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Abstract

The goal of this paper is to evaluate the feasibility of using electric
buses instead of petrol buses. To do this, a column generation-based
heuristic is developed to schedule electric and petrol buses for a given bus
timetable. This algorithm can be used to determine how many extra buses
and costs are required if petrol buses were replaced with electric buses,
as well as the number of recharge stations and their capacities needed to
efficiently execute the bus timetable. Buses can start from multiple depots
and must complete all trips in the bus timetable. No range constraint is
imposed for petrol buses, and the costs consist of a fixed cost and a variable
cost based on the distance traveled.

For electric buses, a range constraint is incorporated and electric buses
can recharge their batteries at charging stations with limited capacity. As
few assumptions as necessary are made to reflect real-world conditions as
closely as possible. Therefore, non-linear recharging and partial recharging
of electric buses are allowed. The cost of electric buses also includes a fixed
cost and a variable cost based on distance traveled, as well as a cost for
plugging the bus into a charger.

The algorithms were implemented in Python and tested on the data of
the Vechtstreken region in the Netherlands for the bus company Transdev.
The results indicate that from a logistical point of view, it is possible to
schedule electric buses instead of petrol buses but it will require a few
additional buses.
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1 Introduction
Over the last few decades, the transportation sector shifted significantly towards sustainability.

Supported by government regulations, citizens are encouraged to change their conventional petrol-
driven vehicles to electric vehicles. On top of that, in some European countries, public transport
became cheaper to encourage citizens to move towards public transport. However, simply shift-
ing citizens towards using public transport is not sufficient to address the issue of emissions. In
addition, public transport itself must innovate more sustainable solutions in order to reduce the
emission of greenhouse gasses. One way to do so would be to change conventional petrol buses to
electric buses.

Although the shift to electrifying buses has its upside of being more environmentally friendly,
logistically it imposes challenges. One of these challenges is that the bus schedule of electric buses
will be different and more complicated. It will be impossible to execute the bus schedule of petrol
buses with electric buses as their range is limited by their battery. Until now, the range of electric
buses is limited to 190-210 kilometers (“Electric bus range, focus on electricity consumption. A
sum-up” (2022)).

Meeting this additional range requirement that is incorporated by using electric buses gives
rise to the following research questions: How many electric buses are needed to execute the bus
timetable? Where should recharge stations be located and how many? Which bus recharges its
battery at what time, and at which recharge station?
These questions will be investigated to answer the central research question of this paper:

Given a set of bus trips, what are the ’extra’ costs and corresponding bus schedules when using
electric buses instead of petrol buses?

To answer the research question, first, an optimization algorithm for allocating petrol buses
to trips is created. The algorithm will ensure that each bus trip in the bus timetable is executed.
On top of that, the algorithm takes into account that each bus depot has a limited capacity. In
literature, this problem is called the Multiple-Depot Vehicle Scheduling Problem (MDVSP). After
developing the algorithm for petrol buses, the algorithm will be extended and the same set of trips
will be allocated to electric buses. With electric buses, a limited range constraint is incorporated
into the algorithm. The bus will start the day at a depot with a fully charged battery. During
the day the bus will need to recharge its battery to keep enough charge. In between trips, a bus
could fully or partly recharge its battery at recharge stations that have a limited capacity. Im-
portant to mention is that the recharging does not have to be linear. The more power a battery
has, the slower it recharges. The problem in which electric buses are allocated to trips is called
the Multiple-Depot Electric Vehicle Scheduling Problem (MDEVSP). The two algorithms can be
used to calculate the cost of using electric buses as well as petrol buses to check the feasibility of
using electric buses. But besides, the algorithm for electric buses can also be used to determine the
number of recharge stations with their corresponding capacity to execute a bus timetable efficiently.
In both algorithms, the least amount of assumptions is made to keep the problems as close to reality
as possible. Both of the resulting problems are NP-Hard which is why this paper will elaborate on
a column generation-based heuristic to find a lower bound as well as an integer heuristic solution.

The remainder of this paper is organized as follows: in section 2 a detailed description of the
problem will be given. Section 3 will elaborate on the relevant literature which is available on both
the MDVSP as well as the MDEVSP. Section 4 will elaborate on how the MDVSP will be solved.
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A mathematical formulation will be given and a column generation-based heuristic will be used to
get a feasible solution. In section 5 the same will be done for the MDEVSP. In section 6 the results
will be given. Finally, in section 7 and section 8 the conclusion and the discussion will be presented.

2 Problem description
In this chapter, a detailed description of both the MDVSP and the MDEVSP is given. The

constraints as well as the objective will be clarified in detail and all assumptions will be explained.

The main objective of this paper is to check the feasibility of using electric buses instead of
conventional petrol buses. For this research, an open-source OV data set containing a timetable of
bus trips, a set of bus stations, and a set of bus depots is used. Data about the bus schedule is
not available because it is not yet determined which bus is executing which bus trips. To check the
feasibility of using electric buses an algorithm will be developed that can generate bus routes that
execute all trips in the bus timetable for both petrol and electric buses. A route is a sequence of
bus trips that are executed sequentially by the same bus.

In this paper, the bus timetable of Transdev is obtained from the open-source OV data set. The
bus schedules of these bus timetables will be generated and optimized for both petrol and electric
buses on different days. There is a difference in the timetable between weekdays and weekend days.
On weekdays 744 trips are scheduled, whilst on Saturday and Sunday, 533 and 382 are scheduled
respectively. These trips will follow different bus lines. The bus lines of Transdev are visualized in
Figure 1.

5



Figure 1: Bus lines and bus depots of Transdev.

Each bus line has a starting station ls and an ending station le, these stations are depicted by
a blue dot in Figure 1. The bus lines are depicted by a straight line between ls and le. In reality,
the bus will follow another route to get from ls to le but for optimizing the bus schedule it does
not matter how the bus drives in between these stations. Only the real travel distance and the
time of the trips are essential. In Figure 1 the bus depots d are visualized by bus signs. These bus
depots have been placed in logical locations, as the information about the location of these depots
was missing in the data. At the start of the day, buses will leave these depots, and at the end
of the day, the buses will return to the same depots as where they started. Each depot will have
its corresponding capacity. Trip A is defined with a starting station lsA and an ending station leA.
These stations are equal to the starting location and ending location of a bus line. In addition, a
trip also has a starting time tsA, an ending time teA, and a distance disA.

2.1 Multiple Depot Vehicle Scheduling Problem
The first goal of this paper, is to construct an optimization algorithm that allocates petrol buses

to routes, such that the total costs are minimized and all trips in the timetable are executed. At the
start of the day, buses are stationed at multiple bus depots and need to be allocated to trips. One
bus can do multiple bus trips in a sequence if these trips are compatible. Define ϕij as the deadhead
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time which is the time of driving an empty bus from station i to station j. Then two bus trips A and
B are compatible if leA = lsB and teA < tsB or leA ̸= lsB and teA + ϕij < tsB . A sequence of compatible
bus trips conducted by the same bus, starting and ending at the same depot, is called a bus route.
The cost of a bus route will consist of a fixed part and a variable part which depends on the distance
of the route. The algorithm will search for the best routes taking the following constraints into
account. First, all bus trips need to be covered. The bus timetable is leading and each trip needs
to be executed. Secondly, there are multiple bus depots with a limited bus capacity, meaning that
a limited number of bus routes can start from the same depot. Lastly, it is assumed that buses are
starting from the depot with a full tank which lasts for the rest of the day. The problem to allocate
buses from multiple depots to trips is proven to be a NP-hard problem by Bertossi et al. (1987).
Due to the problem’s complexity, the problem can only be solved to optimality for small instances.
This paper aims to solve the problem for a large instance. Therefore, a heuristic is constructed to
solve this problem.

