed algorithm has only one layer, in the case
of the oneSwitch, switchPeriodically and switchWhenLM methods, or two layers, in the case of the adapted
method, the algorithm is not able to gather information farther than nodes respectively one or two steps
away. Especially in complex structures this can be a disadvantage. The loss of the algorithm often got
stuck in a local minimum and getting out of this local minimum took often a lot of time, which limited the
algorithm quite heavily. Next, the equation used to determine the loss during the execution of the algorithm
only looks at whether or not two adjacent nodes are assigned the same color, but it does not look at the
colors of nodes in the second order neighborhood of a node. Therefore there is no factor that pushes nodes
that are not adjacent to each other to be assigned the same color. Lastly, the method used for the rounding
of the outputs of the algorithm did not take the objective into account when rounding and therefore resulted
in a probably far from optimal rounding.

Recommendations for further research To investigate whether training on the features indeed improves
the performance for a NN for the k-coloring problem, different GNN designs, preferably designs that have
known success for the GCP, could be used to see if it also improves the performance of these designs for
the k-coloring problem. Following this, it would be interesting to see if a loss function can be designed that
pushes adjacent nodes to be colored as differently as possible and also pushes second order neighbors to
be assigned as similarly as possible. Next, it could be worth examining how much the performance of the
algorithm improves when a rounding heuristic is used that takes the objective into account. Lastly, using
the algorithm as an initialization for TABUCOL on graphs for which TABUCOL is not able to find feasible
solutions could be tried in order to see if the output of the proposed algorithm provides proper starting points
for TABUCOL.

44



References

[BLP21] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimiza-
tion: A methodological tour d’horizon. European Journal of Operational Research, 290(2):405–
421, April 2021.

[Bre79] Daniel Brelaz. New methods to color the vertices of a graph. Commun. ACM, 22(4):251–256, apr
1979.

[CAC+81] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins, and
Peter W. Markstein. Register allocation via coloring. Computer Languages, 6(1):47–57, January
1981.

[DHD+19] Chi Thang Duong, Thanh Dat Hoang, Ha The Hien Dang, Quoc Viet Hung Nguyen, and Karl
Aberer. On node features for graph neural networks, 2019.

[GK11] Erkam Guresen and Gulgun Kayakutlu. Definition of artificial neural networks with comparison
to other networks. Procedia Computer Science, 3:426–433, 2011.

[Gua15] Stefano Gualandi. Graph coloring benchmarks, 2015.

[HdW87] A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Computing, 39(4):345–
351, December 1987.
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Appendices

A Figures

(a) games120 (b) jean

(c) miles250 (d) queen8 8

Figure 19: Loss value of best performing hyperparameters, where X = the inputted k
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B Pseudocodes

Algorithm 2 Adam

Require α: stepsize
Require β1,β2 ∈ [0,1): Exponential decay rates for the moment estimates
Require f(θ): Stochastic objective function with parameters θ
Require θ0: Initial parameter vector
m0 ← 0 (Initialize the 1st moment vector)
v0 ← 0 (Initialize the 2nd moment vector)
t ← 0 (Initialize timestep)
while (θt not converged) do

t ← t + 1
gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1mt−1(1− β1)gt (Update biased first moment estimate)
vt ← β2vt−1(1− β2)g

2
t (Update biased second raw moment estimate)

m̂t ← mt/(1− βt
1) (Compute bias-corrected first moment estimate)

v̂t ← vt/(1− βt
2) (Compute bias-corrected second raw moment estimate)

θt ← θt−1 − αm̂t/(
√
v̂t + ϵ) (Update parameters)

end while
Require θt (Resulting parameters)

Algorithm 3 Recursive Largest First

colornumber = 0
while (number of uncolored vertices > 0) do

determine a vertex x of maximal degree in G
colornumber = colornumber + 1
F(x) = colornumber
NN = set of non-neighbors of x
while (cardinality of NN > 0) do

maxcn = 1
ydegree = 1
for (every vertex z in NN) do

cn = number of common neigbors of z and x
if (cn > maxcn or (cn == maxcn and degree(z) < ydegree)) then

y = z
ydegree = degree(y)
maxcn = cn

end if
end for
if (maxcn == 0) then

y = vertex of maximal degree in NN
end if
F(y) = colornumber
contract y into x
update the set NN of non-neighbours of x

end while
G = G x;

end while
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Algorithm 4 DSATUR

