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Abstract

This thesis aims to find an effective method to maximize the revenue of airlines operating
a large-scale network using network seat inventory control. The problem consists of allocating
flight leg capacities to customer requests under network effects and fixed fare classes. Compared
to literature, this thesis incorporates aircraft configuration selection during the optimization
and finds a control mechanism that is flight leg based, instead of the traditional flight leg-cabin
based. We propose three variants of an approximation method based on decomposition by a
mathematical programming model and solving independent single-leg problems using a dynamic
programming model. Bid prices are obtained as a control mechanism, which are dynamic, being
a function of both the remaining time and remaining capacity in the cabins. Applying the
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still work within a reasonable amount of time. Moreover, a Monte Carlo simulation of the
booking process is performed using eight smaller subnetworks of the network of the airline. The
simulation showed that the proposed approaches can, on average, obtain revenue increases of up
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gap of 2.3% for the introduced approximate upper bound. However, sensitivity analysis showed
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the network. That is, when demand factors increase, the relative performance increase seems to
decrease slightly and when the network contains more connecting flow, the relative performance
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1 INTRODUCTION

1 Introduction

After the deregulation of the U.S. airline industry, revenue management systems became indispens-
able for airline capacity control, having resulted in four to ten percent increase in revenue (Fuchs,
1987). Simply put, American Airlines described in its 1987 annual report the objective of revenue
management as to sell ”the right seats to the right customer at the right price”. Price and seat
inventory control are major options among the techniques used in revenue management. Airlines
practice price discrimination by offering a wide variety of fare products, which are uniquely defined
by price, service and restrictions, to capture demands from different market segments and different
times of the season. However, due to keen competition, price options are limited by what other
airlines offer in similar markets. Individual carriers do, however, have full control over the seat
inventory control component. Therefore, managing the mix of fares, in contrast to managing the
fares itself, is often the most effective and important part of revenue management systems.

Seat inventory control is about controlling the number of seats available for each fare product at
any given time. This type of quantity-based revenue management is, next to the airline industry,
also used in different industries such as the hotel, cruise line, car rental, entertainment and media
industries. This thesis will specifically focus on the airline industry and the research will be con-
ducted for a major airline in Europe operating a large-scale network. Essentially, the problem of
seat inventory control within the airline industry can be seen as finding a trade-off between revenue
realized by greater demand for discounted seats against revenue lost due to denying full-fare requests
by having already accepted prior discounted seat sales. The difficulty here is that discounted-fare
requests are often observed before full-fare requests, which is caused by the nature of the customer
of the respective fare classes, namely business travelers for the full fares and leisure travelers for the
discounted fares.

Moreover, airlines operating a large-scale network also need to consider network impacts on the
traffic flows, such as connecting and through traffic. This is because maximizing single-leg revenues
is not necessarily the same as maximizing total revenues in a network of flight legs. Indeed, Talluri
and Van Ryzin (2004b) cite multiple simulation studies of airlines operating a large-scale network
where network methods show significant revenue benefits over single-leg methods of 1.5% up to
3% for higher load factors. Therefore, airlines operating a large-scale network need to manage the
capacities of a group of connecting flights within a network, where the individual flight legs can have
a mix of local and connecting traffic. This problem is known in literature as the network problem
and in the airline industry called the network seat inventory control problem.

Seat inventory control is the final step in the three-phase marketing process, consisting of pricing,
scheduling and inventory control. In theory, this three-phase process should be optimized simul-
taneously, however, due to the size and complexity of the problem the three processes are solved
sequentially. By being the last step in the optimization, the flight schedule and pricing structure
are fixed inputs for the seat inventory control problem (Williamson, 1992).

In this thesis, we try to find an effective method to maximize revenue by network seat inventory
control. Compared to literature, this thesis focuses on incorporating aircraft configuration selec-
tion during the optimization and, thereby, obtaining a control mechanism that is flight leg based,
instead of the traditional flight leg-cabin based. Aircraft configuration selection is of importance
as many airlines use a mobile cabin divider to partition the economy and business cabins for short
and medium-haul flights and, thereby, have freedom in selecting the aircraft configuration before
departure. To segment the market better and to provide more comfort and privacy to the business
traveler, many airlines leave the aisle or middle seat open when having rows of two or three chairs,
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1 INTRODUCTION

respectively. Therefore, the number of seats open for sale differs per configuration and also per
cabin and, hence, must be accounted for in the optimization.

Some airlines currently deal with aircraft configuration selection by fixing the aircraft configuration
at the beginning of the optimization and obtaining a control mechanism that is flight leg-cabin
based. That is, the different cabins are treated to be independent ’flight legs’ and the control
mechanisms are optimized separately for the different cabins. This thesis aims to incorporate the
aircraft configuration selection during the optimization and, thereby, obtain a control mechanism
that is flight leg based and, therefore, a function of the remaining capacities in the different cabins.
In this way, the control mechanism incorporates the flexibility to change the aircraft configuration
at all times.

The network problem can relatively easily be formulated as a stochastic dynamic programming
model. However, solving this model becomes problematic, as the model suffers from the curse of
dimensionality. In this thesis, we propose three variants of an approximation method based on
decomposition by a mathematical programming model and solving independent single-leg problems
using a dynamic programming model. The first variant is called the Opportunity Cost based
Decomposition - Dynamic Programming (OCD-DP) approach, the second variant is called the
Relaxed Opportunity Cost based Decomposition - Dynamic Programming (ROCD-DP) approach
and the third variant is called the Dual based Decomposition - Dynamic Programming (DD-DP)
approach. The use of the dynamic programming model allows us to solve the single-leg problems to
optimality and incorporates the aircraft configuration selection. The obtained bid prices, which are
used as a control mechanism, are dynamic in both the remaining time and the remaining capacity
in the different cabins.

To measure the potential of increased revenues for the different approaches, a booking process
simulation was developed. The proposed approaches are evaluated using a large-scale network and
eight smaller subnetworks generated from the large-scale network. Here, the large-scale network is
acquired from the major European airline for which this research is conducted. The entire large-scale
network is used to demonstrate whether the proposed approaches still work for a real, large network
of a major airline. The smaller subnetworks allow for the application of a Monte Carlo simulation to
derive interesting summary statistics. The results are benchmarked against two well-known solution
methods and an approximate upper bound.

The case study on the entire-large scale network showed the impracticality of the OCD-DP approach,
namely with current implementation, the computation time of the optimization of a single booking
period was approximately 4.7 hours, which was approximately 4 and 7 times longer than the ROCD-
DP and DD-DP approaches, respectively. Using the eight subnetworks, the Monte Carlo simulation
of the booking process showed that the remaining two approaches can, with lower final load factors,
on average, obtain revenue increases of up to 0.8% compared to the benchmark solution approaches.
This corresponded to an average gap of 2.3% for the approximate upper bound. However, sensitivity
analysis showed that this relative performance can be subjective to the characteristics of the network.
That is, the relative performance increase of the proposed approaches seems to decrease slightly
when demand factors increase and even becomes negative when the considered network contains
more connecting flow.

All considered approaches are fairly robust when demand estimates are heavily perturbed, which
can be explained by the daily revision of the booking limits. Nonetheless, when demand estimates
are heavily perturbed, the performance of the ROCD-DP and DD-DP approaches compared to one
of the benchmark solution approaches becomes fairly similar. Moreover, for all experiments, the
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1 INTRODUCTION

ROCD-DP approach outperformed the DD-DP approach, however, the differences were minimal.
As the ROCD-DP approach has a longer computation time, the choice between the two approaches
must be made depending on the interest of the airline.

The remainder of the thesis is organized as follows: in Chapter 2 a detailed problem description is
presented. In Chapter 3, we provide a literature review of the seat inventory control problem. The
methodology is presented in Chapter 4. In Chapter 5, we present numerical experiments together
with the results for the different approaches. Lastly, in Chapter 6 conclusions and topics for future
research are provided.

3



2 PROBLEM DESCRIPTION

2 Problem Description

In this section, we will describe the network seat inventory control problem in which we incorporate
aircraft configuration selection. Throughout the thesis, we will denote vectors and matrices in bold.
Moreover, let 1 {E} denote the indicator function of an event E and let x+ = max{0, x}.

We consider an airline operating a network, which is described by m flight legs, and the airline sells
n different products to its customers. Flight legs i are numbered by 1 through m and products j
are numbered by 1 through n. A flight leg is part of a flight involving a take-off and landing. A
product can be seen as an origin-destination and fare class combination (ODF) itinerary. Here, the
fare class consists of the product’s price, purchase terms and restrictions. Therefore, a product can
be seen as a bundle of the m flight legs, which is sold for a given price with certain purchase terms
and restrictions. Lastly, a set of fare classes is defined for each origin-destination (OD) itinerary.

The state of the network is defined by the remaining capacities on the m flight legs. Here, the
remaining capacity of a flight leg is given by the initial capacity diminished by the seats sold on
that flight leg. To segment the market better, airlines partition the aircraft into different cabins.
For the remainder of the thesis, we assume that there are at most two cabins, namely the economy
(M) and business (C) cabins. However, one must note that the introduced concepts are not limited
to using only two cabins. To incorporate the use of two cabins, we split the capacity for any flight
leg into two distinct, cabin-specific, flight leg capacities. That is, we introduce the integer 2m-vector

x =
[
xM1 , xC1 , ..., x

M
m , xCm

]⊺
, where xMi and xCi equal the capacity of flight leg i and cabin M and

C, respectively. For the remainder of the thesis, flight leg capacities are always cabin-specific and,
therefore, flight leg capacities i are numbered by 1 through 2m. Moreover, let the non-negative

integer 2m−vector X =
[
XM

1 , XC
1 , ..., XM

m , XC
m

]⊺
denote the initial flight leg capacities, that is,

XM
i and XC

i equal the initial capacity of flight leg i and cabin M and C, respectively.

For short and medium-haul flights, we have the freedom to change the aircraft configuration by
reallocating the mobile cabin divider, which partitions economy and business cabins. In this way,
the remaining flight leg capacities open for sale can differ per chosen aircraft configuration. To
incorporate aircraft configuration selection, we introduce the non-negative integer m-vector z =[
z1, ..., zm

]⊺
, where zi denotes the aircraft configuration of flight leg i. Here, zi = 0 represents the

configuration with the lowest number of business passengers, zi = 1 represents the configuration
with the second-lowest number of business passengers, and so on. Both the remaining and initial
flight leg capacity vectors x and X are specified for the case when the aircraft configuration is fixed

to the zero-configuration, that is z =
[
0, ..., 0

]⊺
.

The mobile cabin divider does, however, only allow specific configurations. Namely, the cabin
divider always segregates entire rows and the cabin divider can only be positioned in the front part
of the aircraft. Moreover, in the business cabin, the aisle seat or the middle seat is often left empty
when having rows of two or three chairs, respectively. We introduce a non-negative integer m-vector

c =
[
c1, ..., cm

]⊺
, where ci equals the number of different configurations on flight leg i. Moreover,

we introduce the integer (m× 2m)-matrix B, where the ith row of B represents the changes in the
remaining flight leg capacities when reallocating the mobile cabin divider of flight leg i by one row
to allow for more business passengers. More specifically, Bi

j , which is the jth element of the ith

row of B, represents the change in the jth flight leg capacity of the vector x when reallocating the
mobile cabin divider of flight leg i by one row to allow for more business passengers. The change
in remaining flight leg capacities open for sale by choosing a different configuration other than the

4



2 PROBLEM DESCRIPTION

zero-configuration can now be given by B⊺z, with z ∈ Zm
0+ and z < c. Here, Zm

0+ denotes the
m-dimensional set of non-negative integers.1

An airline also has the possibility to up- or downgrade customers, which previously purchased a
certain product, to the other cabin. This gives more freedom in selecting different aircraft configu-
rations and, therefore, more freedom in accepting requests for higher-revenue products and, hence,

must be accounted for. We introduce the integer m-vector g =
[
g1, ..., gm

]⊺
, where gi equals the

number of upgrades from the economy to the business cabin on flight leg i. For business reasons,
the number of up- and downgrades is limited. Let the maximum number of down- and upgrades

on each of the flight legs be given by the non-negative integer m-vectors d =
[
d1, ..., dm

]⊺
and

f =
[
f1, ..., fm

]⊺
, respectively. That is, di and fi equal the maximum number of down- and up-

grades on flight leg i, respectively. We introduce the (m × 2m)-matrix C, where the ith row of C
represents the changes in the remaining flight leg capacities when we upgrade a passenger from the
economy to the business cabin on flight leg i. More specifically, the jth element of the ith row of C,
given by Ci

j , represents the change in the jth flight leg capacity of the vector x when upgrading a
passenger from the economy to the business cabin on flight leg i. By definition, matrix C is given
by:

C =


1 -1 0 0 . . . 0 0

0 0
. . .

. . .
...

...
. . .

. . . 0 0

0 0 . . . 0 0 1 -1


The change in remaining flight leg capacities open for sale by up- and downgrading customers can
now be given by C⊺g, with g ∈ Zm and −d ≤ g ≤ f . Here, Zm denotes the m-dimensional set
of integers. Using previous definitions, we define the effective remaining flight leg capacities as the
vector x′ = x+B⊺z+C⊺g. That is, the effective remaining flight leg capacities x′ define for each
flight leg the remaining number of seats open for sale. Since we cannot oversell flight legs, we have
that all elements of the vector x′ are non-negative integer variables, therefore x′ = x+B⊺z+C⊺g ≥
0. Moreover, we can restrict the aircraft configurations z to the set Z(x), which is defined by
Equation 1. Lastly, we can restrict the remaining flight leg capacities x to set X , which is defined
by Equation 2.

Z(x) =
{
g ∈ Zm, z ∈ Zm

0+ : z < c,−d ≤ g ≤ f ,x+B⊺z+C⊺g ≥ 0
}

(1)

X =
{
x ∈ Z2m,g ∈ Zm, z ∈ Zm

0+ : x ≤ X, z < c,−d ≤ g ≤ f ,x+B⊺z+C⊺g ≥ 0
}

(2)

To clarify the previously mentioned notation, consider Example 2.1 of a simple network of a single
flight leg.

Example 2.1. Consider a single flight leg network to which an aircraft is assigned with an ini-
tial capacity of 130 seats in the economy cabin and 8 seats in the business cabin. That is, X =[
XM

1 , XC
1

]⊺
=
[
130, 8

]⊺
. Moreover, the aircraft type allows us to reallocate the mobile cabin divider,

1Note that by using this notation, we assume constant changes in capacity. However, variable changes are possible
using corrective extra terms.

5



2 PROBLEM DESCRIPTION

and therefore to increase the capacity of the business cabin. The aircraft has rows of three seats and
in total 4 different configurations. The middle seat is blocked in the business cabin. Also, we allow
upgrading of in total 3 passengers from the economy to the business cabin. Downgrades are prohib-

ited. Consequently, we have that c =
[
c1

]
=
[
4
]
and, therefore, z =

[
z1

]
, where z1 ∈ {0, ..., 3}.

Moreover, we have that d =
[
d1

]
=
[
0
]
and f =

[
f1

]
=
[
3
]
and, therefore, g =

[
g1

]
, where

g1 ∈ {0, ..., 3}. In addition, matrix B is given by B =
[
−6 4

]
. That is, if we reallocate the mobile

cabin divider by one row to allow for more business passengers, the first (and only) row of matrix
B shows that this reallocation results in a respective decrease of six and an increase of four seats
for the effective remaining economy and business flight leg capacities x′M1 and x′C1 . Lastly, matrix

C is given by C =
[
1 −1

]
.

Now, at a certain moment in time, in total 120 seats are sold in the economy cabin and 13 seats
are sold in the business cabin. Therefore, the remaining capacity vector x is given by Equation 3.

x =

[
xM1
xC1

]
=

[
XM

1

XC
1

]
−

[
Seats sold cabin M

Seats sold cabin C

]
=

[
130

8

]
−

[
120

13

]
=

[
10

−5

]
(3)

Moreover, for this remaining capacity, the only possible aircraft configuration is z1 ∈ Z(x) = {2}
and, therefore, z =

[
z1

]
=
[
2
]
. Moreover, this configuration requires upgrading two economy

passengers to the business cabin to make sure that we do not have a negative effective remaining

capacity in the economy cabin. That is, g =
[
g1

]
=
[
2
]
. The effective remaining flight leg capacities

are then given by Equation 4. That is, we have still one remaining capacity for the business cabin
open for sale.

x′ = x+B⊺z+C⊺g =

[
10

−5

]
+

[
−6

4

] [
2
]
+

[
1

−1

] [
2
]
=

[
0

1

]
(4)

We define the (2m× n)-incidence matrix A =
[
aij

]
, where aij = 1 if flight leg capacity i is used by

product j and aij = 0 otherwise. Consequently, Ai, which denotes the ith row of A, has entry one
in column j if product j uses flight leg capacity i. Likewise, Aj denotes the jth column of A, and
is the incidence vector for product j. Matrix A may contain repeated columns for each fare class
on a given OD itinerary. Moreover, we define the set of flight leg capacities used by product j by
Aj . That is, if a flight leg capacity i is used by product j, we indicate it by i ∈ Aj . If product j is
sold, the remaining flight leg capacity vector is updated to x−Aj .

