
ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Master Thesis Econometrics

December 19, 2022

Deep Reinforcement Learning for Goal-Based Wealth
Management: a Model-Based Approach

Authors:

Afrasiab Kadhum (581164ak)

Supervisors:

Dr. Andrea Naghi - ESE

David Kroon - Ortec Finance

Prof.dr Marc Francke - Ortec Finance

Second assessor:

Dr. Eoghan O’Neill - ESE

Abstract

This research investigates the effectiveness of model-based Reinforcement Learning (RL) in solv-

ing a goal-based wealth management problem. This model-based approach provides the decision-

maker, namely the agent, with one-step-ahead forecasts of asset returns, for which we incorporate

various linear autoregressive models and compare their performance to that of a complex non-

linear model used in prior literature. Furthermore, we train and test all agents using a set of

simulated economic scenarios. We find that the model-based method consistently achieves a

higher goal success rate than the model-free RL baseline in both a sparse and a dense reward

environment. Moreover, we achieve similar performance gains over the model-free method with

both the linear and nonlinear regressions, indicating that this model-based approach does not

necessarily require estimating complex prediction models.

Note: The content of this thesis is the sole responsibility of the author and does not reflect the view of the supervisor,

second assessor, Ortec Finance, Erasmus School of Economics or Erasmus University.

Contents

1 Introduction 3

2 Problem setup 5

3 Reinforcement learning background 6

3.1 Markov Decision Processes . 7

3.2 Policy gradient methods . 8

3.3 On-policy methods . 10

3.4 Model-based RL . 10

4 Data 11

4.1 Dynamic Scenario Generator . 12

4.2 Descriptive statistics . 12

5 Methodology 13

5.1 State representation . 13

5.2 Reward function . 14

5.3 Actor and Critic network . 16

5.4 PPO . 17

5.5 Model-based PPO . 19

5.5.1 Linear models . 19

5.5.2 Nonlinear Gaussian Dynamic Boltzmann machine 20

5.6 Behaviour cloning . 23

5.7 Enforcing portfolio constraints . 24

5.8 Interpretability . 25

5.8.1 Shapley values . 25

5.8.2 Perfect predictions . 26

5.9 Performance measures . 27

5.10 Hyperparameter tuning . 28

6 Results 28

6.1 Algorithm performance comparison . 28

6.2 Behaviour cloning . 31

1

6.3 Sample efficiency . 32

6.4 Backtesting . 33

6.5 Interpretability . 34

6.5.1 SHAP . 34

6.5.2 Perfect predictions . 36

7 Conclusion 37

References 40

Acronyms 44

Appendices 45

A Model-Based PPO pseudo code 45

B Goal-only value interpretation derivation 46

C Hyperparameter tuning 47

D VAR lag selection robustness check 48

E Nonlinear model settings 49

F Shapley values actor 50

G Backtest results 54

2

1 Introduction

Reinforcement learning (RL) is a branch of machine learning that has received a growing amount

of attention in the past decade. It consists of teaching an intelligent agent how to strategically

act within a specific environment by rewarding it for desirable behaviour, according to a user-

specified reward function. As the agent seeks to maximize its total received reward, it learns how

to optimally choose its actions through trial and error. Although this idea is relatively simple, RL

has shown to be an effective approach for learning strategies in complex sequential decision-making

problems. Recent years have seen the technique successfully be applied to solve a variety of tasks

such as playing games (Berner et al., 2019; Ecoffet et al., 2019; Silver et al., 2018), robotics control

(Buckman et al., 2018; Lillicrap et al., 2015; Vecerik et al., 2017) and other control tasks (Qi et al.,

2019). Furthermore, RL methods have also gained the interest of researchers in the field of finance

(Fischer, 2018). Particularly the task of dynamic asset allocation or portfolio optimization is well

suited for RL, due to it being a sequential decision-making problem. However, research in this

domain has been limited compared to the size of the literature dedicated to the study of other

applications of RL (Fischer, 2018).

A relatively new branch of portfolio optimization that has received interest from investors lately

is Goal-Based Wealth Management (GBWM) (Blanchett, 2015). GBWM is an asset allocation

strategy that aims to directly maximize the probability of achieving certain goals of an investor,

such as accumulating a set amount of wealth at the end of an investment period. Due to the

presence of a clear goal, RL is an attractive candidate to solve GBWM problems. Recently, this

application of RL has been studied and shown to be a promising replacement for the classic dynamic

programming approach (Dasa and Varmaa, 2020; Dom et al., 2022). However, similar to the

majority of RL literature on portfolio optimization, these studies only use so-called “model-free”

RL methods, where no model of the environment is learned or used (Fischer, 2018). Although

model-free methods are simpler to implement, they have been shown to not always reach the same

level of performance achievable by model-based methods (Moerland et al., 2020).

In this research, we investigate the efficacy of a model-based RL method for solving GBWM

problems and compare its performance to that of model-free RL. Our model-free baseline consists of

the Proximal Policy Optimization (PPO) algorithm of Schulman et al. (2017), which is commonly

used in practice due to its stable and efficient learning properties (Achiam, 2018). We apply the

model-based framework introduced by Yu et al. (2019) to PPO by including prediction models that

3

provide the agent with forecasts of future asset returns. Furthermore, Yu et al. (2019) limit their

analysis to a comparison between model-free and model-based methods, and only include complex

nonlinear prediction models in their methodology. To gain insight into how the choice of the pre-

diction model affects the performance of the model-based agent, we implement different prediction

models, using both linear and nonlinear models, and compare their respective performances. For

the linear models, we vary the complexity of the models from separate AutoRegressive (AR) models

for each asset to a Vector AutoRegressive (VAR) model, as we forecast the future returns using only

the past returns. Additionally, we include the nonlinear model used by Yu et al. (2019), namely the

Nonlinear Gaussian Dynamic Boltzmann Machine (N-G-DyBM). This model can be interpreted as

a VAR model that also includes exponential moving averages of dependent variables as regressors,

and captures nonlinearity within the time series through a Recurrent Neural Network (RNN) layer

(Dasgupta and Osogami, 2017).

Moreover, we examine the effectiveness of including behaviour cloning in both our model-based

and model-free methods for GBWM, where the agent also adjusts its policy based on expert demon-

stration. Nair et al. (2018) show that behaviour cloning can positively affect the learning process of

agents in environments where rewards are sparse, which tends to be the case in GBWM. Finally, we

use both a sparse, goal-only reward function and a dense, shaped reward function in order to study

the effect of the sparsity of reward signals on the performance of both the model-free and model-

based methods. We train and test all our agents using a dataset consisting of 15,000 simulated

economic scenarios, each representing a possible investment period.

Similarly to Yu et al. (2019), we find that the proposed model-based method consistently outper-

forms the model-free method, achieving a higher goal success rate in the GBWM problem setting.

This result is consistent in both the sparse and the dense reward environment and also when we

enforce additional constraints on the portfolio weights. Additionally, we find some evidence that

the model-based method requires fewer training iterations to converge than the model-free method,

especially when rewards become more sparse. This is in line with the general consensus that model-

based methods tend to learn more efficiently than model-free methods (Moerland et al., 2020).

Furthermore, we find that the predictions of the simple linear models and the nonlinear model

lead to similar performance gains when provided to the agent. This includes forecasts of models

that are fitted using only historical data instead of the simulated scenario data, indicating that this

model-based approach can already be effective when simple models are used.

Finally, we do not observe an increase in performance when behaviour cloning is included in the

4

learning process of the agent. Contrary to Yu et al. (2019), who find that behaviour cloning leads

to a decrease in risk, we observe a substantial increase in risk levels of the learned strategies. We

hypothesize that this decrease in performance stems from the fact that the expert actions, which

here are the actions that maximize returns at each timestep, are not necessarily optimal in the

setting of GBWM and thus provide the agent with conflicting learning signals.

Our work adds to the growing literature on RL in portfolio optimization. This literature largely

studies the use of model-free RL algorithms due to the difficulty of modeling financial markets

(Jiang et al., 2017; Liang et al., 2018). Nevertheless, Yu et al. (2019) show that their model-based

RL framework achieves higher risk-adjusted returns than its model-free counterpart, demonstrating

the potential of model-based RL in portfolio optimization. We build further on this result, where

our main contributions can be summarised as follows. First, to our best knowledge, no previous

research investigates the application of model-based RL in GBWM problems. This setting calls

for a significantly different reward function than what is used in common risk-return optimization

problems. The specification of the reward function is one of the most crucial parts in RL and has a

substantial impact on the results (Sutton and Barto, 2018). Our work thus provides insight into how

well this model-based approach translates to this new context. Second, we extend the analysis of

the model-based framework of Yu et al. (2019) by comparing the use of different prediction models

to see how this choice affects the final performance of the agent. Finally, we investigate the effect

of adding a form of behaviour cloning in our RL algorithms, which is yet to be done in the current

literature on RL in GBWM.

2 Problem setup

In this section, we describe the notation of a general GBWM problem and detail the specific problem

setup that we consider in this research.

Let the wealth of an investor at time t be defined as Wt. This investor starts with an initial

capital W0 and their goal is to accumulate a final inflation-adjusted wealth of W ∗
T after an investment

period of T years. We denote the wealth at the end of this period as the terminal wealth WT . The

investor allocates their wealth among m different assets, where we denote the fraction of wealth

that the investor has assigned to asset i at time t as the portfolio weight ai,t. These weights can be

changed on a yearly basis during the investment period while facing fixed transaction costs c. The

GBWM objective can be described as

5

maxat,t≤T P [WT ≥W ∗
T] ,

s.t
∑m

i=1 ai,t = 1, ∀t ≤ T,
(2.1)

where P [WT ≥W ∗
T] denotes the probability of achieving the terminal wealth goal of the investor.

The problem setting in this research is as follows. We assume an investor with a starting

capital of $100,000 and a goal terminal wealth of $400,000, adjusted for inflation. The investment

period spans 40 years and the following seven asset classes are available: equity (emerging markets),

equity (world), fixed income (high yield), fixed income (investment grade), cash (USD), real estate

(indirect) and hedge funds. All asset weights are bounded between 0 and 1, such that no leverage

or short selling is allowed. Furthermore, we allow additional constraints to be applied to the asset

weights, which are shown in Table 1. Finally, transaction costs of 0.5% for both buying and selling

are used throughout all experiments.

Table 1: Asset category constraints

Equity (combined) Fixed income (combined) Cash Real estate Hedge funds

lower bound 0.2 0.2 0.0 0.0 0.0
upper bound 0.8 0.8 0.3 0.2 0.1

Note: “combined” refers to the sum of the weights for all assets in a specific category, e.g equity - world and
equity - emerging markets

3 Reinforcement learning background

This section aims to provide some background information on what RL exactly conveys and to

introduce some terminology, where we follow the mathematical notation of Sutton and Barto (2018).

The goal of RL is to get an intelligent agent to learn how to solve a task. This agent lives and

acts within a dynamic environment. At a certain point in time t, it observes this environment as a

state st and interacts with it by performing actions at, causing the environment to transition to the

next state st+1. The rule that the agent uses to decide which action to take is termed the policy π,

which can be either deterministic or stochastic. Furthermore, at each timestep the agent receives a

reward Rt according to a reward function r(st−1, at−1, st) that must be specified by the researcher.

