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Abstract

Einmahl et al. (2016) propose a univariate extreme value statistic called ’Scedasis’, which can be easily interpreted

as the frequency of extremes. In Einmahl et al. (2022), they investigate the multivariate case and apply their research

on a rainfall dataset. In this paper, we apply their research on a financial dataset and explore two Fama-French factors

(Fama and French, 1993) as possible driving factors of Scedasis in the financial setting. For the latter, we use a panel

regression. We find Scedasis of negated stock returns to be invariant in the cross-section of stocks but varying over

time. In the panel regression, we discover Book-To-Market ratio to be a predictive factor of Scedasis in stock returns.
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1 Introduction

Extreme values are arguably the most important feature of time series to understand and model or even predict. This

modelling could for example decide the minimum height of dikes due to extreme flooding (Papalexiou and Montanari,

2019), the strength of tall buildings (Laogan and Elnashai, 1999) and, in a financial environment, the potential losses

of an investment portfolio (Olsen, 1997).

Specifically, in financial analysis, extremes in time series such as stock returns are modelled for several reasons.

One of these reasons is risk mitigation for investors, by means of Value At Risk (Duffie and Pan, 1997) and Extreme

Downside Risk (Huang et al., 2012) amongst many other statistical measures. Another reason is its indication of the

state of the economy; a high frequency of extreme stock returns indicates high volatility which in turn is inherent

to economic downturn, for example during the Great Recession (Rabbani et al., 2017). Moreover, Black (1976)

report evidence that suggests a negative shock in stock returns generates more volatility than a positive shock of equal

magnitude. Hence, especially negative extreme stock returns are important to model.

Due to the mitigation of risk for investors and the impact negative shocks have on volatility, we study the frequency

of negative extremes in stock returns. Einmahl et al. (2016) propose an extreme value statistic called ’Scedasis’,

which can be interpreted as a frequency of extremes. They propose the multivariate case in Einmahl et al. (2022)

with an application on rainfall data. In this paper, we apply the multivariate analysis on a cross-section of negated

stock returns. Fama and French (1995) find the Book-To-Market ratio and Size factors to capture a major part of the

cross-section of stock returns. If we find variance of Scedasis over time and in the cross-section of stock returns, we

aim to discover a possible driving force through these two factors using a panel regression. The research question is:

do Size and Book-To-Market ratio drive Scedasis of negated stock returns in the cross section and over time? Due

to the findings in Fama and French (1995), we expect both Size and Book-To-Market ratio to affect the Scedasis of

negated stock returns.

We will first summarize the analysis of Einmahl et al. (2016) and its extension to the multivariate case in Einmahl

et al. (2022). The latter introduces two tests on Scedasis: one for variance over time and one for difference in the

cross-section. If we find a varying Scedasis in at least one dimension, over time or in the cross-section, we apply a

panel regression of yearly Scedases on yearly values of Size and Book-To-Market ratio. Two dataset will be needed

for the full analysis: the Scedasis analysis of Einmahl et al. (2022) will be applied on a dataset containing 20 years

of daily negated returns of 50 stocks of the S&P 500. Using the daily negated returns, we construct yearly Scedasis

values for each stock. In the panel regression, we utilize a second dataset, which contains yearly values of Book-To-

Market ratios and Size along with the constructed yearly Scedasis series. For the application to be viable, we need to

pre-process the daily multivariate stock returns such that it does not exhibit serial dependence and ensure the extreme

value index (EVI), a well known extreme value statistic (Gnedenko, 1943), is constant for all considered stock return

series.
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In the application on negated stock returns we reject the hypothesis of equality of Scedasis over time. However, we

do no reject equality of Scedasis in the cross-section. Using normalized yearly Scedasis values we find the demeaned

yearly log difference of Book-To-Market ratio to be a significant driver of next year’s Scedasis values. Hence, we find

Book-To-Market ratio to be a predictive factor of yearly Scedasis.

We define the model for scedasis in Section 2.1 following Einmahl et al. (2022). We summarize estimators and test

statistics for the scedasis analysis in Section 2.2. Furthermore, in the final subsection of Section 2.2, we propose the

panel regression on yearly scedasis values. We then apply the research to the financial datasets, which we pre-process

in Section 2.3. Section 3 summarizes both daily and yearly datasets. We present the results of the data pre-processing

in Section 4.1. Consecutively, we present the results of the tests proposed by Einmahl et al. (2022) in the financial

application in Section 4.2 and the results of the panel regression in Section 4.3. Finally, we discuss the results in

section 5 and end with a conclusion in Section 6. We attach an extra proof, supplementary figures, tables and the

used Matlab code in the appendix in Section 7. This paper contributes to current literature by applying the research in

Einmahl et al. (2022) on a financial dataset and proposing a method of investigating driving factors in two dimensions

through a panel regression.

2 Methodology

We aim to investigate the frequency of extremes of multivariate stock series, that are possibly cross-sectionally

dependent, but serially independent. As way of describing a frequency of extremes in the univariate context with

independent observations, Einmahl et al. (2016) propose a concept called ’scedasis’. In Einmahl et al. (2022) they

build on that research by adapting to the multivariate case with possibly dependent time series. In their research, they

use rainfall data. The aim is to apply their research to a financial dataset. We summarize the construction of scedasis

in section 2.1 and the testing on scedasis in 2.2.1 and 2.2.2. We propose a panel regression in section 2.2.3 and finally

apply the analysis on a financial dataset in section 2.3.

2.1 Scedasis

Consider a random non-stationary multivariate negated stock return time series {ξi, j} with possible dependence in

the cross section and independence over time. The multivariate time series of negated stock returns consists of n

timepoints and m stocks. For each random variable ξi, j (i = 1, ...,n and j = 1, ...,m), Fi, j is the distribution function.