UV = set of uncolored vertices
saturation degree vertex (Sat)= the number of different colors to which it is adjacent (colored vertices).
Degree of vertex (Deg) = degree in the uncolored subgraph

Arrange the vertices by decreasing order of degrees
color a vertex of maximal degree with color 1
while ( UV is non empty) do

maxSat = 0
maxDeg = 0
for (every vertex z in UV) do

if (zSaturation > maxSaturation)) then
maxSat = zSat
maxDeg = zDeg
y = z

else if (zSat == maxSat and zDeg > maxDeg) then
maxDeg = zDeg
y = z

end if
end for
F(y) = lowest possible number
remove y from UV

end while

Algorithm 5 TABUCOL

k = number of colors
|T|= size of tabu list
rep = number of neighbours in sample
nbmax = maximum number of iterations
Initialization
Generate a random solution s = (V1, ... ,Vk)
nbiter:=0
while (f(s) > 0 and nbiter < nbmax) do

generate rep neighbors si of s with move s→ si /∈ T or f(si) ≤ A(f(s))

Let s′ be the best neighbor generated

update tabu list T (introduce move s→ s′ and remove the oldest tabu move)

s:=s′

nbiter:=nbiter + 1
end while
if (f(s) = 0) then

feasible coloring of G found, with k colors: V1, ... , Vk are the colors sets
else

No feasible coloring found
end if

C Tables
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steps Derivates

δL
δLi,j

1

δLi,j

δ
...

hk,c

∑
Nk

ifi=k G ∗
...
hj,c ifj=k G ∗

...
hi,c

δ
...

hk,c

δ ¨hk,c
(

exp( ¨hk,c)∑
i∈Nk

exp( ¨hi,c))
)× (1− exp( ¨hk,c)∑

i∈Nk
exp( ¨hi,c)

)

δ ¨hk,c

δαi,j

∑
c∈C

¨hi,c

δαi,j

δ ˙ei,j
(

exp( ˙ei,j)∑
k∈Ni

exp( ˙ek,j)
)× (1− exp( ˙ei,j)∑

k∈Ni
exp( ˙ek,j)

)

δ ˙ei,j
δei,j

ifei,j>0 1 ifei,j<0 LRconstant

δei,j
δ ˙hk,c

∑
i∈ Nk

if i≤kac if i>ka2∗c

δ ˙hk,c

δhi,j

∑
∀j Wi,j

δei,j
δac

∑
∀i in V if c≤k

˙hi,c if c>k
˙hj,c

δhk,c

δWi,j

∑
∀ i in V hi,j

Table 17: Backpropagation

Table 18: Results hyperparameters oneSwitch, switchPeriodically,
switchWhenLM and onlyAW for training4graphs graphs.

