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Abstract

Effectively hedging spot and future prices decreases the risk of a portfolio. These optimal
hedging ratios depend on the dependence structure of the portfolio, which can effectively be
determined by the help of copulas. The financial timeseries which are modelled by copula
can be used to determine a hedge ratio based on a certain objective. Copulas that are con-
sidered in this paper are the Clayton copula, C-vine, D-vine and Hierarchical Archimedean
copula. The main finding of this paper is that by using copula the downside risk is reduced
significantly, especially when the Expected Shortfall is used . The Hierarchical Archimedean
Copula performs best overall and the Clayton copula performs consistently well and has the
shortest computation time. In addition copulas can be applied to large portfolios and cross

hedging.
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1 Introduction

Two well-known ways of reducing risk is diversifying and hedging. Focusing on the latter, one
can hedge the movement of a derivative by hedging it with the underlying stock. For example
when going long in a future it can be hedged with going short in the corresponding spot price.
This raises the question of how this hedge ratio should be determined. In addition to that many
portfolios are highly dimensional, which complicates determining the hedge ratios. Therefore it
is paramount to model the joint downside risk of spot and futures prices. One tool to model this
dependence are Copulas. Copulas need less assumptions than other modelling techniques which
results in a better empirical fit.

Reducing risk in the framework of this paper means that there is a certain objective function
that is minimized. Value-at-Risk (VaR) and Expected Shortfall (ES) are two objectives that
are frequently applied. Many companies use models that require one of these risk measures.
Therefore the effect on downside risk reduction can be determined by using these measures as
objective.

The main goal is to have a model that reduces risk for many different portfolios. Obtaining
a more flexible hedging method is relevant for many different parties, but especially parties that
hold large portfolios. For example hedge funds and asset management companies. This brings
up the research question of this paper. Are models that apply copulas able to reduce downside
risk by hedging spot and future prices in large portfolios?. To answer this research question the
following subquestions are addressed. First of all we need to address different copulas to model
the timeseries. In addition, we need to find how an optimal hedging ratio is determined with the
modelled timeseries. Finally a certain performance measure should be determined, that assesses
the strength of the models in out of sample hedging .

To answer the main question and subquestions parts of the methodology are based on the
paper of Sukcharoen and Leatham| (2017)). Their goal is similar, they determine an optimal hedge
ratio with vine copula. This method is extended by different copulas and by using different data.
The data from this paper are spot and future prices of different assets and commodities. The
data includes weekly Wednesday spot and future prices and spans from December 31, 1999 to
December 31, 2020.

With the obtained data four different copulas are estimated. The four copulas used are the
Clayton copula, C-vine copula, D-vine copula and Hierarchical Archimedean Copula (HAC).
With all the mentioned copulas, the optimal hedging ratio is determined while minimizing VaR
99% and ES 97.5% as objective. These hedge ratios are then used to determine the hedging
performance out of sample, which makes it possible to compare the hedging power of the different
methods.

The main findings of this paper are that all models consistently yield a positive result in
downside risk reduction when the Expected Shortfall is used a objective. However, when the
VaR is considered the models performs significantly different. The HAC model yields the best
results over all. The Clayton copula is a good contender, since it yields good results and is

relatively easy to compute. The D-vine increases the risk in some cases and is also the most



volatile method. Furthermore the vine copula are not feasible in all settings and have a relatively
long running time. Therefore from a risk management perspective the Hierarchical Archimedean
Copula and the multivariate Clayton copula are the best choices based on these findings. In
addition to that, determining an optimal hedge ratio based on the Expected Shortfall results in
better risk reduction than using the Value-at-Risk as objective function.

The contribution to current literature is that this paper hedges in larger portfolios. Research
often focuses on the bivariate case which is not always realistic. Another contribution is that
this paper uses a method that is applicable to many different portfolio scenarios. Lastly some
results motivate that not all models work well in high dimensions, for example the vine copula
performs worse than expected in this setting.

First this paper provides a literature in Section 2] which gives background on previous copulas
and hedging models. This is followed by the method for obtaining the data in Section [3] After
that, the methodology is illustrated in Section @ In Section [f] the in sample hedging ratios and
out of sample downside risk reduction for all models are presented. Finally in Section [6] the

conclusion is drawn from the results and there are some suggestions for further research.

2 Literature Review

Reducing risk is a major part of multiple aspects in the financial industry. One way to reduce
risk is hedging a current position with the use of derivatives. An issue with hedging involves
determining the optimal hedge ratio. The optimal ratio relies on a certain objective function.
By optimizing this function the optimal hedge ratio can be derived. This leads to another
issue: determining the objective function. There are many different ways to obtain this objective
function and the corresponding hedge ratio. One method relies on minimizing the variance of the
hedged portfolio. (Ghosh| (1993))) A disadvantage of this method that it does not take expected
return into account. Another method that does take that into account is using the utility function
as the objective, for example as demonstrated by [Cecchetti et al.| (1988). However this requires
using specific utility function and return distributions. Another approach is by using ordinary
least squares (OLS) as objective. This involves regressing the change in future prices on the
change in spot prices. To ensure this method is valid and efficient the OLS assumptions must
be satisfied. In reality we find that these assumptions often do not hold.

To improve upon the previously mentioned models different GARCH models have been im-
plemented. This technique allows for a dynamic hedging ratio. The GARCH models can then
be used to estimate a minimum variance hedging ratio. [Hsu et al.| (2008a)) implement a copula
GARCH model for dynamic hedging. Furthermore they look at financial indices and their future
contracts. The hedge ratio in their research depends on the variance and covariance between
the spot price and the future price. For their empirical study they mostly focus on improving
the hedge ratio by means of in sample variance reduction. In the case of out of sample perfor-
mance one period forecasts are also assessed by means of variance reduction. In addition to that
they demonstrate the results for cross hedging, in their case hedging the MSCI-SWI index with
the Swiss Frank future. They conclude that for all their methods the copula-GARCH models



outperform the other GARCH models.

In addition, the GARCH model is used in more complex frameworks. For example |Lee (2009)
develop a regime-switching Gumbel-Clayton (RSGC) copula GARCH model which they apply
to optimal futures hedging. This method allows for switching between different copulas over
time. Their research only considers single product hedging.