We denote x∗ as the right endpoint of a continuous distribution function F0(x). We assume that all Fi, j share the same

endpoint x∗. We define that Fi, j has a ’scedasis’ c
(

i
n
, j
)

with respect to F0 if

c
(

i
n
, j
)
= lim

x↑x∗

1−Fi, j(x)
1−F0(x)

i = 1, ..,n j = 1, ..,m, (1)

where c(·, j) is a positive continuous function on [0,1] for each stock j. The function c
(

i
n
, j
)

can be interpreted as
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the relative frequency of extremes at timepoint i for stock j. If, for any j, the scedasis is constant over time, the stock j

has homoscedastic extremes. One could compare this to homoscedasticity when considering variance of a time series,

only now specified for extremes. The situation in which c changes over time is referred to as heteroscedastic extremes

(Einmahl et al., 2016). If we integrate over time from 0 up to t, we construct the ’integrated scedasis’ C:

C j(t) =
1
m

∫ t

0
c(x, j)dx j = 1, ..,m. (2)

As described in Einmahl et al. (2022), the integrated scedasis can be used for testing equality over time and in the

cross section using appropriate test statistics. In order for c to be uniquely defined, we impose the condition that the

sum of the integrated scedasis for all stocks combined over the full time span equals one, i.e. ∑
m
j=1 C j(1) = 1. This

way, the integrated scedasis represents the relative frequency of extremes of each stock. We provide an estimator for

C j(t) in section 2.3.

In addition, in equation (14), we assume that F0(x) is in the maximum domain of attraction of a generalized extreme

value distribution Gγ , i.e. the normalized maximum of a sample generated by F0 converges to Gγ for some γ ∈ R:

lim
n→∞

Fn
0 (anx+bn) = Gγ(x) := exp

{
−(1+ γx)−1/γ

}
, (3)

for some sequences of constants an > 0 and bn and all x for which 1+γx > 0. If the above holds, we write F0 ∈D(Gγ)

(de Haan et al., 2015). Equation (14) and (3) together implies that that for all Fi, j, Fi, j ∈D(Gγ), where γ is the common

extreme value index by definition. Note that the parameter γ is constant for all stocks ( j).

2.2 Testing on Scedasis of Stock Returns

In this subsection, we use the integrated scedasis to test for equality of scedasis, both in the cross-section and over

time. The estimator of C j is the relative number of exceedances over the threshold (Einmahl et al., 2022). We therefore

define the estimator as follows:

Ĉ j(t) :=
1
k

nt

∑
i=1

1{ξi, j>u} 0 ≤ t ≤ 1 j = 1, ..,m, (4)

where k (see section 2.3) is the amount of observations of all stocks above a certain threshold u. For robustness, we

perform each test in the financial application with varying thresholds. We test the equality of scedasis in the cross-

section over the full time span in section 2.2.1 and time-invariance of scedasis for all stocks combined in section 2.2.2.

If we find different scedases either in the cross-section or over time, we finally apply a panel regression to discover a

possible driving force in section 2.2.3.

2.2.1 Equality of scedasis in the cross-section

If we find the integrated scedases of all stocks to be the same, each one would equal 1/m due to the restriction of the

sum over all stocks equaling 1. We therefore test H0 : C j(1) = 1
m for all j = 1, . . . ,m. Einmahl et al. (2022) propose
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the test by checking whether the limit vector of(√
k
(

Ĉ1(1)−
1
m

)
,
√

k
(

Ĉ2(1)−
1
m

)
, . . . ,

√
k
(

Ĉm(1)−
1
m

))
(5)

has mean zero. It has a covariance matrix defined by Σ. To express Σ, we assume the existence of the following tail

copula function (Einmahl et al., 2022):

R j1, j2(x,y) = lim
t↓0

1
t

P(1−Fi, j1 (Xi, j1)≤ tx,1−Fi, j2 (Xi, j2)≤ ty) , (6)

where (x,y) ∈ [0,∞]2\{(∞,∞)}. If R j1, j2(x,y) = 0, we have complete tail independence and for R j1, j2(x,y) = x∧y, we

have complete tail dependence. The theoretical value of each entry of the ’true’ covariance matrix Σ is then given by:

σ j1, j2 =
1
m

∫ 1

0
R j1, j2 (c(u, j1) ,c(u, j2))du. (7)

The following estimator is a consistent estimator of σ j1, j2 for j1 ̸= j2, as n → ∞ (Einmahl et al., 2022):

σ̂ j1, j2 =
1
k

n

∑
i=1

1{Xi, j1>u,Xi, j2>u}, (8)

where u is the common threshold. Together, the entries form the consistent estimator Σ̂ of Σ. Define 1m as the m-unit

vector and Im the m-dimensional identity matrix. From Theorem 2.3 in Einmahl et al. (2022) under H0, we get the

following corresponding test statistic for our null hypothesis:

Tn := D′
m−1

((
MΣ̂M′)

m−1

)−1
Dm−1, (9)

where the subscript m−1 means it consists of the first m−1 rows and the first m−1 columns only. Furthermore:

D =
√

k
(

Ĉ1(1)−
1
m
, . . . ,Ĉm(1)−

1
m

)′
and (10)

M = Im − 1
m
1m1

′
m. (11)

If we assume invertability of Σ̂, then, under H0: Tn
d−→ χ2

m−1, as n → ∞.

2.2.2 Constant scedasis over time

To test whether scedasis is constant over time, we use t ∈ [0,1] to be the relative timepoint of the full timespan. If we

find, for a stock j ∈ {1, . . . ,m} and for any 0 ≤ t ≤ 1, the integrated scedasis to be t times the total integrated scedasis,

the scedasis c(·, j) is constant over time. Hence, we test H0, j : C j(t) = tC j(1) for each stock j. We define a Brownian

bridge as B. Following the method in Einmahl et al. (2022), we use the following process, which holds under H0, j:

Q j(t) =
√

kĈ j(1)

(
Ĉ j(t)

Ĉ j(1)
− t

)
d−→ B(t) 0 ≤ t ≤ 1. (12)

Using Q j, we construct the following test statistic, similar to the method in Einmahl et al. (2016):

Tj = sup
0≤t≤1

|Q j(t)|, (13)

which, under H0, j, follows the Kolmogorov distribution by construction (Kolmogorov, 1933). Therefore, we can use

the p-values of the Kolmogorov-Smirnov test statistic (Smirnov, 1939).
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2.2.3 Panel Regression