2.2 Multiple Depot Electric Vehicle Scheduling Problem
The MDVSP will be extended so that electric buses are allocated to the same trips. The cost

of electric bus routes consists of a fixed cost of taking an electric bus out of the depot, a variable
cost depending on the distance traveled plus a fixed cost of plugging the bus into a charger. The
main difference in allocating electric buses to trips is that it has to be taken into account that
electric buses are limited in their range by their battery capacity. A bus will be fully charged at
the start of the day and will be able to recharge at recharge stations. These recharge stations
can be located at the same place as where bus lines are starting, but can also be located at any
other location. These recharge stations have a limited number of chargers. A bus can recharge
fully or partly at these recharge stations. The recharging places, bus depots, and bus lines are
visualized in Figure 2. In this figure, the bus depots and recharge stations have been placed at
logical locations, as the data about their locations were missing. In this research, it will be as-
sumed that electric buses have a range of 210 kilometers. At least 10 kilometers of the battery
range needs to remain at any point in time. This is to prevent the bus from being out of charge
at any given moment as the range of a bus is stochastic in reality. Therefore, the algorithm con-
siders a range of 200 kilometers after subtracting 10 kilometers from the range. In this research,
the recharging of the battery does not have to be linear and the recharging process of this paper
is visualized in Figure 3. The recharging of the bus is determined using the following formula:
range(m) =

√
time(s)/total recharge time(s) ∗ total range(m). In this paper, the total range is

set to 200000 meters and the total recharge time is set to 2100 seconds, which equals 35 minutes.
Using this formula, the range of an electric bus can be determined after recharging for a specific
time. First, the range at the start of recharging is used to determine the starting time of recharging.
Next, the recharge time is added to the starting time of recharging to determine the range after
recharging. This recharge process is fictional but for the algorithm, any recharging scheme can be
implemented.

Concluding, the aim of this paper is to allocate both petrol and electric buses to bus trips taking
as few assumptions as possible to bridge the gap between theory and practice. The model will strive
to stay as close to reality as possible in order to make it applicable for use by various bus companies
in allocating buses to trips and to evaluate the feasibility of replacing petrol buses with electric
buses from a logistical perspective.
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Figure 2: Bus lines, bus depots and recharging
stations of Transdev.

Figure 3: Recharging process.

3 Literature review
In this chapter, the relevant literature on the MDVSP and MDEVSP is reviewed. First, the

conventional problem of allocating petrol buses to bus trips is discussed. To continue, the related
literature of the MDEVSP will be discussed, incorporating a range constraint for electric buses as
well as a capacity constraint at recharge stations.

3.1 Multiple Depot Vehicle Scheduling Problem
There are different ways of formulating the MDVSP. One way of formulating the problem is

using a multi-commodity network flow formulation which is used in Forbes et al. (1994). The
authors formulate the problem in a graph in which trips and depots are represented by vertices and
connections of trips are represented by arcs. This formulation of the problem is straightforward but
since each arc is a trip-to-trip connection the problem requires a large number of variables.

Another way of formulating the problem is formulating the problem as a set covering problem
described in Bianco et al. (1994). The algorithm will pick the cheapest set of routes that will cover
all trips in the bus timetable. The set covering formulation requires the set of all possible routes
which is impractical to enumerate. Therefore, column generation heuristics are often used to solve
this problem because they do not consider the entire set of routes, but rather generate routes during
the optimization process.

8



The performance of five different algorithms to solve large instances of the MDVSP is researched
in Pepin et al. (2009). This paper compares the following 5 techniques: a branch-and-cut method,
a Large neighborhood search, a Tabu search, a Lagrangian heuristic, and a Truncated column
generation. From this paper, for a large instance, the truncated column generation algorithm has
the best performance if enough computational time is available. The large neighborhood search is
the best alternative if less computational time is available.

A truncated column generation is a heuristic approach based on the branch and price algorithm.
A branch and price algorithm is a branch and bound algorithm in which the LP relaxation is solved
by column generation. The MDVSP is exactly solved using the branch and price algorithm by
Ribeiro & Soumis (1994). The truncated column generation algorithm is similar to the proposed
technique of Desaulniers et al. (1998) in which a variable is set to 1 if it has a high value in the LP
relaxation.

In the literature, there are many more papers that are using a column generation-based heuris-
tic to solve the MDVSP and related problems. The column generation heuristics seems to be a
promising way of solving both vehicle/crew scheduling problems for large instances. For example, a
truncated column generation is used for solving the MDVSP where heterogeneous buses are avail-
able by Guedes & Borenstein (2015). Heterogeneous buses do not include electric buses in this
paper but buses of different sizes.

3.2 Multipe Depot Electric Vehicle Scheduling Problem
The MDEVSP is an extension of the MDVSP and is thereby proven to be a NP-Hard problem.

With the rising interest in electric buses around the world, the MDEVSP has attracted increasing
attention from researchers. Many papers are investing the problem by taking different assumptions.
In this paper the following characteristics are added to the MDVSP:

• Buses are fully charged at a depot but regularly the bus will need to recharge at recharge
stations as their range is limited by their battery capacity.

• Recharging stations with limited capacity are located nearby or at bus stations.

• Charging is not linear and any given recharging function can be used in the algorithm.

The goal of this paper is to solve large instances of the MDEVSP. Therefore, the problem
will be solved heuristically. The most common ways to generate a feasible heuristic solution in
literature are metaheuristics or column generation-based heuristics. In the column generation-
based heuristic, the range constraint and the non-linearity of recharging are added to the pricing
problem while the limited capacity constraint of recharge stations is added to the restricted master
problem. Houwelingen (2018) solves the problem using a column generation heuristic without the
limited charging capacity and uses an approximation algorithm to solve the pricing problem. Wang
et al. (2021) is optimizing the same problem as Houwelingen (2018) using column generation in
combination with a genetic algorithm. The column generation is used to generate a set of routes
while the genetic algorithm selects the routes from the generated set to construct a feasible integer
solution. Wu et al. (2022) introduces a column generation heuristic with recharging time windows
to incorporate the limited capacity constraint of the charging stations. Partly charging is not
incorporated in the paper and if a bus recharges, it can only fully recharge itself. A Multi Label
Setting Algorithm is used to solve the pricing problem which seems to be promising. Lastly, the
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paper of de Vos et al. (2022) solves the full problem using a column generation-based heuristic. This
paper allows non-linear recharging, partly charging, and a limited capacity at recharge stations.

4 Methodology Multiple Depot Vehicle Scheduling Problem
In this chapter, the method for heuristically solving the problem described in subsection 2.1

is explained. The MDVSP is known to be a NP-hard problem (Bertossi et al. (1987)) and can
only be solved to optimality, in a reasonable amount of time, for small instances. This paper will
use a column generation-based heuristic to solve the problem so that it can find solutions for both
small and large instances. First, a mathematical formulation is given, and thereafter the column
generation-based heuristic is explained.

4.1 Mathematical formulation
There are several ways of mathematically formulating the MDVSP. In this paper, two main

formulations of the MDVSP will be given. First, the multi-commodity network flow formulation
will be explained. This is a formulation that is straightforward and is used to solve the problem
to optimality. Thereafter, the set covering formulation is given. This formulation is used in the
column generation algorithm.

4.1.1 Multi-commodity network flow formulation

The multi-commodity network flow formulation is a straightforward formulation that is easy
to understand and implement. However, the drawback of the formulation is that it is difficult
to incorporate additional constraints. For example, it is not possible to incorporate the range
constraint considered later in this paper. Additionally, the algorithm uses a lot of variables, which
makes it impossible to solve large instances in a reasonable amount of time.

For each depot d a graph is created Gd = (V d, Ad). The set V d corresponds with vertices which
consist of the source, and the sink, which are both depot d, and all the trips twice. The set of
trips is duplicated; the first set is called Tstart and the other set of trips is called Tend. The set Ad

corresponds with the set of arcs and consists of the arcs from the source to each compatible trip
in Tstart, all the arcs between compatible trips from Tend to Tstart, all arcs between the same trip
from Tstart to Tend, define this set as AT , all compatible arcs between Tend and the sink and an
arc from the sink to the source define this as set AS.