mbp lr ivs leakyReLU nBB games120 jean miles250 myciel7 queen8 8 Sum Sum

oneSwitch χ = 9 χ = 10 χ = 8 χ = 8 χ = 13 inc myciel exc myciel

0,01 0,001 4 0,2 1 3736 1001 2745 11955 4630 24067 12112

0,01 0,0031 4 0,2 1 4146 1246 3143 1740 4589 14864 13124

0,01 0,01 4 0,2 1 4632 1434 3225 139 5382 14813 14673

0,01 0,031 4 0,2 1 7189 2613 4877 7430 6425 28534 21103

0,031 0,001 4 0,2 1 3677 1091 2770 17367 4562 29467 12099

0,031 0,0031 4 0,2 1 3540 1208 2840 3477 4623 15688 12211

0,031 0,01 4 0,2 1 4542 1073 3023 388 4920 13946 13558

0,031 0,031 4 0,2 1 7095 1892 4666 449 6959 21061 20612

0,1 0,001 4 0,2 1 3949 1135 4009 26567 5536 41196 14629

0,1 0,0031 4 0,2 1 3294 1341 3473 6245 4872 19225 12980

0,1 0,01 4 0,2 1 4183 1154 3204 2384 4494 15419 13035

0,1 0,031 4 0,2 1 4259 1407 3229 723 5056 14674 13951

0,31 0,001 4 0,2 1 7092 1220 2636 28826 4556 44331 15504

0,31 0,0031 4 0,2 1 6544 1219 2823 21479 4272 36337 14858

0,31 0,01 4 0,2 1 5065 1271 2828 2766 4599 16528 13762

0,31 0,031 4 0,2 1 4510 1081 3109 951 4311 13962 13011

1 0,001 4 0,2 1 3416 1135 2453 6902 4960 18866 11964

1 0,0031 4 0,2 1 2682 1443 2020 471 4334 10949 10478

1 0,01 4 0,2 1 3607 1384 2967 223 4822 13003 12779

1 0,031 4 0,2 1 3811 1299 2917 106 4781 12914 12808

1 0,0031 1 0,2 1 2936 1191 2134 4925 4747 15933 11008

1 0,0031 3 0,2 1 2697 1108 1984 718 4669 11175 10457

1 0,0031 6 0,2 1 2677 1370 2059 715 4509 11331 10616

1 0,0031 9 0,2 1 3667 1433 2849 617 4482 13048 12431

1 0,0031 3 0 1 2696 1108 1980 711 4669 11164 10453

1 0,0031 3 0,1 1 2696 1108 1981 711 4669 11164 10454

1 0,0031 3 0,3 1 2693 1108 1982 704 4668 11154 10451
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1 0,0031 3 0,1 2 3903 1127 2333 7120 4599 19082 11962