If we find either inequality of scedasis in the cross-section or over time, we aim to investigate the potential driving

factor behind this difference in scedasis. The application in this paper is on stock returns, hence we look for driving

factors of extreme (negative) stock returns. Fama and French (1995) find that Book-To-Market ratio (BM) and Market

Equity (Size) together capture a large part of the cross-section of average stock returns. We therefore expect these

factors to drive extreme values of stock returns in the cross-section. Since integrated scedasis is estimated using

a certain time span, we estimate the scedasis value for each year (y = 1, ...T ) in the dataset. Consider the date of

each observation ξi, j. We estimate the scedasis yearly for each company separately. Since the dataset consists of

20 years (T = 20), we consider C j,y in a similar way to model (2), only in subsets with length one year. We define

ny = ty − ty−1 + 1 as the amount of trading days in year y, where ty is the index in the dataset of the final stock date

of year y with t0 = 0 and tT = n. Since some years contain many and other years few extremes, the yearly Scedases

can vary greatly over time. In order to investigate the effects of the company specific factors on Scedasis, we therefore

normalize the yearly Scedasis values. To do so, we consider the following yearly scedasis function:

cy

(
i

ny
, j
)
= lim

x↑x∗

1−Fi, j(x)
1−F0(x)

i = ty−1, .., ty j = 1, ..,m. (14)

Consequently, the integrated yearly Scedasis value for each company becomes

C j,y(t) =
1
m

∫ t

0
cy(x, j)dx j = 1, ..,m, y = 1, ..,T, (15)

with ∑
m
j=1 C j,y(1) = 1 for each year y. The estimates of the yearly scedases become

Ĉ j,y(t) =
1
ky

ty−1+t·ny

∑
i=ty−1+1

1{ξi, j>u} j = 1, ..,m, y = 1, ..,T, (16)

where ky is the amount of observations above the common threshold u in year y. For each year y, we restrict

∑
m
j=1 C j,y(1) = 1 and note that ∑

m
j=1 Ĉ j,y(1) = 1.

We are interested in the effect of Size and Book-to-Market ratio on scedasis over time and in the cross-section, hence

we consider a panel regression. The created dataset consists of maximally m = 50 stocks and T = 22 years. The total

amount of observations is: nC = m×T = 50× 22 = 1100. We consider the Error components model, first proposed

by Balestra and Nerlove (1966), because it performs well for both a small m and T (Mátyás, 1992). Using this model,

one extracts information on the effects of factors on scedasis from variation in the cross-section, variation over time

and variation of the factors (Maddala, 1971). With the Fama and French factors, the error components model is in our

case given by:

Ĉ j,y = α +βsizeXsize, j,y +βBMXBM, j,y + ε j,y j = 1, ..,m, y = 1, ..,T, (17)

where α is a constant and βp the effect of factor p on scedasis. Furthermore, Xp, j,y is the value of factor p of firm j at

year t. We denote β ′ = [βsize,βBM] and X ′
j,y = [Xsize, j,y,XBM, j,y]. We define the error term as in Wallace and Hussain

(1969): ε j,y = u j + vy +w j,y with each term normally distributed with mean zero and variance terms σ2
u ,σ

2
v , and σ2

w

7



respectively. We assume independence between each of the three terms. For convenience, we formulate the model in

matrix form:

Ĉ = (1,X)
(

α

β

)
+ ε, (18)

with Ĉ a mT ×1 vector consisting of all vectors of scedasis values per firm stacked and ordered chronologically:

Ĉ = (Ĉ1,1,Ĉ1,2, ..,Ĉ1,T ,Ĉ2,1, ..,Ĉm,T ). Stacked similarly, X is a mT ×2 matrix and ε is a vector of length mT . Following

Wallace and Hussain (1969), the best linear unbiased estimate of β is given by:

β̂ = (X ′
Σ̂
−1X)−1(X ′

Σ̂
−1Ĉ), (19)

with variance Σ̂β = (X ′Σ−1X)−1.

For Σ we use the Aitken estimator below, which has a smaller asymptotic variance than regular covariance estimators

(Wallace and Hussain, 1969). The general idea is to divide the variance into components belonging to variance in the

cross-section (σ2
u ), variance over time (σ2

v ) and combined variance (σ2
w):

Σ̂ = σ̂
2
wImT + σ̂

2
u A+ σ̂

2
v B, (20)

where ImT is an mT ×mT identity matrix and A and B are defined as follows:

A =


JT , 0, . . . ,0

0, JT , . . . ,0
...

0, 0, . . . ,JT

 , B =


IT , IT , . . . , IT

IT , IT , . . . , IT
...

IT , IT , . . . , IT

 . (21)

Here, JT is a T ×T matrix of ones and both A and B consist of m rows and columns of block matrices. Following

Wallace and Hussain (1969), the empirical estimates for the variance terms are given by:

σ̂
2
w =

1
(m−1)(T −1) ∑

j
∑
y

(
ε̂ jy −

1
T

ε̂ j.−
1
m

ε̂.y

)2

,

σ̂
2
u =

1
T

[
m

∑
j=1

ε̂2
j.

T (m−1)
− σ̂

2
w

]
,

σ̂
2
v =

1
m

[
T

∑
y=1

ε̂2
.y

m(T −1)
− σ̂

2
w

]
,

(22)

with ε̂ jy the estimated OLS error term in model (18). The dot in a subscript represents the sum over the corresponding

subscript. Hence, ε̂ j. is the sum over the years y of all errors corresponding to firm j. For computational convenience

we use the closed-form term for the inverse of Σ̂ given in the Appendix (Wallace and Hussain, 1969).