Then define T as the set of all trips, capd as the capacity of depot d, cdi,j as the cost of arc Ad
ij

which is 0 if Ai,j ∈ {AT,AS} and otherwise it is the cost of performing trip j after trip i and xd
ij

as the flow over arc Ad
ij . Then the problem can be written in the following integer linear program:

min
∑
d∈D

∑
(i,j)∈Ad

cdijx
d
ij (1)

∑
j∈V d:(i,j)∈Ad

xd
ij =

∑
j∈V d:(j,i)∈Ad

xd
ji ∀d ∈ D,∀i ∈ V d (2)

∑
d∈D

∑
(i,j)∈AT t

xd
ij = 1 ∀t ∈ T (3)
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∑
(i,j)∈ASd

xd
ij ≤ capd ∀d ∈ D (4)

xi,j ∈ {0, 1} ∀(i, j) ∈ Ad \ASd,∀d ∈ D (5)

xi,j ∈ N+ ∀(i, j) ∈ ASd,∀d ∈ D (6)

The objective (1) ensures that the total cost is minimized. Constraint (2) ensures that, if a bus
is driving a trip, it will continue its route from the end station of the previous trip, ensuring the
route is feasible. Constraint (3) ensures that all bus trips are executed by one bus. Constraint (4)
ensures that the number of buses leaving a depot does not exceed its capacity. The last constraints
(5,6) ensure that the solution is an integer.

4.1.2 Set covering formulation

Another mathematical way of formulating the MDVSP with petrol buses is formulating the
problem as a set covering problem. Define T as the set of all possible trips, and R as a set of all
possible routes. Remind that a route is a sequence of compatible trips that can be assigned to
one bus. Define cv as the variable cost of driving a kilometer, disr as the distance of route r, and
cf as the fixed cost of taking a bus out of the depot. Then cr, the cost of route r is defined as
cr = disr ∗ cv + cf . Define D as a set of all depots, capd as the capacity of depot d, Rd as the set
of all feasible routes starting and ending at depot d, xr as a binary variable which is 1 if route r is
chosen and 0 otherwise. Finally, define atr as an indicator parameter that indicates whether trip
t is included in route r. Then the problem can be written as the following integer linear program
(ILP):

min
∑
d∈D

∑
r∈Rd

crxr (7)

∑
d∈D

∑
r∈Rd

atrxr = 1 ∀t ∈ T (8)

∑
r∈Rd

xr ≤ capd ∀d ∈ D (9)

xr ∈ {0, 1} ∀d ∈ D,∀r ∈ Rd (10)

The objective (7) ensures the total cost of all routes is minimized. Constraint (8) ensures that
all bus trips are executed by one bus. Constraint (9) ensures that no more buses are leaving a depot
than its capacity. The last constraint (10) ensures the solution is binary.
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4.2 Column generation heuristic
A common heuristic for solving an MDVSP is using a column generation-based heuristic. The

column generation algorithm will solve the LP relaxation of the ILP. The column generation algo-
rithm consists of a restricted master problem and a pricing problem. The restricted master problem
solves the LP relaxation with a selected set of routes while the pricing problem updates this set.

At the start, the algorithm solves the restricted master problem with an initial set of routes.
This set of routes can be any set of routes, and it does not matter if the initial set of routes is
inefficient. The only requirement is that a feasible solution can be obtained from the initial set of
routes. Thereafter, the pricing problem is solved. The pricing problem searches for routes with
negative reduced costs. Routes with negative reduced costs are added to the set of routes in the
restricted master problem. The restricted master problem will be resolved, including the extra
routes obtained by the pricing problem. This process will continue until the pricing problem is
unable to generate routes with negative reduced costs. If there are no routes with negative reduced
costs, the solution of the restricted master problem is the optimal solution of the LP relaxation.
The solution found for the LP relaxation will be used to produce the final heuristic integer solution
of the ILP.

4.2.1 Restricted master problem

For the restricted master problem, the binary constraint (10) is relaxed and the equal sign of
constraint (8) is changed to a greater or equal sign. This LP relaxation will be solved to optimality
using Gurobi. Important to notice is that the restricted master problem does not include all possible
routes but a limited set of routes. It starts with an initial solution and the pricing problem will
search for routes to improve the solution. The restricted master problem of the column generation
algorithm is as follows:

min
∑
d∈D

∑
r∈Rd

crxr (11)

∑
d∈D

∑
r∈Rd

atrxr ≥ 1 ∀t ∈ T (12)

∑
r∈Rd

xr ≤ capd ∀d ∈ D (13)

xr ≥ 0 ∀d ∈ D,∀r ∈ Rd (14)

To start the heuristic an initial set of routes is added to the restricted master problem which
can generate a feasible solution. With the MDVSP a feasible starting solution is executing each bus
trip by a bus from a virtual bus depot. The cost of using this virtual bus depot will be high enough
to ensure that it will not be in the optimal solution if enough buses are available at the real depots.
If there are not enough buses and the virtual bus depot is used in the optimal solution, then the
problem is infeasible, and more buses at the depots are needed to execute the bus timetable. The
next step is to solve the pricing problem to find new routes which are then added to the set R of
the restricted master problem to improve the solution.
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4.2.2 Pricing problem

The aim of the pricing problem is to find routes with negative reduced costs. These routes will
be added to the restricted master problem and will improve the solution. For a detailed derivation
of the pricing problem we refer to Desrosiers & Lübbecke (2005). The pricing problem for the
MDVSP is equivalent to the shortest path problem in a directed graph. For each depot, a new
directed graph is created. The graph Gd=(V d,Ad) defines the graph of depot d. V d corresponds
with the vertices in the graph which correspond to all trips which can be executed from depot d,
a source so, and a sink si which are the same depot d. Ad corresponds with the arcs which are
weighted with the reduced costs. Each directed graph consists of all trips placed in chronological
order and arcs connect two trips if the trips are compatible. From each trip vertex in the directed
graph, there is also an arc from the source vertex and to the sink vertex. The shortest path problem
could be solved using a dynamic programming algorithm. Define cij as the cost of arc(i, j) which
equals the cost of performing trip j after trip i and is equal to:

cij = (ρij + disj) ∗ cv
Here ρij is the deadhead distance of trip i to trip j, cv is the variable cost of the bus, and disj

is the distance of trip j. Besides these parameters, define λj as the dual of constraint (12) for each
trip, and µd as the dual of constraint (13) for each depot. Lastly, define xd

ij as the decision variable
of arc(i, j) for the graph of depot d which is 1 if arc(i, j) is selected and 0 otherwise. Then the
pricing problem for depot d is:

minµd +
∑

(i,j)∈Ad

(cij − λj)x
d
ij (15)

∑
i∈V d

xd
ij =

∑
i∈V d

xd
ji ∀j ∈ T (16)

∑
i∈T

xd
so,i = 1 (17)

∑
i∈T

xd
i,si = 1 (18)

xd
ij ∈ {0, 1} ∀(i, j) ∈ Ad (19)

The objective (15) searches for the shortest path in Gd. Constraint (16) ensures that if a bus is
driving a trip, it will proceed its route from the end station of the trip. Constraint (17,18) ensures
that each route starts and ends from the same depot. Lastly, constraint (19) ensures that the
solution is binary.

To clarify, the pricing problem of a graph Gd is visualized in Figure 4 and is equivalent to the
shortest path problem in this graph. The graph Gd consists of 4 trips. There is an arc from the
source vertex to each trip vertex, an arc between two compatible trips, and an arc from each trip
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vertex back to the sink vertex. The corresponding reduced cost of a route is equal to the distance
of the path in the graph if each arc(i,j) of graph Gd is assigned the following weight wij :

wij =


cf + (ρij + disj) ∗ cv + µd − λj , if i = so

ρij ∗ cv, else if j = si

(ρij + disj) ∗ cv − λj , else if i, j ∈ T

Figure 4: Pricing problem visualization.

4.2.3 Integer solution

The column generation algorithm described above will solve the LP-relaxation of the ILP. The
solution of the column generation will be a lower bound of the ILP and can be used to compare
the solution of the ILP. To construct an integer solution, the solution of the LP relaxation is used.
From the solution, a chosen number of good routes will be set to 1. Thereafter, the LP relaxation
is solved again without all trips which are included in a route that is selected and fixed to 1. This
procedure will continue until no more trips are left and an integer solution is found. Different
methods to select good routes will be tested but the selection criteria will be mainly based on the
solution value of the LP relaxation.

