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Abstract

NLP-based applications have grown to become an integral part of our daily tasks. Such NLP models,

however, through capturing human semantics, inevitably encode harmful social biases as well. Research

into bias mitigation in the state-of-the-art textual inference models has, therefore, become necessary.

This paper focuses on the attenuation of social biases from contextualised NLP models, specifically

researching the possibilities for debiasing with respect to multiple sensitive attributes simultaneously. To

this end, the paper investigates three methods for Multi-Sensitive Attribute (MSA) debiasing of such

models. The first method (Loss) penalises stereotypical associations in the training objective of the

NLP models, while the second (INLP) and the third (R-LACE) produce projection matrices which allow

the projection of embedding structures onto the orthogonal complement of the bias subspace in these

embeddings. The results show that all methods are capable of MSA bias reduction in contextualised

NLP models. Ultimately, the Loss method indicates to be the most promising with respect to the

inevitable accuracy vs. fairness trade-off in debiasing the models. Though all methods decrease harmful

stereotypical associations in the models, the Loss method does so whilst retaining an appropriate level of

semantic information inherent in the NLP model.

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second assessor,

Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

Daily tasks, nowadays, are more and more facilitated by the use of Natural Language Processing (NLP). From

ubiquitous applications, such as search engines, e-mail filters, and predictive text, to large company uses,

such as modeling customer intent or automating résumé screening (Black and van Esch, 2020). A recent

significant progression in our everyday NLP use, is the launch of ‘ChatGPT’ (OpenAI, 2021), which has

made the advanced GPT-3 NLP model readily accessible to the public in the form of a human-like response

machine. NLP is a sub-field of Machine Learning (ML) which considers natural language, by constructing

numeric representations of text, based on co-occurrence statistics (Caliskan et al., 2022). These numeric

representations are generally referred to as ‘word embeddings’. In order to construct word embeddings, we

train algorithms on large, authentic text corpora, such as sets of Amazon reviews, Wikipedia links or Google

News feeds.

Research has shown that, whilst this method for constructing word embeddings captures human se-

mantics well, it also inevitably encodes types of human social biases. NLP models trained on authentic,

human-produced datasets necessarily contain associations inherent in human thought, including “unfair”

bias (Bolukbasi et al., 2016; Garg et al., 2018; Dev et al., 2020; Kaneko and Bollegala, 2021; Caliskan et al.,

2022). Caliskan et al. (2017) are among the researchers who investigated the presence of human bias in

word embeddings. The researchers show the presence of historic biases in text corpora. They also emphasise

that, whilst these biases can be morally neutral as towards insects or plants, they can also be problematic as

towards race or gender.

The encoded problematic biases in word embeddings can lead to incorrect or unfair decisions, as they

can be discriminatory based on the associated stereotypes. Bolukbasi et al. (2016), for example, conclude

in their research that embeddings which are trained on Google News articles exhibit typical female/male

gender stereotypes greatly. In addition, Berkeley’s Computation and Language Lab recently shared ChatGPT

responses to requests for writing a Python program which could determine “which air travelers present a

security risk.” As a response, OpenAI’s ChatGPT model proposed the calculation of a traveler’s ‘risk score’

which would increase if the person is Syrian, Iraqi, or Afghan (Biddle, 2022). Using word embeddings in

decision making processes, therefore, can cause discriminatory practices as the decisions might be influenced

by stereotypes of sensitive attributes, such as gender, nationality, religion, and race. As discrimination is

increasingly considered intolerable from social, ethical, and even legal perspectives, the need for research into

bias mitigation in NLP models grows as well.

Most research into bias mitigation of word embeddings focuses on static (non-contextualised) word em-

beddings. These embeddings represent a word by a single vector in different contexts. Contextualised

embeddings, however, provide context dependent embeddings for different instances of words. Allowing the

embedding to be context-dependent has significantly improved performance in various NLP tasks (e.g. Devlin

et al., 2018). Therefore, these contextualised embeddings have been established as the state-of-the-art ‘type’

word embedding for text representation (Kaneko and Bollegala, 2021). Research has shown that, unfortu-
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nately, these contextualised embeddings encode unfair stereotypical bias, similarly to static embeddings (e.g.

Zhao et al., 2019). Kaneko and Bollegala (2021) express in their research that, whilst various studies have

reported the existence of unfair bias in contextualised embeddings, methods for mitigating this bias are fairly

unexplored.

In addition to this open problem in research, there is also the problem of debiasing embeddings with respect

to multiple sensitive attributes simultaneously. Current methods show promising results in the attenuation

of a single bias dimension, such as gender or race or nationality (e.g. Lahoti et al., 2019; Zehlike et al.,

2017). However, in reality, multiple bias dimensions can be present in a dataset. This research, therefore,

investigates methods which can mitigate bias with respect to various sensitive attributes simultaneously. The

investigative goal of this research can be summarised into the following main research question:

How can we attenuate bias in textual analysis whilst retaining an appropriate level of semantic informa-

tion?

Specifically, this research investigates the main research question with respect to Multi-Sensitive Attribute

(MSA) debiasing, in combination with the analysis of mitigating bias in contextualised embeddings. To this

end, two sub-questions are proposed which, through analysis, give us novel insights into the attenuation of

bias in textual analysis, as described in the main research question. The sub-questions are

1. How can we accurately decrease bias in contextualised word embeddings?

2. Can we attenuate bias related to several sensitive attributes simultaneously?

The ability to take into account multiple bias directions at the same time, provides a more realistic form

of bias mitigation in real-life datasets. Furthermore, focusing on contextualised embeddings gives us a chance

to attack the fairness problem for the state-of-the-art NLP systems. Overall, therefore, the combination of

these two focus points can provide a novel, pragmatic approach for mitigating bias in currently used NLP

models and applications.

In order to answer the research questions, three different techniques for bias attenuation in contextual

NLP structures are proposed. The first method uses a weighted loss function which, while minimising the

decrease in accuracy of the model, minimises the ‘similarity’ between embeddings of sensitive attribute words

and their related stereotypes. This loss function is implemented in the training objective of the NLP model

and uses attribute and (stereotyped) target words related to several sensitive attributes to identify the bias

structures in the model.

The second method used to decrease bias in the NLP models, is an iterative approach which constructs a

more complete version of a projection matrix in each step of the algorithm. This projection matrix, eventually,

captures the correlations between target words and their corresponding sensitive attribute words, in the form

of bias directions in the word embedding. This projection matrix, then, projects the model output onto the

orthogonal complement of the bias subspace, where the bias subspace is a linear subspace of the embedding
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which is spanned by these bias directions. Effectively, this method produces alternative word embeddings

which include as little of the underlying biases in the model as possible.

The third debiasing method, similar to the second, uses a projection matrix to remove stereotypical

associations from the word embeddings. This method, however, constructs an elaborate minimax game,

which explicitly attempts to remove as much of the bias, whilst removing as little of the semantic influences

from the word embeddings as possible.

For each of the methods, this research investigates the effectiveness of removing implicit biases in the word

embeddings. In addition, there is a focus on identifying the debiasing method which, while removing the

bias structures, retains most of the semantic information of the NLP models. This investigation is performed

with respect to several NLP models, in order to analyse the level of universality of the debiasing method

with regards to different models.

Ultimately, the results show that each method is successful in attenuating MSA bias from the various

NLP models. Each debiasing method manages to increase the equitability level of the models. In addition,

the loss function method manages to retain a sufficient level of semantic information of the models. These

results indicate the such method is able to provide a novel and pragmatic approach for the reduction of MSA

bias in current state-of-the-art NLP applications.

