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1 Introduction

Goal Our goal is to analyse three causal machine learning methods: Double Machine Learning,
Generic Machine Learning and the Causal Forest. Often, traditional econometric methods are used
for estimating treatment effects. Machine learning, however, is a field that consists of methods that
are mostly used for prediction and for finding complicated patterns in data. Causal machine
learning methods have been developed in recent years and combine these strengths. We analyse
the mentioned methods and compare them with the Linear Probability Model and the Probit/Logit
model.

Approach Before digging deeper into the methods, we create a general framework. When
explaing the methods, we use the framework. In this way, we make clear how the methods relate
to each other.

We explain the methods briefly. Double/Debiased Machine Learning (Chernozhukov, Chetverikov,
et al., 2018) starts with doing two regressions. The first regression estimates the influence of the
regressors on the dependent variable. The second estimates the influence of the regressors on the
treatment assignment. The goal of the last regression is to deal with potential correlation between
the treatment assignment and the regressors. Double Machine Learning is the method that enables
us to partial out that correlation. The estimated treatment effects are accompanied by confidence
intervals. According to its designers, the method is efficient and fast.

Chernozhukov, Demirer, Duflo, and Fernandez-Val (2018) came up with Generic Machine
Learning. Its focus is to explore the heterogeneity in the treatment effects. The method consists
of three stages. In the first stage, treatment effects are estimated individually. Then, the sample
is separated into groups according to the treatment effect. This enables the user to get insight in
the characteristics of individuals that respond similarly to the treatment. The last stage is to look
for differences in the regressors among various groups.

The Causal Forest is a Random Forest that was adjusted by Wager and Athey (2018) to enable
the estimation of treatment effects. Individuals are partitioned according to the values of the
regressors, just as in a Random Forest. The modification is that each leaf represents a treatment
effect. The partitioning is such that the treatment effect is the same within each leaf, but different
across leaves.

We apply the methods on the study of Grinstein-Weiss et al. (2013) from the American Economic
Journal: Economic Policy. We refer to this paper as the ‘replication paper’ regularly. The
researchers analyse whether providing renters an Individual Development Account (IDA) has a
long-term impact on homeownership. To give more context, an experiment was done in the period
2000 till 2003 among renters. Individuals in the treatment group were provided with an IDA, while,
naturally, individuals in the control group were not. Grinstein-Weiss et al. (2008) [Note the different
year!] analyse whether the renters with an IDA were more often the owner of a home at the end of
the experiment. They concluded that this was indeed the case. In the study of our specific interest,
they analyse whether the impact would also hold on the long term. The question was whether the
individuals with an IDA owned a home more often than those who did not. Grinstein-Weiss et al.
use a Linear Probability Model to give an answer to this problem. We analyse how their results
relate to our results with causal machine learning methods. The treatment effects, accompanied
by standard errors and confidence intervals, have our main interest.

Other studies on causal machine learning Several empirical studies have used these methods
to find answers to causal questions. For example, Baiardi and Naghi (2020) use five papers in which
traditional methods were used to answer a causal question. Like us, they use Double Machine
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Learning, Generic Machine Learning and the Causal Forest to answer these questions. Their
conclusion is that using causal machine learning methods adds value to traditional methods and
should be used more often. We do a similar analysis, but our analysis of the methods differs in the
sense that we build a general framework and provide a more extensive explanation.

Davis and Heller (2017) use a Causal Forest to predict treatment heterogeneity. They make use
of data from a Randomized Control Trial to investigate whether youth summer job programs caused
a decrease in violent-crime arrests. The Causal Forest helped them to identify two subgroups that
respond differently to the treatment. Our application is similar, as we also identify subgroups that
have a different treatment effect.

Deryugina, Heutel, Miller, Molitor, and Reif (2019) estimate the number of life-years that
people loose due to pollution exposure. They use panel data for which each person-day observation
is assigned to the treatment or control group, depending on the wind direction. First, they use
OLS to estimate the average treatment effect using the complete data set. In addition to this,
they estimate the average treatment effect within certain pre-defined groups. Deryugina et al.
argue that this method may mask additional heterogeneity. Their solution is to use Generic
Machine Learning. They take into consideration that this machine learning approach may reduce
the interpretability, but it offers flexibility. We follow the same approach: Grinstein-Weiss et al.
used OLS to estimate the average treatment effect. To search for treatment heterogeneity, they
include interaction parameters (which interact with the treatment parameter). We apply Generic
Machine Learning to find out the sources of heterogeneity without pre-defining subgroups.

Background on IDAs One of the most prominent issues that governments face is how to divide
wealth in a country. In line with this, governments take measures to improve poor people’s living
situation. These measures can be direct or indirect. Direct measures include paying less taxes or the
right for certain allowances. Indirect measures include education, consumption support and work
incentives. Provision of an Individual Development Account is an indirect measure. Its intention
is to expand wealth of the poor (M. Sherraden & Gilbert, 2016) by creating consciousness on how
to spend their money. Various types of IDAs have been used by governments. Even accounts for
children are in use (M. S. Sherraden & McBride, 2010).

The goal of indirect measures is to help people on the long term. Several studies have been
done on the influence of IDAs, but they are all about the effects during the period that the IDA
was active. Therefore, Grinstein-Weiss et al. (2013) investigate the influence of the IDA program
six years later.

Added value Our research adds value to the existing literature in two ways. First, we provide
an accessible explanation of the mentioned methods. The methods are all introduced recently.
It is important that these new methods are evaluated and compared to traditional methods. By
analysing the results, we put those new methods into the context of pre-existing methods. We
contribute to the awareness of causal machine learning methods in this way. Second, our general
framework shows the common ground of the different methods. Different notations and vocabulary
are used in different papers. The similarity between different methods can therefore be hard to see.
This helps the reader to put the methods into the context of other methods.

Notation remark As we use different models and try to fit them into one framework, we use
some notation rules. For matrices, we use capital letters, such as X. For vectors, we use bold letter
notation, such as θ or xi. For elements within a matrix, we use small letter notation with subscript,
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such as x1i. For scalars that indicate the size of a matrix or vector, we use capital letters. Samples
and subsets are indicated by calligraphic fonts, such as G.

Conclusion Our main goal is to analyse the mentioned methods. With our dataset, the average
treatment effect hardly differs from OLS when using causal machine learning methods. Also, the
standard errors are similar. Generic Machine Learning gives extra opportunities to find out sources
of heterogeneity, compared to OLS.

2 Methodology

We set up a general framework. It fits traditional models as well as causal machine learning models.
We translate all equations that are used in the original papers to our own notation. You can find
these derivations in Appendix A. When seperately elaborating on the methods, we build on this
general framework.

After that, we explain the Linear Probability Model, as Grinstein-Weiss et al. (2013) use this
model to determine the treatment effect. As the dependent variable is binary, we also estimate
the treatment effect with a Probit/Logit model. We expect the reader to be familiar with these
traditional methods, so the explanations are brief.

Furthermore, we elaborate on the mentioned causal machine learning methods: Double Machine
Learning, Generic Machine Learning and the Causal Forest. We explain how these methods work,
what their characteristics are, and what their advantages and their disadvantages are. We relate
these methods to the traditional methods.

2.1 General framework

Setup We define the general framework using the Rubin causal model (Rubin, 1974). Rubin
defined the causal effect as the difference between the dependent variable when being treated and
when being not treated. To do causal inference, let

y = θ ◦ d + Γ(X) + u (1)

Let S be the sample with N individuals. K is the number of regressors. The vector y is the
dependent variable. It is a binary vector with N elements: ones indicate that individuals had a
home in 2010 and zeroes indicate that they did not. d is the treatment vector, with size N . This
is a binary vector as well: ones are used when individuals participated in the program; zeroes for
the others. We refer to the first group as the treatment group, while the second group is referred
to as the control group. X is an N × K matrix with the regressors and u is a vector with the
disturbance terms. It is N elements long. Each individual i is a triple bi = (yi, di,xi).

Γ(X) is an unknown specification that expresses the influence of X on y. Define the function
γ(xi), such that

Γ(X) = Γ

(x1

. . .
xN

) =

γ(x1)
. . .

γ(xN )

 (2)

An example function is γ(xi) = 2 log(xi1) + 2.5 expxi2− 0.5xi3 . Note that we assume that the data
is individually independently distributed. In this way, the relationship between the regressors and
the dependent variable is the same for any individual.

We are particularly interested in θ. This vector contains the treatment effects of allN individuals.
OLS, Probit, Logit and Double Machine Learning estimate the treatment effect homogeneously.
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Therefore, θ will contain one value N times for these methods. Generic Machine Learning and
the Causal Forest estimate heterogeneous treatment effects, so θ will contain various values for
these methods. When we estimate the group average treatment effects, individuals belonging to
the same group will have the same treatment effect. Mathematically spoken, the values in θ that
correspond to these individuals are the same. When we are talking about the average treatment
effect, sometimes we use θ = θ̄ for reasons of ease.

To reduce the variance, we run an algorithm R times. Let θ̂(r) be the estimate of θ of the r-th
run. In the end, let

θ̂ =
1

R

R∑
r=1

θ̂(r) (3)

Assumptions We do the following assumption when we use the algorithms:

1. We assume that the triples bi = (yi, di,xi) are independently identically distributed.

For the causal machine learning models, the following assumptions hold as well:

2. We assume an additive treatment effect. we already used this in Equation 1.

3. We use the Stable Unit Treatment Value Assumption, as proposed by Angrist, Imbens, and
Rubin (1996). This states that the (potential) value of the dependent variable of an individual
should be unaffected by the assignment of treatments to other individuals.

