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Abstract

I investigate the extent to which machine learning techniques can improve the perfor-

mance of parametric option pricing models. Given the estimates of several models,

such as the Black-Scholes and Heston models, I train random forests, support vector

machines and neural networks to either correct or combine their individual forecasts.

Using a dataset composed of S&P 500 options, I show that these techniques are able

to outperform the parametric models significantly. Out-of-sample prediction exercises

show large gains in the cross-section as well as in the option panel in fitting the implied

volatility surface. Including time-varying information as features allows for the neural

network to better reproduce the dynamics of the surface over time.
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supervisor, second assessor, Erasmus School of Economics or Erasmus University.



Contents

1 Introduction 1

1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Parametric Option Pricing Models 4

2.1 Black-Scholes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Ad-hoc Black-Scholes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Heston Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Carr and Wu Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Nonparametric Correction of Model-Implied Estimate 9

3.1 Feedforward Neural Networks and Their Implementation . . . . . . . . . . . 10

4 S&P 500 Option Data 12

5 Prediction in the Option Cross-Section Using Individual Models 14

5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Other Nonparametric Corrections 17

6.1 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Combined Forecasts 23

7.1 Simple and Weighted Average . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.2 Neural Network Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.3 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8 Prediction in the Option Panel 27

8.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8.1.1 Feature Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



9 Conclusion 39

References 41

10 Appendix 45

10.1 Overview of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10.2 MATLAB Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



Option Pricing Boosted by Machine Learning Techniques

1 Introduction

Implied volatility is a metric that captures the market’s expectation of future movements in

a security’s price. It is extracted from observed option prices using the Black and Scholes

(1973) formula. As implied volatilities of different options are easier to compare with each

other across time and moneyness than option prices, institutional investors often manage

their option positions using the implied volatility surface (Carr & Wu, 2016). This is a three-

dimensional plot of the implied volatilities of a security’s options across different times to

maturity and strike prices.

Furthermore, as shown by Andersen, Fusari and Todorov (2015), option pricing models

are often estimated by representing the pricing errors in terms of the implied volatility and by

subsequently minimizing these errors. This shows the importance of accurately estimating

and predicting the implied volatility surface for researchers as well as traders or investors

that are active in the option market.

Over the years, many parametric option pricing models have been developed to capture

the observed implied volatility dynamics. Almeida et al. (2022) show that training a feed-

forward neural network on parametric model-implied pricing errors will most likely enhance

performance in terms of accuracy. The results of this nonparametric correction - which

amounts to a semiparametric methodology - show the potential of machine learning tech-

niques in modeling the dynamics of the implied volatility surface. This potential is explained

by the fact that machine learning techniques are able to handle a large number of poten-

tial predictor variables (high-dimensional data) and approximate nonlinear specifications of

functional form or relations.

This invites me to investigate the extent to which machine learning techniques can benefit

parametric models’ fitting of the option panel. In this paper, I look at the performance of the

random forest algorithm of Breiman (2001) and the support vector machine when nonpara-

metrically correcting the parametric models; two methods that are suited for classification

as well as regression purposes.

In addition, I research the ability of neural networks to combine the individual parametric

forecasts, following along the lines of Donaldson and Kamstra (1996). They show that neural
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network combinations generally outperform linear combinations of individual forecasts.

I use a dataset comprising 1,196,437 observations of S&P 500 options over the period

between January 4, 2016, and June 28, 2019, to test the corrections and combinations of

the Black and Scholes (1973) model, the ad-hoc correction of Black-Scholes (Dumas et al.,

1998) which describes the volatility as a quadratic function of an option’s moneyness and

time to maturity, the Carr and Wu (2016) model that specifies the dynamics of the implied

volatility surface parametrically, and the Heston (1993) structural stochastic volatility model.

In evaluating their performance, I consider out-of-sample cross-sectional results and results

in the option panel.

In general, the random forest and neural network corrections are able to outperform the

parametric models significantly when prediction exercises in the cross-section are conducted.

Similarly, the performance of the neural network combinations of the individual forecasts

exceeds that of the parametric models in the cross-sectional prediction exercises. In the

option panel, the neural network combinations outperform the individual forecasts to a large

extent, as well as their simple and weighted averages. Including time-varying covariates

as features further allows neural networks to fit the option panel even more accurately and

capture its dynamics. I find that a measure of economic policy uncertainty and the VIX index

as a measure of market risk are the two most important features in providing neural networks

with the information needed about the state of the economy. This is a sensible result, as L. Liu

and Zhang (2015) show that economic policy uncertainty is strongly positively correlated with

markets’ future volatility. Furthermore, the VIX index is constructed from a portfolio of out-

of-the-money S&P 500 options, and captures the expected volatility of the index under the

risk-neutral distribution.

The remainder of this paper is structured as follows. In Section 2, I discuss the four

parametric option pricing models. Section 3 sets out the procedure leading to a nonparametric

correction of these models. The option data I use for my research is described in Section 4.

Sections 5, 6 and 7 compare the performances of the different machine learning techniques

correcting and combining the parametric models within the scope of the exercises in the cross-

section. Section 8 discusses the exercise in the option panel. Lastly, Section 9 concludes this

paper.
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1.1 Related Literature

This thesis is related to the vast literature on option pricing. One of the earliest works on

the subject is Black and Scholes (1973), which derives a closed-form solution for the price of

a European call option under the assumption of constant volatility. Due to the limitations of

this model, several extensions and generalizations have been proposed to capture the dynam-

ics of the implied volatility surface. One approach is to use local volatility as a deterministic

function of the underlying asset price and time. Dupire (1994) and Rubinstein (1994) esti-

mate local volatility using a binomial lattice. Another approach is to correct Black-Scholes

by smoothing implied volatilities, which is shown by Dumas et al. (1998) to outperform local

volatility models. Structural continuous-time option pricing models that incorporate addi-

tional sources of risk, such as stochastic volatility and jumps, comprise a different category

of models. Heston (1993), Bates (2000), Duffie et al. (2000), and Andersen et al. (2015) are

some prominent examples in this category. Several notable works use approximation theory

to express implied volatilities as a function of parameters of stochastic volatility models.

Medvedev and Scaillet (2007), Gatheral and Jacquier (2014), and Carr and Wu (2016) are

instances of this important type of model.

Nonparametric methods have gained increasing attention in the field of financial econo-

metrics, particularly in option pricing. An example is the nonparametric approach that

was introduced by Aı̈t-Sahalia and Duarte (2003), who used a nonparametric kernel-based

estimator for the state-price density implicit in the market prices of traded options. Sev-

eral works provide results on combining parametric and nonparametric models in financial

settings. J. Fan and Mancini (2009) propose a novel way of option pricing based on non-

parametric methods guided by a parametric model. They fit a nonparametric model on the

errors of a parametric model. Along these lines, Almeida et al. (2022) train a feedforward

neural network on the pricing errors of parametric option pricing models, and achieve boosted

performance. They furthermore show that incorporating time-varying covariates as features

in a neural network, allows for the network to better learn the shape of the misspecification

as a function of different states of the economy. Kumar and Thenmozhi (2014) compare the

performance of three different hybrid models in forecasting stock index returns. They exam-

ine combinations of linear ARIMA models with support vector machines, random forests and
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neural networks, and find that the first combination is the best forecasting model to achieve

high forecast accuracy. No research has been conducted comparing these nonparametric

methods when correcting parametric predictions of the implied volatility surface. Therefore,

I look at the performance of these support vector machine and random forest corrections,

and compare them with the neural network correction proposed by Almeida et al. (2022).

Several other academic papers utilize neural networks to price options and manage risk,

as they are effective at modeling complex relationships. Hutchinson et al. (1994), Garcia and

Gençay (2000), and Amilon (2003) use neural networks to estimate the option pricing function

nonparametrically. Others, such as Dugas et al. (2009) and Ackerer et al. (2020), expand

on this by incorporating no-arbitrage constraints. S. Liu et al. (2019) apply neural networks

to decrease computational time by numerically solving option pricing models. Harrald and

Kamstra (1997) describe an experiment using a neural network combining forecasts of stock

price volatility, outperforming simple linear models and a nonparametric kernel method.

Following a similar approach in the option pricing setting, I use neural networks to combine

individual implied volatility forecasts of parametric models, before and after providing the

networks with information about the options and the state of the economy.

2 Parametric Option Pricing Models

2.1 Black-Scholes Model

The model developed by Black and Scholes (1973) expresses the dynamics of a market con-

taining derivative instruments. The model allows for computation of the theoretical value of

a European option based on certain assumptions. One of those assumptions is the underlying

asset’s price, denoted by St, following a geometric Brownian motion with constant drift µ

and volatility σ:
dSt

St

= µdt+ σdWt, (1)

whereWt represents a standard Wiener process. A partial differential equation can be derived

and solved from this process for a European call option. Given the annualized risk-free

interest rate r, the equation presents the following solution for the price of such a call with
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strike price K and time to maturity τ = (T − t):

C(St, K, τ, σ) = Φ(d1)St − Φ(d2)Ke−rτ , (2)

d1 =
1

σ
√
τ

ï
ln

Å
St

K

ã
+

Å
r +

σ2

2

ã
τ

ò
,

d2 = d1 − σ
√
τ ,

where Φ(x) denotes the standard normal cumulative distribution function evaluated at x.

Equation (2) is known as the Black-Scholes formula. By means of the put-call parity, the

corresponding price of a put with the same strike price K is given by:

P (St, K, τ, σ) = Φ(−d2)Ke−rτ − Φ(−d1)St. (3)

Given observed market prices C and P , the implied volatility of the options is computed

by solving the inverse of equations (2) and (3) for σ, respectively. Alternatively stated,

the implied volatility is the value of σ for which the theoretical option price is equal to its

market-observed counterpart, i.e., C = C or P = P .

