
 

 

 

 

 

 

 



Abstract

This thesis proposes a solution approach to the Pallet Loading Problem for the beverage industry, with
the aim of creating a feasible loading plan while minimizing total handling time. Various constraints
are met such as a volume, stability, stackability, (multi-)customer demand and a load-bearing strength
constraint. Data is provided by Coca-Cola and two truck-types are considered: Bay Trucks and
Standard Trucks. We present a threefold procedure in which horizontal layers are created, allowing
items to be stacked vertically within a layer. Subsequently, layers are palletized after which a genetic
algorithm combines and improves different solutions. The results are promising for Standard Trucks,
in which optimal solutions are found within typically one-tenth of a second. However, the algorithm
does not perform as good for nearly full Standard Trucks, as it is not always able to find a feasible
solution in these cases. Regarding Bay Trucks, the layer-based approach succeeds in finding feasible
solutions within a minute, regardless of the fill rate. However, the presented layer-based algorithm
results in a considerable handling time for Bay Trucks, indicating that Bay Trucks are less suitable for
a layer-based approach.
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1 Introduction

The transportation of goods is an important aspect within several industries. Businesses are keen to
distribute their goods efficiently to reduce their total expenditures. Freight transportation can be di-
vided into three categories that are well-known in the today’s current literature. Namely the lot-sizing
problem Billington et al. (1986); Karimi et al. (2003); Glock et al. (2014) the vehicle routing problem
Toth and Vigo (2002); Baker and Ayechew (2003); Montoya-Torres et al. (2015) and the Container
Loading Problem Chen et al. (1995) Bortfeldt and Wäscher (2012); Bischoff et al. (1995).

In this thesis we consider the Container Loading Problem (CLP), specifically for the beverage in-
dustry. The CLP seeks to find a feasible loading plan in which items are packed inside a container, in
this case a truck. These items will be delivered to one or more customers, in a predetermined order.
At every stop, items are unloaded from the truck. This research focuses on creating a feasible loading
plan, while minimizing the total handling time. The handling time is the delay that is taken into
account when an item has to be moved in order to reach the item that needs to be unloaded. The data
used in this thesis is provided by Coca-Cola, the third largest beverage company by 2021 M.Ridder
(2021). The data is gathered in Japan and concerns real-life cases. This thesis considers two different
truck-types. Namely Standard Trucks, which are unloaded from the back, and Bay Trucks, which
consists of compartments that are accessible through the sides of the truck.

There are multiple conventional constraints regarding the CLP, which are summarized in
Bortfeldt and Wäscher (2013). First, there is a volume restriction for the pallets, as well as for the
trucks. Second, stability constraints make sure that the items are safely stacked on each other. Third,
all items have an individual load bearing strength, which accounts for the maximum weight that can
be stacked onto these items. Fourth, weight distribution constraints need to be met inside the truck
to make sure that the truck is stable. Fifth, stackability constraints do not allow certain items to be
stacked on each other. Finally, we introduce orientation constraints which ensure pallets and items
are not on their side. Crucial is that these constraints need to hold after every stop where the truck
is (partially) unloaded.

The Pallet Loading Problem (PLP) is a specific case of the CLP. In the PLP, products first need
to be packed on pallets, after which the pallets are assigned to a location inside a truck. This thesis
focuses specifically on the PLP, since pallet packing is mainly used in the beverage industry. The
beverage industry encounters some specific constraints that are not showcased explicitly in current
research. The orientation and stackability constraints, together with the fact that the items need to
be stacked on relatively small pallets - instead of using the full loading size of a truck - are very typical
constraints for this industry. Together with the fact that more than one customer may be served with
the use of one truck makes the loading process more complex. These specialities require a different
approach than algorithms that focus on the ’standard’ CLP, such as Bischoff et al. (1995); Zhao et al.
(2016).

The beverage industry faces unique challenges in pallet loading, as the main concern is optimizing
the unloading plan by determining the placement of a tray of cans. Despite the varying shapes of cans
and bottles, there is typically a limited variety of tray shapes, providing an opportunity to improve
existing heuristics. This thesis builds upon the work of Júnior et al. (2019), who address the issues
that current algorithm encounter when it comes to packing for the beverage industry. In their work,
horizontal layers of items of homogeneous height are formed and stacked, with ’incomplete layers’ con-
sisting of items of varying height placed on top of the stacked layers. First arranging items to layers
and subsequently to the truck simplifies the problem by dividing it into two sub-problems, reducing the
size of the problem and potentially decreasing solving time. However, this approach is only effective
when item height variations are limited. To address this limitation, this thesis combines the forming
of layers with the approach of Elhedhli et al. (2019) to allow two small items to be stacked on top of
each other - called a superitem - within a layer, resulting in higher quality solutions.

The research question of this thesis is: To what extend is a layer-based approach able to solve the
PLP? To answer this question, an algorithm is created combining different techniques of known lit-
erature, together with newly designed aspects. The approach used in this thesis is threefold. Firstly,
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layers are made - possibly containing superitems - with the use of a greedy random adaptive search
procedure (GRASP). Secondly, the formed layers are placed onto pallets. The rest items, the items
that remain as left-overs in the first step, are subsequently placed on top of the pallets. This results in
a single loading plan: a solution is obtained. Lastly, to improve the solution quality, various different
loading plans are created by iterating over step 1 and 2. These solutions are then combined to form
new solution with the use of a second genetic algorithm.

To main research question - to what extend is a layer-based approach able to solve the PLP - is
divided into 4 subquestions. These four subquestions provide insight into the performance of the
Layer-based Algorithm, showing its behaviour under different circumstances. The subquestions are
formulated as follows:

1. How does the ’Palletizing Algorithm’ perform compared to the MIP approach?

2. What is the influence of different truck types on the performance the Layer-based Algorithm?

3. How does the Layer-based Algorithm scale depending on the fill rate of trucks?

4. To what extend is the Layer-based Algorithm able to construct feasible solutions, regarding load
bearing strength, stability and stackability?

This thesis answers the main research question through the above formulated subquestions. To provide
extensive and well-substantiated answers to these questions, the following chapters are covered in
the thesis. Firstly, the current literature regarding Pallet Loading Problems is reviewed in section
2. Secondly, a problem description is provided in section 3 which all aspects of an instance are
showcased, together with an overview of the made assumptions. Thirdly, the data section 4 shows
how the specific data of Coca-Cola is structured. Fourthly, in the section 5 the methodology of the
Layer-based Algorithm, the two genetic algorithms, the rest-item algorithm and the formulation of the
MIP are described in depth. Fifthly, the result section 6 gives an overview of the outcomes regarding
the research question, together with the three subquestions. Finally, the results are analysed and
interpreted in section ??, after which follow-up research is advised.
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2 Literature Review

The Container Loading Problem consists of placing multiple items inside a container, satisfying a spe-
cific set of packing constraints. The first study about this problem is done by Bischoff et al. (1995),
forming a feasible loading plan where all items are required to be ’stable’. This paper forms the basis
of most current CLP literature. Within this area of research, many different variations and approaches
are investigated subsequent to this approach. Different variations lie in the use of the constraints. The
most basic variant of the CLP only considers volume constraints - in which items do not exceed the
containers volume - and constraints disallowing items to be stacked inside each other. More general
constraints are weight distribution, stability, and orientation of the items. A brief overview of these
constraints, together with an explanation about the challenges per constraints is given in Bortfeldt
and Wäscher (2013). This research also takes stackability constraints into account, which is mentioned
in Bódis (2015); Alonso et al. (2016).

Another important aspect of the data used in this thesis is that there are multiple customers, who
require the items to be dropped-off at different locations. Therefore the order in which items are stored
plays an important role. This problem is referred to as the multi-drop Container Loading Problem.
Junqueira et al. (2012) uses a Mixed Integer Program (MIP) to solve the multi-drop CLP, considering
only basic constraints for volume and stability. Christensen and Rousøe (2009) additionally includes
load bearing strength constraints and proposes a heuristic approach for the multi-drop CLP. Ceschia
and Schaerf (2013) includes the same constrains and uses a local search metaheuristic.

Regarding truck types, there is many research available for the CLP for Standard Trucks, which
can be unloaded from the back of the truck. Only Júnior et al. (2019) mentions the specific charac-
teristics of Bay Trucks, which contain multiple compartments that can be reached through the side
of the truck. The packing of Bay Trucks can be seen as a Multi-Container Packing Problem, where
the compartments for the Bay Truck are considered as containers. Ceschia and Schaerf (2013) solves
the CLP with multiple trucks using a local search metaheuristic. Alonso et al. (2019) proposes an
IP approach for the multi-truck CLP, only cases with one customer. To solve for Bay Trucks, one
can also solve the PLP, including the fact that all pallets are reachable. Research which makes use of
the principle of small compartments inside a Bay Truck are Sciomachen and Tanfani (2003); Pacino
and Jensen (2012); Araujo et al. (2016). However, these papers are not about trucks, but about ship
loading. Therefore many constraints used for the CLP are not taken into account, such as load bearing
strength and stackability. There is also no maximum height for these ship containers. In conclusion,
current literature about packing Bay Trucks is limited, and can be extended by solving the multi-drop
PLP on the condition that all pallets are reachable at a stop.

The CLP has been proven to be NP-hard (Silvano Martello and Vigo (2000)). Therefore large in-
stances are not solvable in reasonable time. Martello et al. (2000); Hifi (2004) solve for optimality
using an exact model, both applying branch and cut. These papers only include volume constraints,
neglecting stability and stackability constraints.

When considering heuristics, a distinction can be made between constructive, tree-search and meta
heuristics. A constructive heuristic is used by Bischoff et al. (1995), building pallets from the bottom
upward using layers. Araújo and Armentano (2007) proposes a constructive heuristic in which items
are placed one-by-one on a pallet choosing the next item probabilistically. Metaheuristics are widely
studied for the CLP. Kang et al. (2012) constructively stacks items in a bin and improves the solution
with the use of a genetic algorithm to maximize the total amount of items packed in a bin. Bortfeldt
and Gehring (2001) uses a genetic algorithm differently by creating vertical layers of items. A tabu
search is performed by Bortfeldt et al. (2003) using a distributed-parallel approach including stability
constraints. Liu et al. (2011) also takes the load bearing strength into account, maximizing the total
amount of used space in a bin. Another promising metaheuristic is simulated annealing. Wang et al.
(2012) use a multi-stage search based simulated annealing algorithm to maximize the total volume
utilization of a single container. Mostaghimi Ghomi et al. (2017) includes stability constraints, and
combines the algorithm with a MILP.

5



The CLP can also be seen as a Pallet Loading Problem (PLP). Instead of a widely spaced truck,
the available placement area is reduced to the size of a pallet. Pallets are subsequently placed inside
the truck. Although CLP and PLP share a lot of similarities, some algorithms perform better at CLP
than PLP. An example is Scheithauer and Terno (1996), who uses the concept of layering in which items
are first assigned to a layer of items with the same size, before being placed on a pallet. Júnior et al.
(2019) extend this approach by also allowing the top layer to be ’incomplete’, containing items of dif-
ferent height. Incomplete layers are formed with the principle of order stacking of Egeblad et al. (2010).

The use of layers, which is used in this thesis, is firstly studied by Scheithauer and Sommerweiß
(1995). Here the two dimensional rectangle problem is solved to obtain layers. Dividing the PLP in
2 sub-problems, namely creating layers and assigning layers to pallets, reduces the complexity of the
problem. In this thesis the creation of layers is combined with a genetic algorithm, as in Bortfeldt
and Gehring (2001). Instead of creating vertical layers, the algorithm proposed in this thesis uses
horizontal layers as its input, as inspired by Júnior et al. (2019). Besides, this thesis accounts for cases
including multiple customers instead of a single customer. Also, load bearing constraints for individual
items are taken into account, using the approach proposed by Elhedhli et al. (2019). The combination
of these approaches suit the data of Coca-Cola used in this research, taken all important constraints
regarding the beverage industry into account. How these approaches are implemented in practice is
described in more detail in the methodology section.
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3 Problem Description

This thesis solves the multi-drop PLP, which involves the transportation of items belonging to multiple
customers on a single truck. As a result, the unloading of the truck must be done in phases, with
the customers served one by one. To precisely define the PLP, the following notation is used. Let
T = {t1, t2} denote the set of available truck types, each with its own capacity and specific charac-
teristics. The information about pallets is represented by quadruple (m,W,D,H) consisting of the
number of pallets m, width W , depth D and maximum height H, which does not include the height
of the pallet itself. Let I = {1, ..., n} be the set of items that need to be loaded onto the pallets. Each
item i ∈ I has a specific width, depth, height, weight, load bearing strength and customer, denoted by
wi, di, hi, gi, bi and ci, respectively. Note that ci represents the customer and therefore the order in
which items are unloaded, where ci is unloaded before cj in case i < j. Furthermore, the set of items
contains a stackability matrix M = [ai,j ]n×n, indicating whether item i can be placed on top of item
j with i, j ∈ I and ai,j ∈ {0, 1}. The algorithm proposed in this thesis makes use of layers l ∈ L with
height hl such that hl = hi ∀ i ∈ l.

Typically, the objective of the PLP is to pack all items in a feasible manner while minimizing the
number of pallets used. However, in the dataset used for this thesis, feasibility is guaranteed and the
number of pallets that can fit in a truck is fixed. Consequently, the number of pallets used is not a
relevant factor in this particular PLP. Therefore, this thesis minimizes the total handling time, which
is represented by the time t. The handling time consists of a fixed penalty CP for opening truck com-
partments, and a variable relocation penalty pi. This penalty is incurred when item i has to be moved
during unloading to reach item j, with ci < cj , and is defined as pi = α+wi · β. Where parameters α
and β are predetermined and represent the fixed penalty per relocated item and the weight-dependent
penalty, respectively.