Obtaining a solution for the minimum downside hedge ratios calls for estimating the full
joint distribution of the future and spot price movements. For single product hedging one of
the standard methods is non parametric, for example the historical simulation method. However
this often turns out to be inaccurate since the method depends on historical data. Barbi and
Romagnoli (2014) show that introducing bivariate Archimedean copulas greatly reduce the risk in
the case of single product hedging. However it is not realistic to stay in a single product setting.
To extend the dimension size Sukcharoen and Leatham| (2017) suggest using vine copula. This
model was initially introduced by |Joe| (1996]). The vine copula is a class of multivariate copula
and is able to account for fat-tailedness and skewness.The vine copula allows for separating the
modelling of the marginal distribution unlike other multivariate copula.

As mentioned by |Aas et al.| (2009)) the vine copula model is extremely flexible compared to
other methods. Furthermore special types of vines, like C-, D- or R-vines, help with reducing
the number of possible alternative models. However the issue of a large amount of potential
candidate models remains. (Okhrin et al. (2013) provide a solution for this with the Hierarchical
Archimedean copula (HAC). In their research HAC is not applied to future hedging but to
determine the Value-at-Risk of a certain portfolio. They found that HAC did not beat the vine
models in their research. However, there is not much literature where both the vine copula and

HAC are applied to future hedging.

3 Data

The kinds of assets and commodities that are usually traded using future contracts are grains,
livestock, currencies, financials, softs, metals and energies. For example [Sukcharoen and Leatham
(2017) focus on the US crude oil futures and spot prices while Hsu et al.| (2008b) focus on indices
and currencies. As a starting point two popular and highly traded index futures are considered.
These are the S&P 500 and the AEX future contracts. These indices contain the most traded
companies in the United States stock exchange and Amsterdam stock exchange respectively. As
mentioned by Hsu et al.| (2008b)) index futures are more popular, which is one of the aspects
where this research differs from Sukcharoen and Leatham| (2017).

The first extension is including the U.S. Dollar index future and spot prices (USDX). As
explained by (Clyman et al. (1997) the USDX futures contract serves as a benchmark for the
value of the US dollar in an international context. The USDX enables monitoring the movement
of the US dollar relative to other world currencies. This implies that this index has some relation
to the S&P 500 and AEX future contracts. To increase the dimensions, future and spot prices
from other industries are added. By adding CBT corn composition and 100 oz Gold Futures
the dimension is increased to ten timeseries. Finally ECBOT-soybeans, ECBOT-wheat and



ICE natural gas are added, which leaves us with sixteen timeseries. Furthermore cross hedging
is considered, this means that the future prices and spot prices are from different financial
instruments.

Since future contracts expire on a a certain date the methodology of[Sukcharoen and Leatham
(2017) is used to construct the timeseries of future prices. The cleaned data consists of weekly
Wednesday closing spot and futures prices. Tuesday prices are taken when it occurs that Wednes-
day prices are missing. All the spot and future prices are obtained from the Thomas Reuters
Datastream database. The prices span from December 31, 1999 to December 31, 2020. In this
timeframe there are many different future contract with different maturities. From all this infor-
mation a timeseries of weekly changes in spot and futures prices is constructed. For calculating
the changes in future prices the closing prices for the nearest to expiration futures are taken. The
rollover to the next futures contract occurs on a Wednesday the week before a contract expires.
This means that a week before the contract expires, prices of the next nearest to expiration
future contract are taken. Consequently a lot of data cleaning needs to be done. For example for
the AEX there are more than 400 dead future contracts. This means that the raw data includes
around 73000 data points. After the pre-described data cleaning this is cut down to 1096 weekly
Wednesday future prices. Table [3.2] shows the summary statistics of the spot and future prices.
Figure shows some of the spot and future prices over time. The plots of the other spot and
future prices can be found in Figure [A.]] and [A22]

| S&P 500 | AEX | USDX | Corn | Gold

S F S F S F S F S F
I 8.94e-04 8.80e-04 | -1.47e-05 -1.16e-05 | -1.03e-04 -1.02e-04 | 8.42e-04 5.61e-04 | 0.00171 0.00172
o 0.0239 0.0241 0.0313 0.0316 0.0108 0.0109 0.0419 0.0365 | 0.0236  0.0248
Skew | -0.884 -0.868 -0.580 -0.664 -0.232 -0.0011 -0.137 0.210 -0.528  -0.385
Kur 8.91 9.02 9.73 10.0 6.64 4.80 5.51 11.4 5.91 6.89

Table 3.1: Summary statistics for weekly log returns of S&P 500, AEX and USDX spot and
future prices. The weekly prices consist of all the Wednesday closing prices for the sample period
31/12/1999 - 31/12/2020. Where S are the spot prices, F the future prices, p the std, o the
standard deviation, skew the skewness and kur the kurtosis

‘ Soy ‘ Gas ‘ Wheat

S F S F S F
o 0.0025 7.10e-04 | 0.0014 0.0013 | 9.77e-04 6.69e-04
o 0.1335 0.0329 | 0.0785 0.0807 | 0.0527 0.048
Skew | -0.539 1.23 0.939 2.22 0.171 0.687
Kur 55.1 35.7 7.36 19.0 6.67 6.05

Table 3.2: Summary statistics for weekly log returns of S&P 500, AEX and USDX spot and
future prices. The weekly prices consist of all the Wednesday closing prices for the sample period
31/12/1999 - 31/12/2020. Where S are the spot prices, F the future prices, p the std, o the
standard deviation, skew the skewness and kur the kurtosis
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Figure 3.1: Plot of weekly spot and future prices of the S&P 500, AEX, USDX and US gold
prices. The weekly prices consist of all the Wednesday closing prices for the sample period
31/12/1999 - 31/12/2020

The summary statistics show that the spot and future log returns display excess kurtosis,
which implies the data has heavy tails. In addition the data is negatively skewed, which implies
that there is a fatter tail on the left side of the distribution. This indicates that the log returns
are not normally distributed. In addition, the spot and future prices are very similar. This is
because the future prices that are closest to expiration are taken. Close to expiration future

prices converge upon their spot price.