To model the booking process, we assume that time is discrete with a finite booking horizon of length
T . The index t denotes the remaining time, so time is counted backward. That is, t = T is the
beginning of the booking horizon and t = 0 is the time of service. Moreover, we assume sufficiently
fine discretization of time, such that at most one request can arrive in a single time-period. We,

therefore, do not allow group bookings. Let the n-vector r =
[
r1, ..., rn

]⊺
be the revenues associated

with the n network products, that is, rj equals the revenue of product j. For analytical purposes,
we model the demand for the n products at time t as a realization of a single random vector

R(t) =
[
Rt

1, ..., R
t
n

]⊺
. Here, Rt

j = rj > 0 if a request for product j occurred with associated

revenue rj and Rt
j = 0 if no request occurred for product j. Consequently, if no requests arrived

6



2 PROBLEM DESCRIPTION

at time t, we have a realization of R(t) = 0. Moreover, as an example, if we have n = 4 products
and a request for product 2 arrived at time t with associated revenue r2 = 600, the realization of

R(t) would be given by R(t) =
[
0, 600, 0, 0

]⊺
. Using the definition of R(t), the aggregate demand

process at time t, D(t), can be represented as D(t) =
[∑t

k=1 1
{
Rk

1 > 0
}
, ...,

∑t
k=1 1

{
Rk

n > 0
}]⊺

.

In addition, let µ(t) =
[
µt
1, ..., µ

t
n

]⊺
denote the vector of mean aggregate demand to come at time

t, that is, µt
j denotes the mean aggregate demand for product j at time t. Then, µ(t) can be

given by µ(t) =
[
µt
1, ..., µ

t
n

]⊺
=
[
E
[∑t

k=1 1
{
Rk

1 > 0
}]

, ..., E
[∑t

k=1 1
{
Rk

n > 0
}]]⊺

. Lastly, let the

associated probability of a request for product j at time t be given by ptj and let pt0 denote the
probability of no request at time t. As we have at most one request per time-period, we have that
pt0 = 1−

∑n
j=1 p

t
j .

We assume statistical independence of demand for different fare classes. That is, it is assumed that
the demand for a given fare class is independent of the used capacity control and, consequently,
independent of whether other fare classes are open or not. Therefore, the sequence {R(t); t ≤ T} is
assumed to be independent across time t. This assumption is obviously somewhat unrealistic, as it
is, for example, very plausible that a customer will buy a higher fare when the discounted fares are
closed. This phenomenon is called buy-up, and from the firm’s point of view, it is often referred
to as sell-up. However, we assume that these dependencies are dealt with in the demand forecasts
and, therefore, we will not consider any form of customer choice behavior. Moreover, we assume
that the joint distribution is known at each period t.

We ignore overbooking and, thereby, ignore cancellations and no-shows at this stage. Here, over-
booking is the widely used concept of selling more seats than the capacity of an aircraft to compen-
sate for losses of cancellations and to benefit from no-shows. With overbooking, an airline defines
per flight a maximum number of seats the airline is willing to risk to deny boarding and this number
determines how many extra seats may be sold. Lastly, we also ignore code-sharing at this stage,
which is a marketing agreement by airlines in which an airline sells seats of other airlines as their
own.

Network seat inventory control now simplifies to deciding whether to accept an incoming request
for product j at time t given the current remaining capacities x. Here, the objective is to maximize
the expected revenue to go. That is, we maximize the total expected revenue of the m flight legs
over the T periods to come, where demand is uncertain. For this, we introduce the length n decision

vector u(t,x, r) =
[
u1(t,x, r1), ..., un(t,x, rn)

]⊺
, where:

uj(t,x, rj) =


1 if we accept a request for product j with corresponding revenue rj

in period t

0 otherwise.

Since we have at most one request in any period and we cannot oversell flight legs, we can restrict
the vector u(t,x, r) to the set U(x), which is defined by Equation 5. Here, En denotes the set of
unit n-vectors, that is En = {e0, e1, ..., en}, with e0 the zero n-vector and ej the j-th unit n-vector.

U(x) = {u ∈ En, z ∈ Zm
0+,g ∈ Zm : z < c,−d ≤ g ≤ f ,Au ≤ x+B⊺z+C⊺g} (5)

Consequently, solving the network seat inventory control problem to optimality boils down to de-
termining at any time t, given the remaining flight leg capacities x, the optimal decisions u∗(t,x, r).
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3 Literature Review

Within seat inventory control, we can distinguish between two different scopes, namely single-leg
capacity control and network capacity control. The first, within the airline industry known as the
single-leg problem, looks at a single flight leg that is sold to differentiated demand classes. For an
airline that is operating a point-to-point network with isolated, non-stop flights, a flight leg approach
is sufficient for seat inventory control (Williamson, 1992). Network capacity control tries to find
the same capacity controls, however, now in a setting where products require multiple flight legs.
Nowadays, many quantity-based revenue management problems are network problems, however, in
practice, they are still commonly solved as a collection of single-leg problems (Birbil et al., 2014).
Also, many heuristics for solving the network problem use single-leg models. Therefore, first, the
single-leg problem will be discussed in Section 3.1 and second, the network problem is discussed in
Section 3.2. In Section 3.3, we discuss two commonly used control mechanisms for network capacity
control. Lastly, in Section 3.4, the different optimization algorithms and control methodologies for
the network capacity control problem are weighed against each other.

3.1 Single-leg problem

The single-leg problem is well-studied in the academic literature. In the past, a variety of exact
and heuristic methods have been introduced. We refer the interested reader to the book by Talluri
and Van Ryzin (2004b) for an extensive discussion on the single-leg problem. The models can
generally be grouped into either solving the so-called static or dynamic version of the problem.
In short, most static models assume the following assumptions: (1) sequential arrival of demand
of different fare classes; (2) low-before-high fare bookings; (3) no batch bookings, or if there are
batch bookings, they can be partially accepted; (4) statistical independence of demand for different
classes; (5) no network effects taken into account; and, (6) no no-shows and cancellations and,
hence, no overbooking. Dynamic models model the demand for each class as a stochastic process
and allow for an arbitrary order of arrival and, therefore, relax assumptions (1) and (2). Dynamic
models are, however, not a strict generalization of the static models, as dynamic models need to
assume Markovian arrivals to remain tractable. While for the static model inventory control can be
implemented by putting booking limits on the fare classes, for the dynamic model this acceptance of
booking requests is now based on the remaining time to departure and the number of unsold seats.
The Markovian assumption limits modeling different levels of variability in demand. Moreover,
we require a so-called booking curve, which is an estimate of the pattern of arrival over time.
Assumptions (3)-(6) are still retained for the dynamic model. In the end, choosing between static
and dynamic models boils down to choosing which set of approximations is more reasonable and is
dependent on the type and availability of the data (Talluri and Van Ryzin, 2004b). In Section 3.1.1
and 3.1.2, we provide relevant literature for the static and dynamic models, respectively. Lastly, in
Section 3.1.3, we discuss an extension that explicitly models customer-choice behavior.

3.1.1 Static models

Littlewood (1972) was the first to contribute to the single-leg problem, more specifically he looked
at a single-leg with two fare classes. In his model, he equated the expected marginal revenues of
the two fare classes to determine whether to accept or reject a request for a specific fare for a flight
leg. Bhatia and Parekh (1973) and Richter (1982) found equivalent formulations of Littlewood’s
rule and through these extensions, Littlewood’s rule was proven to be optimal for the nested,
two-fare class, single-leg problem. Belobaba (1987) proposed the Expected Marginal Seat Revenue
(EMSR) heuristic for the nested, multiple-fare class, single-leg problem. This heuristic only produces
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optimal booking limits in the two-fare case, however, it is easy to implement and gives reasonable
approximations for typical airline demand distributions. Belobaba (1989) later refines the EMSR
heuristic, called EMSRb, which has been widely implemented in the airline industry. Assuming
independent demands, Brumelle and McGill (1993), Curry (1990) andWollmer (1992) independently
found the optimal booking limits for the nested, multiple fare-class, single-leg problem. All solutions
mentioned so far, require previously stated assumptions (1)-(6). Robinson (1995) was able to find
optimal booking limits while relaxing assumption (2), that is, the low-before-high fare assumption
is relaxed.

3.1.2 Dynamic models

Due to the nature of the dynamic problem, optimal control policies are often determined by using
dynamic programming approaches. The earliest work on the dynamic problem was by T. C. Lee and
Hersh (1993), which formulated the problem as a Markov decision process. Their work is refined
by integrating important practical issues, such as cancellations, no-shows and overbooking (e.g.
Lautenbacher and Stidham Jr, 1999; Liang, 1999; Subramanian et al., 1999). Gerchak et al. (1985)
were the first to provide dynamic structural results for this type of problem.

3.1.3 Discrete-choice models

A key assumption of all so-far mentioned models is that demand for a given class is independent
of the used capacity controls, more specifically, it is independent of whether other classes are open
or not. Obviously, this assumption is somewhat unrealistic, making it a weakness in the design
of the models so far. For instance, it is very plausible that the likelihood of a customer buying a
full-fare ticket depends on whether a discount fare is available at the same time. The passenger
origin and destination simulator (PODS) studies by Belobaba and Hopperstad (1999) showed the
significance of customer-choice models on the performance of revenue management systems. There-
fore, this topic gained momentum lately in literature. R. Phillips (1994) introduced a method that
adjusts the controls based on demand forecast, thereby incorporating the current controls in place.
Moreover, Belobaba (1987) adjusted his already introduced EMSR heuristic to incorporate buy-up
probabilities. Here, buy-up is the phenomenon of purchasing a higher fare class when the lower fare
classes are already closed. While the method was conceptually attractive, it had several method-
ological difficulties. For example, the method only holds for the two-fare class model and estimating
the probabilities is hard since one cannot observe buy-ups directly. Talluri and Van Ryzin (2004a)
provide an exact analysis of the problem under a general discrete choice model of demand. Other
main references on this topic are Vulcano et al. (2010) and Osadchiy and Vulcano (2010). More
recent papers use deep reinforcement learning to incorporate customer choice-based models, like the
one of Alamdari and Savard (2021).

3.2 Network problem

Similar to the single-leg problem, the network problem can be expressed as one large dynamic
program. However, exact network optimization is practically impossible as a result of the large
dimensionality of the resulting dynamic programming model. Therefore, various approximation
methods have been developed, which are often either based on mathematical programming models
or based on the decomposition of the network problem into a collection of single-leg problems.
More recently, also approximations based on approximate dynamic programming are introduced.
In the end, all these approximation methods are different approximations of the so-called optimal
value function. Here, the optimal value function, which we will denote by Vt(x), represents the
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optimal expected revenue as a function of the remaining capacity x and time t. The approximation
method may be static, however, then frequent re-optimization is needed in practice to account for
changes in capacity x and remaining time t. Next to producing an estimate of the value function,
the approximation method must, more importantly, provide a good estimate of the displacement
cost or bid prices. The definition of bid prices will be discussed later in this section. In Sections
3.2.1 and 3.2.2, we provide the relevant literature for, respectively, the mathematical programming
and approximate dynamic programming models. Moreover, we discuss the decomposition models
in Section 3.2.3 and provide extensions on previously introduced models in Section 3.2.4.

3.2.1 Mathematical programming models

The first mathematical programming approach to the network problem was given by Glover et al.
(1982). In their work, they formulate the network problem as a large network flow problem us-
ing special side constraints. The problem could be solved by linear programming, however, they
only considered deterministic demand and the model was only suitable if customers are indiffer-
ent between different routes for the same OD itinerary. Demand stochasticity was incorporated
by Wollmer (1986), which proposes a binary programming formulation. Here, the binary decision
variable represents a seat on a flight leg for an ODF itinerary and is given by xODF,i. The objective
function consists of the sum of products of the decision variable xODF,i and the expected marginal
revenue of potentially selling the ith seat to the ODF itinerary. The resulting formulation leads
to an enormous large problem, as we need to introduce a variable xODF,i for every seat available
to every ODF itinerary on every flight leg in the network. Nonetheless, Wollmer (1986) showed
that the formulation can be solved relatively efficiently as a series of longest-path problems, though
still impractical for large-scale networks. D’Sylva (1982) tries to make the LP formulation more
manageable by using a piecewise linear approximation of each ODF’s expected revenue curve. Dror
et al. (1988) also formulated the network problem as a network flow problem, but now also incorpo-
rating cancellations and no-shows. When no ”switch-over” or connections are allowed, the problem
can easily be solved. However, incorporating connecting passengers between flight legs leads to
additional constraints, making the model for large hub operations impractical to solve at that time.

A main disadvantage of the previously mentioned mathematical programming formulations is that
they produce partitioned seat allocations and, therefore, cannot be used for day-by-day seat in-
ventory control. However, they are still used in practice, as the dual variables of the capacity
constraints can be used for bid price approaches, which we will discuss below further.

Williamson (1992) proposed and investigated linear and nonlinear programming approximations of
the mathematical programming methods. Williamson (1992) also provided a detailed analysis of
controls commonly used in practice. Quite surprisingly, she showed that the partitioned network
seat allocations from deterministic optimization models consistently outperform those from more
advanced probabilistic models when used as a basis of some sort of nested control strategy. This is
caused by the fact that the partitioned probabilistic network solutions tend to ’overprotect’ seats
for higher fare class ODF itineraries. De Boer et al. (2002) argue that this phenomenon is caused
by the fact that the booking process used in practice includes nesting of the fare classes, while
this is ignored in the modeling phase. The probabilistic methods suffer more from this negligence
than the deterministic methods. Curry (1990) proposed an optimization approach that combines a
mathematical programming and nested allocation formulation, where fare classes within the same
OD itinerary are nested. However, the capacity is partitioned among the OD itineraries, which
makes his approach impractical for large networks, as for such networks we have a small number of
seats allocated to each OD itinerary.
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Using these network optimizations, booking limits can be implemented by using so-called network
bid prices. For each flight leg, a bid price is calculated, which is the shadow price of the capacity
constraint. Therefore, a bid price can be seen as a ”cutoff” value for each flight leg, which can be
used to decide whether to accept or reject an ODF itinerary request. Simpson (1989) was the first
to introduce this concept, using a linear programming model of the network problem and using its
optimal dual variables, which represent the bid prices. Williamson (1992) also analyzed bid price
control in her research paper. Talluri and Van Ryzin (1998) recognized the lack of rigorous analysis
of bid price control in previous work and studied the bid price control in depth. In their work, they
proved that bid price control is not optimal in general, however, it performs well asymptotically.
After their detailed analysis of bid prices, Talluri and Van Ryzin (1999) introduce a randomized
linear programming model for the computation of network bid prices. Here, they introduce ran-
domness into the deterministic approximation of Simpson (1989) and Williamson (1992) by using
samples of ODF itinerary requests instead of using their expected value.

3.2.2 Approximate dynamic programming models

So far the bid prices are determined by solving static network models. The bid prices can also be
determined by approximating the large dynamic program. Bertsimas and Popescu (2003) introduced
such an algorithm to capture the dynamics of the booking process. In this algorithm, for each OD
itinerary, the marginal value of the corresponding flight leg capacities is determined by taking the
finite difference in the value functions. Adelman (2007) complements the research by Bertsimas
and Popescu (2003) and tries to find time-dependent bid prices using a linear program by making
an affine functional approximation to the optimal dynamic programming value function. Tong and
Topaloglu (2014) improved the computational performance of the model of Adelman (2007) by
proposing an approximate linear programming approach. Topaloglu (2009) takes another approach
and computes dynamic bid prices depending on remaining capacity using Lagrangian relaxation.
Both the model of Adelman (2007) and Topaloglu (2009) give tighter upper bounds on the optimal
solution value than the deterministic linear programming model. Models giving tighter bounds are
of great interest as empirical studies and practical experience show that these models generate more
profitable controls. Talluri (2008) orders multiple upper bounds already established in the literature
and also proposes new bounds. Topaloglu (2008) presents a stochastic approximation method in
which the total expected revenue is visualized as a function of the bid prices. A good set of bid
prices is found by using sample path-based derivatives.