5 Methodology Multiple Depot Electric Vehicle Scheduling
Problem

This chapter explains the method used to solve the MDEVSP. The goal is to schedule electric
buses in real-time schedules, primarily for large instances. Until now it is impossible to solve large
instances of NP-hard problems to optimality in a reasonable amount of time. To find a solution to
this problem, a column generation-based heuristic is constructed.
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5.1 Mathematical Formulation
To solve and formulate the MDEVSP, charging windows are introduced which represent recharg-

ing activities. These recharging windows split the planning horizon into recharge time windows with
the same lengths in which a bus can recharge. These recharge time windows have a starting time
ts, ending time te, starting recharge station ls, and ending recharge station le. This is similar to
a trip with three differences: for a recharge window, the starting recharge station is equal to the
ending recharge station ls = le. Secondly, a trip will have a negative impact on the battery level
while a charging window has a positive impact on the battery level. Lastly, te − ts will for each
recharge time window be equal while for trips this is not equal. For each time interval and for each
recharge station, a recharge time window is created. Define R again as the set with all possible
routes. Notice that this set of routes is different from the set of routes at the MDVSP as the range
constraint needs to be incorporated. Define S as the set of recharging stations, Ws as the set of time
windows for station s, Cs as the recharge capacity of recharge station s, and dswr as an indicator
parameter which indicates whether time window w of recharge station s is included in route r. The
parameters and variables D, xr, and atr are the same as in the MDVSP. The cost of a route cr
will change from the MDVSP and will depend on the distance of the route, the number of times
it recharges, and a fixed cost. Then the integer linear program for electric buses (ILPE) of the
MDEVSP is:

min
∑
d∈D

∑
r∈Rd

crxr (20)

∑
d∈D

∑
r∈Rd

atrxr = 1 ∀t ∈ T (21)

∑
r∈Rd

xr ≤ capd ∀d ∈ D (22)

∑
d∈D

∑
r∈Rd

dswrxr ≤ Cs ∀s ∈ S, ∀w ∈ Ws (23)

xr ∈ {0, 1} ∀d ∈ D,∀r ∈ Rd (24)

The objective (20) ensures the total cost of all routes is minimized. Constraint (21) ensures
that all bus lines are executed by one bus. Constraint (22) ensures that no more buses are leaving
a depot than its capacity. Constraint (23) guarantees that the number of buses recharging at any
given time does not exceed the capacity of the recharge stations. Lastly, constraint (24) ensures
the solution is binary.

5.2 Column generation heuristic
The heuristic used to solve the MDEVSP is again based on the solution of the LP relaxation

solved by a column generation algorithm. The column generation algorithm is the same as described
in subsection 4.2 only the master problem and the pricing problem will differ due to the added
constraint of the range of electric buses.
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5.2.1 Restricted master problem

The restricted master problem of the column generation algorithm is the same as the ILPE
despite the equal sign of constraint (21) being changed to a greater or equal sign and the integrality
constraint (24) being relaxed. The restricted master problem of the MDEVSP is:

min
∑
d∈D

∑
r∈Rd

crxr (25)

∑
d∈D

∑
r∈Rd

atrxr ≥ 1 ∀t ∈ T (26)

∑
r∈Rd

xr ≤ capd ∀d ∈ D (27)

∑
d∈D

∑
r∈Rd

dswrxr ≤ Cs ∀s ∈ S, ∀w ∈ Ws (28)

xr ≥ 0 ∀d ∈ D,∀r ∈ Rd (29)

For the restricted master problem in the column generation algorithm, not all the routes are
added to the set R. This prevents us from calculating all possible routes which require heavy calcu-
lations. At the start of the algorithm, the restricted master problem starts with an initial solution.
An initial solution for the MDEVSP is to place virtual bus depots with unlimited capacity at each
starting station of a trip. Perform each trip with a new bus from the depot at the start of the trip
and drive directly back to the depot. The cost of using a virtual depot is sufficiently high that it
should never be part of the optimal solution. If a bus from the virtual depot is used in the optimal
solution the problem is infeasible and more buses are required at the real depots to execute all bus
trips in the bus schedule. After solving the restricted master problem the pricing problem is solved
to update the set of routes.

5.2.2 Pricing problem

The pricing problem of the MDEVSP is more complicated than the pricing problem of the
MDVSP because it has to incorporate the range constraint while searching for new routes with
negative reduced costs. The reduced cost of a route can be calculated using equation (30). Define
λt as the dual of constraint (26) for each trip t, and µr as the dual of constraint (27) for the depot
d used in route r, and σsw as the dual of constraint (28) for each recharge time window w for each
recharge station s.

rcr = cr +
∑
s∈S

∑
w∈Ws

dswr ∗ σsw + µr −
∑
t∈T

atr ∗ λt (30)

The pricing problem of the MDEVSP is equivalent to an Elementary Shortest Path Problem
with Resource Constraints (ESPPRC). The graph of the MDEVSP Gd = (V d, Ad) is a directed
graph with all vertices V d placed in chronological order and arcs Ad double weighted. The set
V d consists of all trips which are possible to execute from depot d, all recharge time windows for
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each recharge station, and a source so and a sink si which are the same depot d. The set Ad

consists of all arcs between compatible vertices. This includes arcs from each trip to any other
compatible trip, from each trip to any other compatible recharge time window, from each recharge
time window to any other compatible recharge time window, from each recharge time window to
any other compatible trip, from the source to any trip which is accessible from depot d, and each
trip back to the sink. In order to decrease computation time, the set does not include arcs from a
recharge window to the sink. This is because it is assumed that a bus will not recharge before it
returns to the depot as it can recharge at the depot. The arcs Ad in the graph are double weighted.
One weight will correspond with the reduced cost rc. The other weight pow will indicate how much
power an arc reduces from the battery. Define cfe as the fixed cost of using an electric bus, cve as
the variable cost per kilometer of using an electric bus, cfp as the fixed cost of connecting a bus
to a charger, ρij as the deadhead distance from vertex i to vertex j, disj as the distance of vertex
j, µd as the dual of constraint(27) for each depot d, A as the set of all recharge time windows w
together, σa as the dual of constraint(28) for each w in the set A. Then the rc of arc(i, j) on graph
Gd is:

rcij =



cfe + (ρij + disj) ∗ cve + µd − λj if i = so

ρij ∗ cve else if j = si

(ρij + disj) ∗ cve − λj else if j ∈ T

cfp + ρij ∗ cve + σj else if i ∈ T and j ∈ A

ρij ∗ cve + σj else if i, j ∈ A

For arc(i, j) the second weight powij will indicate how much power is used if j is in T or D. The
power gained can not be indicated if j is a recharging time window as the recharging is non-linear
and the recharging will depend on the state of charge SoC of a bus at a specific point. Define pu
as the power used per kilometer. Then the powij on Gd is:

powij =

{
ρij ∗ pu if j = si

(disj + ρij) ∗ pu else if j ∈ T

An example of the pricing problem for graph Gd is visualized in Figure 5. Gd consists of 4 trips
and 1 recharge station in which two recharge time windows are available. There is an arc from the
depot to each trip, between two compatible trips, from each trip to each compatible recharge time
window, from each recharge time window to each compatible trip, between two compatible recharge
time windows, and from each trip back to the depot. If arcs are double-weighted as described above
then the ESPPRC of graph Gd is equal to the pricing problem.
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Figure 5: Pricing problem visualization.

5.2.3 Multi Label Setting Algorithm

To solve the ESPPRC a Multi-Label Setting Algorithm (MLSA) is used similarly as described
in Wu et al. (2022). MLSA searches for the route with the lowest reduced cost while the state of
charge of a bus will stay positive. The algorithm will work in a label-correcting way in which it
places multiple labels on vertices. Using backtracking it will be possible to reconstruct the route
of the label. The final label with the optimal solution will be the label at the sink with the lowest
reduced cost.