In this thesis, two types of trucks are considered. Namely, t1: a Bay Truck, and t2: a Standard
Truck. For Bay Trucks, pallets are placed in compartments, which are all accessible through the side
of the truck, while for Standard Trucks pallets can be only reached from the back of the truck. For both
trucks, a relocation penalty pi is charged for moving item i during unloading, while the compartment
penalty CP only applies to Bay Trucks. The compartment penalty is calculated for each compartment
to be opened, which may involve multiple compartments per stop. Despite the fact that pallets have
to be unloaded from the back of the truck in the case of a Standard Truck, shown in Figure ??, it is
still possible to access every pallet during unloading. However, if the pallets are located at the back of
the truck, it may be necessary to first remove other pallets that are in front, resulting in a relocation
penalty pi for each item i on the pallet. In order to solve the PLP, there are several constraints that
must be obeyed. These constraints are necessary to ensure feasibility of the final loading plan:

Volume constraint: The total volume of the items on a pallet cannot exceed its accessible volume.

That is,
∑

Vi ≤ WDH, for all items i on the same pallet, with Vi = widihi representing the volume

of item i. In addition, items may not overlap with each other, and also remain within the dimensions
of the pallet.

Customer demand constraint: All items need to be part of the loading plan exactly once. Only
one truck is used per instance, and all items have to be part of the loading plan of this truck.

Stability constraint: All items need to be stable on a pallet. This implies that items require suffi-
cient support when stacked.

Load bearing strength constraint: All items have a maximum weight which they can hold, bi. The
sum weights wj of items j resting on top of item i should be lower or equal than bi.

Stackability constraint: Some items can not be placed on certain other items. Stackability matrix
Mij represents which items can be stacked on top of other. If items i and j are not stackable, then
any overlap of the two items results in an infeasible loading plan.
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To satisfy all constraints of the PLP, assumptions need to be made. These assumptions are nec-
essary to ensure that the problem can be mathematically modeled and solved. This thesis applies the
following assumptions:

Item Stability assumption: In order to meet the stability constraint, all item need to be stably placed.
We assume that an item is stable if at least 70% of its lower surface is supported. Additionally, an
item is considered stable when all four of its corners are supported. Finally, we assume that when
layers have a fill rate of 70%, the stability constraints of each item can be satisfied, as also used by
Gzara et al. (2020).

Load bearing strength assumption: We assume that the weight of an item is distributed evenly on
the supporting items based on the fraction of support.

Stackability assumption: In this thesis, we present a method to account for stackability, as described
in section 5.5.3. We assume that 2 layers will not results in stackability issues in case α ≤ 0.4, where
α gives an indication of the amount of non-stackable items in those layers, as described in detail in
section 5.5.3.

Accessibility assumption: When unloading Standard Trucks, the assumption is made that filled pal-
lets need to stay side-by-side at any moment during unloading, due to stability. Besides, we assume
that pallets are not stable in case one side of the truck is unloaded, while the other side is still filled.
We illustrate this using Figure 1. For Standard Trucks, pallets 1 and 2 are accessible at the start of
unloading. In case pallet 1 if emptied, we are still allowed to unload items from pallet 3, without a
penalization being involved. However, when pallet 3 is fully unloaded and pallet 2 still contains items,
we assume that we are not able to freely reach pallet 5, without violating stability constraints. In this
case, a relocation penalty pi will be encountered for each item i on pallet 2.

Relocating assumption: For unloading item i, we assume that all items j placed above item i have
to be moved in order to reach it, resulting in a relocation penalty pj . In this case, item j does not
have to be directly above item j, being at the other side of the pallet, but above item i, still results
in a penalty. Furthermore, we assume that after an item is relocated, it is placed back on its original
pallet, without concerning stability or stackability constraints.
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Figure 1: Visualisation of a Standard Truck. The pallets, which are numerated, can
only be reached from the back of the truck.

As mentioned, the PLP is solved by minimizing over the total handling time t. We can confidently say
that a loading plan is optimal when the total handling time is equal to 0. However, a solution having
t > 0 does not necessarily mean that the optimal solution is not yet reached. An example of this is
shown in Figure 2. In this simplified version of the PLP, a penalty has to be encountered to ensure
feasibility. Therefore, we can not state if an solution is not yet optimal in case t > 0.

Figure 2: Items are labeled by customer. In this example, a relocation penalty for the
item of customer 2 is inevitable in order to reach feasibility.

9



4 Data

The data that is used is gathered in Japan by the beverage company Coca-Cola, one of the biggest
competitors in its working field in the world. The total data set exists of over 100,000 different real-life
instances. Every instance contains information about the truck, pallets, items and customers. For
each instance, it is guaranteed that the items and pallets can be stacked inside the available trucks to
form a feasible solution. In this section we evaluate the data, with the aim of finding out the structure
regarding the different truck types. Having a clear understanding of the data allows us to choose a
suitable approach to solve for the PLP.

When observing the data, one can notice a substantial difference between the instances for Stan-
dard Trucks and Bay Trucks. First of all, Bay Trucks are considered in 74.9% of the instances, while
Standard Trucks are only used in 25.1%. Furthermore, both trucks differ in the composition of their
items. Figure 3 shows the number of customers per instance for both truck types. From the more
than 100.000 instance we can determine the percentage of cases in which a certain amount of cus-
tomers is present. The results show that in 93% of the cases for Standard Trucks there is only one
customer, while for Bay Trucks this value is 47%, representing a much wider variation on the number
of customers. Having only one customer for Standard Truck implies that in the vast majority cases
the handling time is not taken into account. Namely, when there is only one customer to be served,
items will never be given a relocation penalty. This means that optimality is already guaranteed when
reaching feasibility. On the contrary, this does not hold for Bay Trucks. For a Bay Truck delivery with
only one customer we still need to pay attention to the location of the items, because compartment
penalties are involved. Taking this into account, together with the fact that Bay Trucks contain a
higher amount of customers on average, we state that loading pallets is more complex for Bay Trucks
than for Standard Trucks.

Figure 3: Percentage of instances in which the amount of customers is equal to a certain
value, for Bay Trucks (left) and Standard Trucks (right).

To get a better understanding of the data of both truck types, we take a closer look at the items
that need to be packed. Note that all items can be rotated sideways. However, just a small pro-
portion of items can be rotated upwards, i.e. put on their side. This is the case for 1.8% of all the
items. For Standard Trucks only 0.04% of items can be put on their side, for Bay Trucks this is 6.0%.
Moreover, it is useful to identify the amount of different item types per truck type. An item type
represents an items’ customer and its measurements. Two identical item types therefore belong to the
same customer, while also sharing the exact same dimensions. Having a small variety of item types
usually lowers the complexity of the problem, since there is less variability in the packing possibilities.
Furthermore, a layer-based approach, as used in this thesis, benefits from a low amount of item types,
since it makes it more likely that layers can be formed. Therefore, an overview of the number of
different item types can provide an insight in the both complexity as well as in the suitability for a
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layer-based approach. The composition of item types for both trucks are shown in Figure 4. What is
noteworthy is the amount of variation in the data for Bay Trucks, while in nearly half of the instances
of Standard Trucks at most 6 different item types are involved. From this we state that Standard
Trucks are likely to be suitable for a layer-based approach. Only in 4% of the instances there are more
than 35 different item types included. For Bay Trucks, it seems more of a challenge to create layers.
However, observing just the number of different item types does not give us an inclusive insight in the
possibility to create layers. For that, it is important to look at one more component.

Figure 4: Percentage of instances in which the number of different item types is within a
certain interval, for Bay Trucks (left) and Standard Trucks (right).

A requirement for a layer-based approach is the presence of items of the same height. A high va-
riety in item heights makes it likely that only a small proportion of layers can be made, which may
cause infeasiblity. To calculate the variety in item heights, we divide the heights in groups of 10 cm,
with group 1 containing 0-10cm, group 2 containing 10-20cm etc. Then, for each instance, we check
how many different height groups are present. The results show that a different amount of heights
of 5 is the most common for Bay Trucks, with a percentage of 17%. Besides, in almost 90% of the
instances there are not more than 10 different height groups present. For Standard Trucks almost all
instances have at most 10 different item heights, from which a large portion of 25% only has one item
height. These results are promising for a layer-approach since it is plausible that the low variety of
item heights makes it possible to create sufficient layers so that a feasible loading plan can be obtained.

Figure 5: Percentage of instances in which the number of different item heights is a
certain amount, for Bay Trucks (left) and Standard Trucks (right)
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We have now obtained a comprehensive understanding of the composition of items for both truck
types. In the PLP, items are first loaded onto pallets prior to being placed into the truck. It is
therefore crucial to also examine the different pallet variations and their dimensions. While in one
truck only one pallet variation is used, different instances may have different pallet sizes, depending
on the size of the truck. Figure 6 shows the composition of pallets per truck type. The pie chart
demonstrates that there are 2 distinct pallet types for Bay Trucks, of which the pallet with dimensions
0.9 x 1.1 x 1.4 is the most prevalent, constituting for 80.3% of the instances, with the dimensions
given in meters. For standard Trucks 4 different pallet variations are present, from which pallets with
dimensions dimensions 0.9 x 1.1 x 1.4 is the most common with a occurrence of 86.7%.

Figure 6: Pie charts of the proportion of the different pallet dimensions. Per instance,
only one type of pallet is used. The measurements (L x W x H) are given in meters.

To get a better understanding of the size of the instances, it is also useful to examine the size of
the truck. This is accomplished by determining the number of pallets that can be placed in the truck.
Figure 7 provides an overview of the number of pallets per truck type. The results indicate that Stan-
dard Trucks contain a significantly higher number of pallets compared to Bay Trucks. Regarding Bay
Trucks, we notice that the amount of pallets is always 10. For Standard Trucks, 67% of the trucks
contain 20 pallets, making it the most prevalent truck. The variety in the number of pallets for a
Standard Truck is caused by the fact that there exists a truck in which 2 different pallet sizes fit. Note
that per truck only 1 pallet size is used.

Finally, we consider two aspects that influence the feasibility of a solution. These are the load bearing
strength and the stackability of the items. The items that need to be loaded are mainly cans and
bottles. These items have the characteristic of having a high load bearing strength. Only in very rare
scenarios it may occur that the load bearing strength of one of the items in the truck is exceeded. Con-
servative tests turned out that for less than 1% of the items load bearing could play an issue, which is
very unlikely to result in infeasibility in practice. However, due to the sake of completeness, load bear-
ing strength is taken into account in this thesis. Regarding stackability, we calculated the percentage of
arrangements in which stacking two items is not feasible due to stackability. This is done by examining
all combinations of 2 items and, for each combination, considering the 2 possibilities for stacking the
items on top of each other. This results 2n different stacking arrangements. Subsequently, for each
stacking arrangement of 2 items, it is checked whether it is possible to stack the items in this manner.
For Bay Trucks, 8.3% of all arrangements are not stackable, while this is 3.4% for Standard Trucks. It
should be noted that two items of the same category, e.g. two trays of cans or two packages of bottles,
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Figure 7: Pie chart of the number of pallets that fit within a truck. For Bay Trucks,
pallets are placed within compartments, of which there are always 10.

can always be stacked on top of each other. This partly explains why the value for Standard Trucks
is lower than that for Bay Trucks, since Standard Trucks more often contain items of the same category.

One of the four sub-questions is: How does the Layer-based Algorithm scale depending on the fill
rate of trucks? To distinguish between different fill rates, instances are subdivided. For Bay Trucks,
we consider fill rates of 15%, 35%, and 55%, with the latter being a truck that is nearly ’full’. The
fill rate is the total amount of volume of all items, compared to the available volume inside the truck.
For standard Trucks, we examine the same percentages, and additionally add a 75% fill rate. Since
Standard Trucks primarily consist of identical items, they can be packed more efficiently, making it
possible to consider this higher fill rate as well. All instances are carefully selected and provide a
representative view of the entire dataset.

13



5 Methodology

When choosing for a suitable method it is important to note that the Pallet Loading Problem requires
a different approach than the general 3D Bin Packing Problem (3D-BPP). Loading items on compact
pallets instead of loading items directly in the container is more likely to violate the stability con-
straints. The load on pallets need to be stable, independent of the load plan of other pallets. Where
the 3D-BPP can acquire stability by the support of all adjacent items, the PLP, by definition, only
allows items to be supported by fellow items on that pallet.

Since stability is a crucial aspect of the PLP, it would be convenient to place two items sharing
the same height next to each other on a pallet, which makes it possible to stably place a new item on
top. This principle is used by creating horizontal layers: a group of items with homogeneous height
that fit within the length and width of a pallet. By creating these layers, and subsequently stacking
these layers on top of each other, the size of the problem is reduces significantly. This principle was
used to develop the Layer-based Algorithm. In this chapter, we explain the steps that the Layer-based
Algorithm performs, the aspects that are taken into account and how its features can contribute in
generating a good loading plan.