The model predicts that the implied volatility is constant over time, as well as over

maturity and strike price, resulting in a flat implied volatility surface. This is in contradiction

with observed implied volatility values, as the cross-section of for example S&P 500 index

options shows a “smile”, as shown by Rubinstein (1994). Furthermore, the market observed

implied volatilities change over time, thus deforming the shape of the implied volatility surface

(Cont & Da Fonseca, 2002). The inconsistency between the Black-Scholes option pricing

model (BS) and the observed implied volatility values, has led to a vast amount of literature

concerning models that are able to capture the dynamics of the implied volatility surface

better. In the rest of this section, I discuss three examples.

2.2 Ad-hoc Black-Scholes Model

As the Black-Scholes implied volatilities of S&P 500 options tend to have a parabolic shape

- this phenomenon is also referred to as the volatility smile - Dumas et al. (1998) decide to

model the volatility as a quadratic function of the time to maturity and moneyness of an

option. Given a cross-section of i = 1, 2, ..., n options on day t, the moneyness of option i
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is defined as mi,t = St/Ki. Dumas et al. (1998) consider several functional forms, the most

general of which is:

σi,t = θ0,t + θ1,tmi,t + θ2,tm
2
i,t + θ3,tτi,t + θ4,tτ

2
i,t + θ5,tmi,tτi,t + εi,t. (4)

The model is called ad-hoc Black-Scholes (AHBS), as it violates the constant implied volatility

assumption and is thus inconsistent with the Black-Scholes model. The ad-hoc model is

further analyzed and augmented by Christoffersen and Jacobs (2004), who named it the

Practitioner Black-Scholes model. Implementation of the model is done in three stages.

First, on a particular day t with a cross-section of i = 1, 2, ..., n options, the Black-Scholes

implied volatility σi,t for every option is backed out of equation (2) or (3) as described in

Section 2.1. Next, in order to estimate the model, the volatilities are regressed on mi,t and

τi,t as described in equation (4) via ordinary least squares. This is equivalent to minimizing

the implied volatility root mean squared error (IVRMSE):

θ̂AHBS = argmin
θ

1

n

n∑
i=1

[
σi,t − (θ0,t + θ1,tmi,t + θ2,tm

2
i,t + θ3,tτi,t + θ4,tτ

2
i,t + θ5,tmi,tτi,t)

]2
,

(5)

where θ̂AHBS is the vector containing the parameters that need to be estimated. Third,

the implied volatilities predicted by the AHBS model are calculated by plugging in θ̂AHBS.

Note here that for equation (4), restricting θ1, θ2, ..., θ5 = 0 results in a constant volatility

model. This amounts to the standard Black-Scholes model, which assumes that volatility is

constant over time, maturity and strike price. That implies that the Black-Scholes predicted

implied volatility for any option in the cross-section is given by the average implied volatility

observed on day t.

2.3 Heston Model

An alternative to the assumption of constant volatility is stochastic volatility. This gives

rise to the category of stochastic volatility models, which assume that the underlying asset’s

volatility follows a random process. The Heston (1993) model is amongst the first of these

models. They allow for a quasi-closed form solution for the price of a European call and put

option. The model assumes a correlation between the volatility process and the asset price,
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and the risk-neutral stock price process is given by:

dSt

St

= (r − 1

2
Vt)dt+

√
VtdWS,t, (6)

dVt = κ(v − Vt)dt+ σv

√
VtdWV,t.

Here, Vt is the instantaneous variance, κ denotes the rate at which Vt reverts to the long-

term average v, σv is the volatility of the volatility process, and WS,t,WV,t are two correlated

Wiener processes with correlation ρ. Under the Heston (1993) framework, option prices are

computed using the following expressions:

CHeston = Ste
−qτP1 −Ke−rτP2, (7)

PHeston = CHeston +Ke−rτ − Ste
−qτ , (8)

Pj =
1

2
+

1

π

∫ ∞

0

Re

ñ
e−iϕ ln(K)fj(ϕ)

iϕ

ô
dϕ, j ∈ {1, 2}, (9)

where q is the continuous dividend yield, CHeston and PHeston are the model’s call and put

price, respectively, and i is a unit imaginary number. Furthermore, P1, P2 are the probabilities

of St > K under the asset price measure and risk-neutral measure, respectively, and fj(ϕ)

is the characteristic function for P1, P2, with ϕ as the characteristic function variable. The

continuous integral for the inverse Fourier transform is evaluated using numerical integration.1

As the performance of the Heston model will be evaluated in terms of its implied volatility

surface predictions, it makes sense to estimate the set of parameters and the instantaneous

variance ξt = (Vt, v, κ, σv, ρ) by minimizing the loss function with respect to the observed

implied volatilities σi,t. Model-implied option prices are converted to implied volatilities, and

the loss function is minimized using nonlinear least squares. Denote the fitted values of the

Heston model as σH(ξt, St, Ki,t, τi,t, rt). For a set of options i = 1, 2, .., n on day t, estimates

ξ̂t are then the result of minimizing:

n∑
i=1

[σi,t − σH(ξt, St, Ki,t, τi,t, rt)]
2 . (10)

1For the pricing of options under the Heston model, MATLAB function “optByHestionNI” is used. For

further documentation, see https://nl.mathworks.com/help/fininst/optbyhestonni.html.
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2.4 Carr and Wu Model

Carr and Wu (2016) develop a new option pricing framework. They recognize that both

practitioners and academics are used to employing the Black-Scholes implied volatility surface

to manage their option positions instead of through option prices. Therefore, they thought it

ideal to, instead of modeling all the dynamics of the (unobservable) instantaneous variance,

model the near-term dynamics of the implied volatility surface across a range of different

strike prices and times to maturity. Subsequently, they derive no-arbitrage restrictions on its

shape. The model, with its assumptions on the implied volatility dynamics, allows for the

obtainment of the whole implied volatility surface by solving a simple quadratic equation.

Consider an option with strike price K and time to maturity τ . The model developed by

Carr and Wu (2016) (CW) states that under the risk-neutral measure, the dynamics of the

underlying asset price St and implied volatility σt(K, τ) are given by:

dSt/St =
√
vtdWt, (11)

dσt(K, τ)/σt(K, τ) = e−ηtτ (mtdt+ wtdZt), (12)

where vt denotes the time-t instantaneous variance of the asset log-returns. For the implied

volatility, mt denotes its average drift, wt its volatility, and the term e−ηtτ ensures that the

implied volatility is decreasingly volatile as τ increases. mt, wt and ηt are stochastic processes

independent of the implied volatilities, and independent ofK and τ . Wiener processesWt and

Zt are correlated through stochastic process ρt. Carr and Wu (2016) propose that in order

to prevent dynamic arbitrage, it is required that as a function of relative strike k = ln(K/St)

and τ , the implied variance surface σ2
t (k, τ) must satisfy the following quadratic equation:

1/4e−2ηtτw2
t τ

2σ4
t +

(
1− 2e−ηtτmtτ − e−ηtτwtρt

√
vtτ

)
σ2
t

−
(
vt + 2e−ηtτwtρt

√
vtk + e−2ηtτw2

t k
2
)
= 0.

(13)

Equation (13) shows that the constraint does not depend on the dynamics between the

processes (vt,mt, wt, ηt, ρt); these are left unspecified. Therefore, the implied volatility surface

on a given day t can be fitted by treating the levels of these processes as parameters.

Consequently, the model-implied volatility is given by σ2
CW (θt, k, τ), with θt = (vt,mt, wt, ηt, ρt).

For a cross-section of n options on day t with Black-Scholes implied volatilities σi,t, relative
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strike ki,t and times to maturity τi,t, θt is estimated by minimizing the next equation through

nonlinear least squares:2

θ̂t = argmin
θt

n∑
i=1

[
1/4e−2ηtτi,tw2

t τ
2
i,tσ

4
i,t +

(
1− 2e−ηtτi,tmtτi,t − e−ηtτi,twtρt

√
vtτi,t

)
σ2
i,t

−
(
vt + 2e−ηtτi,twtρt

√
vtki,t + e−2ηtτi,tw2

t k
2
i,t

)]2
.

(14)

Using the estimated parameters θ̂t as input, σ
2
CW (θ̂t, k, τ) is given by the value that satisfies

equation (13).

3 Nonparametric Correction of Model-Implied Estimate

A fair amount of research has been conducted showing the theoretical advantages of a non-

parametric approach that is guided by a parametric pilot estimate, for example by Glad

(1998), Y. Fan and Ullah (1999), and J. Fan et al. (2009). This inspired Almeida et al.

(2022) to develop a procedure implementing this type of semi-parametric approach as a

means to predict implied volatility surfaces. In adopting their proposed two-step method, I

consider a nonparametric correction of the fitted parametric option pricing models.

First, given a cross-sectional set of i = 1, 2, ..., n options on a particular day t, I fit

the implied volatility surface σ(mi,t, τi,t) using one of the four parametric models mentioned

earlier, obtaining σ̂p(mi,t, τi,t). Then, the model-implied pricing errors are given by:

ϵ̂p(mi,t, τi,t) = σ(mi,t, τi,t)− σ̂p(mi,t, τi,t). (15)

Using a feedforward neural network, the pricing error surface ϵp(m, τ) is approximated by

the function f̂(m, τ) obtained through the following minimization:

min
f

1

n

n∑
i=1

[ϵ̂p(mi,t, τi,t)− f(mi,t, τi,t)]
2 . (16)

Subsequently, the corrected implied volatility surface provided by the method proposed by

Almeida et al. (2022), is computed as: σ̂p(mi,t, τi,t) + f̂(mi,t, τi,t).

2The minimization in equation (14) is performed with the use of MATLAB function “fmincon”. For

further documentation, see https://nl.mathworks.com/help/optim/ug/fmincon.html.