3.2.3 Decomposition models

As already mentioned earlier, another way to tackle the network problem is to use an approximation
method based on decomposing the problem into a collection of single-leg problems. These single-leg
problems are solved independently, however, they typically incorporate some network information.
An advantage of such a method over other approximation methods is that, as they solve the problem
as independent single-leg problems, the resulting bid prices and displacement costs are typically
dynamic in the sense that they are a function of remaining capacity and time. This is in contrast to
network models, which should be solved repeatedly to determine the effects of changes in remaining
capacity and time. Moreover, the simpler single-leg models allow for more realistic assumptions,
such as stochastic dynamic demand, discrete demand and capacity and sequential decision-making.
The main disadvantage of decomposition methods is that when decomposing the network problem
into a collection of single-leg problems, we may lose valuable network information.
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One of the first decomposition approaches is the virtual nesting approach developed by Smith et al.
(1992) at American airlines. Virtual nesting uses single-leg nested-allocation controls, in which
the classes used in the nested allocations are so-called virtual classes. These virtual classes group
together sets of ODF itineraries using a certain flight leg through a process known as indexing. This
process attempts to cluster ODF itineraries based on similar ’network value’ and can be updated
periodically to incorporate changes in network demand patterns. Based on the calculated nested
protection levels for the virtual classes, a request for an ODF itinerary is accepted if and only if its
corresponding virtual classes on each of the flight legs it requires are open. The main advantage
of virtual nesting is that it incorporates network effects in the process of indexing, yet it preserves
class-based booking controls of reservation systems at that time. Therefore, no major investments in
IT infrastructure were needed, making it a quite popular method in practice. Nonetheless, over the
years reservation systems and revenue management systems were upgraded, therefore also allowing
bid price control. Talluri and Van Ryzin (2004b) state that in industry bid price control as means
of network control is preferred as it is a simpler, more intuitive and powerful control method.

Bertsimas and De Boer (2005) viewed the virtual classes and the nested protection levels as a class
of control strategies, parameterized by the protection levels on the network. They proposed a gen-
eral framework to optimize an initial set of protection levels using simulation-based optimization
and approximate dynamic programming methods. Using simulation, one can very accurately es-
timate the true network effects of changing protection levels. This is in contrast with traditional
virtual nesting methods, which, at best, can only heuristically approximate network effects. In the
optimization, Bertsimas and De Boer (2005) use a discrete-capacity, discrete-demand model of the
network problem. However, their model can be computationally too intensive for large networks
and the method lacks good convergence properties. Van Ryzin and Vulcano (2008) revisit the
simulation-based optimization method described by Bertsimas and De Boer (2005) and propose a
continuous capacity and demand model and use a faster and locally convergent algorithm.

Another decomposition method is the displacement-adjusted virtual nesting (DAVN) method in-
troduced by Talluri and Van Ryzin (2004b). This approach applies the virtual nesting approach
described previously. First, they solve a network heuristic model to obtain network static bid
prices. Examples of a network heuristic model are the deterministic linear programming model
(Glover et al. (1982); Wollmer (1986); Williamson (1992)), the probabilistic nonlinear programming
model (Williamson (1992)) and the randomized linear programming model (Talluri and Van Ryzin
(1999)). For the process of indexing, they calculate for all ODF itineraries using a specific flight
leg the so-called displacement-adjusted revenue. That is, the revenue of the ODF itinerary on the
specific flight leg is decreased by the static bid prices of the other flight legs used by this ODF
itinerary. This is also known as prorating, for which more schemes exist, and where the goal is to
approximate the net benefit of accepting a request for an ODF itinerary on a flight leg that is used
by the ODF itinerary.

The performance of DAVN is, however, sensitive to the selection of the indexing method. Vinod
(1989) introduced a DP-based indexing method at American Airlines, which significantly (about
0.5%) increased performance relative to their previous indexing scheme, which was based upon
simple equal-revenue-width partitions. Moreover, when solving independent single-leg problems,
one must note that the revenue-order assumption of the standard static single-leg model is likely to
be violated. That is, it is very unlikely that demand for the virtual classes arrives in low-to-high
displacement-adjusted revenue order, even if the original demand arrives in low-to-high revenue
order.
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Dynamic programming decomposition (DPD) also uses displacement-adjusted revenues to decom-
pose the network, however, this approach leaves demand and revenue disaggregated. The single-leg
problems are now solved as dynamic programs, therefore we do not have to worry about violating
the revenue-order assumption of static single-leg models. As this approach is so similar to DAVN,
the decision of which approach to use is often dictated by the desired control strategy. That is, if
one implements virtual nesting control, then aggregating and indexing performed in DAVN closely
match the control implementation. However, if one implements bid price control, then aggregation
and indexing are not needed, and Talluri and Van Ryzin (2004b) show that DPD tends to give more
accurate bid price approximations. Moreover, DPD has as output a bid price table, which is based
on remaining time and capacity, therefore allowing better control. Zhang (2011) proposes a variant
of the DPD incorporating customer choice. Zhang (2011) approximates the value function of the
dynamic programming formulation of the network problem using a functional approximation that
is nonlinear and non-separable.

Another closely related method to DAVN is the so-called iterative decomposition method. Both
Williamson (1992) and R. L. Phillips (1994) propose variations to this idea. For consistency of
the DAVN approach, the marginal costs produced by DAVN should match the original static bid
price. Iterative DAVN feeds the estimated marginal cost back as new static bid prices if the two
do not match and resolves the DAVN model. Convergence of the method is not guaranteed, as
it is not known whether the mapping of the bid price vector onto itself is a contraction mapping.
Iterative prorated EMSR is very similar to iterated DAVN, however, it uses another proration
scheme. Bratu (1998) shows that, when demand is left disaggregated and the EMSR-b heuristic is
used, the generated mapping is a contraction mapping, therefore convergence of this algorithm is
guaranteed. Pseudo-code of both approaches is given by Talluri and Van Ryzin (2004b).

Birbil et al. (2014) propose an approximation method based on decomposition by origins and des-
tinations. Their two-step approach consists of first determining optimal allocations of network
capacities to OD itinerary pairs and, secondly, finding booking controls for different fare classes
within each OD itinerary pair by solving a single-leg problem. In their computational study, they
show that DPD still obtains higher average revenues than all considered strategies. Nonetheless,
the work of Birbil et al. (2014) is more general, allowing for extensions such as customer choice
models or robust optimization, and does not suffer from the computational burden of DPD. As a
byproduct, Birbil et al. (2014) find an equivalent formulation of the famous deterministic linear
programming model with considerably fewer variables. This formulation leads to a decrease in
computation time and can, therefore, be interesting when frequently reoptimizing the deterministic
linear programming model.

3.2.4 Extensions

More recent literature looks at robust optimization and customer choice models within network
revenue management methods. For example, see the paper of An et al. (2021), which introduces a
linear programming approach for robust network revenue management. In addition, recent literature
focuses on the impact of strategic policies and business models on revenue management (e.g. (Lin
et al., 2017) and (Alderighi et al., 2019)). Moreover, Calmon et al. (2021) analyze repeated customer
interactions between the platform and a set of customers over a number of periods. Lastly, Chen
et al. (2017) and Stein et al. (2020) consider advanced reservations.
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3.3 Types of controls

Within seat inventory control, we can identify two underlying components. Namely, first, the seat
allocation needs to be determined using an optimization algorithm and, second, these allocations
need to be realized by the use of booking limits in such a way that the potential for increased revenues
is secured. In this context, over the years a variety of combinations of optimization algorithms and
control methodologies have been developed. In previous sections, we already shortly described
some control mechanisms. In this section, we will more elaborately discuss the two most popular
network controls, which are virtual nesting and bid price control. The overall robustness of the
control scheme, the technological constraints imposed by the distribution system and the revenue
performance achievable by the method play an important role in deciding which control to use.

American Airlines developed virtual nesting control as a hybrid of single-leg and network capacity
control circa 1983. For each flight leg in the network, it uses single-leg nested-allocation control.
The nested allocations consist of virtual classes, which group together sets of ODF itineraries that
use a given flight leg. The process of grouping is known as indexing where one essentially uses a
generated table to map every ODF itinerary to a virtual class on each flight leg. Here, the table can
be generated periodically to account for changes in network demand patterns. The used booking
policy is to accept a request for an ODF itinerary if all virtual classes on each flight leg corresponding
to the ODF itinerary are available and to deny the request if any one of the virtual classes is closed.

The major advantage of this type of control was that it preserves the booking-class control logic
of the used Global Distribution Systems (GDSs) at that time while allowing revenue management
systems to incorporate some network information. That is, one can use the existing infrastructure of
single-leg capacity control, yet incorporate network information. It has proven to be quite effective
and virtual nesting control is, therefore, also popular in practice (Talluri and Van Ryzin, 2004b).
Nonetheless, virtual nesting also has several noteworthy disadvantages. First of all, indexing intro-
duces noise into the data and demand forecasts, specifically if the data is collected at the virtual
class level. Namely, when reindexing, the virtual class demand statistics may shift dramatically,
even when the underlying ODF itinerary demand is unchanged. In addition, the process of index-
ing brings additional complexity to the network problem. Lastly, virtual class demand can confuse
analysts as it is not easily interpretable.

Bid price control provides a more intuitive, simpler and more powerful means of network capacity
control. It was already popular in industries that were not using these legacy distribution systems.
However, with current upgrades of GDS and revenue management systems, it has also gained
popularity in the airline industry. With bid price control, we set a so-called bid price, which is a
threshold value, for each flight leg in the network. It can be seen as an estimate of the marginal
cost to the network of consuming the next incremental unit of the flight leg’s capacity. The used
booking policy is to only accept a request for an ODF itinerary if its corresponding revenue exceeds
the sum of the bid prices of each flight leg required by the itinerary.

The first advantage of bid price control is its simple structure, namely only a single bid price is
needed for each flight leg and the booking policy only requires a simple comparison of revenue to
the sum of bid prices for the requested flight legs. It must, however, be noted that bid prices must
be updated with changes in time and capacity to work properly. A second advantage is its intuitive
functioning and its natural economic interpretation, namely the marginal cost to the network of the
next incremental unit of flight leg capacity. Lastly, bid price control, if implemented correctly, has
very good revenue performance and it can be proved to be near-optimal under certain conditions
(Talluri and Van Ryzin, 2004b). Nonetheless, bid price control is by some criticized to be ’unsafe’,
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due to its open/closed control philosophy (Williamson, 1992). Namely, if the revenue of a given
ODF itinerary exceeds the bid price criteria, then the revenue management system will sell an
unlimited amount of capacity for this ODF itinerary. However, this problem can be resolved by
making the bid price a function of the remaining capacity. For a truly optimal system, revisions,
requiring both reoptimization and reforecasting of demand, would be necessary on a real-time basis.

3.4 Overall comparison

Bid price control has become more and more the standard way to control the availability of capacity
in a network environment due to current upgrades of GDS and revenue management systems. That
is, it provides a simple, intuitive and powerful means of network capacity control. Nonetheless,
due to the open/closed control philosophy of bid price control, the bid prices need to be dynamic,
that is, it needs to be a function of remaining capacity. Therefore, only using a mathematical
programming model, as described in Section 3.2.1, to optimize seat allocations, is less suitable as
this only provides static bid prices. Although dynamic bid prices can be obtained theoretically by
resolving the network problem repeatedly, computation issues make it unable to do so. Therefore,
the remaining options to solve the network problem are approximate dynamic programming models
and decomposition models.

A decomposition model seems to be in favor as it allows for more realistic assumptions and has
proven to work well in practice and to be a good balance between industry standards and innovation.
By solving the network problem as a collection of independent single-leg problems, the obtained bid
prices are typically dynamic in the sense that they are a function of remaining capacity and or time.
We can, therefore, counter the disadvantage of the open/closed control philosophy of static bid price
control. Also, when solving the single-leg problems using a dynamic program, we do not have to
violate the revenue-order assumption of the static single-leg models. Moreover, one can more easily
incorporate demand variability in the single-leg problems. Lastly, when using a dynamic program to
solve the single-leg problems, aircraft configuration selection can be accounted for. This is essential,
as the obtained bid prices should factor in that in the business cabin the aisle seat or middle seat
is left open when having rows of two or three chairs, respectively.
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4 Methodology

First, in Section 4.1, we show that we can derive an optimal network seat inventory control by
modeling the network problem as a stochastic dynamic programming model. However, solving
this model is impractical due to the curse of dimensionality. For this reason, we need to find an
approximation method to solve the network problem. We introduce four variants of a decomposition
model as an approximation method in Section 4.2.

4.1 Optimal network seat inventory control

To determine the optimal decisions u∗(t,x, r), we formulate the network seat inventory control
problem as a stochastic dynamic program. A stochastic dynamic programming model can find an
optimal decision vector by evaluating the entire state space and deciding at each point in time
whether to accept a request for product j. This decision is represented by the decision vector
u(t,x, r). The states S of the system are defined by the remaining capacity x, when the remaining
time is t. Consequently, we represent the states by S = (t,x). We introduce Vt(x), which is the
maximum expected revenue to go given the remaining capacity x, when the remaining time is t.
Then Vt(x) can be computed via the Bellman equation, which is given by Equation (6).

Vt(x) = max
u(t,x,r)∈U(x)

E [R(t)⊺u(t,x, r) + Vt−1(x−A⊺u (t,x, r))] (6)

for all x ∈ X , t ≤ T , and with the boundary condition given by Equation (7).

V0(x) = 0 if x ∈ X (7)

Here, it is crucial to note that we assume sufficiently fine discretization of time, such that at most
one request can arrive in a single time-period. Moreover, the boundary condition corresponds to the
fact that when the aircraft departs and, therefore, when the remaining time t = 0, the remaining
capacity is worth nothing as we cannot sell products anymore. Proposition 4.1 establishes both the
existence and form of an optimal control policy.

Proposition 4.1. If Rt
j has a finite mean for all t ≤ T and products j, then Vt(x) is finite for all

x ∈ X , and an optimal control decision u∗(t,x, r) exists and satisfies:

u∗j (t,x, rj) =

{
1 if rj ≥ Vt−1(x)− Vt−1(x−Aj) and x−Aj ∈ X ,

0 otherwise.
(8)

Proof. u∗(t,x, r) as defined by Equation (8) maximizes:

R(t)⊺u(t,x, r) + Vt−1(x−A⊺u (t,x, r))

with u(t,x, r) ∈ U(x). Consequently, we have that:

E [R(t)⊺u∗(t,x, r) + Vt−1(x−Au∗ (t,x, r))] ≥ max
u(t,x,r)∈U(x)

E [R(t)⊺u(t,x, r) + Vt−1(x−Au (t,x, r))]

(9)
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Therefore, if we can prove that the expectation of the left-hand side of Equation (9) exists, we know
that u∗(t,x, r) satisfies the Bellman equation and, thereby, is an optimal control. We prove this by
induction.

First, note that applying u∗(t,x, r) to the expectation of the left-hand side of Equation (9), gives:

E [R(t)⊺u∗(t,x, r) + Vt−1(x−Au∗ (t,x, r))]

= Vt−1(x) +
∑

j:(x−Aj)∈X

E
[
Rt

j − Vt−1(x) + Vt−1(x−Aj)
]+

(10)

We apply induction on t. Note that V0(x) = 0 for all x ∈ X and together with the assumption of
finite mean of Rt

j for all t ≤ T and products j and the fact that E [X − a]+ ≤ E [X] + |a|, we know
that Equation (10) is finite for the base case.

As induction hypothesis, let Vt−1(x) be finite for all x ∈ X . Therefore, the term −Vt−1(x)+Vt−1(x−
Aj) is finite and together with the assumption of finite mean of Rt

j for all t ≤ T and products j

and the fact that E [X − a]+ ≤ E [X] + |a|, we know that Equation (10) is finite for time t.

Consequently, by the principle of induction on t, we know that the expectation of the left-hand side
of Equation (9) exists for all x ∈ X and t ≤ T and, thereby, that u∗(t,x, r) exists and is of the form
given by Equation (8).