This feedback loop is visualised in Figure 1. Essentially, the agent learns through trial and error an

optimal policy π∗ such that it maximizes its expected long-term cumulative reward.

The following sections describe the mathematical foundation behind a set of algorithms, namely

6

policy gradient methods, that aim to find π∗. Furthermore, we give a brief discussion on different

classes of algorithms and on existing model-based RL methods in the literature.

Figure 1: Feedback loop of reinforcement learning (Sutton and Barto, 2018)

3.1 Markov Decision Processes

The various sequential decision-making problems that RL is used for can be mathematically for-

mulated using the Markov Decision Process (MDP) framework. This framework represents the

problem using a 6-tuple [A,S, r, P, γ, T], where A represents the action space, S the state space,

and r the reward function that outputs scalar rewards Rt, such that at ∈ A, st ∈ S and Rt ∈ R.

The policy is a mapping of S → A and the reward function r is a mapping of S × A × S → R.

Furthermore, the (unknown) state transition kernel P maps S ×A× S → [0, 1], where we have

st+1 ∼ P (· | st, at) , (3.1)

for all s ∈ S and a ∈ A. Furthermore, γ ∈ (0, 1] defines the discount rate, where γ < 1 indicates

that rewards in the distant future are worth less to the agent than immediate rewards. Finally, T

is the decision horizon or trajectory length of the problem that the agent must solve. This can be

infinite in some applications, but in our case, this is equal to the fixed 40-year investment period.

Furthermore, the trajectory τ is a sequence of possible states and actions in the environment,

τ = (s0, a0, s1, a1, . . .), such that for the T-step trajectory we have

P (τ | π) = ρ0 (s0)
T −1∏
t=0

P (st+1 | st, at)π (at | st) , (3.2)

where P (τ | π) is the probability of τ occurring while following policy π and ρ0 (s0) denotes the

probability of the randomly sampled starting state s0 (Achiam, 2018). Finally, the return G(τ) is

7

the total discounted reward obtained throughout the trajectory, defined as

G(τ) =
T∑

t=1
γtRt. (3.3)

Using this notation, the central goal in RL can be formulated as finding the solution to the

following optimization problem (Achiam, 2018):

J(π) =
∫

τ
P (τ | π)G(τ) = Eπ[G(τ)],

π∗ = arg max
π

J(π),
(3.4)

where the objective function J(π) is the expected return while following policy π and π∗ the optimal

policy for the MDP problem.

3.2 Policy gradient methods

In continuous action spaces, policy gradient techniques are typically used in order to solve (3.4)

(Sutton and Barto, 2018). These methods parameterize a policy function with parameter vector θ

and aim to estimate the policy gradient ∇θJ(πθ), which is the gradient of policy performance, and

use it to update θ. Through the policy gradient theorem, whose proof can be found in the book of

Sutton and Barto (2018), and following the derivation of Achiam (2018) we obtain the estimator

for the policy gradient such that

∇θJ(πθ) = Eπθ
[∇θ log πθ(s, a)Qπθ (s, a)] , (3.5)

where ∇θ log πθ(s, a) is the gradient of the policy log-likelihood and Qπθ (s, a) is the state-action

value function following policy πθ. The state-action value function is defined as the expected return

of the agent starting in state s after performing action a and following policy πθ onwards (Achiam,

2018). It thus describes the inherent long-term desirability of a specific state-action combination.

In mathematical terms, this becomes

Qπθ (s, a) = Eπθ
[G(τ) | s0 = s, a0 = a] . (3.6)

Methods that only specify a policy function are so-called “actor-only” methods. An example of

this is the REINFORCE algorithm, which uses the sampled returns as an estimate for Qπθ (s, a) to

compute the gradient in (3.5) (Williams, 1992). Although such methods are viable in continuous

8

action spaces, they tend to be inefficient at evaluating their policy due to a large variance in their

estimate for Qπθ (s, a) and typically converge to a local optimum instead of a global one (Silver

et al., 2018).

Next to actor-only methods are critic-only algorithms, which aim to only estimate a state-action

value function from which they derive the optimal actions in each state, and thus a policy (Sutton

and Barto, 2018). However, these methods are restricted to discrete-action spaces and thus not

viable in our problem setting.

Actor-critic methods combine the respective benefits of actor- and critic-only methods by spec-

ifying both a policy and a value function, where the policy (actor) is updated using information

provided by the estimated value function (critic), which combats the high-variance problem in

actor-only methods (Konda and Tsitsiklis, 1999). Note that most actor-critic methods approximate

a state value function V πθ (s) instead of a state-action value function, where V πθ (s) gives the ex-

pected return when starting in state s and following policy π. V πθ (s) can also be interpreted as the

expectation of Qπθ (s, a) for a random action a in state s. This allows for the advantage function

Aπθ (s, a) to be defined as

Aπθ (s, a) = Qπθ (s, a)− V πθ (s), (3.7)

where Aπθ (s, a) can be interpreted as the expected difference in return from performing action a

in state s, as opposed to choosing a random action. This function is essential to many actor-

critic methods since the state value function is a popular choice for the baseline function, which

is a function that only depends on the state s and can thus be subtracted from Qπθ (s, a) in (3.5)

without changing the expectation of the gradient (proof can be found in Achiam (2018)). This

reduces the variance of the gradient and leads to a faster and more stable learning process. Thus,

the final and most popular specification of the policy gradient in actor-critic algorithms becomes

∇θJ(πθ) = Eπθ
[∇θ log πθ(s, a)(Qπθ (s, a)− V πθ (s))] ,

= Eπθ
[∇θ log πθ(s, a)Aπθ (s, a)] ,

(3.8)

where the actor and critic functions are often approximated using Artificial Neural Networks (ANN)

in deep RL applications (Sutton and Barto, 2018; Qi et al., 2019).

9

3.3 On-policy methods

An important distinction between actor-critic algorithms is whether the agent learns on-policy or

off-policy (Sutton and Barto, 2018). Whereas on-policy methods evaluate and improve the same

policy that is used for the decision-making of the agent, off-policy methods improve a policy that

is different from the one that is generating the training experience. The most popular off-policy

algorithms in the literature are Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015)

and its successors Twin Delayed DDPG (TD3) (Fujimoto et al., 2018) and Soft Actor-Critic (SAC)

(Haarnoja et al., 2018). For on-policy algorithms, these are Asynchronous Advantage Actor-Critic

(A2C) (Mnih et al., 2016), Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) and

Proximal Policy Optimization (PPO) (Schulman et al., 2017).

The main idea behind choosing an off-policy method over an on-policy one is that off-policy

algorithms do not need to explore the action space with the policy that they learn. This allows the

learned policy to only concern itself with learning which actions lead to the most rewards, making

the policy more “greedy”. However, off-policy algorithms are less stable and more complex than on-

policy methods, since they are not directly optimizing the policy with which they are performing the

actions during the learning period (Sutton and Barto, 2018). Furthermore, Aboussalah et al. (2022)

show in their research that likely due to this greediness, off-policy algorithms tend to construct more

risky asset allocations than on-policy algorithms in portfolio optimization problems.

Regarding on-policy algorithms: unlike TRPO and PPO, A2C directly optimizes the objective

function without clipping the loss, which can lead to destructively large updates (Schulman et al.,

2017). Both TRPO and PPO limit large policy updates and thus tend to have more stable learning.

Finally, since PPO is a simplified and more efficient version of TRPO, we opt to use PPO in our

research for both our model-free and model-based algorithms.

3.4 Model-based RL

In this research, we apply the architecture of Yu et al. (2019) for our model-based method. A

number of other model-based RL methods have also been developed over the past years that have

seen success in their respective applications (Moerland et al., 2020). Although their design tends

to be application-specific, these methods generally involve learning a model in order to let the

agent predict and plan over future states. However, it is important to understand the fundamental

difference between the environment in portfolio optimization problems and other environments in

RL research. The majority of RL literature considers so-called “closed-loop” systems (Sutton and

10

Barto, 2018). These refer to problems where only the actions of the agent directly affect the next

state of the environment, which in turn influences the next action taken by the agent. This is

in contrast to the financial market environment, which can be seen as an open-loop system if we

make the common assumption that the investments of the agent do not impact future asset returns

(Feng et al., 2016). Furthermore, although they do take into account stochasticity in their models,

most model-based RL methods in the literature have been developed to learn complex but largely

deterministic dynamics (Buckman et al., 2018; Zhang et al., 2019). This adds more uncertainty to

the question of how well these methods would translate to a more stochastic and noisy environment

such as in our case. An example of this is the conventional model-based RL approach tried by Filos

(2019). Here the author incorporates a VAR model and an RNN in order to predict and plan over

future returns in a portfolio optimization problem, leading to an agent that is outperformed by

non-RL benchmark strategies. We therefore decide to use a model-based framework that has been

proven to be effective and capable of outperforming its model-free counterpart in a problem setting

that is more closely related to ours.

4 Data

A major issue in applying RL to portfolio optimization problems lies in the fact that the amount

of real-world financial market data tends to be too limited in order to train a robust agent. This

is especially true when we are interested in learning long-term, low-frequency trading strategies

such as in our case. To overcome this issue, we make use of synthetic data that is generated by

the Dynamic Scenario Generator (DSG) of Ortec Finance (Steehouwer, 2016). This data comes

in the form of 15,000 possible future economic scenarios, each containing eight yearly time series

spanning forty years, starting in 2022. These eight series are composed of the annual returns of the

seven asset categories mentioned in Section 2 and the annual inflation rate. Not only does the use

of scenarios allow us to train the agent on a larger dataset (albeit artificially generated), but each

scenario also replicates a possible 40-year investment period which the agent could encounter in the

future. By letting the agent perform actions over a large number of possible investment periods

while rewarding it accordingly, we are able to train an agent that learns a more robust trading

strategy.

Finally, real-world historical data from 1991 to 2021 is available. This is used to initialize

certain parts of the training algorithm and for the fitting of a number of prediction models. Ad-

11

ditionally, we also test some of the learned strategies using the historical data in order to observe

their performances in a real-world setting.

4.1 Dynamic Scenario Generator

The DSG is an extensive model with many elements to it, but its general concept is as follows. It

takes in over 600 financial and economic time series as input and decomposes each into a trend,

business cycle and a monthly component (Steehouwer, 2016). Next, Dynamic Factor Models (DFMs)

are constructed for each of these components, which consist of a number of dedicated factors to

model the long-, medium- and short-term. The dynamics of these DFMs are the driving force

behind the forecasted expectation and volatility of all variables, as they produce the scenarios for

all the components. Finally, the separate component scenarios are merged in order to reconstruct

the complete scenarios for all the input series. An overview of this process is shown in Figure 2.

The full model consists of many other components such as the inclusion of a number of stylized

facts, for which we refer to Steehouwer (2016).

Figure 2: Overview of the frequency decomposition and use of dynamic factor models in the
Dynamic Scenario Generator of Ortec Finance

4.2 Descriptive statistics

The dataset is split into a training, validation and test set using a 70/15/15 split, respectively.