4. We assume that all variables that affect y as well as d are known. In other words, assignment
of the treatment is independent of y, conditional on X.

If the model specification is correct and the assumptions hold, we can estimate the treatment effect
and the relation between the regressors and the dependent variable. In practice, d and X correlate
with each other. This is obvious for observational studies, but also in randomized studies, the
randomization is never perfect. A solution could be to add many regressors, but we encounter two
problems here. This makes the model overly complex and this increases the risk of overfitting.
And even then there may be unobserved or unobservable regressors. Concluding, normal regression
models do not enable us to do causal inference. Therefore, we need other methods, such as causal
machine learning methods.

2.2 Linear Probability Model

Ordinary Least Squares is a method that investigates the linear relationship between regressors
and dependent variable. We do the following assumptions on top of Assumption 1:

2. The dependent variable has a linear relationship with the regressors.

3. There is no multicollinearity between the regressors.

4. There is homoskedasticity.

5. Error terms are normally distributed.

Using the general framework in Equation 1, let Γ(X) = Xβ, where β is a K × 1 vector with the
coefficients corresponding to the regressors. It follows that we estimate the regression

y = θ ◦ d +Xβ + u (4)
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Vector θ does not contain different values, so notation will be more understandable when we
consider d as one of the regressors. Therefore let

y = X∗β∗ + u (5)

with X∗ = [X|d] and β∗ = [β|θ]′. Because of the binary nature of y, we should interpret its
expected value as the probability that yi = 1. This fact makes that we speak about the Linear
Probability Model. The error terms are clearly heteroskedastic. Therefore, we use robust standard
errors.

To estimate β̂, we want to minimize the sum of the squared residuals in u, which is equivalent
to solving

β̂∗ = (X∗′X∗)−1X∗′y (6)

Now, the treatment effect is β̂∗K+1. This coefficient has to be interpreted as the marginal effect of
the treatment on the probability that yi = 1.

2.3 Logit and Probit model

We use the general framework from Equation 1 again. As well as the Linear Probability Model,
the Logit/Probit model treats the treatment effect just as the other regressors. It is estimated
homogeneously, and we let Γ(X) = Xβ, such that we estimate the regression in Equation 5 again,
but differently.

Now the problem with Linear Probability Model is that the dependent variable is binary.
Therefore, in the Logit/Probit model we define

ỹ =

{
1 if y > 0
0 otherwise

(7)

=

{
1 if X∗β∗ + u > 0
0 otherwise

(8)

We can state that the border must be at 0 without loss of generality, as we can add or subtract
any fixed amount from the intercept. It follows that

P(ỹ = 1|X∗) = P(y > 0|X∗) (9)

= P(X∗β∗ + u > 0|X∗) (10)

= P(u < X∗β∗|X∗) (11)

= Φ(X∗β∗) (12)

where Φ is the logistic distribution in the Logit model and the normal distribution in the Probit
model. We estimate this with Maximum Likelihood.

2.4 Comparison Linear Probability Model with Logit/Probit Model

The Linear Probability Model is an Ordinary Least Squares (OLS) model with a binary dependent
variable. OLS estimates the relationship between the regressors and the dependent variable linearly.
This is possible, but it has drawbacks. Assumption 2 states that there is a linear relationship
between the regressors and the dependent variable and assumption 7 states that the error terms
are normally distributed. Of course, these assumptions are not true for a binary regressor, as it is
discrete. The result is that predictions can be below 0 or above 1, which is not applicable.
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The advantage of the Linear Probability Model is especially in the interpretability. The
coefficients in the Probit model represent the marginal effects. Therefore, they are not directly
interpretable; their meaning depends on the constant and the values of the other coefficients. The
only thing that can be directly interpretated is that a positive coefficient means that an increase
in the regressor leads to an increase in the predicted probability.

Although coefficients in the Logit model are easier interpretable, they are not directly interpre-
table as well. They represent the expected change in log odds of having the dependent variable per
individual change of the corresponding regressor.

The Probit model uses the normal distribution, which is an advantage with respect to the Logit
model. If the data deviates from normal, however, Logit is more robust against this. Choosing
between the LPM and Logit/Probit, Deke (2014) argue that researchers often prefer the LPM for
treatment effects. We use all three models.

2.5 Double/Debiased Machine Learning

D

X

Y

Step 2a
Step 2b

Step 3

Figure 1: Graph that shows how Y , X
and D are related to each other in Double
Machine Learning. The step numbers

correspond with the step numbers that
follow later in this section.

General Chernozhukov, Chetverikov, et al. (2018)
proposed the Double/Debiased Machine Learning
(DML) method. Its idea is as follows: we predict both
the treatment assignment d and the outcome variable
y from the regressors. Subsequently, we predict y − ŷ
from d − d̂. This way, we partial out the effect of the
regressors, so that we end up with a ’clean’ treatment
effect. Naturally, we can only trust the estimated
treatment effect when all regressors that influence the
treatment assignment are known. Later in this section,
we work this out more mathematically. We show a
visualisation of the procedure in Figure 1.

Chernozhukov, Chetverikov, et al. (2018) argue
that the algorithm is especially suitable in problems
where many regressors are involved, while there is a
small amount of data. The method performs well on
estimating causal parameters. The procedure is

√
n-

consistent, which means that the estimation error goes
to zero at a rate of 1√

n
. We emphasize that DML differs from traditional estimation methods,

such as OLS and IV estimation in the sense that γ(xi) and µ(xi) can take on high-dimensional,
non-linear functions.

Partially Linear Regression Model We extend the model of Equation 1. For reasons of
completeness, we also repeat Equation 1 below.

y = θ ◦ d + Γ(X) + u E[u|d, X] = 0 (1 revisited)

d = M(X) + v E[v|X] = 0 (13)

This makes up a Partially Linear Regression (PLR) model as in (Robinson, 1988). Vector v is N
elements long and contains all the disturbance terms. The expression that relates the regressors and
the treatment assignment is given by M(X). M(X) is constructed similarly to Γ, as we described in
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Section 2.1: M(X) is a vector of functions µ(xi). We stress that we are not interested in estimating
Γ or M at first hand. The focus is on θ.

Note that the regressors do not correlate with the treatment assignment in a perfect situation.
In that case, we could explain the variance in d only by the error terms, so that we would have
µ(xi) = 0 for any value of i.

For cross validation purposes, we use five folds. Furthermore, we choose R = 100. For each
iteration r, we estimate the model using the following approach:

1. We split the data randomly into two subsets. One subset will be used in Steps 2 and 3, the
other one in Step 4.

2. Note that we can rewrite the PLR model as follows:

y = E[y|d, X] + w (1 rewritten)

d = E[d|X] + v (13 rewritten)

so that
ŵ = y− E[y|d, X] (14)

v̂ = d− E[d|X] (15)

Now we do two estimations:

(a) We estimate the dependence of the treatment assignment on the regressors. This is the
estimation of Equation 1, which results into the residuals in Equation 14.

(b) We estimate the dependence of the regressors on the dependent variable. This is the
estimation of Equation 13, which results into the residuals in Equation 15.

Any machine learning method can be used for estimations (a) and (b). We use the following
methods: Lasso (Tibshirani, 1996), Ridge (Tibshirani, 1996), Elastic net (Zou & Hastie,
2005), Random Forest (Breiman, 2001), Gradient boosting (Friedman, 2001), Neural network
(He, Zhang, Ren, & Sun, 2015) and Linear Regression for these estimations. For Lasso,
Ridge and Elastic net we do grid search to find the best hyperparameters. Inspired by Syarif,
Prugel-Bennett, and Wills (2016), we use 1,000 searches on a logarithmic scale from 0.01 to
10,000.

3. In the last step, we obtain the desired estimator θ̂(r). We partial out d by regressing ŵ on v̂.
The result is the estimator

θ̂(r) = (V̂ ′d)−1V̂ ′(y− Γ(X)) (16)

This step is where the ”Debiased” comes from in the name of this method. Estimating the
treatment effect directly would have given bias, but we removed the bias by above procedure.

Now all values in the vector θ̂ are equal to 1
R

∑R
r=1 θ̂(r).
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Generalization and formalization The elaboration on the PLR model above is an application
of the DML method, but the DML method itself is more general. To be more precise, in the PLR
we assume linearity (which is in the name), but the DML is so powerful because it is not obliged
that the treatment effect has additive impact. Therefore, we generalize the explanation above. We
use a score function that is on its turn used in a moment condition. We call it ψ(b,θ,Λ), where
Λ = (Γ,M). ψ orthogonalized score function that is known before solving the moment equations.
In the PLR model that we treated above, it holds that

ψ(b,θ,Λ) = {y− Γ(X) − θ ◦ (d−M(X))} ◦ (d−M(X)) (17)

Notice that this is a multiplication of both error terms. Now the first condition is the identification
condition

E[ψ(b,θ,Λ)] = 0 (18)

What we are saying with this identification condition is that the regressors and errors need to be
orthogonal to each other. In other words, they need to be independent. For the PLR model, the
identification condition is as follows:

E[{y− Γ(X) − θ ◦ (d−M(X))}(d−M(X))] = 0 (19)

We also wish to satisfy the Neyman orthogonality condition, which is that we evaluate the derivative
of the moment condition in Equation 18:

∂Λ E[ψ(b,θ,Λ)]
∣∣
Λ=Λ0

= 0 (20)

where Λ0 is the true value of Λ. This condition expresses that the score function and with that the
estimate of θ should be robust to minor changes of Γ(X) and M(X). Inserting the score function
of the PLR model, the condition is as follows:

∂Λ E[{y− Γ(X) − θ ◦ (d−M(X))}(d−M(X))]
∣∣
Λ=Λ0

= 0 (21)

We insert the machine learning based estimators of the functions Γ(X) and M(X). Both approaches
generate estimators of θ by solving the empirical analogues of the moment conditions.