4 Methodology

This section describes the different hedging objectives and corresponding copula methods. The

benchmark copula model will be a simple multidimensional Clayton copula approach which will

firstly be extended to [Sukcharoen and Leatham| (2017) and their vine copula approach. This

model will then be extended by using Hierarchical Archimedean copulas (HAC) and lastly by
penalized HAC. In addition to changing the copula the dimensions are increased. The methodol-
ogy section first addresses the objective hedging function, then the different copula methods and
finally how the performance will be measured. The methods are implemented with

(2022)



4.1 Hedging Problem

Hedging in its essence is to combine investments from the spot market and the derivatives market
into one portfolio that reduces the fluctuation in the portfolio value. Here the derivative market
of interest is the futures market.

Following |Chen et al.| (2003) the initial assumption is a long spot position and a short future
position. In addition, it is assumed that all portfolios are equally weighted portfolios. This means
that when the portfolio is extended each stock will receive the same weight. This is a 'naive’
approach and very likely to not be the optimal stock allocation. However |DeMiguel et al.| (2009)
show that this allocation remains hard to beat. In addition the equally weighted portfolio is
computationally easy and therefore a suitable choice. Lastly the goal is to determine an optimal
hedge ratio and not optimal equity weights. This results in the following profit on the hedged
ratio.

y(b) = AS, — BAF, (1)

With hedge ratio(s) B, which is a vector of all the individual hedge ratios. This means that the
amount of stocks bought will be the same, but the amount of futures sold will change according
to the hedge ratio. Following Sukcharoen and Leatham/ (2017), the assumption is that futures
positions are taken in period -1 and liquidated in period ¢. The goal is to select the optimal hedge
ratios e* that minimize the downside risk of the hedged Prices and Losses (P&L) Mathematically,

e* = arg minRisk(y.(e)) (2)

where Risk(yt(e)) is the measure of downside risk which is defined on objective yt(e). The risk
measures that are considered can be found in Section However, to solve for a certain risk

measure copula are needed to model the joint distribution of random variables.

4.2 Copula

Merging marginal distributions into joint distributions is done by using Copula. copulas measure
dependence between different variables and are a form of linking mechanisms. A copula has
uniform marginals on the interval [0,1] and is a k-dimensional distribution function C : [0, 1]™ —

[0,1] .The multivariate distributions can be modelled conforming to Sklar’s theorem.

Theorem 4.1 (Sklar’s theorem) If F' is a k-dimensional distribution function with marginal

cdf Fx,, ...,Fx, . Then a copula C'V x1,...,2} € R* exists satisfying

F(z1,...,2, = C{Fx,(z1),..., Fx,(zx)} (3)
Fx,, ..., Fx, are continuous if C is unique . If Fx,, ..., Fx, are distribution functions and C
is a copula, then the function F(x1,...,xy) is a joint distribution function with the marginal cdf
Fx,, ....Fx,.

A base point could be any standard Archimedean copula, since they allow for capturing

asymmetric and nonlinear dependence between random variables. However these copulas might



not be adequate to capture the dependence when the dimension increases, as then it is assumed
that all the variables have the same degree of co-movement. To check if this is actually inadequate
as a base case the starting point is the multidimensional Clayton Copula. The Clayton copula
captures lower tail dependence. The derivation of the multivariate log likelihood can be found
in section in the Appendix.

4.2.1 Vine Copula

One way to go beyond the standard multivariate copulas is by utilizing a vine copula approach.
This approach allows for different pairs of variables to have varying dependence patterns. Via
bivariate copulas and their marginal distribution function a multivariate copula can be obtained.
This copula is a vine copula. Each copula allows to distinguish the dependence pattern of each
pair. In essence, the joint density function can be expressed in term of the individual marginal
distributions and a group of the bivariate copulas. The copulas do not have to originate from the
same copula family, which provides a lot of flexibility. However, because of the many possible
combinations the amount of parameters increases when the number of dimensions increase. Since
the methodology partly follows |Sukcharoen and Leatham (2017), two vine copula methods are
implemented. This methodology focusses on six dimensions, which can be decreased or increased
and on two vine copulas, the C-vine and D-vine. First the C-vine copula is considered. In every
node of the C-vine copula one variable is connected to all the other variables. In a D-vine copula
each variable is at most connected by two other variables. Both copula are given by [Sukcharoen

and Leatham| (2017) using the followoing notation.:

f(z1, 22,73, 04, 75, 26) = f1fafsfaf5f6c1,2¢1,3¢14C1,5C1,6C 311C2,4)1C2,51C2,6/1C3,4/1,2C3,5]1,2

€3,6/1,2€4,5/1,2,3€4,6/1,2,3C5,6]1,2,3 4 (4)

f(w1, 02,23, 04, 75, 76) = f1f2f3f1f5f6C1,202,3C3,4C4,5C5,6C1 32C2,4/3C3 54C4,6/5C1,4]2,3C2,5(3,4

€3,64,5C1,5(2,3,4C2,6(3,4,5C1,6|2,3,4,5 (D)

Where Equation and Equation are the six-dimensional C-vine and D-vine respectively.
¢ij is a copula function linking x; and x;. These equations already show that when dimensions
increase vine copulas soon become infeasible.

Fitting a joint distribution function utilizing the C- or D-vine copula can be described in
four steps. First the marginal distributions are modelled. For each timeseries the marginal
distribution is estimated by using an empirical distribution function. Consequently the timeseries
are transformed into standard uniform variables.

The second step entails selecting an order of the variables for the C- or D-vine copula. This
order is paramount for the structure of the vine. Considering the C-vine, the variable with the
highest degree of association is selected. (Czado et al.| (2012))

To determine the degree of association the absolute values of pairwise Kendall’s tau coeffi-



cients are summed.

OL = i # jlril (6)
j=1

The second variable is the variable that has the highest degree of association with the other
variables. This process is reiterated till all the variables are part of the structure.
For the D-vine copula structure the variables are ordered in such a way that the sum of the

absolute values of pairwise Kendall’s tau coeflicients

n—1

@i = Z |Ti,i+1| (7)

j=1

is maximized(Dikmann et al. (2013)).

The third step is to choose a bivariate copula for all pair copulas. As in [Sukcharoen and
Leatham| (2017) a sequential estimation approach proposed by |Aas et al| (2009) is used. This
approach uses different copula families. A copula family is selected by using the Akaike Infor-
mation Criterion (AIC). The fourth and final step is to estimate all copula parameters. The
estimation is done consecutively. This means that the estimation starts from the first vine tree
with the maximum pseudo likelihood method (Genest et al.| (1995))).