The research paper is structured as follows. Sec. 2 describes existing research into the topic of bias

reduction in machine learning. This section will highlight the extent to which bias reduction has been

investigated previously, and how this research can provide new insights. Next, Sec. 3 provides an overview

of the datasets and data generation approaches used in this research. Sec. 4 gives a detailed explanation of

all methods used to achieve the results and answer the research questions. After, Sec. 5 provides an analysis

of the results obtained by applying the various debiasing methods. Finally, Sec.6 provides the summary of

the findings of the paper, as well as some areas for future research.

2 Literature Review

This section provides an overview of previous research into the field of bias reduction in NLP models. In

order to give a complete outline of previous research, first the importance of NLP models and their various

areas of everyday use are described. After, the existence of sensitive bias in these models is elaborated

upon. Furthermore, the first and most prevalent efforts towards mitigating such bias are discussed. Finally,

Sec. 2.3 and Sec. 2.4 describe research into mitigating bias in static versus contextualised embeddings, and

on Single-Sensitive Attribute (SSA) bias versus MSA bias attenuation.

2.1 NLP Models and the Bias Present Them

The growing amount of research into NLP models and their applications ensures that NLP, nowadays, is

commonly present in many downstream applications, such as speech recognition, text translation, search
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completion, and information extraction (Nielsen, 2021). In everyday life, we, as individuals, and businesses

(unconsciously) make use of the complex algorithms behind NLP applications. It is no surprise, therefore, that

research into improving the performance of such word embedding models is popular. Bowman et al. (2015)

show that it is possible for fixed-length representations of sentences to ‘understand’ logical deduction and

logical semantics. Nalisnick et al. (2016), for example, improve the performance of Word2Vec embeddings for

the ranking of documents with respect to specific queries. Furthermore, researchers such as Devlin et al. (2018)

go further into showing that context-dependent embeddings can achieve significantly better performance in

various NLP tasks compared to context-unaware embeddings. There is a myriad more examples of research

aiming to improve embeddings or provide alternative models in order to increase their performance. However,

relative to the amount of research into improving the performance of NLP models, there are few research

papers that take into account any form of inherent and unfair bias in the model, although research has shown

that such bias can be problematic.

Caliskan et al. (2017) show that text corpora contain recoverable and accurate imprints of human historic

biases. They emphasise that, whilst some of these biases may be harmless, there are very problematic biases

present as well. Garg et al. (2018), in addition, demonstrate that word embeddings can be used to quantify

historical trends and social change. Their findings include the ability to use word embeddings to analyse

the evolving gender and ethnic stereotypes during the 20th and 21st centuries, using text data of the past

100 years. Bolukbasi et al. (2016) show that word embeddings trained on Google News articles, a corpus

which we would expect to contain little to no problematic bias, exhibit a great amount of gender stereotypes.

Angwin et al. (2016) show the existence of bias in software used to predict future criminals. They find

that such software is biased against black people. Lahoti et al. (2019) show that www.xing.com (a German

job searching platform) ranked less qualified male candidates higher than more qualified female candidates.

Kamiran et al. (2012) evaluate discrimination classification in real world datasets. They show that the bias

found in ‘artificial’ environments (i.e. academic research data sets) is also present in real life. We can conclude

that NLP models can propagate certain ‘unfair’ human biases found in text and image corpora. NLP models

which contain such bias in their trained word embeddings, risk the introduction of the bias into real-world

systems. In the past, this has already happened many times, even in the NLP applications of big, influential

companies. For example, Google’s facial recognition algorithm that labelled black people as gorillas (Guynn,

2015) and Amazon’s résumé recommendation system which penalised the word “woman” in résumés (Dastin,

2018).

2.2 Mitigating Bias in Word Embeddings

Although the amount of research into bias mitigation is small relative to the amount of research into con-

structing word embeddings, some methods for bias mitigation have been investigated extensively. Generally,

bias mitigation techniques can be categorized based on the ‘stage’ of the model in which it is deployed. In this

sense, we can distinguish pre-processing algorithms, in-processing algorithms, and post-processing algorithms
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(Zuo et al., 2018).

Pre-processing techniques often attempt to cancel out the disproportionate amount of references towards

one ‘side’ of a stereotype (e.g. gender stereotypes) by augmenting the original data set. Zhao et al. (2018a),

for example, create an augmented data set which is identical to the original, but biased towards the opposite

gender. They essentially do a ‘gender-swap’ and, then, train their model on the union of the original and

the swapped data set. Another approach for constructing an augmented data set is referred to as ‘gender

tagging’. This approach requires the addition of a tag, indicating the gender of the source, to the beginning of

every data point and including this tag in the analysis (Sun et al., 2019). Generally, such pre-processing data

augmentation methods are criticised for being very computationally heavy, since they require the amount

of data in the data set to be, at least, doubled, without adding sentimental information (Dev and Phillips,

2019; Sun et al., 2019).

Post-processing techniques focus on the output labels. Such techniques generally take a subset of samples

and change their predicted labels as to ‘enforce’ a degree of fairness (Lohia et al., 2019). Hardt et al. (2016),

for example, propose the Equalized Odds Post-Processing method which changes output labels to create

equal odds over some protected attribute. Zhao et al. (2018b) employ a retraining step on GloVe embeddings

in order to mitigate bias. Lohia et al. (2019) train a classifier for the identification of individual unfairness

on their output data. Samples which are classified to be likely to contain individual bias are then considered

for a change of output label. These proposed methods provide promising results. The problem, however, is

that such methods, again, have the danger of being computationally very expensive. A retraining step can

add a large amount of computation time which can become a problem, especially given that these types of

models are generally inherently expensive to train (Dev and Phillips, 2019).

All in all, it could prove beneficial to focus on less computationally heavy modifications to mitigate bias,

which are not based on re-training a model or doubling the amount of data in the data set.

In-processing methods generally ‘alter’ the optimization step in the training process of algorithms. There-

fore, they do not require the adjustment of the data set, or the addition of a retraining step. In terms of bias

mitigation, several modern, in-processing, mitigation techniques find and utilize the bias direction in word

embeddings to reduce unfair bias. Finding this bias direction can be accomplished by various feature subspace

determination methods, such as Principle Component Analysis (PCA) (Bolukbasi et al., 2016; Manzini et al.,

2019; Dev et al., 2020). Knowing the bias direction, one can investigate the cosine similarity between certain

words, names, verbs, or adjectives and the bias direction vector. The bias direction and cosine similarity

can then be used to remove or disentangle the bias from the unrelated words. Bolukbasi et al. (2016), for

example, project all word embeddings in their data set orthogonally to the identified gender bias direction,

essentially ‘removing’ the influence of the bias direction from the embedding. By doing so, they find a signif-

icant decrease in gender bias. Dev et al. (2021) use a more subtle ‘correction’ method. They use a balanced

approach of mitigation. Their approach focuses more on ‘disentanglement’ from the bias than on removal,

with the aim of retaining a higher degree of sentiment whilst still mitigating unwanted associations.
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2.3 Mitigating Bias in Contextualised Embeddings

Past research has mainly investigated bias mitigation with respect to non-contextualised (static) word em-

beddings (e.g. Schmidt, 2015; Bolukbasi et al., 2016; Manzini et al., 2019; Dev et al., 2021). There exists less

research on the mitigation of bias in contextualised word embeddings. In regards to the existing research

into the mitigation of bias in such embeddings, we can distinguish two ‘forms’ of bias mitigation approaches.