Fully Interactive Model The PLR model can also be modified such that no linearity is assumed:

y = Γ(d, X) + u E[u|d, X] = 0 (22)

d = M(X) + v E[v|X] = 0 (13 revisited)

We call this the fully interactive model, as it enables d to interact completely with X. Classification
models are the only models that we can use for estimating the second equation. The average
treatment effect is given by E[γ(1,xi) − γ(0,xi)]. Robins and Rotnitzky (1995) propose the score
function

ψ(b,θ,Λ) = [Γ(1, X) − Γ(0, X)] + d(y− Γ(1, X)) ⊘M(X)

− (1− d)(y− Γ(0, X)) ⊘ [1−M(X)] − θ
(23)

One the one hand, a richer interaction between d and X is possible. On the other hand, this model
is less explainable.
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2.6 Generic Machine Learning

General Generic Machine Learning enables us to estimate treatment effects heterogeneously.
The program may have had different impacts on distinct groups. Therefore, exploring heterogeneity
adds valuable information. Chernozhukov, Demirer, et al. (2018) designed the method, which
can handle a large number of regressors. The idea is as follows: we make rough estimations
of the individual treatment effect: the ‘proxy estimators’. Any machine learning method can
be used for this. That is why the method is called generic. These estimations are potentially
biased and inconsistent, but Chernozhukov, Demirer, et al. argue that they are usable for exploring
treatment heterogeneity. Therefore, we use the estimations to estimate a baseline conditional
average treatment effect and a heterogeneity parameter. After that, we classify the observations
according to the treatment effect. This enables us to investigate differences between groups of
observations that responded differently to the treatment.

Approach Often, R is chosen large, for example 100. Therefore, we also choose R = 100. For
each of the R iterations, we follow these steps:

1. We split the data into two samples, a main sample M and an auxiliary sample A. This is
based on a 50/50 split.

2. We use sample A to calculate a ‘proxy estimator’ of the individual treatment effects. For this
purpose, we fit two machine learning models that fit y on X. In the first model, we use a
sample that only includes individuals in the treatment group. We denote these estimates by
E[yi(1)|xi]. In the second model, we use a sample that only includes individuals in the control
group. We denote these estimates by E[yi(0)|xi]. Just to be clear, treatment assignment is
not involved as a regressor in these two models. The individual treatment effects are equal
to the difference between the predictions of the two models. Formally written, let

θIi = E[yi(1)|xi] − E[yi(0)|xi] (24)

We use different methods to determine which one gives the best fit. More concretely, we
use Lasso, Tree, Random Forest, Support Vector Machine, Gradient Boosting, and Linear
Regression. For Lasso we do grid search to find the best hyperparameters. Again, we use
1,000 searches on a logarithmic scale from 0.01 to 10,000. In the case of Random Forest, we
use 100 trees. The proxy estimator is biased. Nevertheless, Chernozhukov, Chetverikov, et
al. show that we can use it for valid inference on key features of the treatment effect, such as
the presence of heterogeneity.

3. In this step, we make use of sample M. We make inference on the key features of the
treatment effect. To this end, we compute three estimates of interest:

• To analyse whether there is treatment heterogeneity, we estimate the best linear predictor
of the conditional average treatment effect. First, we define

t =

 t1
. . .
tN

 =

d1
. . .
dN

−

 P(d1 = 1|x1)
. . .

P(dN = 1|xN )

 (25)

Vector t consists of residualised treatment assignments. We also define

s =

 s1
. . .
sN

 =

θI1 − θ̄I

. . .
θIN − θ̄I

 (26)

10



which is the vector with normalised treatment effects. Lastly, we define

r =

 r1
. . .
rN

 =

E[y1(0)|xi]
. . .

E[yN (0)|xi]

 (27)

which we calculated in Step 2 already. Now the following regression

y = α̂1e + α̂2r + β1t + β2t ◦ s + ϵ̂ (28)

For estimation, we use Weighted Least Squares with weights that are given by

w(xi) =
1

P(di = 1|xi){1 − P(di = 1|xi)}
(29)

such that E[w(xi)ϵixi] = 0 holds. α1 is a constant and the term α2r is included to
improve precision. The interaction t ◦ s is orthogonal to t when we estimate using the
weights w(xi). r is included to improve efficiency. The estimator β̂1 is an unbiased
estimator of the average treatment effect. We can see β2 as a heterogeneity parameter.
To be more specific, it quantifies how well the proxy predictor estimated treatment
heterogeneity. Therefore, if there is no heterogeneity, β2 = 0.

Subsequently, the individual treatment effects are given by

θ̂ = β1 + β2s (30)

such that the best linear predictor of the conditional average treatment effect is equal
to θ̄.

• The sorted group average treatment effects. We partition the data into J subsets of
equal size. J is often chosen equal to 4 or 5. We choose J = 5. We sort the subsets, such
that G1 is the least affected group and GK is the most affected group. Now matrix G
has dimensions N × J and each element indicates whether the corresponding individual
belongs the corresponding group.

The target in this step is to find the expected values of the conditional average treatment
effects for the groups j = 1, . . . , J , which are in the vector

θ̂G =

θ̂G1

. . .

θ̂GJ

 =

E[θ|G1]
...

E[θ|GJ ]

 (31)

To obtain these, we estimate

y = α̂1e + α̂2r + t ◦Gθ̂G + ν (32)

with the weights from (29).

• Classification analysis. The group average treatment effects indicate whether there is
heterogeneity or not. By performing a classification analysis, we analyse the source of
the heterogeneity. We calculate the average value of a regressor k in each group j:

δjk = E[xk|Gj ] =
1

#(j)

#(j)∑
i=1

xik (33)
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In the results, we refer to this value as ‘δj for regressor k’. With #(j), we refer to the
number of individuals that belong to group j. Differences between individuals in the least
and most affected group are investigated: we calculate δ5k− δ1k for all regressors. These
values are an indicator for how heterogeneous the treatment is in a specific regressor.

4. We calculate the performance measures

λ = β̂22Var(θ) (34)

and

λ̄ =
1

J

J∑
j=1

θ̂2Gj
(35)

for each used machine learning method. A high λ means a large variance in the treatment
effects, such that a big part of the variance can be explained by the treatment. Therefore,
we choose the method with the highest λ. This performance measure is especially important
when estimating the best linear predictors. Concerning λ̄, we choose the highest one as well.
This measure is important for estimating the sorted group average treatment effects and the
classification analysis.

For all the machine learning methods, we calculate the medians of λ and λ̄ over the splits to
determine which method we should choose.

2.7 Causal Forest

General The Causal Forest is especially suitable to estimate causal effects in a Randomized
Control Trial with a large amount of data. Its intention is to estimate the individual treatment
effects. The treatment assignment should be binary. As this holds for our treatment, we can use
the Causal Forest.

Setup Before explaining the Causal Forest, we dig deeper into the Causal Tree, designed by
Athey and Imbens (2016). This is a modified version of the regression tree by Breiman (2001). The
algorithm estimates the treatment effect partition-wise. In other words, across the subsets in the
partition, the treatment effect varies, but within each subset it is the same. To this end, we take
80% of the sample set and separate into two samples, namely a training sample ST with size NT

and an estimation sample SE with size NE . We use ST to make a partition of the data and SE to
estimate the treatment effect within each subset. This idea is called honest splitting. It prevents
overfitting.

Analogously to the model we defined in Section 2.1, DT is the NT ×1 vector with the treatment
assignments of the individuals in ST and θT is the corresponding NT × 1 vector with treatment
effects. Athey and Imbens (2016) admit that cutting the sample into a training and testing sample
results into a loss in precision, but they argue that the benefit in reducing the bias offsets at least
part of this cost.

Splitting into partitions We partition the data by iteratively splitting into subsets. This
iterative process starts with the full sample ST . In each iteration, we investigate for one subset
whether we should split it up into two subsets or not. The splitting is based on the values of
the regressors. There is one requirement: each subset should contain treated and non-treated
individuals. We could not calculate the treatment effect elsewise. Therefore, each subset must
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contain at least twenty-five individuals, of which at least 10% must be in the treatment group and
10% in the control group.

We zoom in on one iteration: a partition with a certain number of subsets has already been
made. For one of these subsets Gj , we consider whether and how it should be further split up.
To this end, we introduce P, the set of partitions of Gj . Remember that this set includes the Gj

itself and all partitions that split Gj into two subsets. For each partition in P, we first estimate
the treatment effects within the separate subsets. After that, we estimate the Expected Mean
Squared Error (EMSE), the criterion to decide which split we choose. In the next two paragraphs,
we elaborate on these two steps.