G. C. Visser 9



Option Pricing Boosted by Machine Learning Techniques

This two-step procedure is a generalization of a direct nonparametric fit of the implied

volatility surface. This is explained by the fact that the Black-Scholes model predicts constant

implied volatility, which means that this model does not provide any information about

the curvature of the implied volatility surface. Correcting it is thus equivalent to a direct

nonparametric fitting. This provides a motivation for this method, as any model p that does

provide information about the shape of the implied volatility surface, should have a pricing

error surface ϵp(m, τ) that is relatively flat compared to that of the Black-Scholes model. As

a consequence, such a model should be easier to estimate nonparametrically.

3.1 Feedforward Neural Networks and Their Implementation

Hornik et al. (1989) have shown that any Borel measurable function can be approximated

with arbitrary precision using a feedforward neural network with even a single hidden layer,

arbitrary Sigmoid activation functions and a linear output layer. This is called the “universal

approximation” property. In other words, (multilayer) feedforward neural networks can be

seen as a class of universal approximators.

Building on this fact, Rolnick and Tegmark (2017) show that natural classes of mul-

tivariate polynomials can be approximated more efficiently using deeper neural networks.

Moreover, feedforward neural networks have been researched extensively within finance be-

cause of their ability to model nonlinear relations nonparametrically, for example by Malliaris

and Salchenberger (1993) and Garcia and Gençay (2000). Gu et al. (2020) show that, per-

taining to prediction within the field of finance, feedforward neural networks have a good

performance relative to other machine learning techniques. All the aforementioned literature

suggests that feedforward neural networks are a good option for performing the nonparamet-

ric corrections described above. In the rest of this section, I describe the workings of such a

network and I discuss its implementation.

The idea of a feedforward neural network is inspired by the workings of the brain and

neural system. They perform a mapping of the inputs into outputs with signals flowing

in one direction only, and comprise several layers. When denoting the vector containing

the explanatory variables moneyness and time to maturity for option i on day t as xi,t =

(mi,t, τi,t)
′ ∈ R2, the neural network model f : R2 → R is given by the following iterative

G. C. Visser 10
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definition:

zl
dl×1

= h( Al−1
dl×dl−1

zl−1
dl−1×1

+ bl−1
dl×1

), for l = 1, . . . , L,

f(xi,t)
1×1

= AL
1×dL

zL
dL×1

+ bL
1×1

.
(17)

The first and last layers are called the input and output layer, respectively. In between these

is an arbitrary number of hidden layers L, with each hidden layer containing a certain number

of neurons dl in vector zl. For layer l = 1, the proceeding layer l−1 is the input layer 0, with

z0 = xi,t and d0 = 2. In each layer, a nonlinear activation function h : Rdl → Rdl is applied

to the linear combination Al−1zl−1 +bl−1 of all neurons from the previous layer, where Al−1

is the transformation matrix and bl−1 the intercept vector. The parameters {Al,bl}Ll=0 of

this linear combination are estimated when training the network on the data.

Several decisions have to be made regarding the implementation of the feedforward neural

network - such as which activation function is to be used, the number of hidden layers called

the network depth, as well as the number of neurons in each layer. Following Almeida et al.

(2022) and Gu et al. (2020), I use a set of five different network structures with the network

depth ranging from one to five. The amount of neurons is decreasing in every layer, following

the geometric pyramid rule, as proposed by Masters (1993). This allows for the assessment

of the tradeoff of network depth. Concretely, the neural networks one to five (NN1-NN5) are

composed of L = 1, 2, 3, 4, 5 hidden layers, respectively. When present in a particular network,

the hidden layers contain di = 32, 16, 8, 4, 2 neurons for layer i = 1, 2, 3, 4, 5, respectively.

With respect to the choice of nonlinear activation function, the sigmoid function is selected

following Almeida et al. (2022). This is a commonly used option and is given by:

h(x) =
1

1 + e−x
. (18)

The neural network parameters are estimated by performing the minimization in equation

(16). This is done using the Levenberg-Marquardt algorithm, which makes use of both

the method of gradient descent and the Gauss-Newton method. In my choice of algorithm, I

deviate from Almeida et al. (2022), as the Levenberg-Marquardt algorithm exhibited superior

performance over the scaled conjugate gradient algorithm of Møller (1993). The results

produced by the use of the latter are omitted for the sake of brevity and to avoid redundancy.
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The results from this procedure should be seen as a “benchmark” for this two-step cor-

rection, as it is likely possible to iterate over the different choices for the options described

above and obtain superior results in terms of performance.

4 S&P 500 Option Data

Following in the footsteps of Almeida et al. (2022), I consider data on European-style S&P

500 index options that were traded at the Chicago Board Options Exchange (CBOE) between

January 4, 2016, and June 28, 2019. Almeida et al. (2022) consider this data specifically, on

account of the fact that this type of option generally has the highest trade volume and healthy

liquidity. The data is obtained from OptionMetrics and is preprocessed in the following

manner. Every observation that violates the standard non-arbitrage conditions is deleted, as

well as every observation that either has a price lower than $0.125, or that has zero volume.

Additionally, I compute the option closing price for each remaining observation as the average

of the best closing bid price and closing ask price. I determine the time to maturity for every

observation - with consideration of the question whether an option is settled at the market

open or market close - and I compute the dividend yield through the put-call parity for every

day and available maturity, using the pair of put and call options closest to at-the-money. I

opt for this approach, as the dividend yield data provided by OptionMetrics is of poor quality.

When no such at-the-money pair is available, I drop the corresponding observations from the

dataset. Data on the underlying asset, the S&P 500 index, is obtained from Bloomberg, and

the 3-month Treasury bill rate serves as a proxy for the risk-free rate. The latter is obtained

from the Federal Reserve Economic Data (FRED) database of the Federal Reserve Bank of

St. Louis. This allows for the extraction of the observed implied volatilities corresponding

to each observation by means of inverting the Black-Scholes formula.

I consider options whose moneyness, as defined in Section 2.2, is contained in the interval

[0.80, 1.60], and that have a time to maturity between 20 and 240 calendar days. As in-the-

money options, compared to at-the-money or out-of-the-money options, are very infrequently

traded, their prices are unreliable (Aı̈t-Sahalia & Lo, 1998). For that reason, it is common

practice to exclude them from the dataset. More motivation for this custom is grounded on
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the fact that in-the-money options can, in theory, be ignored without any loss of information

because of the put-call-parity.

As the observed implied volatility surface is not flat across moneyness and maturity, as

discussed in Section 2.1, the observations are ordered in several different categories. Regard-

ing time to maturity, the options are either labeled short-term (20 to 60 days until expira-

tion) or long-term (61 to 240 days until expiration). The options have also been ordered

with respect to moneyness, with each observation falling into one of five categories defined

by a certain moneyness-interval: deep out-of-the-money calls (DOTMC) with moneyness

mi,t ∈ [0.80, 0.90), out-of-the-money calls (OTMC) with mi,t ∈ [0.90, 0.97), at-the-money op-

tions (ATM) with mi,t ∈ [0.97, 1.03), out-of-the-money puts (OTMP) with mi,t ∈ [1.03, 1.10),

and deep out-of-the-money puts (DOTMP) with mi,t ∈ [1.10, 1.60]. The data preparation

leads to a final sample containing 1,196,437 observations. The option chain on the average

trading day consists of 1363 options.

This is a slightly smaller dataset than the one used by Almeida et al. (2022), due to the

difference in data preparation. An example is my decision to drop observations where the

dividend yield could not be extracted, whereas the aforementioned paper uses OptionMetrics

dividend yield data. This causes the results of the performed exercises to differ. However,

the interpretation of the results remains the same, as the extra observations in the dataset

of Almeida et al. (2022) are scattered across the whole spectrum of moneyness and time to

maturity.

Table 4.1 presents summary statistics of the option data used for my research. The

number of options in each category is listed, as well as their average implied volatility and

standard deviation. Options that qualify for the short-term category make up 67.59% of

the dataset, while categories DOTMC and OTMC contain the fewest observations. The

statistics provide evidence for the misspecification of the Black-Scholes model. As expected,

the volatility smile is present in the data, represented by the implied volatilities decreasing

over moneyness from DOTMC to OTMC, after which they increase again. This characteristic

of the data is most apparent for the short-term options. Variances of the implied volatilities

are smallest for DOTMC, and largest for DOTMP, regardless of their category concerning

time to maturity.
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Table 4.1: Summary statistics of S&P 500 implied volatility data.

Number Mean IV Std. dev.

Time to maturity Short Long Short Long Short Long

Moneyness

[0.80, 0.90) 8,617 13,643 16.23 12.45 2.92 2.40

[0.90, 0.97) 127,659 65,828 11.06 10.86 3.18 2.70

[0.97, 1.03) 234,293 78,094 11.62 13.10 3.93 3.29

[1.03, 1.10) 209,073 73,511 17.51 17.15 3.80 3.05

[1.10, 1.60] 229,070 156,649 29.43 25.98 8.28 5.46

Total 808,712 387,725 18.15 18.67 9.26 7.58

Note. Table 4.1 presents statistics summarizing the implied volatility data of the S&P 500 index options.

The sample is taken over the period from January 4, 2016, to June 28, 2019. The options have been grouped

by moneyness:= (St/Ki,t) and time to maturity (short-term and long-term). The columns show, respectively,

the number of options, the average implied volatility over the options in %, and the standard deviation of

the implied volatilities in %.

5 Prediction in the Option Cross-Section Using Indi-

vidual Models

5.1 Implementation

In this section, I compare the performance of the individual models mentioned in Section

2, regarding the prediction of implied volatility in the option cross-section. The models are

estimated on a daily basis, which, in theory, is inconsistent with structural models like Black

and Scholes (1973) and Heston (1993), who assume that the model parameters are constant

over time. In practice, however, these models are implemented in a daily manner.

In order to reproduce the results of Almeida et al. (2022) in broad lines, the cross-sectional

prediction exercise is performed in the same way. This means that the exercise is split into
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two parts. For the first part, for each day t, the option data is split into training data and

test data, based on the strike prices. All options with a strike price divisible by 10 are used

as training data, while options for which this condition does not hold are branded test data.