In contrast with the dynamic programming algorithm of subsubsection 4.2.2 which only uses a
single label for each vertex, this algorithm uses multiple labels. The label lmi is the mth label of
vertex i and will have the parameters (rcmi , SoCm

i ) the rcmi is the reduced cost of label m to get to
vertex i and SoCm

i will be the corresponding state of charge at the end of vertex i of label m. The
labels are maintained by using forward dynamic programming. The label lmi of the vertex i will be
extended to label lmj for vertex j over arc(i, j) in the following way:

lmj =


None if SoCm

i − powij ≤ 0 and j ∈ (T ∪D)

None else if SoCm
i − ρij ∗ pu ≤ 0 and j ∈ A

(rcmi + rcij , SoC
m
i − powij) else if j ∈ (T ∪D)

(rcmi + rcij , Soc
m
i + f(SoCm

i , ρij)) else if j ∈ A

The function f is a function that calculates the SoCj of a bus given the SoCi and the deadhead
distance of arc(i, j) if a bus is recharging. This enables the algorithm to handle non-linear charging
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schemes.
The efficiency of the MLSA heavily depends on the number of labels connected to each vertex.

It is possible to eliminate a label of a vertex if it is dominated by another label. A label lmi is
dominated by label lni if:

SoCm
i ≥ SoCn

i and rcmi ≤ rcni

Using the dominance rule above the final solution will still be optimal and there is no loss of
generality. The label lmi has more power left in the battery and on top of that a lower reduced cost
than the label lni . In both ways, this is better and the label lni can be eliminated.

5.2.4 Integer solution

To get a feasible solution first the LP relaxation will be solved using column generation. The
pricing problem and restricted master problem described above will be used in the same way as
outlined in subsection 4.2. The solution of the LP relaxation will be a lower bound of the MDEVSP.
The solution of the LP relaxation is most likely not an integer solution. However, in order to obtain
an integer solution, variables with high values in the LP relaxation will be fixed to 1. The problem
is then resolved using column generation while ignoring the fixed trips and decreasing the recharge
capacity for the recharge windows used in those fixed routes. This process is repeated until the
algorithm converges to an integer feasible solution.

5.3 Reducing computational time
The column generation algorithm described above is a common way to solve the MDEVSP

but for some instances, it might require too much running time. In many ways, it is possible to
reduce the computational time of a column generation algorithm and we will elaborate on some of
them. The goal is to find a way to reduce the computational time while the effect on the solution
quality is as small as possible. The different methods to reduce the computation time can be used
separately or in combination but there will always be a trade-off between the solution quality and
the computational time.

5.3.1 Stopping the column generation

In the LP-relaxation solved by a column generation algorithm, the pricing problem adds in each
iteration routes with negative reduced costs until no more routes are found with negative reduced
costs. In the first few iterations, the solution will improve significantly. At the start of the column
generation algorithm, the solution is far from optimal and a lot of routes can be added to improve
the solution. In contrast, iterations at the end of the algorithm hardly improve the solution as the
solution is close to optimal. In the end, it takes a lot of iterations to find the optimal solution.
Therefore, one way to speed up the algorithm is to terminate the algorithm before the solution of
the LP relaxation is optimal. If the solution does not improve more than x percent over the last
y iterations the algorithm will be terminated and the current solution will be considered optimal.
The tuning parameter x is mostly in the order of 0.1 percent. This tuning parameter together
with y is problem specific. Another way of terminating the column generation algorithm is to set a
running time limit. The algorithm of this paper will terminate the LP-relaxation for petrol buses
after one hour and for electric buses after six hours. For the integer solution, in which in each
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iteration one bus is selected and fixed, the time limit is set for petrol buses to 30 minutes in the
first iteration. After the first iteration, the algorithm will terminate after 15 minutes if there are
more than 400 trips left to schedule and after five minutes if there are less than 400 trips left to
schedule. For electric buses, the time limit is set to 3 hours and 20 minutes in the first iteration.
After the first iteration, the algorithm will terminate after 30 minutes if there are more than 400
trips left to schedule and after ten minutes if there are less than 400 trips left to schedule.

5.3.2 Deleting routes

In the LP-relaxation solved by the column generation algorithm, routes are only added to the
restricted master problem. After each iteration, the size of the restricted master problem increases.
The main idea of deleting routes in the restricted master problem is to keep the restricted master
problem manageable. After x iterations the algorithm will check whether the routes currently
in the restricted master problem will still have negative reduced costs. If the route has positive
reduced costs the route can be deleted from the restricted master problem without consequences.
the parameter x is a tuning parameter and will be problem-specific. The algorithm in this paper
will delete routes with positive reduced costs after 200 iterations if petrol buses are scheduled, and
for electric buses, it will delete routes with positive reduced costs after 30 iterations.

5.3.3 Initial solution

One way to reduce the computation time which does not have an impact on the solution quality
is changing the initial solution for different fixing iterations in the restricted master problem. After
fixing routes in the column generation-based heuristic the algorithm starts the column generation
over again with a new set of trips that needs to be scheduled. Instead of starting all over again, the
routes of the last iteration can be used to speed up the algorithm. The initial solution for iteration
n described in subsubsection 5.2.1 will be added to the routes of the solution in iteration n − 1.
From these routes, routes are deleted which contain trips that are fixed in iteration n − 1. The
column generation algorithm will speed up because the better the initial solution is, the faster the
column generation converges to optimality.

5.3.4 Heuristic pricing problem

In the column generation algorithm, the pricing problem is always solved to optimality. Only
the routes with the lowest reduced costs of each depot are added to the restricted master problem.
This is not necessarily needed and adding the routes with the lowest reduced cost is not guaranteed
to be the best strategy. The only requirement is that the routes which are added to the restricted
master problem are having negative reduced costs. Besides, adding multiple routes in one iteration
can speed up the algorithm because less iterations will be required to find the optimal solution.
Theoretically, only in the last iteration, the pricing problem needs to be solved to optimality to
prove that there is no more route with negative reduced costs.

A well-defined heuristic to solve the ESPPRC will find routes much faster than the MLSA.
Especially, at the start of the algorithm, the chance of succeeding in finding routes with negative
reduced costs will be high. An example of a heuristic to solve the ESPPRC before solving the
problem using the MLSA is the following. From each vertex iterate over the outgoing arcs and if
the battery is above x percent choose randomly one of the y outgoing arcs which have the lowest
reduced costs. If the battery is below x percent the bus will consider the first z recharge time
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windows of the q closest recharge stations and chooses the one with the lowest reduced costs. It
will recharge until the battery is above sixty percent or the reduced cost of a recharge time window
is p times higher than the last recharge window. For each graph, this heuristic is performed t
times, and if more than u routes are found the MLSA will not be executed. Otherwise, the MLSA
is executed after the heuristic. All parameters, x, y, z, p, t, and u are tuning parameters and are
problem specific. In the algorithm used for this paper, the heuristic example was included, but
after tuning the tuning parameters, no substantial improvement was observed and the heuristic was
excluded from the optimization.

5.3.5 Deleting arcs in pricing problem

For the pricing problem described in subsubsection 5.2.2 each graph consists of all possible arcs
that connect two compatible vertices. Reducing the number of arcs will speed up the computational
time in finding the shortest path in a graph. Since, for each depot and in each iteration, the column
generation algorithm needs to find the shortest path in a graph, reducing the number of arcs in each
graph will reduce the computational time. Different restrictions can be introduced but the effect
on the solution quality must be as small as possible. One way to reduce the number of arcs is only
adding arcs to compatible vertices if the starting time of a compatible vertex is not more than x
time units later than the ending time of the previous vertex. This prevents considering routes that
are waiting for a long time between compatible vertices. By not considering routes where buses
have to wait for a significant amount of time, the impact on the solution quality is expected to be
minimal.