4.2.2 HAC

As mentioned before, a multivariate multivariate Archimedean copula implies that all the vari-
ables have the same degree of co-movement. Since this is rarely feasible this was solved by using
the vine copula. However the vine copula has a lot of parameters that need to be estimated. An
alternative to this are hierarchical Archimedean copulas (HACs).

Unlike the Archimedean copulas, HACs define the dependence structure recursively. At the
first level the dependence between two variables is modelled by a certain copula function. Then
at the second level another copula is used to model the previous level with the new variable. This
stds we get a nested copula. HACs rely on generator function ¢ € £ = {¢ : [0;00) — [0, 1]|¢(0) =
1,¢(c0) = 0; (—=1)¥¢*) > 0;k € N} and the non decreasing inverse (—1)¥¢*)(z)z € [0, 00). The
copula function for fully nested copulas is given by the following equation (Okhrin et al.| (2013))

Clu, ... ux) = ro1(dy 0 {bral... (63" 0 drldr " (ur) + &7 (u2)] + 67" (uz))
4+ .o+ ¢;_12(uk71)]} + Qs};_ll(uk) (8)

The generator for the copula can come from the same family or from different generator
families. The difference between HAC and vine copulas is that for the HAC the density needs
to be derived from the copula function. This is done by taking derivatives with respect to the
generator functions. Usually the generator functions are not that difficult and it is possible to
compute numeric derivatives, even when the dimensions increase.

As the name already implies the structure of the copula is hierarchical. At each node of the

tree there is a marginal distribution which is also given by a HAC. In addition, the recursive



structure, HAC is helpful in modelling time dependence. There exist many possible structures
of HAC, so an algorithm to determine the structure is necessary. Let M = {¢;},7 =1,...,M
be the set of familiar generator functions. Each function ¢; depends on a vector of parameters
;. Let (X1,...X)) denote the vector of independent random variables and X = z;; are the
samples fori =1,...,nand j = 1,...,k. Asin|Okhrin et al.| (2013]) the notation s is introduced,
which denotes the structure of the HAC. This variable notes how the variables are joined at a

single node. The steps for determining the structure are follow below:

1. Estimate the parameters 6; using the maximum likelihood estimator for each set X;,i €
Iy;,5=1,...,2,k —1 and each ¢ € M.

2. Determine the optimal subset of variables I to be grouped by the given copula. Then
introduce a pseudo-variable defined by Z; = C’(I 1), After that consider the set Z; N
{Xj}jeqr..ky with size ko =k — dim(I') +1

3. With the new obtained set, repeat step 1.
4. Let the obtained grouping be denoted as I?. Then repeat step 2.
5. Keep repeating all steps until k; =1

Now the issue remains to decide which grouping is the best. This can be done according to
multiple methods. One of the methods Okhrin et al. (2013) use is grouping based on goodness of
fit. The goodness of fit test assesses how close the estimated structure is to the real data. Since
there are many possible HAC structures this test reduces computation time to select the optimal

structure. This test is given by the following equation as mentioned by (Genest et al.| (2009):

S, = Cy(u)2dCy (u) (9)

[0,1)¢
With C,, = % Yo WUn < wui,...,Uig < ug), also called empirical copula’. A lower test statistic
suggest that the distance between the estimation and true value is smaller. The goodness of fit
test is applied after the entire HAC structure is estimated. From all the HAC structures the one

with the lowest goodness of fit test statistic is chosen.

4.2.3 Performance

To evaluate the heging effectiveness of the different models the percentage of downside risk
reduction of the hedged P&Ls compared to that of the unhedged P&Ls is computed
Sukcharoen and Leatham| (2017)) uses four different hedging objectives. This paper uses two
of these: Value-at-Risk (VaR) and Expected Shortfall (ES). As mentioned by Yamai and Yoshiba,
(2005) VaR is the standard risk measure because of its conceptual simplicity. However VaR has
a few problems like disregarding the loss beyond the VaR level. Furthermore, VaR is not a
coherent risk measure. ES is the conditional expectation of losses beyond the VaR level and is a

coherent risk measure.



In this paper the VaR covers the largest potential loss for a time period of one week for a

confidence level (p). More universally, VaR at a confidence level p is given by:
VaR, = —F~ (1 —p) (10)

where F' is the cdf evaluated at a certain confidence interval. The other risk measure, ES, is
given as:
ES, = —E[ytlyt < —VCLRp] (11)

Which computes the expected loss given that the loss exceeds the VaR at confidence level p.

The two downside risk measures are computed by using a Monte Carlo simulation. This is
applied to all models.

With the estimated copula draws, standard uniform variables are generated. These standard
uniform variables are then converted to the joint distribution by using the inverse cdf.

As presented in the Data section the financial timeseries do not seem to be normally dis-
tributed. On accounts of that, both the normal distribution and the t-distribution are taken into
consideration to convert the draws. The simulated spot and future price changes are then used
to calculate the hedged prices and losses. After that, the optimal hedge ratios are derived by
solving the minimization problem in Equation .

To asses out of sample performance a moving window of 5 years (260 weeks) is used. With
these five years the optimal hedging ratio is determined which is then used to construct the
hedged P&L for the next 130 weeks. The window is moved forward by one week. This results in
many optimal hedge ratios, which are used to compute all the different P&Ls.

Finally the hedging effectiveness will be measures as a percentage reduction in the downside
risk compared to the unhedged P&Ls. The mean of the different hedged P&Ls are calculated

across the different test windows.

 Risk(yi(ex))

HE = (1= 3 (0))

) % 100% (12)

Where 1;(0) the unhedged P&L and y;(ex) is the hedged P&L.

5 Results

5.1 In sample results

This sections presents the optimal hedge ratios which are obtained in sample. First the bivariate
hedge ratios are estimated with the Clayton copula. After that the multivariate hedge ratios
are estimated with the Clayton, C-vine, D-vine, HAC. The risk objectives are to minimize the
VaR at a 99% significance level and ES at a 97.5 % significance level. This is based on the risk
measures suggested by Basel III (Chang et al. (2019)). Basel III risk measures are part of an
European law which aims to secure the financial stability of banks.