The Layer-based Algorithm consists of 5 different parts, represented by Figure 8, which are elabo-
rated in 5 subsections of this chapter. At first, section 5.1 gives an overview of the pre-processing steps
of the data. Section 5.2 describes the Layer-creating Algorithm, which consists of an iterative process
of creating layers, where each iteration has, among other things, a different ’superitem’ composition,
which is explained in 5.1.2. For each created set of layers, the Palletizing Algorithm is used to place
the layers and rest items onto pallets, as explained in section 5.3. In the Palletizing Algorithm, a
distinction is made between Standard Trucks (5.3.2) and Bay Trucks (5.3.3) . For Standard Trucks,
we present a heuristic, while for Bay Trucks, we present both a GRASP algorithm combined with
Genetic Algorithm 1 (5.3.5) and an MIP approach (5.3.6) to place layers on pallets. Subsection 5.4
describes the process of combining the found solutions, which is done by Genetic Algorithm 2. Finally,
three methods are described in section 5.5 which are able to showdown different feasibility aspects of
the found solution. All steps combined form a single loading plan.

Figure 8: Representation of the proposed methodology
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5.1 Pre-process

Pre-processing is critical step of the layer-based algorithm, as it ensures that the data is ready to be
used by the Layer-Based algorithm. Besides, pre-processing the data contributes to efficiency of the
layer-based algorithm.

The first step of pre-processing the data is to create a set of merged items: M = {i ∈ I ,∃j ∈
I | wi = wj , di = dj , hi = hj , ci = cj , i > j}. We then subtract M from I to form a new set of
items. Note that the amount of items does not change, since the item amounts of the merged items
j are added to i. In conclusion, all items sharing the same dimensions and customer are merged, and
considered to be identical. For example, a tray of Coca-Cola cans is considered to be identical to a
tray of Fanta cans, in case both items belong to the same customer. In this way, the total amount of
different item types is reduced, which reduces the complexity of the instance.

After adding identical items together, all different orientations are added per item type. Each item
can be horizontally rotated, but only some items are allowed to be rotated vertically. During pre-
processing, horizontal rotations are not considered. The possibility to rotate an item horizontally is
considered during the creation of layers, since this does not affect the height of an item. However, a
vertical rotation affects the height of an item, which plays an important when creating layers. There-
fore, all items that can be rotated vertically are added twice to the item pool, once for each orientation.
At the stage of creating layers, when the item is placed inside a layer, not only the amount of items
left to pack of that orientation is updated, but also that of the vertically rotated counterpart.

5.1.1 Cartonize

An important step of the pre-process is cartonizing. Cartonizing, also known as case packing or case
filling, is the process of arranging and packaging items inside a box. Some instances contain very small
items, e.g. packages of tea. Those items may cause stability issues when packing them individually
on a pallet. In order to stably place those items, cartons are available in which the small items can
be packed. During this pre-processing step all small items, that have at least two dimension below
20 cm, are considered to be placed inside cartons. The available carton sizes are given for every instance.

When cartonizing, the goal is to pack the items as efficiently as possible. Therefore, we try for
each item type two different orientations inside every carton. Either all items are placed inside their
original rotations, or all items are rotated by swapping their x and y dimensions. The combination
of the carton and item orientation with the least empty space is chosen. It is not possible for item of
different customers to be in the same carton due to inefficiency during unloading.

5.1.2 Superitems

Items inside a layer share the same height by definition. This means that it is only possible to create
the layers if we have items of exactly the same height. However, this principle is inconvenient in many
practical occasions. For example, when there is much variation in height in the items that need to
be loaded, it may be the case that there are not enough items of the same height to fill a full layer.
Besides, only allowing items of the same height to be on the same layer is conservative, and may result
in a poor solution.

To tackle this problem, the algorithm makes use of ’superitems’. A superitem, s ∈ S, is an item
consisting of multiple items on top of each other. This allows small items to be stacked together
so that the height of a big item can be matched. Together they can form a layer. By introducing
superitems it will be possible to construct layers consisting of a combination of tall and short items,
while maintaining the homogeneous height of the layer. This provides more flexibility in the creation
of layers. After all superitems are made, S is added to I, so that S ∪ I = {1, ..., n, n + 1, ..., n +m},
with m defined as the amount of created superitems. Note that the formulation of I allows an item
to occur multiple times in the set, either as an individual item or as part of one or more superitems.
This will be clarified later in this section.
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Superitems are defined as follows: s = {(i, j) | hi + hj = hx ± δ, widi ≥ wjdj , wjdj ≥ 0.7widi}.
As shown, there are some restrictions when creating superitems. First, items are only chosen if they,
when stacked together, match the height of an already existing item, defined as hx. The height does
need not match exactly, but should be within a small margin δ, which is explained in the next para-
graph. Furthermore, when packing a Standard Truck, superitems are only created of items i and j
if ci = cj . For Bay Trucks at most 2 different customers can be present in a superitem. Note that
the item with the highest surface is used as the bottom item. Due to stability reasons for stacking,
superitems are only made when the surface of the upper item is at least 70% of the surface of the
item below. The formulation of s shown above regards superitems consisting of 2 subitems. In ad-
dition, we also allow for superitems consisting of 3 subitems, of which the formulation is given as
s = {(i, j, k) | hi + hj + hk = hx ± δ, widi ≥ wjdj ≥ wkdk, wjdj ≥ 0.7widi, wkdk ≥ 0.7widi}

Before creating superitems, all items are grouped based on their height. When forming these height-
groups, the ’height margin’ should be taken into account. That is, all items in a layer share the same
height including a small margin, named δ. δ is set to 10 millimeters, as used in Elhedhli et al. (2019).
This means that the height difference inside a height-group should at most be 10 millimeters. As a
result, multiple groupings of item-heights can be formed. For example, 3 items with heights 190 mm,
200 mm and 210 mm could either be arranged as 190/200 and 210, or 190 and 200/210. The choice
of how the height-groups are formed plays an important role in the creation of superitems. Therefore
all possible height-group combinations are considered during pre-processing. For each combination of
height-groups, all possible superitems are determined, which are all added to I. Not all superitems in
I will be actually part of the final loading plan, but this allows the iterative Layer-creating Algorithm
to quickly choose which superitems are formed and which are not, without any further calculations.

5.2 Layer-creating Algorithm

The creation of layers is an iterative process, where each iteration differs in input. This difference lies
in the composition of height-groups, the chosen superitems and their quantities. For each iteration, a
subset of I is chosen, in which each item is either present individually or as a part of a superitem. In
addition to the random choice of the height-groups and superitems, several steps of the Layer-creating
Algorithm contain randomness, allowing us to find a unique set of layers out of each iteration. Each
iteration is called a ’layer-creating iteration’, where λ represents the total number of iterations. Out
of all the created sets of layers, multiple loading plans are created, which are later used to find 1
solution, which is explained in section 5.4. The psuedocode of the Layer-creating Algorithm is given
in Algorithm 1.

Algorithm 1 Layer-creating Algorithm

for the number of layer-creating iterations (λ)
while sufficient items to form a layer

1. pick a starting customer
2. if sufficient items to fill a layer for 70%

create layers with 2D-packer (5.2.1)
return to step 1

else
Pick (new) joining customer

Standard Truck → pick either preceding or succeeding customer
Bay Truck → pick customer sharing the most layers with the starting customer

if no customer to choose from
remaining items of starting customer are rest-items
return to step 1

else
add superitems
return to step 2
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During the pre-processing of the data, all items are sorted by height. Each height-group is considered
individually, and per group the Layer-creating Algorithm seeks to create as much ’good’ layers as
possible. To do so, the algorithm chooses a random height-group and initiates by picking a random
’starting customer’, of whom we try to make new layers first. Two scenarios are possible when consid-
ering the items of this customer. First, if the items together cover a sufficient area so that they meet
the 70% fill rate. In this scenario the items are packed with the help of a 2D-packing algorithm, as
described in section 5.2.1. The 2D-packer tries to form as many layers as possible from these items.
The second scenario concerns the case where the surfaces of the customer’s items do not add up to
70% of the pallets surface, or, in rare cases, when the 2D-packer does not succeed in packing at least
1 layer while sufficient surface is available. In this case, items from another customer, but with the
same height, are selected to be put together with the starting items. But, which costumer should we
choose as the ’joining customer’? The answer to this question is different for Standard and Bay Trucks.

When considering Standard Trucks, pallets are unloaded from the back of the truck to the front.
Therefore, it is important that items are placed in the right sequence. With this in mind, we choose
the joining customer to be either the customer that is unloaded 1 stop earlier, or 1 stop later, which is
chosen randomly. If none of these options contributes to reach the threshold of 70%, no layer is made
and another starting customer is chosen.

Unlike Standard Trucks, Bay Truck come with the advantage that all pallets can be reached di-
rectly from the side. Therefore, customers who are unloaded in succession do not necessary need to be
placed close to each other in the truck. On the other hand, having a small variety of customers in one
pallet minimizes the total compartments that need to be opened, which can save handling time. When
forming layers of multiple customers, it is preferred to form a layer of customers who are already put
together in other layers. In this way a pallet may be formed with just a small variety of customers.
Therefore, when picking the next customer it is considered which customers are already put together
within a layer. The customer who shares the most layers with the starting customer is chosen as the
joining customer. Otherwise, a random customer will be chosen. Note that were Standard Trucks
could have a maximum of 2 different customers per layer, Bay Trucks typically include a larger variety
of customers, wherefore they may include a total of 3 customers inside a layer.

Now that we discussed which customers are picked to form layers with, the question arises how the
superitems fit into this procedure. The superitems consisting of just one customer don’t cause any issue
since they are just treated as a regular item. On the contrary, superitems of multiple customers are
only inserted during the creation of multi-customer layers. That is, when multiple customers are chosen
to be placed together on a layer, the superitems are added which share this customer-configuration.
In this way, superitems do not increase the number of customers in a layer, while they may contribute
in achieving the 70% threshold.

After all the steps have been completed, the Layer-creating Algorithm has formed a set of layers
L, together with some rest-items. These are the items that did not succeed to be put into a layer, and
are added on top of the pallets at a later stage. Rest-items are represented as r ∈ R, with R being the
set of rest-items. Despite not being guaranteed, we strive to minimize the size of set R by creating as
many layers as possible. Set R containing many items may result in infeasibility, as we will place the
rest-items at a later stage on top of pallets.

5.2.1 2D-packing algorithm

Once determined which items will be on the same layer, the items are packed using the 2D-packing
module named Rectpacker, which is described in depth in Huang and Korf (2013). This module takes
a set of items as input and returns 2 dimensional layers. Items can be packed in two dimensions in var-
ious ways, each method with its own pros and cons. Jylänki (2010) describes three different methods,
namely the Shelf, Guillotine and Maximal Rectangles algorithm. When deciding for the right method
it is important to focus on two factors, namely running time and the quality of the solution, which
can be expressed as the fill rate of the created layers. The higher the fill rate, the better the algorithm
manages to pack the items efficiently. For all three methods, different sub-variants are available which
are listed in Jylänki (2010).

17



The Shelf Algorithm turned out to be both on running time and computational worse than the other
options, and therefore only the Guillotine and Maximal Rectangles algorithm are tested thoroughly.
The test results can be found in the Appendix (8) in figure 5, showing that the maximum rectangles
algorithm with the Best Short Side Fit configuration is the optimal packing strategy. Therefore, only
this algorithm is explained in this section.

The Maximal Rectangles Algorithm initiates by sorting the items on surface. The items will be
placed one by one, starting with the item with the highest area. For each item, it is checked whether
it can be placed inside an existing layer. If this is not possible, the item is added to a new empty layer.
After all items have been placed, it is determined which layers meet the 70% fill rate. Layers that do
not satisfy this threshold are taken down again, and their items are returned so they can be used later
to create other layers.

Figure 9: The splitting axis method of the Maximal Rectangles Algorithm is used to divide the available
space into two boxes, Jylänki (2010)

But how does the algorithm determine at which location in the layer an item is placed, and in which
orientation? The algorithm does this by dividing the free space in a layer into different sections. This
splitting procedure is shown in Figure 9, and is performed before the placement of each item. Each new
section, also called a ’box’, forms a new option for the item to be placed. The different sub-variants of
the Maximal Rectangles Algorithm differ in the way in which the algorithm chooses the box to place
the item in. The Best Short Side Fit, which performed best, works as follows. When placing an item,
the algorithm considers all the optional boxes, which is visualised in Figure 10. Then, for each box,
the length of the longest leftover side is calculated: max(wb − wi, df − di), where wb and wi are the
width of the box and the item respectively. The depth of the box and the item are represented by db
and di. Note that an item will always be placed at the bottom-left corner of a box, and that for every
box two possible rotations are calculated. After all boxes and rotations of the item are considered,
the option with the minimal longest leftover side is chosen. The Maximal Rectangle Algorithm runs
in O(|B|2n) time, where |B| is the set of maximal free boxes that represents the free area left in the
bin at some packing step, and n the number of items. This proposition is proven by Jylänki (2010).
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Figure 10: Possible item locations in the Maximal Rectangles Algorithm. The box is
chosen in which the length of the longer leftover side is minimized, Jylänki (2010)