Another smart way of reducing the number of arcs in a graph of the pricing problem is deleting
all arcs which include a deadhead distance of more than y kilometers. Taking these arcs out of
the graph prevents the algorithm from considering routes that include long-deadhead distances.
Driving long deadhead distances is likely, not optimal, therefore by removing these arcs the impact
on the solution quality is expected to be minimal. The parameters x and y are tuning parameters
and will be problem specific. When the pricing problem is solved heuristically in this paper, the
x parameter is set to one hour. As a result, the algorithm will only consider trips and recharge
windows if the start time is within one hour of the previous ending time. The main objective of
the optimization of this paper is to reduce the number of buses required and not the length of the
routes. Therefore, the arcs in the pricing problem are not reduced by the length of the deadhead
distances and the y parameter is set to infinity.

6 Results
In this chapter, the results of the methods described in previous chapters are presented. The

multi-commodity flow formulation given in subsubsection 4.1.1 is used to solve the MDVSP to an
integer optimal solution. This solution is then used to evaluate the performance of the column
generation algorithm. To evaluate its performance, the column generation algorithm will be used
to solve the LP relaxation for petrol buses, as described in subsection 4.2. The column generation
algorithm will then be used to generate an integer solution for the problem, which will be the bus
schedule for petrol buses and is described in subsubsection 4.2.3.

Next, the same set of trips will be executed by electric buses. In this optimization, recharge
stations with a limited capacity will be added at some of the bus stations. The LP relaxation will
be solved using the column generation algorithm described in subsection 5.2. This will result in
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a lower bound for the MDEVSP. The integer solution for the electric bus schedule will be based
on the column generation algorithm, as described in subsubsection 5.2.4, resulting in the final bus
schedule for electric buses.

Last, the algorithm will be used to determine the impact of using different types of electric buses.
By varying their range and recharging speed, and calculating the effects of adding or removing
recharge stations on the schedule.

6.1 Parameters
The aim of this paper is to research the consequences of incorporating the range constraint when

using electric buses. To isolate the effect of the range constraint the fixed cost and the variable cost
per kilometer will be equal for electric buses and petrol buses. The fixed cost of a bus will be €1000
and the variable cost will be €1 per kilometer. The fixed cost is significantly higher because the
main goal is to minimize the number of buses rather than the total distance traveled by all buses.

In the algorithm for the MDEVSP, there is an option to include a connection cost for plugging a
bus into a charger. This cost can be used to prevent the algorithm from constantly recharging the
bus and instead charge it for longer periods. To obtain a more realistic solution, the connection cost
is set to €50 during the optimization. However, to fairly compare the solution, the connection cost
is subtracted after the optimization. There is also an option to include a depot capacity constraint,
but this constraint is disregarded as this data is not available in the open-source data set. To
solve the MDVSP and the MDEVSP, information about the deadhead distances between stations
is necessary. In this study, the deadhead distance between two stations is defined as the Euclidean
distance multiplied by 1.3. To calculate the deadhead time between two stations, the distance is
used in combination with an average empty driving speed of 14 m/s.

When optimizing electric buses, we need to specify additional parameters. First, the range of an
electric bus is set to 200 kilometers. Secondly, the recharging speed of an electric bus is non-linear
and is shown in Figure 3. Finally, the length of each recharge window is set to 300 seconds. This
means that a bus will recharge for at least 300 seconds and then, after 300 seconds, it will decide
whether to start driving again or to continue recharging for another 300 seconds.

6.2 Data
The optimization algorithms are implemented in Python and tested on the data of Transdev.

Transdev is a bus company in the Vechstreken of the Netherlands. Their data is retrieved from
an open-source OV data set which contains the data of the trips driven in 2021. The data set
consists of bus lines between 33 different bus stations. On weekdays 744 trips are scheduled while
on Saturday and Sunday, 533 and 382 trips are scheduled respectively. The distribution of these
trips is shown in Figure 6. On weekdays, the busiest hours are between 7:00 and 9:00 and 16:00 and
19:00, while on Saturday the busiest hours are in the middle of the day. On Sunday the trips are
evenly distributed throughout the day. The locations of two fictional bus depots and three recharge
stations are shown in Figure 2. These locations are not included in the open-source OV dataset
and are placed at logical locations.
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Figure 6: Trip distributions.

(a) Trip distribution weekdays. (b) Trip distribution Saturday.

(c) Trip distribution Sunday.

In Table 1, the total distance of all trips and the maximum number of trips that need to be
executed at the same time are presented. Using this data, a lower bound can be calculated by
adding the product of the total distance of all trips with the variable cost and the product of the
maximum number of trips with the fixed cost.

Weekdays Saturday Sunday
Number of trips(n) 744 533 382
Total distance(km) 17697 11315 7590
Max number of trips(n) 50 30 18
Data lower bound(€) 67697 41315 25590

Table 1: Specifics of the data set.
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6.3 Petrol buses
First, the MDVSP is solved using the multi-commodity flow formulation to get an optimal

integer solution. Then, the MDVSP is solved using the column generation algorithm. The column
generation algorithm will be used to solve the LP-relaxation of the problem and thereafter it will
be used to get an integer solution.

6.3.1 Multi-commodity flow formulation

The multi-commodity flow formulation as described in subsubsection 4.1.1 is implemented in
Gurobi Optimizer and for the instances of Transdev, it is possible to generate the optimal solution
because the instances are relatively small. The values of the solution can be found in Table 2.
These solutions are used to test the performance of the column generation algorithm used for the
heuristic.

Weekdays Saturday Sunday
Number of buses(n) 50 30 18
Solution value(€) 70185 42544 25714
Running time(s) 386 207 99
Relative gap with the data lower bound(%) 3.7 2.9 0.5

Table 2: Optimal solutions found using the multi-commodity formulation.

The results show that the gap between the data lower bound found in Table 1 is not more than
3.7 percent. The relative gap is decreasing by the number of trips performed per day for the data
of Transdev. With a gap that is at most 3.7 percent the data lower bound is close to the optimal
value.

6.3.2 Column generation approach

First, the LP relaxation of the MDVSP is solved using the column generation algorithm. In
this algorithm, the shortest path is calculated for each depot in the pricing problem, and if the
route found has negative reduced cost, it is added to the restricted master problem. In each
iteration, the number of routes added to the restricted master problem is smaller or equal to
the number of depots. To keep the restricted master problem manageable, routes with positive
reduced costs are deleted from the restricted master problem after every 200 iterations, as described
in subsubsection 5.3.2. If the number of trips exceeds 400 trips, the pricing problem is solved
heuristically. The technique described in subsubsection 5.3.5 is used. When the pricing problem
is solved heuristically, compatible trips are only considered if the starting time is within an hour
of the previous trips ending time. The results for the LP relaxation when the column generation
algorithm runs for one hour are outlined in Table 3.

24



Weekdays Saturday Sunday
Solution value(€) 71632 44307 25714
Number of iterations(n) 2000 2700 1950
Gap with the optimal value (%) 2.0 4.1 0.0
Time used to solve the pricing problem(s) 450 350 140
Time used to solve the master problem(s) 3150 3250 1200

Table 3: Solution of the LP relaxation solved by column generation for one hour.

As shown in Table 3, the algorithm is able to find the optimal value within one hour for Sundays.
On weekdays and Saturdays, the algorithm is unable to find the optimal value within one hour.
But the gap between the optimal value and the solution is not more than 4.1 percent. More time
is used in the master problem compared with the time used in the pricing problem.

Second, the column generation algorithm is used to generate an integer solution, as described in
subsubsection 4.2.3. In the first iteration, when no buses are scheduled, the algorithm will search
for 30 minutes before selecting a route to fix. The technique of adding routes found in the last
iteration to the initial solution of the current iteration, as described in subsubsection 5.3.3, is used
to speed up the algorithm. For iterations other than the first one, in which more than 400 trips
need to be scheduled, the algorithm searches for 15 minutes before selecting a route to fix, and for
fewer than 400 trips, it searches for 5 minutes before selecting a route to fix. The pricing problem
is solved heuristically if more than 250 trips are not yet fixed, and it is solved completely if fewer
than 250 trips are not yet fixed. Similar to the LP relaxation, only trips starting within an hour
of the ending time of the last trip are considered if the pricing problem is solved heuristically. If
the optimal solution is found in an iteration, the algorithm will immediately select a route to fix.
When selecting a route to fix, the algorithm will prioritize routes with an x value higher than 0.8.
If there are multiple routes with x values higher than 0.8, the route with the most trips will be
chosen. If none of the routes have an x value higher or equal to 0.8, the route with the highest x
value is selected. The algorithm stops after all trips are scheduled. The results can be found in
Table 4.