Estimation of the treatment effects The individuals in SE are assigned to the leaves. The
treatment effect of the observations in subset Gj is given by

θGj =
1

#(i ∈ Gj : di = 1)

∑
i∈Gj :di=1

yi −
1

#(i ∈ Gj : di = 0)

∑
i∈Gj :di=0

yi (36)

We define matrix G, with dimensions N × J , where each element in the matrix indicates whether
the corresponding observation belongs the corresponding group. Plus, we define

θG =

θG1

. . .
θGJ

 (37)

Now, we see that
θ = GθG (38)

Computation of the goodness of fit In decision trees, the Mean Squared Error is used to
estimate the goodness of fit of the tree. We can not do that in the case of treatment effects. To
clarify this, normally the Mean Squared Error is calculated by summing up the squared differences
of predictions and test values. However, we do have a prediction of the treatment effect in each
leaf, but we do not have the ’real treatment effect’. Athey and Imbens use the Expected Mean
Squared Error. They propose it as follows:

EMSE = − 1

NT
d′
TθTdT +

1

NT +NE

∑
l∈Π

(
S2
l,treat

p
+
S2
l,control

1 − p

)
. (39)

Here Π is the set with leaves (based on the training set). S2
l,treat and S2

l,control are the within
variances in leave l in the treatment and control group respectively. Note that from Equation 39,
we can conclude that the first term rewards high heterogeneity across the leaves and the second
term penalizes splits that lead to small leaves.

For each subset in the partition, we estimate the EMSE. The split that maximizes Equation 39
is chosen. No split is made when all splits result into a lower EMSE than when no split is made.
The tree is fully grown when no more splits can be made.

Construction of the Causal Forest Trees are easy to interpret, but also easy to misinterpret,
because of its high variance. Therefore, a Causal Forest is created by growing R trees. We use
R = 1000. Each time a different training and estimation sample is used. As the number of trees
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grows, the estimates will be asymptotically normally centered around the true treatment effect.
Then, as Equation 3 already showed, the vector with treatment effect is given by

θ̂ =
1

R

R∑
r=1

θ̂(r) (3 revisited)

3 Data description

We use data that was collected for the study of Grinstein-Weiss et al. (2013). The central question
of the paper is whether providing people with an Individual Development Account (IDA) has a
long-term impact on homeownership.

Experimental design The program was administered by the Community Action Program of
Tulsa County. All participants rented a house at the moment of start. Everyone was exactly three
years in the program. from 2000 till 2003. A Randomized Control Trial was conducted: there was
a treatment group with participants that got an IDA and a control group with individuals that did
not get an IDA.

At the end of the experiment and six years later, in 2009, it was inventoried which individuals
owned a home. (Grinstein-Weiss et al., 2008) examine whether the program had a short-term effect.
To be more specific, they estimate whether homeownership had increased during the three years
of the program. (Grinstein-Weiss et al., 2013) however investigate whether there is a noticeable
influence six years later.

Individual Development Accounts The IDAs were saving accounts for people with a low
income. Money that was spent from the saving account was matched with a 1:1 ratio for home
repair, small-business investments, post-secondary education and retirement savings. For example,
when some money was used on a small-business investment, the spent amount of money was
supplemented by the same amount of money by means of the program. Furthermore, there was
a match with a 2:1 ratio for home purchase. So, money spent on a home was supplemented with
twice the same amount of money. The largest amount that could be matched was $750 per year.
As people could match their savings for up to three years, participants could match up to $6,750 if
they matched $750 on the purchase of a home in each of the three years. 66% of the participants
never made a matched withdrawal from their accounts. Participants had to agree that meanwhile
they did not participate in other similar programs.

The goal of providing people an IDA is to stimulate users to save their money or to spend it
on useful goods. Before-hand and during the program, participants had to complete a number of
trainings on money management, debt reduction and other topics of that kind. Participants needed
to have an income below 150% of the federal poverty guideline.

Descriptive statistics At the start of the period in which the individuals got the IDA, there
were 863 participants. At the end of the experiment in 2003, 642 participants were left over. Of 652
participants we know whether they owned a home in 2009, which was estimated at this moment.
This is because 105 participants in 2003 did not respond in 2009 and 115 participants which did not
respond in 2003 did respond in 2009. Table 1 shows the sample sizes specifically for the treatment
and control group. Obviously, we can only use the data of the 652 individuals that participated in
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2009. When removing individuals that we missed data of, we are left with 604 to run the models
on.

2000 (Start experiment) 2003 (End experiment) 2009 (Count moment)

Treatment 434 318 (73,3%) 320 (73,7%)
Control 429 324 (75,5%) 332 (77,4%)
Total 863 642 (74,4%) 652 (75,6%)

Table 1: Number of participants in treatment and control group at different moments.
The percentages are with respect to the start of the experiment.

Randomization Estimations of treatment effects are only credible if the treatment has the same
influence on the treated as on the non-treated. There, the assignment to treatment and control
group was fully random. Table 2 shows statistics split out based on the treatment assignment. We
highlight the most striking things: treatment group members had more assets, but they also had
more debts. This could imply that participants in this group would buy things slightly faster. The
difference is not extreme, however. Furthermore, participants in the treatment group seem to be
more of the ’white, well-educated men’, but also here differences are small. The statistics are like
those measured in 2003, at the end of the experiment (Grinstein-Weiss et al., 2013).

Treatment group Control group

Age 34,238 34,330
Male 0,195 0,160
Married 0,262 0,206
Race (is Caucasian) 0,393 0,428
Education

High school graduate or less 0,317 0,326
Some college 0,412 0,425
College degree or more 0,271 0,243

Number of adults in household 0,446 0,431
Have children at home 0,822 0,742
Income 1423 1283
Have health insurance 0,597 0,536
Own a business 0,044 0,042
Own other property 0,027 0,023
Own car 0,809 0,810
Live in unsubsidized housing 0,684 0,650
Total assets 5555 4891
Total debts 8912 8479
Satisfied with health 0,862 0,863
Satisfied with financial situation 0,641 0,601

Table 2: Descriptive statistics split out for treatment and control group in 2009.

When applying the methods, we also include regressors to control for unseen non-randomness.
They include the following: whether one lives in an unsubsidized home, age, income, total value
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of assets, total value of debts, education, gender, race, whether married or not, whether one has
children, whether one has a bank account, whether one has a health insurance, whether one has
a car, a business or another property, whether one has retirement savings, whether one receives
welfare payment, whether one is satisfied with his health and with his financial situation, the
number of adult in their household. Overall, there are 28 regressors. After dummying the ordinal
regressors, we are left with 35 regressors to build the models on.

4 Application

4.1 Traditional models

We create three traditional models: an OLS model, a Probit model and a Logit model. For
implementation, we use the package statsmodels in Python. Table 4 in the replication paper
shows the treatment effect that Grinstein-Weiss et al. obtain with OLS. We replicate this and use
it as a reference.

Coefficient P -value 95% confidence interval

OLS 0.006 (0.040) 0.872 [-0.072, 0.085]
Probit 0.023 (0.111) 0.833 [-0.194, 0.241]
Logit 0.036 (0.182) 0.845 [-0.321, 0.392]

Table 3: Treatment effects for OLS, Probit and Logit.
None of the coefficients is significant.

OLS Probit Logit

const insignificant -1.639 (0.409) -2.665 (0.676)
unsubsidized 0.135** (0.047) 0.377 (0.131) 0.621 (0.216)
bin age u17 -0.099* (0.042) -0.276 (0.118) -0.452 (0.194)
own bank u17 0.139* (0.055) 0.410 (0.160) 0.675 (0.267)
own scale2 u17 0.031** (0.010) 0.089 (0.027) 0.143 (0.045)
bin sat heal u17 0.194** (0.059) 0.577 (0.174) 0.949 (0.294)
tri ed u17 2.0 0.117* (0.058) 0.346 (0.160) 0.547 (0.262)

Table 4: Significant regressors for OLS, Probit and Logit.
* is significant at 5% level and ** is significant at 1% level.

Table 3 presents the treatment effects for OLS as well as the Logit and the Probit model. None
of the models gives a treatment effect that differs significantly from zero. It seems that participating
in the program did not cause more people to own a home on the long-term. The Probit and Logit
model estimators will be more consistent due to the binary nature of the dependent variable, but
their standard errors are slightly larger than those of OLS. Table 4 shows the regressors that are
significant in the three models. The same regressors are significant, as well at the 5% level as at
the 1% level for the three different models. We show the regression results of the Probit and Logit
model in Tables C.2 and C.3. Extensive results can be found in the Appendix, in Table C.1.
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4.2 Double Machine Learning

Table 5 presents the results of the DML models. We obtain them by making use of the Python

package doubleml. We make use of six and three different machine learning models in the Partially
Linear Regression Model and the Fully Interactive Model respectively.

Coefficient P-value 95% confidence interval

Partially Linear Regression Model
Lasso 0.005 (0.039) 0.893 [-0.071, 0.082]
Ridge 0.006 (0.040) 0.885 [-0.071, 0.083]
Elastic net 0.009 (0.039) 0.815 [-0.068, 0.086]
Random forest 0.004 (0.041) 0.914 [-0.075, 0.084]
Gradient boosting 0.010 (0.043) 0.821 [-0.074, 0.094]
Neural network 0.010 (0.060) 0.861 [-0.107, 0.128]
Linear regression 0.003 (0.042) 0.936 [-0.079, 0.086]

Fully Interactive Model
Random forest 0.012 (0.042) 0.775 [-0.070, 0.094]
Gradient boosting 0.095 (0.083) 0.252 [-0.068, 0.258]
Neural network 0.094 (0.126) 0.457 [-0.153, 0.340]

Table 5: Results of the DML models with the use of different machine learning
algorithms. None of the models give a statistically significant treatment effect.