Furthermore, the splits are constructed such that the distribution of different types of scenarios is

similar in each set. Table 2 presents a summary of the asset returns in the training scenario set

12

Table 2: Annual returns and rate of inflation [%] averaged across the training scenarios at various
points in time

Year Equity- Equity- Fixed Income- Fixed income -
World Emerging markets High Yield Investment Grade

1 6.155 (20.595) 9.242 (28.292) 0.806 (7.866) 1.432 (12.004)
20 7.054 (18.153) 9.587 (26.468) 3.497 (8.620) 5.524 (15.910)
40 7.371 (18.711) 9.619 (26.548) 4.948 (8.595) 6.714 (15.861)

Year Cash USD Real Estate Hedge Funds- Inflation rateIndirect Fund of Funds
1 0.246 (0.000) 5.143 (22.740) 2.844 (9.485) 3.474 (1.067)
20 1.742 (1.987) 7.301 (20.928) 3.291 (8.260) 2.208 (2.036)
40 2.423 (2.422) 7.247 (20.802) 3.391 (8.262) 2.103 (1.913)

Note: The values in brackets represent the standard deviation for each variable across the different scenarios.

at various points in time. We can see that there is a clear mix of assets with different risk levels

available to the investor, with e.g equity having substantially larger standard deviations than assets

in the fixed income category. Furthermore, the average return of all assets appears to increase over

time, with the largest increase visible in the fixed income category. The standard deviation tends

to generally remain the same among the assets, although a clear growth trend can be observed for

Cash.

5 Methodology

5.1 State representation

When constructing the state that the agent will receive as input, it generally is the case that the

more the state follows the Markov property, the higher the likelihood that the agent will learn

a successful policy (Sutton and Barto, 2018). The Markov property holds when the future state

transition depends only on the current state and not on the past history. We thus desire that the

state vector contains all the relevant information such that

P
(
st+1 = s′ | st, st−1, . . . , s0

)
= P

(
st+1 = s′ | st

)
. (5.1)

Our model-free state representation is equal to that used by Dom et al. (2022), which is defined

as

13

st = [xt, ξt,a∗
t−1,Wt, T], (5.2)

where xt and ξt contain the first lag of the returns and the inflation rate at time t, respectively, a∗
t−1

the current portfolio weights after they have been adjusted for the previous returns and T = T − t

represents the time left until the terminal state is reached. This representation is similar to that

of Yu et al. (2019), where we also include the inflation rate as it directly influences the inflation-

adjusted wealth progression of the agent. Furthermore, including more lags of the asset returns

in the state could increase the information available to the agent, but it is also important that

the state remains concise. Ota et al. (2020) mention that generally, a state vector with a lower

dimensionality will lead to a faster and overall better learning process for the agent. Yu et al.

(2019) also only include one lag of the asset prices into their state, and Dom et al. (2022) found

that adding more than one lag of the returns to the state space did not increase the performance

of the agent. Furthermore, the inclusion of the current portfolio weights is necessary in order for

the agent to take into account transaction costs (Jiang et al., 2017). Finally, it is natural that the

time left and the current amount of wealth are informative for the agent regarding how close it is

to reaching its goal. Pardo et al. (2018) argue that in time-limited tasks such as ours, the time left

is an essential part of the state that must be included in order to not violate the Markov property.

Finally, Achiam (2018) recommends normalizing the state features whenever possible in order

to enhance performance. Therefore, we scale the wealth and time left in the state such that

W ′
t = Wt −W ∗

T

W ∗
T

,

T ′ =
T − 1

2T

T
,

(5.3)

where W ′
t and T ′ represent the scaled wealth and time left, respectively.

5.2 Reward function

The correct specification of the reward function is vital to successfully aid the agent in learning how

to solve its task. Typically, we only want to reward the agent for achieving its exact goal in order

to not influence its decision-making too much by over-engineering the reward function (Sutton and

Barto, 2018). E.g, in chess, you would only reward the agent based on whether it loses, draws or

wins the game, and not for any other achievements such as capturing pieces or improving board

position. Applying this same reasoning to GBWM would make the specification of the reward

14

function relatively simple, as a clear goal is already defined by the investor. In our problem setting,

we would thus only reward the agent based on whether or not it has achieved its wealth goal W ∗
T

at time T , which can be specified as

Rt =

0 if t < T,

1WT ≥W ∗
T

if t = T,

(5.4)

where 1 represents an indicator function. Although this function rewards the agent exactly for

what we want it to achieve, the agent is likely to experience a large number of trajectories where

it receives no rewards, making the number of nonzero rewards sparse. Andrychowicz et al. (2017)

mention how in complex control tasks, reward functions that are too sparse can make it difficult for

the agent to learn. This often leads researchers to perform reward shaping, where more elements

are added to the reward function in order to provide the agent with supplementary rewards (Ng

et al., 1999). In this research, we try both a shaped reward function and the simple specification of

(5.4), which we refer to as the goal-only reward function.

For the shaped reward function, we use a specification similar to that of Dom et al. (2022). First,

we add an element termed the Loss Given Failure (LGF) that penalizes the agent given that it has

not reached its goal at the end of the trajectory. This makes it so that the agent is guaranteed to

receive a nonzero reward in each trajectory. Furthermore, this penalization is scaled based on how

far off the terminal wealth is from the goal wealth, such that large misses lead to a more negative

reward. This is done in order to discourage overly risky strategies. The specification of the LGF

then becomes

LGF = (1WT <WT ∗)W
∗
T −WT

W ∗
T

. (5.5)

Additionally, at each timestep we include a reward based on a risk-adjusted return measure,

namely the Downside Deviation Ratio (DDR), which is defined as

DDRt = E [rt]
ddt

, (5.6)

where rt denotes the portfolio return at time t and ddt is the downside deviation. The downside

deviation is a risk measure that only takes into account the downside risk of assets. This makes it

a more favourable risk measure than for example the Sharpe ratio, which is a symmetric measure

of risk that also penalizes upside risk. This reasoning is also followed by Yu et al. (2019), who use

15

the DDR in their risk-adjustment module. Moody and Saffell (2001) define the downside deviation

as the square root of the average of the squared negative returns, such that

ddt =
(

1
t

t∑
s=1

min {rs, 0}2
) 1

2

. (5.7)

Following Moody and Saffell (2001), we estimate the average return and downside deviation

iteratively using exponential moving averages, such that

Êt+1 (rt) = Êt (rt) + ν
(
rt+1 − Êt (rt)

)
,

dd2
t+1 = dd2

t + ν
(
min

{
r2

t+1, 0
}
− dd2

t

)
,

(5.8)

where ν denotes the adaptation rate, which we set at the common value of 0.04 (Tsay, 2013).

We initialize the moving averages with the entire historical data, where we assume a constantly

rebalanced portfolio with a set of initial asset weights.

Bringing all these elements together leads to the shaped reward function that is formalized as

Rt =

α1DDRt if t < T,

1WT ≥W ∗
T

+ α1DDRt + α2LGF if t = T,

(5.9)

where α1 and α2 are hyperparameters that let us scale the relative importance of each element in

the reward function.

5.3 Actor and Critic network

Both the actor and critic network are specified using ANNs with two hidden layers, using Rectified

Linear Unit (ReLU) activation functions in between hidden layers, similar to the work of Schulman

et al. (2017). We follow the recommendation of Andrychowicz et al. (2020) to use separate layers

for the actor and critic networks, as the authors show that this can lead to an improved overall

performance in on-policy algorithms. Furthermore, since the actor network µ(s) must output a

7-dimensional vector that contains the desired asset weights, its output layer contains a softmax

activation function such that
∑7

i=1 µi(s) = 1. The critic network does not use a nonlinear activation

function in the output layer, as it must simply output a scalar value V (s). The widths of both

networks are hyperparameters that are tuned.

During training, it is essential that the agent explores different parts of the action space in order

for it to learn an effective policy (Sutton and Barto, 2018). However, if the output of the actor

16

network µ(s) is directly used as the action of the agent, we would have a deterministic policy. As

a result, it is customary to use the output µ(s) as input to a random distribution from which we

sample the actions. We specify a diagonal Gaussian policy function, which is commonly used in

problems with continuous action spaces (Silver, 2015). Hence, the actor network outputs the mean

of a Gaussian distribution, where the standard deviations σi can also be varied by the algorithm

throughout the training process. We obtain the sampled weights ãt through

ãt ∼ N (µ(st),Σ) . (5.10)

where Σ = diag(σ2
1, .., σ

2
m). To ensure that the sampled actions sum up to 1, we normalize them

such that

at = ãt∑7
i=m ãi,t

, (5.11)

where at denotes the corrected action vector containing the normalized asset weights. During testing

we no longer need the agent to explore the action space and thus skip this sampling procedure, such

that we have at = µ(st).

5.4 PPO

The model-free RL method that we use as a baseline in this research is the PPO algorithm introduced

by Schulman et al. (2017). Our Python implementation is based on the code of Dom et al. (2022),

which takes inspiration from the reliable PPO implementation of Raffin et al. (2021).

Firstly, the training set is split into a number of batches of scenarios, with the batch size N being

a hyperparameter. During a training iteration, we let the agent perform actions throughout each

scenario in the batch at every timestep t, where we store the trajectories containing the observed

states, actions and rewards inside the memory of the algorithm. Furthermore, we also store the

value estimates by the critic and the log of the probability of the actions using the density function

of the action distribution (5.10).

Once these trajectories are collected, we perform an updating step. In order to calculate the

objective function (3.8), we require the advantages At at each timestep t. These are estimated using

a truncated version of General Advantage Estimation (GAE) such that

17

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T −tδT

= δt + γλÂt+1,
(5.12)

where λ is a hyperparameter frequently set at 0.9 (Schulman et al., 2017). δt is computed using the

stored values and rewards at time t, starting backwards from t = T so that

δt = Rt + γV (st+1)− V (st) . (5.13)

With the advantages estimated, we can compute the clipped PPO objective function, which is

defined as

LCLIP (θ) = Êt

[
min

(
pt(θ)Ât, clip (pt(θ), 1− ϵ, 1 + ϵ) Ât

)]
,with pt(θ) = πθ (at | st)

πθold (at | st)
, (5.14)

where pt(θ) is the probability ratio of a specific state-action pair in the new policy compared to the

old policy. The clip function limits how much moving this probability ratio from 1 can influence the

objective function and thus discourages large policy changes. ϵ is a hyperparameter that determines

the interval [1 − ϵ, 1 + ϵ] in which changing pt(θ) still influences the objective function. Although

the PPO objective appears complex at a first glance, it is relatively intuitive when we focus on

what happens for certain signs of Ât. In case Ât is negative, the action that we tried in a certain

state had poor results and we increase the objective function by decreasing pt(θ), resulting in the

action becoming less likely in the new policy. However, when pt(θ) is decreased below (1 − ϵ), the

min(·) function kicks in, meaning that decreasing this ratio any further has no more impact on the

objective function. Similarly, if the advantage is positive, we increase the objective by increasing

pt(θ), but increasing pt(θ) beyond (1 + ϵ) does not affect the objective. Thus, PPO discourages

large policy updates by clipping the objective from above when the advantage is positive and from

below when it is negative.