2.3 Application to Financial Datasets

We apply the method of estimating scedasis to a financial dataset. We consider negated daily nominal returns of 50

chosen stocks in the S&P500. For the analysis, we require a ’universal threshold’ of extremes for the full dataset.
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Furthermore, for our multivariate time series to be viable for the estimation of scedasis and the methodology in section

2.2 we need serial independence. Stock returns, however, are known to exhibit serial dependence. Finally, in Section

2.1, we assume a constant extreme value index (γ) for all considered stocks. Hence, we only choose stocks with an

equal extreme value index. We set a universal threshold for extremes in section 2.3.1, address the removal of possible

serial dependence in section 2.3.2 and the equality of the extreme value index for all stocks in 2.3.3.

2.3.1 Universal Extreme value threshold

For all sections in this paper, we are concerned with tail analysis. This analysis is applied to ’extreme values’, which

are the values belonging to the tail of the distribution. Above a certain threshold, observations are considered extreme

values. For the comparison between scedasis of different time series, we need equal thresholds for all returns of stocks.

Therefore, we choose one ’common threshold’ above which all observations are considered extreme values. For the

construction of the common threshold, we take all observations of the multivariate series together to get the univariate

series ξr (r = 1, ., ,N), where N = n×m. Let ξ1:N ≤ ξ2:N ...≤ ξN:N be the ordered observations of the series ξr. We set

u = ξN−k:N , the k-th largest value, as the threshold above which we consider the observations to be extreme values.

The intuition for the right choice of k is as follows: we are estimating the observations that are part of the ’tail

region’. If we choose a k too high, the observations get too close to the central part of the distribution, where tail

function analysis is not viable. In the extreme value index context, this would result in a large bias of the estimate of

the extreme value index. On the other hand, if k is too small, the variance of the estimate may grow too large. This

is an example of the classical bias-variance trade-off (Dominicy et al., 2017). For appropriate choices of k, we use a

so-called Hill plot (Drees et al., 2000), which is the ’Hill estimator’ of the extreme value index plotted against k. An

appropriate k is a value in the ’stable region’ in the plot, where the trade-off between variance and bias is optimal.

Within this ’stable region’, we vary the chosen k for robustness. We use the Hill Estimator (Hill, 1975) for estimating

the extreme value index, which relies on these fat tails in estimation:

γ̂ =
1
k

k−1

∑
i=0

log(ξN−i:N)− log(ξN−k:N) (k < N). (23)

Quintos et al. (2001) show Hill estimators for the extreme value index to be constant in their application on stock

returns, hence we discard possible time variance of γ .

We use the initial 50 stocks combined in estimating γ̂ for different values of k. We choose the common threshold

u = ξN−k:N for the chosen k in the ’stable region’ in the Hill plot. Throughout one run of the analysis, the threshold

value u is fixed. N and k, however, will be (slightly) different after the removal of observations and stocks in section

2.3.2 and 2.3.3. Throughout each run of the analysis, we use one universal threshold to ensure the set of extremes after

data selection is in accordance with the observations used in the analysis. The value γ̂ is used as a constant estimate

for the γ parameter in the scedasis analysis. Henceforth, we refer to this value when we write γ . For robustness, we

conduct the full analysis for a varying threshold within the ’stable region’ of the Hill plot.

9



2.3.2 Serial Dependence

In this subsection we explain how we remove potential serial dependence in the extremes of the stock return series. In

the analysis, we only consider extreme values of stock returns. Hence, we aim to remove the serial dependence in the

extremes. If we can determine how many extremes are part of the same ’cluster of extremes’, we can eliminate extreme

values that belong to the same cluster. This way, maximally one value per cluster is selected and serial dependence is

kept to the minimum. For the purpose of cluster size estimation, we examine the ’Extremal index’, first described in

Cartwright (1958). Leadbetter (1982) show that the extremal index can be interpreted as the reciprocal of the mean

cluster size. The extremal index is defined as follows:

We consider a univariate stationary sequence. For notational convenience, we write ζi in the univariate case (instead

of ξi, j in the multivariate case). The univariate stationary sequence ζi has distribution function F with the finite

endpoint x∗ = sup{x : F(x)< 1}. We use a common threshold u above which an observation is considered as extreme,

and define T (u) the time between extremes:

T (u) = min{y ≥ 1 : ζy+1 ≥ u}. (24)

We denote Mk,l = max{ξi : i = k+1, ..., l}. The distribution of the interexeedance time, as shown in Ferro and Segers

(2003) is then given by:

P{T (u)> y}= P(M1,y+1 ≤ u | X1 > u). (25)

Ferro and Segers (2003) prove that, under some mild conditions, as n → ∞:

(1−F(u))T (u) d−→ Tθ as u ↑ x∗ and (26)

Tθ ∼ (1−θ)ε0 +θ µθ , (27)

where ε0 is the degenerate distribution at 0 and µθ ∼ exp(θ). The extremal index is the θ parameter in this framework.

We note that the value of θ is independent of the threshold, for a high threshold u. For the estimation of the Extremal

index, Ferro and Segers (2003) uses the number of observations above the common threshold (u). We further denote

Si as the i−th exceedance time. Following this definition, we have that the observed interexceedance times are Ti =

Si+1 −Si for i = 1, ...,k−1. The Ti are the observed interexceedance times and T (u) is the estimated interexceedance

time given a high threshold u. In their paper, Ferro and Segers (2003) propose several estimators for θ . We use the

’intervals estimator’, as it is shown to perform well for both low and high thresholds in Ferro and Segers (2003). The

estimator is defined as follows:

θn(u) =

1∧ θ̂ ∗
n (u), if max{Ti : 1 ≤ i ≤ k−1}> 2,

1∧ θ̂n(u), if max{Ti : 1 ≤ i ≤ k−1} ≤ 2,
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where θ̂ ∗
n (u) and θ̂n(u) are given by:

θ̂
∗
n (u) =

2(∑k−1
i=1 (Ti −1))2

(k−1)∑
k−1
i=1 (Ti −1)(Ti −2)

, (28)

θ̂n(u) =
2(∑k−1

i=1 Ti)
2

(k−1)∑
k−1
i=1 T 2

i
. (29)

We perform estimation of the extremal index for each considered stock separately. Each stock is a univariate

stationary sequence ξi, j for fixed j. We estimate the extremal index to generate estimates θ̂n, j for j = 1, ..,m.