Weekdays Saturday Sunday
Number of buses(n) 52 31 18
Solution value(€) 72186 43789 26160
Gap with the optimal value(%) 2.9 2.9 1.7
Running time(s) 27900 14600 8400

Table 4: Solution for petrol buses.

The results of Table 4 show that the column generation algorithm is working well. The gap
between the column generation algorithm and the optimal value is not more than 2.9%. The num-
ber of buses does not significantly increase, with only one additional bus on Saturdays and two
additional buses on weekdays. On Sundays, the number of buses is equal to the optimal value.

To see the performance of the column generation algorithm, there is a visualization in Figure 7
of the column generation algorithm for the weekdays that shows the objective value over time for
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the LP relaxation. As depicted in this figure, the objective value decreases significantly at the start
of the algorithm’s execution. Eventually, it reaches an asymptote which is the optimal value. This
is because it becomes increasingly difficult for the algorithm to improve the solution when it gets
closer to the optimal value. The algorithm will stop when the optimal value is found, but a time
limit of one hour has been set for the algorithm to run. This visualization helps to understand the
convergence of the column generation algorithm.

Figure 7: Objective of the LP relaxation over time for the column generation algorithm for a
weekday.

6.4 Electric buses
For electric buses, there is no formulation implemented that can solve the problem to optimality.

Therefore, the LP relaxation is solved using the column generation algorithm described in subsec-
tion 5.2 to retrieve a lower bound to the problem. The stopping criteria are the optimal solution or
a running time of 6 hours. For none of the test instances, the algorithm was able to find the optimal
solution within six hours, so the solution can not be considered as a lower bound. Therefore, the
optimal solution for petrol buses will also be the lower bound for electric buses.

Similarly as for petrol buses, the pricing problem in the column generation algorithm is solved
heuristically if more than 400 trips need to be scheduled. When the pricing problem is solved
heuristically, compatible trips are considered if their starting time is within one hour of the previ-
ous ending time.

In the column generation algorithm to solve the LP relaxation, the algorithm will add multiple
routes to the restricted master problem after it solved the pricing problem. The MLSA used to
solve the pricing problem for each depot often has multiple labels at the sink, so multiple routes can
be added to the restricted master problem in each iteration the pricing problem is solved. In this
algorithm, the 15 routes with the lowest negative reduced costs for each depot will be added to the
restricted master problem. This means that the maximum number of routes added to the restricted
master problem in one iteration is 15 times the number of depots. To keep the restricted master
problem manageable routes are deleted after every 30 iterations if their reduced cost is positive as

26



described in subsubsection 5.3.2. In Table 5 the result of the column generation algorithm, used
to solve the LP relaxation of the MDEVSP, after a running time of six hours is reported. In this
optimization, there are six recharge points at each recharge station.

Bus range of 200 km Weekdays Saturday Sunday
Costs of the bus schedule(€) 74925 47903 26890
Number of iterations(n) 480 476 555
Gap between the optimal value of petrol buses 6.7 12.6 4.6

Table 5: Solution of the LP relaxation solved by column generation for six hours.

The table above indicates that the price of the LP-relaxation of the bus schedule increases by a
maximum of 12.6% when switching from petrol buses to electric buses.

Next, the column generation algorithm is used to solve the MDEVSP and generate an integer
solution, as described in subsubsection 5.2.4. In the first iteration, when no buses have been
selected, the algorithm will run for 3 hours and 20 minutes before selecting a route to fix. The
technique of adding routes from the last iteration to the initial solution of the current iteration is
used, as described in subsubsection 5.3.3. After the first iteration, if there are more than 400 trips
to schedule, the column generation algorithm will run for 30 minutes before selecting a route to fix.
Otherwise, it will run for ten minutes. If the optimal solution is found in the column generation
algorithm at any iteration, it will select a route to fix immediately. The pricing problem in the
column generation is solved heuristically if more than 150 trips are not yet fixed in an iteration,
and it is solved completely if fewer than 150 trips are not yet fixed. Similar to the LP relaxation,
only trips starting within an hour of the ending time of the last trip are considered if the pricing
problem is solved heuristically. When selecting a route, the algorithm will prioritize routes with an
x value higher than 0.8. If there are multiple routes with x values higher than 0.8, the route with
the most trips will be chosen. If none of the routes have an x value higher or equal to 0.8, the route
with the highest x value is selected. The algorithm stops after all trips are planned and the bus
schedule is created. First, The results with different numbers of rechargers at each recharge station
are shown in Table 6.

Bus range of 200 km Weekdays Saturday Sunday
Cost (€) Buses(n) Cost (€) Buses(n) Cost (€) Buses(n)

Two recharge points at each recharge station 77062 56 50086 37 34243 25
Four recharge points at each recharge station 75784 55 49943 37 34101 25
Six recharge points at each recharge station 75750 55 50186 37 34055 25
unlimited recharge points at each recharge station 75268 55 49890 37 33987 25

Table 6: Solutions for electric buses with different numbers of recharge points at each recharge
station.

Thereafter, The algorithm will evaluate the impact of changing the range of an electric bus,
by comparing the results if the range is set to 250 kilometers, 300 kilometers, and 350 kilometers
instead of 200 kilometers. In the future, battery technology may improve, and therefore the range
of a bus can be increased. It is also assumed that the time required for a full recharge, from 0
to 100%, will remain the same, at 35 minutes, and the number of recharges at the three recharge
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stations is set to six. The results are outlined in table Table 7.

Weekdays Saturday Sunday
Cost (€) Buses(n) Cost (€) Buses(n) Cost (€) Buses(n)

Buses with a range of 200 kilometers 75750 55 50186 37 34055 25
Buses with a range of 250 kilometers 74975 55 49300 36 33174 24
Buses with a range of 300 kilometers 74146 54 48463 35 32365 23
Buses with a range of 350 kilometers 73676 53 47245 34 29987 21

Table 7: Solutions for electric buses with different ranges.

Last, the algorithm will assess the impact of changing the recharge time of electric buses. With
the potential for improvements in recharge stations, the speed of recharging a bus may increase.
The time to recharge a battery from 0% to 100% will be set to 20 minutes, 25 minutes, and 30
minutes instead of 35 minutes and the formula given in subsection 2.2 will be used. The range of
electric buses is set at 200 kilometers and the number of recharges at all recharge stations is set to
six. The results are outlined in Table 8.

Bus range of 200 km Weekdays Saturday Sunday
Cost (€) Buses(n) Cost (€) Buses(n) Cost (€) Buses(n)

Complete battery recharge time of 35 minutes 75750 55 50186 37 34055 25
Complete battery recharge time of 30 minutes 75450 55 49683 37 33604 25
Complete battery recharge time of 25 minutes 74970 54 49054 36 33126 24
Complete battery recharge time of 20 minutes 74546 54 48690 36 32569 23

Table 8: Solutions for electric buses with different range speeds.

In Table 6, Table 7, and Table 8 the same bus timetable is scheduled with different configura-
tions. The consequences of changing the number of charging points, the range of a bus, and the
recharge speed of a bus can be observed. The greatest impact is seen with changing the range of
the bus, followed by the recharge speed, and finally, the number of charging points has the least
impact. The biggest improvement in the bus schedule is observed on weekends when extending the
range of an electric bus or decreasing the recharge time of an electric bus. The impact of changing
the number of recharge points at each station is only noticeable on weekdays since there are enough
chargers available for weekends. During weekdays, there is only a noticeable difference in costs
when two chargers are available at each station. Otherwise, there are already sufficient chargers,
and the schedule costs hardly differ.