Splitting the data this way, ensures that both the training set and test set contain options

over the whole range of moneyness. Approximately 60% of my dataset is classified as training

data by this procedure. The exercise simulates the scenario in which an investor observes

certain option prices on day t, and, using these observations, tries to correctly predict the

prices of unobserved options on the same day t. It is a same-day interpolation pricing exercise,

where the models are tested on their ability to capture the implied volatility surface.

The second exercise aims to analyze the models’ ability to learn from observed option

data on day t, and then predict option prices on day t+ h, with h ∈ {1, 5, 21} indicating the

number of business days predicted into the future. For each day t, the models are trained on

all available option data and tested on all the observations of day t + h. The pitfall here is

that models might overfit when trying to use all information available in the training set.

As the goal is to analyze the out-of-sample performance of the models in predicting the

implied volatility, the error metric is ideally expressed in terms of implied volatility as well.

Hence the roots of the mean squared errors of the implied volatility are used to compare the

prediction errors, denoted by “IVRMSE”.

Each parametric model described in Section 2 is first tested individually. Then, nonpara-

metric corrections are performed as described in Section 3. The performances are compared

between models, both before and after the different corrections are performed by the array

of neural networks. These corrections are based on the options’ moneyness and time to ma-

turity data. The comparisons provide an indication of neural networks’ ability to correct the

parametric models. In addition, I look at the tradeoff of network depth.

5.2 Empirical Results

Table 5.1 shows that for every exercise, the Heston model has the best performance amongst

the parametric models. Moreover, any of the five neural network structures correcting any

of the four parametric models, increases the performance in terms of the IVRMSE for all

four prediction exercises. As expected, the decrease in IVRMSE is most prominent for the
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corrected Black-Scholes predictions. Generally, the larger the existing prediction error, the

more significant the improvement. As a result, the IVRMSEs of the corrected predictions

are of the same magnitude.

Table 5.1: Results of the cross-sectional prediction exercises.

∼ NN1 NN2 NN3 NN4 NN5 ∼ NN1 NN2 NN3 NN4 NN5

Panel A: Same-day Panel B: 1 day ahead

BS 7.49 0.31 0.26 0.25 0.30 0.76 8.13 0.96 0.89 0.91 0.88 0.91

AHBS 1.32 0.24 0.20 0.18 0.19 0.20 1.74 0.85 0.81 0.79 0.79 0.83

Heston 0.88 0.27 0.21 0.19 0.19 0.20 1.23 0.80 0.76 0.76 0.74 0.75

CW 1.55 0.24 0.20 0.19 0.19 0.20 1.86 0.84 0.81 0.80 0.81 0.82

Panel C: 5 days ahead Panel D: 21 days ahead

BS 8.23 1.68 1.63 1.61 1.63 1.63 8.44 2.64 2.48 2.47 2.48 2.46

AHBS 2.23 1.58 1.53 1.52 1.53 1.55 2.90 2.46 2.35 2.32 2.32 2.36

Heston 1.76 1.51 1.47 1.47 1.47 1.46 2.45 2.35 2.29 2.28 2.26 2.26

CW 2.31 1.55 1.50 1.49 1.51 1.51 2.96 2.42 2.34 2.30 2.30 2.32

Note. Table 5.1 shows the IVRMSE in % of the described models for the cross-sectional prediction exercises.

The different panels present the same-day and 1, 5 and 21-day ahead exercises, and the columns show the

neural network structure used for the correction of the different parametric models as indicated by the rows -

“∼” corresponding to no correction. The bold numbers indicate which model performed best in that exercise.

The sample ranges from January 4, 2016, to June 28, 2019.

The improvement of the neural network correction over the parametric models decreases

with the forecast horizon. For the ad-hoc Black-Scholes model for example, the improvement

of the predictions by NN3 is 633%, 120%, 47% and 25% for Panel A, B, C and D, respectively.

This is explained by the fact that the implied volatility surface changes as time passes -

meaning that the neural networks are less capable of correctly predicting it based on current

data.

Furthermore, the table shows that correcting a parametric model that already incorpo-

rates the features of the implied volatility surface to some extent, prevails over directly fitting

the surface using neural networks. This is borne out by the fact that any Black-Scholes cor-
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rection is outperformed by the corrections of each of the other three models. This result is

robust for each neural network and each forecast horizon. Taken in conjunction with the

given that correcting the constant Black-Scholes predictions is equivalent to directly fitting

the neural network to the implied volatility surface, this proves the statement.

Gu et al. (2020) find that when forecasting stock prices, the peak ability of neural net-

works is achieved at a network depth of three hidden layers. When more layers are added, the

performance usually deteriorates. This paper replicates this result in the option pricing set-

ting. Table 5.1 shows that for almost every parametric model and panel, the best performing

method is amongst the corrections applied by the neural networks with three or four hidden

layers. The differences in IVRMSEs between these two options are minimal in the majority

of the cases. In general, neural networks with only one or two hidden layers cannot properly

capture the nonlinear dynamics of the implied volatility surface, whereas neural networks

with five hidden layers tend to overfit. Both these instances are naturally detrimental to the

performance.

6 Other Nonparametric Corrections

In general, little research has been conducted as to what the most appropriate nonparametric

or semi-parametric method is for fitting and predicting the implied volatility surface. Almeida

et al. (2022) opt to focus solely on feedforward neural networks for nonparametric corrections.

As is confirmed in Section 5, these corrections outperform the parametric models as well as a

neural network fitted directly to the implied volatility surface. This begs the question whether

other machine learning techniques can perform equally well, or even better, in fitting and

predicting the implied volatility surface - directly or by correcting parametric option pricing

models. Although existing literature bears out that a parametrically guided nonparametric

approach has an advantage over a direct nonparametric model, so far no research has been

conducted comparing these techniques in the setting of the implied volatility surface. In this

section, I test and analyze the performance of two other nonparametric methods in predicting

the option cross-section.

In order to compare these performances to those of the parametric models and the neural
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network corrections, I make use of the model confidence set (MCS) introduced by Hansen

et al. (2011). They define the MCS as a subset of models M̂∗, that has been composed in

such a manner that it contains the best model(s) from the original set M0 comprising all

models, with a given level of confidence. It is a concept similar to the confidence interval of

a parameter, except constructed for models.

The MCS procedure repeatedly uses an equivalence test followed by an elimination rule.

Initially setting M = M0, it compares all models in this set by means of the equivalence

test using a user-identified criterion. If the equivalence test is rejected, there is a significant

difference between the quality of at least two models in M, and the elimination rule is used

to remove the poorest-performing model from it. This is repeated until the equivalence test

is accepted, meaning that there is no significant difference in the specified criterion between

the remaining models - i.e., they are “equally good”. These models now constitute the model

confidence set M̂∗.

For the purpose of this paper, the criterion to compare the different methods predicting

the implied volatility surface is their time series of IVRMSEs calculated on a daily basis.3

Hansen et al. (2005) propose several test statistics for the equivalence test. I opt for the most

commonly used alternative, defined by TR = maxi,j∈M|ti,j|, where ti,j is the t-statistic for

the difference in losses between model i and j. The distribution of TR is non-standard and

estimated using bootstrap methods. When TR = 0 is rejected at an α-percent significance

level, the implemented elimination rule ensures that the poor-performing model causing the

largest loss difference is removed from the remaining models. The more informative the

dataset is, the smaller the number of models in M̂∗ will be, as the MCS procedure will be

better able to distinguish between the different models.

I set α = 0.05, which means that the best model(s) will be in M̂∗ with a probability of

1 − α = 95%, denoted by M̂∗
95%. The MCS procedure also provides p-values for all models

in M0. The p-value p̂i corresponding to model i ∈ M0 represents the threshold at which

3I determine the model confidence sets and compute the corresponding p-values with the use of the

Oxford MFE Toolbox provided by Kevin Sheppard. Following Hansen et al. (2011), I set the block length

equal to 2. The number of bootstrap replications is equal to 1,000,000. For further documentation, see

https://www.kevinsheppard.com/code/matlab/mfe-toolbox/.
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i ∈ M̂∗
1−α if and only if p̂i ≥ α. The smaller the p-value of a certain model, the less likely it

is to be (one of) the best model(s) in M0.

6.1 Random Forest

A well-known method within the machine learning literature is the decision tree. A decision

tree is a nonparametric supervised learning algorithm suited for both classification and re-

gression problems. Starting from the root node, it repeatedly splits the training data into

smaller subsets at each decision node, based on a splitting criterion for one or more of the

input variables. This results in a tree with leaf nodes that indicate a class or numerical

output. This way, a decision tree is grown that is able to provide a classification or numerical

prediction for the test data.

The popular random forest (RF) algorithm proposed by Breiman (2001) is a procedure

combining predictions of several decision trees in order to get more accurate results. By

using multiple trees, the random forest is less prone to overfit the data. In the case of a

classification problem, the output of the random forest is the class that is selected by the

largest number of trees. When used in a regression context, the random forest returns the

average of the individual decision trees. The latter is the case with the correction of the

parametric models.

In order to get an indication of the ability of a random forest to correct the parametric

implied volatility predictions, I implement the method with its default parameters in the

cross-sectional prediction exercise.4 The algorithm randomly samples a fraction of the train-

ing data, on which it trains a regression tree. The default value of this fraction is equal to

one, meaning that each tree draws a bootstrap sample from the input data that is the same

size as the input dataset. The sampling is done with replacement, which means that each

tree is grown using the same number but not the same set of observations. Just like the feed-

forward neural network, the random forest (and thus each decision tree) uses the available

cross-sectional moneyness and time to maturity data of the options in the training sample

4The random forests are implemented with the use of MATLAB function “Treebagger”. All

parameters are set equal to their MATLAB default values. For further documentation, see

https://nl.mathworks.com/help/stats/treebagger.html.
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as predictors, and the corresponding errors of the parametric model as the response variable.