5.3 Palletizing Algorithm

For each layer-creation iteration, the Layer-creating Algorithm provides a set of layers L and a set of
rest-items R. The next step is to place all these layers and rest-items on pallets. For this process, the
handling time is minimized. In order to find a solution, palletizing is split into 2 parts. Firstly, layers are
placed onto pallets, while secondly the rest-items are placed on top of these pallets. Since Standard
Trucks and Bay Trucks are unloaded differently, and typically have to serve a different amount of
customers, the Palletizing Algorithm uses two different approaches for placing the layers onto pallets,
specific on truck type. For Standard Trucks a greedy heuristic (5.3.2) is used to place the layers on
pallets. This heuristic takes into account the location of the pallets inside the truck. The rest-items are
then placed on top of pallets with the help of a greedy heuristic (5.3.4). On the contrary, a Bay Truck
is independent on the location of the pallets since they can be accessed at all times. Furthermore,
Bay Trucks face more complex scenarios since there is a much wider range of customers in the layers.
To tackle this, two different palletizing algorithms are presented. The first algorithm partly consists
of a greedy algorithm in which layers are placed onto pallets (5.3.3). Thereafter, the rest-items are
placed on top of the pallet by the same algorithm that is used for Standard Trucks. This results in
a full loading plan. Iterating over this algorithm creates multiple random loading plans, consisting of
the same set of layers, which are used by Genetic Algorithm 1 (5.3.5) to improve the quality of the
solution. The second algorithm we present is a MIP approach, described in section 5.3.6. The MIP
approach seeks to find the optimal solution of assigning the layers and rest-items onto pallets. The two
different approaches for palletizing Bay Trucks will be compared based on their obtained fitness values
and corresponding running time. Based on these results we choose suitable palletizing approach to be
part of the Layer-Based Algorithm. An overview of the palletizing steps for both Standard Trucks and
Bay Trucks is shown in Figure 11

Figure 11: Visual representation of the palletizing procedure. A different heuristic is used for
palletizing Standard Trucks and Bay Trucks.
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The Palletizing Algorithm produces a full loading plan as output, in which the layers are assigned to
pallets, with any rest-items placed on top. A loading plan is assigned a fitness value, which equals
the total handling time. The penalty for opening a compartment, CP , is set to 15 seconds. For
the relocation penalty pi: α = 3 and β = 1. That is, a fixed penalty of 3 seconds is given for
each relocated item, while 1 second is added to this penalty for each kilogram of its weight. When
considering Standard Trucks, only a relocation penalty is considered. This means that a final fitness
value of 0 indicates optimality.In addition, Bay Trucks include CP . Since opening compartments is
inevitable, the handling time for Bay Trucks cannot be equal to 0. To gain a better understanding of
the optimality of Bay Truck solutions, we employ the following approach. For each customer involved,
CP is subtracted from the fitness value for Bay Trucks, since at least one compartment must be opened
for each customer. Additionally, we examine the total volume of each customer’s items and subtract
CP from the fitness value for the number of additional pallets required to accommodate this volume.
The amount of additional pallets is calculated based on a pallet fill rate of 100%. As a result, the
fitness value for Bay Trucks can also be equal to 0, which ensures that the loading plan is optimal.
However, it does not necessarily mean that a fitness score above 0 is a non-optimal solution, since in
some cases extra handling time may be inevitable.

5.3.1 Merge single-customer layers

Before the Palletizing Algorithm is used, layers consisting of the same customer are merged into one
layer. This only applies to layers consisting of just one customer. As a result, the total amount of lay-
ers is reduced, bringing down the overall computational time of the subsequent Palletizing Algorithm.
While merging layers, we might have to make a decision on which layers to bring together. This is
the case when the total height of the layers exceeds the maximum pallet height. Then the question
arises which layers will be merged together. A visualisation of the problem is shown in Figure 12.
This problem is a Bin Packing Problem, where we want to minimize the empty space on a fully-loaded
pallet. To solve this problem, a greedy heuristic is used. All layers are sorted by height, after which
the highest layer is chosen first. For every layer, the greedy algorithm checks if it can be added to
the highest pile of layers, without exceeding the maximum pallet height. Is there no pile of layers
available? Then this layer will be the first layer of a new pile. This results in piles of merged layers,
where every pile is considered as 1 layer in the Palletizing Algorithm.

Figure 12: An example on how layers are merged in case they surpass the maximum pallet height.
A greedy approach, where layers are sorted on height, minimizes the empty-space.
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5.3.2 Layers: Standard Truck

For Standard Trucks, there are generally very few different customers in the truck. As a result, the
final solution is unlikely to contain extra handling time. Therefore, a greedy heuristic is chosen for this
type of problem. This enables us to quickly find a solution. To start the algorithm, layers are sorted
based on customer, where layers containing two customers are sorted in between those customers.
Then, starting with the latest customers, layers are placed as far in the back of the truck as possible,
starting with the highest layer. This can be either on an empty pallet, a pallet containing items of
the same customer or a pallet containing the customer that is unloaded one stop after. An example
of this scenario is shown in Figure 13. In this example, an orange layer needs to be placed inside the
truck. We prefer to place the layer on pallet 5, since this is the pallet furthest in the back that does
not result in a penalty. If we cannot fit the layer on pallet 5, pallet options 4,3,2 and 1 are considered,
in this order. Only if the layer is unable to fit in any of these pallet options, options 6, 7 and 8 are
taken into account, in this order. In case none of the pallet options fit, auxiliary pallets are added
to the truck on which these layers are packed. This results in an infeasible solution, in which every
auxiliary pallet adds 1000 extra seconds to the total handling time. Infeasible solutions are punished
rather than eliminated, since Genetic Algorithm 2 (5.4) may be able to use these loading plans to find
a feasible solution.

Figure 13: Standard truck, colors represent different customers. An orange layer can be
placed on pallets 1-5 without penalization, while pallets 6-8 result in a penalty.

After all layers are designated to a location in the truck, rest-items are assigned to the pallets. Since
Standard Trucks generally contain a small set of different item-types, R is usually very small, con-
taining only items which were not able to form a layer with a 70% fill rate with. These rest-items
are placed on top of pallets, which is explained in section 5.3.4. After the rest-items are assigned to
pallets, the total handling time is calculated. This calculation takes into account that the available
pallets change during the unloading process of the truck.
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5.3.3 Layers: Bay Truck

Bay Trucks come with the advantage that all pallets can be accessed at each stop. This makes their
location in the truck unimportant, unlike in the case of Standard Trucks. What is important is that
the items of identical customers should be distributed on as few pallets as possible, due to the extra
handling time that is taken into account for opening a compartment. In this section we explain how
layers are placed onto pallets for Bay Trucks, which consists of a GRASP algorithm. This algorithm
involves placing layers on pallets and subsequently merging the pallets together. An overview of the
algorithm is shown in Algorithm 2.

Unlike in case of Standard Trucks, the input of the Palletizing Algorithm for Bay Trucks consists
generally of a lot of rest-items. To handle this large number of rest-items, all pallets are formed con-
taining some empty-space on top. This space can be used to place the rest-items on. The height of
this space is determined before the algorithm starts, and is equal to the highest rest-item, where the
superitem rest-items are taken apart.

Algorithm 2 Palletize layers

lower the max height of pallets by the height of the highest rest-item
place single-customer layers on unique pallets
for each multi-customer layer:

assign layer to a pallet based on common customers
place layer on the best location within the pallet (Layer-placement Algorithm)

for each combination of pallets:
combine pallets if the handling time can be reduced (Layer-placement Algorithm)

while infeasible:
for each combination of pallets:

calculate the extra handling time (Layer-placement Algorithm)
combine pallets which cause the lowest extra handling time =0

As a first step, a distinction is made between layers consisting of one customer, and layers of multiple
customers. Note that the layers of one customer can in fact consist of multiple layers because of the
merging procedure executed before. Then, each layer of one customer is assigned a unique pallet. The
number of pallets used during this process does not have to match the available quantity of pallets in
the truck. After this step, layers consisting of multiple customers are placed. The layers are randomly
sorted and placed one by one on a pallet. The selection of the pallet is done in the following way.
For each pallet, we first check whether the layer fits in terms of height. If this is the case, we check
how many common customers there are between the layer and the pallet. Does the layer consist of
customer 2 and 3, and there are already items packed of customer 2 on the pallet? Then this pallet is
included as an option to be selected. When there are 2 common customers on a pallet, the probability
of this pallet is twice as likely. An example of this procedure is given by Figure 14. Furthermore,
when is at least one empty pallet left in the truck, this pallet is also considered as if it had 1 common
customer. Out of all options, one pallet is then selected.

Figure 14: When selecting a pallet for the layer consisting of customer 2 4, pallets 2
and 3 are considered since they have matching customers. Pallet 3 is twice as likely to

be selected, since it has two matching customers instead of one.
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After a pallet is chosen, the question arises on which location on the pallet the layer will be placed. By
location we mean whether the layer is placed above, below or somewhere between the already placed
layers. This question is answered by the Layer-placement Algorithm. First, the algorithm checks if
there is a location in which no handling time is involved. This is the case at a location where all
customers below the layer are unloaded later, and all customers above are unloaded earlier. If no such
location exists, then the relocation penalty is calculated for each location, after which we pick the loca-
tion with the lowest penalty. During this process, not all locations are calculated. Only the locations
which may contribute to a good solution are considered. For example, a layer with customer 2 will
always be placed below a layer with customer 1, thus the locations above layer 1 are not considered.
While calculating the handling time, we pay close attention to which items need to be moved during
unloading. Consider the following example, which is visualised in Figure 15. We start with a pallet
containing 2 layers. The upper layer contains items of customers 1 and 3, the bottom layer items of
customer 2 and 3. In case this pallet is unloaded, a handling time is included for moving the items of
customer 3 of the upper layer. This is because the items of customer 2 of the layer below are unloaded
first. Then, a layer existing of customer 2 is added to the pallet. Naturally, this layer is placed in
between the two layers on the pallet. Note that the inclusion of this layer does not affect the handling
time of the pallet since the items of customer 3 on the upper layer are moved anyway in because
customer 2 is already present beneath it. This example shows the calculations of the Layer-placement
Algorithm while finding the handling time per location.

Figure 15: The handling time for this pallet does not increase when adding the layer of
customer 2, since the upper layer is already impacted by this customer.

When all layers are placed, the pallets are considered for merging. That is, two pallets may be merged
into one pallet to reduce the number of compartments that need to be opened during unloading. The
algorithm starts by randomly picking two pallets which have at least one common customer, since this
results in one less compartment to open. From these two pallets, it is firstly checked if the they can
be merged without exceeding the maximum height of a pallet, minus the space that is assigned for
the rest-items. Secondly, if the pallets can be merged due to height, the layers of the first pallet are
combined and considered as ’one layer’. This single layer is then considered to be placed in the second
pallet with the help of the Layer-placement Algorithm, which is also used before. However, the pallets
are only merged if the (possible) additional handling time involved is smaller than the handling time
for opening an extra compartment. In case the pallets are not merged, two new pallets are considered
for merging. The process of merging pallets either terminates if a time-saving combination is found,
or in case all combinations of pallets are unsuccessfully considered for merging.

When more pallets are packed than can fit in a truck, the solution is infeasible. As with Standard
Trucks, an additional handling time of 1000 seconds is added for each excessive pallet. In case of
infeasibility, the number of pallets could potentially be brought down by merging pallets. However,
pallets are originally only merged if they cause a reduction in handling time. In case of infeasibility
it is important to merge pallets at any costs. Therefore the Layer-placement Algorithm is used again,
but without checking for a reduction in handling time. Instead, all combinations are calculated after
which the option with the lowest handling costs is chosen. Is the solution still infeasible? Then the
second-best option is also executed (including the newly formed pallet). This procedure continues until
either the solution is feasible, or no more pallets can be merged. We now have allocated all layers to
the trucks. The next task will be to place the rest-items on top of the pallets.
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5.3.4 Rest-items

Placing rest-items is done by a greedy heuristic. This heuristic uses the created pallets as input,
together with the set of rest-items. An overview of the full-process of assigning rest-items is shown
in Algorithm 2. First, all pallets are checked for ’duplicates’. Two duplicate pallets are defined as
containing the exact same customers, which means that while placing the rest-items there is no dif-
ference in the two pallets. This lowers the number of calculations required, which especially benefits
Standard Trucks greatly due to the high similarity of their pallets. Before the rest-items are assigned
to pallets, the superitems that are present in the set of rest-items are broken down. Then, all rest-
items are sorted based on customer. For each customer, the total amount of handlings per pallet is
calculated. For example, if a pallet consists of customer 1 and 2, then a rest-item of customer 4 needs
to be handled twice on this pallet. All potential penalties are calculated, including pi and CP . The
extra compartment penalty only applies to Bay Trucks, and only in the event in which a rest-item is
placed on a pallet that does not include the customer of the rest-item. Then, for each item, all pallets
are ranked based on the penalty that is involved when assigning the rest-item to it. Subsequently,
each item is provisionally assigned to their ’favourite’ pallet, the option which causes the least penalty.
The algorithm then attempts to place the rest-items, starting with the pallet with the most area of
rest-items allocated to it. All rest-items assigned to this pallet are sorted on surface, the biggest item
will be placed first. This ensures optimal operation of the 2D-packer. The 2D-packer, the same as
used during the creation of layers (5.2.1), is also tested on performance, from which we conclude that
the Maximum Rectangles Algorithm with the Best Short Side Fit decision rule is the optimal packing
strategy. This is the same strategy used for packing layers. In case the sum of the surfaces of all
rest-items assigned to a pallet exceeds 60% of the surface area of the pallet, the packing algorithm will
be utilized. Otherwise, we assume that the items can be placed on the pallet, which reduces the time
consuming 2D-packing. If the surface area of the remaining items does exceed the 60% of the pallets’
surface area, then the packing algorithm packs the rest-items in turn, trying to fit as many items onto
the pallet. In case an item does not fit, it is assigned to its second-favourite pallet. This process is
repeated for each pallet. It may be the case that there are still rest-items left to pack after all pallets
are considered. This means that the found solution is infeasible, for which we assign a penalty to
the solutions’ fitness of 1% of the surface, given in centimeters, of the left-over rest-items. To place
this penalty into perspective, a standard-sized tray of soda cans would induce a penalty of about 100
seconds in case we are not able to put in onto any of the pallets.