Table[5.1] displays the optimal hedge ratios for the bivariate case. This means that the Clayton

10



copula is used to hedge between the future contracts and its corresponding spot price. Both the
normal distribution and the student-t distribution with n — 1 degrees of freedom are used to
estimate the optimal hedge ratios. The first 261 observations are lost because a moving window

of 261 weeks is used.

| S&P AEX USDX Corn Gold

Normal distribution
optimal hedge ratio VaR 99% | 0.997(0.0168)  0.947(0.00732) 0.991(0.0015) 0.968(0.0058) 0.985(0.0032)
optimal hedge ratio ES 97.5% | 0.998(0.00851) 0.948(0.0101)  0.991(0.0014) 0.966(0.0064) 0.985 (0.0024)
Student-t distribution
optimal hedge ratio VaR 99% | 0.981(0.00811) 0.926(0.0177)  0.991(0.0016) 0.968(0.0059) 0.986(0.0033)
optimal hedge ratio ES 97.5% | 0.986(0.00482) 0.927(0.0210)  0.991(0.0014) 0.967(0.0064) 0.985 (0.0027)

Table 5.1: Mean and standard deviation of optimal hedge ratios for S&P, AEX, USDX, Corn
and Gold spot and future prices for 12/31/2004 until 12/31/2020. Both the hedge ratio’s for
Value-at-Risk and expected shortfall are given.

It appears that it makes no significant difference if the normal distribution or the student
t-distribution is used to transform the joint distribution. This could be explained by the central
limit theorem, the sample is large enough to converge to the normal distribution (Heyde| (2006))).
Therefore the normal distribution is used in the remaining estimations. Table [5.2] shows the

other bivariate hedge ratios.

‘ Gas Soy Wheat

Normal distribution
optimal hedge ratio VaR 99% | 0.972 (0.0047) 0.867 (0.0324) 0.937(0.0149)
optimal hedge ratio ES 97.5% | 0.972 (0.0049) 0.870 (0.0388) 0.935(0.0161)

Table 5.2: Mean and standard deviation of optimal hedge ratios for Gas, Soy, Oil and Wheat
spot and future prices for 12/31/2004 until 12/31/2020. Both the hedge ratio’s for Value-at-Risk
and expected shortfall are given.

Figure [5.2] shows all the hedge ratios that correspond to Table [5.1] and Table
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Figure 5.1: Optimal VaR 99% and ES 97.5% hedge ratios for S&P, AEX, USDX, corn, gold, gas,
soy and wheat spot and future prices for 12/31/2004 until 12/31/2020

As expected from the future and spot prices as given in figure [A23] the hedge ratios stay
close to one when only one future contract with the corresponding spot price is included. This
is because the spot prices and future prices move closely together and the main objective is to
reduce risk. For the expected shortfall the optimal hedge ratio is slightly higher than for the
Value-at-Risk. However the difference is extremely small, which can be explained by the fact
that a VaR of 99% is similar to an ES of 97.5%. The hedge ratios in the bivariate case are quite
similar, therefore the remainder of the results consider the multivariate cases. The multivariate
Clayton copula assumes that all timeseries can be explained by one dependence structure.

In the case of the vine copulas a bivariate copula family is chosen at each node of the vine.
Table and present which family’s are chosen in which node of the vine. This is given for
both the C-vine and D-vine. The starting point is four dimensions, where we only look at the
S&P and AEX. The copula families in the vine copula are selected based on the AIC as described
in the methodology. For this estimation the MATLAB]| (2022) Vine Package by

is employed. This package can choose between 14 different bivariate copulas.
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Family

Tree 1 | Joe Plackett Plackett
Tree 2 | t t
Tree 3 | t

Table 5.3: Copula family’s selected for the C-vine at each node

‘ Family
Tree 1 | Joe Plackett Plackett
Tree 2 | t t

Tree 3 | Frank

Table 5.4: Copula family’s selected for the D-vine at each node

As described in the methodology in the C-vine one variable is connected with all variables.
In the D-vine one variable is at most connected with two variables. For the C-vine the first tree
gives the family’s of ¢12,¢13 and ¢1 4. The second tree for ¢y 31, ¢a41- The last tree gives the
family for c3 41 2. The D-vine is structured in a way that the first tree shows the family’s for
c1,2,¢2,3 and c3 4. The second tree consists of ¢y 32, ¢ 43. The third tree presents the family for
C1,42,3- Therefore both methods select different copula families. However the families that are
selected are quite similar, only one family differs.

This estimation method can be extended to more dimensions. Table 5.5 and Table [5.6]

presents the families that are chosen when US dollar spot and future prices are added to the

portfolio.
Family
Tree 1 | Plackett Plackett Joe Plackett Plackett
Tree 2 | t t t t
Tree 3 | t Gaussian  t

Tree 4 | independent t
Tree 5 | Clayton

Table 5.5: Copula family’s selected for the C-vine at each node

‘ Family
Tree 1 | Plackett t Plackett Plackett Plackett
Tree 2 | t t ot t
Tree 3 | t t t
Tree 4 | Plackett t
Tree 5 | t

Table 5.6: Copula family’s selected for the D-vine at each node

Again different families are chosen for the different structures. It appear that the t family
and Plackett family are chosen the most frequently. The same method is also applied to higher
dimensions. These Tables can be found in the Appendix section [A.4]
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Increasing the dimensions has two disadvantages. First of all the computation time increases.
This can cause problems for larger portfolios, but stays within reason for sixteen timeseries.
Another problem is that because of the many combinations (close to) singular matrices occur.
These matrices do not have full rank and are therefore not invertible matrices occur. This
especially poses a problem for estimating the t-copula. The consequence is that this is not a
flexible method, some asset combinations will cause errors.

To estimate the HAC copula the MATLAB| (2022) HACopula Toolbox by |Gorecki et al.
(2018) is used. This toolbox provides nine families of generators, which are given in Table .
For more detailed explanation see Gorecki et al.| (2018)).

Family ‘ Generator
Ali-Mikhail-Haq 1=

Clayton (1+1t)1/0

Frank —log(1 — (1 — e exp(—t))/0
Gumbel exp(—t1/9)

Joe 1— (1 —exp(—t)"/?