The optimal control policy given by Equation (8) states that we should accept a request for product
j with corresponding revenue rj if and only if we have sufficient remaining capacity and the revenue
is greater than or equal to the opportunity cost of accepting the request for product j. Here, the
opportunity cost OCj

t (x) of a product j at time t is defined as Equation (11).

OCj
t (x) = Vt−1(x)− Vt−1(x−Aj) (11)

Moreover, aircraft configuration selection is implicitly taken into account by evaluating all x ∈ X ,
and thereby evaluating all possible configurations, and only accepting a request for product j if and
only if x−Aj ∈ X .

Unfortunately, solving this stochastic dynamic programming model exactly is practically impossi-
ble due to the curse of dimensionality. Even if aircraft configuration selection is not considered,
the state space becomes the Cartesian product of the capacities in the network. Therefore, if we
have a relatively small network with m = 25 flight legs and a capacity of 142 seats with fixed
configuration on each flight leg, we have a state space of 14225 states. Due to this reason, various
approximation methods have been developed, which are often based on decomposition or mathe-
matical programming methods. Also, algorithms based on approximate dynamic programming are
introduced recently. Here, the balance between efficiency and quality of the approximation is key.
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4.2 Decomposition model

A decomposition model is chosen as it has been proven to work well in practice and as it is a good
balance between industry standards and innovation. The decomposition model consists of two parts,
namely, first, we need to decompose the network problem into a collection of single-leg problems.
Here, the goal is to incorporate network information into the single-leg problems. Then, second, we
need to solve the independent single-leg problems and implement a way to control the availability
of capacity. In Section 4.2.1, we introduce a deterministic mixed integer linear programming model,
which can be used to decompose the network problem. Moreover, in Section 4.2.2, we propose
three alternatives to decompose the network problem. In Section 4.2.3, we introduce a dynamic
programming model to solve the single-leg problems and introduce a dynamic bid price control.
Lastly, in Section 4.2.4, we summarize the four proposed approaches.

4.2.1 Decomposition by deterministic mixed integer linear programming model

Most decomposition models introduced in literature use network static bid prices to decompose the
network problem into a set of independent single-leg problems. These network static bid prices
can be obtained by various network heuristic models, such as the ones described in Section 3.2.1.
The network static bid prices take into account congestion within the network and are used to
approximate the net benefit of a product j on a flight leg i. This process is also known as prorating
in literature.

Quite surprisingly, Williamson (1992) showed that a simpler deterministic optimization model,
which is based on average demands, consistently outperforms the more advanced probabilistic mod-
els when used as a basis of some sort of nested control strategy. We propose an extension to
the deterministic linear programming (DLP) model to incorporate aircraft configuration selection.
Using the variables and definitions proposed in Chapter 2, the original DLP model is given by
Equation (12)-(15).

Deterministic linear programming (dlp) model

V DLP (x,µ(t)) = max rTy (12)

s.t. ATy ≤ x (13)

0 ≤ y ≤ µ(t) (14)

y ∈ Rn (15)

Here, the decision variables y =
[
y1, ..., yn

]⊺
represent the partitioned fractional allocation of capac-

ity for each of the n products. The result of the approximation is an optimal partitioned fractional
allocation in the case when demand was deterministic and equal to its mean µ(t).

We will now extend the DLP model to incorporate up- and downgrading of customers. As the
vector of mean aggregate demand to come at time t, µ(t), and the partitioned fractional allocation
of capacity, y, is continuous, we also relax the upgrade vector g. The resulting model is named
the extended deterministic linear programming (EDLP) model and is given by Equation (16)-(20).
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Extended deterministic linear programming (edlp) model

V EDLP (x,µ(t)) = max rTy (16)

s.t. ATy −CTg ≤ x (17)

0 ≤ y ≤ µ(t) (18)

− d ≤ g ≤ f (19)

y ∈ Rn,g ∈ Rm (20)

Again, the decision variables y =
[
y1, ..., yn

]⊺
represent the partitioned fractional allocation of

capacity for each of the n products. Moreover, the decision variables g =
[
g1, ..., gm

]⊺
describe the

number of upgrades for each of the m flight legs. To incorporate aircraft configuration selection,
we can extend the EDLP model. Now, the resulting model becomes a deterministic mixed integer
linear programming (DMILP) model, given by Equation (21)-(26).

Deterministic mixed integer linear programming (dmilp) model

V DMILP (x,µ(t)) = max rTy (21)

s.t. ATy −CTg ≤ x+BT z (22)

0 ≤ y ≤ µ(t) (23)

− d ≤ g ≤ f (24)

z < c (25)

y ∈ Rn,g ∈ Rm, z ∈ Zm
0+ (26)

Decision variables y =
[
y1, ..., yn

]⊺
and g =

[
g1, ..., gm

]⊺
have the same interpretation as for the

EDLP model. The decision variables z =
[
z1, ..., zm

]⊺
now describe the aircraft configuration on

each of them flight legs. Note that the DMILP model can easily be extended to include cancellations
and no-shows in the underlying linear programming formulation.

The optimal partitioned fractional allocation of the DMILP model can, however, not be used directly
as seat inventory control. For example, the partition is fractional and, therefore, it is undefined what
to do with the fractional part. Moreover, many carriers use a nested inventory structure instead of
a partitioned fare class inventory structure. That is, for a nested inventory structure, each low-fare
class is nested within the next higher-fare class at the flight leg level. In this way, as long as seats are
available, higher revenue requests will not be denied. Williamson (1992) showed that the expected
revenue of a nested inventory is greater than or equal to the expected revenue of a partitioned
inventory. It is also easy to reason that it will not be profitable to reject higher revenue requests
when seats are originally located to lower revenue requests. The problem with the found optimal
partitioned fractional allocations is that these allocations are generally not optimal seat allocations
for a nested structure. Moreover, the network environment makes nesting complicated, for example,
the highest revenue ODF itinerary may not be the most desirable itinerary for the network. Namely,
if there is high local demand, generally the local ODF itineraries are more desirable than the higher
revenue multi-leg ODF itineraries.
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A way to tackle this problem traditionally is to solve the DLP model and use the optimal dual
variables associated with Constraints (13), as network bid prices. However, now, we need to solve
a mixed integer linear programming model for which linear programming duality does not hold.
Nonetheless, one must note that the optimal dual variables are the shadow prices of the capacity
constraints and, thereby, an approximation of the opportunity cost of the corresponding flight leg-
cabin capacities. We, therefore, propose to calculate the opportunity cost of a product (and thereby
of a set of flight leg-cabin capacities) directly. These opportunity costs can then be used as network
bid prices. An additional advantage is that these opportunity costs can also be used to support
other decision-making, such as pricing and capacity planning.

The most noticeable work that is related to this approach is given by Bertsimas and Popescu
(2003). Bertsimas and Popescu (2003) introduced a new control policy, which they called certainty
equivalent control (CEC). They showed that CEC leads to higher revenue and more robust perfor-
mance than an additive bid price control. Within CEC, the opportunity cost of a cabin-specific OD
itinerary is calculated by the finite differences in the value functions. Here, the value function of
the stochastic dynamic program is approximated by the value of the DLP model. A request for an
ODF request is accepted if and only if the fare exceeds the current opportunity cost estimate of the
cabin-specific OD itinerary and we have sufficient remaining capacity.

Bertsimas and Popescu (2003) noted two main disadvantages of using leg-based additive bid prices
when obtained from solving the linear programming formulation of the problem. First, the bid
prices are not well defined if there are multiple dual solutions. That is, the bid prices are not unique
if the optimal solution is degenerate. This can lead to inconsistencies between different optimization
runs. Secondly, the bid prices may not be completely additive due to ’bundle effects’. That is, we
may have basis changes in the dual LP for multi-leg or group OD requests. CEC does not have an
additive structure and is well-defined when having multiple dual solutions. Example 4.1, which is
based on an example of Talluri and Van Ryzin (2004b), illustrates the two main disadvantages of
bid price control.

Example 4.1. Consider a network with two flight legs (m = 2) and the airline sells three products
(n = 3). Each flight leg only has a single cabin. There are two time-periods (T=2) and there is a
capacity of one on each of the flight legs. The problem data is given in Table 1.

Table 1: Problem data of a small network of two flight legs and three products as a counterexample
for bid price control.

Period t Product j Aj Associated revenue (e) Probability ptj

2 1 (1, 0)T 500 0.3

2 (0, 1)T 500 0.3

3 (1, 1)T 1000 0.4

1 3 (1, 1)T 1000 0.8

No arrival 0.2

We have at most one request per time-period, so requests in each period are mutually exclusive. It
is easy to notice by inspection that an optimal control would deny requests for products 1 and 2 and
accept a request for product 3 in both periods. Namely, by accepting a request for product 1 or 2, we
incur an opportunity cost of e800 (0.8×e1000) by not being able to accept a request for product 3
in period 1 anymore. This is greater than the incurred revenue of accepting a request for product 1
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or 2 in period 2, namely e500, therefore, we will not accept requests for product 1 or 2 in period 2.
We also want to accept a request for product 3 in period 2, as we never can capture more revenue
in period 1.

We, therefore, need that the bid prices π1 and π2 for flight legs 1 and 2, respectively, need to satisfy
that π1 > 500, π2 > 500 and π1 + π2 ≤ 1000, which is, obviously, impossible. Therefore, no bid
price control can produce an optimal control.

It is not hard to see that the best a bid price control can do, is to deny all requests in period 2 and
to accept a request for product 3 in period 1. This yields an expected revenue of e800 (0.8×e1000).
This is in contrast with an optimal control, which has an expected revenue of e880 (0.4×e1000 +
0.6×0.8 ×e1000). Therefore, an optimal control can obtain on average 10% more revenue than the
best bid price control.

So in Example 4.1, we observe that the opportunity cost of using both flight legs simultaneously
is exactly equal to the opportunity cost of using a single flight leg. This can be explained by the
fact that the expected revenue to go is determined by the minimum available capacity of the two
flight legs. Therefore, the revenue to go is highly nonlinear with displaced capacities, something
that bid price control fails to capture. This is analogous to the degeneracy problem explained
previously. Also, Example 4.1 reflects the problem that bid prices may not be completely additive
due to ’bundle effects’. That is, in general, large relative changes in remaining capacity on several
flight legs simultaneously cannot be expected to give the same revenue outcomes as the sum of the
individual changes.

In our case, we can determine the opportunity cost of flight leg-cabin combination i and the op-
portunity cost of product j by Equation (27) and (28), respectively. In Equation (27), ei denotes
the unit vector with entry one for the flight leg-cabin combination i. Essentially, Equation (27) is a
special case of Equation (28), namely the opportunity cost of a flight leg-cabin combination is the
same as the opportunity cost of a product using only this single flight leg and cabin. However, for
notation convenience, the two are given separately.

OCi(x) = V DMILP (x,µ(t))− V DMILP (x− ei,µ(t)) (27)

OCj(x) = V DMILP (x,µ(t))− V DMILP (x−Aj ,µ(t)) (28)

Example 4.2 continues Example 4.1 and shows that this framework does not suffer from not com-
pletely additive bid prices due to ’bundle effects’ and degeneracy problems.

Example 4.2. As we only have one cabin and fixed aircraft configuration for this example, one can
use the DLP model instead of the DMILP model and, thereby, find the opportunity cost of product
j by Equation (29).

OCj(x) = V DLP (x,µ(t))− V DLP (x−Aj ,µ(t)) (29)

Using the probabilities given in Table 1, the vector of mean aggregate demand to come at remaining

time t = 2 can be given by µ(2) =
[
0.3, 0.3, 1.2

]⊺
. The DLP model at remaining time t = 2 can now

be written as Equation (30)-(36).
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V DLP (x,µ(t)) = max 500y1 + 500y2 + 1000y3 (30)

s.t. y1 + y3 ≤ 1 (31)

y2 + y3 ≤ 1 (32)

0 ≤ y1 ≤ 0.3 (33)

0 ≤ y2 ≤ 0.3 (34)

0 ≤ y3 ≤ 1.2 (35)

y ∈ R3 (36)

Solving the DLP model gives the optimal dual values of Constraint (31) and (32) of both e500.
Therefore, when using the optimal dual variables as network bid prices, the bid prices π1 and π2 at
remaining time t = 2 will be given by π1 = π2 = e500. This results in a control that accepts all
incoming requests in period 2 and is, therefore, non-optimal. The expected revenue of this control is
equal to e700 (0.3×e500 + 0.3×e500 + 0.4×e1000). Calculating the opportunity costs of products
j by Equation (29) results in an opportunity cost of e850, e850 and e1000 for products 1, 2 and
3, respectively. By only accepting an incoming request with an associated revenue equal to or higher
than the opportunity cost of this incoming request, a request for product 1 or 2 will be rejected and
a request for product 3 will be accepted. The expected revenue will, consequently, be equal to e880
(0.4×e1000 + 0.6×0.8 ×e1000), which is optimal and 25.7% more than the expected revenue of
the control using bid prices based on the optimal dual variables of the capacity constraints. Here,
as product 1 uses only flight leg 1 and product 2 uses only flight leg 2, the opportunity cost of flight
legs 1 and 2 is the same as the opportunity cost of products 1 and 2. Clearly, the opportunity cost
of using both flight legs (e1000) is not equal to the sum of the opportunity cost of flight leg 1 and
flight leg 2 (e850 + e850 = e1700). This shows that optimal bid prices are not completely additive
due to ’bundle effects’.

Within CEC, the opportunity cost of a product j is calculated on a real-time basis. That is, if a
request for a product j comes in, the opportunity cost of product j is calculated given the remaining
capacities and a product is sold if and only if the fare of the product exceeds the opportunity
cost and we have sufficient remaining capacity. However, the deterministic mixed integer linear
programming model is computationally too expensive to compute on a real-time basis. Moreover,
using CEC requires airlines to make major adjustments in their revenue management systems, which
are often based on bid price control.

We, therefore, propose to calculate the opportunity costs of all products and flight leg-cabin combi-
nations nightly given the remaining capacity at that time. In this way, the computation time may
not be a limiting factor. We then decompose the network problem by prorating the revenues of
the products using the opportunity costs, thereby taking into account network effects. The goal of
proration is to have a measure of the contribution of a multi-leg ODF itinerary to each flight leg the
multi-leg ODF itinerary uses. Then, using the prorated revenues, we can solve the network problem
as a collection of independent single-leg problems. An example of such a proration is to calculate
for each flight leg-cabin combination i used by product j the prorated revenue r̄ij of product j by
Equation (37).

r̄ij = rj
OCi

OCj
, i ∈ Aj . (37)
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It must be noted that one can prorate the revenues also in other manners using the calculated
opportunity costs. Finding the best way to prorate is, however, a subtle task that goes beyond the
scope of this work. Also, note that the overall revenue is not preserved for the given proration.
That is, if for a product j we have that OCj ̸=

∑
i∈Aj

OCi, then rj ̸=
∑

i∈Aj
r̄ij . Nonetheless, this

is as expected, as if the opportunity cost of a product j is smaller (greater) than the sum of the
opportunity costs of the used flight legs, it means that the multi-leg product j is (not) preferred
over the single-leg products. Nonetheless, as the overall revenue is not preserved, it is important to
use the prorated revenues within the single-leg models when deciding to accept or reject a request
for an ODF itinerary, as these prorated revenues are also used to determine the bid prices.

It also must be noted that the opportunity costs of products j using the same cabin-specific OD
itinerary are identical. Also, if a product j uses only a single flight leg, the opportunity cost
of the cabin-specific product equals the opportunity cost of the cabin-specific flight leg capacity.
Therefore, in the end, the opportunity cost only needs to be calculated for all cabin-specific OD
itineraries used by the products j. Also, by ’warm starting’ the integer linear programming solver
with the previously determined solution for x, one can reduce computation time significantly. Lastly,
computation time could be reduced by computing the opportunity costs in parallel.

4.2.2 Decomposition by relaxed deterministic mixed integer linear programming model

To reduce the computation time significantly of the previously introduced framework, one could
relax the aircraft configuration z in the DMILP model. The relaxed DMILP model then becomes a
linear programming model, which can be solved significantly faster than a mixed integer linear pro-
gramming model. This also allows us to use the optimal dual variables associated with Constraints
(22) directly as network bid prices. In this way, one needs to compute the relaxed DMILP model
only once, which can be beneficial if computation time is limited.