Algorithm 3 Palletize rest-items

break superitems apart
for each rest-item:

calculate rest-items’ penalty per pallet
assign rest-item to its ’favourite’ pallet

for the number of pallets:
pick the pallet to which the most area of rest-items is assigned to
if the area is larger than 60% of the pallet surface:

sort its rest-items from smallest to largest area
assign as many rest-items as possible to the pallet using the 2D-packer
assign not-packed rest-items to their second-best pallet option

else:
assign all the rest-items to the pallet

The 60% threshold is used to reduce the computation time of assigning rest-items. Although unlikely, it
is possible that this threshold may result in infeasibility, which occurs when it is not possible to fit the
items onto the pallet, while the item surfaces occupy only 60% of the pallet surface. After the Layer-
based Algorithm is completed and a loading plan has been created, the rest-items are yet again assigned
to pallets. This time, the 60% threshold is not included, to guarantee that if a feasible solution is found
now, the items will physically fit on the pallets. Additionally, we obtain the coordinates for each item
through the use of the 2D-packer. It may happen that during this final check, the configuration of the
rest-items is found to be infeasible. In case of this unlikely event, it is possible to select not the best,
but the second-best solution from Genetic Algorithm 2.
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5.3.5 Genetic Algorithm 1: Bay Truck

The algorithm to palletize layers for Bay Trucks (5.3.3) is a Greedy Random Adaptive Search Proce-
dure (GRASP), which may cause large variation in the quality of the solution. Besides this variation,
it may also be possible that the GRASP is not able to find the optimal solution. Since the out-
come of the Palletizing Algorithm may play a big role in the quality of the final solution, we propose
a genetic algorithm which combines different randomly generated loading plans created by the GRASP.

The genetic algorithm works in the following way. First, a selection of the original population size is
taken with the use of a tournament. In this tournament, 20% of the original population survives. This
is done by organizing multiple completions in which one parent wins. For example, for a population
size of 100, 20 completions are organized each containing 5 parents, resulting in a new populations of
20 parents. In the second step, 2 parents are taken from the new population randomly. Note that both
parents have the same sets L and R. From the first parent a pallet is chosen from which a group of
layers is picked, e.g. l2 and l4. A group of layers is defined as multiple layers which are stacked on top
of each other within the parents’ loading plan. Both the choice of the pallet and the size of the group
of layers is done randomly. The found layer group will be later used to create offspring with. Note that
the orientation within the group of layers does not chance. The group of layers will be stacked in the
same way within the offspring. After the group of layers from parent 1 is chosen, the algorithm repeats
the process for parent 2. Note that from parent 2 we can now choose layers from the set L\l2, l4. The
process of picking a group of layers from a parent is repeated until all layers are chosen. Then, the
layers, including the fixed groups of layers, are placed on a pallet using the original GRASP to place
layers on pallets (5.3.3). After a loading plan for the layers is made, the rest-items are assigned to the
pallets (5.3.4). This results in a full loading plan, with a possibly improved composition of layers per
pallet. Each newly found loading plan is checked for uniqueness. If a found loading plan is already
part of the population, it is rejected and 2 new parents are chosen. In case this scenario occurs 3 times
in a row, the creation of offspring is aborted, and the genetic algorithm continues with the current
pool of parents.

The survivors from the tournament create new offspring, which together form the next generation.
This process has 2 different stopping criteria, which are determined based on the results. The first
stopping criterion is the maximum number of generations, i.e. the depth of the algorithm. The algo-
rithm terminates when this number of generations is reached, using the best known solution obtained
at that point. Next to the depth, another stopping criterion is used which is able to terminate the
prematurely. That is, the algorithm stops if a certain amount of generations have occurred in which
no improvement in solution value is found. This stopping criterion may have a positive impact on the
running time of the algorithm.

5.3.6 MIP approach

The Palletizing Algorithm assigns both layers and rest-items to pallets. This algorithm runs in reason-
able time, which is essential since it is used frequently within the Genetic Algorithm 2. However, this
may come at the expense of the quality of the loading plan. Therefore, we present a MIP approach
for palletizing L and R. Since the MIP approach solves to optimality, it can additionally used to give
an insight in the quality of the solutions of GRASP and the Genetic Algorithm. For Standard Trucks,
preliminary results show that the GRASP together with the Genetic Algorithm is frequently able to
solve to optimality, which we know if the handling time is equal to 0. For Bay Trucks on the other
hand, this is not the case. In order to find the optimal solution for Bay Trucks, and therefore find a
lower bound for the Palletizing Algorithm, we use a MIP approach. Just as the GRASP, the MIP has
a L and R as input. The output is a loading plan containing the exact locations of all items, together
with the corresponding penalty. This penalty is minimized in the objective function of the MIP.

Inside the MIP-formulation the following sets are used. L is the set of layers and P the set of pallets.
I = {0, ..., imax} is the set of indices on a pallet. The index denotes the location on the pallet. For
example, when a layer is placed at i = 0, it is located at the the bottom of the pallet. The set of
customers is defined as C. The index indicates the location on a pallet, e.g. a layer at index 0 indicates
that the layer is located at the bottom of the pallet.
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The MIP-formulation contains two matrices of constants, namely matrices a and b. Matrices a1lc
and a2rc indicate the penalty for layer l, or rest-item r respectively, in case an item of customer c is
placed below the layer or rest-item. In other words, matrix a denotes the penalty that is accounted for
items that have to be moved in order to reach other items. Matrices b1lc and b2rc exists of binary values.
b1lc is equal to 1 if layer l contains customer c, and 0 otherwise. b2rc equals 1 if rest-item r belongs to
customer c, and 0 otherwise. Other constants inside the MIP are the compartment penalty (CP ), the
maximum pallet height (PH) and the pallet surface (PS). The height of layers and rest-items is given
by h1

l and h2
r respectively, while sr represents the surface of rest-item r. q represents the number of the

to-open-compartments of which a compartment penalty is inevitable. q is pre-calculated by examin-
ing per customer the number of pallets that are at least required to load the total volume of their items.

The following variables are used inside the MIP. Binary variables xlpi indicate if layer l is assigned to
pallet p at index i. For rest-items, binary variables yrp are used which are 1 if rest-item r is assigned
to pallet p, and 0 otherwise. The variables z1lc and z2rc are binary and indicate if layer l, or rest-item
r respectively, is affected by customer c. In other words, at least one item of customer c is beneath
layer l on the same pallet. Binary variable dcpi indicates if an item of customer c is packed at pallet
p up to, and including, index i. Furthermore, binary variables kcp are used to determine how many
compartments need to be opened during unloading. That is, kcp equals 1 if an item of customer c is
packed on pallet p, and 0 otherwise. The variable mp ∈ N0 represents the highest rest item on pallet
p.

min
z1,z2,k

∑
l∈L

∑
c∈C

z1lc · a1lc +
∑
r∈R

∑
c∈C

z2rc · a2rc + (
∑
c∈C

∑
p∈P

kcp − q) · CP (1)

s.t.
∑
p∈P

∑
i∈I

xlpi = 1 ∀l ∈ L (2)

∑
p∈P

yrp = 1 ∀r ∈ R (3)

z1lc + 1 ≥ xlpi + dcpi-1 ∀l ∈ L, ∀c ∈ C (4)
∀p ∈ P, ∀i ∈ I \0

z2rc + 1 ≥ yrp + dcpimax
∀r ∈ R, ∀c ∈ C (5)
∀p ∈ P

dcpi ≥ dcpi-1 +
∑
l∈L

xlpi · b1lc − 1 ∀c ∈ C, ∀p ∈ P (6)
∀i ∈ I

M · kcp ≥ dcpimax
+

∑
r∈R

yrp · b2rc ∀c ∈ C, ∀p ∈ P (7)

mp ≤ yrp · h2
r ∀r ∈ R, ∀p ∈ P (8)∑

l∈L

∑
i∈I

xlpi · h1
l +mp ≤ PH ∀p ∈ P (9)∑

r∈R

yrp · sr ≤ PS ∀p ∈ P (10)∑
l∈L

xlpi ≤ 1 ∀p ∈ P, ∀i ∈ I (11)∑
l∈L

xlpi − xlpi+1 ≥ 0 ∀p ∈ P, ∀i ∈ I \imax (12)
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The first step when breaking down each of the constraints of the MIP-formulation is to describe the
objective function (1). The first part of the objective, including z1 and a1, penalizes for items that
have to be moved in order to reach items underneath. These penalizations are for items that are
part of a layer. The second part on the other hand, including z2 and a2, penalizes similarly, but for
rest-items. The last part of the objective function, including k penalizes for the total amount of com-
partments that are opened. Note that q ·CP is subtracted from the objective function, acknowledging
the compartment penalty that is made regardless, which is not part of the final objective value.

Constraints (2) and (3) make sure that every layer and rest-item is placed on a pallet. In constraint
(4) and (5) z1 and z2 are defined, keeping track of which customers are located underneath the layers/
rest-items. Constraint (6) identifies which customers are present up to a certain index. Note that dcpi
also has values for i = −1, which are 0 by definition. Constraint (7) keeps track of the customers that
are present on a pallet. Constant M is set to 1 + the number of rest items, since this is the maximum
value that the right hand side of the equation can obtain. The highest rest item per pallet is defined
by constraint (8). Constraint (9) ensures that the maximum height of a pallet is not surpassed, taking
into account the height of the layers together with the highest rest-item on the pallet. Constraint (10)
ensures that the area of all rest items does not exceed the surface of the pallet. Constraint (11) states
that an index is not used more than once. Finally, constraint (12) prevents gaps in between layers, e.g.
when index 0 and 2 are filled, but no layer is placed at index 1. Important to note is that experiments
have shown that constraint (12) contributes to an increase in running time. Therefore, we choose to
leave out this constraint and instead remove any gaps between the layers after a solution is found.

An important side-note to the MIP-formulation is that it does not guarantee feasibility. The rea-
son for this lies in constraint 8. Here we assume that rest-items can be packed on a pallet not more
than the pallets surface is being used. This constraint involves the following drawback. Namely, it can
not be guaranteed that all rest items fit on a pallet, without overlapping each other. The 2D-packer
described in section X could determine if the combination of rest-items can be feasibly packed, but this
2D-packer can not be implemented in a MIP-formulation. Therefore we choose to only restrict the rest
items on the pallet surface, which results in a lower bound. This lower bound is equal to the optimal
solution in case all rest-items are able to fit on their designated pallet, which can be checked after the
solution is obtained with the use of the 2D-packer. Despite the fact that the obtained solution value
is not guaranteed to be optimal in all cases, it can either way be used as a lower bound for GA1 to
give a indication about the quality of its results.
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5.4 Genetic Algorithm 2

For making a single loading plan, it is determined in advance which item heights are able to be placed
on the same layer and which superitems are created, together with their quantities. These processes
are performed randomly. Also random is the process of choosing which customers will be packed
together on the same layer. All these random choices have their own influence on the creation of a
loading plan. This implies that creating multiple loading plans results in a pool of potentially different
solutions. This pool can then be used as the input for Genetic Algorithm 2. The goal of this algorithm
is to find a newly, and hopefully better, solution selecting a combination of different layers from the
original pool of solutions.

The principle of Genetic Algorithm 2 is very similar to Genetic Algorithm 1. We want to combine 2
loading plans, taking layers randomly from each parent, to form a new loading plan with the potential
of having a better fitness value. The big difference however, lies in the different item compositions
within layers. In other words, the layers of one parent are not the same layers of the other parent. This
makes the process much more complex, since the items within a layer of parent 1 may be all spread
out within different pallets for parent 2. Therefore, a slightly different approach is used for Genetic
Algorithm 2, from which the pseudocode can be found by Algorithm 4.

Algorithm 4 Genetic Algorithm 2: combine full loading plans

for the number of generations:
organize tournament
while the population is not full:

select two parents
while still layers available to select:

select a group of layers from parent 1 or 2 to pass on to the child
update available layers

create new layers from the remaining items 5.2
palletize layers and rest-items to obtain 1 child 5.3
if the obtained child is unique in the current population:
add child to population

elif found 3 duplicate children in a row:
break: stop increasing the population
continue to next generation

if best solution from population did not improve for x generations in a row:
break: stop genetic algorithm

The first step of Genetic Algorithm 2 is to obtain a small selection from the population, which will be
used to create offspring with. Like Genetic Algorithm 1 (5.3.5), a tournament is organized in which
20% of the population survives. Subsequently, selecting a group of layers randomly from a parent is
done identically as in Genetic Algorithm 1. However, there is 1 significant difference. Namely, during
the process of selecting layers, we keep track off all the item amounts. These are the amount of items
which need to be packed into the truck, but are not (yet) packed. When selecting a group of layers
from the first parent, we update the item amounts, so that we know which layers we can select at
the next iteration from the second parent. A visualisation of this process is shown in Figure 16. This
process is performed iteratively between both parents, until no more layers from any parent can be
chosen. At this point, we have obtained a set of layers, which we define as L1, together with a set
of items. From these remaining items, we attempt to form new layers using the Layer-creating Algo-
rithm (5.2), resulting in a new set of layers L2. We then combine the two sets to form a new set of
layers: L = L1 ∪ L2. Besides the layers, we have set R, representing the rest-items. L and R are then
palletized using the Palletizing Algorithm 5.3), which results in a full loading plan. Genetic Algorithm
2 uses the same stopping criteria used for Genetic Algorithm 1, where the value of the parameter x -
which indicate after how many generations without improvement in a row the algorithm terminates -
is determined after evaluating the results.
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Figure 16: When generating offspring, GA2 picks a random pallet from Parent 1. A
group of layers on this pallet is selected and given to the offspring. Subsequently, the
available layers of Parent 2 are updated, from which a random pallet is selected again.