BB1 (12) (1+¢1/0)-1
BB1 (14) (14 t1/0)=0
BB1 (19) 0/log(t + €%)
BB1 (20) log= 0t +¢)

Table 5.7: The nine copula families and corresponding generators implemented in toolbox.

This gives many option for choosing the structure. The toolbox also provides a goodness of fit
test. As mentioned by |Gorecki et al.| (2018) homogeneous and some heterogeneous structures are
possible. Table presents the optimal structure for the HACs when homogeneous structures
and heterogeneous structures are considered.

Data ‘ Family (homogeneous)  GoF ‘ Family (heterogeneous) GoF

S&P 500 and AEX BBI (12) 0.364 BBI(12) 0.364

S&P 500, AEX and USDX Gumbel 0.194 | Ali-Mikhail-Haq, Clayton, BB1(19)  0.238

S&P 500, AEX, USDX, Corn and Gold Joe 0.148 | Ali-Mikhail-Haq, Clayton, BB1(19) 0.0748

S&P 500, AEX, USDX, Corn, Gold, Soy, Gas, Wheat Gumbel 0.0126 | Ali-Mikhail-Haq, Clayton, BB1(19) 0.0347
Cross hedge 1 Gumbel 0.103 Clayton, BB1(14) 0.0507

Cross hedge 1 Gumbel 0.0301 ALi-Mikhail-Haq, Clayton 0.0693

Table 5.8: Optimal HAC structures in the homogeneous setting vs the heterogeneous setting.
The cross hedge considers the SP and AEX spot prices with the Corn and Gold future prices

It differs per set of variables if the homogeneous HAC or heterogenecous HAC is chosen. The
model with the lowest goodness of fit for each different model is chosen.

Table presents the optimal hedge ratios in the multivariate case. In addition to only the
Clayton copula the optimal hedge ratios obtained in more dimensions with the C-vine, D-vine
and HAC copula are given. The Table show the mean and standard deviation of the hedge ratios

up to the ten dimensional case.
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Model ‘ Hedging objective

VaR (99%) ES (97.5%)
bse p bapx  bg bgold beorn bsep bagpx bg bgold beorn
Clay 1.06 0.851 - - - 1.23 0.684 - - -
(0.122) (0.121) - - - (0.198) (0.194) - - -
C-vine | 0.891 1.17 - - - 0.002 1.97 - - -
(0.440) (0.422) - - - (-0.557) (0.544) - - -
D-vine | 1.07 1.00 - - - 1.11 0.929 - - -
(0.276) (0.197) - - ; (0.283) (0.203) - - .
HAC 1.31 0.367 - - - 1.35 0.318 - - -
(0.106) (0.103) - - - (0.0589)  (0.0533) - - -
Clay 1.23 0.690 0.979 - - 1.55 0.388 0.966 - -
(0.43) (0.519) (0.441) - ; (0.305) (0.533)  (0.574) - .
C-vine | 1.41 1.64 -0.008 - - 0.139 2.61 -0.246 - -
(0.412) (0.502) (0.288) - : (0.156) (0.720)  (0.702) - .
D-vine | -0.930 -0.145 -1.88 - - -0.686 0.0432 -2.33 - -
(1.28) (1.82)  (1.92) - ; (1.05) (1.07)  (1L07) - .
HAC 1.66 1.15 0.273 - - 1.94 0.952 -0.0053 - -
(0.489) (0.500) (0.416) - - (0.263) (0.291)  (0.329) - .
Clay 0.938 1.02 0.803 0.927 1.11 1.10 1.52 1.21 0.802 0.134
(0.335) (0.317) (0.281) (0.360) (0.514) (0.631) (0.927)  (0.752)  (0.588)  (0.943)
C-vine | 1.02 1.16 1.06 1.33 0.626 0.0343 1.49 0.899 2.08 0.389
(0.614) (0.588) (0.402) (0.589) (0.330) (0.305) (0.473)  (0.450)  (0.643)  (0.330)
D-vine | 0.500 0.597 0.743 1.22 1.57 0.165 0.248 1.427 1.538 1.24
(0.589) (0.451) (0.488) (0.417) (0.384) (0.480) (0.444)  (0.537)  (0.419)  (0.551)
HAC 1.29 0.557 0.984 0.829 0.667 1.32 0.407 0.927 0.729 0.596
(0.176) (0.245) (0.119) (0.175) (0.146) (0.142) (0.113)  (0.0829) (0.0638) (0.0839)

Table 5.9: std and standard of optimal hedge ratios for SP, AEX, USDX, gold and corn spot
and future prices for 12/31/2004 until 12/31,/2020 based on the normal distribution. Both the
hedge ratio’s for Value-at-Risk and expected shortfall are given.

From the Table it is apparent that the different methods results in very different hedge ratios.

In addition the HAC method seems the least volatile. This becomes more clear when for example
the hedge ratios for the S&P, AEX and USDX are plotted in Figure and
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Figure 5.2: Optimal VaR 99% hedge ratios for S&P, AEX and US dollar spot and future prices
for 12/31,/2004 until 12/31,/2020
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Figure 5.3: Optimal ES 97.5% hedge ratios for S&P, AEX and US dollar spot and future prices

for 12/31,/2004 until 12/31,/2020

The D-vine takes on the most extreme values and is the most volatile. Some other observa-
tions are that the C-vine is gives pretty stable estimates but has a few outliers. Furthermore the

HAC never takes a negative hedge ratio, this means that the position in the future contract is

always a short position.

In addition to hedging a future contract with the corresponding spot price cross hedging
is also a possibility. This means that a future contract is hedged with a different spot price.
Table [5.10] presents the optimal hedge ratios when cross hedging is considered in the case of four

financial instruments. In addition to that cross hedging is applied in larger portfolio’s which is

described in more detail in Section
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Model ‘ Hedging objective

VaR (99%) ES (97.5%)

bsg.p gold bAEX/corn bS&P/gold bAEX/corn
Clay 1.12 0.748 0.961 0.899

(0.490) (0.500)  (0.289) (0.289)
C-vine | 1.01 1.00 1.16 0.877

(0.399) (0.385)  (0.513) (0.489)
D-vine | 1.63 0.534 1.81 0.310

(0.566) (0.595)  (0.555) (0.565)
HAC 0.381 0.522 0.458 0.268

(0.335) (0.310)  (0.189) (0.252)

Table 5.10: std and standard of optimal cross hedge ratios for SP, AEX, gold and corn spot and
future prices for 12/31/2004 until 12/31/2020 based on the normal distribution. Where in b;,; i
is the spot price and j the future price. Both the hedge ratio’s for Value-at-Risk and expected
shortfall are given.

