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1 Introduction

The housing prices play an essential role in the economy. For example, the IMF Deputy

Managing Director Min Zhu stated in a speech that the housing sector satisfies an es-

sential need (shelter) and that housing is an important component of investment. He

summarizes: ”in short, a well-functioning housing sector is critical to the overall health

of the economy” (Zhu, 2014). Recent literature also states the importance of housing

prices on the economy and especially the business cycle (see Case et al. (2005), Leamer

(2007), Aye et al. (2014), Nyakabawo et al. (2015)). Balcilar et al. (2014) demonstrate

the significant impact that declining housing prices had on the ”Great Depression”. This

means that studying housing prices, due to their big influence on the overall economy, is

of great importance.

When analyzing housing prices, we need to determine what their drivers are so we can ex-

plain or forecast this big factor in the overall economy. First, we see in the literature that

macroeconomic variables are important to housing prices (Apergis et al. (2003), Jacobsen

and Naug (2005), Taylor (2007) and San Ong (2013)). Second, literature shows signs

of spillovers of housing prices or the volatility of housing prices from countries to other

countries (Vansteenkiste and Hiebert (2011), Cesa-Bianchi (2013), Hirata et al. (2013)

and H. S. Lee and Lee (2018)). Third, we need to consider the influence of monetary

policy on housing prices. On one hand, literature shows that housing prices and housing

starts respond negatively to monetary policy shocks (see Iacoviello (2005), Jarocinski and

Smets (2008), Vargas-Silva (2008a), Vargas-Silva (2008b) and Choudhry (2020)), while

others find negligible effects of monetary policy shocks on housing prices (for example

Fratantoni and Schuh (2003) and Del Negro and Otrok (2007)).

The mentioned drivers lead to modelling challenges as we want to jointly model the hous-

ing prices of countries with macroeconomic variables, while also allowing linkages between

countries. This means for example that a regular VAR model is not suitable, because a

regular VAR cannot model the cross country dependencies. Therefore, this research makes

use of Panel VAR (PVAR) models. PVAR models contain multiple countries with multi-

ple variables in one single model, meaning that lags of foreign variables can influence the

housing prices of countries. This means that PVARs can capture dynamic interdepen-

dencies. Furthermore, PVARs capture static interdependencies in the covariance matrix.

Moreover, PVARs account for cross sectional dynamic heterogeneities as the coefficients

can be different for every country. Lastly, literature also states that PVAR models are a

good option to model multiple countries in one model (see for example Dees et al. (2007)

and Canova and Ciccarelli (2009)).

However, when jointly modelling countries with different variables in a PVAR setting,

one must estimate a lot of parameters. This means more flexibility in the model, but the

downside is that the parameter uncertainty in the model becomes high. This makes it less
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clear what the driving factors of housing prices are. Also, the forecasting accuracy drops

with parameter uncertainty. Sometimes, the model cannot be estimated altogether due

to the high amount of estimated parameters compared to the amount of observations.

This problem of high dimensionality in the PVAR model is not a new topic in the liter-

ature and numerous methods have been developed to tackle this problem. However, it

is not immediately clear what model we should use to model the housing prices. Every

model uses different assumptions when estimating the variables which may or may not

be better suited to this multi-country setup with multiple variables/predictors from each

country. This means that we want to implement different estimation set-ups when mod-

elling the housing prices.

Therefore, in this research we will use an extensive set of multi-country models which

jointly model housing prices of various economies to forecast housing prices and we in-

vestigate whether housing prices and macroeconomic variables of different countries are

important predictors for housing prices of a specific country. In a second step, we focus

on the role of monetary policy shocks.

First, we use a Global VAR model (GVAR), because GVAR models have already been

used in forecasting exercises and it shows promising results compared to the regular VAR

models (Han and Hee Ng (2011) and Greenwood-Nimmo et al. (2012)). In a GVAR model,

one assigns weights to the variables from the foreign countries in country-specific VARs

to create fewer variables in the model. This leads to a sparser and thus better to estimate

model (see Pesaran et al. (2004), Dees et al. (2007), Pesaran et al. (2009), Cuaresma et al.

(2016) for more). Also, due to the weights, we know for each country which variables,

originating from which specific country, are important to estimate the housing prices of

a specific country.

Another kind of model that we use for this research is the Bayesian Stochastic Search

Specification Selection (SSSS) (Koop & Korobilis, 2016). This method imposes prior re-

strictions in the PVAR framework. Using the SSSS method, it is possible to explicitly

model the dynamic and static interdependencies and the cross-section heterogeneities.

Also, we can analyse the influence of each country on other countries.

Korobilis (2016) extends on the SSSS framework and creates two new priors: the Bayesian

Factor Clustering and Selection (BFCS) prior and the Bayesian Mixture Shrinkage (BMixS)

prior. This research also incorporates these priors.

Literature also shows promising results for SSSS, BFCS and BMixS when forecasting

macroeconomic variables. For example, Christou et al. (2017) already use SSSS, BFCS

and BMixS to forecast the real housing returns in ten countries with the help of news-

based measure of economic policy uncertainty. In their results, these methods outperform

the AR and VAR benchmark for most countries. Furthermore, SSSS, BFCS and BMixS

also outperforms the benchmark in Koop and Korobilis (2019).

Next to Bayesian methods, one can look at machine learning methods. One of the more

2



well known methods is the Least Absolute Shrinkage and Selection Operator (LASSO),

which is introduced by Tibshirani (1996). Numerous papers use the LASSO penalty in

VAR settings (see for example Ren and Zhang (2010), W. Lee and Liu (2012), Basu and

Michailidis (2015) andMelnyk and Banerjee (2016)). However, we cannot implement these

methods into our PVAR setting, as they are built for the VAR setting and do not take

PVAR characteristics into account. For example, the LASSO penalty is fixed for the whole

system, but countries can be different such that different penalties are required for each

country. Camehl (2022) develops a panel Lasso approach for the PVAR setting, which

we will use. This Lasso approach keeps the nature of the PVAR model while creating a

reduced form model. Camehl (2022) also show some promising results when forecasting

inflation and industrial production growth of several countries.

In this research, we model and forecast the housing prices with the GVAR, SSSS, BFCS,

BMixS and Lasso PVAR. All of these models use different assumptions and estimation

methods. We compare the forecast accuracy and the output of the different models to see

if foreign housing prices matter, if macroeconomic variables influence the housing prices

and to determine which model and therefore assumptions and restrictions fit the data the

best.

Furthermore, next to analysing the influence of foreign housing prices and macroeco-

nomic variables, we want to explicitly model the effect of monetary policy shocks in

housing prices. A lot of research has been done by identifying monetary policy shocks

out of a structural reduced form VAR model. For example, Lanne and Lütkepohl (2008)

used the changes in the volatility of the shocks for identification. Others used a high

frequency identification (HFI) (Cook and Hahn (1989), Kuttner (2001), Cochrane and

Piazzesi (2002)). This type of identification uses the fact that a disproportionate amount

of monetary news is revealed at the time of the eight regularly scheduled FOMC meetings

each year (see also Nakamura and Steinsson (2018)).

The monetary policy shock series that this research uses is developed by Bu et al. (2021).

With their approach, they identify monetary policy shocks in such a way that it captures

conventional policy changes (for example interest rate changes) as well as unconventional

policy changes (for example Quantitative Easing). This shock series is based on the US

monetary policy. With the identification of the monetary policy shocks, the last step is to

look at the effect of these shocks on the housing prices. A method that proves to perform

really well is the local projections method (Jordà, 2005), where we retrieve an impulse

response function that reveals the effect of the US monetary policy changes on each of

the countries.

For this research we use data from the OECD (OECD, 2022). We retrieve data for hous-

ing prices, inflation, gross domestic product and share prices of 16 different countries from

1970Q1 until 2021Q4. Also, we use an existing monetary policy shocks series from Bu

et al. (2021).
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Research on housing prices has already been done. However, most of the research has

been done on investigating the housing prices of a single country. This research combines

the housing prices of different countries into a single model with multiple variables into

a panel VAR model, which has not been done with housing prices so extensively. The

research that comes closest to this is done by Christou et al. (2017) where they forecast

the housing prices of 10 countries with Bayesian methods. However, the current research

incorporates more countries and more variables per country. Moreover, this research does

not only use Bayesian methods, but also a PVAR LASSO approach to see which kind

of model suits the data better. Also, next to forecasting, this research analyzes which

countries influence the housing prices of other countries. Also, with the results of this

research, policymakers are able to see what effect the US monetary policy will have on

the housing prices of their country, so they can anticipate the US monetary policy.

This research finds that the forecasts of the housing prices are more accurate with the

tested PVAR models, indicating that housing prices of other countries do matter when

forecasting housing prices. We find that especially the point forecasts improve with the

tested models, whereas the improvement on the density forecasts is less significant. On

average, we conclude that the LASSO models score better than their counterparts for both

the point and density forecasts. However, there is not a single model that consistently

outperforms for every single country, meaning that for each country a different model is

preferred.

Moreover, if we analyze the estimated parameters of the models, we see that there exist

some dependencies between countries, indicating that it is appropriate to jointly model

the housing prices of different countries, as the housing prices of countries can spillover.

Furthermore, the impulse response functions from the local projections method show that

the housing prices do react mostly negatively to a positive monetary policy shock, where

a positive monetary policy shock means tightening the monetary policy.

This paper is structured as follows. Section 2 covers the data and some characteristics

of the data. Section 3 contains the methodology, consisting of the models used and the

methods for comparing them. Section 4 presents the results. Lastly, section 5 concludes

the research and provides directions for further research.

2 Data

This research uses data from the OECD (OECD, 2022). The data we use is the nominal

housing prices of 16 countries, being: Australia, the Netherlands, Canada, Switzerland,

Germany, Denmark, Spain, Finland, France, United Kingdom, Ireland, Italy, Japan, Swe-

den, United States and South Africa 1. Furthermore, we use inflation, Gross Domestic

1The country codes are respectively: AUS, NLD, CAN, CHE, DEU, DNK, ESP, FIN, FRA, GBR,
IRL, ITA, JPN, SWE, USA and ZAF
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Product and a share price indicator, all reported by the OECD for the mentioned coun-

tries. See section 6.1 in the appendix for a more in detail explanation of the variables.

The data is quarterly reported from 1985Q2 until 2021Q4, which makes it 147 datapoints

per country in total.