The coefficients in the PLR model are similar with OLS. All of them are insignificant. Plus,
the standard errors are of the same order of magnitude. However, the coefficients in the Fully
Interactive (FI) model are slightly higher. Nonetheless, their standard errors are slightly larger as
well, so the coefficients are insignificant as well. The question that follows is why the treatment
effects are larger in the FI model than in the PLR model. In the FI model, non-linear relations
between D and X are allowed. When including these relations leads to a higher treatment effect,
this means that part of the treatment effect depends on the regressors.

4.3 Generic Machine Learning

For Generic Machine Learning, we run the model with the use of six different machine learning
models. We use the R-package GenericML for implementation. The resulting performance measures
are shown in Table 6. For λ, the Support Vector Machine turns out to have the highest value, so
when the best linear predictor of the conditional average treatment effect must be estimated, this
algorithm turns out to have the best performance. For λ̄, the Linear Regression has the highest
value. Therefore, when it comes to estimating the group average treatment effect, this is the best
algorithm to use.
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λ λ̄

Lasso 0.0011 0.0125
Tree 0.0012 0.0131
Random Forest 0.0009 0.0130
Support Vector Machine 0.0013 0.0131
Gradient Boosting 0.0012 0.0126
Linear Regression 0.0006 0.0132

Table 6: Performance measures when using
different machine learning algorithms

The coefficients using the Support Vector Machine are shown in Table 7. In contrast to what
we saw in the case of DML, a heterogeneity parameter is involved here. Both coefficients turn out
to be highly insignificant.

Coefficient P-value 95% confidence interval

Baseline conditional average 0.016 (0.065) 0.780 [-0.113, 0.143]
Heterogeneity -0.008 (0.440) 0.983 [-0.869, 0.872]

Table 7: Best linear predictor coefficients using Support Vector Machine in Generic
Machine Learning

We dive deeper into the heterogeneity. Table 8 shows the average treatment effect groupwise.
The first group is least affected (even negatively), the fifth group has the largest treatment effect.
We see differences, but even treatment effects in the least and most affected groups are insignificant.
Obviously, the standard errors are larger as the ones in earlier models because the subgroups contain
less individuals.

Coefficient P-value 95% confidence interval

θ̂G1 -0.016 (0,144) 0.897 [-0.299, 0.266]

θ̂G2 -0.004 (0,145) 0.974 [-0.288, 0.280]

θ̂G3 0.018 (0,145) 0.868 [-0.266, 0.302]

θ̂G4 0.035 (0,144) 0.772 [-0.248, 0.318]

θ̂G5 0.054 (0,144) 0.664 [-0.228, 0.336]

Table 8: Sorted group average treatment effects obtained
by Generic Machine Learning when made use of Linear

Regression

Although in general there is no treatment heterogeneity, it may be there in specific regressors.
We investigate this. It turns out to be there in several regressors, namely income, race, marital
status, number of adults in the household, experience with difficulties with income, satisfaction
with health, involvement in the community, liabilities and followed education. In the Appendix, in
Tables C.11 till C.22, we show the results for all these regressors.
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Figure 2: Classification analysis of four regressors. δ1 indicates the coefficient for the 20% of the
data that was least affected by the treatment. So is δ5 for the most affected group. δ1 − δ5

indicates the heterogeneity that is caused by the concerning regressor.

The most striking regressors that cause heterogeneity are presented in Figure 2. There are differences
in the treatment effect for married, white people with a higher income, that were content with
their financial situation. For race and marital status, these differences are insignificant. However,
heterogeneity is proved to be significant for income and satisfaction with the financial situation.

We investigate how Grinstein-Weiss et al. coped with heterogeneity in the treatment effects and
what they found. Table 9 shows the results of an OLS regression in which interaction parameters
were added. In the literature this is quite common, besides running regressions on a couple of
subgroups and comparing them to each other (S loczyński, 2022). This allows the treatment to
differ by subsample. Only those individuals which had a higher income turn out to be long-
term influenced by the program. Satisfaction about the financial situation is not included as an
interaction term in this regression.
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Coefficient P-value

Treatment -0.106 (0.186) 0.568
Treatment × higher income 0.167* (0.084) 0.046
Treatment × female 0.062 (0.118) 0.597
Treatment × Caucasian -0.101 (0.086) 0.244
Treatment × married 0.112 (0.108) 0.299
Treatment × some college -0.014 (0.096) 0.887
Treatment × college graduate 0.120 (0.106) 0.256
Treatment × children -0.050 (0.102) 0.624
Treatment × cohort 0.068 (0.092) 0.462
Treatment × banked -0.041 (0.105) 0.697
Treatment × welfare 0.045 (0.089) 0.615
Treatment × car 0.009 (0.105) 0.933
Treatment × insurance 0.007 (0.082) 0.931

Table 9: Interaction effects in the replication paper

4.4 Causal Forest

For implementing the Causal Forest, we use the Python-package econml. The individual treatment
effects are the most important result. Figure 3 shows the estimated individual treatment effects
for all individuals ordered. It shows that the treatment is heterogeneous. Approximately half of
the individuals has a positive treatment effect and half of them has a negative treatment effect.
Each subset contains at least twenty-five individuals. The higher this value, the more the individual
treatment effects approach the average treatment effect. Table 10 shows that the average treatment
effect is estimated to be 0.003, which is a similar value as obtained with OLS. The treatment effect
is not significantly different from zero, so an effect of the treatment can not be identified. This
means that again we a clue that the program with the IDAs did not have a long-term effect.

Figure 3: Sorted individual treatment effects,
obtained by the Causal Forest

Coefficient 0.003 (0.014)
P-value 0.805
95% confidence
interval

[-0.023, 0.031]

Table 10: Average treatment effect,
obtained by the Causal Forest

5 Conclusion

Our goal was to analyse three causal machine learning methods: Double Machine Learning, Generic
Machine Learning and the Causal Forest. We have written them into one econometric form. Double
Machine Learning is useful when estimating the average treatment effect and Generic Machine
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Learning when investigating the heterogeneity. The Causal Forest can be used particularly to
estimate the individual treatment effects.

We applied these methods onto an earlier study in which OLS was used to answer a causal
question. The causal machine learning methods often give similar results when it comes to the
average treatment effect. This did not add value to traditional methods.

Added value came more when regarding the heterogeneity in the treatment effect. Especially
GML gave insight in its forms and sources. (Grinstein-Weiss et al., 2013) found sources of
heterogeneity by adding interaction terms concerning subgroups in the OLS regression. Causal
Forest and especially GML give insight in the heterogeneity ex-post, which is more credible.

Using more methods to answer the same question always adds value, because this combines
the strengths of more methods. Therefore, it would be good when the investigated methods would
be used more often, and we advise researchers to use them. Moreover, the advantage of causal
machine learning in any case is that no assumptions have to be done. This makes them widely
useable. Especially when it comes to tracing the source of heterogeneity, Generic Machine Learning
can give useful insights. We must admit, however, that we did not find very striking things with
the modern methods, which were not found by OLS. Overall, we advise anyone to use the methods
to answer causal questions, but they must not expect that they always gain new insights.

Concerning the causal question, the evidence that Grinstein-Weiss et al. found can now be even
called stronger: the program with the IDAs did not have long-term impact. We created three
traditional models and three machine learning models. All of them point to this direction.

Further research could especially be done to find out what the effect is of binary nature of the
dependent variable in the machine learning methods. The standard errors may not be robust in
this case. Plus, similar studies should be done to find out advantages and disadvantages of the
methods in other contexts.
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A Derivations

Below we give an overview of the formulas that we take from other papers and how we translated
them into a form that suites this thesis. Sometimes notation in other papers is different from our
notation. To keep things clear, sometimes we use a slightly different notation than in the original
paper, but we never change the form.

A.1 Double Machine Learning

The Partially Linear Model We have rewritten the Partially Linear Regression (PLR) model.
Chernozhukov, Chetverikov, et al. (2018) write it as follows:

yi = θ0di + g0(xi) + ui E[ui|di,xi] = 0 (40)

di = m0(xi) + vi E[vi|xi] = 0 (41)

Now the matrix notation, as can be seen in Section 2.5, is as follows:

y =

 y1
. . .
yN

 =

 θ0d1
. . .
θ0dN

+

 g0(x1)
. . .

g0(xN )

+

u1
. . .
uN


≡ θ ◦ d + Γ(X) + u E[u|d, X] = 0 (1 revisited)

d =

d1
. . .
dN

 =

m0(x1)
. . .

m0(xN )

+

 v1
. . .
vN


≡M(X) + V E[v|X] = 0 (13 revisited)

Note that in the DML algorithm, we estimate the average treatment effects, so θ is a vector with
only one different value.