In each updating step, we randomly sample mini-batches from the stored trajectories and update

the policy parameter θ to maximize (5.14) using the Adam algorithm (Kingma and Ba, 2014). The

same approach is used to update the critic parameters ϕ, where we use Adam to minimize the sum

of squares differences between the estimated state values and the actual sampled returns, such that

L(ϕ) = Êt

[(
Vϕ (st)− Ĝt

)2
]
, (5.15)

18

where L(ϕ) is the critic loss. We allow the actor and critic to be updated multiple times during

a single learning step, where we sample new mini-batches from the memory. After each learning

iteration, we clear the memory of the agent and collect new trajectories until we have looped a

number of times over the entire training set. A full pseudo-code of this algorithm, including the

model-based extension that we discuss in the next section, can be found in Appendix A.

5.5 Model-based PPO

For the model-based algorithm, we extend the regular PPO algorithm by including a prediction

model that estimates the returns of the next timestep using lagged returns as regressors. The state

space of the agent is then augmented with these forecasts, such that the new state becomes

s̃t = [st, x̂t+1], (5.16)

where s̃t represents the new augmented state and x̂t+1 the predicted asset returns. The reasoning

behind this methodology is that we expect these forecasts to contain additional information con-

cerning the next state, which would improve the Markov property of the state and in turn lead

to performance gains. As for the possible prediction models, Yu et al. (2019) only investigate the

use of complex nonlinear models. However, it is uncertain whether the estimation of such models

is necessary, or if simple linear models could give similar or perhaps even better results. In this

research, we investigate the effectiveness of both linear and nonlinear models as prediction models

for model-based PPO.

5.5.1 Linear models

The first and most simple model that we estimate is an AR model of order 1 for each of the asset

returns, such that we have

xi,t = ψ0,i + ψ1,ixi,t−1 + ϵi,t, (5.17)

where xi,t denotes the returns of asset i at time t. These AR(1) models do not take into account

correlations across different assets and are thus the simplest models that we can estimate. Although

a common benchmark and an even simpler model that is used in the literature is a random walk

(Henrique et al., 2018), it makes little sense to include it in our model-based comparison as we

would simply be augmenting the state with duplicate values.

19

Furthermore, we estimate a VAR model that can capture correlations between the different

assets and their lagged values. For a VAR of order p, the model specification becomes

xt = c + A1xt−1 + ...+ Apxt−p + ϵt, (5.18)

where A1 to Ap are (m×m) coefficient matrices and c represents an (m× 1) vector of constants,

in our case.

Aside from the different types of models, another important consideration that must be made

is what data is used in order to estimate these models. If we are interested in utilizing as much

data as possible, we can pool the training data and use this to estimate the model. However, it can

be argued that since we know the data is simulated and not originating from real-world financial

markets, we are simply estimating the Data Generating Process (DGP) of the scenario set and

introducing positive model bias in our model-based approach. Although we know that the scenarios

are generated with a vastly more extensive model than the prediction models that we estimate,

this remains a valid concern when it comes to generalizing the results to real-world applications.

A way to counteract this effect is to estimate the linear models using non-synthetic data, namely

with historical data. Although this leads to a significantly smaller dataset, it also provides insight

into how the agent performs when provided with perhaps less accurate predictions. We use both

estimation methods in this research and compare their respective performances.

We use a lag length of 3 in the VAR model for the pooled data. As a robustness check, we also

provide results in Appendix D for different lag lengths. Furthermore, we estimate an AR(3) model

with the pooled data to study if capturing cross-correlations with the VAR(3) leads to an increase

in performance. Finally, we cannot estimate a VAR(3) model on the smaller set of historical data

due to the limited observations and hence estimate a VAR(1) using this dataset.

5.5.2 Nonlinear Gaussian Dynamic Boltzmann machine

The last model that we implement is the nonlinear model used in the framework of Yu et al. (2019),

termed the Nonlinear Gaussian Dynamic Boltzmann Machine (N-G-DyBM).

At its foundation lie Restricted Boltzmann Machines (RBMs), which are stochastic ANNs that

can be used to create generative models for binary data (Hinton, 2012). T. Osogami and Otsuka

(2015) introduced the Dynamic Boltzmann Machine (DyBM), which uses a sequence of RBMs

in order to be able to learn a temporal pattern and generate a sequence of binary time series.

20

Figure 3: A Nonlinear Dynamic Boltzmann Machine network unfolded in time (Yu et al., 2019).
Note that neurons within layers share no connections, which facilitates the conditional dependence
assumption that is used to derive the update rule. The RNN layer updates the bias of the output
and allows for nonlinear relationships within the time series to be captured

Finally, Dasgupta and Osogami (2017) extend the dynamic model to generate values based on a

Gaussian distribution instead of only binary values, making the method suitable for real-valued

time series generation. Furthermore, they incorporate a nonlinear component through an RNN

output layer. Dasgupta and Osogami (2017) show that the N-G-DyBM can outperform standard

VAR models when forecasting financial time series, while matching the performance of a Long-Short

Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) network at a much lower computational

cost.

An overview of the network architecture is shown in Figure 3. There are T + 1 layers of size

N , where N equals the dimension of the time series. Each neuron at time t consists of three sorts

of parameters, namely a bias term, variance and weight parameters. The model assumes that each

unit xi,t follows a Gaussian distribution and is conditionally independent from other units at time t,

given the complete history of the time series. Using this independency, the conditional probability

density of xt given this history becomes

p (xt | xt−1, ..,x0) =
N∏

i=1
pi (xi,t | xt−1, ..,x0) , (5.19)

where p and pi represent the conditional probability density of xt and xi,t given the history of xt,

respectively. Furthermore, due to the assumption that each series follows a Gaussian distribution,

the conditional probability distribution for each component xi,t is

21

pi (xi,t | xt−1, ..,x0) = 1√
2πσ2

i

exp
(
−(xi,t − µi,t)2

σ2
i,t

)
, (5.20)

where µi,t and σ2
i represent the mean of unit xi at time t and its variance, respectively. Furthermore,

in order to let the number of parameters be independent of time, only layers up to a lag of d − 1,

where d is termed the delay, are connected to the units at time t, as shown in Figure 3. Moreover,

Dasgupta and Osogami (2017) introduce eligibility traces αi,k for each component xi, such that

αi,k,t =
∞∑

δ=d

λδ−d
k xi,t−δ (5.21)

where αi,k,t represents the exponential moving average of xi at time t, using a decay rate λk for

k = 1, ..,K. By perceiving the eligiblity traces as additional regressors, we can interpret the network

as a VAR model with lag order (d− 1) such that we have

µt = bt +
d−1∑
δ=1

Wδxt−δ +
K∑

k=1
Ukαk,t−1, (5.22)

where Wδ and Uk are coefficient matrices for the lags and the eligibility trace vector αk, respectively,

and bt the bias vector at time t.

Furthermore, the RNN layer is used to update the bias vector such that

bt = bt−1 + A⊤Ψt, (5.23)

where A is the M ×N learned output weight matrix and Ψt is the M × 1 state vector at time t, for

an M dimensional RNN. This state vector is updated at each timestep using the time series such

that

Ψt = tanh (WrnnΨt−1 + Winxt) , (5.24)

where Wrnn and Win correspond to the internal RNN weight matrix and the weight matrix used

to project the time series input to the RNN layer, respectively.

Unlike the linear models, the N-G-DyBM is designed as an online learning model. By maximiz-

ing the log-likelihood, Dasgupta and Osogami (2017) derive an online stochastic gradient update

rule. Hence, similarly to Yu et al. (2019), we train this model together with the agent, where its

parameters are updated at each timestep of the scenarios. We also follow their work in the choices

22

for the different model settings, which are detailed in Appendix E. Furthermore, we set the delay

parameter to 4 such that the model uses a similar amount of lags as the VAR(3) model. Finally,

our implementation of the N-G-DyBM is based on the open-source code repository of Osogami and

Young (2016).

5.6 Behaviour cloning

Yu et al. (2019) implement a dynamic form of behaviour cloning in their model-based framework,

which they find to be effective in reducing the riskiness of the constructed asset allocations. We

therefore also choose to investigate the use of behaviour cloning in our problem setting. However, we

do separate this methodology from our previously discussed model-based approach, since behaviour

cloning is a general learning technique that can be applied in RL and is thus not inherently model-

based.

Behaviour cloning is a branch of imitation learning where an agent tries to learn how to solve

a task by mimicking the actions of an expert (Abbeel and Ng, 2004). Imitation learning can be

categorized into either passive learning or active learning. In passive learning, all expert demonstra-

tions are obtained prior to the learning process of the agent, whereas in active learning, the expert

demonstrations are inferred from the actions of the agent. The form of behaviour cloning that is

applied in this research falls under the active learning paradigm.

Ideally, the actions of this expert are in line with the optimal policy that we want the agent

to learn. Since in the case of Yu et al. (2019) the goal of the agent is to maximize the portfolio

returns at each timestep, the expert action can simply be derived from this condition. Although

maximizing returns is not the goal of our agent, we do know that in case the agent were to mimic

the expert actions, it would always achieve its goal. This way of deriving the expert actions thus

leads to a “pseudo-optimal” policy and could still have a positive influence on the learning process

of the agent.

If the future returns and the current asset weights are known, the expert action is found by

solving the following optimization problem:

max
at

at · xt − c
m∑

i=1
|ai,t − ai,t−1|

s.t.
m∑

i=0
ai,t = 1, 0 ≤ ai,t ≤ 1, ∀i

(5.25)

where we maximize the returns while taking into account transaction costs. However, since the

23

objective function specified in (5.25) contains an absolute value term, it is not differentiable and

hence not solvable using linear programming. This is fixed by introducing additional variables in

order to linearize the objective function such that

max
(at,∆at+,∆at−)

at · xt − (∆a+
t + ∆a−

t) · c

s.t.
m∑

i=0
ai,t = 1,

at = at−1 + ∆a+
t −∆a−

t ,

ai,t ≥ 0, ∀i

∆a+
i,t ≥ 0, ∀i

∆a−
i,t ≥ 0, ∀i

(5.26)

where ∆a−
i,t and ∆a+

i,t represent the negative and positive change in the portfolio weight for asset

i with respect to the previous timestep. Furthermore, we also include the asset weight constraints

specified in Table 1.

We implement the behaviour cloning procedure as follows. At each timestep t after the agent

performs its action at, the current asset weights and new returns are used in order to solve (5.26) and

obtain the expert action āt, which is stored in the memory. When the actor network is updated, the

log-loss L̄µ between the actions of the agent and those of the expert is calculated using the binary

cross-entropy loss (Yu et al., 2019). This loss is defined as

L̄µ = −1×
∑N

i=1
∑m

j=0 āi,j log (µ (si))j + (1− āi,j) log
(
1− (µ (si))j

)
N ·m

, (5.27)

where L̄µ represents the behaviour cloning loss. Gradients with respect to the actor network can

then be calculated and used to update θ slightly, where we discount this gradient with a factor λBC

to maintain a stable learning process, with λBC being a hyperparameter.

5.7 Enforcing portfolio constraints

In real-world applications, it is possible that an investor desires that certain asset weights stay within

specific bounds. We therefore investigate how the model-free and model-based methods perform

when such additional constraints are introduced. There are various methods in order to enforce

bounds on the asset weight. A simple “brute-force” option is to apply quadratic programming in

order to find the action vector that is the closest to the original action of the agent while also

24

satisfying all constraints. This comes down to solving the following optimization problem, where

we use the Euclidean distance as a measure of closeness such that we have:

minimize
a∗

∥a∗ − a∥22 ,

subject to Ga∗ ≤ h,

ι′a∗ = 1,

(5.28)

where a∗ is the optimized weight vector that satisfies all constraints, a the original weight vector,

G and h a matrix and vector that contain the inequality constraints of Table 1, respectively, and ι

a vector of ones.