1 0,0031 3 0,1 3 4426 963 1750 4444 4560 16143 11699

1 0,0031 3 0,1 4 3130 765 1981 2881 4784 13541 10660

1 0,0031 3 0,1 5 3047 792 1782 1256 5126 12003 10748

games120 jean miles250 myciel7 queen8 8 Sum Sum

switchPeriodically χ = 9 χ = 10 χ = 8 χ = 8 χ = 13 inc myciel exc myciel

0,01 0,001 4 0,2 1 4035 1297 2771 10 4782 12894 12884

0,01 0,0031 4 0,2 1 4439 1370 2825 5 4586 13225 13220

0,01 0,01 4 0,2 1 5536 1530 3467 1 5984 16517 16516

0,01 0,031 4 0,2 1 7249 5728 6185 500 11823 31484 30984

0,031 0,001 4 0,2 1 3682 1144 2766 8 4769 12368 12361

0,031 0,0031 4 0,2 1 4384 1412 2720 3 5186 13706 13703

0,031 0,01 4 0,2 1 4791 1252 3100 9 5072 14224 14215

0,031 0,031 4 0,2 1 7413 2389 4748 300 8660 23511 23211

0,1 0,001 4 0,2 1 3483 1099 2690 1154 4754 13179 12026

0,1 0,0031 4 0,2 1 3326 1111 2606 100 4378 11520 11420

0,1 0,01 4 0,2 1 3766 1193 2758 9 4919 12644 12635

0,1 0,031 4 0,2 1 4848 1436 3273 100 5489 15145 15045

0,31 0,001 4 0,2 1 3659 1102 2712 8376 4721 20570 12194

0,31 0,0031 4 0,2 1 3538 1135 2648 207 4717 12245 12037

0,31 0,01 4 0,2 1 3774 1063 2916 200 4507 12459 12259

0,31 0,031 4 0,2 1 3478 1108 2819 1 4776 12182 12181

1 0,001 4 0,2 1 3358 897 2198 9920 4570 20943 11023

1 0,0031 4 0,2 1 3222 972 2522 102 4427 11245 11143

1 0,01 4 0,2 1 3368 1365 2825 500 4616 12673 12173

1 0,031 4 0,2 1 3743 903 2831 2 5038 12518 12516

1 0,001 1 0,2 1 4764 1087 2697 26336 4947 39831 13494

1 0,001 3 0,2 1 3785 999 2375 13443 4715 25317 11874

1 0,001 6 0,2 1 3154 1241 2093 3528 4749 14765 11237

1 0,001 9 0,2 1 2858 987 2575 397 4388 11205 10808

1 0,001 9 0 1 2858 987 2573 397 4388 11203 10806

1 0,001 9 0,1 1 2857 987 2575 397 4388 11204 10806

1 0,001 9 0,3 1 2856 987 2574 397 4388 11201 10804

1 0,001 9 0,2 2 3671 1406 2760 8538 4391 20766 12228

1 0,001 9 0,2 3 3226 1141 2603 4378 4651 16000 11622

1 0,001 9 0,2 4 3233 982 2330 2175 4760 13479 11304

1 0,001 9 0,2 5 2974 1004 2151 2275 4636 13040 10765

games120 jean miles250 myciel7 queen8 8 Sum Sum

switchWhenLM χ = 9 χ = 10 χ = 8 χ = 8 χ = 13 inc myciel exc myciel

0,01 0,001 4 0,2 1 3852 1109 2710 9999 4561 22231 12232

0,01 0,0031 4 0,2 1 3922 1595 2805 1936 4688 14946 13011

0,01 0,01 4 0,2 1 4776 1683 3292 95 4799 14644 14549

0,01 0,031 4 0,2 1 7221 2536 4866 13286 8045 35954 22668

0,031 0,001 4 0,2 1 3469 901 2546 16160 4280 27356 11196

0,031 0,0031 4 0,2 1 3854 1216 3018 3757 4713 16558 12801

0,031 0,01 4 0,2 1 4604 1819 3251 555 5015 15244 14689

0,031 0,031 4 0,2 1 6663 1576 3618 265 7482 19604 19339

0,1 0,001 4 0,2 1 3762 1051 2670 1695 4396 13574 11879

0,1 0,0031 4 0,2 1 3231 1051 2702 6807 4821 18613 11805

0,1 0,01 4 0,2 1 3640 1049 3065 1043 5069 13866 12823

0,1 0,031 4 0,2 1 4104 1257 3330 529 5787 15008 14479

0,31 0,001 4 0,2 1 3524 1050 2838 5934 4848 18194 12259

0,31 0,0031 4 0,2 1 3162 1118 2551 747 4175 11754 11006
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0,31 0,01 4 0,2 1 3683 861 2563 2788 4916 14811 12023