The first form focuses on the optimization criteria in the training phase of the contextual model. Kaneko

and Bollegala (2021) propose a fine-tuning method for the debiasing of contextualised embeddings. They

introduce a loss function into the hidden layers of the models. This loss function, if minimized, forces the

hidden states to be orthogonal to some protected attribute. The researchers show that this method works

well for bias mitigation. This method, however, still uses non-contextualised representations of the protected

attribute, meaning that the loss function is still restricted to some form of non-contextualization.

For the second form, researchers, such as Dev et al. (2020), use the original techniques used for the

debiasing of static embeddings to debias the ‘static part’ of the contextualised embedding. The static part of

a contextualised embedding is the part of the embedding which is identical for different instances of the same

word. In the BERT model, for example, this would be the sub-word (token) embeddings (Dhami, 2020). Dev

et al. (2020), show that the method of removing bias from the static part of a contextualised word embedding

is effective in reducing the bias in the overall contextual model.

2.4 Debiasing Multiple Bias Directions Simultaneously

Existing research into bias mitigation generally contains a common deficit. Almost all research into debiasing

focuses on mitigating merely one bias direction. Focusing on one bias direction necessarily means that only

one sensitive attribute can be protected from unfair bias. In other words, modern research mainly investigates

the attenuation of either gender bias, or racial bias, or religious bias, etc. (e.g. Bolukbasi et al., 2016; Manzini

et al., 2019).

Popović et al. (2020) were the first to propose joint multiclass debiasing techniques. The techniques

they use are post-processing methods which aim to minimize some bias level criterion, whilst maintaining

word relationships. The researchers show that their method is a good starting point for ongoing effort

towards debiasing with respect to various sensitive attributes simultaneously, and by doing so, providing

more unbiased neural representations of textual data.

3 Data

In this section, the datasets used in this research are identified and explained. In the research, two separate

datasets are used, a set used for training and a set for evaluating the performance of the models. In addition,

various word lists are used to extract specific text portions from the bigger (train) dataset. Sec. 3.1 outlines
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the training dataset, the word lists, and the process used to extract the text portions. After, Sec. 3.2 gives

an overview of the second dataset, used for performance evaluation.

3.1 Training Data

The dataset used for constructing the several debiasing techniques in the NLPmodels is the News-Commentary-

V15 corpus (EMNLP, 2021). This corpus is a collection of news articles and opinion pieces from various

sources. The articles included in the corpus are collected from newspapers, magazines and online news web-

sites from many different regions of the world. All articles included were published between 2007 and 2016.

Furthermore, the topics included in the articles cover a great range of subjects. The dataset is widely used

in NLP research (e.g. Kaneko and Bollegala, 2021), because of its diverse and large nature.

In order to construct the debiasing techniques used in this paper, the training data should be comprised

of a set of texts containing words which indicate the sensitive attributes and stereotype words associated

with these attributes. In order to establish such training data, word lists are used to extract text fractions

from the News-Commentary-V15 corpus containing such sensitive and stereotype words. Using, for example,

a collection of gendered words (e.g. “he”, “she”, “his”, “hers”) and a collection of associated stereotypes (e.g.

occupations and personality traits), we can extract portions of text from the corpus which contain one or

more of these words. In this paper, words related to sensitive attributes are referred to as ‘attribute words’.

Words related to stereotypes of these sensitive attributes are referred to as ‘(neutral) target words’. The

attribute and target word lists used in this research are comprised of lists from various published researches.

With regard to the gendered attribute words, word lists published by Zhao et al. (2018b) are used. The

corresponding target word list used, is that published by Kaneko and Bollegala (2019). With regards to the

attribute and target words corresponding to other sensitive attributes, such as race and religion, we use a

selection of word lists published by Dev et al. (2020). Appendix B.1 and Appendix B.2 give summarised

overviews of the attribute and target words used in this research.

The attribute and target word lists are, thus, used to extract training data sentences containing them

from the News-Commentary-V15 corpus. These training data sentences can then be used to identify bias

directions in the NLP models and to train them to attenuate these biases.

3.2 Evaluation Data

In addition to the dataset used for debiasing the NLP models, another dataset is utilised to evaluate the

performance of the final models. To do so, we use the StereoSet dataset (Nadeem et al., 2021), which is

constructed to measure stereotypical biases inherent in NLP models as well as to evaluate the language

modelling ability of the models.

The dataset includes thousands of associated sentence triplets. Each sentence includes some protagonist

from a certain demographic and a description, action or event related to the protagonist. The demographics

included in the dataset are gender, occupations, race, and religion. For the sentence triplets, the protagonist
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remains the same. However, the context, or association of the sentence is different for the three sentences.

Each instantiation of the sentence corresponds to one of the following three; a stereotypical association, an

anti-stereotypical association, or a meaningless association (Nadeem et al., 2021). The stereotypical and

anti-stereotypical instantiations of the sentence are used to measure the bias in the model. The meaningless

association provides a benchmark for the language modeling ability of the model.

An example of such sentence triplets is:

Stereotype: Our housekeeper is a Mexican.

Anti-stereotype: Our housekeeper is an American.

Meaningless: Our housekeeper is a fish.

Using such sets of sentences, we can evaluate the model’s ability to rank meaningful contexts higher than

meaningless ones. Based upon the concept of cognitive associations (Devine, 1989), both the stereotypical

and the anti-stereotypical context of the sentence should rank higher than the meaningless context. Given

the prevalence of cognitive associations, which refer to mental connections between concepts formed through

experience, socialisation and cultural norms, both stereotypical and anti-stereotypical associations are, in

practice, more probable to be made than meaningless ones. In addition, we can evaluate the extent to which

the model is biased. An unbiased model should not rank the stereotypical context over the anti-stereotypical

one (or vice versa), as an unbiased entity would view them as equally probable.

4 Methodology

In the following subsections, the methods used for answering the research questions are proposed. First,

the various debiasing methods are explained. After, a description of how and where these methods are

implemented in the NLP models used for the evaluation of the methods is given. Lastly, the performance

measures used to achieve a final conclusion are described. The mathematical definitions of this section are

used consistently across the subsections, and an overview of all definitions can be found in Appendix A.

4.1 Weighted Loss Function

The first debiasing method is based on work by Kaneko and Bollegala (2021). This method proposed by the

researchers is extended in order to achieve a reduction of bias in several sensitive attributes simultaneously.

The method is based around defining an extensive weighted loss function which can be embedded within the

optimisation process of contextualised NLP models. By minimising the constructed loss function, MSA bias

in the model’s embeddings is reduced.

The weighted loss function consists of two formal requirements and uses the following definitions. A word

(or token) is represented by w ∈ Rd, where d is the dimension of the word embedding. As stated in Sec. 3.1,

we can define two specific ‘types’ of words, sensitive attribute words and (neutral) target words. The set of
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words belonging to sensitive attribute c is denoted by Λc
a. Here, c stands for a type of sensitive attribute,

such as gender, race and religion. Similarly, the set of target words related to attribute c is given by Λc
t .

Furthermore, the set of sentences containing word (or token) w is denoted by Ω(w). Using these definitions,

Ac =
⋃

w∈Λc
a
Ω(w) and Tc =

⋃
w∈Λc

t
Ω(w) denote the sets of sentences containing the attribute and target

words of sensitive attribute c, respectively. Using these definitions, the formal objective of this debiasing

method is to alter the embedding model in order to retain semantic information with respect to w ∈ Λc
a,

while eliminating implicit biases with respect to w ∈ Λc
t , for c = 1, ..., C.