5.8 Interpretability

5.8.1 Shapley values

Once the agent is trained, we are left with a deterministic actor function µθ(s) that represents the

policy. Although we can determine whether the policy is successful or not, it is also valuable to

understand what information in the state is most important to the agent, and how it uses this

information in order to decide what action to take. However, the actor and critic functions of the

agent are represented by ANNs, which makes them difficult to interpret.

In recent years, the SHapley Additive exPlanations (SHAP) method of Lundberg and Lee (2017)

has become a popular tool for gaining insight into how the different input features in machine

learning models influence the eventual prediction. SHAP is based on Shapley values which stem

from coalitional game theory, where they are used as a method to distribute payouts within a

coalition of players based on their respective contributions to the total payout (Shapley, 1953).

When it comes to model explainability, the “players” are the individual features that are used to

create the prediction, and the difference between a specific prediction and the average prediction is

the payout.

SHAP specifies an explanation model as

g
(
z′) = ϕ0 +

M∑
i=1

ϕiz
′
i, (5.29)

where g(·) is the linear explanation model that takes in binary values, z′ ∈ {0, 1}M the coalition

vector with M the maximum coalition size and ϕi the feature attribution for a particular feature

i. ϕ0 represents the output of the model where all features are absent, i.e the average prediction.

25

Within a coalition for a particular prediction, we refer to the features that are “present” (playing)

with a 1, and features that are “absent” with a 0. The actual feature values for a particular

observation are used for the present features, whereas absent features are seen as missing. Since

most models cannot handle missing features, these values are replaced with randomly sampled

feature values from the data. The mapping from a binary vector z′ to an actual feature vector is

done by a mapping function hx(z′). By sampling all possible coalitions for a certain prediction, we

can estimate the marginal contributions to the payout of each feature, which represent the Shapley

values.

In this research, we use the Deep SHAP algorithm to approximate the Shapley values, since this

is the most computationally efficient approximation method for ANNs (Molnar, 2020). However, a

major drawback of SHAP in ANNs is that it assumes that all features are independent of each other.

This is certainly not the case in our problem setting, as this assumption clearly does not hold for

e.g the portfolio weights. There are possible extensions to SHAP that aim to reduce its inaccuracy

when features are dependent, but these extensions are difficult to implement (Aas et al., 2021).

Since model explainability is not the main focus of this research, we remain using the somewhat

flawed method of Deep SHAP and keep these limitations in mind when analyzing the results.

5.8.2 Perfect predictions

Although Shapley values give insight into the variable importance of each element in the state, they

do not paint the full picture of how the agent interprets these different elements. For example, even

though our model-based method augments the state with predictions of the future asset returns,

there is no guarantee that the agent also understands that these values are meant to be indications

of the future returns. In order to get an idea of how much information the agent infers from these

predictions, we investigate the effect of replacing the model forecasts in the state with the actual

returns of the next timestep, such that x̂t+1 = xt+1. The agent thus observes the state augmented

with the forecasts from the prediction model during training, and then receives “perfect predictions”

of the future returns during testing. This novel technique can show us how much trust the agent

places in the predictions of each model, or if it even has some understanding that these features

are predictions in the first place. For example, in case the agent places a large amount of trust into

these predictions, we expect that giving it perfect predictions will lead to a significant increase in

performance during testing.

26

5.9 Performance measures

When comparing different asset allocation strategies, the most important performance metric in

GBWM is the expected probability of achieving the goal. We estimate this using the Goal Success

Rate (GSR), which we define as the success rate of the strategy at achieving the goal of the investor

in a given scenario set. The GSR is calculated as

GSR = 1
N

N∑
i=1

1Wi,T ≤W ∗
T
, (5.30)

where Wi,T is the terminal wealth achieved in scenario i and N the number of scenarios that are

used to test the agent. Furthermore, we confirm that a 100% success rate is theoretically possible by

analyzing the performance of a strategy that always follows the expert actions described in Section

5.6, which comfortably reaches the goal wealth in all scenarios.

Although the success rate is the most important performance metric, it is also useful to include

secondary measures of performance in order to have a more in-depth comparison between the

learned strategies. An example of such a measure is the average terminal wealth, which indicates

how successful the agent is at accumulating wealth. Since the average can be heavily influenced by

large outliers, which are likely to be present in risky strategies, we also include the median terminal

wealth as a more robust measure of wealth accumulation.

Moreover, we use the distribution of final wealth to calculate the Value at Risk (VaR) and

Conditional Value at Risk (CVaR), where V aRα is the (1-α)% percentile of the terminal wealth,

and CV aRα the average terminal wealth given that it is below V aRα. These measures provide

insight into the downside risk of the investment strategies, where low values for V aRα and CV aRα

are indications of more risky strategies. Furthermore, we also evaluate the agents on their average

returns and DDR across all test scenarios.

Aside from the performance of the learned investment strategies, another aspect that we compare

between the model-based and model-free methods is the sample efficiency of the algorithm. Model-

based RL methods are known to be significantly more sample efficient than model-free methods,

requiring fewer training iterations in order to converge to a (local) optimum policy (Moerland et al.,

2020). We study the sample efficiency of the algorithms by comparing how quickly the learning

curves for both methods converge during training.

Finally, we use the Root Mean Squared Error (RMSE) to gauge the accuracy of the different

prediction models, where we calculate the RMSE as

27

RMSE = 1
m

m∑
j=1

√√√√ N∑
i=1

T∑
t=1

(x̃i,j,t − xi,j,t)2, (5.31)

where x̃i,j,t and xi,j,t are the predicted and actual returns at time t for scenario i and asset j,

respectively.

5.10 Hyperparameter tuning

Hyperparameter tuning is a crucial step in RL that can greatly affect the final performance of the

agent (Achiam, 2018). In fact, Henderson et al. (2018) show that a large number of performance

discrepancies between algorithms can be attributed to code optimizations and different hyperparam-

eters, instead of actual conceptual differences. Thus, in order to perform a comparison between the

model-based and model-free algorithms such that we can accredit differences in performance due to

the (lack of) presence of a model, we opt to only perform hyperparameter tuning for the model-free

algorithm. These tuned hyperparameters are then also used for the model-based algorithms.

Andrychowicz et al. (2020) provide in their research some recommendations for hyperparameters

in on-policy RL algorithms. These are used together with the hyperparameter tuning results of Dom

et al. (2022) to construct a search space for each hyperparameter. Restricted by the computational

costs of training, we refrain from using k-fold cross validation and perform a random search over the

search spaces. Furthermore, random search has shown to be more efficient than grid search when it

comes to finding the optimal set of hyperparameters (Bergstra and Bengio, 2012). The results of the

hyperparameter tuning can be found in Appendix C, where we choose the set of hyperparameters

that achieve the largest GSR in the validation scenario set.

6 Results

6.1 Algorithm performance comparison

Table 3 displays the performance of the different model-free and model-based RL methods for both

the goal-only and the shaped reward function, without enforcing additional asset weight constraints.

The naming convention is such that the model-based methods are denoted by the prediction model

that they incorporate, followed by the data used to estimate the model (“-H” for the historical data,

“-P” for the pooled scenarios of the training data).

Within the goal-only reward setting, we find that all model-based strategies outperform the

28

Table 3: Performances of the RL methods in the test set for both reward functions

Goal-only Reward
Metrics Model-Free AR(1)-H AR(1)-P AR(3)-P VAR(1)-H VAR(3)-P N-G-DyBM

GSR 88.6 91.8 90.5 90.9 90.9 92.1 91.7
Expected wealth 913.6 865.0 840.5 879.4 871.1 949.2 925.2
Median wealth 864.1 804.6 791.2 840.0 814.0 886.0 879.7

VaR0.95 208.7 329.5 296.9 288.4 306.4 338.2 312.7
CVaR0.95 122.5 228.2 222.2 200.7 214.3 245.1 217.7

Expected returns 6.23 6.24 6.22 6.41 6.28 6.75 6.41
¯DDR 1.006 1.099 1.080 1.096 1.100 1.113 1.191

Shaped Reward
GSR 90.1 91.8 92.0 91.7 92.0 93.2 91.9

Expected wealth 1446.0 1403.3 1351.4 1312.7 1251.9 1456.3 1539.3
Median wealth 1155.1 1060.8 1063.4 1041.9 1077.7 1196.0 1204.1

VaR0.95 280.0 326.8 335.1 332.7 329.7 348.9 321.8
CVaR0.95 180.9 240.4 240.4 241.4 236.2 250.3 229.4

Expected returns 7.61 7.23 7.12 7.12 7.10 7.47 7.41
¯DDR 1.092 1.247 1.278 1.276 1.270 1.339 1.320

Note: All the model-based agents are referred to by the prediction model that they use, where N-G-DyBM refers to
the nonlinear model used in Yu et al. (2019). “-P” and “-H” denote if the linear model is trained using the pooled
training data or the historical data, respectively. The GSR refers to the Goal Success Rate in %. The expected
and median wealth and the V aR and CV aR are all estimated at the final state and given in $ [x1000]. Finally, the
expected returns and Downside Deviation Ratio (DDR) are averaged over time, with the returns shown in %.

model-free strategy in terms of GSR. Whereas the model-free baseline achieves a GSR of 88.6%,

the model-based algorithms reach success rates of up to 92.1%, with the lowest being 90.5%. Fur-

thermore, although the model-free agent attains a relatively high average terminal wealth, it does

so with a considerably larger amount of risk, indicating that this agent likely accumulates such

high terminal wealth by constructing more volatile portfolios. The risk metrics are also where the

model-based agents appear to have the largest gain over the model-free agent, as can be seen in the

considerably higher VaR0.95 and CVaR0.95 of the model-based strategies.

Moving on to the agents trained using the shaped reward function, we notice a slight increase

in the GSR for the model-free agent (from 88.6% to 90.1%), combined with a nearly 60% increase

in average terminal wealth and a reduction in the riskiness of the strategy. This is likely a result

of the agent being rewarded for achieving high risk-adjusted returns at each timestep and receiving

a penalty for large misses of its wealth goal. The substantial increase in average acquired terminal

wealth is consistent across all strategies trained under the shaped reward function, coupled with an

increase in average DDR. We also observe larger discrepancies between the average and median final

wealth, which indicates that the use of the shaped reward function increases the number of outliers

in the right tail of the final wealth distribution. Furthermore, we again find that all model-based

29

strategies achieve a higher GSR than the model-free baseline. Although the model-free strategy

does have the highest average returns, it again performs the worst on all risk metrics.

Moreover, when we compare the model-based strategies to each other, we see that the agent

using the VAR(3)-P prediction model achieves the highest performance on nearly all metrics in

both the goal-only and shaped reward setting. The nonlinear model also seems to perform well,

attaining the largest average final wealth with the shaped reward function and a relatively high

GSR under the goal-only reward function together with the AR(1)-H model. However, we must

note that running the algorithms with different random seeds can already lead to variations of

up 1 to 1.5 percentage points in the GSR. Hence, while the difference in performance between

the model-free and model-based methods appears to be substantial, differences in GSR between

the various model-based strategies seem negligibly small. We thus find that even with forecasts

obtained from simplistic linear regressions such as the AR(1)-H model, we can already achieve a

substantial performance gain over the model-free baseline.