During the creation of off-spring, we want to avoid creating children that are already present in the
population, as this can negatively impact the diversity of the population. To prevent this, the existing
parents must be monitored. While this may not pose a problem in GA1, checking for duplicates in
GA2 is more complicated. In GA1, it is evident if two parents are identical, since all parents contain
the same set of layers. However, in GA2, the sets of layers differ. One could keep track of the location
of each item in the loading plan, but this is a time-consuming process and would also allow for two
nearly identical parents to be present in the population. To prevent this, duplicates are checked as
follows. For each parent in the population, we keep track of the different item types per pallet. When
a new child with an existing fitness value is produced, the item configuration per pallet is compared.
If they match, the child is considered a duplicate solution and new offspring is generated.

5.5 Feasibility check

Using the Layer-based algorithm, we are able to find a loading plan in which the exact location of
each item is determined in the truck. However, how do we know if this solution is feasible? To
answer this question, we look at 4 different components for feasibility. Namely, stability, load bearing
strength, stackability and occupied volume. The last-mentioned can simply be checked by looking
at the number of used in the obtained loading plan. If more pallets are required than available in
the truck, the solution is infeasible. For the other three components, a more comprehensive analysis
is required to determine feasible. In this chapter, we describe methods that check for the stability,
load bearing strength and stackability of items, allowing us to identify the feasibility of the obtained
solutions. This provides a broader understanding of the quality of the solution, and can contribute to
the tuning of the parameters regarding feasibility.

5.5.1 Stability

An item is considered to be stable if at least 1 of 2 requirements is met. First, at least 70% of an
items surface should be supported, as also used by Gzara et al. (2020). If this does not hold, is it also
sufficient if an item is supported at all its four corners. Here, each corner needs to be supported by
at least 5cm to ensure stability. During the process of creating layers, a minimum fill rate of 70% is
required by which we assume stability Gzara et al. (2020). Although unlikely, it may be the case that
two layers can not be stacked stably on top of each other, despite both having a fill rate of at least
70%. To see if this is the case for an obtained loading plan, we check for stability for each individual
item. To do so, we first have to distribute the items evenly within layers. That is, the 2D-packer, used
to create the layers, places items without taking the distribution of a layer into account, as shown in
Figure 17a. Therefore, to test for stability for each individual item, we first have to spread the items
evenly within layers, as shown in Figure 17b
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(a) (b)

Figure 17: On the left, items are placed with the help of the 2D-rectpacker. On the
right, the items are spread out

To distribute items evenly on a pallet, we use a approach in which the items can be shifted within their
layer. This approach uses linear constraints, allowing it to be solved with a solver. It is important
that items can move without their x and y coordinates being taken into account simultaneously, which
- together with the interaction of other items - would result in non-linearity.

Therefore, a LP-formulation is used in which items can only be moved in the positive direction, while
maintaining their relative position to the other items. Within this LP-formulation, the following sets,
constants, parameters and variables are used. Note that this program is used for each layer indepen-
dently. The only set present is I = {1, 2, ..., n}, which includes all items on the layer. Constants W
and D represent the width and depth of pallet, i.e. the maximum dimensions of a layer. Parameters
wi and di are the width and depth of item i, while qxi and qxi represent the initial x and y coordinates
of item i. Furthermore, binary parameters axij and ayij are predetermined to be 1 if item i and j are
’neighbours’, and 0 otherwise. That is, item i and j are neighbours if j is on the right side of i, or
above respectively. Note that this means that axij is only 1 if j is also within the depth of item i, as
can be seen in figure 18. Variables xi and yi define the new x and y coordinates of item i. Finally, dxi
and dyi describe the distance between item i, and its closest original neighbour, in x and y direction
respectively.

max
dx,dy

∑
i∈I

dxi + dyi (13)

s.t. dxi ≤ axij(xj − xi − wi) +W (1− axij) ∀i, j ∈ I (14)

dxi ≤ axji(xi − xj − wj) +W (1− axji) ∀i, j ∈ I (15)

dyi ≤ ayij(xj − xi − wi) +D(1− ayij) ∀i, j ∈ I (16)

dyi ≤ ayji(xi − xj − wj) +D(1− ayji) ∀i, j ∈ I (17)

xj ≥ axij(xi + wi) ∀i, j ∈ I (18)

yj ≥ ayij(yi + di) ∀i, j ∈ I (19)

xi ≥ qxi ∀i ∈ I (20)

yi ≥ qyi ∀i ∈ I (21)

xi ≤ W − wi ∀i ∈ I (22)

yi ≤ D − di ∀i ∈ I (23)
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The objective function (1) sums over the distances to each items closest neighbour in x and y di-
rection. The objective function maximizes the minimum distance between the items, ensuring that
items are placed as far apart from each other as possible. Constraints 2 - 5 define variables dxi and
dyi . Furthermore, constraints 6 and 7 make sure that items keep their relative positions to each other.
Constraints 8 and 9 allow items to only move in positive directions, while constraints 10 and 11 make
sure that all items stay within the pallets’ dimensions.

Figure 18: Parameter axij = 1 since item j is to the right of item i

Using the above LP-formulations results in evenly distributed layers, as can be seen in . Now, for
each item it is possible to check for stability, by considering the support of its surface. However,
it should be taken into account that this approach does not guarantee stability, since the relative
orientation of items in between layers is not included in the LP-formulation. Therefore, examining
stability results rather in an approximation than a hard conclusion. This also holds for the the other
feasibility components as load bearing strength and stackibility. Allocating items to a location in a
layer independently of these components provides a conservative results on feasibility. Nevertheless,
the newly-distributed layers are used to provide a rough impression about the solutions’ feasibility.

5.5.2 Load bearing strength

Each individual item has a maximum weight that it can bear, also referred to as the load bearing
strength. In the final solution each item is checked on the weight that it carries. If at least one item
carries more weight than it can bear, then the total solution is considered to be infeasible. In order to
calculate the weight on each item, we create a graph of nodes and arcs, as used by Gzara et al. (2020).
In this graph, each node represents an item, while an arc describes the distribution of its weight. The
weight of each item is distributed based on its surface area by which it is supported. An example of a
graph representation is shown in Figure 19. In this figure, 30% of the supported surface of item 5 is
carried by item 3. Therefore, item 3 carries 30% of the weight of item 5. Since item 3 is supported by
item 2, the weight of item 5 is then also transferred to item 2. Repeating this process for each nodes
results in a full graph, by which the loaded weight per item can be found.

The data used in this thesis mainly exists of items used by the beverage industry, such as cans and
bottles. These items come with the specific characteristic of having a high load bearing strength. Since
it is unlikely that the load bearing strength of any item is violated, the Layer-based Algorithm does
not take the load bearing strength into account when placing items on top of each other. However, to
ensure feasibility, the final loading plan is checked on violations of the maximum load bearing strength.
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Figure 19: Graph representation of the items in a pallet, Gzara et al. (2020)

5.5.3 Stackability

Stackability plays an important role in the Layer-Based Algorithm. Namely, not being able to stack
certain items can cause major limitations during palletizing. Ideally, to ensure feasibility, we only stack
two layers on top of each other if we know with certainty that the non-stackable items do not have
any surface overlap. However, during the process of palletizing, we do not know the exact locations
of items within a pallet. At this stage, it is only known which items are present in the layer. The
ultimate location of items within a pallet is only determined when the final loading plan is obtained.
Therefore, we have to make an approximation whether 2 layers can be stacked validly on top of each
other during palletizing. We do this by identifying the items that may cause stackability issues when
placing the layers on top of each other. For each layer, we calculate how much of the total item surface
consists of these problem-causing items. Summing the fractions of both layers indicates the likelihood
that these two layers can be stacked on top of each other, without causing stackability issues. The
value of this likelihood is referred to as α. In case α = 2, we are certain that the layers will cause
stackability issues. On the contrary, α = 0 assures that both layers can be stacked validly. For any
value of α in between we cannot say with certainty whether the layers can be stacked on top of each
other..

During palletizing, two layers are rejected to be stacked on top of each other if α > 0.4. The value of
0.4 is chosen based on experiments. This threshold makes it unlikely for the layers to cause stackability
issues, while allowing layers with a small α to be stacked freely each other. When a layer is rejected,
the Palletizing Algorithm picks a new location, starting with the second-best option on the same pallet.
The second-best location is also checked for stackability, and is only accepted if its penalty is within
25% of the penalty of the original option. If not, then the remaining pallet options are considered
again.
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6 Computational results

In this section, we present and analyse the computational results regarding the Layer-based Algorithm.
In section 6.1, we show process of tuning the parameters of Genetic Algorithm 1 for the Palletizing Al-
gorithm for Bay Trucks. The performance of Genetic Algorithm 1 is compared with the MIP approach
in section 6.2. Thereafter, we tune the parameters for Genetic Algorithm 2 in section 6.3, after which
the Layer-based Algorithm can be tested. The computational results of the Layer-based Algorithm
are showcased in section 6.4.

All algorithms are programmed using Python 3.8.8, where CPLEX 20.1 is used as a solver for both
MIP approaches. As an interperter, PyPy 3.11 is used. The computational outcomes were derived
using an Intel(R) Core(TM) i7-8650U CPU processor equipped with 16 GB of RAM.

6.1 Tuning Genetic Algorithm 1

Both Genetic Algorithm 1 and Genetic Algorithm 2 require tuning of specific parameters in order to
achieve optimal results. These parameters play a crucial role in determining the behavior of the algo-
rithm and its convergence towards a solution. Without proper tuning, genetic algorithms may suffer
from slow convergence or may not converge at all. Note that tuning Genetic Algorithm 1 only applies
to Bay Trucks, as a different greedy heuristic is used for Standard Trucks. For Genetic Algorithm 1,
we tune 2 different parameters. These are the population size and the number of generations, which
are determined simultaneously. This is done by running the algorithm for a high number of genera-
tions, in this case 100, for various population sizes. For each chosen population size, we examine the
percentage gap in fitness value relative to the best known solution over the number of generations.
This gap, as any other percentage gap referred to in this section, is calculated as shown in Equation
1. In the numerator, +1 is added to allow calculations where the fitness value is zero. The best known
solution is the result obtained after 100 iterations, i.e. generations, have been performed using the
largest tested population size.

Gap to best known solution =
fitness found solution− fitness best known solution

fitness best known solution + 1
· 100 (1)

In total, 50 different instances are tested. For each instance λ = 10, resulting in 500 tests, from
which the average result per generation is determined. Figure 20a shows the obtained results for Bay
Trucks with a 55% fill rate. From the figure, we observe that the percentage gap to the best known
solution does not or barely change over the number of generations. The ultimate height of the percent-
age gap is almost exclusively determined by the population size. This holds for all 3 fill rates. From
this, we conclude that Genetic Algorithm 1 fails to make a positive contribution to the fitness score of
the obtained solution. Therefore, we decide not to use Genetic Algorithm 1 and instead focus on its
preceding greedy heuristic.

The preceding algorithm used to place layers on pallets is a GRASP, meaning that multiple itera-
tions are performed, resulting in a varied selection of solutions. To determine the optimal number of
iterations needed to find a suitable solution, we introduce a stopping criterion the iterations of the
GRASP. The GRASP terminates after x solutions have been found in a row without an improvement
in the best-found fitness value. To determine the optimal x, various values are tested. For each value of
x, the GRASP terminates at a certain amount of iterations, which results in a loading plan. The fitness
value of this loading plan is then compared to the fitness value of the best known-solution, which is
obtained after 1000 iterations of the GRASP are performed. Figure 20b shows the average results on
the same 500 test-cases that were used before. From these results, we determine the optimal x, taking
the required iterations into account together with the percentage gap to the best known solution. It is
important to note that the determination of x is trade-off between computational time and quality of
the solution. We select x at the point where we only observe a small improvement in the percentage
gap relative to the number of iterations. As a result, we select a x of 4, 10 and 20 for Bay Truck fill
rates of 15%, 30% and 55%, respectively. A complete overview of the computational results for all Bay
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(a) (b)

Figure 20: In Figure a, the coloured lines represent population sizes showing the
convergence rate of Genetic Algorithm 1. In Figure b, multiple values for the stopping

criterion are analysed.

Truck fill rates can be found in the Appendix (8) in Figure 23.

6.2 Palletizing Algorithm vs MIP approach

In this thesis, we proposed two distinct methods for palletizing layers: the Palletizing Algorithm, com-
prising a GRASP, and a MIP approach. In order to assess the quality of the Palletizing Algorithm
and determine which of the two approaches is most suitable, we compare the computational results of
both algorithms. Only for Bay Trucks the heuristic is compared to a MIP approach, because initial
experiments show that the greedy heuristic for Standard Trucks is already capable of creating optimal
solutions. For each of the 3 different fill rates for Bay Trucks, namely 15%, 30%, and 55%, we examine
5 instances with λ = 1. We have selected only 5 instances because this approach allows us to gain
specific insights into the characteristics of these instances. Besides, potentially long running times of
the MIP approach prevent us from testing a large amount of instances. Additionally, we let the MIP
run for a maximum time of 30 minutes. The optimality gap is calculated as shown in Equation 1, where
the ’best known solution’ is the obtained result of the MIP approach, which is optimal in case the MIP
is not terminated prematurely. In other cases, both the current solution and the, possibly infeasible,
lower bound solution is provided. The gap to the lower bound is calculated as the percentage gap
between the found solution from the MIP approach, and its provided lower bound. The computational
results are shown in Table 1.