Figure 1: The nominal housing prices of 5 countries (2015 = 100)

Figure 1 shows the values of the housing prices for five different countries. We can see

that the housing prices are generally going up throughout the years. Also, we see that

the housing prices in the Netherlands, USA and Great Britain are going down when the

financial recession started in 2008. However, the housing prices in Australia and Germany

do not show that pattern.
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Figure 2: Cross correlations of the housing prices

Figure 2 shows a heatmap of the cross correlations between the countries. We see that

almost all the variables are highly positive correlated. This is in line with what we expect

due to how the data is structured, because for every country the variable is set to 100 in

2015 and the other values are based on 2015. However, it does imply that the housing

prices of the countries are comoving. The only outlier in this case is Japan, which has

negative correlations with all the other countries. This is due to the fact the housing

price of Japan drops in a large amount of the sample, while the housing prices of the

other countries are rising. Also, when looking at this graphs, we suspect non-stationarity

for the variables. As we implement VAR type models in this research, we need to check

the variables for every country for stationarity. We do this by the means of an augmented

Dickey–Fuller (ADF) test.
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Table 1: P values of the ADF test

AUS NLD CAN CHE DEU DNK ESP FIN
House 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Inf 0.17 0.40 0.18 0.04∗ 0.30 0.05∗ 0.05∗ 0.04∗

GDP 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗

Share 0.98 0.96 0.99 1 0.95 1.00 0.66 0.80

FRA GBR IRL ITA JPN SWE USA ZAF
House 1.00 1.00 1.00 1.00 0.66 1.00 1.00 1.00
Inf 0.01∗ 0.20 0.08 0.01∗ 0.00∗ 0.03∗ 0.31 0.11
GDP 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗

Share 0.97 0.94 0.91 0.77 0.73 1.00 1.00 1.00
Note: This table shows the p values of the ADF test
for every variable of every country. A * means that
the null hypothesis of a non-stationary time series is
rejected at a 5% significance level

Table 1 shows the results of the ADF test for the variables. We see that only the GDP

time series is consistently stationary across the countries. This is due to the fact that the

GDP series already contain the log difference of the GDP. To ensure the other variables

are also stationary, we take the log difference of the housing prices, the log difference of

the share prices and the first difference of the inflation. The reason we take the regular

first difference for the inflation is that the inflation contains negative values, meaning that

we can not take a log. We perform the ADF test again on the adjusted time series and

find that every time series is stationary. Therefore, we continue to work with the adjusted

time series. For convenience, we refer to the normal variable names in the text.
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Figure 3: Cross correlations of the first difference of the log housing prices

Figure 3 shows the correlations of the log first differences of the housing prices. This

heatmap shows a different insight than the heatmap with the regular housing prices val-

ues. For example, Germany has a negative correlation with almost all the countries,

meaning that the housing prices of Germany go down compared to the previous period

when the other housing prices are going up. Furthermore, the values of the cross correla-

tion are closer to zero compared to the original cross correlations. The difference between

2 and 3 show that the high correlation from the raw values comes from the positive trend

in almost all series.

Some country pairs are still closely related in figure 3, for example Australia-United King-

dom, France-Spain and Finland-United Kingdom. This makes us believe that countries’

housing prices can contain information for other countries. However, we need to take into

account that some countries are not likely to be connected. This means that the reduced

form PVAR models used in this research are well suited for this data.
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3 Methodology

3.1 General PVAR model

A panel vector autoregressive model is a variant of the regular vector autogregressive

model. A PVAR model includes multiple countries with multiple variables. With this

setup, it accounts for interdependencies between countries and heterogeneities across vari-

ables. First, we denote a general unrestricted PVAR model. This model can be written

for country i, with i = 1, . . . , N :

yi,t = A1,iYt−1 + · · ·+ Ap,iYt−p + ϵi,t, (1)

where yi,t is a vector of dependent variables with a length of G for country i. t is the

moment of time. Yt−p is a vector where the different yi,t−p are stacked and is an NG× 1

vector. p is the order of the PVAR model and coefficient matrix Ai,p is a G×NG matrix.

Lastly, ϵi,t are the error terms with E(ϵi,t, ϵj,t) = Σij. One can see the problem with

an unrestricted PVAR model, as the estimated parameters can become larger than the

amount of data in time T , which means the model cannot be identified. Also, in the

unrestricted form, the dependencies are unrestricted, which means that one variable of

a country can have different relations with the variables of other countries. To counter

above mentioned problems, one can look at shrinkage methods. However, we have to treat

the PVAR model differently to a ”normal” large VAR model, as we need to take the panel

structure of the data into account.

For convenience later on, we rewrite the Matrix A from equation 1 to:

Ap =


Ap,1

Ap,2

...

Ap,N

 =


Ap,11 Ap,12 · · · AP,1N

Ap,21 Ap,22
. . .

...
...

. . . . . . Ap,(N−1)N

Ap,N1 · · · Ap,N(N−1) Ap,NN

 , (2)

where every Ap,jk is a G×G matrix.

3.2 GVAR

The first reduced form model that we use is the so called Global VAR model Cuaresma

et al. (2016). We rewrite the model in equation 1 to a general VARX model:

yi,t = Γi,1yi,t−1 + · · ·+ Γi,pyi,t−p + Ξi,1y
∗
i,t−1 + · · ·+ Ξi,py

∗
i,t−p + ϵi,t, (3)
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where yi,t is a vector of dependent variables with a length of G for country i. We define

y∗i,t−1 as:

y∗i,t−1 =
N∑
i=1

mi,jyj,t−1, (4)

where we define mi,j as the non-negative weight of country j on country i, with mi,i = 0

and
∑N

j=1 mi,j = 1. Also, note that mi,j and mj,i are not necessarily equal. In other

words, the value of a variable of country i at time t is dependent on the previous values of

variables of country i and weighted averages of the variables of the other countries. This

means that, based on the weights mi,j, the influence of some variables will shrink to zero

when mi,j is close to zero.

When choosing the weights for the GVAR model, one can consider a lot of theoretically

possible options. However, we are subject to data availability. For this research, we make

a weight matrix with the help of trade weights. This is also a well known and widely used

method for GVAR models (see for example Dees et al. (2007)), because trade is a major

indicator of the business-cycle co-movement (Baxter & Kouparitsas, 2005). We create

the trade weights by summing the import and export between the countries over 2015.

We retrieve the data about export and import from the WITS (World Integrated Trade

Solution) database from the World Bank2. After that, we rescale the matrix so that the

weights sum to 1 for every equation.

2For example, see https://wits.worldbank.org/CountryProfile/en/Country/NLD/Year/2015/TradeFlow/EXPIMP
for the import and export numbers in 2015 for the Netherlands

10



Figure 4: Heatmap of the weights used in GVAR

For clarity, we show a heatmap of the weights used for the GVAR model3. Figure 4

shows that heatmap. Two countries stick out with relatively high weights to almost every

country, Germany and the United States.

The main advantage of the GVAR model is that it explicitly reduces the high dimension-

ality of the general PVAR model, while still allowing for interdependencies between the

countries through the weighted variables. This also means that the user can define the

interdependencies themselves and take into consideration what is important for the model

and variables. However, this explicit modelling comes at a cost. If the user misspecifies

the weights in the model then the entire model is misspecified and with that any insights

and results.

3For the raw weight values, see table 21 in the appendix
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3.3 Bayesian methods

Another model that we use is the Stochastic Search Specification Selection (SSSS) pro-

posed by Koop and Korobilis (2016). They took the framework of the Stochastic Search

Variable Selection (SSVS) and transformed it in a way so that the model takes the panel

structure of the data into account. For more on SSVS, see George and McCulloch (1993)

and George et al. (2008). In their original paper, they distinguish three different restric-

tions that can be imposed on the unrestricted PVAR model: dynamic interdependencies

(DI), static interdependencies (SI) and cross-section heterogeneities (CSH). However, in

later forecasting applications using this model, the SI restriction search is dropped (see

for example Korobilis (2016)). This research therefore drops the SI restriction search.

3.3.1 SSVS

SSVS is a method that shrinks the parameters to zero. It uses a prior to determine an

estimated value for the parameters. It can be expressed as:

αj|γj ∼ (1− γj)N (0, c× τ 2j ) + γjN (0, τ 2j ), (5)

with αj being the parameter that is estimated, which in our case would be an element in

Ap in equation 1. γj ∈ 0, 1 an unknown parameter, c > 0 a small scalar, and τ 2j a chosen

variance. With this mixture, we can see that the first part has a variance near 0 and the

second has a large variance. So based on the value of γj, αj is estimated near zero (γj

= 0) or is unrestricted (γj = 1). Koop and Korobilis (2016) used this Bayesian SSVS

framework for their SSSS method.

3.3.2 SSSS

In the SSSS we search for DI and CSH. A DI between country j and k means that the

variables of country k affect the variables of country j. With this matrix, we can impose

that there are no DIs from country k to country j by setting Ap,jk to zero for every p.

However, this restriction does not mean that there are no DIs from country j to country k,

so Ap,kj is not set to zero (unless we impose a restriction on that of course). We implement

this restriction in the framework of equation 5 as follows:

Ap,jk|γDI
p,jk ∼ (1− γDI

p,jk)N (0, c× τ 2j ) + γDI
p,jkN (0, τ 2j ), (6)

γDI
p,jk ∼ Bernoulli(πDI),∀i ̸= j, (7)

where Ap,jk is the G×G matrix from equation 2. If γDI
jk is 0, Ap,jk is shrunk to zero. So

instead of shrinking one variable to zero as in the SSVS framework, entire blocks of the

matrices are reduced to zero.
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CHS between country j and k means that the VAR coefficients of the own variables differ

between the countries, while an absence of CHS means that they are exactly the same.

Imposing this restriction in the framework of equation 5 can be done as follows:

Ajj|γSI
w ∼ (1− γSI

w )N (Aii, c× ξ2j ) + γSI
jk N (0, ξ2j ), (8)

γCSH
w ∼ Bernoulli(πCSH

w ),∀i = j, (9)

so if γCSH
w is equal to 0, the value of Ajj will shrink towards Aii.

With the SSSS priors, we cannot get a closed form posterior distribution of the variables.

To get the posterior distributions, we use the Gibbs sampler (see Koop and Korobilis

(2016) for more details).