The random forest algorithm grows 500 trees, where each split within a tree is based on a

single predictor variable. The forest can now provide a predicted error for each option in the

test set by averaging the 500 predictions of the individual trees that result when these are

presented with the moneyness and time to maturity values of said options.

6.2 Support Vector Machine

Another established supervised learning algorithm is the support vector machine (SVM). Like

the random forest, it is suited for classification as well as regression purposes. In a regression

setting, the method is called support vector regression. It tries to fit a hyperplane that is

as flat as possible to higher dimensional training data, in such a manner that the training

points lie within a distance of ϵ > 0 of the plane. This ϵ is called the margin. The data

points closest to the hyperplane on either side are called support vectors.

As I want to implement the support vector machine to obtain an indication of its per-

formance when correcting the parametric models, I use its default parameters.5 This means

that I opt for a linear kernel resulting in a straight hyperplane, and set ϵ = iqr(Y )/13.49,

where iqr(Y ) is the interquartile range of the response variable, i.e., the difference between

its 75th and 25th percentiles.6 In my three-dimensional case, the predictor variables are once

again the moneyness and time to maturity of each option in the training set, and the errors

of the parametric models constitute the response variable.

6.3 Empirical Results

I repeat the two cross-sectional prediction exercises of Section 5. This time, however, the

corrections of the four parametric models are obtained using the random forest and support

vector machine algorithms. Table 6.1 shows the results of these two exercises, comparing

the new corrections with the parametric models as well as their neural network corrections

5The support vector machines are fitted using MATLAB function “fitrsvm” and its default parameter

values. For further documentation, see https://nl.mathworks.com/help/stats/fitrsvm.html.
6This value for ϵ is an estimate of one-tenth of the response variable’s standard deviation.
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using three and four hidden layers. The bold underlined numbers denoted with an asterisk

indicate which models are included in M̂∗
95% for that exercise.

It is evident from Table 6.1 that, like with the neural network corrections, for every

exercise, the random forest correcting any of the four parametric models improves the per-

formance in terms of the IVRMSE. As expected, the decrease in IVRMSE is again the largest

for the corrected Black-Scholes predictions. Also similar to the results of the neural network

corrections is the fact that the improvement of the random forest corrections over the para-

metric models decreases with the forecast horizon. For the ad-hoc Black-Scholes model, the

improvement is 180%, 77%, 37% and 21% for the same-day, and 1-, 5- and 21-day ahead

exercises, respectively.

The results of the support vector machine corrections, however, are less exciting. Even

though the corrections of the Black-Scholes model result in significant improvements in terms

of the IVRMSEs, they are nowhere near those of the neural networks or the random forests.

Furthermore, when looking at the corrections for the other three models, the support vector

machine struggles to make an impact, often decreasing the IVRMSE only slightly and, in

some cases, even increasing it.

Comparing the same-day results of the two new nonparametric corrections to those of

the four parametric models and different deployed neural networks, shows that the latter

dominate in terms of performance. All MCS p-values of the parametric models, random

forest and support vector machine corrections are equal to zero. This means that none of

them will be included in M̂∗
1−α, regardless of the significance level. At an α = 5% level, only

the ad-hoc Black-Scholes and Carr and Wu corrections by the neural network comprising

three hidden layers are included.
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Table 6.1: MCS for parametric models and random forest, support vector machine and neural

network corrections predicting in the option cross-section.

Same day 1 day ahead 5 days ahead 21 days ahead

IVRMSE pMCS IVRMSE pMCS IVRMSE pMCS IVRMSE pMCS

BS 7.487 0 8.126 0 8.226 0 8.439 0

AHBS 1.318 0 1.742 0 2.234 0 2.899 0

Heston 0.876 0 1.228 0 1.764 0 2.446 0

CW 1.554 0 1.863 0 2.310 0 2.956 0

BS-RF 0.901 0 1.400 0 1.924 0 2.619 0

AHBS-RF 0.470 0 0.984 0 1.631 0 2.389 0

Heston-RF 0.265 0 0.780 0 1.472 0.4631* 2.258 1*

CW-RF 0.402 0 0.921 0 1.573 0 2.35 0.0002

BS-SVM 2.870 0 2.714 0 3.070 0 3.614 0

AHBS-SVM 1.308 0 1.775 0 2.266 0 2.928 0

Heston-SVM 0.889 0 1.228 0 1.768 0 2.451 0

CW-SVM 1.390 0 1.827 0 2.293 0 2.959 0

BS-NN3 0.249 0 0.913 0 1.606 0 2.468 0

AHBS-NN3 0.181 1* 0.794 0 1.517 0.0002 2.322 0.0053

Heston-NN3 0.191 0.0077 0.759 0.0246 1.468 0.5637* 2.278 0.0350

CW-NN3 0.186 0.0768* 0.800 0 1.494 0.0182 2.304 0.0350

BS-NN4 0.296 0 0.880 0 1.629 2e-06 2.482 0

AHBS-NN4 0.189 0.0454 0.795 0 1.531 2e-06 2.322 0.0016

Heston-NN4 0.195 0.0005 0.745 1* 1.466 1* 2.258 0.9992*

CW-NN4 0.189 0.0454 0.806 0 1.505 0.0027 2.301 0.0332

Note. Table 6.1 shows the IVRMSE in % of each model for the cross-sectional prediction exercises, as well as

the MCS p-values. The columns indicate the same-day and 1, 5 and 21-day ahead exercises, with the rows

referring to the parametric option pricing model and its correction, if applicable. The bold numbers indicate

which models are included in M̂∗
95%. The sample ranges from January 4, 2016, to June 28, 2019.
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The longer the forecast horizon becomes, the closer the performances of the random

forests come to those of the neural networks. When predicting one day ahead, the only

model included in the MCS is the neural network Heston correction using four hidden layers

(Heston-NN4). Five days ahead, both neural network Heston corrections are included, as

well as the random forest correction of the Heston model. The latter decreases the IVRMSE

almost to the level of the Heston-NN3 model. Moreover, for the exercise predicting 21 days

ahead, the Heston-RF correction is even the best-performing amongst all models in M0, with

a minimal advantage in terms of IVRMSE over Heston-NN4, which is included in M̂∗
95% as

well.

These results indicate that as the implied volatility surface changes over time, the random

forest correction models better identify the predictive signal in the data for longer horizons.

The neural network corrections, on the other hand, suffer more from overfitting the longer

the forecast horizon becomes.

7 Combined Forecasts

Almeida et al. (2022) state that incorporating neural networks as a correction of parametric

models can significantly improve performance when predicting the implied volatility surface.

This is shown again in previous sections. It is interesting to research what other ways neural

networks are able to perform this task. Clemen (1989) reviews the literature regarding the

combination of forecasts, and concludes that combining multiple individual forecasts can

lead to significant improvements in forecast accuracy. This finding is robust over a wide

range of forecasting targets. In this section, I analyze the performance of several methods of

combining forecasts in predicting the implied volatility surface.

7.1 Simple and Weighted Average

Makridakis et al. (1982) show that a simple average of forecasts from six different models

performs very well for multiple forecast targets, and generally better than each of the indi-

vidual models. It even outperforms a weighted average of the forecasts based on the sample

covariance matrix of fitting errors. This robustness invites this simple average to be used as
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a benchmark for combining forecasts. I create this benchmark by taking, for each option in

the dataset, the simple average (SA) of the four predictions of the parametric models.

As Section 5 has shown that the performance of the Black-Scholes model in terms of

the IVRMSE is generally significantly worse than that of the other three models, it is to

be expected that this will harm the performance of the simple average as well. Stock and

Watson (1998) look at a method of forecast pooling that accounts for the difference in the

performance of the individual models. They construct the weights in such a manner that

they are inversely proportional to the out-of-sample mean squared error of the respective

forecast, thus realizing a higher weight for a model that does better. In this paper’s setting,

incorporating a similar method would deal with at least part of the problem of the poor

performance of the Black-Scholes model. Therefore, for the cross-sectional exercise, I include

and analyze a weighted average model (WA) where the weights of the four models are inversely

proportional to their in-sample IVRMSEs.

7.2 Neural Network Combinations

Neural networks are able to combine forecasts in an efficient manner, often improving over the

individual forecasts. Donaldson and Kamstra (1996) combine forecasts of several countries’

stock market volatility using neural networks. They find that these combined forecasts

generally dominate traditional linear combinations of forecasts. They attribute this success to

the ability of neural networks to account for the often complex and hidden nonlinear relations

between the predictor variables (in their case the individual forecasts) and the target variable.

I investigate the extent to which neural network combinations can outperform all previously

mentioned models, by including four different methods relying on a neural network consisting

of again three hidden layers. The first neural network (4M) makes predictions based on the

predictor variables that are composed of the four parametric models’ forecasts. It is trained

on the individual predictions for the options within the training set, with the respective

implied volatilities comprising the target variable. Including the cross-sectional variables -

moneyness and time to maturity - allows the neural network to differentiate between options

based on these values. For example, the predictions of the Heston model might, on average,

be better for options with a longer time to maturity. Three more neural network methods are
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implemented, similar to 4M, but including moneyness as an explanatory variable besides the

individual forecasts (4M-Moneyness), including time to maturity (4M-TtM), and including

both (4M-Moneyness-TtM). Section 7.3 compares these combined forecasts with those of

the simple and weighted averages, the individual parametric forecasts, and again the neural

network corrections with a network depth of three and four hidden layers.

7.3 Empirical Results

The results in Table 7.1 help answer the question of whether combining forecasts can benefit

the prediction of the implied volatility surface. For every cross-sectional prediction exercise,

the simple average is only able to outperform Black-Scholes amongst the parametric models.