When the optimal dual variables are used directly as network bid prices, a similar proration as
Equation (37) can be performed. However, we now use leg-based additive bid prices instead of
opportunity costs to prorate. The proration scheme is given by Equation (38). That is, the prorated
revenue r̄ij of product j on each flight leg-cabin combination i used by product j is calculated by
Equation (38). Here, πi denotes the bid price of flight leg-cabin combination i.

r̄ij = rj
πi∑

l∈Aj
πl
, i ∈ Aj . (38)

Relaxing the aircraft configuration z can be justified by the fact that the network bid prices are only
used for the proration. The purpose of the proration step to incorporate network information into
the single-leg problems is still assured. Moreover, by incorporating aircraft configuration selection
within the dynamic programming model, which is used to solve the single-flight legs, one can still
account for the fact that the cabin divider only segregates entire rows. Additionally, when we did
not sell many products yet and the remaining flight leg capacities x are still large, we can expect
that the aircraft configuration selection will not be a limiting factor. Therefore, it might also be
an option to only relax the aircraft configuration z when the remaining time t is large, as we then
expect that the flight leg capacities x are still large.
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4.2.3 Solving independent single-leg problems using dynamic programming model

We formulate the single-leg problem as a stochastic dynamic program, similar to the stochastic
dynamic program of the network seat inventory control problem in Section 4.1. A dynamic program
formulation has been chosen as it allows us to use more realistic assumptions. That is, compared
to static models, we can relax the revenue-order assumption. This assumption is likely to be
violated as it is very unlikely that demand arrives in low-to-high prorated revenue order, even if the
original demand arrives in low-to-high revenue order. However, more importantly, by modeling the
single-leg problem as a dynamic program, we can account for aircraft configuration selection in our
optimization. Then, the decomposition model can become flight leg based instead of flight leg-cabin
based. That is, we can obtain dynamic bid prices which are a function of the cabin-specific flight
leg capacities.

Dynamic models do, however, require the assumption of Markovian arrivals, such as Poisson arrivals,
to make them tractable. Nonetheless, Williamson (1992) shows that modeling the arrival of demand
by a Poisson process is a valid assumption, as this process can model the underlying pattern of airline
demand realistically. That is, the Poisson distribution is naturally truncated at zero with significant
positive skewness for low mean demands. Also, the Poisson process is a discrete distribution, thereby
being more realistic than continuous distributions, such as the normal and gamma distribution,
which also tend to fit statistical demand data well. An additional advantage of the Poisson process
is the property that the sum of two independent Poisson processes remains Poisson distributed,
which is handy for simulation purposes. Moreover, the mean and variance of a Poisson process
are equal to each other. Research by A. O. Lee (1990) shows that this property is a reasonable
assumption for modeling the arrival of demand. Lastly, a dynamic model requires an estimate of
the pattern of arrivals over time, which is called the booking curve. We assume a linear booking
curve, that is, the probability of an arrival of a request for an ODF itinerary is constant over time.

Similar to Section 4.1, the stochastic dynamic programming model can find an optimal decision
vector by evaluating the entire state space and deciding at each point in time whether to accept a
request for product j. However, now, as we are only considering a single flight leg, the state space
becomes manageable. The states S of the system are defined by the remaining capacity x, when the
remaining time is t. Consequently, we represent the states by S = (t,x). As we only look at a single
flight leg, the remaining capacity vector x is given by x = [xM , xC ]T . Time t must be discretized
properly to satisfy the assumption of at most one arrival per time-period. That is, it must hold that∑n

j=1 p
t
j ≤ 1 ∀ t ≤ T . Moreover, let Vt(x) now denote the maximum expected prorated revenue to

go given the remaining capacity x, when the remaining time is t. Then Vt(x) can be computed via
the Bellman equation given by Equation (39), where we used the optimal control policy found in
Section 4.1.

Vt(x) = Vt−1(x) +
∑

j:(x−Aj)∈X

E
[
Rt

j − Vt−1(x) + Vt−1(x−Aj)
]+

= Vt−1(x) +
∑

j:(x−Aj)∈X

ptj {r̄j − Vt−1(x) + Vt−1(x−Aj)}+

= Vt−1(x) +
∑

j:(x−Aj)∈X

ptj

{
r̄j −OCj

t (x)
}+

(39)

for all x ∈ X , t ≤ T , and with the boundary condition given by Equation (40)
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V0(x) = 0 if x ∈ X (40)

and where the opportunity cost of product j at time t, OCj
t (x), is defined by Equation (41).

OCj
t (x) = Vt−1(x)− Vt−1(x−Aj) (41)

Here, the prorated revenue of product j, r̄j , is equal to r̄ij if we consider flight leg i. Moreover,
in the single-leg variant, product j either consumes an economy or a business seat. Therefore, for
each state, we only need to calculate the opportunity cost of an economy or a business seat, which
is given by Equations 42 and 43, respectively.

OCM
t (x) = Vt−1(x)− Vt−1

(
x−

[
1

0

])
(42)

OCC
t (x) = Vt−1(x)− Vt−1

(
x−

[
0

1

])
(43)

Now, we have that OCj
t (x) = OCM

t (x) if product j uses an economy seat and OCj
t (x) = OCC

t (x) if
product j uses a business seat. Aircraft configuration selection is again implicitly taken into account
by evaluating all x ∈ X , thereby evaluating all possible configurations, and only accepting a request
for product j if and only if x−Aj ∈ X . The optimal control decision u∗(t,x, r) should satisfy:

u∗j (t,x, r̄j) =

{
1 if r̄j ≥ OCj

t (x) and x−Aj ∈ X ,

0 otherwise.
(44)

In other words, an optimal control policy should accept a request for product j with corresponding
prorated revenue r̄j if and only if this revenue is greater than or equal to the opportunity cost of
accepting the request for product j and we have sufficient remaining capacity. This optimal control
policy can be implemented using a bid price control, namely, we set the cabin-specific bid price
equal to the cabin-specific opportunity cost. That is, the bid price of the economy and business
cabin seat at remaining capacity x is given by Equations 45 and 46, respectively.

πM
t (x) = OCM

t (x) = Vt−1(x)− Vt−1

(
x−

[
1

0

])
(45)

πC
t (x) = OCC

t (x) = Vt−1(x)− Vt−1

(
x−

[
0

1

])
(46)

Note that the shown nonoptimality of a bid price control by Example 4.1 in Section 4.2.1 does not
hold here, as in Example 4.1 we look at a network of flight legs instead of one single flight leg.
Moreover, note that for the optimal control policy, we obtain dynamic bid prices, that is, they are
a function of both remaining time t and remaining capacity x.
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As stated previously, to solve the single-leg problem and to obtain the dynamic bid prices, we
evaluate the entire state space. We start at the boundary condition given by Equation (40) and
use the recursion given by Equation (39) to proceed backward in time t. For each stage t, we first
construct set X as defined by Equation (2) in Chapter 2 for the specific aircraft type assigned to
the flight leg and given the remaining capacity vector x. Here, set X defines all feasible remaining
flight leg capacities x. The size of set X is O(C2), where C represents the total flight leg capacity,
that is C = XM +XC . If a request for product j results in infeasible remaining flight leg capacities
xnew = x−Aj , that is xnew ̸∈ X , then OCcabin

t (x) is set to positive infinity for all t.

The set X for the specific remaining flight leg capacities x can be reused for different optimization
runs and flight legs using the same aircraft type. This is, therefore, a one-time calculation and
is consequently not taken into account for the complexity analysis of the dynamic programming
algorithm. For each stage t, we have O(nC2) computations, therefore, the overall computational
complexity of the dynamic programming model is O(nC2T ). Moreover, as the periods are chosen
such that we have O(1) requests per period and for most flight legs, the total expected demand is
of the same magnitude as the total capacity C, we can approximate T by O(C). Therefore, the
overall computational complexity can also be represented as O(nC3), which is pseudopolynomial in
the input size.

Lastly, note that the independent nature of the single-leg problems makes computation very suitable
for parallel computation. That is, in theory, if the hardware allows us to use this many threads, the
single-leg problems can be solved at the same time as one single-leg problem.

4.2.4 Overall summary of the different approaches

As previously stated, the decomposition model consists of two parts, namely the decomposition step
and solving the independent single-leg problems. For the decomposition step, we have suggested
four different approaches. The first approach uses the framework as described in Section 4.2.1 as the
decomposition step. We call this approach the Opportunity Cost based Decomposition - Dynamic
Programming (OCD-DP) approach. Then, for the second approach, we relax the aircraft configura-
tion z in the DMILP model and for the remainder use the same framework as for the first approach.
We call this approach the Relaxed Opportunity Cost based Decomposition - Dynamic Programming
(ROCD-DP) approach. For the third approach, we also relax the aircraft configuration z in the
DMILP model, however, we now use the optimal dual variables associated with Constraint (22)
directly as network bid prices. Therefore, this approach is called the Dual based Decomposition -
Dynamic Programming (DD-DP) approach. Depending on the results of the first, second and third
approaches, it might be beneficial to look at a fourth approach where the aircraft configuration z
is only relaxed when the remaining time t is large. Depending on the results of the second and
third approaches, the fourth approach will use the opportunity cost or the optimal dual variables
corresponding to Constraint (22) as network bid prices.

Note that all four different approaches use the same dynamic programming model to solve the
independent single-leg problems. Therefore, all four approaches obtain dynamic bid prices, which are
a function of both the remaining time t and remaining capacity x. Lastly, due to the dependencies of
the fourth approach on the results of the first three approaches, we consider the fourth approach as
a topic for further research. Therefore, in the next chapter, we will test the first three approaches.
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5 Results

First, in Section 5.1, a simulation of the booking process is introduced, which is used to evaluate the
newly proposed approaches. Then, in Section 5.2, we introduce two benchmark solution methods
and an approximate upper bound on the realized revenue, which we use to show whether our
proposed approaches yield competitive results. Next, in Section 5.3, we introduce several instances
and experiments and we show our computational results.

5.1 Simulation of the booking process

To evaluate a newly proposed method, it is important to look at implementation difficulties within
the current reservation system. Moreover, one needs to consider the complexities of the actual
optimization and the control mechanism. In addition, it is important to understand the ins and
outs of the method and the underlying assumptions on which the method is built.

Nonetheless, the driving force behind developing a new method is to capture additional revenue.
Therefore, a measure is needed to quantify the potential increase in total revenue for the airline. A
simulation of the booking process of the airline can provide us with such a measure. Moreover, it
allows us to separate the impact of the many factors which play a role in network seat inventory
control, such as competition, control policies and the usage of different optimization algorithms.
Lastly, a simulation that realistically can model the booking process, allows us to refine the method
before implementing it in the airline’s reservation system.

The implemented booking process simulation is a so-called Monte Carlo simulation. The simulation
has as input the definition of the network, that is, we have m flight legs and we sell n different
products. This includes the cabin capacities, the possible aircraft configurations and the allowed
number of upgrades on the flight legs. Lastly, the remaining booking horizon length T and the mean
aggregate demand to come at time T for each ODF itinerary, given by µ(T ), are given as input. As
airlines make adjustments to booking limits regularly, the implemented simulation is a multi-stage
process. We assume that the airline updates its booking limits daily, consequently, we implement
daily scheduled revision points in our simulation. Moreover, a booking period is defined to be the
period between two revision points. As we assume a linear booking curve, we adjust the demand
forecast in every booking period based on the remaining time. That is, we approximate the mean
aggregate demand to come at time t for each ODF itinerary, given by µ(t), by the relation given
by Equation 47.

µ(t) =
t

T
· µ(T ) (47)

Moreover, as we assume a linear booking curve, the probability of a request for product j at time
t, given by ptj , can be calculated by Equation 48.

ptj =
µt
j

t
=

µT
j

T
(48)

The arrival of demand for a product is modeled as a Poisson process, which is described by a single
parameter, namely the average arrival rate λ. That is, let X1, X2, ... be a sequence of independent
exponentially distributed random variables with rate λ (and mean 1

λ). Moreover, let S0 = 0 and
Sn =

∑n
k=1Xk, for n = 1, 2, ... and let N(t) = max{n : Sn ≤ t}, for all t ≥ 0. Then {N(t), t ≥ 0}
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is said to be a Poisson process with rate λ. Here, the realization of Xn is the time between the
(n− 1)th and nth event (arrival), the realization of Sn is the arrival time of the nth event and the
realization of N(t) is the number of arrivals in (0, t]. The mean and variance of N(t) are given by
E[N(t)] = V [N(t)] = λt.

Given the assumption of a linear booking curve, the arrival rate vector λ is given by µ(T )/T . For
each product, we simulate the Poisson process for T time units. Here, we use the fact that inter-
arrival times X1, X2, ... for a Poisson process are exponentially distributed with rate λ. When the
arrivals of all products have been simulated, the arrivals are combined in one list and sorted on
arrival time. Using this list, we can start the simulation. A schematic overview of the simulation
is given in Figure 1. We start at remaining time t = T and iterate over the booking periods. For
every booking period, we update the demand forecasts, for which we use the assumption of a linear
booking curve. Then, based on the updated demand forecasts and most recent remaining capacities
x, we update the booking limits. That is, we perform the decomposition model as described in
Section 4.2. Arrivals of requests within the booking period are then accepted or rejected based on
the updated booking limits. If the request is accepted, we update the remaining capacities x.

Booking period:

Update the booking limits based on updated demand forecasts and capacities.

Next booking period

Next arrival of request in booking period

Arrival of request in booking period:

Update demand forecasts

Accept / Reject request: 

Request is accepted / rejected based on respective booking limit and remaining capacity.

If request is accepted, update remaining capacity.

Figure 1: Schematic overview of the simulation process.

This process is repeated a large number of times and after doing these iterations, one can derive
several summary statistics. Note that the number of times the process is repeated is called the
sample size of the Monte Carlo simulation for the remainder of this thesis. Obviously, the most
important summary statistic is given by the average realized revenue of the network. Other inter-
esting summary statistics are the average final load factor of the network, the number of times a
configuration is chosen and the average number of upgrades that are needed. Here, we define the
load factor as the total number of seats sold for a flight leg over the total capacity of the flight leg.
Lastly, the average computation time is also a key statistic.

5.2 Benchmark solution methods and approximate upper bound

We compare the performance of our approaches with 2 benchmark methods. The first method uses
the optimal dual variables of Constraints (17) of the EDLP model as network bid prices and these
network bid prices are used directly as a control mechanism. For this, we first must solve the DMILP
model and fix the aircraft configuration z. If a request for an ODF itinerary arrives using multiple
flight legs, the summation of the bid prices of the flight legs used by the itinerary is used as bid
price. We call this type of control the mathematical programming control (MPC). Also, please note
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the resemblance of this approach with the famous deterministic linear programming method used
in literature. That is, the deterministic linear programming method in literature uses the optimal
dual variables of Constraints (13) of the DLP model as bid prices, however, this method does not
consider up- and downgrading and aircraft configuration selection. The second benchmark method
uses the calculated opportunity costs of the n products, which is given by Equation 28, directly as
control mechanism. This method comes closest to the approach of Bertsimas and Popescu (2003),
however, Bertsimas and Popescu (2003) calculate the opportunity cost on a real-time basis. We call
this type of control the opportunity cost control (OCC). Lastly, please note that both methods can
be argued to be unsafe, due to the open/closed control philosophy.

The realized revenue of the (benchmark) approaches can also be compared using the perfect-
hindsight solution. That is, an upper bound on the maximum realized revenue of a single run
of the Monte Carlo simulation can be obtained by solving the perfect hindsight mixed integer linear
programming (PHMILP) model given by Equation (49)-(54). This model uses perfect information
on the realized demand, given by µ̄. Therefore, given the realized demand, this model essentially
finds an optimal allocation of the available capacity. This upper bound might, however, be loose as
we use perfect information on the realization of demand which is clearly too optimistic for real-time
control.

Perfect hindsight mixed integer linear programming (phmilp) model

V PHMILP (x, µ̄) = max rTy (49)

s.t. ATy −CTg ≤ x+BT z (50)

0 ≤ y ≤ µ̄ (51)

− d ≤ g ≤ f (52)

z < c (53)

y ∈ Zn
0+,g ∈ Zm, z ∈ Zm

0+ (54)

An approximate upper bound on the realized revenue of the stochastic network seat inventory
control problem can then be obtained by taking the average of the found upper bounds of the runs
of the Monte Carlo simulation.

5.3 Numerical results

In this section, we present numerical results that show the relative performance of the proposed
approaches, the benchmark solution methods and the approximate upper bound on the realized
revenue. Our goal is to evaluate the different approaches using the computation time, the realized
revenue and robustness as criteria. The booking process simulation as described in Section 5.1
allows us to use the same sequence of product requests for each (benchmark) approach. In this way,
the difference in simulation results can be solely attributed to using different approaches.