With regards to the NLP model structures used in this research, E denotes the contextualised NLP

embedding model in question. The pre-trained parameters of model E are, then, denoted by θe. Using x

to denote the input sentence, we can then define Ei(w, x; θe) to be the embedding of token w in sentence x

in the i-th hidden layer of E, where i = 1, ..., N . Lastly, for the loss function, we require a representation

of the non-contextualised embedding of w in the i-th layer. Following Bommasani et al. (2020), this non-

contextualised embedding of w is defined as the average of the contextualised embeddings of w in layer i of

embedding model E over the whole set Ω(w). Formally, the non-contextualised embedding νi(w) is, thus,

defined as

νi(w) =
1

|Ω(w)|
∑

x∈Ω(w)

Ei(w, x; θe), (1)

where |Ω(w)| is the cardinality of set Ω(w).

Using the definitions given above, we can now construct the formal requirements which construct the

final loss function of this debiasing method. The first requirement is that the target words must contain

as little information related to the sensitive attribute words as possible. Formally, we can define this to

require the inner product of the non-contextualised attribute word embeddings νi(a), where a ∈ Λc
a, and the

contextualised target word embeddings Ei(t, x; θe), where t ∈ Λc
t , to be minimised for c = 1, ..., C. This first

part of the final loss function can, thus, be defined by the requirement.

min
θe

Li =

C∑
c=1

∑
t∈Λc

t

∑
x∈Ω(t)

∑
a∈Λc

a

(νi(a)
⊺Ei(t, x; θe))

2
(2)

Minimising Li forces the hidden states of E to be as close to orthogonal to the each of the sensitive attributes

as possible.

The second requirement is that the debiased embeddings should preserve the useful semantic information

in the model as much as possible. The debiased embeddings Ei(w, x; θe) should not be too far removed

from the original, pre-debiasing, embeddings of the model, defined by Ei(w, x; θpre). We can define this

requirement as the minimisation of the euclidean distance between the debiased embeddings and the original

embeddings. This second requirement can be viewed as the regularisation term of the overall loss function

and is defined as follows.

min
θe

Lreg =

C∑
c=1

∑
x∈Ac

∑
w∈x

N∑
i=1

||Ei(w, x; θe)− Ei(w, x; θpre)||2 (3)
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Above requirements, ultimately, construct an overall objective function, which is calculated using a

weighted sum of the two loss functions. The weights in this objective function influence the accuracy versus

fairness trade-off. The final loss function is

L = αLi + βLreg, (4)

for hidden layer i, where α, β ∈ [0, 1], such that α + β = 1. In this research, following the investigation and

results obtained by Kaneko and Bollegala (2021), we set α = 0.2 and we implement the debiasing objective

function in all hidden layers of the NLP model. Therefore, evaluating the overall objective function calls for

the summation of the loss function for all i = 1, ..., N , resulting in the loss function

L =

N∑
i=1

0.2Li + 0.8Lreg. (5)

Ultimately, loss function 5 is added to the original training objective of the various NLP models as a penalty.

This way, the model penalises stereotypical associations, whilst, simultaneously, penalising a big variation

from the original embeddings in the training process.

4.2 Iterative Null-Space Projection

The second debiasing method uses ideas proposed by Ravfogel et al. (2020). An adaptation of the Iterative

Null-space Projection (INLP) method, proposed by these researchers, is used in a contextualised and MSA

framework. For this approach, we use an iterative algorithm to capture and attenuate the bias in the last

hidden layer of the embedding models.

The algorithm used in this debiasing method constructs a projection matrix which, if multiplied by the

original hidden layers of the NLP models, produces an alternative representation of the word embedding

vectors. This debiasing method, therefore, is centered around producing a projection matrix which will

capture as much of the bias in the models as possible. The general approach for doing so requires the

identification of the influence of the attribute words on the implicit biases in the target words, in the form

of bias subspaces. The final alternative representations of the word embeddings are constructed by removing

the bias subspaces from the original embedding vectors, using projection matrices. This way, the harmful

stereotypes are removed from the original embeddings.

The algorithm which produces the projection matrices uses similar definitions as used in Sec. 4.1, comple-

mented by the following definitions. We define W c
a to be the set of embeddings, Ei(w, x; θe), of all w ∈ Λc

a.

Respectively, W c
t is defined to be the set of embeddings of all w ∈ Λc

t . In these terms, then, we need to find

the bias subspace which contains the influence of W c
t on W c

a . This is done by training a Support Vector

Machine (SVM), which predicts W c
a from W c

t . Training the SVM results in matrix M c
0 , which parameterises

the model. This parameter matrix can be viewed as the (first version of the) bias subspace of sensitive

attribute c.
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Ultimately, we wish to acquire alternative vectors for W c
t , such that M c has no effect on the embedding

vectors of w ∈ Λc
t . Formally, we wish to construct a projection matrix P c, such that M c(P cW c

t ) = 0.

Figure 1. Simple (2D) representation of null-space projection

To construct such a projection matrix, we use the null-space of matrix M c
0 . The null-space of this matrix,

N(M c
0 ), identifies the direction which is orthogonal to M c

0 , the influence of the sensitive attributes on the

target words. Projecting W c
t onto N(M c

0 ), therefore, zeroes the components of W c
t which are influenced by

M c
0 . Thus, using null-space N(M c

0 ), we can construct a projection matrix PN(Mc
0 )

with the property

M c
0 (PN(Mc

0 )
W c

t ) = 0, (6)

as represented in Figure 1. The construction of this initial projection matrix is done using the basis vectors

of the orthogonal complement to the bias subspace, N(M c
0 ). The basis vectors, Bc

0, of N(M c
0 ) represent

the subspace of the data which is orthogonal to the bias directions and, therefore, provide a projection,

PN(Mc
0 )

= Bc
0B

c⊺
0 , which removes that bias.

Having constructed projection matrix PN(Mc
0 )
, we construct the first version of the alternative word

embeddings of the target words, namely

Zc
0 = PN(Mc

0 )
W c

t . (7)

Zc
0, then, contains the embeddings of W c

t from which the influence of M c
0 has been removed. In order to

remove more and more of the influence of W c
a on the attribute words, we repeat this process, replacing W c

t

by Zc, until Zc converges (or until a previously specified maximum number of iterations). An overview of

the algorithm is given in Algorithm 1.
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Algorithm 1 Algorithm for Iterative Null-space Projection

Input: Original word embeddingsW c
t , Initial bias subspace matrixM c

0 , Initialisation of the final projection

matrix P c = I, Some convergence threshold t, Maximum number of iterations F

1. Obtain the basis vectors Bc
0 of M c

0 and compute the null-space projection matrix PN(Mc
0 )

= Bc
0B

c⊺
0

2. Initialise the debiased word embeddings Zc
0 = PN(Mc

0 )
W c

t

3. While Zc
f − Zc

f−1 > t and f < F for f = 0, ..., F do:

a. Train the SVM on Zc
f and W c

a , obtain the bias subspace: M c
f

b. Compute the null-space N(M c
f ) and use its basis vectors, Bc

f , to compute the new null-space

projection matrix: PN(Mc
f )

= Bc
fB

c⊺
f

c. Compute the new debiased word embeddings: Zc
f = PN(Mc

f )
Zc
f−1

d. Update the final projection matrix: P c = PN(Mc
f )
P c

4. Return projection matrix P c

In every iteration of the algorithm, the influence of the attribute word embeddings on the (alternative

representation of) the target word embeddings is reduced, removing more and more of the bias related to

sensitive attribute c in the word embeddings with each step of the algorithm.