The main advantage of SSSS is that it clearly takes the PVAR structure into account with

the restriction searches. It shrinks entire blocks of the parameter matrix to zero corre-

sponding to the country dependencies and it shrinks the countries own VAR coefficients

to have similar values to those of other countries. This reduces the high-dimensionality

of the general PVAR model. Also, with this Bayesian framework, we can analyze the

dependencies between the countries easily by taking a look at the posterior distributions

of γDI
p,jk and γCSH

w . This can be done by looking at the draws from the Gibbs sampler and

averaging them. Also, we do not need to make explicit assumptions about cross-country

dependencies as with the GVAR model. Instead, the model itself determines the relation-

ships, meaning that the SSSS is less prone to misspecification.

The main advantage of the SSSS model is also tied to its main disadvantage. By searching

with entire matrices, we can only draw conclusions with respect to cross-country inter-

dependencies and heterogeneities. We do not know which specific variable is important

for the interdependencies and heterogeneities. On the other hand, this model can set the

effect of an important variable to zero, because the other variables in that specific country

are not important for that equation. Also, the structure of the SSSS prior means that the

restrictions only hold approximately.

Furthermore, this model and algorithm requires a lot of computational power, because

the MCMC Gibbs sampler needs a lot of draws for accurate results. This means that

searching for other hyperparameters in the SSSS model is not feasible time wise.

3.3.3 BFCS and BMixS

Korobilis (2016) suggests two new priors that counter the shortcomings of the SSSS prior.

The first prior is the Bayesian Factor Clustering and Selection (BFCS) prior. This prior

is inspired by Canova and Ciccarelli (2009). They extract latent factors from the VAR

coefficients. These factors serve two purposes: they provide a lower dimensional repre-

sentation of the coefficients and group relevant coefficients together. To write down this
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prior, we first rewrite the PVAR model to:

Yt = Ztα + ϵt, (10)

where Zt = ING ⊗ Yt−1, α = vec(A′) is the vector of all the PVAR coefficients with the

length of K = NG2. A structure like Canova and Ciccarelli (2009) can be written as:

α = Ξθ + υ, (11)

where Ξ is a K × s matrix of factor loadings, θ is an s × 1 vector with the factors, with

s ≪ K and υ The downside with the prior of Canova and Ciccarelli (2009) is that they

do not consider that a coefficient might be zero, as every coefficient αk is clustered with

a non-zero coefficient αl (Korobilis, 2016). To deal with that problem, Korobilis (2016)

proposed the following prior, which he calls the BFCS:

αk|γk, θ,Σ ∼ (1− γk)δ0(α) + γk∆k, (12)

∆|θ,Σ ∼ N (Ξθ,Σ⊗ σ2I), (13)

θ ∼ N (0, c), (14)

γk ∼ Bernoulli(π), (15)

where ∆k is the kth row matrix ∆ and δ0 is the Dirac delta. This means that αk has prior

a point mass at zero with probability (1- π) (Korobilis, 2016).

The second prior is called the Bayesian Mixture Shrinkage (BMixS) prior. This prior is

inspired by Dunson et al. (2008), by using infinite mixtures, by means of Dirichlet process

priors, in order to generalize spike and slab priors and at the same time allow for soft

clustering of similar coefficients (Korobilis, 2016). Korobilis (2016) adjusts the prior of

Dunson et al. (2008), as the latter one is not flexible. This prior can be written as:

αk|µk, τ
2
k ∼ N (µk, τ

2
k ), (16)

(µk, τ
−2
k )|π ∼ πδ0(α)× δ1010(τ

−2) + (1− π)F, (17)

F ∼ DP (θF0), (18)

F0 ∼ N(0, λ)×Gamma(
1

2
,
1

2
), (19)

π ∼ Beta(1, ϕ), (20)

with DP (θF0) is a Dirichlet process with base measure F0. We see that αk has a Normal

prior, but due to the distribution of µk and τ 2k ) it can have multiple locations.

The main advantage of these two priors compared to the SSSS prior is that the BFCS en
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BMixS search for each element in the matrices instead of the whole matrix. This means

that some of the elements in a matrix can be zero and others nonzero. However, this

means that the BFCS and BMixS lose the clear interpretation of interdepencies.

Furthermore, these priors also requires a lot of computational power as with the SSSS, be-

cause the same algorithm is used. This means that we cannot search for hyperparameters

for these priors.

3.4 PVAR LASSO

The third type of model that this research uses is a model proposed by Camehl (2022).

They used a penalized LASSO approach to be able to get a reduced model for the large

PVAR model. First, we rewrite to general PVAR model from equation 1 to a more

compact form:

Y = BX + U, (21)

with Y = (Y 1, . . . , YT ), Yt = (y
′
1t, . . . , y

′
Nt)

′
and B = (B1, . . . , BP ) withBp = (A1p, . . . , ANp)

′.

Error term U has a mean of zero and covariance Matrix Σ. We can write the optimization

problem of the PVAR LASSO as:

argmin
Bij

klp

=
1

T

T∑
t

N∑
i,j

G∑
k,l

wij
kl

(
Y i
k,t −

P∑
p

bijklpX
j
lp,t

)2

+γ
N∑
i=j

G∑
k,l

|bijkl1 − b̄kl|

+
P∑

p=2

N∑
i=j

G∑
k,l

λkρ
α|bijklp|

+c

P∑
p=1

N∑
i ̸=j

G∑
k,l

λkρ
α|bijklp|,

(22)

where Bij
klp is an element in B, referring to lag ρ of variable l of unit j in the equation of

variable k of unit i. We distinguish four penalty terms in the equation, namely α, λ, γ

and c.

The penalty α (with α > 0) in ρα is an autoregressive penalty term. If ρ increases, the

penalty term increases. This comes from the idea that recent lags have more information

than less recent lags.

The penalty λk is a VAR penalty that can have different values for each equation k. This

penalty term comes from the idea that equations itself have different characteristics and

thus needs a seperate penalty term.

The penalty γ is a PVAR penalty that shrinks the value of the parameter variables to

the average of that parameter variable for each equation. This comes from the idea that
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homogeneity between equations exists.

The penalty c is a PVAR penalty that penalizes variables that are from a different country

than the dependent variable in that specific equation.

As mentioned by Camehl (2022) is the loss function of the optimization problem the

weighted sum of the squared residuals with weights from the covariance matrix.

As in Camehl (2022), we estimate the covariance matrix with the help of Graphical LASSO

(GLASSO) (Friedman et al., 2008). We maximize:

logdet(Ω)− tr(SΩ)− ρ∥Ω∥ (23)

which is a Gaussian penalized log-likelihood. S is the emperical covariance, tr is the trace

and ∥Ω∥ is the sum of absolute values of each element of Ω.

As with the SSSS method we cannot solve the optimization problem in a closed form. So

analog to Camehl (2022) we solve the optimization problem with the coordinate descent

algorithm (Friedman et al. (2007) and Friedman et al. (2010)). For the full derivation,

see Camehl (2022).

Analog to the SSSS approach, the PVAR LASSO takes the PVAR structure into account.

As mentioned in Camehl (2022) are the PVAR penalties γ and c designed to shrink to

the cross-sectional homogeneity and no dynamic interdependencies (similar to the DI and

CSH restrictions in SSSS). Furthermore, it comes with additional shrinkage to the AR

and VAR coefficients.

Also, compared to the SSSS, this method searches for the relevance of individual variables

instead of looking at an entire block of variables. This means that an important cross-

country variable will not be set to zero, regardless if the other variables in that country

are important or not.

However, we lose the clear interpretation that the SSSS method gives us. This method

does not model the cross-sectional homogeneity and dynamic interdependencies as explic-

itly as the SSSS methods.

Furthermore, this method requires a lot of computational power. This means that we

cannot search extensively for hyperparameters as we want to, because it simply will take

too much time.

3.5 Forecast implementation

3.5.1 Hyperparameter selection

For the LASSO approach, we follow Camehl (2022) to estimate the optimal hyperparam-

eters, which uses a rolling cross-validation approach (Song and Bickel (2011), Stock and

Watson (2012)). We split the total of 146 datapoints per variable into three samples,

the train, validation and test sets. The first sample is from period 1 until period 118.
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The test sample is used to train the model. After that, we evaluate the one step ahead

forecasts for the validation set, which is period 119 until 130. We perform a grid search

where γ, α and c are fixed and the optimal λk is found for every combination of γ, α

and c. Then we select the group of hyperparameters that minimizes the one step ahead

mean squared forecast error of the validation set. The grid of hyperparameters we test fol-

lows Camehl (2022) and is as follows: γgrid = [0.2, 0.4, 0.6, 0.8], αgrid = [0.2, 0.4, 0.6, 0.8],

cgrid = [1.2, 1.4, 1.6, 1.8] and the grid for λK consists of twelve values between 0.01 and

max(max(XY
′
)).

For the Bayesian methods, we do not do a grid search due to the high amount of com-

putional time it requires to estimate a model. Instead, we follow the hyperparameters

chosen in Korobilis (2016), which is the following: c × τj = 0.01, τj = 4, c × ξj = 0.01,

ξ = 4, π = 0.5 for every Bernoulli distributed variable, θ = 1 and λ = 4.

3.5.2 Lag length selection

Choosing the optimal lag length is important in a PVAR framework. However, we have to

take the amount of observations that we have in our dataset into account. For the large

PVAR model where we have 16 countries with 4 variables for each country a maximum

lag length of 1 can be chosen. Otherwise we cannot estimate the SSSS models due to the

lack of observations compared to the amount of variables.

A lag length of 1 is not an unreasonable assumption for financial variables. Nevertheless,

we also want to test the models with a larger lag length. To achieve that, we fit restric-

tionless PVAR models estimated with OLS with only the housing prices with lag lengths

1, 2, 3 and 4. We only fit housing prices, because we cannot fit multiple variables per

country with multiple lags and we want to compare the additional information that more

lags give. We fit the model with the observations in the train and validation set and check

the Akaike Information Criterion (AIC) and the Schwarz Information Criterion (BIC).