By accounting for the sizeable in-sample prediction error of the Black-Scholes model caused by

its constant volatility prediction - thus lowering its weight while assigning the largest weight

to the parametric prediction with the lowest in-sample IVRMSE - the weighted average

method is able to substantially lower the IVRMSE further. It outperforms three of the four

parametric models for every prediction horizon, with only the Heston model having a lower

IVRMSE. Neither of the two averaging methods comes close to the performance of the neural

network corrections or combinations.

The neural networks combining the individual predictions perform very well in the same-

day exercise, both with and without including moneyness and time to maturity as explanatory

variables. 4M-TtM performs best, with 4M-Moneyness-TtM coming in a close second. These

two models are the only ones included in the model confidence set M̂∗
95%, with the MCS p-

values of all other models equal to zero. This means that the best model(s) are amongst

these two, with very high certainty. The results show that including the moneyness and time

to maturity of the options as explanatory variables besides the individual forecasts, helps the

neural network predict their implied volatility more accurately.
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Table 7.1: MCS for parametric models, simple and weighted averages, and neural network combi-

nations and corrections predicting in the option cross-section.

Same day 1 day ahead 5 days ahead 21 days ahead

IVRMSE pMCS IVRMSE pMCS IVRMSE pMCS IVRMSE pMCS

BS 7.487 0 8.126 0 8.226 0 8.439 0

AHBS 1.318 0 1.742 0 2.234 0 2.899 0

Heston 0.876 0 1.228 0 1.764 0 2.446 0

CW 1.554 0 1.863 0 2.310 0 2.956 0

SA 2.225 0 2.498 0 2.831 0 3.362 0

WA 0.936 0 1.317 0 1.838 0 2.521 0

4M 0.293 0 0.813 2e-06 1.586 1.4e-05 2.423 1e-05

4M-Moneyness 0.207 0 0.766 0.0303 1.539 0.0041 2.345 0.0368

4M-TtM 0.144 1* 0.805 0.0015 1.564 1.4e-05 2.425 1e-05

4M-Moneyness-TtM 0.145 0.7016* 0.793 0.0303 1.519 0.0009 2.353 0.0031

BS-NN3 0.249 0 0.913 2e-06 1.606 1e-06 2.468 0

AHBS-NN3 0.181 0 0.794 9.9e-05 1.517 0.0005 2.322 0.0070

Heston-NN3 0.191 0 0.759 0.0303 1.468 0.5637* 2.278 0.0368

CW-NN3 0.186 0 0.800 2e-06 1.494 0.0101 2.304 0.0368

BS-NN4 0.296 0 0.880 1e-06 1.629 8e-06 2.482 0

AHBS-NN4 0.189 0 0.795 2e-06 1.531 1.4e-05 2.322 0.0031

Heston-NN4 0.195 0 0.745 1* 1.466 1* 2.258 1*

CW-NN4 0.189 0 0.806 2e-06 1.505 0.0041 2.301 0.0368

Note. Table 7.1 shows the IVRMSE in % of each model - as indicated by the rows - for the cross-sectional

prediction exercises, as well as the MCS p-values. The columns indicate the same-day and 1, 5 and 21-day

ahead exercises. The bold numbers indicate which models are included in M̂∗
95%. The sample ranges from

January 4, 2016, to June 28, 2019.

This result is replicated in the exercise where the models make predictions about the

future. Including one or both of the cross-sectional variables always leads to a decrease of

the IVRMSE relative to 4M, except for when predicting 21 days ahead, where 4M-TtM has a
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slightly higher IVRMSE than 4M. For none of the three forecast horizons, the neural network

combinations are included in the MCS. They consistently outperform the four parametric

models and the two methods of averaging them, attested by their MCS p-values. However,

they are dominated by the neural network corrections of the Heston model - Heston-NN3 and

Heston-NN4. The latter is the best-performing model for all three horizons, being the sole

model in the MCS when predicting one day and 21 days ahead. For the predictions made

five days into the future, Heston-NN3 is included in M̂∗
95% as well.

The neural network combinations perform better than the neural network corrections

when predicting within the same day, whereas this is the other way around for predicting

the implied volatility of future days. This indicates that the neural network is better able

to extract information about the changing implied volatility surface as time passes, when

correcting a parametric model. The optimal weights combining the individual forecasts

change to a larger extent than the errors of the parametric models, as the implied volatility

surface changes over time.

8 Prediction in the Option Panel

In the exercises discussed thus far, the four parametric models are estimated on a daily basis.

As mentioned before, this is in theory inconsistent with structural models like Black and

Scholes (1973) and Heston (1993), who assume that the model parameters are constant over

time. Therefore, I conduct a prediction exercise in the option panel (the sequence of implied

volatility surfaces), following a similar approach to Andersen et al. (2015). Almeida et al.

(2022) show that a neural network is able to correct the misspecification of the Heston model

significantly in the option panel. In this section, I investigate the extent to which a neural

network can achieve the same by combining individual forecasts.

Almeida et al. (2022) furthermore present evidence that it is beneficial to include time-

varying covariates such as the VIX index as explanatory variables in the neural network

correcting the Heston model. As machine learning techniques are able to accommodate high-

dimensional data, it is interesting to consider using multiple covariates in order to combine

the different forecasts. This provides an indication of whether certain models or techniques
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perform better in different states of the world. For example, some models could perform

better in times of high volatility. I use a feature importance measure to determine the

explanatory variables’ predictive value.

8.1 Implementation

In the option panel exercise, all implemented models are estimated and/or trained on the

whole training sample, which comprises the first two years of my data set, i.e., the option

data from January 4, 2016, until December 29, 2017. In order to reduce the computational

complexity, for each day t in the training sample, every alternate maturity is removed. This

results in a smaller sample size, while keeping the same range of maturities.7 The estimated

parameters are kept fixed over time. The time-varying parameters of the ad-hoc Black-

Scholes and Carr and Wu models make that they are designed to fit an implied volatility

surface on a given day rather than an option panel. These models are, however, included

in the prediction exercise in the option panel to serve as a reference for the performance of

the other models. Their parameters are assumed constant over time and estimated using

the whole training panel dataset. The out-of-sample predictions in the option panel are then

obtained analogously to Section 2, keeping the fixed parameters estimated in-sample and

using the available moneyness, time to maturity, and relative strike data of the options in

the test set.

Equation (6) in Section 2.3 shows that the Heston model contains the parameters Vt, κ,

v, σv and ρ. Vt is a state variable representing the spot variance for day t with t = 1, 2, ..., T ,

while the rest are parameters that are fixed over time. Following Almeida et al. (2022), I set

Vt equal to the daily observed option-implied measure of spot volatility of Todorov (2019)

that is available on the website owned by Viktor Todorov and Torben Andersen.8 The other

parameters are estimated as described in Section 2.3, except this time over the whole training

panel.

Fitting the option panel by means of the neural network correction of the Heston model

7The performances of the models are compared with those of Almeida et al. (2022), confirming that this

does not significantly change the results.
8https://tailindex.com/index.html.
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is analogous to the method in Section 3. The approximation of the model-implied pricing

errors now becomes:

min
f

1

T

T∑
t=1

1

nt

nt∑
j=1

[ϵ̂(t,mj,t, τj,t)− f(mj,t, τj,t)]
2 , (19)

with j = 1, 2, ..., nt moneyness and times to maturity for each day t, and the corrected

predictions given by σ̂(t,mj,t, τj,t) + f̂(mj,t, τj,t).

When using the neural network to combine the predictions, the neural network is directly

fitted on the option panel by the minimization:

min
f

1

T

T∑
t=1

1

nt

nt∑
j=1

[σ(t,mj,t, τj,t)− f(xt)]
2 , (20)

with xt representing (a combination of) the individual forecasts, moneyness, times to maturity

and time-varying covariates, and where {σ(t,mj,t, τj,t), j = 1, 2, ..., nt}Tt=1 is the observed in-

sample option panel.

Given the previous results, all neural networks used in this prediction exercise contain

three hidden layers. Following Almeida et al. (2022), I consider a set of seven covariates

that are observed on a daily basis. As a proxy for market risk and sentiment, I use the

VIX index provided by the CBOE. Bollerslev et al. (2015) develop a method to capture

market jump risk. This method forms the basis for the Left Tail Volatility (LTV) and Left

Tail Probability (LTP) measures of Viktor Todorov and Torben Andersen, provided on their

website. The former estimates the expected volatility in returns that is caused by large

negative price jumps, and the latter the probability that the S&P 500 index will drop by at

least 10% in the next week. Like Almeida et al. (2022), I include macroeconomic measures

and measures of uncertainty as well. https://www.policyuncertainty.com/ provides me

with a measure of economic policy uncertainty (EPU) proposed by Baker et al. (2016), and

the Federal Reserve Bank of Philadelphia offers the business conditions index of Aruoba et al.

(2009) (ADS). Furthermore, I include the first differences of the term spread (TMS), defined

as the difference between the 10-year and 3-month Treasury rates, and the first differences of

the credit spread (CRS), defined by the difference between Moody’s Seasoned Baa Corporate

Bond yield and the 10-year Treasury yield.
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The models are evaluated on their ability to fit the option panel in two ways. The first

evaluation gives an indication of the pricing errors, by means of again the average IVRMSE

pooled over all days in the test sample, as well as the median IVRMSE. This second metric

accounts for the possibility of more significant errors causing very large daily IVRMSEs,

which drive high values of the average IVRMSE. The second way of evaluating the models

focuses on their ability to reproduce the dynamics of the implied volatility surface over time.

Andersen et al. (2015) state that the characteristics level, term structure, skew and skew term

structure summarize these dynamics. The level characteristic is a measure of the general level

of volatility and is calculated as the average implied volatility of short-term at-the-money

options.

The term structure characteristic (TS) indicates the slope of the term structure curve,

which shows the implied volatilities of options with the same strike price but different ma-

turities. A positive slope indicates that market participants expect the underlying asset

to become more volatile over time, and a negative slope indicates an expected decrease in

volatility. TS is calculated as the difference between the average implied volatility of long-

and short-dated at-the-money options.