0,31 0,031 4 0,2 1 3373 1498 3155 932 5010 13967 13035

1 0,001 4 0,2 1 3166 1006 2651 6146 4714 17683 11537

1 0,0031 4 0,2 1 3316 932 2225 296 4928 11696 11400

1 0,01 4 0,2 1 3666 1076 2672 1 4708 12123 12121

1 0,031 4 0,2 1 3781 1181 877 100 4621 10560 10460

0,31 0,0031 1 0,2 1 4145 892 2070 6002 4230 17339 11336

0,31 0,0031 3 0,2 1 3092 1126 1940 936 4653 11746 10810

0,31 0,0031 6 0,2 1 3598 1227 1710 132 4582 11250 11118

0,31 0,0031 9 0,2 1 3483 1032 2579 7926 4554 19574 11648

0,31 0,0031 6 0 1 3575 1287 1850 127 4418 11257 11129

0,31 0,0031 6 0,1 1 3512 1668 1683 120 4559 11541 11422

0,31 0,0031 6 0,3 1 2673 1636 1364 131 4439 10243 10113

0,31 0,0031 6 0,3 2 3510 1184 2793 2766 4424 14677 11911

0,31 0,0031 6 0,3 3 2996 1088 2214 796 4759 11852 11056

0,31 0,0031 6 0,3 4 4037 720 1397 497 4542 11192 10695

0,31 0,0031 6 0,3 5 3025 970 2275 373 4332 10974 10601

0,31 0,0031 3 0 1 3043 1069 2249 642 4611 11614 10972

0,31 0,0031 3 0,1 1 3247 1078 2123 881 4837 12166 11285

0,31 0,0031 3 0,3 1 2927 876 2110 588 4873 11375 10786

0,31 0,0031 3 0,3 2 3817 1094 2291 5065 4564 16831 11766

0,31 0,0031 3 0,3 3 3212 692 2443 5000 4867 16215 11215

0,31 0,0031 3 0,3 4 3164 1144 2133 1989 4623 13053 11064

0,31 0,0031 3 0,3 5 2815 851 2249 2471 4886 13272 10801

games120 jean miles250 myciel7 queen8 8 Sum Sum

onlyAW χ = 9 χ = 10 χ = 8 χ = 8 χ = 13 inc myciel exc myciel

0,01 0,001 4 0,2 1 6837 1714 4095 24277 5418 42340 18064

0,01 0,0031 4 0,2 1 5501 1771 3489 8040 4938 23740 15700

0,01 0,01 4 0,2 1 4911 1381 3397 1844 5061 16594 14750

0,01 0,031 4 0,2 1 7093 3406 4953 5780 6209 27441 21661

0,031 0,001 4 0,2 1 7011 1986 4260 27262 5552 46072 18810

0,031 0,0031 4 0,2 1 5731 1836 3704 14444 5015 30730 16285

0,031 0,01 4 0,2 1 4934 1571 3391 964 4708 15568 14605

0,031 0,031 4 0,2 1 5276 1587 4833 733 7105 19534 18801

0,1 0,001 4 0,2 1 7097 2111 4667 28829 5589 48294 19464

0,1 0,0031 4 0,2 1 6790 1857 3772 24406 5291 42116 17710

0,1 0,01 4 0,2 1 5158 1581 3400 8801 4894 23834 15033

0,1 0,031 4 0,2 1 4728 1796 3361 1534 4907 16327 14793

0,31 0,001 4 0,2 1 7138 2397 4831 29139 5604 49109 19970

0,31 0,0031 4 0,2 1 7063 1787 4198 28463 5574 47085 18622

0,31 0,01 4 0,2 1 6023 1574 3444 16829 5057 32928 16099

0,31 0,031 4 0,2 1 5054 1341 3220 4065 5068 18747 14682

1 0,001 4 0,2 1 7153 2488 4952 29159 5607 49359 20201

1 0,0031 4 0,2 1 7081 1819 4524 28718 5587 47730 19012

1 0,01 4 0,2 1 6689 1665 3355 23158 5354 40220 17062

1 0,031 4 0,2 1 5036 1599 3173 6539 5215 21563 15023

0,031 0,01 1 0,2 1 7020 1995 4078 4863 17957

0,031 0,01 3 0,2 1 5148 1633 3163 5040 14984

0,031 0,01 6 0,2 1 5353 1794 3134 4698 14979

0,031 0,01 9 0,2 1 4932 1898 3267 5963 16060

0,031 0,01 4 0 1 4546 1825 3243 4965 14578
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0,031 0,01 4 0,1 1 4940 1348 3447 4630 14365

0,031 0,01 4 0,3 1 4923 1548 3445 5109 15025

0,031 0,01 4 0,1 2 6495 1781 4358 5534 18168

0,031 0,01 4 0,1 3 6066 1886 4776 5567 18295

0,031 0,01 4 0,1 4 7006 2086 4650 5594 19337

0,031 0,01 4 0,1 5 7058 2246 4840 5651 19795

Table 19: results hyperparameters oneSwitch, switchPeriodically, switchWhenLM and onlyAW for mycielski graphs.

oneSwitch myciel7 χ=8

mbp lr ivs leakyrelu nbb loss time

0,01 0,001 4 0,2 1 11955 1200

0,01 0,0031 4 0,2 1 1740 1200

0,01 0,01 4 0,2 1 139 1200

0,01 0,031 4 0,2 1 7430 1200

0,031 0,001 4 0,2 1 17367 1200

0,031 0,0031 4 0,2 1 3477 1200

0,031 0,01 4 0,2 1 388 1200

0,031 0,031 4 0,2 1 449 1200

0,1 0,001 4 0,2 1 26567 1200

0,1 0,0031 4 0,2 1 6245 1200

0,1 0,01 4 0,2 1 2384 1200

0,1 0,031 4 0,2 1 723 1200

0,31 0,001 4 0,2 1 28826 1200

0,31 0,0031 4 0,2 1 21479 1200

0,31 0,01 4 0,2 1 2766 1200

0,31 0,031 4 0,2 1 951 1200

1 0,001 4 0,2 1 6902 1200

1 0,0031 4 0,2 1 471 1200

1 0,01 4 0,2 1 223 1200

1 0,031 4 0,2 1 106 1200

1 0,0031 1 0,2 1 4878 1200

1 0,0031 3 0,2 1 711 1200

1 0,0031 6 0,2 1 715 1200

1 0,0031 9 0,2 1 616 1200

1 0,031 4 0 1 106 1200

1 0,031 4 0,1 1 106 1200

1 0,031 4 0,3 1 106 1200

1 0,031 4 0 2 417 1200

1 0,031 4 0 3 19 1200

Continued on next page
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Table 19: results hyperparameters oneSwitch, switchPeriodically, switchWhenLM and onlyAW for mycielski graphs.
(Continued)