Table 2: AIC and BIC values of the unrestricted PVAR models

Lag length 1 2 3 4
AIC -12524.6 -12543.6 -12573.6 -12481.2
BIC -11744.6 -11033.6 -10337.6 -9523.3

Table 2 shows the values of the AIC and BIC. We see that the lowest value for the AIC

is at lag length 3 and the lowest value for BIC is at lag length 1. This difference can be

explained by the fact that the BIC is less tolerant for a higher number of parameters than

the AIC. We already implement a model with lag length 1, meaning that we can also fit

a model with lag length 3. We can only incorporate the housing prices variables into this

model, because adding more variables would mean that we cannot estimate the model.
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3.5.3 Tested models

We forecast the housing prices with the following models for both of the applications:

• GVAR: the GVAR model as described

• SSSS1: the SSSS model with DI and CSH restriction search

• SSSS2: the SSSS model with only DI restriction search

• BFCS: the Bayesian model with the BFCS prior

• BMixS: the Bayesian model with the BMixS prior

• LASSO1: the PVAR LASSO model with penalties λk, c and α

• LASSO2: the PVAR LASSO model with penalties λk, c, α and we set the covariance

matrix to the identity matrix

• LASSO3: the PVAR LASSO model with penalties λk, c, α and γ

• OLS: the unrestricted PVAR model estimated with OLS

• RW: the random walk model

We use two benchmark models in this research. The first benchmark model is the unre-

stricted PVAR model. This model can be estimated with OLS. In line with the models

we estimate, we estimate a PVAR model with 4 variables per country and 1 lag and a

PVAR model with only the housing prices per country and 3 lags and compare those to

their respective counterparts. Furthermore, we compare the models to a random walk

model where the prediction of future observations is simply the last known observation

of that specific variable.

3.6 Evaluation of the forecast

To evaluate the models, we forecast the variables with a rolling window over the period

2018Q4-2021Q4 which is in total 16 observations to forecast per country. However, we

have a maximum forecast horizon of 4, meaning that we forecast a total of 12 observation

per forecast horizon. For more than one step ahead forecasts we use iterated forecasts

(Marcellino et al., 2006).

In this research we use the Mean Squared Forecast Error (MFSE) to compare the point

forecasts of the PVAR models to the benchmark model. We calculate the MSFE as

follows:

MSFE =

∑Z
z=1(yk,z − ŷk,z)

2

Z
, (24)
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with Z being the amount of forecasts, yi,k,z the actual value of the variable k from country

i at time z. To compare the MSFE of the PVAR models to the benchmark model, we use

the modified Diebold Mariano test proposed by Harvey et al. (1997). This test is based

on the regular Diebold Mariano test (Diebold & Mariano, 1995), which uses the Diebold

Mariano statistic. This statistic is calculated as follows:

DM =
d̄

σ̌d

, (25)

where d is a vector where we subtract the errors of the PVAR models from the errors of

the benchmark model. d̄ is the mean of d and σ̌d is calculated as follows:

σ̌d =
σ̂dz√
Z
, (26)

with σ̂dt being the standard deviation of d.

The modified Diebold Mariano statistic as calculated as follows:

DMHLN =

√
Z + 1− 2h+ Z−1h(h− 1)

Z
DM

H0→ t(Z−1), (27)

with h as the forecast horizon, Z the amount of forecasts, DM as calculated in equation

25 and H0 being that the forecast errors are equal to each other or that the forecast of

the benchmark model is better. This means we are doing a one sided test, as we are only

interested whether the PVAR models are performing better than the benchmark model.

The reason why we use the modified DM test compared to the regular one has to do

with our amount of forecasts. The amount of forecasts in this research is quite low and

the regular DM test tends to over-reject the null hypothesis for a small sample size. The

modified DM test takes a small sample size into account, which is suitable in our case.

Next to the point forecast, we also evaluate the density forecasts, because the density

forecasts are able to capture the uncertainty of the estimates. We compare the density

forecasts of the models with the average logarithmic scores (ALS) (Amisano & Giacomini,

2007). We calculate the ALS as follows:

ALS =

∑Z
z=1 logf̂j,t(yk,z)

Z
, (28)

where f̂j,t is the estimated predictive density.

For estimating the predictive density for the Bayesian models we follow Korobilis (2016).

For the LASSO methods and the GVAR method we follow Garcia et al. (2017) and Camehl

(2022) to calculate the predictive density, where they bootstrap the in-sample residuals.

For every rolling window we randomly draw an in sample-residual of the equation and that

value is added to the forecast. We repeat that 10,000 times to construct the predictive
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density.

To compare the ALS of the PVAR models to the benchmark model, we follow Amisano

and Giacomini (2007). We construct an likelihood ratio statistic as follows:

AGo,m =

∑Z
z=1(logf̂o,t(yk,z)− logf̂m,t(yk,z)

Z
, (29)

with Z the amount of forecasts, o the model we want to test and m the benchmark model.

The test statistic is as follows:

t =
AGj,k

σ̂AG/
√
Z
. (30)

with σ̂AG being the standard deviation of AGo,m. This statistic follows an standard normal

distribution under the null hypothesis (see for example Giannone et al. (2015) and Berg

and Henzel (2015)).

3.7 Monetary Shock Series

We retrieve an already existing US federal reserve monetary shock series from Bu et al.

(2021). The series is created by using a two-step approach with partial-least squares

estimation, which involves the utilization of daily interest rate data across various matu-

rities. The underlying concept of constructing this measure is to estimate the monetary

policy shock, which is an unobservable phenomenon, by employing the Fama and Mac-

Beth two-step regressions (Fama & MacBeth, 1973). The process starts with gauging the

response of outcome variables to FOMC announcements. Firstly, time-series regressions

are conducted to evaluate the sensitivity of interest rates at different maturities to FOMC

announcements, which is similar to the asset beta in the original Fama-MacBeth method.

This regression can be written as:

∆Ri,t = θi + βi∆R2,t + ξi,t, (31)

where ∆Ri,t is equal to the change in the zero-coupon yield with maturity i in years. Also

they define: ξi,t = −βiϵ2,t + ϵi,t, with ϵi,t being the monetary policy shock unrelated to

monetary policy news and thus the shock we want to get. We see that the full spectrum

of maturity yields are regressed to the 2 year rate. Bu et al. (2021) give three reasons for

the 2 year rate. First, it is used by many others in the literature (see for example Gilchrist

et al. (2015)). Second, it is not constrained by the Zero Lower Bound while capturing

crucial aspects of Fed monetary policy (Swanson & Williams, 2014). Third, they state

that normalizing to a relatively short-term rate helps reduce the information effect from

the estimates.

After the initial regression we get estimates of the monetary policy shock with the follow-
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ing regressions:

∆Ri,t = αi + ϵalignedt β̂i + vi,t, (32)

where β̂i is estimated from equation 31 and ϵalignedt is the monetary policy shock we

want to estimate4. They do these regressions for 1-day window periods around FOMC

announcements. Subsequently, all outcome variables are regressed against the correspond-

ing estimated sensitivity index from step one for each time t in the second step. This

results in the monetary policy shock series as the set of estimated coefficients obtained

from the Fama-MacBeth style second step regressions.

The reason why we take this shock series instead of others (see for example Nakamura and

Steinsson (2018)), is threefold. First, the shock series is almost unpredictable from the

information available. Second, the shock contains no siginifcant central-bank information

effect and third, this series stably bridges periods of conventional and unconventional

policy making by taking the full maturity spectrum of interest rates.

Lastly, we note that the original series is a monthly time series. As we do not have

monthly housing price data, we transform the monetary policy shock series into quarterly

data by summing the values of the shock series in each quarter.

3.8 Local Projections

To get impulse response functions, we use local projections (Jordà, 2005). We use the

following local projection model:

yi,t+h − yi,t−1 = c+ γyi,t + βi,hbrwt + ϵt+h, (33)

where yi,t is the value of the housing price variable of country i at time t and brwt the

value of the monetary policy shock of Bu et al. (2021) at time t. We do this regression for

each country with the US monetary policy shocks. This is because the monetary policy

shock series is only available for the US monetary policy and literature also shows that the

US monetary policy shocks transmits to other countries. For example Kim (2001) shows

that US monetary expansions lead to a higher output of the other G6 countries (see also

Bluedorn and Bowdler (2011) and others). Ehrmann and Fratzscher (2009) show evidence

of spillovers to the global financial markets (see also Wongswan (2009), Fratzscher et al.

(2018) and Georgiadis (2016)).

We can use the estimated βi,h to get an impulse response function of country i to get the

effect of monetary policy shocks for that country. We do this for every country in the

dataset.

4We retrieve this series from https://www.federalreserve.gov/econres/feds/a-unified-measure-of-fed-
monetary-policy-shocks.htm, it is reported from 1994M1 until 2020M12
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4 Results

4.1 Forecasting results

4.1.1 Models with macroeconomic variables

Table 3: One step ahead relative MSFE of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS 1.121 1.335 1.317 2.098 1.407 1.001 1.084 0.929 1.091
NLD 0.061∗∗∗ 0.252∗∗ 0.251∗∗ 0.078∗∗∗ 0.253∗∗ 0.047∗∗∗ 0.050∗∗∗ 0.060∗∗∗ 0.053∗∗∗

CAN 0.427∗∗ 0.451∗∗ 0.302∗∗ 0.192∗∗ 0.395∗∗ 0.284∗∗ 0.250∗∗ 0.325∗∗ 0.225∗∗

CHE 0.327∗∗ 0.398∗∗ 0.198∗∗ 0.261∗∗ 0.587∗ 0.210∗∗ 0.212∗∗ 0.243∗∗ 0.338∗∗

DEU 0.723∗ 0.923 1.066 0.781∗ 0.884 0.842 0.596∗ 0.403∗∗ 0.352∗∗

DNK 0.177∗∗ 0.270∗∗ 0.883 0.200∗∗ 0.268∗∗ 0.147∗∗ 0.213∗∗ 0.146∗∗ 0.156∗∗

ESP 0.120∗∗ 0.834 0.839 0.148∗∗ 0.187∗∗ 0.177∗∗ 0.112∗∗ 0.213∗∗ 0.075∗∗∗

FIN 0.185∗∗ 0.575∗ 1.091 0.131∗∗ 0.950 0.105∗∗∗ 0.112∗∗ 0.143∗∗ 0.125∗∗

FRA 0.940 11.528 8.740 0.640∗∗ 0.748∗∗ 1.029 1.018 0.845 1.222
GBR 0.433∗∗ 3.107 2.177 0.557∗∗ 0.477∗∗ 0.386∗∗ 0.376∗∗ 0.599∗ 0.483∗∗

IRL 0.040∗∗∗ 0.098∗∗∗ 0.084∗∗∗ 0.098∗∗∗ 0.456∗∗ 0.057∗∗∗ 0.089∗∗∗ 0.275∗∗ 0.069∗∗∗

ITA 0.269∗∗ 0.464∗∗ 0.165∗∗ 0.158∗∗ 0.593∗ 0.243∗∗ 0.254∗∗ 0.227∗∗ 0.368∗∗

JPN 0.255∗∗ 0.989 0.913 0.236∗∗ 0.702 0.230∗∗ 0.228∗∗ 0.347∗∗ 0.347∗∗

SWE 0.402∗∗ 0.758∗ 0.466∗∗ 0.542∗ 0.716∗ 0.271∗∗ 0.431∗∗ 0.350∗∗ 0.459∗∗

USA 0.935 1.389 0.633∗ 1.016 0.712∗ 0.645∗ 0.695∗ 0.745 0.577∗

ZAF 0.248∗∗ 1.387 1.066 1.104 1.624 0.330∗∗ 0.334∗∗ 0.291∗∗ 0.334∗∗

Avg 0.416 1.547 1.262 0.515 0.685 0.375 0.378 0.384 0.391
Note: This table shows the relative MSFE of the housing prices with respect to an unrestricted
PVAR model estimated with OLS. A * means that the model has a better forecast compared to
the benchmark with a 10% significance. A ** stands for a 5% significance and a *** for a 1%
significance. The values in bold show the lowest relative MSFE for a country. The last row shows
the average per model of all the countries. Significance levels are not reported for the average.