DML estimator In Equation 16, the DML estimator is given. In Chernozhukov, Chetverikov,
et al. (2018), this estimator was given by

θ̂0 =
( 1

N

∑
i∈I

v̂idi

)−1 1

N

∑
i∈I

v̂i(yi − ĝ0(xi)) (42)

We do not use the subscript naught. Rewritten to matrix from, we write

θ̂ =

(v1 . . . vN
)d1

. . .
dN

−1 (
v1 . . . vN

) y1
. . .
yN

−

 g0(x1)
. . .

g0(xN )


= (V̂ ′d)−1V̂ ′(y − Γ(X)) (16 revisited)

Generalization and formalization According to the explanation at page 8 and 9 of Chernozhukov,
Chetverikov, et al. (2018), the score function corresponding to the PLR model is

ϕ(bi; θ0, g) = (yi − θ0(di −m0(xi)) − g(xi))(di −m0(xi)) (43)
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Remember that bi is the triple (yi,xi, di). This score function is used to estimate the moment
condition

1

N

∑
i∈I

ϕ(bi; θ0, ĝ0) = 0 (44)

We write Equation 43 to matrix notation, which gives the following:

ψ(b,θ,Λ) =

ϕ(b1; θ0, g)
. . .

ϕ(bN ; θ0, g)


=

 y1
. . .
yN

− θ0

d1
. . .
dN

−

m0(x1)
. . .

m0(xN )

−

 g(x1)
. . .

g(xN )

 ◦

d1
. . .
dN

−

m0(x1)
. . .

m0(xN )


= {y − Γ(X) − θ ◦ (d−M(X))} ◦ (d−M(X)) (17 revisited)

with the equivalent moment condition of Equation 44

E[ψ(b,θ,Λ)] = 0 (18 revisited)

The Neyman orthogonality condition is given in Equation 1.8 in Chernozhukov, Chetverikov, et al.
(2018) and it is as follows:

∂η Eϕ(bi; θ0, η0)[η − η0] = 0 (45)

where η = (m, g). We can write Equation 45 as

∂η Eϕ(bi; θ0, η0)η=η0 = 0 (46)

Now the step to the matrix notation is just small:

∂Λ E[ψ(b,θ,Λ)]
∣∣
Λ=Λ0

= 0 (20 revisited)

Fully interactive model We use the Fully Interactive Model as well to estimate the average
treatment effect, as given in Equation 23. This comes from Equation 5 in Chernozhukov et al.
(2017):

ϕ(bi, θ, η) = g(1,xi) − g(0,xi) +
di(yi − γ(1,xi))

µ(xi)
− (1 − di)(yi − γ(0,xi))

1 − µ(xi)
− θ (47)

The matrix notation is as follows:

ψ(b,θ,Λ) =

ϕ(b1; θ0, g)
. . .

ϕ(bN ; θ0, g)


=

γ(1,x1)
. . .

γ(1,xN )

−

γ(0,x1)
. . .

γ(0,xN )

+

d1
. . .
dN

 (y1 − γ(1,x1))/µ(x1)
. . .

(yN − γ(1,xN ))/µ(xN )


−

 1 − d1
. . .

1 − dN

 (y1 − γ(0,x1))/(1 − µ(x1))
. . .

(yN − γ(0,xN ))/(1 − µ(xN ))

− θ

= [Γ(1, X) − Γ(0, X)] + d(y − Γ(1, X)) ⊘M(X)

− (1 − d)(y − Γ(0, X)) ⊘ [1 −M(X)] − θ (23 revisited)
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A.2 Generic Machine Learning

Baseline definitions Chernozhukov, Demirer, et al. (2018) define the baseline conditional average

b0(xi) = E(yi|di = 0,xi) (48)

in Equation 2.1 in their paper and the conditional average treatment effect

s0(xi) = E(yi|di = 1,xi) − E(yi|di = 0,xi) (49)

in Equation 2.7 in their paper.

Best linear predictors At page 11 of the article of Chernozhukov, Demirer, et al. (2018), we
find that the best linear predictor of the conditional average treatment effect is estimated by the
following regression:

yi = α̂′Ri + β̂1(di− p(xi)) + β̂2(di− p(xi))(s(xi)−EN,M ŝ0(xi)) + ϵ̂i EN,M [w(xi)ϵ̂iRi] = 0 (50)

where p(xi) = P(di = 1|xi). ŝ0(xi) is the proxy estimator of the treatment effect, which we called
θIi in Equation 24. Chernozhukov, Demirer, et al. (2018) propose to use

Ri =

(
1

E(yi|di = 0,xi)

)
(51)

Therefore, we rewrite Equation 50:

yi = α̂1+α̂2 E(yi|di = 0,xi)+β̂1(di−p(xi))+β̂2(di−p(xi))(s(xi)−EN,M ŝ0(xi))+ϵ̂i (50 rewritten)

It follows that

y =

 y1
. . .
yN


= α̂1e + α̂2

 E(y1|d1 = 0,x1)
. . .

E(yN |dN = 0,xN )

+ β̂1

 d1 − P(d1 = 1|x1)
. . .

dN − P(dN = 1|xN )


+ β̂2

 d1 − P(d1 = 1|x1)
. . .

dN − P(dN = 1|xN )

 ◦

 θ1 − θ̄
. . .

θN − θ̄

+ ϵ̂

= α̂1e + α̂2r + β1t + β2t ◦ s + ϵ̂ (28 revisited)

Sorted group average treatment effects The regression in Equation 32 comes from Equation
3.3 by Chernozhukov et al. (2017):

yi = α′Ri +

K∑
k=1

γk(di − p(xi)) · I(Gik) + νi (52)

= α′Ri + (di − p(xi))

K∑
k=1

γkI(Gik) + νi (53)

26



I(Gik) is an indicator function that equals 1 if an individual i is in Gk. Let us put this into matrix
form:

y =

 y1
. . .
yN


= α̂1e + α̂2

 E(y1|d1 = 0,x1)
. . .

E(yN |dN = 0,xN )

+

 d1 − p(x1)
. . .

dN − p(xN )

 ◦

∑K
k=1 γkI(G1k)

. . .∑K
k=1 γkI(GNk)

+

 ν1
. . .
νN


= α̂1e + α̂2r + t ◦GθG + ν (32 revisited)

A.3 Causal Forest

Athey and Imbens (2016) propose to use the Expected Mean Squared Error in their Section 3.2
”Modifying the Honest Approach” as follows:

EMSE = − 1

NT

∑
i∈ST

θ̂2i +
1

NT +NE

∑
l∈Π

(
S2
l,treat

p
+
S2
l,control

1 − p

)
(54)

As
∑

i∈ST
θ̂2i = θ′

TθT , matrix notation is as follows:

EMSE = − 1

NT
θ′
TθT +

1

NT +NE

∑
l∈Π

(
S2
l,treat

p
+
S2
l,control

1 − p

)
(39 revisited)
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B Variables

Variable name Meaning

own home u42 Whether he possessed a home in 2009 (dependent variable)
treat Whether he belonged to the treatment group
const Constant
unsubsidized Whether he lived in an unsubsidized home
bin age u17 Age
hiinc Whether he has an income higher than the 50th percentile
female u17 Whether he is female
race cau u17 Whether his race is Caucasian
married u17 Whether he is married
own bank u17 Whether he had an own bank account
bin cohort Late survey cohort at baseline
ins heal u17 Whether he had a health insurance
hh adult u17 The number of adults in his household
bin child u17 Whether he had children
own bus u17 Whether he owned a business
own prop u17 Whether he owned a rental property or another real estate
own ira u17 Whether he had a retirement account
src welf u17 Whether he received welfare payment
own car u17 Whether he had a car
own scale2 u17 Ownership of household goods
str scale2 u17 Measure of the difficulty he experiences to live with his income
gv scale2 u17 How he gives help in the community on a scale 0 - 1
gt scale2 u17 How he gives help in the community on a scale 0 - 1
bin sat heal u17 Whether he was satisfied with his health
bin sat fin2 u17 Whether he was satisfied with his financial situation
ci scale u17 How involved he is in the community on a scale 0 - 1
cat ass tot 0.0 Assets: When his assets are worth less than $1,421
cat ass tot 1.0 Assets: When his assets are worth between $1,422 and $2,842
cat ass tot 2.0 Assets: When his assets are worth between $2,843 and $4,263
cat ass tot 3.0 Assets: When his assets are worth $4,264 and up
cat ass tot missing Assets: Value missing
cat lib tot 0.0 Liabilities: When his liabilities are worth less than $1,421
cat lib tot 1.0 Liabilities: When his liabilities are worth between $1,422 and $2,842
cat lib tot 2.0 Liabilities: When his liabilities are worth between $2,843 and $4,263
cat lib tot 3.0 Liabilities: When his liabilities are worth $4,264 and up
cat lib tot missing Liabilities: Value missing
tri ed u17 0.0 Education: When he has a high school graduate or less
tri ed u17 1.0 Education: When he followed some college
tri ed u17 2.0 Education: When he has some college degree or more

Table B.1: Variables that are used in the models
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C Additional tables

* is significant at 5% level, ** is significant at 1% level and *** is significant at 0.1% level.