Next, we enforce the asset constraints described in Table 1 during the testing of the learned

strategies. The performances under these conditions are shown in Table 4 for the goal-only reward

setting. Aside from a general performance decrease across all strategies, which is consistent with

the results of Dom et al. (2022), we see that the previous result of all model-based agents achieving

a higher GSR than the model-free agent remains true.

Table 4: Performances of the RL methods with asset constraints enforced, using the goal-only
reward function

Metrics Model-Free AR(1)-H AR(1)-P AR(3)-P VAR(1)-H VAR(3)-P N-G-DyBM
GSR 81.9 85.6 85.0 86.2 84.7 86.1 85.6

Expected wealth 724.5 747.5 739.6 785.5 758.7 863.6 773.2
Median wealth 670.4 684.5 688.8 735.0 697.5 756.0 719.8

VaR0.95 221.6 267.4 239.9 242.7 237.3 264.5 259.1
CVaR0.95 163.7 194.2 187.7 172.4 170.1 188.4 186.4

Expected returns 5.75 5.77 5.80 6.00 5.79 6.11 5.84
¯DDR 0.927 0.994 0.984 1.000 1.006 1.012 1.030

Note: All the model-based agents are referred to by the prediction model that they use, where N-G-DyBM refers to
the nonlinear model used in Yu et al. (2019). “-P” and “-H” denote if the linear model is trained using the pooled
training data or the historical data, respectively. The GSR refers to the Goal Success Rate in %. The expected
and median wealth and the V aR and CV aR are all estimated at the final state and given in $ [x1000]. Finally, the
expected returns and Downside Deviation Ratio (DDR) are averaged over time, with the returns shown in %.

We further compare the model-based and model-free methods in the remaining sections, where

we use the model-based agent that is trained using the VAR3-P prediction model to generate the

results for the model-based strategy, which we refer to as the model-based agent moving forward.

30

Table 5: Performances of the model-based and model-free methods with Behaviour Cloning (BC)

Metrics Model-Free Model-Free+BC Model-Based Model-Based+BC
GSR 88.6 86.8 92.1 88.9

Expected wealth 913.6 954.8 949.2 1110.0
Median wealth 864.1 788.2 866.0 962.9

VaR0.95 208.7 284.3 338.2 279.7
CVaR0.90 122.5 211.5 245.1 198.0

Expected returns 6.23 6.53 6.75 7.09
DDR 1.006 0.982 1.113 1.015

Note: All methods are trained using the shaped reward function and the model-based method uses the pooled VAR(3)
model. Furthermore, the GSR refers to the Goal Success Rate in %. The expected and median wealth and the V aR
and CV aR are all estimated at the final state and given in $ [x1000]. Finally, the expected returns and Downside
Deviation Ratio (DDR) are averaged over time, with the returns shown in %.

6.2 Behaviour cloning

Moving on, we implement behaviour cloning in both our model-free and model-based algorithm and

evaluate the performance of the new learned strategies on the test set. The results are shown in

Table 5, where we also again include the results without behaviour cloning for ease of comparison.

We find that in both the model-free and model-based case, behaviour cloning leads to an increase

in average returns and terminal wealth but a decrease in the GSR. Furthermore, we note that

although the average returns increase, the DDR in fact decreases, showing that behaviour cloning

actually stimulates learning more risky strategies. This result is in contrast to the findings of Yu

et al. (2019), where the incorporation of behaviour cloning lead to a reduction in risk. A possible

explanation for this is that the goal in their problem setting is to find an allocation strategy that

maximizes returns. This means that the expert actions are all greedy actions in the sense that they

maximize the rewards received by the agent at each timestep. However, although we discussed that

the expert is “pseudo-optimal” in our setting, maximizing the returns is not exactly in line with

achieving the goal of the agent. An example of this is when the wealth goal of the investor has

already been reached before the end of the investment period. In such a case, we can imagine that

it would be beneficial for the agent to switch to a more risk-averse strategy and focus on wealth

preservation instead of aggressive growth. Hence, the learning signals from behaviour cloning and

from the goal-focused rewards can become conflicting, which in turn deteriorates the performance

of the agent. Furthermore, the addition of behaviour cloning also leads to a significant increase

in the computational cost of the learning algorithm, due to the addition of needing to solve the

optimization problem of (5.26) at every timestep in order to find the expert actions.

31

6.3 Sample efficiency

We study the sample efficiency of the model-free and model-based agents by comparing their re-

spective learning curves, which are shown in Figure 4. The curves show the achieved GSR of the

agent during training against the number of completed scenario batches. Moreover, both agents

are trained using the goal-only reward function and for increasingly larger final wealth goals of the

investor in order to study the effect on the learning process when rewards become more sparse. The

curves are smoothed using a Savitzky-Golay filter for clarity.

0 200 400 600 800 1000
Learning iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Tr
ai

ni
ng

 G
oa

l S
uc

ce
s R

at
io

Model-Free PPO
Model-Based PPO

(a) W ∗
T = $400,000

0 200 400 600 800 1000
Learning iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 G
oa

l S
uc

ce
s R

at
io

Model-Free PPO
Model-Based PPO

(b) W ∗
T = $800,000

0 200 400 600 800 1000
Learning iterations

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai

ni
ng

 G
oa

l S
uc

ce
s R

at
io

Model-Free PPO
Model-Based PPO

(c) W ∗
T = $1,200,000

0 200 400 600 800 1000
Learning iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Tr
ai

ni
ng

 G
oa

l S
uc

ce
s R

at
io

Model-Free PPO
Model-Based PPO

(d) W ∗
T = $1,600,000

Figure 4: Comparison of the sample efficiency of the model-free and model-based algorithms. The model-
based algorithm here uses the VAR(3) prediction model estimated on the pooled scenario training data. The
learning curves are produced using the goal-only reward function for various terminal wealth goals.

We observe that the model-based agent tends to converge at a slightly faster rate than the model-

free agent, as seen from the earlier flattening of the learning curve. As expected, both algorithms

32

take longer to converge when the goal becomes more difficult and rewards more sparse. We also

see that the difference in sample efficiency becomes more apparent in this increased sparse reward

setting. Thus, despite the fact that the state of the model-based agent has a higher dimensionality

than that of the model-free agent, it is still able to converge to its (local) optimal policy faster.

Although this increased sample efficiency is not orders of magnitude higher than that of the model-

free method as is usually the case for model-based algorithms, such algorithms tend to use the

model predictions to directly create a future plan of actions (Moerland et al., 2020). We thus find

that the implicit use of the predictions through state augmentation is also beneficial to the sample

efficiency of the algorithm.

6.4 Backtesting

After comparing the model-free and model-based agents with the test scenarios, we perform a

backtest using the historical data in order to observe how the learned strategies perform when

applied on non-synthetic data. The results are shown in Figure 5, where we plot the changes in

wealth over time using the different allocation strategies. Note that the investment period here

is only 28 years, taking into account the 3 required lags for the prediction model, instead of the

usual 40-year period that the agents is trained on. We take this into account by adjusting the

scaling factors of the state accordingly. Furthermore, we include the performance of a Constantly

Rebalanced Portfolio (CRP) strategy, which distributes the wealth equally over all assets at each

timestep (Cover, 1991). This strategy is a commonly used benchmark in dynamic asset allocation

research and can also be interpreted as an initialized RL agent without any learning experience (Hoi

et al., 2021).

Similar to the results for the test scenario set, the model-based strategy appears to outperform

the model-free strategy, reaching a higher wealth at the end of the investment period. Certain

major events such as the 2008 financial crisis can be observed in the graph, where we see the

model-free agent losing a larger portion of wealth than the model-based agent, which is perhaps

another indication of the model-free agent taking more risk. Furthermore, we find that both the RL

strategies have a higher final wealth than the benchmark, although this difference is considerably

larger for the model-based agent.

Finally, we must note that this is not a “formal” backtest, in the sense that we know that the

scenarios on which the agents are trained include economic insight that is derived from the historical

data, which introduces look-ahead bias. A more sophisticated form of backtesting is required in

33

Figure 5: A comparison of the different allocation strategies applied on historical data. We use the
pooled VAR(3) model for model-based PPO and include a Constantly Rebalanced Portfolio (CRP)
benchmark that reconstructs an equal weights portfolio at each timestep

order to omit this bias.

6.5 Interpretability

6.5.1 SHAP

The SHAP values for the critics of the trained model-based and model-free agents are displayed in

Figure 6. Both these agents are trained using the goal-only reward function with no discounting, i.e

γ = 1, such that the value of a state can be interpreted as the expected probability of achieving the

goal wealth. The derivation for this property can be found in Appendix B. We further incorporate

this property by training these agents with a sigmoid output activation function in the critic network.

These minor changes have little effect on the final performance and are purely made to aid the

interpretability of the SHAP values.

We see that the current wealth appears to be by far the most important feature for both critics

when it comes to estimating the state value or the probability of success. The SHAP values indicate

that larger values for wealth are associated with higher state values, which make sense since the goal

of the agent is to reach a certain amount of wealth. Note that some wealth values that are deemed

“low” also have a positive impact on the critic output. This is likely due to the fact that SHAP

34

(a) Model-free critic (b) Model-based critic

Figure 6: Estimated SHapley Additive exPlanations (SHAP) values for the critic networks of the model-
free and model-based agents.

samples the feature values from a given set of feature data, which in our case consists of a number

of observed states during testing. As seen in Table 3, it is not uncommon for the agent to achieve

a final wealth that is around a million dollars, hence why some wealth values that are above or

close to the goal wealth can still be deemed low. Also, the value contribution of the wealth is likely

closely linked to the time left, where a “low” wealth that is relatively large for the current time left

can still indicate a larger probability of success. As discussed earlier, this is a known limitation of

SHAP. Furthermore, we see that for both critics, the next most important feature is the time left,

where large values for time left have a positive impact on the estimated state value. Since more time

left also means more time to increase the wealth and reach the goal of the investor, this result is

also rather intuitive. We also find that the model-based critic seems to place more importance into

the current portfolio weights than the model-free critic, although this difference seems insignificant

compared to the feature importance of the current wealth and time left.

Moreover, Figure 7 displays the relative importance of the state elements for the model-free and

model-based actor networks, obtained through SHAP. Focusing on the overall feature importance

in this analysis, we see that also in the actor networks, the current wealth appears to be the most

important feature. Furthermore, we find little difference between the relative feature importance

of the model-free and model-based methods. Both actors appear to not be very much influenced

by the current portfolio weights or the time left when deciding what action to take, and find the

35

previous returns of certain assets, such as fixed income investment grade and equity, more important.

We do observe that some of the forecasted returns have relatively high feature importance for the

model-based actor.

(a) Model-free actor (b) Model-based actor

Figure 7: Estimated absolute SHapley Additive exPlanations (SHAP) values for the actor networks of the
model-free and model-based agents.