4.3 Relaxed Linear Adversarial Concept Erasure

The last debiasing method investigated in this paper is that of Linear Adversarial Concept Erasure (LACE)

(Ravfogel et al., 2022). This method is similar to the INLP method as described in Sec. 4.2, in that it

is also based on obtaining a projection matrix which acts as an adversary to the bias subspace in the

model embeddings. The difference is in the construction of the projection matrix. The INLP method,

as described above, involves the projection of the original data onto the null space of the matrix which

captures the relationship between W c
t and W c

a . This involves the elimination of the basis of the identified

parametarisation matrix (M c) of a linear classification model (such as SVM), from W c
t . The LACE method,

on the other hand, involves the identification and elimination of the most influential features responsible for

the bias. This method can be used in a wider range of models, including generalised linear models, and can

reduce and refine the amount of information to be eliminated from the embeddings.

The LACE method consists of a minimax game in which the minimax algorithm iteratively finds weights

for a classifier that minimises the maximum loss over all possible adversary erasure patterns. Below, we will

first construct the loss function to be minimised, and then identify the structure of the minimax game.

Using the same definitions as before, the loss function used in the LACE algorithm is a combination

between W c
a and the predictor of W c

a , namely Ŵ c
a . In accordance with Ravfogel et al. (2022), the predictor

in our method is constructed using a Generalised Linear Model (GLM) with a logistic link function, such

that

Ŵ c
a = g−1(θc⊺W c

t ) =
exp(θc⊺W c

t )

1 + exp(θc⊺W c
t )

, (8)
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where θc contains the model’s parameters.

Then, if we consider the log loss function, we can define the loss function for the GLM which predicts W c
a

from W c
t as follows,

λ(W c
a , Ŵ

c
a) = λ(W c

a , g
−1(θc⊺W c

t )) = W c
a log

exp(θc⊺W c
t )

1 + exp(θc⊺W c
t )

. (9)

Minimising λ(W c
a , Ŵ

c
a) with respect to θc provides a predictor of W c

a in terms of W c
t . Now, using the same

ideas as in Sec. 4.2, we define P c to be the orthogonal projection matrix which projects onto the orthogonal

complement of the bias subspace of attribute c, of the embeddings. Furthermore, we specify the set Π to

contain all projection matrices which neutralise a subspace of the embedding vectors, such that P c ∈ Π. Now

we can give a definition for the minimax game which, if solved, gives us the optimal projection matrix for

bias reduction of sensitive attribute c as follows,

min
θc∈RD

max
P c∈Π

W c
a log

exp(θc⊺P cW c
t )

1 + exp(θc⊺P cW c
t )

. (10)

Optimising this minimax game, therefore, requires the minimisation of the objective function with respect

to θc and the maximisation with respect to P c simultaneously. By minimising with respect to θc, the

algorithm searches for a set of coefficients which best explain W c
a from W c

t . This leads to a reduced dimension

representation of the influence between the two sets of words. On the other hand, maximising with respect to

P c requires the algorithm to select the set of most informative features that can best preserve the information

in this same influence between the sets of words. Therefore, the algorithm ultimately searches for the optimal

coefficient matrix, θc, which explains W c
a in terms of a reduced set of features, while simultaneously selecting

the most informative features to choose from. Simultaneously, the algorithm finds a projection matrix which

identifies and removes the most influential features responsible for the influence of W c
t on W c

a . In other

words, the algorithm finds a projection matrix that minimises the worst-case prediction error, subject to a

constraint on the search space for the projection matrix. The outcome for P c, thus, identifies and removes

the most influential features responsible for the bias in W c
t , while minimising the impact on the prediction

Ŵ c
a . This supplies us with a good choice for the projection matrix, which removes the bias related to c from

the embeddings, without removing too much of the influence between the sets of words.

Solving a minimax game, however, is not always easy, as the game is based around finding the best strategy

for one player, while taking into account a worst-case scenario for the other player. The optimisation of the

overall objective function, therefore, can be very complex and slow. A case in which the optimisation of such

objective function is generally well behaved, though, is when the outer optimisation problem is concave, and

the inner is convex (Tuy, 2004). A concave-convex minimax game allows for the use of powerful optimisation

techniques, such as Alternating Gradient Descent (AGD), for solving the game. Ravfogel et al. (2022)

show that the set Π, which defines the search space for the projection matrix is non-convex. Therefore,

the researchers propose the Relaxed-LACE (R-LACE) algorithm, which provides a relaxation on the search

space for the projection matrix, making it convex. Essentially, this relaxation involves the alteration from the
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search space being Π to the search space being the convex hull, conv(Π), of Π. Finally, the concave-convex

minimax game to solve is

min
θc∈RD

max
P c∈conv(Π)

W c
a log

exp(θc⊺P cW c
t )

1 + exp(θc⊺P cW c
t )

. (11)

Following Ravfogel et al. (2022), our minimax algorithm for solving the game consists of Alternating Stochas-

tic Gradient Descent (ASGD) steps, where we perform alternate minimisation over θc and maximisation over

P c. The game, ultimately, yields a projection matrix that is optimised for the attenuation of bias direction

c from Wt.

4.4 Multi-Sensitive Attribute Implementations of the Methods in NLP Models

The methods described in Sec. 4.1, Sec. 4.2 and Sec. 4.3 provide us with several techniques for bias attenuation

of word embeddings. In this section, the manner in which all methods are included into the contextualised

NLP models is described.

As briefly mentioned in Sec. 4.1, the loss function debiasing method is incorporated into the NLP models

by adding the constructed loss function to the training objective of the model. This way, the training

objective of the model is extended to include a penalty for stereotypical associations. The loss terms for the

various sensitive attributes are summed in the penalty term in order to produce an MSA debiasing loss. The

advantage of including the debiasing method in the training objective of the models is that we can manipulate

all hidden layers of the NLP model and, thus, ‘teach’ the embeddings to exclude relationships which society

would view as discriminatory within its normal training procedure.

With regard to the INLP and R-LACE debiasing methods, explained in Sec. 4.2 and Sec. 4.3, we construct

projection matrices which can be applied to NLP models in a ‘post-processing’ sense. The implementation of

these projection matrices is done by multiplying the last hidden state of the word embedding obtained using

the NLP model by the projection matrices corresponding to each of the sensitive attributes. This way, the

stereotypical associations are removed from the hidden states of the contextualised word embeddings. Each

projection matrix corresponds to the bias direction of one sensitive attribute. Multiplying the hidden states

with each of the matrices consecutively, projects the embeddings onto the orthogonal complement of the bias

subspace, which consists of the several bias directions. These hidden states then pass through the last linear

layer of the specified NLP model to result in the eventual predictions of the model in its specific task. An

advantage of debiasing using projection matrices is that the matrices are trained separately from the NLP

model. This way, obtaining an optimal projection matrix, which minimises stereotypical associations, is the

main task of the debiasing method.

Ultimately, in this research, we investigate the performance of the three MSA debiasing methods. We

primarily analyse the ability of the debiasing methods to reduce stereotypical associations in NLP models.

In addition, we look at the performance of the methods in terms of the accuracy vs. fairness trade-off.

Furthermore, the influence of the different debiasing methods for three contextual NLP models is investigated.

The NLP models used are BERT, DistilBERT, and ALBERT.
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4.5 Performance Measures

For the evaluation of the debiasing methods in each of the models, we use research by Nadeem et al. (2021).