The implied volatility skew refers to the fact that options with the same underlying

asset and expiration date still have different implied volatilities, depending on the strike

price. Usually, for index options, the implied volatilities of out-of-the-money puts exceed

the implied volatilities of out-of-the-money calls, a sign that investors perceive the risk to

the downside rather than the upside. I determine the skew characteristic by calculating the

difference between the average implied volatility of short-dated out-of-the-money put and

call options.

The skew term structure (skew TS) is a measure of the skew over time. Generally, the

skew of short-term options is steeper than that of those with a long-term expiration. An

explanation is that for short-term options, a trader knows whether an option is a downside

option or not. In contrast, for long-term options this is harder to determine as it is unknown

at what price the underlying asset will be trading in the future. Skew TS is determined as

the difference between long- and short-dated skew, where long-dated skew is computed in

the same manner as its short-term counterpart.
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In order to evaluate the ability of the implemented models to capture these salient char-

acteristics, I compute the root mean squared errors (RMSEs) over the whole sample between

the aforementioned characteristics that are implied by the data, and those that are implied

by the models. When calculating the RMSE, every error is squared before the averaging, so

a relatively high weight is assigned to larger errors. Therefore I calculate a second metric

for every model, the mean absolute error (MAE), which is more robust to bigger mistakes in

predictions and generally produces more interpretable values.

8.1.1 Feature Importance

I determine the impact that the different explanatory variables have by being included in the

neural networks combining the individual forecasts. To this end, I use a feature importance

measure congruent with Gu et al. (2020). The importance of a specific feature is determined

by including all time-varying covariates and individual forecasts as explanatory variables

in the neural network, and computing the IVRMSE of the consequent predicted implied

volatilities when the neural network is fitted to the option panel. The feature importance of

the variable is then defined as the increase in IVRMSE that follows from setting all values

of the feature equal to zero and, ceteris paribus, fitting the implied volatility panel again.

The lower the value of a feature’s importance is, the more negligible the feature itself is.

Naturally, a variable with a high predictive value has a higher feature importance.
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Figure 8.1: Prediction excercise in the option panel - Feature importance. This figure reports

the importance of each feature in the option panel prediction exercise when combined by the neural network.

The importance of a particular feature is defined as the increase in the out-of-sample IVRMSE (in %) that

follows from setting each value of that feature equal to zero while keeping all other feature values the same.

The in-sample period ranges from January 4, 2016, to December 29, 2017, and the out-of-sample period from

January 2, 2018, to June 28, 2019.

Figure 8.1 shows the feature importance per variable. The economic policy uncertainty

(EPU) and market risk (VIX) measures prove to be even more important than the forecasts

of the best-performing parametric model in the cross-sectional exercise, the Heston model.

This shows the significance of time-varying covariates in fitting the option panel. The Hes-

ton model’s implied volatility predictions have the highest feature importance amongst the

parametric models. All parametric models, excluding the Black-Scholes model, have a higher

feature importance than the options’ times to maturity and moneyness. A reason for this

might be that these three parametric models’ predictions already account for the moneyness

and times to maturity, leaving little need for two separate measures. The feature impor-

tances of EPU, TMS and ADS indicate that measures of uncertainty and macroeconomic

conditions can help with identifying the time-varying shape of the implied volatility surface.
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Concerning the EPU measure, its significance is in line with L. Liu and Zhang (2015). They

find that including EPU as a predictive variable significantly improves the ability of existing

models to forecast stock market volatility. The high feature importance of the VIX measure

is according to expectation, as it is widely regarded as the benchmark for market volatility.

It comes naturally that the feature importance of the Black-Scholes model’s predictions

is zero, as they are constant. The other negligible features are CRS, LTP and LTV. The last

two even have a negative feature importance, meaning that the IVRMSE is lower when these

features are set equal to zero. This indicates that separate measures of market jump risk do

not help with predicting the shape of the option panel, given all information enclosed in the

other features.

The feature importances in Figure 8.1 lead me to consider several different neural net-

works, besides the neural network correcting the Heston model. They are differentiated by

the explanatory variables that are included when fitting the option panel. The first network

only includes the individual forecasts of the parametric models (4M), the second includes the

cross-sectional variables too (4M-M-TtM), and the third incorporates, besides the individual

forecasts, all other features as well (4M-All). When iteratively adding the most important

feature to a network already containing the individual forecasts, the lowest average IVRMSE

is achieved by the network that has EPU and VIX included as explanatory variables (4M-

EPU-VIX).9

To assess the value added by the two most important time-varying covariates, they are

included in the last neural network containing the individual forecasts and cross-sectional

features as well (4M-M-TtM-EPU-VIX).

8.2 Empirical Results

Table 8.1 shows the results of the prediction exercise in the option panel. The Heston model

is the best amongst the parametric models in capturing the option panel’s dynamics, as it has

the lowest RMSE and MAE for every characteristic. In terms of IVRMSE, the simple average

and weighted average perform better than the BS and CW models. Of these two averaging

9The results of this iterative exercise are omitted for the sake of brevity, as only the best performing

network (4M-EPU-VIX) provides interesting comparisons and conclusions.
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methods, only the weighted average outperforms AHBS in terms of the average IVRMSE.

Both SA and WA fail to improve upon the individual Heston model’s results concerning the

mean and median IVRMSE. The weighted average does, however, improve the parametric

models’ ability to capture the salient characteristics of the implied volatility surface over time.

With the exception of the skew, WA has a lower RMSE and MAE for every characteristic

than the BS, AHBS and CW models, and can compete with the Heston model.

Table 8.1: Prediction in the option panel.

IVRMSE Level TS Skew Skew TS

Mean Median RMSE MAE RMSE MAE RMSE MAE RMSE MAE

BS 8.99 8.81 6.37 5.77 1.59 1.41 7.71 7.59 1.09 0.86

AHBS 3.53 2.43 3.84 3.01 1.24 1.05 1.35 1.08 1.40 1.19

Heston 2.24 2.04 2.71 2.11 0.94 0.75 1.22 0.90 0.80 0.62

CW 5.36 5.14 3.90 3.20 2.83 2.53 2.55 2.24 1.05 0.82

SA 3.74 3.48 3.43 2.89 0.88 0.62 2.66 2.38 0.72 0.57

WA 2.80 2.46 2.89 2.30 0.79 0.55 1.65 1.31 0.80 0.64

Heston-NN3 1.60 1.39 2.10 1.61 0.66 0.47 1.19 0.89 0.69 0.51

4M 1.82 1.65 1.25 0.87 1.34 1.05 1.35 1.02 1.02 0.81

4M-M-TtM 2.19 1.56 1.86 1.16 0.97 0.70 1.35 0.98 0.96 0.70

4M-M-TtM-EPU-VIX 1.77 1.15 1.81 0.66 0.59 0.38 1.25 0.77 0.61 0.42

4M-EPU-VIX 1.41 1.19 0.84 0.52 0.67 0.44 1.24 0.82 0.95 0.54

4M-All 4.23 3.02 3.57 1.49 1.31 0.68 3.08 1.53 1.95 1.03

Note. The first two columns of Table 8.1 show the average and median out-of-sample IVRMSE in % of the

described models for the prediction exercise. The others depict the RMSE and MAE over the whole sample

for the level, term structure, skew and skew term structure of the implied volatility surface (definitions

provided in this section). The bold numbers indicate which model performed best. The in-sample period

ranges from January 4, 2016, to December 29, 2017, and the out-of-sample period from January 2, 2018, to

June 28, 2019.

The neural network correction of the Heston model dominates all parametric models as

well as the simple and weighted averages in terms of both IVRMSE metrics, and in the ability

to capture the surface dynamics. This confirms the conclusion of Almeida et al. (2022) that
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the nonparametric corrections of models outperform the original models - generally to a large

extent.

The neural network that directly fits the option panel by combining the individual fore-

casts (4M) does not perform as well as Heston-NN3 in terms of IVRMSE. It is significantly

better at capturing the level characteristic than Heston-NN3, resulting in a lower RMSE

and MAE, but it cannot replicate this for the other three characteristics. 4M does provides

significant improvements in terms of the out-of-sample pricing performance compared to the

parametric models. Including moneyness and times to maturity of the options as features

(4M-M-TtM) does not lower the average IVRMSE, but does so for its median. This indicates

larger errors on certain days, but arguably a better pricing performance in general. More-

over, it does help reduce the RMSE and MAE for the term structure, skew and skew term

structure.

Adding the EPU and VIX features (4M-M-TtM-EPU-VIX) has a large positive effect

on the pricing ability, with the average and median IVRMSE lower than those of 4M and

4M-M-TtM. It does the same for the ability to reproduce the characteristics, with every

RMSE and MAE lower than their counterparts provided by the two aforementioned neural

network combination models. This shows the added benefit of including time-varying covari-

ates as explanatory variables in neural networks regarding pricing in the option panel, and

reproducing the implied volatility surface’s characteristics.

The best-performing model in terms of the average IVRMSE is 4M-EPU-VIX, whose

median IVRMSE is slightly higher than that of 4M-M-TtM-EPU-VIX, indicating that 4M-

EPU-VIX has fewer days with large errors, i.e., the distribution of its IVRMSEs is less

right-skewed. The latter model is able to capture the dynamics very well, too, with a lower

RMSE and MAE for the level characteristic than all other models. These metrics for the

other characteristics are within 0.1 of those of the respective best-performing model, with

the exception of the RMSE of skew TS.