Figure [5.4] and [5.5] show the hedge ratios over time.
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Figure 5.4: Optimal VaR 99% cross hedge ratios for S&P, gold, AEX and corn spot and future
prices for 12/31/2004 until 12/31,/2020
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Figure 5.5: Optimal ES 97.5% cross hedge ratios for S&P, gold, AEX and corn spot and future
prices for 12/31/2004 until 12/31/2020

One striking result is that the Clayton, C-vine and D-vine hedge ratios seem to be mirrored,
both for the VaR and ES. The only method that does not result in such a pattern is HAC. Also
the estimated hedge ratio’s differ in magnitude. For example around 2018 the C-vine and D-vine
suggest large opposite positions while the Clayton copula suggest a similar position close to one.
This also holds both for VaR and ES. Finally, the optimal hedge ratios for the VaR are negative
more often than for the ES.

5.2 out of sample results

This section presents how the obtained hedge ratios perform out of sample as described in the
methodology. Since this means that another 130 weeks are lost in the estimation we end up with
705 values for the hedging effectiveness. Table displays the reduction in downside risk in
percent for each method. The downside risk reduction is only given for two bivariate cases, the
S&P 500 and the AEX. This is because the main goal is to reduce risk in larger portfolios. In
addition to reducing risk in portfolio that include the future with the corresponding spot price
there are also two portfolio’s that include cross hedging. The first portfolio includes two stocks
and two futures and the second portfolio four stocks and four futures. The motivation for this

is that an optimal model should be flexible and therefore successful in different situations.
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Model

‘ Risk reduction

VaR (99%) ES (97.5%)
SE&P
Clayton 87.2(4.33) 95.2(1.95)
AEX
Clayton 10.7(41.7) 66.2(16.1)
SEP and AEX
Clayton 29.3(32.5) 73.5(17.9)
C-vine 39.69(29.8) 62.4(13.8)
D-vine 60.2(13.6) 85.5(4.93)
HAC 56.8 (7.11) 84.3(4.19)
S&P, AEX and USDX
Clayton 42.3 (23.0) 83.7 (6.95)
C-vine 43.9 (22.2) 64.4 (14.9)
D-vine -58.7 (46.3) 40.7 (19.0)
HAC 57.6(14.4) 85.6(4.53)
S&P, AEX, USDX, gold and corn
Clayton 46.9 (14.3) 64.4 (14.5)
C-vine 29.6 (20.0) 59.1 (13.8)
D-vine 30.6 (19.3) 62.2 (10.8)
HAC 51.1(10.8) 73.3 (6.81)
S&P, AEX, USDX, gold, corn, gas, soy, wheat
Clayton 31.4(25.8) 69.4(8.98)
C-vine 34.5(18.7) 63.4(18.5)
D-vine 17.9(35.1) 58.6(15.0)
HAC 31.6(27.5) 70.4(13.0)
Cross hedge | S&P + AEX spot and gold + corn future
Clayton -27.4 (21.6) 52.8 (14.2)
C-vine -31.4 (33.2) 51.1 (17.4)
D-vine -41.4 (34.6) 46.6 (16.3)
HAC -3.87(18.7) 59.7(4.21)
Cross hedge | corn+ gas+soy+wheat spot and SEP + AEX +USDX +gold future
Clayton 6.14 (7.11) 60.7 (4.43)
C-vine -1.72 (15.4) 53.4(10.9)
D-vine 4.16 (9.75) 59.3(8.80)
HAC 2.05 (7.48) 59.2 (5.06)

Table 5.11: mean and standard deviation of percentage reduction of downside risk for 27/06,/2007
until 31/12/2020. The hedging effectiveness is given for all models. Both the hedging effectiveness

for VaR 99% and ES 97.5% are given.

The results show that all methods substantially reduce the downside risk in all cases for the

ES. However this is not always the case for VaR. Figure [5.6| shows an example of how the returns

of the hedged and unhedged Prices and Losses look like.
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Figure 5.6: Returns for the out of sample hedged an unhedged Prices and Losses for one window
of observations in the six dimensional situation (S&P, AEX and USDX spot and future returns)

The Figure shows that the returns determined with ES hedge ratios are less volatile. This
happens in most cases and therefore we see that the ES reduction is larger than the VaR re-
duction. When the portfolio size increases this effect becomes more apparent. In the bivariate
case the risk reduction for VaR and ES is quite similar. However, ES performs well consistently,
also in larger portfolios. Therefore the objective of minimizing ES seems to improve the optimal
hedge ratios for reducing risk. A reason for this could be that ES is a coherent risk measure and
VaR is not.

When we consider the different models, the HAC has the largest mean risk reduction in the
six dimensional, ten dimensional and four dimensional cross hedge case. HAC does not always
outperform the other models, but performs well in all cases. In addition, the estimation of the
HAC goes quite fast compared to for example the vine copula.

Another interesting result is that the multivariate Clayton copula performs consistently well.
The Clayton copula reduces the risk substantially in all cases, except cross hedging in the four
dimensional case for VaR. However, in this scenario all models performs poorly when reducing
VaR is considered. On the contrary the vine copula give mixed results. Especially the D-vine
performs poorly in the six dimensional case. Here the D-vine model actually increases the risk.
The D-vine yields very different results in the different cases. The C-vine is more consistent but
does not often outperform the other models.

Figure and [5.§ show the reduction in downside risk over time in the case when the D-vine
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underperforms. These plots display that the values of the D-vine are more volatile than the ones
estimated by the other models. This coincides with the hedging ratio’s over time, these are also

more volatile for the D-vine.
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Figure 5.7: Percentage reduction of downside risk for 27,/06,/2007 until 31/12/2020. The hedging
effectiveness is given for all models for VaR 99% and ES 97.5% in the six dimensional case. This
includes S&P 500, AEX and USDX spot and future prices.
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Figure 5.8: Percentage reduction of downside risk for 27,/06,/2007 until 31/12/2020. The hedging
effectiveness is given for all models for VaR 99% and ES 97.5% in the six dimensional case. This
includes S&P 500, AEX and USDX spot and future prices.