Table 1: Comparison in fitness and time of the Palletizing Algorithm
and the used MIP-formulation for different Bay Truck fill rates.

15% fill rate 35% fill rate 55% fill rate
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

heuristic
fitness 59.7 164.6 15.0 15.0 15.0 131.9 90.0 193.9 51.4 157.7 470.6 3260.7 237.2 45.0 158.8
time (s) .001 .004 .000 .000 .000 .004 .009 .062 .003 .017 .115 .029 .023 .002 .0327

MIP
fitness 49.8 132.0 0.0 15.0 15.0 96.2 74.8 92.4 49.8 115.8 131.5 102.7 120.7 45.0 130.7
LB⋆ - - - - - - - - - 91.9 65.9 53.8 - - 70.6
time (s) .694 68.7 .092 .039 .055 1250.2 25.3 805.5 2.5 1800 1800 1800 961.3 .08 1800

gap (%) 19.5 24.5 15.0 0.0 0.0 36.7 20.1 108.7 3.1 35.9 255.9 3045.3 95.7 0.0 21.3
gap to LB⋆ (%) - - - - - - - - - 25.7 98.1 89.2 - - 83.9

total items 91 86 123 148 103 208 253 223 195 205 409 321 394 319 331
unique items 45 62 42 6 17 80 63 92 63 94 100 81 50 298 86
customers 2 16 1 1 1 4 5 12 3 7 14 6 12 1 5

⋆ Lower bound is given in case the MIP terminated prematurely.
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The computational results show the difference between the heuristic and MIP approach, with the
most notable difference being the runtime. The MIP approach requires significantly more time, and
for fill rates of 55%, it is not uncommon for the computations to be terminated prematurely after
30 minutes. For a low fill rate of 15%, the heuristic is occasionally able to find the optimal solution,
but for higher fill rates, and cases with a high number of customers/unique items, we observe large
optimality gaps on average. However, besides the quality of the result, a crucial aspect of the Palletiz-
ing Algorithm is its speed, as the algorithm is frequently used, mainly within Genetic Algorithm 2.
Therefore, despite the frequent high optimality gaps, the heuristic is chosen over the MIP approach
within the Palletizing Algorithm for Bay Trucks.

6.3 Tuning Genetic Algorithm 2

For Genetic Algorithm 2 we tune a total of 4 parameters. In addition to the population size and the
number of generations we tune the number of layer-creating iterations λ, and the amount of parents
taken per approach θ. As an example: performing 100 layer-creating iterations with θ = 3 results in
300 parents as an input for Genetic Algorithm 2. This number is then reduced to the population size
by picking the best solutions, i.e. the solutions with the lowest fitness value. Note that λ is defined
as the fraction of the population size so that when λ = 1 exactly the population size is generated as
input for Genetic Algorithm 2.

Tuning parameters for Genetic Algorithm 2 is a time-consuming process, as various values need to
be tested for all 4 parameters. These parameters all impact each other, hence we prefer to tune them
simultaneously. To do this in an efficient matter, we first focus on finding a rough estimate for each
parameter, after which a more specific search can be performed per parameter. This allows us to search
for the optimal value on a finer scale, while the risk of getting stuck in a local optimum is reduced.

To obtain an initial estimate of the optimal parameter settings a ranking system is used in which
different configuration settings are compared and bad options are eliminated early on. The ranking
system operates as follows. For each parameter a high and a low value is tested, resulting in 16 different
parameter configurations. These values have been determined by conducting preliminary small tests
to gain an understanding of suitable values. The 16 configurations are tested on an instance, obtaining
the different fitness values and the corresponding computational times. Based on the obtained results,
the configurations are ranked. Naturally, we aim for the lowest possible fitness value, but this should
not come at the cost of a high running time. An optimal solution strikes a balance between these two
factors. The different configurations are ranked by comparing each configurations’ outcome with each
other once. The comparison determines which of the two configurations is the best. This configuration
receives a point. After all configurations have been compared, they are ranked based on the number
of times they emerged as the best from the comparison.

The comparison of two results works as follows. When one of the two solutions has both a lower
fitness value and a lower running time, it is undoubtedly better. However, for all other cases, the
relative difference in time and fitness is considered. When one solution runs three times as long as
the other, there is a relative difference of 200%. The solutions are considered to be equally good if
the relative difference in fitness is a tenth of the difference in time, in this example 20%. If the other
solution runs within this time, it is considered the best of the two. The factor of 10 is arbitrarily
chosen and depends on the preference for a solution with a low fitness or short running time. As
a side note, all solutions are artificially set to have a minimum of 3 seconds of running time. This
ensures that we can make a fair comparison even if the configurations terminates almost instantly. In
this, we assume that it does not matter for us whether a solution is found within or at exactly 3 seconds.

The ranking of solutions is performed in different rounds, each round consisting of 10 instances. After
ranking the configurations 10 times, we add up all the rankings. If a configuration is scored best for
an instance, it is awarded 16 points. The second-best configuration is awarded 15 points, and so on.
This creates a new ranking that lists all configurations in order, based on their performance over 10
instances. The top 50% of configurations are then taken forward to the next round, for testing on
10 additional instances. This process is repeated 4 times until only one configuration remains. It
is important to note that previous rounds are taken into account during the ranking process. After
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each round, the 50% worst configurations are eliminated and the scores of the remaining 50% are
compared once again with each other to produce a new ranking. These scores are then carried over
to the next round. This means that when reaching the last round, which consists of of only two con-
figurations, the winner is determined by looking at the ranking across 40 instances, rather than just
the 10 instances of that round. The configuration of the winner is used to further analyse the values
of the parameters. The results from the ranking procedure are displayed in the Appendix (8) in Table 6.

After obtaining the initial parameters for the different trucks and fill rates, we refine these param-
eters more precisely. Firstly, we tune the population size and the number of generations, fixing λ and
θ. Namely, we test how the gap to the best known solution varies over time for different population
sizes. The best-known solution is determined by running four times the number of iterations that per-
formed best in the ranking procedure, using the largest tested population size. For Standard Trucks,
we tested 100 instances per fill rate, while for Bay Trucks, due to the longer running time, we tested
50 instances per fill rate. The results of Bay Trucks with a 55% fill rate are given in Figure 21a. The
results of both Trucks, including all fill rates, can be found in the Appendix (8) in Figure 24.

It is important to note that there is no optimal point to stop the genetic algorithm, and that this is a
trade-off between time and quality of the solution. We choose to stop the algorithm when the curve
flattens and only a relatively small percentage of progress can be made over time. It is worth noting
that in case time is less a significant factor, a higher value for the number of generations can be chosen.

Based on the obtained results, we pick a value for the population size together with a suitable running
time. The number of generations is then determined by observing the average number of iterations
performed by Genetic Algorithm 2 during the selected running time. The chosen parameters are shown
in Table 2. For Standard Trucks with a fill rate of 15%, Genetic Algorithm 2 was not executed in
any of the 100 instances, since an optimal solution was always found beforehand. We conclude that a
genetic algorithm is not suitable in this case.

Subsequently, we determine λ by running the instances again, but now for different values of lambda.
The results for Bay Trucks with a 55% fill rate are shown in Figure 21b. From these results, we observe
high variation for λ < 1. For λ ≥ 1, a linear regression line is drawn. The regression shows a straight
or slightly decreasing line for Bay Trucks, while for Standard Trucks we observe a slightly increasing
regression. This may be due to higher values of λ resulting in a lower diversity of the population.
Since all tests indicate that higher values for λ have little to no effect on the value of the solution,
while runtime increases, λ = 1 is chosen for all trucks. The results show that this is the lowest value
of λ for which consistent results can be obtained.

(a) (b)

Figure 21: In Figure a, the coloured lines represent population sizes showing the
convergence rate of Genetic Algorithm 1. In Figure b, the results for different numbers

of layer-creating iterations λ are shown.
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Finally, we tune θ. The ranking procedure shows that θ = 1 is always preferred over θ = 5. Testing θ
more in depth reveals that increasing θ has a negative impact on the solution value. This is most likely
due to the fact that increasing θ results in lower diversity in the population. Therefore, we decide to
use θ = 1 for all cases. Figure 2 shows the final configuration settings of all parameters.

Table 2: Final configuration settings of Genetic Algorithm 2 for the different Bay and Standard
Truck fill rates

population number of layer-creating parents per
fill rate size generations iterations (λ) iteration

Bay Truck
15% 50 85 1 1
30% 50 32 1 1
55% 125 16 1 1

Standard Truck

15% - - - -
35% 30 15 1 1
55% 30 29 1 1
75% 40 13 1 1

6.4 Final results

Now that a suitable palletizing algorithm has been selected and Genetic Algorithm 2 has been tuned,
the layer-based algorithm can be tested. To do so, we examine 5 different instances for each fill rate.
For each instance, multiple specifications are given, such as the number of unique items and the num-
ber of customers. This allows us not only to observe the fitness value and running time, but also to
examine how these other factors affect the performance of the Layer-based Algorithm. A solution is
considered to be feasible if all items are packed within the Truck. Besides, the specific feasibility of
individual items is given regarding stability, stackability and load-bearing strength. First, we analyse
the results for Bay Trucks, which are shown in Table 3. Thereafter, the results for Standard Trucks
are presented in Table 4.

Table 3: Final results of the Layer-based Algorithm for Bay Trucks.
For each fill rate, 5 instances are tested.

15% fill rate 35% fill rate 55% fill rate
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

fitness 0.0 9.5 64.9 0.0 0.0 50.8 15.0 15.0 30.0 4.1 191.3 190.7 145.8 58.3 69.5
time .78 10.21 5.43 5.26 7.12 25.43 4.19 4.31 .04 13.67 35.21 59.76 53.83 44.01 44.22
feasible yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes

items 102 189 97 112 142 276 232 209 248 213 321 349 312 352 335
unique items 36 116 73 40 49 95 37 26 4 77 81 181 154 100 115
pallets 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
customers 1 21 12 1 1 12 1 1 1 11 6 12 13 7 6

superitems 6 28 1 2 6 44 0 13 0 2 7 1 1 9 2
moved items 0 11 9 0 0 6 0 0 0 1 4 13 4 3 1
not-packed items 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
opened comp. 2 24 14 2 3 15 7 5 6 13 15 22 22 12 13

infeasible items:

stability 9 15 7 14 12 28 23 13 2 14 21 46 36 31 30
stackability 0 4 2 0 3 3 1 2 0 2 3 7 2 2 4
load bearing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Based on the results, we observe that the Layer-based Algorithm is able to generate a feasible so-
lution for all tested cases for Bay Trucks. However, for the majority of these cases, there is a handling
time involved. Despite the handling time, it may still be possible that in certain cases the optimal
solution is reached. Furthermore, the number of unique items and the number of customers impact the
quality of the solution. Additionally, we see that superitems were used for almost every instance. That
the use of superitems may play an important role in pallet loading is shown in Figure 22a, in which
customer are represented by color. In this visualisation of instance 1 of the 55% filled Bay Trucks, 7
superitems are used on the pallet most in front. As a result, the dark blue item can be stacked within
a layer and can therefore be placed at the bottom of the pallet.

Another remark of Figure 22a is that the before mentioned dark blue item could potentially be moved
to the pallet on the far-right, thereby reducing the opening of an extra compartment. This highlights
a limitation of the proposed Layer-based Algorithm. Layers are stacked up to the maximum pallet
height minus the height of the tallest rest-item. This might make the Layer-based Algorithm perform
poorly when there are tall, elongated items among the rest-items. Such objects are rare in the beverage
industry but can have a significant impact on the algorithm’s performance.

(a) Bay Truck 55% fill rate (b) Standard Truck 75% fill rate

Figure 22: Visualisation of the final loading plan for a Bay and Standard Truck
corresponding to their first instance in the results. Shades of blue represent customer

order. Pallet measurements are shown in centimeters.

The results for Standard Trucks are shown in Table 4. From the results, we see that an optimal
solution has been found for all instances up to a fill rate of 55%. However, for a fill rate of 75%, two
of the five instances are not feasible. The cause of this lies in the functioning of the 2D-packer. A fill
rate of 75% requires a high efficiency of the used space in a layer, which the 2D-packer cannot always
guarantee. Moreover, for Standard items, we see that superitems play a less important role. A visu-
alisation of instance 1 of the Standard Trucks with 75% fill rate is shown in Figure 22b. Additionally,
a full overview of the visualisations of the first tested instances for all fill rates can be found in the
Appendix (8) in Figure 26.
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Table 4: Final results of the Layer-based Algorithm for Standard Trucks.
For each fill rate, 5 instances are tested.