1 0,031 4 0 4 236 1200

1 0,031 4 0 5 342 1200

switchPeriodically

0,01 0,001 4 0,2 1 10 809

0,01 0,0031 4 0,2 1 5 336

0,01 0,01 4 0,2 1 1 201

0,01 0,031 4 0,2 1 500 1200

0,031 0,001 4 0,2 1 8 1093

0,031 0,0031 4 0,2 1 3 833

0,031 0,01 4 0,2 1 9 155

0,031 0,031 4 0,2 1 300 1200

0,1 0,001 4 0,2 1 1154 1200

0,1 0,0031 4 0,2 1 100 1200

0,1 0,01 4 0,2 1 9 288

0,1 0,031 4 0,2 1 100 1200

0,31 0,001 4 0,2 1 8376 1200

0,31 0,0031 4 0,2 1 207 1200

0,31 0,01 4 0,2 1 200 1200

0,31 0,031 4 0,2 1 1 533

1 0,001 4 0,2 1 9920 1200

1 0,0031 4 0,2 1 102 1200

1 0,01 4 0,2 1 500 1200

1 0,031 4 0,2 1 2 368

0,031 0,01 1 0,2 1 9 376

0,031 0,01 3 0,2 1 3 174

0,031 0,01 6 0,2 1 1 150

0,031 0,01 9 0,2 1 300 1200

0,031 0,01 6 0 1 1 150

0,031 0,01 6 0,1 1 4 154

0,031 0,01 6 0,3 1 200 1200

0,031 0,01 6 0 2 1 305

0,031 0,01 6 0 3 200 1200

0,031 0,01 6 0 4 6 317

0,031 0,01 6 0 5 98 1200

switchWhenLM

0,01 0,001 4 0,2 1 9999 1200

Continued on next page
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Table 19: results hyperparameters oneSwitch, switchPeriodically, switchWhenLM and onlyAW for mycielski graphs.
(Continued)

0,01 0,0031 4 0,2 1 1936 1200

0,01 0,01 4 0,2 1 95 1200

0,01 0,031 4 0,2 1 13286 1200

0,031 0,001 4 0,2 1 16160 1200

0,031 0,0031 4 0,2 1 3757 1200

0,031 0,01 4 0,2 1 555 1200

0,031 0,031 4 0,2 1 265 1200

0,1 0,001 4 0,2 1 1695 1200

0,1 0,0031 4 0,2 1 6807 1200

0,1 0,01 4 0,2 1 1043 1200

0,1 0,031 4 0,2 1 529 1200

0,31 0,001 4 0,2 1 5934 1200

0,31 0,0031 4 0,2 1 747 1200

0,31 0,01 4 0,2 1 2788 1200

0,31 0,031 4 0,2 1 932 1200

1 0,001 4 0,2 1 6146 1200

1 0,0031 4 0,2 1 296 1200

1 0,01 4 0,2 1 1 1198

1 0,031 4 0,2 1 100 1200

1 0,01 1 0,2 1 1031 1200

1 0,01 3 0,2 1 153 1200

1 0,01 6 0,2 1 116 1200

1 0,01 9 0,2 1 3201 1200

1 0,01 4 0 1 1 1198

1 0,01 4 0,1 1 1 1198

1 0,01 4 0,3 1 1 1198

1 0,01 4 0,2 2 328 1200

1 0,01 4 0,2 3 165 1200

1 0,01 4 0,2 4 226 1200

1 0,01 4 0,2 5 147 1200

onlyAW

0,01 0,001 4 0,2 1 24277 600

0,01 0,0031 4 0,2 1 8040 600

0,01 0,01 4 0,2 1 1844 600

0,01 0,031 4 0,2 1 5780 600

0,031 0,001 4 0,2 1 27262 600

0,031 0,0031 4 0,2 1 14444 600

Continued on next page
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Table 19: results hyperparameters oneSwitch, switchPeriodically, switchWhenLM and onlyAW for mycielski graphs.
(Continued)

0,031 0,01 4 0,2 1 964 600

0,031 0,031 4 0,2 1 733 600

0,1 0,001 4 0,2 1 28829 600

0,1 0,0031 4 0,2 1 24406 600

0,1 0,01 4 0,2 1 8801 600

0,1 0,031 4 0,2 1 1534 600

0,31 0,001 4 0,2 1 29139 600

0,31 0,0031 4 0,2 1 28463 600

0,31 0,01 4 0,2 1 16829 600

0,31 0,031 4 0,2 1 4065 600

1 0,001 4 0,2 1 29159 600

1 0,0031 4 0,2 1 28718 600

1 0,01 4 0,2 1 23158 600

1 0,031 4 0,2 1 6539 600

0,031 0,031 1 0,2 1 2724 600

0,031 0,031 3 0,2 1 512 600

0,031 0,031 6 0,2 1 252 600

0,031 0,031 9 0,2 1 2562 600

0,031 0,031 6 0 1 188 600

0,031 0,031 6 0,1 1 1146 600

0,031 0,031 6 0,3 1 877 600

0,031 0,031 6 0 2 236000 600

0,031 0,031 6 0 3 41490 600

0,031 0,031 6 0 4 236000 600

0,031 0,031 6 0 5 236000 600
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