The researchers construct performance measures which evaluate MSA stereotypical biases in language models

as well as the language modelling ability of the models. Using their research, we can give an indication of how

well the debiasing methods, described in the sections above, perform in attenuating stereotypical associations,

and in retaining semantic information.

The evaluation measures all use the ‘probability’ scores which the NLP models output in the Masked

Language Modelling (MLM) task of the model. Given the task of MLM, NLP models assign a probability

score to each of the words in its vocabulary. This score identifies the probability that the masked word in

the input sentence corresponds to the word in the vocabulary. In a general application of MLM, the word in

the vocabulary which receives the highest probability score is outputted to correspond to the masked word in

the input. In our performance evaluation, however, we focus on the specific score given to the various words

in the model’s vocabulary itself.

As described in Sec. 3.2, the evaluation data consists of sentence ‘triplets’. For the performance evaluation,

the context, or association which is different across the different sentences is inputted into the model as the

masked token. Then, the probability scores of the three different contexts/associations are saved and used

to compute the evaluation metrics. Using the example from Sec. 3.2, the input sentence into the NLP

model is “Our housekeeper is a [MASK]”, and the scores outputted by the model for the words “Mexican”,

“American”, and “fish” are registered.

Using the scores for the different associations for each of the sentence triplets in the evaluation dataset, the

evaluation metrics can be calculated. Ultimately, in correspondence with Nadeem et al. (2021), the evaluation

metrics used are the Language Modeling Score (LMS), the Stereotype Score (STS), and the Idealised Context

Association Test Score (ICAT). In addition, we propose a Stereotype Proximity Score (SPS), which is used

as a normalised alternative for the STS.

The LMS describes the model’s ability to correctly identify target words, and is, thus, a representation

of the model’s accuracy. Using the model output scores for the different instantiations of the sentences, the

LMS is calculated as the percentage of times that the NLP model ranks the meaningful associations to be

more preferable than the meaningless one across all sentence triplets in the dataset. The LMS is defined as

follows,

LMS =

∑K
k=1

(
I(P stereo

k > Pmeaningless
k ) + I(P anti−stereo

k > Pmeaningless
k )

)
2K

× 100%, (12)

where P stereo
k , P anti−stereo

k , and Pmeaningless
k refer to the probability scores of the stereotypical, anti-

stereotypical and meaningless associations, respectively. Furthermore, k = 1, ...,K is the index of the sentence

triplet at hand, where K is the total number of sentence triplets. I(·) refers to the indicator function, such

that the sum over all sentence triplets provides a count of the number of times that the stereotypical and

anti-stereotypical associations are ranked higher than the meaningless one. The LMS, although not being
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a perfect measure for accuracy, gives good insight into the difference in ability to recognise and analyse

relationships in language. It, thus, provides us with a metric to identify differences in accuracy before and

after debiasing an NLP model.

The STS shows the inclination of the model to prefer stereotypical associations over anti-stereotypical

associations. It is calculated as the percentage of times that the NLP model ranks the stereotypical association

higher than the anti-stereotypical association, using the scores as described above. The STS is formally defined

as

STS =

∑K
k=1 I(P

stereo
k > P anti−stereo

k )

K
× 100%. (13)

Note that, whereas an ideal NLP model would have an LMS of 100, the STS of an ideal NLP model is 50.

An STS of 50, namely, indicates that the model is indifferent between stereotypical and anti-stereotypical

associations for target terms, which means it has no discriminatory inclination towards either side. The SPS,

then, is defined as the proximity to a perfectly unbiased model and is a normalisation of the STS. The SPS

is calculated as the percentage of absolute difference from the ideal score of 50,

SPS =

(
1− |STS − 50|

50

)
× 100%. (14)

Lastly, the ICAT is a combination of the LMS and the SPS and is, thus, used as an ‘overview’ of how well

the model performs, both in terms of accuracy and in terms of bias. If we, following Nadeem et al. (2021),

assume equal importance between accuracy and fairness, the ICAT is calculated as follows,

ICAT =
LMS + SPS

2
. (15)

Although this ICAT (as well as the LMS and SPS) is not a perfect measure for the overall performance of

the NLP model, the ICAT score gives us a basis for comparison of the various models. Therefore, it does

give us an indication of the performance of the various debiasing methods, as well as their performance in

comparison with a non-debiased NLP model.

5 Results

In this section, the results of the debiasing methods are presented and discussed. The performance measures

are presented for the various debiased BERT, DistilBERT, and ALBERT models, using each of the debiasing

methods described in Sec. 4. In addition, the same performance measures are given for the original, un-

debiased BERT, DistilBERT and ALBERT models to serve as baseline results.

In Sec. 5.1, the overall performance of the various non-debiased and debiased NLP models is given. This

section gives a comprehensive overview of the differences in accuracy and fairness levels of the different versions

of the models. Sec. 5.2, then, presents the performance of the models with regards to the specific sensitive

attributes which were debiased. This section shows the models’ abilities to attenuate bias of multiple sensitive

attributes simultaneously. Finally, Sec. 5.3 gives an analysis of the performance of the various methods with

regards to the inevitable accuracy vs. fairness trade-off.
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5.1 Overall Model Performance in Relation to MSA Debiasing Methods

Table 1 shows the overall performance results of all versions of the NLP models which were researched. The

‘original’ versions of the models correspond to the pre-trained, un-debiased versions of the various contextu-

alised NLP models. The term ‘Loss’ refers to the weighted loss function debiasing method as described in

Sec. 4.1. The terms ‘INLP’ and ‘R-LACE’ refer to the projection matrix methods described in Sec. 4.2 and

Sec. 4.3, respectively. For clarity and comparison, the theoretical performance measure scores for an ideal

Language Model (LM), a maximally biased (stereotyped) LM and a random LM are given in the table as well.

Ultimately, the closer the performance scores of the debiased NLP models are to those of the theoretically

ideal LM, the better the overall performance of the method is.

Table 1. Overall performance of the various language models

Model LMS Score SPS Score ICAT Score

Ideal LM 100 100 100

Stereotyped LM - 0.0 0.0

Random LM 50.0 100 75.0

BERT-original 84.7 80.6 82.7

BERT-debiased (Loss) 76.1 88.6 82.4

BERT-debiased (INLP) 59.0 96.8 77.9

BERT-debiased (RLACE) 59.8 97.8 78.8

DistilBERT-original 85.5 78.2 81.9

DistilBERT-debiased (Loss) 72.8 90.6 81.7

DistilBERT-debiased (INLP) 55.2 96.6 75.9

DistilBERT-debiased (RLACE) 54.5 97.6 76.1

ALBERT-original 89.6 82.0 85.8

ALBERT-debiased (Loss) 68.5 97.2 82.6

ALBERT-debiased (INLP) 50.8 98.0 74.4

ALBERT-debiased (RLACE) 53.2 98.8 76.0

In Table 1, the highest LMS and SPS scores for each of the NLP models are in bold. For the ICAT scores,

the bold scores indicate the optimal value across the debiased versions of the NLP model. Immediately, we

see the same trend for the performance scores across the various NLP models. For each of the models, the

debiasing technique which leads to the highest ICAT score is the Loss method. The method which reduces

the bias in the model the most, across all models, is the R-LACE projection matrix method. Furthermore,

all debiased NLP models exhibit equal scale increases in SPS compared to the original version, across the

various language models. These results give an initial indication of universality for the debiasing methods.