6.5.2 Perfect predictions

Finally, Table 6 displays the performance of the model-based agents whose respective model pre-

dictions are replaced with the true returns of the next timestep during testing. These results are

obtained using the shaped reward function. We observe that all agents appear to have an increase

in performance when given perfect predictions. However, the VAR(3)-P and the N-G-DyBM model

see by far the largest increase, achieving a perfect GSR and nearly quadrupling their average final

wealth.

Table 6: Model-based PPO performances using different models given perfect predictions

Metrics AR(1)-H AR(1)-P AR(3)-P VAR(1)-H VAR(3)-P N-G-DyBM
GSR 94.0 95.7 95.5 93.1 100 100

Expected wealth 1600.7 1562.3 1598.8 1294.4 5158.4 4766.6
Median wealth 1228.7 1239.9 1244.9 1112.4 4678.3 4255.6

V aR0.95 373.1 422.8 411.9 351.0 2038.9 1914.2
CV aR0.95 267.7 306.7 298.0 258.7 1665.5 1571.0

Expected returns 7.68 7.61 7.65 7.31 10.95 10.74
DDR 1.267 1.362 1.299 1.168 4.976 4.674

Note: All the model-based agents are referred to by the prediction model that they use, where N-G-DyBM refers to
the nonlinear model used in Yu et al. (2019). “-P” and “-H” denote if the linear model is trained using the pooled
training data or the historical data, respectively. The GSR refers to the Goal Success Rate in %. The expected
and median wealth and the V aR and CV aR are all estimated at the final state and given in $ [x1000]. Finally, the
expected returns and Downside Deviation Ratio (DDR) are averaged over time, with the returns shown in %,

36

To see if these discrepancies in performance increases are related to the accuracy of the forecast-

ing models, we calculate the RMSEs of the one-step-ahead predictions of the different models in the

training set, which are shown in Table 7. We find that all prediction models have a lower RMSE

than a simple random walk prediction, with the VAR(3)-P and the N-G-DyBM model achieving

the lowest RMSEs of all the models. This result can indicate that the agent places more value in

its received forecasts if these forecasts are more accurate.

Table 7: RMSE of different prediction models in the training set

RW AR(1)-H AR(1)-P AR(3)-P VAR(1)-H VAR(3)-P N-G-DyBM
RMSE 0.206 0.149 0.141 0.141 0.186 0.135 0.138

Note: N-G-DyBM refers to the nonlinear model used in the work Yu et al. (2019) and RW denotes a random walk
procedure. “-P” and “-H” denote if the linear model is trained using the pooled training data or the historical data,
respectively.

7 Conclusion

In this research, we investigate the efficacy of model-based RL in learning how to solve GBWM

problems and compare its performance to that of a model-free RL algorithm, for which we use

standard PPO. In the model-based framework, we augment the state vector with one-step-ahead

forecasts of the asset returns made by autoregressive prediction models. We train and test our RL

agents on a set of 15,000 generated economic scenarios, each resembling a possible future investment

period. Furthermore, we investigate the influence of the sparsity of rewards on this comparison by

specifying both a sparse, goal-only reward function and a dense, shaped reward function.

Moreover, we estimate linear, i.e AR and VAR models, and a nonlinear model used in prior

literature, namely the N-G-DyBM, and compare their respective performances. A number of the

linear models are estimated using only historical data instead of the scenario training data, such

that these models cannot simply approximate the DGP of the scenario set.

Finally, we implement a form of behaviour cloning where expert actions that maximize the

returns at each timestep are used to update the actor network of the agent. We apply this in both

the model-free and model-based methods and investigate its performance in our GBWM problem

setting.

Our main findings are as follows. First, we find that the model-based RL approach consistently

achieves a higher goal success rate and lower risk than the model-free approach. This result remains

true in both a sparse and a dense reward feedback environment, as well as when additional asset

37

constraints are enforced. Additionally, we find some evidence that the model-based approach is more

sample efficient, especially as the sparsity of the rewards increases. The increased performance of

the model-based approach is consistent with Yu et al. (2019) and can likely be attributed to the

improved Markov property of the state due to the addition of the forecasts of the asset returns.

Second, we find that the simple linear autoregressive models and the nonlinear model accomplish

similar performance gains over the model-free baseline when incorporated into the model-based

method. This also holds for linear models fitted only on the historical data, indicating that this

model-based approach can already be effective with just the predictions of simple regression models.

Finally, we find that the addition of behaviour cloning in the learning process has a negative

effect on the goal success rate in both the model-free and model-based setting. This is contrary

to the result of Yu et al. (2019), where behaviour cloning was found to have a positive impact on

performance. An explanation for this is the fact that the expert actions in our case are not greedy

in the sense that they do not directly maximize the rewards of the agent. This can lead to the agent

receiving conflicting feedback signals during the training process, which in turn leads to a decrease

in performance.

When it comes to generalizing these results to real-world applications, we highlight the limita-

tions of using synthetic training data. Although our use of simulated scenarios allows us to train

and test our agent on a much larger amount of data than what would otherwise be possible, it also

brings the possibility of the agent exploiting any deficiencies or false assumptions that might be

present in the scenario set. This can in turn inflate the performance of our RL methods during

testing. To ensure that the learned strategies also perform well in a real-world setting, a more

comprehensive form of backtesting is required. For example, the training and testing of the agents

could be performed on two separate scenario sets, where each set is generated using different market

assumptions.

Furthermore, an explanation for the fact that the N-G-DyBM is not necessarily the best model

in our problem environment, is that it might not translate well to a panel data setting. One of the

strengths of this model lies in its ability to capture long-term dependencies in a time series through

the eligibility traces and the RNN layer (Dasgupta and Osogami, 2017). It is thus likely better

suited for long, non-cross-sectional time series data, instead of the scenario data that we use in our

research. Therefore, we recommend that further research within this model-based approach also

includes more traditional nonlinear models, such as a Random Forest or an ANN. We also propose

incorporating a combination of forecasts instead of only individual model forecasts, as the former

38

has often been found empirically to result in better forecasts than the latter (Timmermann, 2006).

Finally, as discussed in Henderson et al. (2018), the large amount of randomness during the

training process in RL makes it difficult to conclude if differences in performance between algo-

rithms are truly significant. Ideally, all results are averaged over multiple random seeds in order to

gain insight into the distribution of the algorithm performances. However, this is computationally

expensive, as a single training and testing run can already take up to multiple hours.

39

References

Aas, K., Jullum, M., & Løland, A. (2021). Explaining individual predictions when features are

dependent: More accurate approximations to shapley values. Artificial Intelligence, 298,

103502.

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. Pro-

ceedings of the twenty-first international conference on Machine learning, 1.

Aboussalah, A. M., Xu, Z., & Lee, C.-G. (2022). What is the value of the cross-sectional approach

to deep reinforcement learning? Quantitative Finance, 22 (6), 1091–1111.

Achiam, J. (2018). Spinning up in deep reinforcement learning. GitHub repository.

Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Girgin, S., Marinier, R., Hussenot, L.,

Geist, M., Pietquin, O., Michalski, M., et al. (2020). What matters in on-policy reinforcement

learning? a large-scale empirical study. arXiv preprint arXiv:2006.05990.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J.,

Pieter Abbeel, O., & Zaremba, W. (2017). Hindsight experience replay. Advances in Neural

Information Processing Systems, 30.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of

machine learning research, 13 (2).

Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., Farhi, D., Fischer, Q.,

Hashme, S., Hesse, C., et al. (2019). Dota 2 with large scale deep reinforcement learning.

arXiv preprint arXiv:1912.06680.

Blanchett, D. (2015). The value of goals-based financial planning. Journal of Financial Planning,

28 (6), 42–50.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., & Lee, H. (2018). Sample-efficient reinforcement

learning with stochastic ensemble value expansion. Advances in Neural Information Pro-

cessing Systems, 31.

Cover, T. M. (1991). Universal portfolios. Mathematical Finance, 1 (1), 1–29.

Dasa, S. R., & Varmaa, S. (2020). Dynamic goals-based wealth management using reinforcement

learning. Journal Of Investment Management, 18 (2), 1–20.

Dasgupta, S., & Osogami, T. (2017). Nonlinear dynamic boltzmann machines for time-series pre-

diction. Proceedings of the AAAI Conference on Artificial Intelligence, 31 (1).

40

Dom, S., Huang, D., Nagelkerken, R., & Sassenus, P. (2022). Towards efficient reinforcement learning

for goal-based wealth management [unpublished seminar report].

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., & Clune, J. (2019). Go-explore: A new ap-

proach for hard-exploration problems. arXiv preprint arXiv:1901.10995.

Feng, Y., et al. (2016). A signal processing perspective on financial engineering. Foundations and

Trends® in Signal Processing, 9 (1–2), 1–231.

Filos, A. (2019). Reinforcement learning for portfolio management. arXiv preprint arXiv:1909.09571.

Fischer, T. G. (2018). Reinforcement learning in financial markets-a survey (tech. rep.). FAU Dis-

cussion Papers in Economics.

Fujimoto, S., Hoof, H., & Meger, D. (2018). Addressing function approximation error in actor-critic

methods. International conference on machine learning, 1587–1596.

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic actor. International conference on

machine learning, 1861–1870.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., & Meger, D. (2018). Deep reinforce-

ment learning that matters. Proceedings of the AAAI conference on artificial intelligence,

32 (1).

Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2018). Stock price prediction using support vector

regression on daily and up to the minute prices. The Journal of Finance and Data Science,

4 (3), 183–201.

Hinton, G. E. (2012). A practical guide to training restricted boltzmann machines. In Neural net-

works: Tricks of the trade (pp. 599–619). Springer.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9 (8),

1735–1780.

Hoi, S. C., Sahoo, D., Lu, J., & Zhao, P. (2021). Online learning: A comprehensive survey. Neuro-

computing, 459, 249–289.

Jiang, Z., Xu, D., & Liang, J. (2017). A deep reinforcement learning framework for the financial

portfolio management problem. arXiv preprint arXiv:1706.10059.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Konda, V., & Tsitsiklis, J. (1999). Actor-critic algorithms. Advances in Neural Information Process-

ing Systems, 12.

41

Liang, Z., Chen, H., Zhu, J., Jiang, K., & Li, Y. (2018). Adversarial deep reinforcement learning in

portfolio management. arXiv preprint arXiv:1808.09940.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D.

(2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances

in Neural Information Processing Systems, 30.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu,

K. (2016). Asynchronous methods for deep reinforcement learning. International conference

on machine learning, 1928–1937.

Moerland, T. M., Broekens, J., & Jonker, C. M. (2020). Model-based reinforcement learning: A

survey. arXiv preprint arXiv:2006.16712.

Molnar, C. (2020). Interpretable machine learning. Lulu. com.

Moody, J., & Saffell, M. (2001). Learning to trade via direct reinforcement. IEEE Transactions on

Neural Networks, 12 (4), 875–889.

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., & Abbeel, P. (2018). Overcoming explo-

ration in reinforcement learning with demonstrations. 2018 IEEE international conference

on robotics and automation (ICRA), 6292–6299.

Ng, A. Y., Harada, D., & Russell, S. (1999). Policy invariance under reward transformations: Theory

and application to reward shaping. Icml, 99, 278–287.

Osogami, T., & Otsuka, M. (2015). Learning dynamic boltzmann machines with spike-timing de-

pendent plasticity. arXiv preprint arXiv:1509.08634.