It is chosen to base the numerical experiments on real historical airline data. In this way, we try
to obtain a realistic mix of local and connecting flow and a realistic mix of fare classes. Here,
with local flow, we mean requests for single-leg ODF itineraries and with connecting flow, we mean
requests for multi-leg ODF itineraries. First, in Section 5.3.1, we perform a case study on the
entire large-scale network of a major airline in Europe. Applying a Monte Carlo simulation with a
significant sample size on the entire network becomes problematic due to the size of the problem and
computation limitations. The entire network can, however, be used to show whether the proposed
approaches still work in a reasonable time for a real, large network of a major airline. Therefore, we
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also consider this network 3 months for departure, as then the remaining capacities and incoming
demand forecasts are still high. Then, in Section 5.3.2, we generate subnetworks from the entire
large-scale network of the airline. However, now, we consider the network 1 month before departure.
These subnetworks do allow us to apply a Monte Carlo simulation with a significant sample size
on all proposed approaches and benchmark solution methods in a manageable time. This allows
us to derive several summary statistics about the stochastic problem. That is, the subnetworks are
used to compare the realized revenues of the different approaches and to apply a sensitivity analysis
on the influence of the sample size of the Monte Carlo simulation, the control mechanism and the
network characteristics. In addition, it allows us to perform a robustness analysis on the influence
of the demand estimates.

The framework is implemented in Java, version 18.0.2. Moreover, the mathematical programming
models are solved using a CPLEX solver with version 22.1.0. The case study on the entire large-scale
network is performed using an Intel Xeon Gold 6134 CPU 3.20 GHz device running Windows 10 with
192GB RAM. The machine is, however, also used by other highly demanding operations, therefore
approximately half of the machine utilities are available. The case study on the subnetworks is
performed using an Intel i7 3.0 GHz processor with 32 GB RAM.

The independent single-leg problems are solved in parallel to speed up computation. The number of
threads is set equal to the machine’s available logical processors. It was chosen to not compute the
opportunity costs in parallel, although this would reduce computation time significantly. However,
the opportunity costs are calculated using mathematical programming models, which use an external
CPLEX library. Making multiple calls to this library simultaneously became problematic, though
it should be possible. Nonetheless, due to time limitations, it was decided that the parallelization
of the mathematical programming models is outside the scope of this research. Also, the CPLEX
library itself can use multiple threads, so parallelization of the mathematical programming models
becomes less urgent.

5.3.1 Case study entire large-scale network

The network consists of 661 flight legs and 267492 different products. To the best of the author’s
knowledge, this network is one of the largest networks considered in airline revenue management
literature (Birbil et al., 2014). We consider the network three months before departure, therefore
the booking horizon T is set to 90 days. Of the 661 flight legs, in total 564 flight legs have non-fixed
aircraft configurations. Moreover, let the demand factor of a flight leg be given by the sum of the
total demand forecast and seats sold for the flight leg over the initial capacity of the flight leg. The
demand factor varies between 0.06 to 5.62 on the flight legs, with an average of 1.01 and a standard
deviation of 0.54. The 267492 different products correspond to 7505 different cabin-specific OD
itineraries. A product uses between 1 and 3 flight legs, with an average of 1.497 flight legs and a
standard deviation of 0.516 flight legs. This indicates that there is a good mix between local and
connecting flow. Additional summary statistics are given in Appendix A.

Table 2 shows the results of the Monte Carlo simulations with a sample size of two for the different
approaches. Both the OCD-DP approach and the OCC benchmark approach took too long and
were, therefore, terminated early. However, using extrapolation, the average computation time for
optimizing a single booking period could be computed for the two approaches. That is, the OCD-
DP approach and the OCC benchmark approach were terminated halfway through the first run and
using extrapolation, the average computation time per booking period could be determined.
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As expected, the OCD-DP approach has the highest computation time, taking on average a small
five hours per booking period and, thereby, is considered to be too slow. The OCC benchmark
approach was also considered to be too slow, taking on average approximately over two hours per
booking period. Both the ROCD-DP, DD-DP and MPC approaches had reasonable computation
times, where the ROCD-DP approach took on average approximately one hour per booking period,
being twice as slow as the DD-DP approach. The MPC approach had the smallest computation
time, namely, on average a booking period was optimized in 2.9 seconds.

The large computation time of the OCD-DP approach and OCC benchmark approach is caused by
the high number of cabin-specific OD itineraries. That is, the computation time of the opportunity
costs of the 7505 different cabin-specific OD itineraries took on average approximately over two
hours, making the approach impractical. ’Warm starting’ the integer linear programming solver
for the OCD-DP and OCC approaches did not give the large expected decrease in computation
time. The decrease in computation time by using a ’warm start’ was approximately 54.0%, which
is substantial, however, not enough to make the computation time manageable. It must, however,
also be noted that the opportunity costs can be calculated in parallel. Therefore, in theory, if there
are no limitations on the used hardware, the opportunity costs can be solved in the same time as
one opportunity cost, which is only a few seconds.

As only a sample size of two was used, one cannot make any statement regarding the significance of
the differences in the average realized revenue, load factor and upgrade. The realized demand was
0.09% lower and 0.81% higher than the predicted demand for the first and second run, respectively.
Quite surprisingly, the MPC approach succeeded to obtain a higher revenue than the ROCD-
DP and DD-DP approaches for both runs. As the realized demand was both higher and smaller
than the predicted demand, one cannot make any statements about whether this is a result of
one method being more restrictive in accepting demand than another. In most cases, the final
configuration corresponds to the zero configuration. That is, for the 564 flight legs with no-fixed
aircraft configuration, on average in 84.6% of the cases the zero-configuration is chosen for the
ROCD-DP, DD-DP and MPC benchmark approach.

Table 2: Results of the Monte Carlo simulations with a sample size of two on the entire large-
scale network for the different approaches. The computation times of the optimization of a single
booking period for the OCD-DP approach and OCC benchmark approach are determined using
extrapolation.

Approaches OCD-DP ROCD-DP DD-DP OCC MPC

Ave. realized revenue (e) - 20,726,092 20,719,840 - 20,931,173

Gap to approx. upper bound (%) - 2.15 2.18 - 1.18

Ave. load factor - 0.797 0.797 - 0.807

Ave. upgrades - 0.800 0.801 - 0.898

Ave. comp. time booking period (s) 16770.5 4167.36 2446.5 8187.8 2.9

Ave. flight legs with final config. 0 - 478.0 478.0 - 475.5

Ave. flight legs with final config. 1 - 23.5 23.0 - 27.5

Ave. flight legs with final config. 2 - 16.0 16.0 - 14.5

Ave. flight legs with final config. 3 - 33.0 33.5 - 33.5

Ave. flight legs with final config. 4 - 12.5 12.5 - 12.0

Ave. flight legs with final config. 5 - 1.0 1.0 - 1.0
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5.3.2 Case study subnetworks

As stated previously, subnetworks are generated from the entire large-scale network. We do this by
only considering those flight legs arriving within a specific arrival time interval or departing within
a specific departure time interval from the hub of the considered airline. As connecting passengers
need approximately one hour to transfer to different flight legs, the start of the departure time
interval begins an hour after the start of the arrival time interval. The lengths of the arrival and
departure time intervals are set such that we obtain a small enough network to be able to apply
Monte Carlo simulations with sufficient sample size, but also still have a reasonable mix between
local and connecting flow. Multiple networks can be generated by shifting the time intervals.

By experimenting, eight subnetworks were found, each having its own unique characteristics. Sum-
mary statistics of the eight subnetworks are given in Table 3. We consider five larger subnetworks
(subnetworks 1 through 5) and three smaller subnetworks (subnetworks 6 through 8). Most in-
teresting is the difference in demand factors, the number of different cabin-specific OD itineraries
and the average number of flight legs used by a product. For example, subnetwork 2 differs from
subnetwork 1 by having less connecting flow, resulting in fewer cabin-specific OD itineraries and a
lower average number of flight legs used by products. Subnetworks 3, 4 and 5 are more mediocre
networks compared to subnetworks 1 and 2 and differ mainly in demand factor. Subnetwork 6 does
not contain any connecting flow and, therefore, can be seen as a network of independent single-flight
legs. Subnetworks 7 and 8 do contain little connecting flow and mainly differ in demand factor.

Moreover, it must be noted that even the subnetwork with the most connecting flow does not
come close to the amount of connecting flow seen in the entire network of the major airline. This
is caused by the fact that the arrival and departure time intervals are limited to get sufficiently
small networks, and, therefore, we miss a substantial part of the connecting flow. Moreover, we
only consider connecting flow at the hub, and not at other airports. Lastly, note that the average
demand factor of the subnetworks is considerably higher than the average demand factor of the
entire network considered 3 months before departure, as considered in Section 5.3.1. This can be
explained by the fact that the average demand factor of the entire network considered 1 month
before departure has a significantly higher demand factor compared to 3 months before departure,
namely 1.27 instead of 1.01.

Table 3: Summary statistics of the eight generated subnetworks.

Network 1 2 3 4 5 6 7 8

Total flight legs 27 20 24 23 18 9 6 6

With non-fixed aircraft config. 24 15 20 21 14 9 4 5

Open for sale economy cabin (%) 33.3 28.2 45.7 32.9 42.4 51.4 19.8 50.6

Open for sale business cabin (%) 26.2 18.4 55.0 48.4 58.8 69.4 10.1 38.2

Total Products 6908 3807 4885 4501 3758 1307 1143 979

Average demand factor 1.32 1.36 1.11 1.40 1.13 1.33 1.68 0.97

Number of different cabin-specific OD itineraries 118 58 80 70 63 15 16 12

Average number of flight legs used by product 1.24 1.08 1.17 1.15 1.17 1.00 1.07 1.04

As the OCD-DP approach is proven to be impractical with the current implementation and available
hardware during the case study on the entire large-scale network in Section 5.3.1, we will exclude this
approach from the experiments on the subnetworks. The OCC benchmark approach is, however,
included, as this method still provides a good benchmark and can be computed relatively fast due to
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the low number of different cabin-specific OD itineraries. The results of the Monte Carlo simulations
with a sample size of 100 on the 5 larger subnetworks and the 3 smaller subnetworks for the different
approaches are given in Tables 4 and 5, respectively.

On average, the ROCD-DP approach showed a revenue increase of, respectively, 0.83% and 0.74%
compared to the MPC and OCC benchmark approaches, which corresponds on average to 0.15
standard deviations for both the MPC and OCC benchmark approaches. The DD-DP approach
performed quite similarly, resulting in an average revenue increase of, respectively, 0.81% and 0.73%
compared to the MPC and OCC benchmark approaches. Again, this increase corresponded on
average to 0.15 standard deviations for both the MPC and OCC benchmark approaches. Only for
subnetwork 1, the ROCD-DP and DD-DP approaches did not result in a positive revenue increase
compared to the benchmark approaches. Although the increase in realized revenue seems relatively
small, it can be considered fairly significant, considering that the average gap to the approximate
upper bound equals, respectively, 3.11% and 3.02% for the MPC and OCC benchmark approaches.
Therefore, it is reasonable to assume that the benchmark approaches are already quite close to the
optimum for the network seat inventory control problem.

The ROCD-DP and DD-DP approaches have almost identical final load factors and are more re-
strictive in accepting requests compared to the MPC and OCC benchmark approaches. That is,
for both the ROCD-DP and DD-DP approaches the average final load factors are, respectively,
0.42% and 0.09% smaller compared to the MPC and OCC benchmark approaches. This decrease
on average corresponds to, respectively, 0.72 and 0.21 standard deviations for the MPC and OCC
benchmark approaches. In addition, the ROCD-DP and DD-DP approaches on average upgrade
less compared to the MPC benchmark approach. That is, the ROCD-DP and DD-DP approaches
upgrade, respectively, 3.9% and 4.0% less compared to the MPC approach, which corresponds on
average to, respectively, 0.26 and 0.27 standard deviations for the MPC approach. However, the
OCC approach on average upgrades the least, respectively, 6.5% and 6.4% less compared to the
ROCD-DP and DD-DP approaches. This decrease corresponds on average to, respectively, 0.30
standard deviations for both the ROCD-DP and DD-DP approaches.

The computation times of the ROCD-DP and DD-DP approaches do not differ remarkably, which
can be explained by the small computation time of the relaxed DMILP model and the relatively
few different cabin-specific OD itineraries. Moreover, a large part of the computation time is
used for solving the dynamic programming models, which is the same for both approaches. The
OCC benchmark approach does take a substantially longer time compared to the MPC benchmark
approach. That is, on average, the OCC and MPC benchmark approaches take, respectively 2.04 and
0.07 seconds, which corresponds to a difference of 22.2 standard deviations for the MPC approach.
This can be explained by the fact that the mixed integer linear programming model results in
significantly higher computation times compared to the linear programming model.

Quite surprisingly, the ROCD-DP and DD-DP approaches ended up with the same final configu-
ration on each of the flight legs for all 8 subnetworks. Nonetheless, not the same ODF itinerary
requests were accepted, resulting in a small difference in realized revenue. This might be explained
by the fact that the final step of the decomposition model is the same for the ROCD-DP and
DD-DP approaches. That is, the independent single-flight legs are solved by the same dynamic
programming model. The prorated revenues used within the independent single-leg problems do,
however, differ by the difference in computation, however, this only causes small differences in the
acceptance of requests and no differences in the final aircraft configurations.
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Approaches ROCD-DP DD-DP OCC MPC

Ave. (st. dev.) revenue (e) 529,846 (20,547) 529,626 (20,566) 531,282 (20,218) 530,211 (19,594)

% Increase over MPC (st. dev.) -0.07 (0.019) -0.11 (0.030) 0.20 (0.055) -

Gap to approx. ub. (%) 3.30 3.34 3.04 3.23

Ave. (st. dev.) load factor 0.9656 (0.0041) 0.9655 (0.0041) 0.9682 (0.0037) 0.9716 (0.0036)

Ave. (st. dev.) upgrades 0.758 (0.178) 0.754 (0.178) 0.693 (0.175) 0.827 (0.164)

Ave. (st. dev.) comp. time (s) 7.89 (6.67) 7.45 (6.55) 4.65 (2.25) 0.17 (0.17)

(a) Subnetwork 1

Ave. (st. dev.) revenue (e) 506,712 (15,759) 506,614 (15,741) 500,852 (16,261) 500,927 (15,426)

% Increase over MPC (st. dev.) 1.15 (0.375) 1.14 (0.369) -0.02 (0.005) -

Gap to approx. ub. (%) 2.67 2.69 3.79 3.78

Ave. (st. dev.) load factor 0.9497 (0.0038) 0.9497 (0.0038) 0.9500 (0.0038) 0.9537 (0.0038)

Ave. (st. dev) upgrades 0.507 (0.149) 0.508 (0.149) 0.487 (0.140) 0.534 (0.150)

Ave. (st. dev.) comp. time (s) 4.57 (2.23) 4.44 (2.28) 5.86 (3.52) 0.14 (0.13)

(b) Subnetwork 2

Ave. (st. dev.) revenue (e) 351,681 (19,331) 351,634 (19,289) 349,659 (19,328) 350,035 (19196)

% Increase over MPC (st. dev.) 0.47 (0.086) 0.46 (0.083) -0.11 (0.020) -

Gap to approx. ub. (%) 1.77 1.78 2.33 2.23

Ave. (st. dev.) load factor 0.8774 (0.0066) 0.8774 (0.0066) 0.8784 (0.0065) 0.8805 (0.0065)

Ave. (st. dev) upgrades 0.517 (0.116) 0.517 (0.117) 0.477 (0.111) 0.562 (0.117)

Ave. (st. dev.) comp. time (s) 8.74 (5.64) 8.40 (5.60) 2.26 (2.16) 0.06 (0.06)

(c) Subnetwork 3

Ave. (st. dev.) revenue (e) 282,072 (12,277) 282,059 (12,278) 279,669 (12,233) 280553 (12,099)

% Increase over MPC (st. dev.) 0.54 (0.126) 0.54 (0.124) -0.32 (0.073) -

Gap to approx. ub. (%) 1.88 1.89 2.72 2.41

Ave. (st. dev.) load factor 0.9098 (0.0056) 0.9098 (0.0056) 0.9103 (0.0056) 0.9129 (0.0054)

Ave. (st. dev) upgrades 0.996 (0.188) 0.996 (0.188) 0.870 (0.199) 0.987 (0.186)