Including all features in the neural network (4M-All) does not provide a significant ad-

vantage over the other neural network combination models. It cannot compete with any of

them in terms of IVRMSE, while it has the highest RMSE and MAE for the level, skew and

skew TS amongst this set of models. This can be explained by the bias-variance tradeoff: the
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neural network overfits the data as a result of too many features being included. Nakkiran

et al. (2021) find that the phenomenon of double descent is often present in deep learning

exercises. They show that while increasing the model size, the performance of the model

first gets worse before it improves again past a certain size. This tipping point, called the

interpolation threshold, is generally reached when the number of parameters in the model

roughly matches the number of sample observations. This is an indication that adding more

and more features to 4M-All, might eventually increase its performance again.

Figure 8.2 compares, over time, the characteristics of the implied volatility surface that

are implied by the data with those implied by model 4M-M-TtM. The level observed from

the data represents the general level of volatility, thus always being positive. It has a few

spikes, which can be seen to work through into the other characteristics. The term structure

has a few negative outliers but is mostly positive, whereas the skew is always positive and

has higher spikes corresponding to the spikes in level. The skew term structure is primarily

negative. Figure 8.2 shows that the model 4M-M-TtM is able to recreate the surface dynamics

quite well overall, but usually fails to capture the spikes.

To further investigate the benefit of including time-varying covariates in the fitting of the

option panel, Figure 8.3 shows the same comparison, this time between the characteristics

implied by the data and those by 4M-M-TtM-EPU-VIX. The time-varying covariates allow

the neural network to learn the shape of the implied volatility surface as a function of the

state of the economy, whereas without them, it can only learn the average shape over time. It

can be seen that the in-sample fit significantly improves for all four characteristics. The same

goes for the out-of-sample period, with the model better capturing the spikes. However, it

sometimes does predict a spike that is not matched by the observed data, or at least not to

the extent the model forecasted. This is the reason that, for level and skew, the improvement

of 4M-M-TtM-EPU-VIX over 4M-M-TtM is much more significant in terms of MAE than in

RMSE.
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Figure 8.2: Implied volatility surface characteristics - Models, Moneyness and Time to Ma-

turity. This figure plots the data-implied time series of the implied volatility surface characteristics level,

term structure, skew and skew term structure (red) against their counterparts implied by model 4M-M-TtM

(blue). The in-sample period ranges from January 4, 2016, to December 29, 2017, and the out-of-sample

period from January 2, 2018, to June 28, 2019.
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Figure 8.3: Implied volatility surface characteristics - Models, Moneyness, Time to Maturity,

EPU and VIX. This figure plots the data-implied time series of the implied volatility surface characteristics

level, term structure, skew and skew term structure (red) against their counterparts implied by model 4M-

M-TtM-EPU-VIX (blue). The in-sample period ranges from January 4, 2016, to December 29, 2017, and the

out-of-sample period from January 2, 2018, to June 28, 2019.

Summing up the findings provided in this section, the combination of different forecasts

using neural networks is in the option panel able to outperform the individual forecasts

made by structural parametric option pricing models like Black and Scholes (1973) and

Heston (1993), their simple and weighted averages, and the neural network with three hidden

layers correcting the Heston model, proposed by Almeida et al. (2022). Using conditioning

information by including time-varying covariates as explanatory variables can further improve

the fit of the option panel and the ability to reproduce its salient characteristics. It allows
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the neural network to capture the time-varying shape of the implied volatility surface as a

function of states of the economy, most notably the measures of volatility (VIX) and economic

policy uncertainty (EPU).

9 Conclusion

In this paper, I research the extent to which machine learning techniques are able to correct

or combine parametric models in order to fit the implied volatility surface. By means of a

cross-sectional prediction exercise, I compare the performance of random forest and support

vector machine corrections with that of the parametric models Black and Scholes (1973),

ad-hoc Black-Scholes (Dumas et al., 1998), Carr and Wu (2016), and Heston (1993), as well

as their neural network corrections proposed by Almeida et al. (2022). They are evaluated

based on their out-of-sample performance for different forecast horizons.

I find that the support vector machine corrections do not significantly outperform the

parametric models, whereas the random forest corrections do. The latter perform better the

longer the forecast horizon is. Especially the random forest correction of the Heston model

can compete with the neural network corrections of the parametric models.

The parametric models’ simple average and inverse prediction error-weighted average are

able to outperform the individual forecasts as well, but they are dominated by the individual

forecasts’ neural network combinations. I observe this result irrespective of whether money-

ness and times to maturity are included as features in the network or not. When predicting

within the same day, the neural network combinations have an even better performance than

the neural network corrections of the Heston model.

With a prediction exercise in the option panel, I show that using neural networks to

combine individual forecasts significantly improves the fit of the implied volatility surface

over time. Including time-varying covariates as features, helps a neural network learn the

shape of the surface as a function of the state of the economy. This allows for an even better

fit and it enables the neural network to capture the salient characteristics of the option panel

more accurately.

The results in this paper provide several implications for option pricing in practice. Pro-
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fessionals who price options using parametric models to fit the implied volatility surface, can

improve their estimates by using machine learning techniques to correct or combine para-

metric forecasts. Incorporating information about the state of the economy can help these

techniques in doing so. Furthermore, combining individual forecasts using neural networks -

with or without the use of time-varying covariates - is a method that can potentially deliver

significant improvements in other areas as well; a result that invites further research.
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10 Appendix

10.1 Overview of Abbreviations

• BS - Black-Scholes

• AHBS - ad-hoc Black-Scholes

• CW - Carr and Wu

• IVRMSE - implied volatility root mean squared error

• RMSE - mean squared error

• MAE - mean absolute error

• DOTMC - deep out-of-the-money calls

• OTMC - out-of-the-money calls

• ATM - at-the-money options

• OTMP - out-of-the-money puts

• DOTMP - deep out-of-the-money puts

• TtM - time to maturity

• NN - neural network

• RF - random forest

• SVM - support vector machine

• MCS - model confidence set

• SA - simple average

• WA - weighted average

• VIX - volatility index

• EPU - economic policy uncertainty measure

• ADS - the business conditions index of Aruoba et al. (2009)

• TMS - the first differences of the term spread

• CRS - the first differences of the credit spread

• LTV - Left Tail Volatility

• LTP - Left Tail Probability

• TS - term structure
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10.2 MATLAB Codes

The MATLAB codes I wrote to conduct my research are included in a zip-file. Each file is briefly explained

below. “∗” indicates that any of the abbreviations for the parametric models can be filled in instead, i.e.,

∗ ∈ {“BS”, “AHBS”, “Heston”, “CW”}.

• Heston estimation.m: Estimate parameters Heston for cross-section exercises.

• Heston cross section1.m: Get Heston predictions for same day exercise using parameters.

• Heston cross section2.m: Get Heston predictions for days ahead exercise using parameters.

• CW estimation.m: Estimate parameters CW for cross-section exercises.

• CW cross section1.m: Get CW predictions for same day exercise using parameters.

• CW cross section2.m: Get CW predictions for days ahead exercise using parameters.

• ∗ NN.m: Get neural network corrections of ∗ predictions for same day exercise.

• ∗ NN prediction.m: Get neural network corrections of ∗ predictions for days ahead exercise.

• ∗ RF Same Day.m: Get random forest corrections of ∗ predictions for same day exercise.

• ∗ RF Prediction Ahead.m: Get random forest corrections of ∗ predictions for days ahead exercise.

• ∗ SVM Same Day.m: Get support vector machine corrections of ∗ predictions for same day exercise.

• ∗ SVM Prediction Ahead.m: Get support vector machine corrections of ∗ predictions for days ahead

exercise.

• SA Same Day.m: Get simple average of parametric model predictions for same day exercise.

• SA Prediction Ahead.m: Get simple average of parametric model predictions for days ahead exercise.

• inverse IV RMSE weighted.m: Get weighted average of parametric model predictions for same day

exercise.

• inverse IV RMSE weighted Prediction Ahead.m: Get weighted average of parametric model pre-

dictions for days ahead exercise.

• bar chart.m: Create bar chart of feature importances.

• Combined NN Same Day.m: Get neural network combinations of parametric model predictions (pos-

sibly with moneyness and/or ttm included) for same day exercise.

• Combined NN Prediction Ahead.m: Get neural network combinations of parametric model predic-

tions (possibly with moneyness and/or ttm included) for days ahead exercise.

• BS.m: Get BS predictions for option panel exercise.

G. C. Visser 46



Option Pricing Boosted by Machine Learning Techniques

• Heston.m: Estimate Heston model for option panel exercise.

• get predictions Heston.m: Get predictions Heston model for option panel exercise.

• CW.m: Estimate CW model for option panel exercise.

• get predictions CW.m: Get predictions CW model for option panel exercise.

• SA Option Panel.m: Get simple average of parametric model predictions for option panel exercise.

• WA Option Panel.m: Get weighted average of parametric model predictions for option panel exercise.

• NN Correction Option Panel.m: Get 3-layered neural network corrections of Heston model predic-

tions for option panel exercise.

• Combined NN Option Panel all vars.m: Determine feature importance for neural network combi-

nations by setting one feature at a time equal to zero, and perform option panel exercise.

• Combined NN Option Panel.m: Get neural network combinations for option panel exercise with

specific features.

• all vars one by one.m: Add variables one by one based on feature importance, and perform option

panel exercise.

• performance time series.m: Get mean and median IVRMSE of model for option panel exercise,

given predictions.

• get in sample predictions.m: Get in-sample predictions of combining neural networks, for character-

istics evaluation in option panel.

• get surface characteristics.m: Get the surface characteristics, given predictions for option panel.

• MCS RF SVM.m: Determine the model confidence set for Table 6.1 of the same day exercise.

• MCS RF SVM ∗∗d.m: Determine the model confidence set for Table 6.1 of the ∗∗-day ahead exercise,

with ∗∗ ∈ {1, 5, 21}.

• MCS NN combination.m: Determine the model confidence set for Table 7.1 of the same day exercise.

• MCS NN Combination ∗∗d.m: Determine the model confidence set for Table 7.1 of the ∗∗-day ahead

exercise, with ∗∗ ∈ {1, 5, 21}.
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