In order for serial dependence in extremes to be removed, we remove extremes that belong to the same cluster.

We set θmin = min{θ̂n, j; j = 1, ..,m}. The largest average cluster size for the chosen stocks is equal to 1/θmin. In

order to avoid creating any missing datapoints, we only remove timepoints from the dataset. In other words, if we

remove an instance, we remove the instance for all stocks simultaneously. We use the largest average cluster size as

minimum ’distance’ between extreme values to make sure all possible clusters are dealt with. We once again consider

the multivariate time series ξi, j (i = 1, ..,n and j = 1, ..,m) and the common extreme value threshold u. To make sure

no extremes from the same cluster are kept, we apply the following iterative procedure for for all stocks together,

where the largest extreme is kept for extremes in the same cluster:

Algorithm 1 Removal of serial dependence in extremes

1: procedure CONSIDER THE MULTIVARIATE SEQUENCE ξi, j

2: for j = 1 : m do

3: for i = 1 : n−⌈1/θmin⌉ do

4: if ξi, j ≥ u then

5: for r = 1 : ⌈1/θmin⌉ do

6: if ξi+r, j ≥ u and ξi+r, j > ξi, j then

7: ξi, j :=−∞

8: if ξi+r, j ≥ u and ξi+r, j ≤ ξi, j then

9: ξi+r, j :=−∞

10: if ξi+r, j < u then

11: Continue

12: Remove all rows i with at least one entry equal to −∞

Consequently, for each considered stock j, for all extremes possibly belonging to the same cluster, only the day

with the largest value occurring is retained1. By deleting timepoints, we have retained a dataset without ’holes’.

Henceforth, after the removal of serial dependence, n∗ is the length of the dataset and k∗ the amount of extreme

values. Consequently, we have N∗ = n∗×m.
1After the removal of observations, we find no evidence of remaining serial dependence in partial autocorrelations
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2.3.3 Equality of Extreme Value Index

We consider the same method of estimating the extreme value index as we did in Section 2.1. However, we use each

stock separately to get an estimate of the extreme value index. Furthermore, we consider the dataset after the removal

of serial dependence, which is of length n∗. Similar to estimate (23) in Section 2.1, the estimate consequently becomes

the following:

γ̂ j =
1
k j

k j−1

∑
i=0

log(ξn∗−i:n∗)− log(ξn∗−k j :n∗) (k j < n∗) j = 1, ..,m, (30)

where the value of k j for each stock is given by:

k j =
n∗

∑
i=1

1ξi, j≥u j = 1, ..,m, (31)

where 1x is an indicator function equaling one if the subscript is true and zero otherwise. By construction, ∑
m
j=1 k j =

k∗. Gomes et al. (2007) show that when the time series ξi, j is heavy-tailed, the Hill estimator is consistent for the

estimation of the extreme value index. They show that
√

k j(γ̂ j − γ) weakly converges to N(0,γ2). Hence, for the

estimate of the variance of the Hill estimators we use the squared value of the estimate itself divided by k j, (γ̂2
j /k j),

for each j = 1, ..,m. We then test whether the estimate is significantly different from the extreme value index with all

observations combined, γ̂ , as derived in Section 2.1 using a regular t-test with test statistic t j =
|γ̂ j − γ̂|
γ̂ j/
√

k j
. We select only

the stocks for which t j does not exceed the critical value of 1.96 (at a confidence level of 95%). After this selection

of stocks we have m∗ stocks and N∗ becomes N∗∗ = n∗×m∗. In the scedasis analysis, we use k = k∗, n = n∗, m = m∗

and N = N∗∗.

3 Data

In this Section, we display summary statistics of the datasets used in our application. All data is acquired through

Wharton Research Data Services 2. We display a summary of negated nominal returns of five SP 500 stocks between

January 3rd 2000 until 30th of March 2022 in Table 1,where we consider the original dataset of 50 stocks. In Table 1

we see the negated returns are slightly negative on average, hence on average returns are slightly positive. The standard

deviation of each stock is much higher than its mean.

2Wharton Research Data Services URL
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Company Mean (×10−3) St. Dev. Min Max

FISERV INC -0.702 0.022 -0.769 0.195

GENERAL DYNAMICS CORP -0.472 0.016 -0.117 0.124

PEPSICO -0.347 0.013 -0.207 0.119

AMGEN -0.339 0.020 -0.315 0.134

SCHLUMBERGER -0.416 0.024 -0.199 0.274

Table 1: Summary statistics of five S&P 500 companies’ daily negated nominal returns from January 3rd 2000 until March 30,

2022 (consisting of 5598 trading days). All fifty companies are considered, hence m = 50. Consequently, N = 50×5598 = 279900.

Mean, standard deviation, minimum and maximum value are displayed.

Company Ĉ j,y BM Size

CMS ENERGY CORP 0.018 (0.037) 0.823 (0.521) 6,771 (5,881)

TEXTRON INC 0.048 (0.061) 0.496 (0.225) 9,969 (5,220)

LILLY ELI & CO 0.019 (0.031) 0.140 (0.074) 92,623 (44,110)

WEYERHAEUSER CO 0.022 (0.033) 1.106 (0.790) 11,149 (8,903)

EQUIFAX INC 0.027 (0.044) 0.212 (0.109) 9,144 (7,683)

Table 2: Overview of 5 S&P 500 companies’ normalized yearly Scedasis (Ĉ j,y), Book-to-Market ratio (BM) and Size. The years

considered are 2000 until 2021, hence T = 22 We once again consider 50 companies, hence nC = m×T = 50× 22 = 1100. The

mean values per company are given with standard deviation within parentheses.