Ave. (st. dev.) comp. time (s) 8.36 (6.33) 8.18 (5.64) 1.06 (0.51) 0.03 (0.04)

(d) Subnetwork 4

Ave. (st. dev.) revenue (e) 291,421 (18,776) 291,410 (18,782) 289,793 (18,651) 289,697 (18,004)

% Increase over MPC (st. dev.) 0.60 (0.096) 0.59 (0.095) 0.03 (0.005) -

Gap to approx. ub. (%) 1.70 1.70 2.25 2.28

Ave. (st. dev.) load factor 0.8673 (0.0078) 0.8673 (0.0078) 0.8675 (0.0078) 0.8694 (0.0078)

Ave. (st. dev) upgrades 0.629 (0.146) 0.628 (0.145) 0.584 (0.151) 0.669 (0.143)

Ave. (st. dev.) comp. time (s) 6.36 (3.95) 6.16 (3.93) 1.50 (1.41) 0.06 (0.05)

(e) Subnetwork 5

Table 4: Results of the Monte Carlo simulations with a sample size of 100 on the 5 larger subnet-
works for the different approaches. This includes the average (and standard deviation in parenthesis)
realized revenue, load factor, upgrades and computation time of a single booking period. Moreover,
the realized revenue is expressed as a percentage difference of the realized revenue of the MPC
benchmark approach (and number of standard deviations for the MPC benchmark approach cor-
responding to this difference in parenthesis). Lastly, the gap to the approximate upper bound is
given. 34
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Approaches ROCD-DP DD-DP OCC MPC

Ave. (st. dev.) revenue (e) 77,853 (3264) 77,853 (3264) 77,421 (3185) 77,458 (3097)

% Increase over MPC (st. dev.) 0.51 (0.127) 0.51 (0.127) -0.05 (0.012) -

Gap to approx. ub. (%) 1.74 1.74 2.28 2.24

Ave. (st. dev.) load factor 0.9664 (0.0076) 0.9664 (0.0076) 0.9668 (0.0072) 0.9708 (0.0065)

Ave. (st. dev) upgrades 0.909 (0.282) 0.909 (0.282) 0.767 (0.262) 0.941 (0.253)

Ave. (st. dev.) comp. time (s) 3.08 (2.65) 3.09 (2.68) 0.64 (0.83) 0.05 (0.09)

(a) Subnetwork 6

Ave. (st. dev.) revenue (e) 90,555 (7252) 90,548 (7251) 89,098 (7713) 88,923 (6696)

% Increase over MPC (st. dev.) 1.84 (0.244) 1.83 (0.243) 0.20 (0.026) -

Gap to approx. ub. (%) 3.96 3.97 5.51 5.69

Ave. (st. dev.) load factor 0.9804 (0.0050) 0.9804 (0.0050) 0.9788 (0.0049) 0.9837 (0.0042)

Ave. (st. dev) upgrades 0.278 (0.198) 0.278 (0.198) 0.292 (0.212) 0.235 (0.142)

Ave. (st. dev.) comp. time (s) 0.93 (0.77) 0.91 (0.75) 0.27 (0.22) 0.03 (0.03)

(b) Subnetwork 7

Ave. (st. dev.) revenue (e) 86,195 (9659) 86,192 (9663) 85,491 (9130) 84,864 (8725)

% Increase over MPC (st. dev.) 1.57 (0.153) 1.56 (0.152) 0.74 (0.072) -

Gap to approx. ub. (%) 1.46 1.47 2.27 2.99

Ave. (st. dev.) load factor 0.8695 (0.0156) 0.8695 (0.0156) 0.8729 (0.0156) 0.8745 (0.0157)

Ave. (st. dev) upgrades 0.205 (0.140) 0.203 (0.141) 0.202 (0.145) 0.255 (0.129)

Ave. (st. dev.) comp. time (s) 2.06 (1.75) 2.21 (1.86) 0.07 (0.11) 0.01 (0.04)

(c) Subnetwork 8

Table 5: Results of the Monte Carlo simulations with a sample size of 100 on the 3 smaller subnet-
works for the different approaches. This includes the average (and standard deviation in parenthesis)
realized revenue, load factor, upgrades and computation time of a single booking period. Moreover,
the realized revenue is expressed as a percentage difference of the realized revenue of the MPC
benchmark approach (and number of standard deviations for the MPC benchmark approach cor-
responding to this difference in parenthesis). Lastly, the gap to the approximate upper bound is
given.
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Interesting to see is that subnetworks 3, 4 and 5, which were more mediocre networks compared to
subnetworks 1 and 2 and mainly differ in demand factors, show largely identical performance. That
is, on average, subnetworks 3, 4 and 5 show a realized revenue increase of approximately 0.54% and
0.53% for the ROCD-DP and DD-DP approaches, respectively, compared to the MPC approach.

For subnetwork 6, the ROCD-DP and DD-DP approaches performed identically. This can be
explained by the fact that this network does not contain any connecting flow. Therefore, the network
is basically a network of independent single-flight legs. Consequently, the proration step does not
have any influence, and, therefore, both approaches are similar. Nonetheless, the ROCD-DP and
DD-DP approaches still showed a revenue increase of, respectively, 0.51% and 0.56% compared to
the MPC and OCC benchmark approaches. This increase can solely be attributed to the dynamic
programming model used to solve the single-leg problems.

In the following sections, we apply a sensitivity analysis on the influence of the sample size of
the Monte Carlo simulation, the type of control mechanism and the network characteristics. For
the latter, we consider the influence of increasing the ratio of connecting to local flow, that is,
increasing the number of products using multiple flight legs compared to products using single
flight legs. Moreover, we look at the influence of the average demand factor on the performance
of the different approaches. We try to incorporate the results obtained for the 8 subnetworks as
starting point. There are also other factors that can influence the performance of the approaches,
but, are for the scope of this research, not examined. For example, one can examine the influence
of the demand process of the booking process simulation or examine the influence of the ratio of
the number of flight legs with non-fixed aircraft configuration over the entire number of flight legs.
Lastly, we perform a robustness analysis in the demand estimates for the different approaches.

5.3.2.1 Sensitivity analysis on influence of sample size Monte Carlo simulation

As stated previously, only for subnetwork 1 the ROCD-DP and DD-DP approaches did not result in
positive revenue increases compared to the benchmark approaches. The differences were, however,
minimal, namely an average decrease of 0.07% and 0.11% for the ROCD-DP and DD-DP approaches,
respectively, compared to the MPC benchmark approach. This corresponds on average only to,
respectively, 0.019 and 0.030 standard deviations for the MPC approach. It can be interesting to
know whether the obtained results differ drastically if the sample size of the Monte Carlo simulation
is increased, and, therefore, whether the originally chosen sample size is justifiable. Therefore, for
subnetwork 1, we increase the sample size from 100 to 400. The results are given in Table 6.
Interesting to see is that the results are quite similar to the results of the Monte Carlo simulations
with a sample size of 100. That is, the relative performance between the approaches is fairly
identical. This gives a good indication that the chosen sample size of 100 for the Monte Carlo
simulation is sufficient.

5.3.2.2 Sensitivity analysis on influence of control mechanism

Considering the results for subnetwork 6, it is interesting to know whether the increase in realized
revenue for the subnetworks is caused by the difference in solution approach or by the difference in
control mechanism. That is, both benchmark approaches have an open/closed control philosophy,
in the sense that we only have a single bid price as control mechanism per flight leg-cabin combi-
nation. This is in contrast with the proposed approaches which have a bid price matrix as control
mechanism per flight leg. That is, the obtained bid prices of the proposed approaches are a function
of both the remaining time t and the remaining capacities in the cabins. Therefore, we introduce
a third benchmark approach, which is similar to the MPC approach, however, this approach has
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Table 6: Results of the Monte Carlo simulations with a sample size of 400 on subnetwork 1 for the
different approaches.

Approaches ROCD-DP DD-DP OCC MPC

Ave. (st. dev.) revenue (e) 529,924 (19,704) 529,682 (19,707) 531,048 (19,610) 530,017 (19,262)

% Increase over MPC (st. dev.) -0.02 (0.005) -0.06 (0.017) 0.19 (0.054) -

Gap to approx. ub. (%) 3.17 3.21 2.96 3.15

Ave. (st. dev.) load factor 0.9650 (0.0038) 0.9650 (0.0037) 0.9678 (0.0035) 0.9711 (0.0034)

Ave. (st. dev.) upgrades 0.744 (0.173) 0.741 (0.172) 0.684 (0.172) 0.812 (0.178)

Ave. (st. dev.) comp. time (s) 8.05 (6.57) 7.45 (6.55) 8.15 (3.75) 0.07 (0.07)

an additional step in which a heuristic is used to generate a bid price vector per flight leg-cabin
combination. That is, we generate bid prices being a function of the remaining capacity in the flight
leg-cabin combination.

The general procedure of the heuristic is the following. First, the length of the bid price vector is
determined by the remaining capacities in the cabins. For this, we will use the aircraft configuration
as determined by the DMILP model. Then, the revenues of the products are prorated using the
proration scheme given by Equation (38). Now, for each flight leg-cabin combination, we order the
associated products from highest to lowest prorated revenue. The products are aggregated in blocks
with a predicted demand of 1. Here, the aggregation starts from the highest prorated revenue to
the lowest prorated revenue. Then, the bid price of the last seat in the cabin equals the lowest
prorated revenue of the products within the first aggregated block with a predicted demand of 1.
That is, this first aggregated block contains the highest prorated revenues for the considered flight
leg and we take the lowest prorated revenue within the block as bid price. The bid price of the
second last seat in the cabin equals the lowest prorated revenue of the products within the second
aggregated block with a predicted demand of 1. This procedure is continued until the bid price
vector is filled. Note that by using this heuristic, the bid price of a capacity on a flight leg-cabin
combination will always be equal to or higher than the bid price of the same capacity for the original
MPC benchmark approach.

Surprisingly, this approach led to an average decrease in realized revenue of 7.4% compared to the
MPC benchmark approach for the eight subnetworks, which corresponds on average to 1.53 standard
deviations for the MPC benchmark approach. The adjusted MPC approach was more restrictive
in accepting requests than expected. That is, the average final load factor decreased from 0.927 to
0.879, which corresponds on average to 7.2 standard deviations for the MPC benchmark approach.
Evidently, the bid prices were set too high, leading to too much lost revenue.

Therefore, an alternative version is introduced. This version is fairly similar, however, now, for
each flight leg-cabin combination, products are ordered from lowest to highest prorated revenue.
All products with an associated prorated revenue lower than the bid price of the flight leg-cabin
combination are now excluded. The remaining products are also aggregated in blocks with a pre-
dicted demand of 1, however, now, the aggregation starts from the lowest prorated revenue to the
highest prorated revenue. Now, the bid price of the first open seat in the cabin equals the lowest
prorated revenue of the products within the first aggregated block with a predicted demand of 1.
That is, the first aggregated block contains the lowest prorated revenues of the products that were
not excluded. The bid price of the second open seat in the cabin equals the lowest prorated revenue
of the products within the second aggregated block with a predicted demand of 1. This procedure
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is continued until the bid price vector is filled. Also for this version of the heuristic, the bid price
of a capacity on a flight leg-cabin combination will always be equal to or higher than the bid price
of the same capacity for the original MPC benchmark approach.

This approach performed significantly better, leading to an average increase in realized revenue of
0.19% compared to the MPC benchmark approach for the eight subnetworks, which corresponds on
average to 0.03 standard deviations for the MPC approach. The average final load factor decreased
less excessively, from 0.927 to 0.925, which corresponds on average to 0.28 standard deviations for
the MPC benchmark approach. The ROCD-DP and DD-DP approaches still showed a significant
performance increase over the adjusted MPC benchmark approach, namely an average increase
of, respectively, 0.64% and 0.63%, corresponding on average to 0.13 standard deviations for the
adjusted MPC benchmark approach. This suggests that the increase in realized revenue is mainly
caused by the difference in solution approach and not by the difference in control mechanism.

5.3.2.3 Sensitivity analysis on influence of connecting flow

The increase in realized revenue of the ROCD-DP and DD-DP approaches was significantly higher
for subnetwork 2 than for the other four larger subnetworks. Subnetwork 2 was characterized by
its low connecting flow, and, therefore, is it interesting to know whether the relative performance
of the ROCD-DP and DD-DP approaches decreases compared to the benchmark approaches when
there is more connecting flow. Especially regarding the fact that the ROCD-DP and DD-DP
approaches even performed slightly worse than the benchmark approaches for subnetwork 1, which
was characterized by having the highest connecting flow.

We, therefore, introduce ten artificial multi-leg OD itineraries for subnetwork 2. These multi-leg
OD itineraries consist of two adjacent flight legs. For both adjacent flight legs, we pick randomly an
existing associated single-leg product and, then, combine the two products into one multi-leg product
for the artificial multi-leg OD itinerary. The new multi-leg product has an associated revenue equal
to 0.89 times the sum of the associated revenues of the randomly chosen single-leg products. Here, a
factor of 0.89 is chosen as the multi-leg product is inferior to the corresponding individual single-leg
products and, hence, customers are less willing to pay for this product. Moreover, the demand for
the new multi-leg product is equal to the average demand for the two randomly chosen single-leg
products. We generate 100 artificial products per multi-leg OD itinerary in this manner. In this
way, it is very likely that, first, we observe demand for the artificial multi-leg OD itineraries and,
second, that the associated requests for the artificial multi-leg OD itineraries are competitive.

By introducing these products for the artificial multi-leg OD itineraries, the demand factor of the
network increased from 1.36 to 1.78. To make the comparison fair, all demand forecasts are adjusted
by the same factor to decrease the demand factor to the original 1.36. A product now uses on average
1.27 flight legs instead of the original 1.08 flight legs, indicating that we have more connecting flow.

The results of the Monte Carlo simulations on subnetwork 2 with extra generated multi-leg demand
are given in Table 7. Instead of a revenue increase, the ROCD-DP and DD-DP approaches show
a decrease in realized revenue of, respectively, 0.57% and 1.00% compared to the MPC benchmark
approach. Compared to the OCC benchmark approach, the decrease in realized revenue is even
higher, namely 1.06% and 1.48% for the ROCD-DP and DD-DP approaches, respectively. The
average load factor has decreased significantly compared to the original results for subnetwork 2,
namely on average by 3.2% for the different approaches, which corresponds on average to 8.06
standard deviations.
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Also, the gap to the approximate upper bound has increased significantly, on average from 3.2%
to 5.5%. Looking at the original results of the large subnetworks, one can also observe that the
average gap to the approximate upper bound is also highest for subnetwork 1, which has the largest
connecting flow. The larger gap might be explained by the fact that non-realized predicted demand
for multi-leg products has more impact than non-realized predicted demand for single-leg products.
That is, for the multi-leg products we accounted for the demand on multiple flight legs and for
the single-leg products we accounted for the demand only on the single-flight leg. Therefore, the
gap between the perfect-hindsight solution might increase when we have more demand for multi-
leg products. It seems that the ROCD-DP and DD-DP approaches are more sensitive to this
behavior, and, therefore, hand in potential revenue. On the other hand, it can also be the case
that the MPC and OCC benchmark approaches benefit from the extra generated products, and,
therefore, extra demand points. That is, for the same demand factor, the number of products has
increased from 3807 to 4807, corresponding to an increase of 26.3%. Future research should find out
what the causes are of the deterioration in the relative performance of the ROCD-DP and DD-DP
approaches compared to the benchmark approaches and whether this is structural for networks with
more connecting flow or not.

Table 7: Results of the Monte Carlo simulations with a sample size of 100 on subnetwork 2 with
added demand for artificial multi-leg OD itineraries for the different approaches.

Approaches ROCD-DP DD-DP OCC MPC

Ave. (st. dev.) revenue (e) 431,550 (18,060) 429,688 (18,298) 436,153 (18,747) 434,032 (16,061)

% Increase over MPC (st. dev.) -0.57 (0.155) -1.00 (0.270) 0.49 (0.132) -

Gap to approx. ub. (%) 5.78 6.19 4.78 5.24

Ave. (st. dev.) load factor 0.9199 (0.0045) 0.9197 (0.0047) 0.9203 (0.0051) 0.9206 (0.0054)

5.3.2.4 Sensitivity analysis on influence of demand factor

In this section, we examine the impact of different demand factors on the performance of the
different approaches. This can be interesting as the decision to accept or reject specific requests
becomes more critical when demand factors increase. Moreover, demand factors can differ notably
per season, per year and between airlines. Therefore, information regarding the performance of
different demand factors is crucial. We apply the sensitivity analysis on subnetwork 3, as it is a
more mediocre subnetwork and we still have a large part of the seats open for sale. Moreover, it has
a relatively low demand factor compared to subnetworks 1, 2 and 4. Therefore, it is also interesting
to see how the approaches perform for subnetwork 3 when demand factors increase. A Monte Carlo
simulation with a sample size of 50 is used for the different demand factors and different approaches
to speed up the computation. For the original demand factor, the relative performance did not
differ substantially when decreasing the sample size from 100 to 50, and, therefore, a sample size of
50 is justifiable.