Osogami & Young. (2016). Dynamic boltzmann machine library. GitHub Repository. https://github.

com/ibm-research-tokyo/dybm.

Ota, K., Oiki, T., Jha, D., Mariyama, T., & Nikovski, D. (2020). Can increasing input dimensionality

improve deep reinforcement learning? International Conference on Machine Learning, 7424–

7433.

Pardo, F., Tavakoli, A., Levdik, V., & Kormushev, P. (2018). Time limits in reinforcement learning.

International Conference on Machine Learning, 4045–4054.

Qi, X., Luo, Y., Wu, G., Boriboonsomsin, K., & Barth, M. (2019). Deep reinforcement learning

enabled self-learning control for energy efficient driving. Transportation Research Part C:

Emerging Technologies, 99, 67–81.

42

https://github.com/ibm-research-tokyo/dybm
https://github.com/ibm-research-tokyo/dybm

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., & Dormann, N. (2021). Stable-

baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning

Research, 22 (268), 1–8.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust region policy optimiza-

tion. International conference on machine learning, 1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy opti-

mization algorithms. arXiv preprint arXiv:1707.06347.

Shapley, L. (1953). A value for n-person games. Contributions to the Theory of Games, 28, 307–317.

Silver, D. (2015). Lectures on reinforcement learning.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L.,

Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning algorithm that

masters chess, shogi, and go through self-play. Science, 362 (6419), 1140–1144.

Steehouwer, H. (2016). Ortec finance scenario approach. ORTeC Finance Scenario Department, 54.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Timmermann, A. (2006). Forecast combinations. Handbook of Economic Forecasting, 1, 135–196.

Tsay, R. S. (2013). Multivariate time series analysis: With r and financial applications. John Wiley

& Sons.

Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O., Piot, B., Heess, N., Rothörl, T., Lampe,

T., & Riedmiller, M. (2017). Leveraging demonstrations for deep reinforcement learning on

robotics problems with sparse rewards. arXiv preprint arXiv:1707.08817.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning. Machine Learning, 8 (3), 229–256.

Yu, P., Lee, J. S., Kulyatin, I., Shi, Z., & Dasgupta, S. (2019). Model-based deep reinforcement

learning for dynamic portfolio optimization. arXiv preprint arXiv:1901.08740.

Zhang, M., Vikram, S., Smith, L., Abbeel, P., Johnson, M., & Levine, S. (2019). Solar: Deep struc-

tured representations for model-based reinforcement learning. International Conference on

Machine Learning, 7444–7453.

43

Acronyms

A2C Asynchronous Advantage Actor-Critic

ANN Artificial Neural Network

BC Behaviour Cloning

CRP Constantly Rebalanced Portfolio

CVaR Conditional Value-at-Risk

DDPG Deep Deterministic Policy Gradient

DDR Downside Deviation Ratio

DSG Dynamic Scenario Generator

GAE General Advantage Estimation

GBWM Goal-Based Wealth Management

GSR Goal Succes Rate

LGF Loss Given Failure

N-G-DyBM Nonlinear Gaussian Dynamic Boltzmann Machine

PPO Proximal Policy Optimization

RL Reinforcement Learning

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SAC Soft Actor-Critic

SHAP SHapley Additive exPlanations

TD3 Twin-Delayed Deep Deterministic Policy Gradient

TRPO Trust Region Policy Optimization

VaR Value-at-Risk

44

Appendix A Model-Based PPO pseudo code

Algorithm 1: Model-Based PPO
input: Initialize actor and critic networks µ and V with parameters θ0 and ϕ0, respectively.
Furthermore, let M denote the number of loops we perform over the entire training set.

for m = 1, .., M do
Split the training set into batches of size N
for i = 1, .., N do

Initialize the state with si,0
for t = 1, .., T do

Forecast the next asset returns xi,t+1 with the prediction model and create the
augmented state s̃i,t

Use the actor network to obtain the action mean µθ(s̃i,t) ∈ R and execute
at ∼ N

(
µθ(s̃i,t), σ2)

Transition to st+1 and store at, Rt, s̃i,t, the log probability of the action and the
value estimate Vϕ(s̃t) in the memory

end
Estimate the advantages Âi,t with (5.12) and (5.13) and calculate the returns Gi,t

Sample mini-batches of size K from the memory without replacement
for All mini-batches do

Update the actor network by maximizing the PPO objective with respect to θ
such that

θnew = arg max
θ

1
KT

K∑
j=1

T∑
t=1

min
(
rj,t(θ)Âj,t, clip (rj,t(θ), 1− ϵ, 1 + ϵ) Âj,t

)
,

with rj,t(θ) = πθ (ai,t | s̃j,t)
πθold (aj,t | s̃j,t)

.

Update the critic parameter ϕ by minimizing the least squares loss of the value
estimates

ϕnew = arg min
ϕ

1
KT

K∑
j=1

T∑
t=1

(V (s̃j,t)−Gj,t)2.

θ ← θnew

ϕ← ϕnew

end
clear the memory of the agent

end
end

45

Appendix B Goal-only value interpretation derivation

V (st) = E
τ∼π

[G(τ) | st]

= Eπ[
T∑

τ=t

γRτ | st],

where setting γ = 1 and using (5.4) for Rt yields

V (st) = Eπ[RT] = E[0 · 1WT <W ∗
T

+ 1WT ≤W ∗
T
| st]

∴ V (st) = Eπ[WT ≤W ∗
T | st].

(B.1)

46

Appendix C Hyperparameter tuning

The search spaces and optimal values for the hyperparameters are shown in Table E1. The behaviour

cloning hyperparameter is tuned after the optimal values for all other hyperparameters are already

found. Note that the tuning is done through a random search, thus not guaranteeing that this

specific combination is optimal. Aside from the behaviour cloning hyperparameter, we try a total

of 192 different combinations, where we select the combination of hyperparameters that achieves

the highest GSR.

Table C1: Hyperparameter search spaces and tuning results

Hyperparameter Search space Result

Actor layer width [64, 128] 128

Critic layer width [128, 256] 256

Actor learning rate [10−3, 10−4, 10−5] 10−4

Critic learning rate [10−3, 10−4, 10−5] 10−4

Discount factor [0.99, 1.0] 0.99

scenario batch size [25, 50, 75, 100] 50

PPO clipping factor [0.05, 0.1, 0.15, 0.2] 0.1

Adam mini batch size [32, 64] 32

α1 (scaling DDR in shaped reward) [0.01, 0.05, 0.1, 0.5] 0.1

α2 (scaling LGF in shaped reward) [0.1, 0.5, 1] 0.5

Behaviour cloning gradient discount [0.001, 0.0025, 0.01, 0.05, 0.1, 0.2] 0.05

47

Appendix D VAR lag selection robustness check

To study how the choice of the lag size p in the pooled VAR model affects the performance of

the model-based method, we perform a robustness check. Table D1 shows the performance of the

model-based method with the pooled VAR model using different lag sizes. We find that the different

models lead to relatively similar performance, indicating that this choice of lag size does not greatly

affect the outcome of the results.

Table D1: Performance of the model-based method for various lag lengths p used in the VAR(p)-P
model

Metrics VAR(3)-P VAR(4)-P VAR(5)-P VAR(6)-P
GSR 93.2 92.3 92.0 92.9

Expected wealth 1456.3 1304.2 1289.8 1414.6
Median wealth 1196.0 1095.8 1051.5 1116.1

VaR0.95 348.9 327.06 326.6 341.8
CVaR0.90 250.3 236.7 239.3 252.7

Expected returns 7.47 7.21 7.04 7.28
DDR 1.339 1.334 1.357 1.363

Note: “-P” denotes that the model is estimated on the pooled scenario training data. The GSR refers to the Goal
Success Rate in %. The expected and median wealth and the V aR and CV aR are all estimated at the final state and
given in $ [x1000]. Finally, the expected returns and Downside Deviation Ratio (DDR) are averaged over time, with
the returns shown in %. The results are generated using the shaped reward function.

48

Appendix E Nonlinear model settings

Table E1: Parameters used in the nonlinear model

Parameter Value

Delay 4

Decay rates [0.1, 0.2, 0.5, 0.8]

RNN sparsity 0.9

RNN spectral radius 0.95

Leak 0.5

Learning rate 10−3

RNN dimension 50

49

Appendix F Shapley values actor

(a) Model-free actor (b) Model-based actor

Figure 8: Estimated SHapley Additive exPlanations (SHAP) values for the action weight in equity (world)
by the model-free and model-based actors.

(a) Model-free actor (b) Model-based actor

Figure 9: Estimated SHapley Additive exPlanations (SHAP) values for the action weight in equity (emerg-
ing markets) by the model-free and model-based actors.

50

(a) Model-free actor (b) Model-based actor

Figure 10: Estimated SHapley Additive exPlanations (SHAP) values for the action weight in fixed income
(high yield) by the model-free and model-based actors.

(a) Model-free actor (b) Model-based actor

Figure 11: Estimated SHapley Additive exPlanations (SHAP) values for the action weight in fixed income
(investment grade) by the model-free and model-based actors.

51

(a) Model-free actor (b) Model-based actor

Figure 12: Estimated SHapley Additive exPlanations (SHAP) values for the action weight in cash by the
model-free and model-based actors.

(a) Model-free actor (b) Model-based actor

Figure 13: Estimated SHapley Additive exPlanations (SHAP) values for the action weight in real estate
(indirect) by the model-free and model-based actors.

52

(a) Model-free actor (b) Model-based actor

Figure 14: Estimated SHapley Additive exPlanations (SHAP) values for the action weight in hedge funds
by the model-free and model-based actors.

53

Appendix G Backtest results

Table G1: Performances of the different trading strategies when tested on the historical data

Metrics CRP Model-free Model-based

Final wealth 373.6 428.1 624.8

Average returns 5.25 6.95 7.81

DDR 1.072 0.723 1.235

volatility 9.20 17.9 15.3

Note: The reinforcement learning methods are trained using the shaped reward function and the model-based method
uses the pooled VAR(3) model. The Constantly Rebalanced Portfolio (CRP) strategy is shown as a benchmark. We
backtest the different strategies in the investment period spanning from 1994 to 2021, allowing for an annual recon-
struction of the portfolio. Each strategy starts with $100,000 and the final wealth is given in $ [x1000]. Furthermore,
the average returns and volatility are shown in %.

54

	Introduction
	Problem setup
	Reinforcement learning background
	Markov Decision Processes
	Policy gradient methods
	On-policy methods
	Model-based RL

	Data
	Dynamic Scenario Generator
	Descriptive statistics

	Methodology
	State representation
	Reward function
	Actor and Critic network
	PPO
	Model-based PPO
	Linear models
	Nonlinear Gaussian Dynamic Boltzmann machine

	Behaviour cloning
	Enforcing portfolio constraints
	Interpretability
	Shapley values
	Perfect predictions

	Performance measures
	Hyperparameter tuning

	Results
	Algorithm performance comparison
	Behaviour cloning
	Sample efficiency
	Backtesting
	Interpretability
	SHAP
	Perfect predictions

	Conclusion
	References
	Acronyms
	Appendices
	Model-Based PPO pseudo code
	Goal-only value interpretation derivation
	Hyperparameter tuning
	VAR lag selection robustness check
	Nonlinear model settings
	Shapley values actor
	Backtest results