C.1 Ordinary Least Squares

Dependent variable: own home u42 F-statistic: 2.475
Number of observations: 604 Loglikelihood: -391.65
R-squared: 0.129 AIC: 853.3
Adjusted R-squared: 0.077 BIC: 1007.0

coef std err t P> |t| [0.025 0.975]

const -0.0608 0.143 -0.424 0.672 -0.343 0.221
treat 0.0065 0.040 0.161 0.872 -0.072 0.085
unsubsidized 0.1351** 0.047 2.864 0.004 0.042 0.228
bin age u17 -0.0985* 0.042 -2.328 0.020 -0.182 -0.015
hiinc -0.0306 0.043 -0.702 0.483 -0.116 0.055
female u17 0.0691 0.062 1.123 0.262 -0.052 0.190
race cau u17 0.0174 0.044 0.399 0.690 -0.068 0.103
married u17 0.0639 0.058 1.104 0.270 -0.050 0.178
own bank u17 0.1386* 0.055 2.502 0.013 0.030 0.247
bin cohort -0.0112 0.046 -0.246 0.806 -0.101 0.078
ins heal u17 -0.0055 0.042 -0.130 0.897 -0.089 0.078
hh adult u17 -0.0138 0.034 -0.411 0.681 -0.080 0.052
bin child u17 0.0046 0.053 0.088 0.930 -0.099 0.108
own bus u17 -0.0161 0.101 -0.160 0.873 -0.214 0.182
own prop u17 -0.0648 0.128 -0.507 0.613 -0.316 0.187
src welf u17 0.0073 0.047 0.156 0.876 -0.085 0.099
own car u17 -0.0457 0.062 -0.739 0.460 -0.167 0.076
own scale2 u17 0.0312** 0.010 3.155 0.002 0.012 0.051
str scale2 u17 0.0620 0.091 0.680 0.497 -0.117 0.241
gv scale2 u17 -0.0542 0.123 -0.440 0.660 -0.296 0.188
bin sat heal u17 0.1944** 0.059 3.268 0.001 0.078 0.311
bin sat fin2 u17 -0.0514 0.048 -1.072 0.284 -0.146 0.043
ci scale u17 0.1012 0.100 1.013 0.312 -0.095 0.297
cat ass tot 1.0 0.1240 0.070 1.774 0.077 -0.013 0.261
cat ass tot 2.0 0.0752 0.074 1.018 0.309 -0.070 0.220
cat ass tot 3.0 0.1176 0.064 1.848 0.065 -0.007 0.243
cat ass tot missing -0.0342 0.079 -0.435 0.664 -0.189 0.120
cat lib tot 1.0 -0.0057 0.078 -0.073 0.942 -0.158 0.147
cat lib tot 2.0 -0.0054 0.083 -0.065 0.948 -0.169 0.158
cat lib tot 3.0 -0.0488 0.055 -0.892 0.373 -0.156 0.059
cat lib tot missing -0.0504 0.066 -0.762 0.446 -0.180 0.080
tri ed u17 1.0 -0.0021 0.048 -0.044 0.965 -0.096 0.092
tri ed u17 2.0 0.1174* 0.058 2.025 0.043 0.004 0.231

Table C.1: OLS Regression Results
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C.2 Probit model

Dependent variable: own home u42 Pseudo R-squared: 0.1017
Number of observations: 604 Loglikelihood: -371.57

coef std err z P> |z| [0.025 0.975]

const -1.6390** 0.409 -4.004 0.000 -2.441 -0.837
treat 0.0234 0.111 0.211 0.833 -0.194 0.241
unsubsidized 0.3771** 0.131 2.881 0.004 0.121 0.634
bin age u17 -0.2756* 0.118 -2.336 0.019 -0.507 -0.044
hiinc -0.0786 0.120 -0.657 0.511 -0.313 0.156
female u17 0.2023 0.172 1.176 0.239 -0.135 0.539
race cau u17 0.0504 0.121 0.417 0.677 -0.187 0.287
married u17 0.1868 0.161 1.163 0.245 -0.128 0.502
own bank u17 0.4102** 0.160 2.571 0.010 0.097 0.723
bin cohort -0.0323 0.126 -0.257 0.797 -0.278 0.214
ins heal u17 -0.0081 0.118 -0.069 0.945 -0.239 0.222
hh adult u17 -0.0442 0.093 -0.475 0.634 -0.226 0.138
bin child u17 0.0186 0.147 0.127 0.899 -0.269 0.307
own bus u17 -0.0417 0.272 -0.153 0.878 -0.576 0.492
own prop u17 -0.1949 0.354 -0.551 0.582 -0.889 0.499
own ira u17 -0.0057 0.203 -0.028 0.977 -0.403 0.391
src welf u17 0.0200 0.130 0.153 0.878 -0.235 0.275
own car u17 -0.1385 0.173 -0.801 0.423 -0.477 0.200
own scale2 u17 0.0885** 0.027 3.252 0.001 0.035 0.142
str scale2 u17 0.1910 0.251 0.760 0.447 -0.302 0.684
gv scale2 u17 -0.1620 0.343 -0.472 0.637 -0.835 0.511
gt scale2 u17 0.0038 0.329 0.012 0.991 -0.641 0.648
bin sat heal u17 0.5770** 0.174 3.315 0.001 0.236 0.918
bin sat fin2 u17 -0.1397 0.131 -1.064 0.287 -0.397 0.118
ci scale u17 0.2730 0.279 0.978 0.328 -0.274 0.820
cat ass tot 1.0 0.3575 0.194 1.840 0.066 -0.023 0.738
cat ass tot 2.0 0.2047 0.208 0.986 0.324 -0.202 0.612
cat ass tot 3.0 0.3332 0.177 1.883 0.060 -0.014 0.680
cat ass tot missing -0.0839 0.221 -0.379 0.704 -0.517 0.349
cat lib tot 1.0 -0.0218 0.210 -0.104 0.917 -0.434 0.390
cat lib tot 2.0 -0.0298 0.232 -0.128 0.898 -0.485 0.425
cat lib tot 3.0 -0.1527 0.151 -1.009 0.313 -0.450 0.144
cat lib tot missing -0.1609 0.187 -0.858 0.391 -0.528 0.206
tri ed u17 1.0 0.0063 0.133 0.047 0.962 -0.254 0.266
tri ed u17 2.0 0.3462* 0.160 2.163 0.031 0.033 0.660

Table C.2: Probit Regression Results
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C.3 Logit model

Dependent variable: own home u42 Pseudo R-squared: 0.1009
Number of observations: 604 Loglikelihood: -371.88

coef std err z P> |z| [0.025 0.975]

const -2.6649** 0.676 -3.940 0.000 -3.991 -1.339
treat 0.0355 0.182 0.195 0.845 -0.321 0.393
unsubsidized 0.6214** 0.216 2.876 0.004 0.198 1.045
bin age u17 -0.4524* 0.194 -2.332 0.020 -0.833 -0.072
hiinc -0.1415 0.196 -0.720 0.471 -0.526 0.243
female u17 0.3170 0.280 1.133 0.257 -0.231 0.865
race cau u17 0.0818 0.198 0.413 0.679 -0.306 0.470
married u17 0.2980 0.264 1.129 0.259 -0.219 0.815
own bank u17 0.6745* 0.267 2.527 0.011 0.151 1.198
bin cohort -0.0573 0.206 -0.278 0.781 -0.461 0.346
ins heal u17 -0.0229 0.193 -0.119 0.906 -0.401 0.356
hh adult u17 -0.0732 0.152 -0.483 0.629 -0.371 0.224
bin child u17 0.0267 0.240 0.111 0.912 -0.444 0.497
own bus u17 -0.0725 0.447 -0.162 0.871 -0.948 0.803
own prop u17 -0.3023 0.590 -0.512 0.608 -1.459 0.854
own ira u17 0.0052 0.332 0.016 0.988 -0.646 0.657
src welf u17 0.0427 0.214 0.200 0.842 -0.376 0.462
own car u17 -0.2300 0.284 -0.810 0.418 -0.786 0.326
own scale2 u17 0.1426** 0.045 3.180 0.001 0.055 0.230
str scale2 u17 0.3067 0.413 0.743 0.458 -0.503 1.116
gv scale2 u17 -0.2352 0.564 -0.417 0.677 -1.342 0.871
gt scale2 u17 -0.0129 0.540 -0.024 0.981 -1.071 1.045
bin sat heal u17 0.9493** 0.294 3.226 0.001 0.373 1.526
bin sat fin2 u17 -0.2311 0.216 -1.069 0.285 -0.655 0.193
ci scale u17 0.4619 0.456 1.013 0.311 -0.432 1.356
cat ass tot 1.0 0.5872 0.318 1.848 0.065 -0.036 1.210
cat ass tot 2.0 0.3443 0.339 1.016 0.310 -0.320 1.009
cat ass tot 3.0 0.5465 0.291 1.878 0.060 -0.024 1.117
cat ass tot missing -0.1350 0.366 -0.369 0.712 -0.852 0.583
cat lib tot 1.0 -0.0418 0.348 -0.120 0.904 -0.723 0.639
cat lib tot 2.0 -0.0323 0.377 -0.086 0.932 -0.772 0.707
cat lib tot 3.0 -0.2394 0.248 -0.964 0.335 -0.726 0.247
cat lib tot missing -0.2598 0.308 -0.842 0.400 -0.864 0.345
tri ed u17 1.0 -0.0025 0.219 -0.012 0.991 -0.433 0.428
tri ed u17 2.0 0.5427* 0.262 2.075 0.038 0.030 1.055

Table C.3: Logit Regression Results
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C.4 Generic Machine Learning

Coefficient P-value 95% confidence interval

Lasso
Baseline conditional average 0.0155 0.779 [-0.111, 0.142]
Heterogeneity -0.0112 0.977 [-0.981, 0.926]

Tree
Baseline conditional average 0.0159 0.780 [-0.113, 0.144]
Heterogeneity -0.0043 0.976 [-0.315, 0.326]

Random forest
Baseline conditional average 0.0167 0.758 [-0.109, 0.144]
Heterogeneity 0.1289 0.687 [-0.643, 0.973]

Support vector machine
Baseline conditional average 0.0218 0.697 [-0.105, 0.148]
Heterogeneity 0.1145 0.572 [-0.352, 0.571]

Gradient boosting
Baseline conditional average 0.0156 0.780 [-0.113, 0.143]
Heterogeneity -0.0081 0.983 [-0.869, 0.872]

Linear regression
Baseline conditional average 0.0206 0.715 [-0.107, 0.147]
Heterogeneity 0.0012 0.982 [-0.350, 0.341]

Table C.4: The best linear predictors of the baseline conditional average (β1) and the
heterogeneity parameter (β2).