Table 2 shows the mean values and standard deviation of the yearly Scedasis, Book-to-Market ratio and Size of 5

random S&P 500 companies in the second dataset. The set of companies used for the daily and yearly datasets is

equal. The average yearly Scedasis values are positive, yet small. This is due to ∑
m
j=1 Ĉ j,y = 1 for each year y. Table

2 further shows positive Book-to-Market ratios, yet only one company with an average Book-to-Market ratio higher

than one. We further note a considerable difference in size both between companies as per company over time, given

the standard deviations.
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4 Results

The application of the methodology on a financial dataset yields results in three parts. First, we present results of the

Extreme Value Index and the removal of serial dependence in Section 4.1. Secondly, in Section 4.2, we provide results

of the tests for constant Scedasis over time and in the cross-section. Finally, we present results of the panel regression

in Section 4.3.

4.1 Extreme Value Index and Serial Dependence

For the application of the analysis on negated stock returns, we require a choice of extreme value threshold. Figure

1(a) shows an example of a ’Hill plot’ for one specific stock return series and Figure 1(b) the Hill estimates using all

available data. Figure 1(b) shows that the variation of the Hill estimate decreases with a lower threshold. However,

starting at a certain point, the bias slightly increases. Based on Figure 1(b), we choose the value k/n = 0.015 to be the

ideal choice of extremes in the bias-variance trade-off. k/n = 0.015 corresponds to a threshold return of 5.2%, which

occurs on average once every 67 trading days (1/0.015 = 67). Hence, we consider a negated daily nominal return of

at least 5.2% to be an extreme occurrence.

We determine the extremal index for the removal of Serial Dependence in extremes using the chosen threshold:

θ̂
−1
min = 8.165. Hence, we consider two extremes within 8 trading days of one another to belong to the same cluster of

extremes. Algorithm 1 yields the declustered dataset. We show the figures containing partial autocorrelations before

and after the removal of serial dependence in Appendix 7.2. The figures in the Appendix show the considered dataset

contains significant partial autocorrelations up to at least 17 lagged observations. The figures in the Appendix further

shows that the application of Algorithm 1 removes autocorrelation accordingly.

(a) (b)

Figure 1: Figure (a) and (b) show extreme value index estimates for different thresholds. In (a) the Hill estimate of the stock returns

of ’Masco Corporation’ is shown for different thresholds. In (b), 50 stocks are considered as one series. The expected value and

95% confidence intervals are constructed in the following manner: we choose 50 stocks z times. For each selection, a new extreme

value index is estimated. Figure (b) shows the empirical mean and 95% confidence bounds of the z estimates (z = 100).
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4.2 Test results

Figure 2 shows the p-values of the test for equality of Scedasis in the cross section for decreasing thresholds. For the

considered threshold of k/n = 0.015, we do not reject equality of Scedasis in the cross-section. This result holds true

for all values of k/n up to 0.075. The difference is significant for higher k/n, which means for very low thresholds only.

Hence, we find no evidence of differences in integrated Scedasis across companies.

Figure 2: P-values of the test of equality of Scedasis in the cross section for different thresholds. The P-values correspond to the

Chi-squared distribution of the test statistic for the null hypothesis in (9). The horizontal dotted line corresponds to the critical value

of rejection at a rejection rate of α = 5%

Figure 3 shows the Rejection Rate of test statistic (13) for all stocks. When the Rejection Rate equals 1, all 50 stocks

reject equality of Scedasis over time. Equality of Scedasis over time is rejected in the majority of considered stocks

for k/n up to 0.12. For k/n = 0.015, we find approximately 95% of stocks to reject the hypothesis at a significance

level of α = 5%. The stocks that do not reject equality of Scedasis over time for the considered threshold are ’Textron

Inc’ and ’Pinnacle West Capital Corp’. If k/n = 0.015, we have an extreme occurrence every 67 tradingdays on

average. During crises, however, extreme occurrences are more frequent, and in economically stable periods extreme

negative returns are less frequent. For the considered threshold, this phenomenon is significant for all stocks in the

period 2000 until 2020, except for ’Textron Inc’ and ’Pinnacle West Capital Corp’. If stocks have a constant Scedasis

over time, the difference between the frequency of extremes in economically stable periods and during crises is not

significant. Further research could investigate whether this indicates that these two stocks are less susceptible for

economic downturn.
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However, since we find 95% of stocks to reject equality of Scedasis over time for k/n = 0.015, we do reject the

general hypothesis that Scedasis is equal over time for the considered stock return application. With these results, we

find the hypothesis of equal Scedasis rejected in at least one dimension, hence we conduct the panel regression to find

possible driving factors.

Figure 3: Rejection rate of stocks in the simultaneous testing on all stocks for equality of Scedasis over time for different thresholds.

The rejection of a single stock is the rejection of test statistic (13) at a rejection rate of α = 5%. If the rejection rate is one, all

stocks simultaneously reject equality of Scedasis over time. If the rejection rate is 0.5, half of the stocks reject, etc.

4.3 Panel Regression results

We aim to investigate possible company-specific driving factors of yearly Scedasis. Figure 4 shows so-called Boxplots

of the normalized yearly Scedasis values of a set of randomly selected stocks in the dataset. At first glance, these

frequencies of extremes do appear to vary in the cross-section. For example, for ’Hasbro Inc.’ (HAS) and ’Colgate-

Palmolive’ (CL), the 25th percentile is higher than the 75th percentile of ’CMS Energy Corporation’ (CMS) and

’Sempra Energy’ (SRE). This suggests differences in normalized yearly Scedasis n the cross-section. We want to find

the driving factor behind these differences in the frequencies of extremes.

Table 3 shows the results of panel regressions of possible driving factors on yearly Scedases. It shows 7 panel

regressions each using a different combination of the explanatory variables. All Scedasis is normalized, hence it

represents the relative difference in Scedasis across companies. Therefore, if the Scedasis of one company increases,

the relative frequency of extremes of this specific stock increases relative to other stocks. We therefore aim to find

differences between companies. For this purpose we demean the explanatory variables before analysis. Hence we

consider the yearly demeaned log difference in Book-To-Market ratio and Size along with their lagged values and all
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considered values squared. We include lagged values because they could potentially indicate predictive potential of

the factors on future Scedasis and squared values to assess the change in the slope of the relationship of the regular

value on Scedasis.