Across the different NLP models, each of the debiasing methods manages to decrease the bias in the model.
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Another result we notice is the inevitable decrease in language modelling ability of the debiased models

with respect to the original models. For each of the NLP models, the LMS of the original model is clearly

higher than the debiased versions of the model. This, however, is unavoidable and at the basis of the

‘accuracy vs. fairness’ trade-off. By adjusting NLP model training structures, or post-processing the output

using projections, we are slightly shifting the model’s objective. Instead of aiming for pure accuracy of the

NLP model output, we force the model to take into account bias structures in the data. This causes the

model to lose some of its accuracy, in return for some increase of fairness in the model.

In general, the results show that, whilst the projection matrix methods decrease bias (increase the SPS)

in the models the most, they also cause a greater decrease in accuracy than the Loss method. This is to be

expected, as more of the model’s ‘focus’ switches from accuracy towards debiasing stereotypical associations.

The fact that the INLP and R-LACE methods are more extreme in reducing bias, and thus in decreasing

accuracy of the model, can be explained by the structure of the debiasing method. These methods construct

projection matrices independently from the training objectives of the original model. Therefore, these debi-

asing techniques barely contain regularisations with respect to semantic abilities of the specific NLP model.

The Loss method, on the other hand, explicitly includes a regularisation term which focuses on retaining a

certain level of accuracy of the original model.

Zooming in on the differences between the two projection matrix methods, we see that the R-LACE

method captures slightly more of the bias than the INLP method, in each of the models. In addition, we

notice that in the BERT model, the R-LACE method performs better than the INLP method, with regards

to both the LMS and the SPS. This superiority might be explained by the R-LACE method’s more diverse

nature. This method allows for the stereotypical influences to be captured using Generalised Linear Models,

causing there to be more flexibility in identifying and attenuating the bias subspace than allowed for by the

INLP method. In addition, we note that the focus of the R-LACE method is more explicitly and specifically

on the minimisation of information loss than the focus of the INLP method is.

Finally, we can label the Loss method to be closer to a compromise of accuracy and fairness than the

projection methods. This debiasing method is added to the NLP models as an extra penalty in its training

objective, allowing most of the focus of the model to remain on the semantic information retention. Although

the SPS of the Loss method, in each of the models, is lower than the SPS of the other debiasing methods,

we can still see a clear trend in the reduction of bias with respect to the original model. In addition, the

LMS scores for this debiasing technique are distinctly higher than the LMS scores of the other two debiasing

methods.

Based on these overall results, we might conclude that, out of the debiasing techniques, the Loss method

performs the best with regards to the accuracy vs. fairness trade-off. The same can be concluded from the

ICAT scores of each of the models. Assuming equal importance between accuracy and fairness, the Loss

method scores distinctively higher in overall performance score than both the projection methods. With

regards to pure bias reduction in NLP models, however, the INLP and R-LACE methods perform better
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than the Loss method.

5.2 Sensitive Attribute-Specific Model Performance for the MSA Methods

The focus of this paper, in addition to overall bias attenuation in contextualised NLP models, is on the

mitigation of bias related to several sensitive attributes simultaneously. Therefore, in Table 2, the performance

scores given in Table 1 are divided into the performance within the specific sensitive attributes, which are

attenuated by the methods. Using these results, we can analyse the MSA debiasing methods’ abilities to

reduce bias for specific sensitive classes simultaneously, and perform some sensitivity analysis of the methods

with respect to the various attributes. As described in Sec. 3.2, the data used for performance evaluation

can be split up into four different demographics and, therefore, we can evaluate the performance scores for

each of these demographics independently. These demographics directly relate to attributes which are prone

to sensitive biases. The demographics are gender, occupation, race, and religion. Table 2 contains the LMS,

SPS, and ICAT scores for each of the instantiations of the NLP models across the various sensitive attribute

classes.

Table 2. Per attribute performance of the various MSA debiased language models

Gender Occupation Race Religion

LMS SPS ICAT LMS SPS ICAT LMS SPS ICAT LMS SPS ICAT

bert

Orig 86.0 72.2 79.1 82.7 77.2 80.0 85.7 85.2 85.5 88.5 87.0 87.8

Loss 84.5 83.4 84.0 77.2 92.0 84.6 73.1 86.4 79.8 74.4 99.2 86.8

inlp 60.5 86.4 73.5 60.1 93.6 76.9 57.8 98.4 78.1 57.5 91.6 74.6

rlace 61.8 89.0 75.4 60.7 94.6 77.7 58.7 97.4 78.1 58.0 96.6 77.3

dbert

Orig 86.4 79.8 83.1 83.4 71.8 77.6 86.8 83.4 85.1 89.1 76.0 82.6

Loss 83.2 81.0 82.1 72.1 93.2 82.7 70.5 90.8 80.7 74.4 92.2 83.3

inlp 58.4 91.2 74.8 55.7 95.2 75.5 53.3 99.2 76.3 60.9 78.2 69.6

rlace 59.5 92.4 76.0 54.5 97.2 75.9 52.7 98.8 75.8 59.6 76.3 68.0

albert

Orig 89.3 80.0 84.7 88.9 79.2 84.1 90.2 83.0 86.6 92.7 79.4 86.1

Loss 85.2 90.0 87.6 69.1 94.6 81.9 62.7 98.6 80.7 81.3 92.8 87.1

inlp 53.8 95.8 74.8 52.7 98.6 75.7 48.8 96.6 72.7 45.4 89.6 67.5

rlace 55.4 98.8 77.1 55.0 98.8 76.9 51.6 93.4 72.5 46.5 90.0 68.3

Generally, we can see similar trends to the ones in Table 1, for each of the attribute categories. Specifically,

we should note that there is an increase in SPS for all categories in each of the models for all debiasing methods

with respect to the original models. This indicates that each of the debiasing methods is able to attenuate

bias in multiple sensitive attributes simultaneously. However, we do observe some variation in increase of SPS

across the categories, which indicates that the methods have varying influence on the biases. The religion

attribute, for example, has only small increase in SPS for the projection methods in the DistilBERT model.

This could be due to the fact there there was too little training data for this sensitive attribute to construct

an accurate projection matrix, or that this type of bias is difficult to capture using a projection matrix.
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All in all, Table 2 gives us evidence that the debiasing techniques are able to mitigate bias in an MSA

framework. Each of the sensitive attributes shows an increase in SPS for the debiased models, compared

to the original models. Some attributes show greater increase than others, but the overall trend shows

promising results. The variations in LMS and SPS across categories can be due to difference in training data

availability for that category, NLP model architectures or even the structure of the stereotypical associations

in that category.

5.3 Accuracy vs. Fairness Trade-Off

Overall, we can conclude that each of the bias mitigation techniques described in Sec. 4 is able to attenuate

MSA bias in contextualised word embeddings. The SPS scores in the tables in Sec. 5.1 and Sec. 5.2 all show

increased values for the various debiased models compared to the original models. This indicates that each

of the debiasing methods reduces the corresponding model’s tendency to prefer stereotypical associations

over anti-stereotypical associations in multiple sensitive attribute classes. The different debiasing techniques,

however, do show differences in the values for the SPS, as well as for the LMS. The INLP and R-LACE

projection methods increase the SPS more than the Loss method does. However, these models also cause

lower LMS scores than the Loss method.

These results demonstrate some of the limitations of each of the models. The INLP and R-LACE methods

are post-processing methods, meaning that they modify the model embeddings by projecting them onto a new

subspace. This process can lead to semantic information loss of the NLP model, especially for low-frequency

words. In comparison, the Loss method modifies the model embeddings in a way which preserves semantic

information. This method, however, also has its limitations. Residual bias, for example, can exist in the final

results, as the focus on semantic information retention is distinctively present.