Figure 2 shows the revenue impact of the different demand factors and the different approaches on
subnetwork 3. Here, the realized revenue of the ROCD-DP and DD-DP approaches, the OCC bench-
mark approach and the approximate upper bound (UB) are expressed as a percentage difference of
the realized revenue of the MPC benchmark approach. The relative performance of the different
approaches for demand factor 1.4 is relatively odd. This can not be explained by the small sample
size, as a sample size of 100 gave a relatively identical performance. The relative performance of
OCC benchmark approach compared to the MPC benchmark approach seems to deteriorate with
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increasing demand factors. The relative performance of the ROCD-DP and DD-DP approaches
compared to the MPC benchmark approach seems to decrease slightly when demand factors in-
crease. Moreover, while for lower demand factors the ROCD-DP and DD-DP approach perform
fairly similarly, for higher demand factors, the relative performance increase of the ROCD-DP over
the DD-DP approach seems to increase.
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Figure 2: Comparison of the revenue impacts of the different demand factors and different ap-
proaches on subnetwork 3. The vertical order of the revenue lines and the legend is similar.

5.3.2.5 Robustness analysis in the demand estimates

Until now, the decomposition model always used correct demand estimates. That is, both the de-
mand model, as well as, the decomposition model used the same mean-demand forecasts. Although
this was reasonable to assume in order to compare the different approaches, in practice, the demand
estimates are rarely correct. Therefore, it is interesting to examine the robustness of the different
approaches. For this, we introduce randomness within the demand estimates and measure the im-
pact of this introduced randomness in terms of differences in obtained revenue. For this purpose,
we will again use a Monte Carlo simulation to obtain reliable statistics.

The same simulation as in Section 5.1 is used, however, now for every booking period, we perturb
the mean aggregate demand to come at time t, µ(t), by drawing from a normal distribution with
zero mean and variance of µ(t). Here, the arrival of demand is still generated using the unperturbed
mean aggregate demand to come at time t, µ(t), however, the optimization uses the perturbed mean
aggregate demand to come at time t, denoted by µ′(t). That is, µ′(t) is computed by Equation 55.

µ′(t) = µ(t) +N(0,µ(t)) = N(µ(t),µ(t)) (55)

The robustness analysis is performed on subnetwork 5, which is like subnetwork 3 a more mediocre
subnetwork with still a large part of the seats open for sale. On average, the demand estimates
were perturbed by 0.56 standard deviations. The results of the Monte Carlo simulations with
a sample size of 100 are given in Table 8. The realized revenue of the ROCD-DP and DD-DP
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approaches and OCC benchmark approach decreased by respectively 0.68%, 0.69% and 0.64%, which
corresponds to respectively 0.11, 0.11 and 0.10 standard deviations for the different approaches. The
realized revenue of the MPC benchmark approach remained almost the same. The results indicate
that all approaches are quite robust, with the MPC benchmark approach being the most robust.
The ROCD-DP and DD-DP approaches show a small average revenue decrease compared to the
MPC benchmark approach of approximately 0.10%, corresponding on average to 0.014 standard
deviations. The load factor decreased on average by 0.56% for the approaches, corresponding on
average to 0.62 standard deviations. This can be explained by the fact that the optimization
expected wrongfully predicted demand and, therefore, this demand was never realized.

The robustness of the different approaches might be explained by the fact that the booking limits
are revised daily. That is, every day the booking limits are recalculated given the remaining capacity
and the demand forecasts. The demand forecasts themselves might be off, however, the booking
limits also change depending on the remaining capacity. That is, if many unpredicted products are
sold, the booking limits will automatically become more restrictive due to having less remaining
capacity.

Table 8: Results of the Monte Carlo simulations with a sample size of 100 on subnetwork 5 using
perturbed demand estimates for the different approaches.

Approaches ROCD-DP DD-DP OCC MPC

Ave. (st. dev.) revenue (e) 289,441 (19,029) 289,410 (19,026) 287,944 (19,430) 289,702 (18,873)

% Increase over MPC (st. dev.) -0.09 (0.014) -0.10 (0.015) -0.61 (0.093) -

Gap to approx. ub. (%) 2.36 2.37 2.87 2.28

Ave. (st. dev.) load factor 0.8619 (0.0081) 0.8619 (0.0081) 0.8630 (0.0081) 0.8653 (0.0081)

Ave. (st. dev.) upgrades 0.502 (0.159) 0.502 (0.158) 0.468 (0.152) 0.562 (0.158)

5.3.3 Overall summary

The case study on the entire large-scale network of the airline showed the impracticality of the
OCD-DP approach and the OCC benchmark approach. The ROCD-DP and DD-DP approaches
did have reasonable computation time and the Monte Carlo simulations on the eight subnetworks
showed the potential of the approaches to generate additional revenue. The average increase in
realized revenue goes up to approximately 0.8% compared to the two benchmark approaches. This
additional revenue is achieved with lower final load factors, namely the ROCD-DP and DD-DP
approaches showed an average decrease of, respectively, 0.42% and 0.09% in final load factor for the
MPC and OCC benchmark approaches. Nonetheless, sensitivity analysis showed that the relative
performance increase is subjective to the characteristics of the network. Namely, when demand
factors increase, the relative performance increase seems to decrease slightly and in the case when
the network contains more connecting flow, the relative performance increase even becomes negative.
Sensitivity analyses also showed that the difference in control mechanism had less influence on the
relative performance of the approaches. Also, sensitivity analysis on the influence of the sample size
of the Monte Carlo simulation showed the sufficiency of a sample size of 100. Robustness analysis
showed that all approaches are quite robust when perturbing the demand estimates heavily, which
can be explained by the daily revision of the booking limits. Nonetheless, when we heavily perturb
the demand estimates, the relative performance increase of the ROCD-DP and DD-DP approaches
over the MPC benchmark approach seems to vanish.
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The ROCD-DP and DD-DP approaches performed very similarly. The final configurations on
the flight legs were identical and the final load factors were almost identical. Nonetheless, for all
experiments, the ROCD-DP approach outperformed the DD-DP approach. This can be explained
by the fact that the DD-DP approach uses the optimal dual variables as network bid prices, where
the dual variables are an approximation of the opportunity cost of the corresponding flight leg-
cabin capacity. The ROCD-DP approach calculates the opportunity cost of a product (and thereby
of a set of flight leg-cabin capacities) directly and is, therefore, more accurate. The differences
are, however, minimal and, therefore, the airline can make its choice depending on its interest.
That is, depending on the available time and whether degeneracy in the DMILP model and the
problem of non-additive bid prices are observed frequently, as explained in Section 4.2.1, one can
choose between the ROCD-DP and DD-DP approach. There are, however, also small indications
that when demand factors increase or when we consider networks with more connecting flow, the
relative performance increase of the ROCD-DP over the DD-DP approach becomes larger.
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In Section 6.1, we present the main findings. Lastly, in Section 6.2, we provide an extensive discus-
sion on topics for further research.

6.1 Main findings

In this thesis, we introduced three different approaches, namely the OCD-DP, ROCD-DP and DD-
DP approaches, to solve the network seat inventory control problem which incorporates aircraft
configuration selection. Here, the goal was to find a control mechanism that is flight leg based instead
of the traditional flight leg-cabin based, and, thereby, being a function of the remaining capacities in
the cabins. It was found that a decomposition model, which uses a dynamic programming model to
solve the independent single flight-legs, was very suitable for this purpose. We tested the approaches
on an entire large-scale network of a major airline in Europe and on eight smaller subnetworks, which
were generated using the large-scale network. Applying the approaches on the large-scale network
showed the impracticality of the current implementation of the OCD-DP approach, namely the
computation time of the optimization of a single booking period increased to 4.7 hours, which was
approximately 4 and 7 times longer than the ROCD-DP and DD-DP approaches, respectively.

The subnetworks were sufficiently small in size to apply a Monte Carlo simulation for the booking
process, which enabled us with interesting performance statistics about the stochastic network seat
inventory control problem. The performance of the remaining two approaches was benchmarked
against two well-known solution approaches and an approximate upper bound. The Monte Carlo
simulation showed the potential of the ROCD-DP and DD-DP approaches to obtain additional
revenue compared to the benchmark approaches. Namely, on average, the two approaches showed
revenue increases of up to 0.8% compared to the benchmark approaches. The corresponding average
gap to the approximate upper bound was equal to 2.3%, indicating that the found solutions are
quite close to the optimum for the network seat inventory control problem. Nonetheless, sensitiv-
ity analysis showed that this relative performance increase is subjective to the characteristics of
the network. That is, when demand factors increase, the relative performance increase seems to
decrease slightly and when the network contains more connecting flow, the relative performance
increase even becomes negative. Robustness analysis in the demand estimates showed that all ap-
proaches are fairly robust, indicating that the proposed approaches are of good practical value as in
reality the demand estimates are seldom exact. Nonetheless, when we heavily perturb the demand
estimates, the relative increase in performance of the ROCD-DP and DD-DP approaches over the
MPC benchmark approach seems to vanish.

For all experiments the ROCD-DP approach outperformed the DD-DP approach, however, the
differences were minimal. Nonetheless, there were small indications that the relative performance
of the ROCD-DP approach over the DD-DP approach increases when demand factors increase or
when the network contains more connecting flow. The ROCD-DP approach does, however, have a
significantly longer computation time, namely, for the entire large-scale network the computation
time of the optimization of a booking period increased from 40 minutes for the DD-DP approach
to 70 minutes for the ROCD-DP approach. Therefore, depending on the interest of the airline, the
choice between the ROCD-DP and DD-DP approaches must be made.

6.2 Further research

For further research, we propose to extend both the DMILP model and the stochastic dynamic pro-
gramming model, given in Section 4.2.1 and Section 4.2.3, respectively, to incorporate overbooking,
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such that the proposed approaches are ready for practical use. Moreover, depending on the interest
of the airline, one could incorporate demand variability within the dynamic programming model.
Also, we recommend better finetuning when implementing the proposed approaches. For example,
one can experiment with a finer discretization of time for the dynamic programming model. That
is, to satisfy the assumption of at most one arrival per time-period, time was discretized properly.
One could discretize time even further to obtain finer dynamic bid prices. This could be advan-
tageous just before departure when remaining time and capacities are small and it could support
implementations of dynamic pricing. Nevertheless, this comes at a cost of longer computation times.
Contrariwise, when remaining time and capacities are still large, one could increase the length of a
booking period to save computation time. That is, as the computed bid prices are now a function
of remaining time, one can migrate from daily optimization to, for example, every other day when
remaining time and capacities are large.

Using the same way of thinking, a fourth approach was introduced in Section 4.2.2, where the
aircraft configuration is only relaxed when the remaining time is still large. Using this approach,
the computational burden of the OCD-DP approach might decrease, and, therefore, it can also be
interesting to test this approach.

It can also be beneficial to examine different prorating schemes. This is a very subtle task and
was, therefore, considered outside the scope of this thesis. Moreover, the sensitivity analysis on
the influence of the characteristics of the considered network showed that the performance of the
approaches can differ drastically when more products using multiple flight legs are added. It is
recommended to find out what the root cause is for the difference in performance and whether
this is structural for the different approaches. Lastly, the sensitivity analysis on the influence of
the characteristics of the network can also be extended. One can consider alternative models for
the arrival of demand in the booking process simulation. That is, one could, as an example, use a
rounded and truncated normal distribution instead of using a Poisson distribution. Also, one could
change the ratio of the number of flight legs with non-fixed aircraft configuration over the entire
number of flight legs and examine its influence.
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A APPENDIX

A Appendix

In Appendix A, we introduce additional statistics of the entire large-scale network.

A Summary statistics of large-scale network.

The summary statistics of the 661 flight legs are given in Table 9. Note that again, by convention,
the initial capacities are specified for the zero-configuration. The initial capacity in the economy
cabin differs between 36 and 374 seats, with an average of 139.8 seats and a standard deviation
of 71.9 seats. For the business cabin, the initial capacity differs between 4 and 38 seats, with an
average of 10.5 seats and a standard deviation of 9.0 seats. As we consider the network 3 months
before departure, part of the seats is already sold. In the economy cabin, between 0 and 234 seats
are already sold, with an average of 24.7 seats and a standard deviation of 39.1 seats. In the business
cabin, between 0 and 31 seats are sold, with an average of 2.3 seats and a standard deviation of 4.7
seats. Given the initial seats sold, the remaining capacities in both cabins can be determined, as
can be seen in Table 9. Approximately 85.5% of the seats in the economy cabin are open for sale,
with a standard deviation of 15.3%. For the business cabin, approximately 85.3% of the seats are
open for sale, with a standard deviation of 24.7%. The forecast of demand in the economy cabin
lies between 4.9 and 1376.2 seats, with an average of 126.2 seats and a standard deviation of 123.3
seats. Moreover, the forecast of demand in the business cabin lies between 0 and 113.8 seats, with
an average of 6.0 seats and a standard deviation of 9.6 seats. The maximum number of upgrades
lies between 0 and 36 seats, with an average of 5.7 seats and a standard deviation of 6.7 seats.
Downgrading is not allowed for any of the flight legs.

Table 9: Summary statistics of the 661 flight legs of the large-scale network.

Min Mean St. dev. Max

Initial capacity economy cabin 36 139.818 71.947 374

Initial capacity business cabin 4 10.466 9.015 38

Initial seats sold economy cabin 0 24.744 39.115 234

Initial seats sold business cabin 0 2.286 4.723 31

Remaining capacity economy cabin 2 115.074 49.414 321

Remaining capacity business cabin -5 8.180 6.015 36

Demand forecast economy cabin 4.914 126.215 123.316 1376.216

Demand forecast business cabin 0 5.976 9.627 113.836

Allowed upgrading 0 5.731 6.737 36

Allowed downgrading 0 0 0 0

Previously mentioned remaining capacities and demand forecasts might suggest high load factors,
however, this is not completely true as demand is not evenly spread across the flight legs. Figure 3
shows a histogram of the demand factors for the 661 flight legs. One can observe that the majority
of the flight legs have a demand factor of less than 1, indicating lower final load factors. The average
demand factor is equal to 1.0 with a standard deviation of 0.5.

For the 564 flight legs with non-fixed aircraft configuration, additional summary statistics are given
in Table 10. The number of different configurations lies between 4 and 6 configurations, with
an average of 4.3 configurations and a standard deviation of 0.5 configurations. Changing the
configuration leads to a decrease in capacity of the economy cabin between 4 and 6 seats, with an
average of 4.8 seats and a standard deviation of 1.0 seats. Moreover, this configuration change leads
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Figure 3: Histogram of the demand factors of the flight legs of the large-scale network.

to an increase in capacity of the business cabin of 4 seats, which is the same for all flight legs with
non-fixed aircraft configuration.

Table 10: Summary statistics of the 564 flight legs with non-fixed aircraft configuration of the large-
scale network.

Min Mean St. dev. Max

Number of different configurations 4 4.344 0.545 6

Decrease in capacity economy cabin 4 4.773 0.975 6

Increase in capacity business cabin 4 4 0 4

Lastly, the summary statistics of the 267492 different products are given in Table 11. In total
242482 products are for the economy cabin and the remaining 25010 products are for the business
cabin. The 267492 different products correspond to 7505 different cabin-specific OD itineraries.
The demand forecasts for the products lie between 0.0 and 154.2 seats, with an average of 0.3 seats
and a standard deviation of 1.4 seats. The associated revenue of the products lies between 0.0 and
10809.35 euros, with an average of 451.3 euros and a standard deviation of 825.7 euros. Lastly, a
product uses between 1 and 3 flight legs, with an average of 1.5 flight legs and a standard deviation
of 0.5 flight legs.

Table 11: Summary statistics of the 267492 products of the large-scale network.

Min Mean St. dev. Max

Demand forecast 0.000 0.304 1.396 154.196

Associated revenue (e) 0.00 451.26 825.75 10809.35

Number of flight legs used 1 1.497 0.516 3
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