We find the lagged value of Book-To-Market ratio to be significant and positive in all combinations of explanatory

variables in which it is considered. This means we find predictive power of Book-To-Market ratio on integrated Sceda-

sis. When its squared value is included, the coefficient of the quadratic value is significant and negative. Therefore, an

increase in the difference between the Book-To-Market ratio of last year and 2 years ago has a positive effect on the

current integrated Scedasis value. Due to the negative coefficient of the squared value, the marginal effect decreases

with the level of the difference. For other coefficients we find no consistently significant results. Consequently, in

contrast with our hypothesis, we find no evidence that Size is a driving factor of Scedasis.

Moreover, we make a specific choice by setting k/n = 0.015. We base this decision on the Hill plot in Figure 1.

Since that choice is somewhat subjective, we conduct a robustness check for k/n = 0.010 (Table 4 in Appendix 7.3)

and another check using k/n = 0.020 (Table 5 in Appendix 7.3). In the robustness check with a lower threshold in

Appendix Table 4 we find fewer significant results. The robustness check using the higher threshold in Appendix

Table 5 yields similar results to the results in Table 3. Together, the results of the robustness checks show that the

significance of the effect of the lagged Book-To-Market ratio and its quadratic term on normalized integrated Scedasis

is not dependent on the specific choice of k/n, as long as it lies in the stable and least biased region of the Hill plot.

Figure 4: Plot of the distribution of Normalized yearly Scedasis values for a subset of random stocks in the dataset, where the

stocks are given by their tickers. The maximum and minimum values, the median and 25th and 75th percentile of constructed

yearly Scedasis values are displayed.

17



(1) (2) (3) (4) (5) (6) (7)

Constant 0.0334* 0.0325* 0.0327* 0.0320* 0.0322* 0.0321* 0.0333*
(0.0017) (0.0016) (0.0017) (0.0016) (0.0016) (0.0016) (0.0016)

BM Diff 0.0134* 0.0133* 0.0138* 0.0015 0.0015
(0.0026) (0.0025) (0.0025) (0.0009) (0.0009)

Size Diff 0.0000 0.0008 0.0011 0.0009 0.0009
(0.0032) (0.0032) (0.0032) (0.0008) (0.0008)

BM Diff sq -0.0004* -0.0004* -0.0004*
(0.0001) (0.0001) (0.0001)

Size Diff sq 0.0000 0.0000 0.0000
(0.0001) (0.0001) (0.0001)

BM Diff Lag 0.0120* 0.0024* 0.0027* 0.0027* 0.0110*
(0.0025) (0.0009) (0.0009) (0.0009) (0.0025)

Size Diff Lag 0.0098* -0.0002 -0.0001 -0.0001 0.0128*
(0.0036) (0.0008) (0.0008) (0.0008) (0.0037)

BM Diff Lag sq -0.0003* -0.0003*
(0.0001) (0.0001)

Size Diff Lag sq -0.0002 -0.0003*
(0.0001) (0.0001)

Table 3: The estimated β̂ parameter is given for the constant and explanatory variables created by the two factors in 7 different

panel regressions. Book-To-Market ratio and Size are considered as their demeaned yearly log differences. The demeaning is done

by taking the average of all yearly log differences of the 50 companies and subtracting the corresponding value from each instance.

The standard deviation, the square root of the specific diagonal element of Σ̂β in (19), is given within parentheses and an asterisk

indicates significance at a level of α = 5%. Note: each column contains a specific panel regression.

5 Discussion

We find Scedasis to be varying over time, while invariant in the cross-section. Schwert (2011) state that high volatil-

ity is linked to economic downturn and crises. High volatility means more (negative) extremes and hence a higher

Scedasis. Thus, a varying Scedasis over time is in line with current literature. The invariance in the cross-section

could potentially be due to the few extremes that are left after declustering, which means only few datapoints are left

to conduct the test on. Further research could indicate pairwise dependence and other possible relations of Scedasis in

the cross-section.

When normalizing yearly integrated Scedasis values, we eliminate the common ’time’ factor of all companies

together in the analysis. Only the relative Scedasis between companies in each year is represented. In that case we do

find an indication of differences in relative frequencies of extremes per company. Fama and French (1993) argue that

a high Book-To-Market ratio is positively related to low earnings on assets, hence low stock returns. This indicates a
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stock will be under-performing and will be more likely to have (negative) extremes. This result holds true up to five

years before and after the measurement of equity. An increase in relative yearly Scedasis value indicates relatively

more frequent negative extremes compared to other stocks. In our analysis, we find an increase in Book-To-Market

ratio to predict more frequent negative extremes one year in advance. Hence, the results are in line with the research

in Fama and French (1993). Further research could indicate whether the results in this paper extend to more lags in

the Book-To-Market ratio.

Furthermore, using the coefficient of the level and the quadratic term in Table 3, regression (7), we determine a

maximum yearly Scedasis value at a difference in Book-To-Market ratio of −0.0110/2∗ (−0.0003) = 1.833. There-

fore, if the difference in Book-To-Market ratio from one year to the next is 1.8, the increase in the relative frequency

of extremes compared to other S&P 500 stocks reaches its maximum. The range of Book-To-Market ratio in the

considered dataset is [−0.6,8.1], hence a difference value of 1.8 is feasible.

Fama and French (1993) further state that Size, when controlling for Book-To-Market ratio, only has a small effect

on stock returns. We find no consistent evidence of any effect of Size on Scedasis. This could be due to the fact that we

exclusively consider S&P 500 stocks, which correspond to large companies by construction. A possibility for further

research is to conduct the same panel regression using stocks of companies of different sizes. Specifically, stocks in

the SMB (Small minus Big) portfolio used for the Size factor in Fama and French (1993) would be adequate.

Finally, the research in this paper is limited to two possible driving factors of Scedasis over time and in the cross-

section of stock returns. Further research could indicate whether other Fama-French factors, such as Investments or

Operating profitability, proposed as factors in Fama and French (2015), are drivers of the frequency of extremes of

stock returns. Clearly we are not limited to Fama and French factors when assessing company-specific factors and

their effect on Scedasis. Hence, in further research, virtually any company-specific predictor can be explored.