Coefficient P-value 95% confidence interval

θ̂G1 -0.008 (0.141) 0.949 [-0.284, 0.274]

θ̂G2 -0.006 (0.147) 0.961 [-0.295, 0.275]

θ̂G3 -0.001 (0.146) 0.936 [-0.286, 0.296]

θ̂G4 0.024 (0.145) 0.844 [-0.260, 0.303]

θ̂G5 0.025 (0.145) 0.844 [-0.259, 0.308]

Table C.5: Sorted group average treatment effects using Lasso

Coefficient P-value 95% confidence interval

θ̂G1 -0,004 (0.151) 0.977 [0.293, 0.284]

θ̂G2 -0,004 (0.149) 0.977 [0.288, 0.283]

θ̂G3 -0,001 (0.145) 0.993 [0.283, 0.284]

θ̂G4 0,003 (0.133) 0.905 [0.264, 0.287]

θ̂G5 0,017 (0.133) 0.890 [0.278, 0.306]

Table C.6: Sorted group average treatment effects using a Tree
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Coefficient P-value 95% confidence interval

θ̂G1 -0.032 (0.145) 0.800 [0.315, 0.251]

θ̂G2 -0.014 (0.147) 0.915 [0.298, 0.273]

θ̂G3 0.023 (0.141) 0.856 [0.264, 0.304]

θ̂G4 0.030 (0.145) 0.801 [0.257, 0.308]

θ̂G5 0.037 (0.146) 0.743 [0.248, 0.322]

Table C.7: Sorted group average treatment effects using a Random Forest

Coefficient P-value 95% confidence interval

θ̂G1 -0.010 (0,144) 0.939 [-0.292, 0.273]

θ̂G2 0.011 (0.145) 0.924 [-0.272, 0.295]

θ̂G3 0.015 (0,144) 0.900 [-0.268, 0.298]

θ̂G4 0.017 (0,146) 0.828 [-0.269, 0.303]

θ̂G5 0.042 (0,144) 0.737 [-0.241, 0.326]

Table C.8: Sorted group average treatment effects using a Support Vector Machine

Coefficient P-value 95% confidence interval

θ̂G1 0.007 (0,141) 0.868 [-0.270, 0.280]

θ̂G2 0.012 (0,147) 0.909 [-0.275, 0.299]

θ̂G3 0.018 (0,15) 0.853 [-0.277, 0.314]

θ̂G4 0.022 (0,145) 0.860 [-0.262, 0.307]

θ̂G5 0.022 (0,148) 0.865 [-0.269, 0.309]

Table C.9: Sorted group average treatment effects using Gradient Boosting

Coefficient P-value 95% confidence interval

θ̂G1 -0.016 (0,144) 0.897 [-0.299, 0.266]

θ̂G2 -0.004 (0,145) 0.974 [-0.288, 0.280]

θ̂G3 0.018 (0,145) 0.868 [-0.266, 0.302]

θ̂G4 0.035 (0,144) 0.772 [-0.248, 0.318]

θ̂G5 0.054 (0,144) 0.664 [-0.228, 0.336]

Table C.10: Sorted group average treatment effects using Linear Regression
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Coefficient P-value 95% confidence interval

δ1 0.295*** 0.000 [0.163, 0.427]
δ2 0.425*** 0.000 [0.273, 0.561]
δ3 0.508*** 0.000 [0.354, 0.646]
δ4 0.575*** 0.000 [0.422, 0.711]
δ5 0.697*** 0.000 [0.555, 0.823]
δ5 − δ1 0.410*** 0.000 [0.223, 0.595]

Table C.11: Classification analysis for the regressor hiinc

Coefficient P-value 95% confidence interval

δ1 0,492*** 0.000 [0.347, 0.636]
δ2 0,442*** 0.000 [0.289, 0.578]
δ3 0,408*** 0.000 [0.257, 0.543]
δ4 0,358*** 0.000 [0.211, 0.489]
δ5 0,303*** 0.000 [0.163, 0.427]
δ5 − δ1 -0,197* 0.027 [-0.393, 0.003]

Table C.12: Classification analysis for the regressor race cau u17

Coefficient P-value 95% confidence interval

δ1 0,139** 0.001 [0.033, 0.229]
δ2 0,192*** 0.000 [0.070, 0.296]
δ3 0,208*** 0.000 [0.083, 0.317]
δ4 0,258*** 0.000 [0.124, 0.376]
δ5 0,303*** 0.000 [0.163, 0.427]
δ5 − δ1 0,148* 0.035 [-0.013, 0.323]

Table C.13: Classification analysis for the regressor married u17

Coefficient P-value 95% confidence interval

δ1 0,189*** 0.000 [0.069, 0.292]
δ2 0,272*** 0.000 [0.110, 0.357]
δ3 0,275*** 0.000 [0.138, 0.396]
δ4 0,291*** 0.000 [0.152, 0.415]
δ5 0,353*** 0.000 [0.207, 0.482]
δ5 − δ1 0,164* 0.029 [-0.009, 0.344]

Table C.14: Classification analysis for the regressor bin cohort
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Coefficient P-value 95% confidence interval

δ1 0,254*** 0.000 [0.115, 0.410]
δ2 0,342*** 0.000 [0.168, 0.508]
δ3 0,383*** 0.000 [0.214, 0.569]
δ4 0,475*** 0.000 [0.281, 0.672]
δ5 0,648*** 0.000 [0.430, 0.871]
δ5 − δ1 0,385*** 0.001 [0.124, 0.654]

Table C.15: Classification analysis for the regressor hh adult u17

Coefficient P-value 95% confidence interval

δ1 0,615*** 0.000 [0.535, 0.689]
δ2 0,564*** 0.000 [0.485, 0.642]
δ3 0,534*** 0.000 [0.455, 0.614]
δ4 0,506*** 0.000 [0.429, 0.582]
δ5 0,495*** 0.000 [0.418, 0.574]
δ5 − δ1 -0,129** 0.006 [-0.234, -0.024]

Table C.16: Classification analysis for the regressor str scale2 u17

Coefficient P-value 95% confidence interval

δ1 0,926*** 0.000 [0.839, 1,000]
δ2 0,892*** 0.000 [0.790, 0.977]
δ3 0,875*** 0.000 [0.767, 0.966]
δ4 0,833*** 0.000 [0.725, 0.942]
δ5 0,762*** 0.000 [0.629, 0.879]
δ5 − δ1 -0,1803** 0.009 [-0.317, -0.025]

Table C.17: Classification analysis for the regressor bin sat heal u17

Coefficient P-value 95% confidence interval

δ1 0,451*** 0.000 [0.299, 0.586]
δ2 0,575*** 0.000 [0.422, 0.711]
δ3 0,633*** 0.000 [0.493, 0.774]
δ4 0,692*** 0.000 [0.548, 0.819]
δ5 0,754*** 0.000 [0.629, 0.879]
δ5 − δ1 0,3033*** 0.000 [0.119, 0.491]

Table C.18: Classification analysis for the regressor bin sat fin2 u17
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Coefficient P-value 95% confidence interval

δ1 0,350*** 0.000 [0.287, 0.413]
δ2 0,367*** 0.000 [0.301, 0.434]
δ3 0,389*** 0.000 [0.325, 0.456]
δ4 0,402*** 0.000 [0.335, 0.468]
δ5 0,439*** 0.000 [0.371, 0.512]
δ5 − δ1 0,097* 0.020 [0.001, 0.194]

Table C.19: Classification analysis for the regressor ci scale u17

Coefficient P-value 95% confidence interval

δ1 0,350*** 0.000 [0.287, 0.413]
δ2 0,367*** 0.000 [0.301, 0.434]
δ3 0,389*** 0.000 [0.325, 0.456]
δ4 0,402*** 0.000 [0.335, 0.468]
δ5 0,439*** 0.000 [0.371, 0.512]
δ5 − δ1 0,097* 0.020 [0.001, 0.194]

Table C.20: Classification analysis for the regressor cat lib tot 1

Coefficient P-value 95% confidence interval

δ1 0,074* 0.021 [0.000, 0.137]
δ2 0,108** 0.005 [0.012, 0.188]
δ3 0,133** 0.001 [0.034, 0.233]
δ4 0,158*** 0.001 [0.046, 0.254]
δ5 0,238*** 0.000 [0.108, 0.351]
δ5 − δ1 0,148* 0.021 [0.004, 0.310]

Table C.21: Classification analysis for the regressor cat lib tot 4

Coefficient P-value 95% confidence interval

δ1 0,172*** 0.000 [0.057, 0.271]
δ2 0,208*** 0.000 [0.083, 0.317]
δ3 0,242*** 0.000 [0.110, 0.357]
δ4 0,258*** 0.000 [0.124, 0.376]
δ5 0,344*** 0.000 [0.207, 0.482]
δ5 − δ1 0,164* 0.026 [-0.007, 0.344]

Table C.22: Classification analysis for the regressor tri ed u17 2
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