When the cross hedging is considered the all models have a bad performance when the VaR
is considered as risk objective. When looking at the ES risk reduction there is no clear winner
or loser. [b.10l Figure shows the reduction in downside risk over time when four financial
instruments are included. HAC performs a lot better than the other models for VaR reduction

in the four dimensional case.
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Figure 5.9: Percentage reduction of downside risk for 27,/06,/2007 until 31/12/2020. The hedging
effectiveness is given for all models for the cross hedge. This includes S&P 500 and AEX spot
prices with gold and corn future prices.

A possible reason why HAC outperforms the other model is that the HAC model has a
different pattern than the other models. The other three models move in a quite similar. When
the larger cross hedging portfolio is considered all models reduce risk a lot better when the VaR
is considered. The difference is less extreme for the ES. In general the risk reduction for the ES
is more stable than the risk reduction for VaR in all scenarios. The ES risk reduction does not
change substantially when financial instruments are added or when cross hedging is considered.
This is not the case for the VaR reduction.

6 Conclusion

In conclusion using copulas to hedge spot and future prices has a positive effect in risk reduc-
tion, especially when Expected Shortfall is considered. Many different copulas are applied to
different portfolios and in almost all cases this reduces the risk with as objective minimizing
the Value-at-Risk and Expected Shortfall. First, an interesting result is that using Expected
Shortfall as hedging objectives yields better results than using VaR. The hedge ratios that are
obtained with Expected Shortfall result in less volatile portfolio returns. In addition to that,
the results are quite stable for all porftolios. This is not the case when Value-at-Risk is consid-

ered as risk objective. Another significant result is that the multivariate Clayton copula yields
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promising results in all portfolios. The multivariate Clayton copula reduces the risk in all cases
and sometimes outperforms the other models. One advantage of the Clayton copula model is
that the computation time is low and can be used for large data sets. Similar to the Clayton
copula the C-vine performs well and manages to reduce the risk in most cases. The model that
shows mixed results is the D-vine copula model. The D-vine sometimes outperforms all the
other models, but in other cases performs poorly. The hedge ratio’s and hedging effectiveness
over time show that the D-vine is the most volatile. In one case this model even increases the
risk. Therefore when reducing risk is the main goal this is not a suitable model. Lastly the HAC
model ouperforms the other models in most scenarios. This could mean that the HAC is the
most flexible and captures the dependence structures the best. Based on these results there is no
clear best model. The Clayton copula model and HAC appear to be the best choice. However
there are some limitations that should be considered. First of all only risk reduction with certain
objectives are taken into account. It could be valuable to look at other objectives, for example
taking return into account. Another improvement could be to look at even larger portfolio’s.
This research already increased the size of the portfolio’s compared to other papers that discuss
hedging with copula. However larger steps could be made to check if it is then still feasible to

reduce risk with these models.
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A Appendix

A.1 Pseudo-loglikelihood Clayton Copula
The multivariate Clayton copula pdf has the following density
k 1
c= {H(l +(i—1)0 }{H —(0+1) }{Z 0 k4110 HR)

=1

and is obtained from |Diks et al. (2010). The variable k& the number of dimensions and v; is
the empirical cdf. From the pdf the pseudo-loglikehood can be derived. With this expression

maximum likelihood estimation can be executed.

k k
Z{Z (log(1+ (i = 1)8 Z 0+ 1)log(v;) — (671 —i—k’)log(Zv;é —-k+1)}

t=1 =1 =1 =1

Where L(é) is maximised by the maximum likelihood estimator 6.

A.2 Generating uniform variables from Clayton Copula

By following this algorithm uniform values for a given copula can be simulated.
e Draw V' = (W4, ...,V}) ~ V(0,1)k"1
o Vi =C"(V|va)
o Vo =C"H(Vsvr, va)
o
o Vi =C Y V]v1,v2,...,va4)

When in particular this algorithm is applied to the Clayton copula it results in the following

expression

.

-1
C(_l)(e)(vﬂvla <oy Ui—1, Uk?) = (1 + (1 - (Z o 1) + ’U;H)(’U;_
1

0
T+(E-1)0 1))—%

a
Il
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A.3 Spot and Future prices plots
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Figure A.1: Plot of weekly spot and future prices of Corn and Soy prices. The weekly prices
consist of all the Wednesday closing prices for the sample period 31/12/1999 - 31/12/2020
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Figure A.2: Plot of weekly spot and future prices of Natural Gas and Wheat prices. The weekly
prices consist of all the Wednesday closing prices for the sample period 31/12/1999 - 31/12/2020
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Figure A.3: Plot of weekly spot and future prices of the S&P 500, AEX, USDX and US gold

prices.
31/12/1999 - 31/12/2020

The weekly prices consist of all the Wednesday closing prices for the sample period

A.4 Families selected for vine copula

‘ Family
Tree 1 | Plackett Plackett Joe Joe Joe Plackett Plackett Joe Frank
Tree 2 | t t t t t t t independent
Tree 3 | t t t Gaussian t t Plackett
Tree 4 | Gaussian independent t independent t fgm
Tree 5 | independent Surjoe independent Plackett fem
Tree 6 | independent t t independent
Tree 7 | Clayton t Surjoe
Tree 8 | Palckett t
Tree 9 | independent

Table A.1: Copula family’s selected for the C-vine at each node for SP, AEX, USDX, gold and

corn spot and future prices.
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Family

Tree 1 | Plackett t Plackett Joe Joe Plackett Plackett Plackett Plackett
Tree 2 | t t t t t t t t

Tree 3 | amhaq surgumbel t t t t t

Tree 4 | independent t t t surgumbel t

Tree b | t t t t t

Tree 6 | Plackett t t Plackett

Tree 7 | t Clayton Surgumbel

Tree 8 | t fgm

Tree 9 | t

Table A.2: Copula family’s selected for the D-vine at each node for SP, AEX, USDX, gold and
corn spot and future prices.

B Optimal hedge ratio
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