Table 4: Two step ahead relative MSFE of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS 1.055 1.132 1.144 0.907 1.131 0.897 0.894 0.977 1.255
NLD 0.248∗∗ 0.267∗∗ 0.197∗∗ 0.089∗∗∗ 0.285∗∗ 0.087∗∗∗ 0.085∗∗∗ 0.088∗∗∗ 0.050∗∗∗

CAN 0.597∗ 2.625 1.153 0.990 0.932 0.949 0.955 0.769∗ 1.263
CHE 0.141∗∗ 0.301∗ 0.295∗ 0.180∗∗ 0.875 0.183∗∗ 0.186∗∗ 0.143∗∗ 0.153∗∗

DEU 2.963 2.766 2.700 3.214 3.728 2.056 2.110 2.205 0.887
DNK 0.237∗ 0.503∗ 0.340∗ 0.326∗ 0.575∗ 0.309∗ 0.317∗ 0.299∗ 0.417∗

ESP 0.890 0.574∗ 0.642∗ 0.107∗∗ 0.615∗ 0.152∗∗ 0.094∗∗∗ 0.177∗∗ 0.028∗∗∗

FIN 0.130∗∗ 1.748 0.467∗ 0.200∗ 0.514∗ 0.138∗∗ 0.163∗∗ 0.262∗∗ 0.152∗∗

FRA 0.606∗ 9.590 1.840 0.748∗ 1.263 0.429∗∗ 0.429∗∗ 0.601∗ 0.500∗

GBR 1.874 6.453 1.512 0.923 1.132 0.830 0.811∗ 1.010 0.895
IRL 0.069∗∗∗ 0.067∗∗∗ 0.060∗∗∗ 0.042∗∗∗ 0.101∗∗ 0.052∗∗∗ 0.080∗∗∗ 0.293∗∗ 0.066∗∗∗

ITA 0.252∗∗ 0.665∗ 0.560∗ 0.301∗∗ 0.730∗ 0.265∗∗ 0.262∗∗ 0.144∗∗ 0.416∗

JPN 2.532 1.794 1.865 1.999 1.995 1.767 1.584 3.875 1.929
SWE 0.247∗∗ 0.617∗ 0.334∗∗ 0.317∗∗ 0.478∗ 0.196∗∗ 0.250∗∗ 0.226∗∗ 0.483∗

USA 1.339 2.318 0.625∗ 1.758 1.238 1.288 1.237 1.075 1.217
ZAF 0.930 1.286 1.184 1.376 1.559 0.869 0.870 0.765∗ 0.926
Avg 0.882 2.044 0.932 0.837 1.072 0.654 0.645 0.826 0.665
Note: This table shows the relative MSFE of the housing prices with respect to an unrestricted
PVAR model estimated with OLS. A * means that the model has a better forecast compared to
the benchmark with a 10% significance. A ** stands for a 5% significance and a *** for a 1%
significance. The values in bold show the lowest relative MSFE for a country. The last row shows
the average per model of all the countries. Significance levels are not reported for the average.
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Table 5: Three step ahead relative MSFE of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS 1.156 1.249 1.082 0.929 1.119 0.993 0.957 1.093 1.691
NLD 0.164∗∗ 0.156∗∗ 0.172∗∗ 0.107∗∗∗∗ 0.553∗ 0.100∗∗∗ 0.096∗∗∗ 0.105∗∗ 0.054∗∗∗

CAN 0.690∗ 1.531 0.911 0.782∗ 1.142 0.797∗ 0.802∗ 0.685∗ 0.744∗

CHE 0.173∗∗ 0.232∗∗ 0.219∗∗ 0.178∗∗∗ 0.289∗∗ 0.157∗∗ 0.158∗∗ 0.147∗∗ 0.174∗∗

DEU 0.804 0.644∗ 0.747∗ 0.865 1.279 0.860 0.682∗ 0.696∗ 0.132∗∗

DNK 0.242∗∗ 0.331∗∗ 0.351∗∗ 0.264∗∗ 0.278∗∗ 0.271∗∗ 0.258∗∗ 0.285∗∗ 0.445∗∗

ESP 1.717 0.253∗∗ 0.211∗∗ 0.099∗∗∗ 0.309∗ 0.264∗ 0.171∗∗ 0.257∗ 0.112∗∗

FIN 0.033∗∗∗ 0.560∗ 0.174∗∗ 0.064∗∗∗ 0.182∗∗ 0.052∗∗∗ 0.059∗∗∗ 0.098∗∗∗ 0.063∗∗∗

FRA 0.734∗ 6.347 1.176 0.685∗ 0.754∗ 0.420∗∗ 0.425∗∗ 0.470∗∗ 0.444∗∗

GBR 2.561 3.122 1.794 1.179 1.281 1.078 1.087 0.963 1.393
IRL 0.053∗∗∗ 0.070∗∗∗ 0.040∗∗∗ 0.034∗∗∗ 0.153∗∗ 0.050∗∗∗ 0.075∗∗∗ 0.273∗∗ 0.087∗∗∗

ITA 0.126∗∗ 0.359∗ 0.335∗ 0.164∗∗ 0.345∗ 0.110∗∗ 0.111∗∗ 0.115∗∗ 0.167∗∗

JPN 0.720∗ 0.828 0.698∗ 0.760 0.848 0.652∗ 0.641∗ 1.401 0.750
SWE 0.513∗ 1.460 1.161 0.750 0.947 0.657∗ 0.716∗ 0.707∗ 1.360
USA 2.172 3.039 1.884 3.172 2.924 2.377 2.148 1.846 1.578
ZAF 1.087 1.250 0.889 0.963 0.972 0.865 0.865 0.768∗ 0.662∗

Avg 0.809 1.339 0.740 0.687 0.836 0.635 0.578 0.619 0.616
Note: This table shows the relative MSFE of the housing prices with respect to an unrestricted
PVAR model estimated with OLS. A * means that the model has a better forecast compared to
the benchmark with a 10% significance. A ** stands for a 5% significance and a *** for a 1%
significance. The values in bold show the lowest relative MSFE for a country. The last row shows
the average per model of all the countries.

Table 6: Four step ahead relative MSFE of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS 1.575 1.761 1.604 1.539 1.417 1.557 1.542 1.583 2.623
NLD 0.130∗∗ 0.191∗∗ 0.144∗∗ 0.126∗∗ 0.487∗ 0.128∗∗ 0.124∗∗ 0.134∗∗ 0.093∗

CAN 0.975 1.933 1.127 1.207 1.239 1.139 1.156 0.953 1.043
CHE 0.175∗∗ 0.190∗∗ 0.219∗∗ 0.205∗∗ 0.279∗∗ 0.185∗∗ 0.185∗∗ 0.171∗∗ 0.116∗∗

DEU 1.273 1.266 1.241 1.356 1.653 0.924 1.187 1.121 0.440∗

DNK 0.365∗∗ 0.398∗∗ 0.371∗∗ 0.378∗∗ 0.512∗ 0.379∗∗ 0.371∗∗ 0.404∗ 0.679∗

ESP 0.775 0.218∗∗ 0.171∗∗ 0.137∗∗ 0.388∗ 0.413∗ 0.123∗∗ 0.361∗ 0.143∗∗

FIN 0.058∗∗∗ 0.698∗ 0.142∗∗ 0.113∗∗∗ 0.275∗∗ 0.078∗∗∗ 0.084∗∗∗ 0.142∗∗ 0.129∗∗

FRA 0.414∗ 2.267 0.337∗ 0.437∗ 0.820 0.225∗∗ 0.226∗∗ 0.275∗∗ 0.257∗∗

GBR 1.108 0.624∗ 0.670∗ 0.555∗ 0.772 0.484∗ 0.517∗ 0.458∗ 0.646∗

IRL 0.068∗∗∗ 0.083∗∗∗ 0.062∗∗∗ 0.048∗∗∗ 0.074∗∗∗ 0.061∗∗∗ 0.071∗∗∗ 0.247∗∗ 0.140∗∗

ITA 0.110∗∗∗ 0.297∗∗ 0.236∗∗ 0.108∗∗∗ 0.480∗ 0.103∗∗∗ 0.103∗∗∗ 0.114∗∗∗ 0.215∗∗

JPN 0.866 1.037 0.880 0.818 0.943 0.838 0.832 1.343 0.764∗

SWE 1.219 1.696 1.550 1.551 1.519 1.198 1.320 1.324 2.656
USA 1.098 1.372 1.058 1.464 1.690 1.225 1.134 0.931 0.857
ZAF 1.006 1.333 1.016 0.893 1.136 0.875 0.878 0.727 0.302∗∗

Avg 0.701 0.960 0.677 0.683 0.855 0.613 0.616 0.643 0.694
Note: This table shows the relative MSFE of the housing prices with respect to an unrestricted
PVAR model estimated with OLS. A * means that the model has a better forecast compared to
the benchmark with a 10% significance. A ** stands for a 5% significance and a *** for a 1%
significance. The values in bold show the lowest relative MSFE for a country. The last row shows
the average per model of all the countries. Significance levels are not reported for the average.