6 Conclusion

In this study, we investigate the Scedasis of negated stock returns both in the cross-section and over time. The concept

’Scedasis’ was first proposed in Einmahl et al. (2016) and elaborated further in Einmahl et al. (2022). The concept can

easily be interpreted as the frequency of extremes. We summarize the propositions and statistical tests of Einmahl et al.

(2022) and propose a panel regression to investigate two possible Fama-French factors as driving factors of Scedasis.

We find Scedasis not to be varying in the cross section but varying over time. We find no evidence of the size of a

company to be related to Scedasis. However, we find the yearly difference in Book-To-Market ratio to be a (predictive)

driver of company-specific relative Scedasis. This is in line with our hypothesis. A higher Scedasis corresponds to

more frequent extremes. Hence, if a companies’ Book-To-Market ratio increases relative to others, only a risk-loving

person should invest.
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7 Appendix

7.1

In order to avoid any numerical calculation of the inverse of a big covariance matrix, the following closed-form solution

of the inverse of the covariance matrix is used in model (19) (Wallace and Hussain, 1969):

Σ
−1 =

1
σ2

w
(ImT − γ1A− γ2B+ γ3JmT ) , (32)

with ImT a mT ×mT identity matrix, JmT , A and B as defined in (21) and:

γ1 =
σ2

u

(σ2
w +T σ2

u )
, (33)

γ2 =
σ2

v

(σ2
w +mσ2

v )
, (34)

γ3 =
σ2

u σ2
v

(σ2
w +T σ2

u )(σ
2
w +mσ2

v )

[
2σ2

w +mσ2
v +T σ2

u

σ2
w +mσ2

v +T σ2
u

]
, (35)

where all variance terms are estimated using the empirical estimates in (22).
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7.2

Figure 5: Autocorrelation before the removal of serial dependence. The blue lines represent 95% confidence bounds. If a red line

with red dot exceeds these bars, the lag is significant. 19 out of 20 are expected to stay within the blue lines. 2 out of 20 lags are

within the 95% confidence bounds in this Figure.
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Figure 6: Autocorrelation after the removal of serial dependence. The blue lines represent 95% confidence bounds. If a red line

with red dot exceeds these bars, the lag is significant. 19 out of 20 are expected to stay within the blue lines. 19 out of 20 are within

the 95% confidence bounds in this Figure. Hence, serial dependence is successfully removed.
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7.3

k/n = 0.010 (1) (2) (3) (4) (5) (6) (7)

Constant 0.0311* 0.0301* 0.0301* 0.0294* 0.0294* 0.0294* 0.0304*
(0.0018) (0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0018)

BM Diff 0.0149* 0.0144* 0.0143* 0.0011 0.0011
(0.0034) (0.0034) (0.0034) (0.0011) (0.0011)

Size Diff -0.0037 -0.0033 -0.0034 -0.0011 -0.0011
(0.0037) (0.0037) (0.0037) (0.0009) (0.0009)

BM Diff sq -0.0004* -0.0004* -0.0004*
(0.0001) (0.0001) (0.0001)

Size Diff sq 0.0001 0.0001 0.0001
(0.0001) (0.0001) (0.0001)

BM Diff Lag 0.0082* -0.0005 0 0.0001 0.0072*
(0.0034) (0.0011) (0.0011) (0.0011) (0.0034)

Size Diff Lag 0.0062 -0.0004 -0.0004 -0.0004 0.007
(0.0043) (0.0009) (0.0009) (0.0009) (0.0044)

BM Diff Lag sq -0.0003* -0.0002
(0.0001) (0.0001)

Size Diff Lag sq -0.0001 -0.0002
(0.0001) (0.0001)

Table 4: Robustness check for k/n = 0.010. The estimated β̂ parameter is given for the constant and explanatory variables created

by the two factors in 7 different panel regressions. Book-To-Market ratio and Size are considered as their demeaned yearly log

differences. The demeaning is done by taking the average of all yearly log differences of the 50 companies and subtracting the

corresponding value from each instance. The standard deviation, the square root of the specific diagonal element of Σ̂β in (19), is

given within parentheses and an asterisk indicates significance at a level of α = 5%. Note: each column contains a specific panel

regression.
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k/n = 0.020 (1) (2) (3) (4) (5) (6) (7)

Constant 0.0409* 0.0396* 0.0399* 0.0395* 0.0398* 0.0397* 0.0412*
(0.0021) (0.0021) (0.0021) (0.0021) (0.0021) (0.0021) (0.0021)

BM Diff 0.011* 0.0113* 0.012* 0.0022 0.0022
(0.0031) (0.0031) (0.0031) (0.0011) (0.0011)

Size Diff -0.0003 -0.0001 0.0001 0.0007 0.0007
(0.0041) (0.0042) (0.0042) (0.0010) (0.0010)

BM Diff sq -0.0003* -0.0003* -0.0003*
(0.0001) (0.0001) (0.0001)

Size Diff sq 0 0 0
(0.0001) (0.0001) (0.0001)

BM Diff Lag 0.0129* 0.0032* 0.0035* 0.0035* 0.0118*
(0.0033) (0.0011) (0.0011) (0.0011) (0.0033)

Size Diff Lag 0.0127* -0.0003* -0.0002 -0.0002 0.0156*
(0.0047) (0.001) (0.001) (0.001) (0.0047)

BM Diff Lag sq -0.0003* -0.0002
(0.0001) (0.0001)

Size Diff Lag sq -0.0003* -0.0003*
(0.0001) (0.0001)

Table 5: Robustness check for k/n = 0.020. The estimated β̂ parameter is given for the constant and explanatory variables created

by the two factors in 7 different panel regressions. Book-To-Market ratio and Size are considered as their demeaned yearly log

differences. The demeaning is done by taking the average of all yearly log differences of the 50 companies and subtracting the

corresponding value from each instance. The standard deviation, the square root of the specific diagonal element of Σ̂β in (19), is

given within parentheses and an asterisk indicates significance at a level of α = 5%. Note: each column contains a specific panel

regression.
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