To evaluate the performance of the column generation algorithm for electric buses, a visualiza-
tion is created similar to that of petrol buses. The objective function of the LP relaxation is plotted
against time, showing how it decreases over time. The visualization is for buses with a range of
200 kilometers and a recharge speed consistent with the one in Figure 3. The visualization is of a
weekday, and six rechargers are placed at each recharge station.
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Figure 8: Objective of the LP relaxation of electric buses over time for the column generation
algorithm for a weekday.

Once the optimization process is completed and the bus schedule is created, visualizations are
created to help understand the bus schedule. These visualizations include a representation of all the
recharge stations, showing how many buses are being charged at each station at any given point in
time. Besides, there is a visualization of all the buses, showing their activities and state of charge
at any point in time. These visualizations allow for a better understanding of the bus schedule and
how to improve the configurations. The visualization of the recharge stations with six rechargers at
all recharge stations for weekdays with electric buses with a range of 200 kilometers and 35 minutes
of full recharge time is shown in Figure 9.

Figure 9: Visualization of the use of recharges at the three recharge stations.
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7 Conclusion
A column generation-based heuristic was used to solve the MDVSP and MDEVSP in order to

determine the additional cost of incorporating a range constraint when using electric buses. To
isolate the effects of the range constraint, the fixed and variable costs of petrol and electric buses
were set equal to each other. As few assumptions as possible were made in order to keep the prob-
lem as realistic as possible. This includes allowing for non-linear recharging and partial charging of
electric buses.

All instances of the MDVSP were solved to optimality using the multi-commodity formulation
and implemented in Gurobi Optimizer. These optimal values indicate that for the MDVSP the
column generation algorithm is able to find solutions close to the optimal value. The LP relaxation
was solved to optimality using the column generation algorithm within one hour for an instance of
382 trips, and for larger instances, the solution was approaching the optimal value. This can be
seen in the asymptotic behavior of the objective in Figure 7 and the gap between the optimal value
and the LP relaxation solution, found by the column generation algorithm, was at most 4.1%.

The column generation algorithm was then used to generate a heuristic integer solution for the
MDVSP that was at most 2.9% higher than the optimal solution for the test data. This indi-
cates that the algorithm performs well. The multi-commodity flow formulation was able to find
the optimal solution for the MDVSP when scheduling up to 744 trips for the Transdev data set.
However, for larger instances, the multi-commodity flow formulation would not be able to find the
optimal solution within a reasonable amount of time. Therefore, the column generation algorithm
was developed as a solution method for larger instances. In addition, the incorporation of addi-
tional constraints can be difficult or even impossible for the multi-commodity flow formulation but
is easier for the column generation algorithm. Therefore, the column generation algorithm is used
to incorporate the range constraint for electric buses.

After scheduling the bus timetable with petrol buses, the same timetable was scheduled using
electric buses. Recharge windows were set to 300 seconds, after which the algorithm determined
whether the bus continues recharging or resume driving based on the current state of the battery.
The recharging process is not linear and can be modeled by any given function to stay as close
as possible to reality. For the data set of Transdev, the column generation algorithm showed that
at most seven additional buses were required for the bus schedule on Sunday, six extra buses on
Saturday, and three extra buses for weekdays when compared to the column generation schedule
of petrol buses. For these results, it is assumed that an electric bus has a range of 200 kilometers
and a recharge scheme as visualized in Figure 3. The least amount of extra buses were needed on
weekdays. This can be explained by the peak hours in the bus timetable on weekdays as shown
in Figure 6. The peak hours on weekdays allow the buses to recharge during non-peak hours, and
therefore less extra buses are required. On Saturday and Sunday, the distribution of trips is more
equally spread out over the day. This is making it more difficult to find good moments for recharging
and therefore more extra buses are required to schedule the same timetable.

Most trips are executed on weekdays, and most bus schedules have peak hours on weekdays.
Therefore, from a logistical point of view, it is possible to switch from petrol to electric buses. By
changing the waiting time that already exists in most bus routes to recharging moments, the algo-
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rithm is able to efficiently plan the recharge schedule in a way that minimizes the additional costs
associated with the use of electric buses. In addition, the buses will mostly be recharged during
non-peak hours, times at which the electricity grid is less used. This is an advantage as it helps to
prevent overloading the grid. By effectively planning the recharging of electric buses and making
sure there are enough recharge points, the algorithm is able to make the transition to electric buses
a feasible option for bus operators from a logistical point of view.

In addition to optimizing the schedule for electric buses, the algorithm can also be used to
determine the optimal number and locations of recharge stations. By running the algorithm with
different configurations, the effects of adding or removing a recharge point can be determined. The
visualizations provided in the Figure 9 can assist in determining the necessary number of recharge
stations and recharges to implement at a recharge station. For the data set of Transdev, the impact
of extra buses by adding or subtracting rechargers at a recharge station was only observed for the
data of weekdays. When two rechargers were placed at all three recharge stations, it resulted in an
extra bus when compared to placing four or more rechargers at recharge stations. However, when
analyzing the results more closely, it was discovered that most of the recharging happened at one
recharge station. Therefore, placing only extra chargers at that station will most likely be sufficient.

After optimizing the timetable with electric buses with a range of 200 kilometers and a recharge
time of 35 minutes, the configurations of buses were varied to see the consequences of changing the
recharge time and range of an electric bus. The bus schedule is most affected on weekends when the
range of the electric bus is extended. The number of buses required to perform the timetable on
Sunday decreased from 25 buses to 21 buses when the range of an electric bus was extended to 350
kilometers. During weekdays, the impact is smaller when changing the configurations of electric
buses as the schedule is already closer to the optimal value.

Concluding, the results indicate that it is feasible to calculate the additional cost of transitioning
from petrol to electric buses. The column generation algorithm can be used to efficiently plan the
charging of electric buses, minimizing the number of additional buses required to execute the same
bus timetable. Therefore, the algorithm can be used to compare the bus schedules of electric and
petrol buses using a given data set in order to assess the logistical impact of the transition. Besides,
it can also be run with different configurations to determine the optimal number of recharge stations
and rechargers per station and to assess the impact of improving the range and recharge speed of
electric buses.

8 Discussion
This thesis analyzed the additional cost and corresponding bus schedules of using electric buses

instead of petrol buses in public transportation schedules. A column generation heuristic was used
to solve the MDVSP and the MDEVSP, and minimal assumptions were made about the character-
istics of electric buses to keep them as close to reality as possible.

The results showed that it is possible to calculate the extra cost of replacing petrol buses with
electric buses and check the feasibility of using electric buses from a logistical point of view. While
the implementation of electric buses may require a few additional buses to execute the same bus
timetable, the use of the column generation-based heuristic to efficiently plan the charging of the
electric buses can help to optimize their use. This algorithm can be used to compare the bus sched-
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ules of electric and petrol buses using a given bus timetable in order to assess the impact of the
transition.

An advantage, when transitioning to electric buses, is that it has the least impact on the number
of buses needed during weekdays when there are peak hours in the timetable and most buses are
required. This means that the total number of buses required at a bus depot does not change
significantly when electrifying the buses. Besides, extra buses required for the weekends are already
available making the effect of the extra buses needed on Saturdays and Sundays less of a problem.
Additionally, electric buses are mostly charged during off-peak hours on weekdays, which helps to
avoid overloading the electric grid as in off-peak hours the grid is used the least.

However, the feasibility and impact of changing from petrol to electric buses require further
investigation. Factors such as the cost of changing all petrol buses to electric buses, the differ-
ence in fixed and variable costs between petrol and electric buses, the power supply at charging
stations, the availability of multiple types of chargers with different recharge speeds, and the exis-
tence of different types of electric buses with varying ranges and recharge speeds must be considered.

Overall, this thesis highlights the logistical impact of using electric buses instead of petrol buses
as a more sustainable alternative in public transportation systems. By carefully planning and
optimizing the use of electric buses, it is possible to minimize the number of extra buses associated
with this transition. Further research in this area can help to accelerate the transition of electric
buses and contribute to the overall goal of reducing emissions and improving the sustainability of
transportation.
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