Table 3 to 6 show the Mean squared forecast errors of the models with lag length 1 and

including the macroeconomic variables relative to an unrestricted PVAR model. An as-

terisk (*) means that the model scores significantly better than the benchmark model. A

few things stand out.
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First, we see that most models score significantly better than the benchmark unrestricted

PVAR model for most countries. However, the relative MFSE has to be quite a bit lower

than we are used to, to get a significant effect. This is due to the fact that the amount of

forecasts is really small, meaning that the variance of the difference between the forecast

errors can become high. This means that the forecasts have to be better by a large margin

to account for the variance.

For the one step ahead forecast, we can see that the BFCS scores the best from all the

Bayesian models. This is also due to large forecast errors for France and the United King-

dom for the SSSS models. This means that for those countries the SSSS models are largely

misspecified, which probably is due to the fact that the SSSS cannot set coefficients to

zero, but only close to zero.

Furthermore, we see that the MSFE are more similar to each other for the LASSO models.

For some countries, for example the Netherlands and Switzerland, the LASSO1 (where we

set penalties for γk, c and α) comes out on top, where for Canada and Japan the LASSO2

(where we set penalties for γk, c, α and we set the Covariance matrix Σ to the identity

matrix) gets a better score. The LASSO3, where we also search for homogeneity is the

only model with a relative MSFE smaller than 1 for Australia.

Also, we see that the GVAR model scores pretty competitively compared to the Bayesian

and LASSO models. Sometimes the GVAR model even has the best relative MSFE (for

example for Ireland and South Africa). This result is not in line with the literature,

which report that the Bayesian VAR models score better than the GVAR model (Koop

and Korobilis (2019), Feldkircher et al. (2020)) and the results in Camehl (2022), which

reports that the LASSO PVAR scores better than the GVAR models. Also, Camehl

(2022) reports that the LASSO PVAR scores better than the Bayesian methods in that

paper, which is on average in line with our results. For some of the countries, the Bayesian

methods perform better. However, we have to note that we are testing different Bayesian

methods than the methods in that research.

Lastly, if we compare the PVAR methods to the random walk model, we conclude that for

some countries the additional information of other countries variables yields better fore-

casts than only the information of the country itself (which is the RW model). However,

this also means that some countries do not gain accuracy by adding information of other

countries. This is true for Germany, Spain and the United States. For Germany and the

United States we can explain this due to the fact that these two countries are the most

important economies in their region and also the world. So it is likely that information

from those countries spill over to the smaller economies in the dataset and not vice versa.

The multi step ahead forecasts show pretty similar results to the one step ahead forecasts,

with a few exceptions. For example, not a single model outperforms the unrestricted

PVAR model for the 2 step ahead forecast for Japan and Germany. This also holds for

the 3 step ahead forecast of the United States and the 4 step ahead forecasts of Australia
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and Sweden. Furthermore, it turns out that the benchmark model is harder to beat for

multi step ahead forecasts. Nevertheless, the models keep outperforming the benchmark

model for most of the countries, meaning the reducing the amount of parameters results

in a forecast gain.

Table 7: One step ahead average difference of Log-Scores of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS -1.74 -0.91 -0.01 -1.20 -0.68 -0.42 -0.44 -0.06 0.03
NLD 4.71∗∗∗ 1.84∗ 2.58∗∗ 3.00∗∗ 1.92∗ 4.88∗∗ 4.89∗∗∗ 4.83∗∗∗ 4.27∗∗∗

CAN 0.47 0.23 1.05∗∗ 1.15∗∗ 0.24 0.85∗∗∗ 0.94∗∗∗ 0.85∗∗∗ 0.84∗∗

CHE 0.66 -0.65 0.53∗ 0.53∗∗ -0.67 0.71∗∗∗ 0.70∗∗∗ 0.76∗∗∗ 0.45∗

DEU 0.33 -0.57 -0.28 -0.01 -0.21 0.33 0.21 0.54 0.49
DNK 8.88∗ 8.01∗ 0.71 9.58∗ 9.07∗ 8.91∗ 8.72∗ 8.75∗ 4.85∗

ESP 1.08∗ -0.33 1.01∗ -1.22 0.15 2.93∗ 2.67∗ 2.97∗ 2.57∗

FIN 2.04∗ -0.66 0.80∗ 1.31∗ -0.28 2.15∗ 2.09∗ 2.08∗ 1.91∗

FRA 0.37∗ -1.75 -0.94 0.08 -1.32 0.32∗ 0.28∗ 0.24∗ 0.01
GBR 0.06 -1.28 -0.28 0.48∗ -0.63 0.40∗ 0.38∗ 0.04 0.22
IRL 1.92∗ -0.12 1.18∗ 1.12∗ 0.11 1.83∗ 1.88∗ 1.78∗ 2.78∗∗

ITA -2.57 5.05∗ 6.21∗ 6.40∗ 5.14∗ 0.39 -0.09 4.22∗ -1.28
JPN 3.92∗ 2.68∗ 3.30∗ 5.02∗ 4.04∗ 3.87∗ 3.97∗ 3.75∗ 12.46∗∗

SWE -1.54 -1.25 -0.33 0.11 -1.09 0.52∗ 0.10 0.59∗ 0.37
USA -0.32 0.07 2.31∗ -2.17 0.51 -0.60 -0.83 -0.17 1.24∗

ZAF 0.66∗ -0.69 0.15 0.22 -0.75 0.49 0.49∗ 0.67∗ 0.53
Avg 1.18 0.60 1.12 1.53 0.97 1.72 1.62 1.99 1.98
Note: This table shows the average difference of Log-Scores of the housing prices with respect to
an unrestricted PVAR model estimated with OLS. A * means that the model has a better forecast
compared to the benchmark with a 10% significance. A ** stands for a 5% significance and a ***
for a 1% significance. The values in bold show the highest average difference for a country. The last
row shows the average per model of all the countries. Significance levels are not reported for the
average.

Table 8: Two step ahead average difference of Log-Scores of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS -5.53 0.65 0.45 0.64 0.83 -2.13 0.01 0.43 -2.37
NLD 7.20∗∗ 3.72∗ 4.64∗ 4.78∗ 3.22∗ 7.50∗∗ 7.52∗∗ 7.36∗∗ 9.89∗

CAN 0.11 -1.01 0.08 0.11 -0.89 -0.01 0.00 0.10 -0.03
CHE 1.07∗ 0.61 1.80∗ 1.76∗ 0.22 0.96∗ 0.96∗ 1.10∗ 1.30∗

DEU -0.54 -0.78 -0.47 -0.47 -1.22 -1.01 -0.38 -0.62 0.09
DNK 4.89∗ 5.95∗ 7.04∗ 6.61∗ 6.14∗ 4.77∗ 5.27∗ 5.46∗ 6.06∗

ESP -0.21 4.04∗ 5.49∗ 3.15∗ 4.11∗ 2.09∗ 1.88∗ 2.07∗ 6.24∗

FIN 0.61∗ -0.44 1.30∗ 1.53∗ -0.49 0.64∗∗ 0.60∗∗ 0.61∗∗ 0.94∗

FRA 0.38 -1.67 -0.14 0.26 -1.67 0.42∗ 0.43∗ 0.35 0.16
GBR 0.00 -1.57 0.10 0.10 -1.48 -0.07 0.10 -0.32 0.26
IRL 6.06∗ 4.94∗ 6.53∗ 6.56∗ 5.26∗ 6.11∗ 6.17∗ 0.76 5.99∗

ITA 3.58∗ -0.02 0.00 1.68∗ -0.09 3.52∗ 3.38∗ 4.85∗ 2.74∗

JPN 0.19 -1.42 -0.35 -0.37 -1.68 -0.21 -0.21 -1.08 -10.70
SWE 1.02 -0.66 0.94 0.93 -0.90 1.10∗ 1.12∗ 1.15∗ 0.56
USA -5.67 -0.40 -0.81 -9.45 -0.79 -2.86 -2.93 -1.74 -1.76
ZAF 0.20 -1.19 0.02 -0.03 -1.29 0.15 0.13 0.12 0.09
Avg 0.84 0.67 1.66 1.11 0.58 1.31 1.50 1.29 1.22

Note: This table shows the average difference of Log-Scores of the housing prices with respect to
an unrestricted PVAR model estimated with OLS. A * means that the model has a better forecast
compared to the benchmark with a 10% significance. A ** stands for a 5% significance and a ***
for a 1% significance. The values in bold show the highest average difference for a country. The last
row shows the average per model of all the countries. Significance levels are not reported for the
average.
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Table 9: Three step ahead average difference of Log-Scores of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS -9.46 0.45 -1.01 0.44 0.82 -2.49 -1.16 0.05 -4.26
NLD 8.65∗ 10.19∗ 11.27∗ 11.23∗ 9.81∗ 12.58∗∗ 12.33∗∗ 12.37∗∗ 12.42∗∗

CAN 0.23 -0.71 -0.11 -0.09 -0.87 0.05 0.02 0.18 -0.11
CHE 1.42 0.79 1.99∗∗ 1.96∗∗ 0.36 1.36∗ 1.38∗ 1.51∗ 1.11
DEU 0.13 0.35 0.69 0.62 0.02 -3.90 0.25 0.08 1.63∗

DNK 7.19∗ 7.16∗ 7.82∗ 7.86∗ 7.20∗ 6.24∗ 6.91∗ 6.92∗ 6.23∗

ESP -5.18 0.24 2.11∗ 1.42∗ 0.32 2.25∗ 1.95∗ 2.24∗ 6.32∗

FIN 4.10∗ 1.25 3.09∗ 3.12∗ 1.07 4.16∗∗ 4.17∗∗ 4.05 3.60
FRA 0.28 -1.73 0.10 0.24 -1.83 0.35∗ 0.35∗ 0.33∗ 0.42∗

GBR -3.01 -1.52 -0.07 -0.04 -1.56 0.09 -0.03 0.13 -0.01
IRL 14.13∗ 9.16∗ 10.80∗ 10.75∗ 9.43∗ 14.21∗ 14.15∗ 4.18∗ 7.74∗

ITA 5.52∗ 7.55∗ 8.52∗ 9.18∗ 7.39∗ 5.64∗ 5.42∗ 3.99∗ 8.94∗

JPN -2.08 0.29 1.29 1.08 -0.18 0.36 0.41 -3.82 -1.80
SWE -0.07 -0.85 0.31 0.49 -1.41 0.00 0.03 0.08 0.12
USA -50.16 -0.13 -1.07 -10.78 -0.63 -59.36 -45.11 -43.9 -1.12
ZAF 0.22 -1.29 0.08 -0.35 -1.41 -0.02 -0.03 0.13 0.23
Avg -1.76 1.95 2.86 2.32 1.78 -1.16 0.07 -0.72 2.59
Note: This table shows the average difference of Log-Scores of the housing prices with respect to
an unrestricted PVAR model estimated with OLS. A * means that the model has a better forecast
compared to the benchmark with a 10% significance. A ** stands for a 5% significance and a ***
for a 1% significance. The values in bold show the highest average difference for a country. The last
row shows the average per model of all the countries. Significance levels are not reported for the
average.