If we were to ignore the accuracy vs. fairness trade-off, we could conclude that the INLP and R-LACE

debiasing techniques are the superior techniques for bias attenuation in contextualised NLP models. However,

the retention of semantic information of the NLP model is important in practice as well, and the results in

the tables also show that these methods lose a fair amount of the language modelling abilities of the models.

In some categories (e.g. the race attribute in the DistilBERT model) the LMS of the INLP and RLACE

debiased models are reduced almost to the point where the LMS resembles that of a random LM. Therefore,

in most applications, the Loss method would be preferred. In each attribute instance, and in each NLP

model type, the LMS remains distinctively above the level of that of a random LM. This research indicates,

therefore, that the Loss debiasing method is able to mitigate MSA biases in contextualised NLP models

whilst still retaining a level of semantic information of the original model.
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6 Conclusion

With the increase in everyday use of NLP-based applications, the importance of recognising and attenuating

problematic biases embedded in these applications grows. NLP has grown to become an integral aspect of

our daily tasks, but NLP models, through attempts of capturing human semantics, inevitably encode human

social biases as well. Recent research (e.g. Bolukbasi et al., 2016) has shown that such bias can lead to

discriminatory practices which are unacceptable from our current social, ethical, and even legal perspectives.

The need for research into bias mitigation, therefore, becomes bigger and bigger.

Whilst most research into this topic has focused on the attenuation of bias from static word embeddings,

contextualised word embeddings have been established as the state-of-the-art ‘type’ of embedding for NLP

tasks. Research has shown, unfortunately, that such contextualised word embeddings encode unfair bias as

well. In addition, recent research has focused on the mitigation of bias from NLP models with respect to a

single sensitive stereotyped attribute. In contrast, real data generally inherits bias with regards to multiple

sensitive attributes, rather than merely one.

This paper, therefore concentrates on providing new insights into possibilities of the mitigation of MSA

bias from contextualised textual frameworks, with a focus on the main research question: How can we

attenuate bias in textual analysis whilst retaining an appropriate level of semantic information?

The paper presents three methods which can provide novel, pragmatic approaches for the MSA attenuation

of stereotypical associations in state-of-the-art NLP models and applications. The first method (the ‘Loss’

method) is based around extending the loss function in the NLP model structure by adding a penalty

term to the training objective. This alternative training objective, then, penalises stereotypical associations,

whilst simultaneously regulating an appropriate level of retention of semantic information in the model. The

second and third methods (the INLP and R-LACE methods) require the construction of a projection matrix,

which projects the NLP model output onto the orthogonal complement of the bias subspace. The difference

between these two methods is in the construction of the projection matrix. The INLP technique structures

the projection matrix by using an iterative algorithm which updates the projection matrix so that more and

more of the stereotypical influence is captured after each step. The R-LACE method revolves around solving

a minimax game which, if solved, finds the projection matrix that minimises the worst-case prediction error

between sensitive attributes and stereotypical outcomes.

Ultimately, the results show that all methods are capable of reducing MSA bias to a distinctive extent.

The projection matrix methods reduce the bias in the models more than the Loss method does. However,

these methods also decrease the language modelling capabilities of the NLP models greatly. Although both

the INLP and R-LACE methods show the ability to reduce the bias almost to the level of that of an ideal

language model, they, in some attribute categories, reduce the language modelling ability towards the level of

a random language model. Taking into account a decent trade-off between accuracy and fairness of the NLP

models, therefore, leads to the Loss method providing the most promising results. This method attenuates

bias of multiple sensitive attributes simultaneously, whilst retaining a level of semantic information inherent
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in the original, un-debiased model. The results show that bias is reduced in all attribute categories in all

NLP models tested, indicating a clear capability of bias mitigation. In addition, the level of retention of

language modelling ability of this method is much higher than that of the projection matrix methods.

For future research, it could prove beneficial to tune the hyperparameters of the NLP models, as well as

of the models used in the debiasing methods. Better tuned models and debiasing techniques could provide

better insight in the full potential of the different methods. In addition, it might be interesting to investigate

manners in which a better regularisation component can be added to the INLP and R-LACE methods in

order to allow for better information retention.
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A Overview of Definitions

Table 3. Overview of the variables used in Sec. 4, with corresponding definitions

Variable Definition

w Word or token

c Sensitive attribute class (e.g. gender, race)

Λac
Set of attribute words of sensitive class c (where c = 1, ..., C)

(e.g. “he”, “she”, “Muslim”, “Asian”)

Λtc Set of target words (e.g. occupations, polarised adjectives);

these words are expected to be neutral with respect to the attribute words

Wac
The set of all embeddings of w ∈ Λac

Wtc The set of all embeddings of w ∈ Λtc

Ω(w) Set of sentences containing word (or token) w

Ac =
⋃

w∈Λac
Ω(w) Set of sentences containing one or more attribute words

Tc =
⋃

w∈Λtc
Ω(w) Set of sentences containing one or more target words

E Embedding model

θe Pre-trained parameters of embedding model e

x Input sentence

Ei(w, x; θe) Embedding of token, w, in sentence, x, in the i-th layer of embedding model E

(where i = 1, ..., N)

νi(w) Non-contextualised embedding of w in the i-th layer; taken as the average of the

contextualised embeddings of w in the i-th layer of E over all Ωw

M c The bias subspace of sensitive attribute c

N(M c) The null-space (orthogonal complement of the row-space) of M c

Bc The basis vectors of N(M c)

P c Projection matrix which projects W c
t onto the null-space of its bias subspace

Zc Alternative representations of W c
t

Ŵ c
a The predictor of W c

a

θc GLM model parameters

λ(W c
a , Ŵ

c
a) Log loss function of W c

a and its predictor

Π The set of all projection matrices which neutralise a subspace of the embeddings

conv(Π) The convex hull of Π
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B Summary of Attribute and Target Word Lists

B.1 Sets of Attribute Words

Gender Attribute Words:

man, gentleman, guy, woman, lady, girl, him, her, his, hers, he, she, businessman, businesswoman, priest,

nun, mr., mrs., daughter, son, father, mother, councilman, councilwoman, etc.

Ethnicities Attribute Words:

aborigine, african, african-american, asian, black, caucasian, hispanic, white, brown, dark, light, etc.

Religion Attribute Words:

anglican, atheist, atheists, buddhist, catholic, christian, hindu, jew, jewish, morman, muslim, protestant,

sikh, christianity, judaism, islam, buddhism, etc.

B.2 Sets of Target Words

Gender Stereotype Target Words:

Occupations: trucker, soldier, astronomer, skipper, banker, dancer, educator, chef, hairdresser, homemaker,

police, footballer, nanny, nurse, etc.

Character Traits: jealousy, lovely, geek, gentle, nurturing, leader, soft, sweet, hysterical, aggressive, etc.

Others: warrior, beauty, flirt, flower, make-up, jewelry, mirror, etc.

Polarised and Class Target Words:

Polarised: aggressive, arrogant, clean, clever, cruel, evil, dumb, honest, intelligent, rude, professional, smart,

strong, ugly, weak, murderer, champion, terrorist, thief, etc.

Class: affluent, impoverished, needy, poor, prosperous, rich, underpriviliged, etc.

Physical Target Words:

athletic, fat, huge, lanky, little, muscular, short, slender, slim, tall, voluptuous, etc.
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