15% fill rate 35% fill rate 55% fill rate 75% fill rate

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

fitness 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2383.6 0.0 25.6 1673.2

time .01 .02 .01 .01 .01 .02 .01 .03 .02 .01 .08 1.43 .05 .06 .07 .52 7.56 .09 3.11 .84

feasible yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes no yes yes no

items 114 272 226 265 192 580 546 541 502 194 768 8140 720 807 796 830 985 1172 852 1280

unique items 45 208 3 6 5 15 8 10 43 129 1 6 1 19 6 13 8 10 6 1

pallets 10 26 20 20 26 26 20 20 26 10 20 26 20 20 20 20 20 20 20 20

customers 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1

superitems 9 10 0 0 0 8 43 17 2 2 0 0 0 103 0 0 64 0 0 0

moved items 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0

not-packed items 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0

infeasible items:

stability 3 11 0 1 3 12 8 5 5 6 1 2 0 16 3 6 12 34 34 1

stackability 0 6 0 0 0 0 2 0 2 0 0 0 0 4 0 0 0 0 0 0

load bearing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Finally, we observe the feasibility of the obtained solutions regarding stability, stackability and load
bearing strength. Starting with stability, we assumed that all items can be placed stabily as long as
layers maintain a fill rate of at least 70%. Since this is a hard restriction for the creation of layers, we
assume that despite some items being placed unstably, it will not lead to infeasibility. The reason for
insufficient support of items in the obtained solutions lies in the adopted MIP approach, which shifts
items per layer without considering the items directly above or below the layer. This also applies to
stackability. During the palletizing of layers, we take into account that only two layers can be stacked
on top of each other when α ≤ 0.4. Furthermore, we assume that this threshold for α will always result
in infeasible solutions. Therefore, even though some items may not be stacked correctly in the obtained
solutions, we assume that rearranging these items within their layers lead to feasibility. Lastly, we
observe that load bearing strength does not lead to infeasibility in any of the tested instances.
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7 Conclusion and discussion

In this thesis, we presented a solution approach to the the Pallet Loading Problem, while taking spe-
cific beverage industry constraints into account. The presented Layer-based Algorithm is a threefold
in which the total handling time, i.e. the required unloading time of all pallets inside the truck, is
minimized. Firstly, a greedy layer-generating algorithm is presented, which creates horizontal layers,
while also allowing items to be stacked vertically within one layer. Secondly, three different palletizing
approaches are presented to assign layers, and subsequently rest-items, to pallets. This includes two
different greedy heuristics, based on truck type, a follow-up genetic-algorithm and a MIP approach.
Thirdly, a second genetic algorithm is presented to combine and improve different loading plans. Sub-
sequently, a MIP approach is presented to stably place the items on pallets, after which 3 feasibility
checks are performed, regarding stability, stackability and load-bearing strength. Finally, the genetic
algorithms are tuned with a proposed ranking system, after which the obtained loading plans are eval-
uated based on fitness value and computational time.

The data used in this thesis is provided by beverage company Coca-Cola. The proposed methods
are specifically designed for the beverage industry, taking specific constraints into account, such as
stackability, and taking advantage of the favorable characteristics of the items, such as the fact that
low, wide items with high load-bearing strength are ideal for layer-stacking. In the data, two types
of trucks are present, namely Standard Trucks that can be unloaded from the back, and Bay Trucks,
which consist of different compartments that can be opened from the side. In addition to testing the
layer-based algorithm on both truck types, a distinction is made for each type between different fill
rates.

Firstly, in this thesis, we have examined how the heuristic palletizing algorithm performs compared
to the MIP approach. Both algorithms were tested on Bay Trucks, from which we conclude that the
solution quality of the heuristic does not benefit from the genetic algorithm, after which only the
GRASP is used. Comparing the GRASP with the MIP indicates that the GRASP provides solutions
with comparable quality in significantly less computation time for low fill rates of 15%, while for higher
fill rate of 35% and 55% the optimality gaps of the heuristics’ solutions increase drastically. Further
research could potentially improve the solution quality of the heuristic, albeit at the expense of slightly
longer running times. Overall, we can conclude that the heuristic approach is more suitable than the
MIP approach in the layer-based algorithm due to its lower running time.

Secondly, we address the impact of different truck types on the results of the layer-based algorithm.
In addition, we investigated the impact of different fill rates. In conclusion, we observe a significant
difference in performance between truck types. Due to the one-sided nature of the data and the limited
number of customers, the Standard Trucks are highly suitable for the layer-based approach. For fill
rates of Standard Trucks up to 55%, the optimal solution is found for all tested instances, typically
within a tenth of a second. For higher fill rates of 75%, infeasibility is observed in two out of five
instances. For high fill rates of Standard Trucks, future research could focus on efficient 2D layer
packing as it is the cause of the infeasibility.

For Bay trucks, the large variation in item sizes, combined with a wide range of customers, often
leads to additional handling time in the fitness value. Nevertheless, the layer-based algorithm is able
to find a feasible solution for all tested fill rates within a maximum of one minute running time. Over-
all, we conclude that the layer-based algorithm is highly suitable for Standard Trucks. Although we
cannot determine whether the obtained values for Bay trucks are optimal, the results seem promising,
as they combine feasibility with a reasonable running time.

Finally, we examine the feasibility of the obtained solutions. The presented MIP approach, to place
items stably, spreads out the items within each layer. The results show, despite our assumption that
stability issues would not arise, unstable placement of items in almost all tested cases. Future research
might solve this issue by taking items from the layer below into account within the MIP. In addition,
stackability could also be involved inside the MIP. Namely, in nearly all tested instances of Bay Trucks
we have encountered stackability issues, despite taking stackability into account during the placement
of layers. For Standard Trucks, we encounter virtually no stackability issues due to the small variation
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in items. We did not have any load-bearing issues in any of the tested cases, due to the high item-
strength specific for items in the beverage industry.

Taking all results into account, we conclude that a layer-based algorithm is promising for instances in
the beverage industry. Especially for Standard Trucks, the algorithm generates optimal solutions very
quickly. For Bay Trucks and fully packed Standard Trucks, further research is necessary to investigate
the functioning of the palletizing GRASP, the 2D-packing algorithm, and MIP to feasibly spread items
within a layer. Further research on these topics could potentially benefit the running time of the
algorithm, together with its solution quality.
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8 Appendix

Table 5: Average results of various 2D-packer configurations. The Max Rects Bssf configuration
performs best on fill rate for both truck types.

(a) Bay Truck

Max Rects
configuration layers fill rate (%) time (·10−2 s)

Bl 19,1 78,5 5,7
Bssf 18,9 80,4 6,4
Baf 19,2 78,5 6,1
Blsf 15,2 75,5 6,8

Guillotine
configuration layers fill rate (%) time (·10−2s)

Bssf Sas 19,5 76,5 5,9
Bssf Slas 19,6 76,5 5,9
Bssf Maxas 18,1 78,2 5,3
Blsf Sas 5,5 69,9 6,9
Blsf Slas 6,6 71,0 6,9
Blsf Maxas 4,9 69,0 7,3
Baf Sas 19,0 78,5 5,6
Baf Slas 19,1 78,4 5,6
Baf Llas 17,9 78,2 5,7
Baf Maxas 18,0 78,2 5,5
Baf Minas 19,3 77,8 5,5

(b) Standard Truck

Max Rects
configuration layers fill rate (%) time (·10−2s)

Bl 88,4 77,9 37,6
Bssf 88,8 79,5 48,1
Baf 87,8 78,6 39,4
Blsf 48,9 66,8 84,9

Guillotine
configuration layers fill rate (%) time (·10−2 s)

Bssf Sas 89,7 73,5 59,9
Bssf Slas 89,6 73,4 61,5
Bssf Maxas 88,4 77,8 37,3
Blsf Sas 30,0 48,5 86,8
Blsf Slas 30,6 48,7 95,3
Blsf Maxas 25,7 47,6 93,5
Baf Sas 87,6 78,8 40,4
Baf Slas 87,8 78,8 41,2
Baf Llas 87,6 78,8 39,1
Baf Maxas 87,5 78,8 39,2
Baf Minas 88,6 77,9 43,1
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(a) (b)

(c) (d)

(e) (f)

Figure 23: On the left, the coloured lines represent population sizes showing the
convergence rate of Genetic Algorithm 1. On the right, multiple values for the stopping

criterion are analysed.
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Table 6: Results of the ranking system for tuning the parameters for Genetic Algorithm 2.

(a) Parameter values for the 16 configurations

population number of layer-creating parents per
config. size generations iterations (λ) iteration

1 20 50 20 1
2 20 250 20 1
3 100 50 20 1
4 100 250 20 1
5 20 50 20 5
6 20 250 20 5
7 100 50 20 5
8 100 250 20 5
9 20 50 100 1
10 20 250 100 1
11 100 50 100 1
12 100 250 100 1
13 20 50 100 5
14 20 250 100 5
15 100 50 100 5
16 100 250 100 5

(b) Bay Truck 15% fill rate

round 1 round 2 round 3 round 4
config. score cum. score cum. score cum. score cum.

1 32 32 17 37 8 24 3 10
2 57 57 28 62 8 38 4 23
3 54 54 36 62 10 41 - -
4 73 73 - - - - - -
5 48 48 39 65 - - - -
6 70 70 - - - - - -
7 60 60 34 63 - - - -
8 74 74 - - - - - -
9 69 69 29 67 - - - -
10 42 42 30 54 17 45 - -
11 66 66 30 68 - - - -
12 80 80 - - - - - -
13 76 76 - - - - - -
14 85 85 - - - - - -
15 84 84 - - - - - -
16 101 101 - - - - - -

(c) Bay Truck 35% fill rate

round 1 round 2 round 3 round 4
config. score cum. score cum. score cum. score cum.

1 71 71 20 56 6 32 12 15
2 67 67 27 63 27 63 - -
3 72 72 - - - - - -
4 80 80 - - - - - -
5 67 67 45 80 - - - -
6 69 69 41 79 - - - -
7 57 57 40 72 - - - -
8 91 91 - - - - - -
9 70 70 23 56 13 40 18 25
10 64 64 36 70 - - - -
11 92 92 - - - - - -
12 73 73 - - - - - -
13 68 68 28 63 14 42 - -
14 71 71 - - - - - -
15 79 79 - - - - - -
16 108 108 - - - - - -

(d) Bay Truck 75% fill rate

round 1 round 2 round 3 round 4
config. score cum. score cum. score cum. score cum.

1 70 70 45 82 - - - -
2 52 52 46 77 - - - -
3 42 42 27 57 10 37 8 24
4 38 38 24 50 17 43 - -
5 85 85 - - - - - -
6 83 83 - - - - - -
7 45 45 40 71 - - - -
8 54 54 40 74 - - - -
9 74 74 - - - - - -
10 74 74 - - - - - -
11 71 71 21 63 9 36 2 16
12 79 79 - - - - - -
13 108 108 - - - - - -
14 111 111 - - - - - -
15 73 73 - - - - - -
16 57 57 36 68 24 60 - -

(e) Standard Truck 15% fill rate

round 1 round 2 round 3 round 4
config. score cum. score cum. score cum. score cum.

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 - -
4 0 0 0 0 0 0 - -
5 0 0 0 0 - - - -
6 0 0 0 0 - - - -
7 0 0 0 0 - - - -
8 0 0 0 0 - - - -
9 0 0 - - - - - -
10 0 0 - - - - - -
11 0 0 - - - - - -
12 0 0 - - - - - -
13 0 0 - - - - - -
14 0 0 - - - - - -
15 0 0 - - - - - -
16 0 0 - - - - - -

(f) Standard Truck 35% fill rate

round 1 round 2 round 3 round 4
config. score cum. score cum. score cum. score cum.

1 0 0 5 5 0 2 0 0
2 0 0 5 5 0 2 0 0
3 0 0 2 2 0 2 - -
4 10 10 - - - - - -
5 10 10 - - - - - -
6 10 10 - - - - - -
7 0 0 3 3 0 3 - -
8 0 0 5 5 - - - -
9 10 10 - - - - - -
10 10 10 - - - - - -
11 0 0 9 9 - - - -
12 0 0 10 10 - - - -
13 10 10 - - - - - -
14 0 0 12 12 - - - -
15 0 0 - - - - - -
16 0 0 - - - - - -

(g) Standard Truck 55% fill rate

round 1 round 2 round 3 round 4
config. score cum. score cum. score cum. score cum.

1 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 1
3 0 0 0 0 0 0 - -
4 12 12 - - - - - -
5 0 0 0 0 0 0 - -
6 0 0 0 0 - - - -
7 6 6 0 5 - - - -
8 6 6 0 5 - - - -
9 18 18 - - - - - -
10 6 6 0 5 - - - -
11 17 17 - - - - - -
12 18 18 - - - - - -
13 6 6 - - - - - -
14 25 25 - - - - - -
15 13 13 - - - - - -
16 13 13 - - - - - -

(h) Standard Truck 75% fill rate

round 1 round 2 round 3 round 4
config. score cum. score cum. score cum. score cum.

1 20 20 16 26 6 19 3 10
2 24 24 12 27 8 21 3 13
3 36 36 15 33 7 22 - -
4 30 30 14 35 - - - -
5 22 22 29 42 - - - -
6 33 33 18 36 - - - -
7 26 26 13 30 9 23 - -
8 19 19 19 33 - - - -
9 57 57 - - - - - -
10 57 57 - - - - - -
11 52 52 - - - - - -
12 68 68 - - - - - -
13 49 49 - - - - - -
14 42 42 - - - - - -
15 61 61 - - - - - -
16 79 79 - - - - - -
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(e) (f)

Figure 24: Results of Genetic Algorithm 2 for Bay Trucks, where the coloured lines on
the left represent population sizes. The figures on the right represent the impact of the

number of layer-creating iterations on the solution value.
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(a) (b)

(c) (d)

(e) (f)

Figure 25: Results of Genetic Algorithm 2 for Standard Trucks, where the coloured lines
on the left represent population sizes. The figures on the right represent the impact of

the number of layer-creating iterations on the solution value.
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(a) Bay Truck 15% fill rate (b) Bay Truck 35% fill rate (c) Bay Truck 55% fill rate

(d) Standard Truck 15% fill rate (e) Standard Truck 35% fill rate

(f) Standard Truck 55% fill rate (g) Standard Truck 75% fill rate

Figure 26: Visualisation of the final loading plan for Bay and Standard Trucks. Shades
of blue represent customer order. Pallet measurements are shown in centimeters.
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