Table 10: Four step ahead average difference of Log-Scores of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS -7.23 -0.15 -1.00 -1.26 -0.27 -5.30 -3.87 -0.70 -27.86
NLD 10.23∗ 19.02∗ 19.74∗ 19.64∗ 18.62∗ 14.30∗ 12.66∗ 14.87∗ 17.94∗

CAN 0.04 -0.81 -0.12 -0.20 -0.89 -0.02 -0.03 0.04 -0.41
CHE 2.40 1.86 2.98∗ 2.93∗ 1.57 2.36∗ 2.39∗ 2.50∗ 2.15∗

DEU -0.52 -0.44 -0.28 -0.47 -0.80 -0.41 -1.28 -0.66 0.16
DNK 1.53 1.44 2.76∗ 2.43∗ 1.54 1.34∗ 1.84∗ 1.56∗ 0.46
ESP -2.59 0.89 2.76∗ 2.56∗ 1.03 2.21 5.90∗ 2.90 4.03
FIN 2.41∗ 0.42 2.41∗ 2.38∗ 0.35 2.52∗ 2.59∗ 2.41∗ 2.07
FRA -0.78 -0.89 0.83∗∗ 0.87∗∗ -1.22 0.87∗∗ 0.85∗∗ 0.64∗ 0.99∗∗

GBR -0.26 -1.24 0.28 0.36 -1.29 0.40∗ 0.26∗ 0.48∗ 0.22
IRL 10.96 11.30 12.80∗ 12.75∗ 11.53 11.03 11.07 3.46 9.09
ITA 10.60 50.22∗ 51.39∗ 51.81∗ 49.95∗ 10.32 10.07 8.32 11.49
JPN -2.64 -0.17 -0.16 -0.59 -0.46 -0.34 0.19 -2.03 -3.91
SWE -0.09 -1.60 -0.07 -0.17 -1.98 -0.05 -0.23 -0.31 -0.42
USA -1.02 0.06 0.16 -1.03 0.51 -1.27 -5.31 -1.12 0.49
ZAF 0.21 -1.26 0.00 -0.17 -1.33 0.07 0.05 0.29 0.87
Avg 1.45 4.92 5.91 5.74 4.80 2.38 2.32 2.04 1.09
Note: This table shows the average difference of Log-Scores of the housing prices with respect to
an unrestricted PVAR model estimated with OLS. A * means that the model has a better forecast
compared to the benchmark with a 10% significance. A ** stands for a 5% significance and a ***
for a 1% significance. The values in bold show the highest average difference for a country. The last
row shows the average per model of all the countries. Significance levels are not reported for the
average.

Table 7 to 10 show the average difference of Log-Scores of the models with lag length 1

and including the macroeconomic variables relative to an unrestricted PVAR model. An

asterisk (*) means that the model scores significantly better than the benchmark model.
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As with the MSFE metric and test, we see that the difference has to be quite high in some

cases to get a significant improvement. This is again due to the low amount of forecasts.

When we compare the density forecasts to the point forecasts, we see that the significance

levels of the density forecasts are on average lower than the point forecasts. The models

mostly still outperform the benchmark model.

Furthermore, we see many similarities with the point forecasts. For example, we see that

the BFCS model scores the best out of the Bayesian models and that the LASSO models

are competitive to one another. Also, the GVAR models scores better than what can be

expected according to the literature.

One thing that also stands out, is that the LASSO models sometimes have a higher

significance level, while the Bayesian methods have a better Log-Score. See for example

Canada in the one step ahead density forecast (table 7). This means that the LASSO

methods have a lower variance in the test statistic and therefore score more consistently.

4.1.2 Models with multiple lags

Table 11: One step ahead relative MSFE of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS 0.900 0.913 0.810 1.492 1.157 0.917∗ 0.911 0.777∗ 0.870
NLD 0.915 0.542∗ 0.812 1.049 0.534∗∗ 0.464∗∗ 0.489∗∗ 0.404∗∗ 0.706
CAN 1.095 0.944 1.286 1.106 1.017 0.669∗ 0.647∗ 0.959 0.913
CHE 0.751∗∗ 0.865 0.904 1.553 0.787 1.017 0.928 0.717 1.174
DEU 1.206 0.860 2.391 14.073 3.576 1.499 1.472 1.377 1.383
DNK 0.903 0.961 1.036 1.057 1.23 1.230 1.083 0.745 0.801
ESP 1.120 1.152 1.469 0.354∗∗ 1.385 0.478∗∗ 0.565 0.539 0.671
FIN 1.092 0.367∗∗ 0.285∗∗ 0.590∗ 0.280∗∗ 0.613∗ 0.408∗∗ 0.288∗∗ 0.352∗∗

FRA 0.795 1.204 1.129 1.086 2.916 0.809 0.663∗ 0.933 1.223
GBR 0.880 0.418∗ 0.468∗ 0.528∗ 0.411∗ 0.755 0.497∗ 0.359∗∗ 0.384∗∗

IRL 0.574∗∗ 1.380 2.844 1.820 2.493 0.475∗ 0.808 1.048 1.302
ITA 1.030 0.707 0.779 0.472∗∗ 1.232 0.626∗ 0.599∗ 0.840 0.971
JPN 1.301 0.588∗ 0.589∗ 0.804 0.491∗∗ 0.610∗ 0.579∗ 0.651∗ 0.731
SWE 0.713∗ 2.003 3.417 3.009 2.866 2.411 2.379 1.831 3.264
USA 0.980 1.118 1.300 1.036 2.603 1.009 1.058 1.056 0.988
ZAF 1.120 0.682∗ 0.708∗ 2.931 1.409 1.108 1.173 0.876 0.953
Avg 0.961 0.919 1.264 2.060 1.524 0.918 0.891 0.838 1.043
Note: This table shows the relative MSFE of the housing prices with respect to an unrestricted
PVAR model estimated with OLS. A * means that the model has a better forecast compared to
the benchmark with a 10% significance. A ** stands for a 5% significance and a *** for a 1%
significance. The last row shows the average per model over all the countries. The last row shows
the average per model of all the countries. Significance levels are not reported for the average.
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Table 12: Two step ahead relative MSFE of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS 1.045 0.797 0.782∗ 0.808 0.795∗ 0.876 0.836 0.829 1.088
NLD 0.843 1.470 2.232 2.429 2.004 0.927 0.889 1.137 1.117
CAN 0.959 0.804 0.816 0.849 0.792∗ 0.970 0.888 0.786 1.090
CHE 0.627 1.612 1.822 2.943 2.146 1.512 1.594 1.472 1.436
DEU 1.369 1.055 2.176 6.974 4.126 1.369 1.438 1.513 1.260
DNK 0.888 0.809 0.776∗ 0.861 0.809 1.132 1.018 0.795 1.014
ESP 1.021 1.205 1.063 0.193 1.162 0.436∗∗ 0.507∗∗ 0.483∗∗ 0.441∗

FIN 0.852 0.222∗ 0.139∗∗ 0.222∗∗ 0.130∗∗ 0.615∗ 0.327∗∗ 0.141∗∗ 0.165∗∗

FRA 0.628∗ 0.934 0.757 1.183 1.155 1.136 1.030 0.752 0.747
GBR 0.742 0.542∗ 0.531∗ 0.549∗ 0.451∗∗ 0.891 0.781 0.497∗ 0.569∗

IRL 0.371∗ 1.393 1.120 0.979 1.323 1.314 1.453 1.454 1.771
ITA 1.003 1.061 1.113 0.672∗ 1.503 0.718∗ 0.714∗ 0.891 1.153
JPN 1.222 0.920 0.961 1.366 0.825 1.073 1.071 1.077 1.383
SWE 0.800 0.629∗ 0.530∗ 0.745 0.505∗∗ 0.954 0.730 0.551 1.343
USA 0.949 1.090 1.171 1.179 2.315 1.043 1.121 1.194 1.218
ZAF 1.141 0.565∗ 0.596∗ 2.457 0.735 1.075 1.238 0.949 1.088
Avg 0.904 0.944 1.037 1.526 1.299 1.003 0.977 0.908 1.055
Note: This table shows the relative MSFE of the housing prices with respect to an unrestricted
PVAR model estimated with OLS. A * means that the model has a better forecast compared to
the benchmark with a 10% significance. A ** stands for a 5% significance and a *** for a 1%
significance. The last row shows the average per model over all the countries. The last row shows
the average per model of all the countries. Significance levels are not reported for the average.

Table 13: Three step ahead relative MSFE of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS 1.052 0.690∗ 0.701∗ 0.689∗ 0.677∗ 0.877 0.847 0.876 1.244
NLD 1.117 0.567∗∗ 0.632∗∗ 0.842 0.812 0.518∗∗ 0.495∗∗ 0.490∗∗ 0.381∗∗

CAN 1.178 1.246 1.294 1.343 1.179 1.122 1.103 1.177 1.18
CHE 0.669∗∗ 1.334 1.322 1.844 1.276 1.282 1.318 1.343 1.495
DEU 1.221 1.013 1.904 3.313 3.618 1.823 1.851 1.736 0.586∗

DNK 0.863 0.729∗ 0.676∗ 0.820 0.692∗ 1.023 0.887 0.744∗ 1.109
ESP 0.834 0.711∗ 0.542∗∗ 0.149∗∗∗ 0.392∗∗ 0.482∗∗ 0.416∗∗ 0.403∗∗ 0.376∗∗

FIN 0.541*** 0.366∗∗ 0.203∗∗ 0.244∗∗ 0.200∗∗ 0.921 0.551∗ 0.222∗∗ 0.247∗∗

FRA 0.654∗∗ 0.947 0.934 1.110 0.981 1.062 0.964 0.744∗ 0.670∗

GBR 0.626∗ 0.440∗∗ 0.426∗∗ 0.446∗∗ 0.392∗∗ 0.828 0.683∗ 0.457∗∗ 0.560∗

IRL 0.404∗∗∗ 0.936 0.715∗ 0.46∗∗ 0.489∗∗ 0.994 1.079 1.073 1.507
ITA 0.871 1.308 1.292 0.856 1.560 0.870 0.819 0.809 1.144
JPN 1.291 1.009 1.021 1.368 1.004 0.924 0.943 0.901 1.388
SWE 0.857 0.511∗ 0.461∗ 0.664∗ 0.433∗ 0.955 0.752 0.528∗ 1.126
USA 0.911 1.127 1.402 1.352 2.560 1.108 1.180 1.215 0.979
ZAF 1.059 0.433∗∗ 0.443 2.573 0.697∗ 0.734∗ 0.809 0.607∗ 0.591∗

Avg 0.884 0.835 0.873 1.130 1.060 0.970 0.919 0.833 0.911
Note: This table shows the relative MSFE of the housing prices with respect to an unrestricted
PVAR model estimated with OLS. A * means that the model has a better forecast compared to
the benchmark with a 10% significance. A ** stands for a 5% significance and a *** for a 1%
significance. The last row shows the average per model of all the countries. The last row shows the
average per model of all the countries. Significance levels are not reported for the average.

28



Table 14: Four step ahead relative MSFE of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS 1.044 0.724∗ 0.726∗ 0.779∗ 0.734∗ 0.871 0.841 0.873 1.264
NLD 1.192 0.923 1.025 1.297 1.112 0.888 0.849 0.888 0.788
CAN 1.016 0.763∗ 0.779∗ 0.959 0.807 0.779 0.767∗ 0.760 0.716∗

CHE 0.897 1.192 1.339 1.391 1.355 1.037 1.075 1.251 0.785∗

DEU 1.148 1.269 2.671 2.112 3.154 1.796 1.907 1.956 1.050
DNK 0.900 0.795 0.729∗ 1.067 0.749 1.012 0.898 0.828 1.346
ESP 0.528∗∗ 0.553∗∗ 0.414∗∗ 0.331∗∗ 0.272∗∗ 0.630∗ 0.545∗ 0.478∗∗ 0.486∗∗

FIN 0.761∗ 0.475∗∗ 0.222∗∗ 0.298∗∗ 0.203∗∗ 0.980 0.581∗ 0.281∗∗ 0.370∗∗

FRA 0.603∗ 1.017 0.741∗ 0.983 0.826 1.081 0.995 0.769∗ 0.709∗

GBR 0.765 0.455∗ 0.435∗ 0.462∗ 0.398∗∗ 0.729 0.531∗ 0.406∗ 0.540∗

IRL 0.685∗ 0.542∗∗ 0.420∗∗ 0.338∗∗ 0.347∗∗ 0.633∗ 0.524∗∗ 0.534∗∗ 0.975
ITA 0.872 0.976 0.897 0.598∗ 0.848 0.918 0.908 0.983 1.617
JPN 1.240 1.234 1.301 1.572 1.401 0.986 1.030 0.975 1.183
SWE 0.780 0.487∗∗ 0.491∗∗ 0.882 0.528∗∗ 0.874 0.740∗ 0.511∗∗ 1.178
USA 0.910 1.108 1.305 1.554 1.827 1.116 1.210 1.235 1.018
ZAF 0.876 0.338∗∗ 0.355∗∗ 4.351 0.625∗ 0.587∗ 0.616∗ 0.388∗∗ 0.202∗∗

Avg 0.889 0.803 0.866 1.186 0.949 0.932 0.876 0.820 0.889
Note: This table shows the relative MSFE of the housing prices with respect to an unrestricted
PVAR model estimated with OLS. A * means that the model has a better forecast compared to
the benchmark with a 10% significance. A ** stands for a 5% significance and a *** for a 1%
significance. The last row shows the average per model over all the countries. The last row shows
the average per model of all the countries. Significance levels are not reported for the average.

Table 11 to 14 show the mean squared forecast error of the models with lag length 3 and

only including housing prices as variables, compared to an unrestricted PVAR model.

The results show that the LASSO models score well on the one step ahead forecasts.

Especially the LASSO3, which comes on top in five countries. However, for the multi step

ahead forecasts we see that the LASSO models score worse than the Bayesian models and

the GVAR model. Also, we can see that the GVAR model scores relatively well again

compared to the reported literature.

If we compare these results to the results of the models including macroeconomic vari-

ables we see some interesting things. First, we see that the unrestricted model scores

better against the tested models than is the case for the models including macroeconomic

variables, as the relative MSFE is more often greater than 1. Second, we see that the

Random Walk model never has the lowest relative MSFE for the one and two step ahead

forecasts, meaning that lags of housing prices of other countries have an influence on the

housing prices in a specific country. Also, the SSSS models do not have countries where

the model is laregly misspecified, as was the case in the models with macroeconomic vari-

ables. The rest of the results are mostly in line with the results reported in the models

with macroeconomic variables
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Table 15: One step ahead average difference of Log-Scores of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS 0.85 1.13 1.23 -0.73 1.61∗ -5.03 -4.79 -0.55 0.78
NLD 0.03 -1.36 0.01 -0.13 -0.40 0.42∗ 0.42∗ 0.32∗ 0.26
CAN -0.45 -0.83 -0.03 -1.04 -0.19 0.30∗ 0.35∗ 0.04 0.05
CHE 0.11 -1.54 -0.06 -0.53 -0.59 -0.19 -0.10 0.13 -0.45
DEU -1.35 -1.36 -0.32 -0.59 -0.67 -0.16 -0.15 -0.01 -0.87
DNK -0.41 -0.92 -0.49 -0.11 -0.12 -2.28 0.09 0.43∗ 0.35
ESP -0.12 -2.23 -0.20 -1.51 -0.70 0.28∗ 0.19 0.16 0.15
FIN -0.87 -2.29 0.24 -0.27 -0.74 0.22 0.56∗ 0.53∗ 0.55∗

FRA 0.40 -1.30 0.06 -0.33 -0.41 0.37∗ 0.41∗ 0.29 -1.01
GBR 0.15 -0.91 0.15 -0.41 -0.27 -0.27 0.35∗ 0.42∗ 0.40
IRL 0.88 -1.42 -0.13 -1.34 -0.62 0.29 0.16 0.02 -1.15
ITA -0.15 -0.10 0.94∗ -1.04 1.17∗∗ -5.31 0.67∗ -1.06 0.05
JPN -1.82 2.71∗ 3.99∗ 3.46∗ 3.70∗ 0.31 0.40 -0.67 1.00∗

SWE 0.65 -1.60 -0.19 -0.51 -0.64 0.05 0.09 0.11 -2.01
USA 0.01 0.85 0.33 -6.00 1.70 -4.17 -1.32 -2.91 0.08
ZAF -0.47 -2.78 0.10 -1.48 -1.41 -0.19 -0.09 0.11 0.11
Avg -0.16 -0.87 0.35 -0.79 0.09 -0.96 -0.17 -0.17 -0.11

Note: This table shows the average difference of Log-Scores of the housing prices with respect to
an unrestricted PVAR model estimated with OLS. A * means that the model has a better forecast
compared to the benchmark with a 10% significance. A ** stands for a 5% significance and a ***
for a 1% significance. The values in bold show the highest average difference for a country. The last
row shows the average per model of all the countries. Significance levels are not reported for the
average.

Table 16: Two step ahead average difference of Log-Scores of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS -0.54 3.42∗ 3.23∗∗ 1.67∗ 4.03∗∗ -33.48 -28.46 -6.55 -0.12
NLD 0.67∗ -1.42 -0.28 -0.21 -0.46 0.08 0.19 -0.01 -0.65
CAN 0.12 -0.71 0.31 -1.00 0.17 -0.16 -1.36 0.20 -0.21
CHE 0.89∗ -1.71 -0.02 -0.15 -0.52 0.01 0.00 0.00 -1.48
DEU -1.87 -1.22 -0.26 -0.40 -0.66 -0.21 -0.23 -0.05∗ -1.01
DNK -0.11 -0.78 -0.04 -0.63 0.02 -0.49 1.09∗ 0.97 -0.65
ESP -0.74 -1.86 -0.08 -0.44 -0.49 0.27 0.20 0.22 0.48∗

FIN 0.54∗ -2.15 0.71∗ -0.01 -0.36 0.04 0.54∗ 0.92∗ 0.91∗

FRA 0.78∗ -1.68 0.05 0.03 -0.22 -0.53 -0.07 0.21 0.74
GBR 0.25 -0.78 0.44∗ 0.37 0.06 0.80∗ 0.47∗ 0.70∗ 0.31
IRL 0.85∗ -1.64 -0.03 -0.26 -0.47 0.08 0.11 0.12 -0.33
ITA -0.98 -0.90 0.15 -0.52 0.18 -0.92 0.55 -1.49 -1.45
JPN -1.45 -1.06 -0.06 0.07 -0.12 -1.71 -1.46 -3.78 -2.65
SWE 0.35 -1.38 0.18 -0.04 -0.23 0.01 0.37 0.31 -0.21
USA -1.85 -0.60 -0.13 -0.57 -4.84 -Inf -Inf -41.48 0.86∗

ZAF -0.99 0.94∗ 0.35 -2.23 -0.89 -0.48 -0.56 0.02 0.45
Avg -0.26 -0.85 0.28 -0.27 -0.30 -Inf -Inf -3.11 -0.31

Note: This table shows the average difference of Log-Scores of the housing prices with respect to
an unrestricted PVAR model estimated with OLS. A * means that the model has a better forecast
compared to the benchmark with a 10% significance. A ** stands for a 5% significance and a ***
for a 1% significance. The values in bold show the highest average difference for a country. The last
row shows the average per model of all the countries. Significance levels are not reported for the
average.
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Table 17: Three step ahead average difference of Log-Scores of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS -0.56 5.99∗ 4.65∗ 3.58∗ 6.15∗ -6.47 -0.27 -1.14 -1.87
NLD -0.87 -0.07 0.79∗ 0.77∗ 0.79∗ 0.61∗ 0.33 0.94∗ 0.88∗

CAN -0.99 -0.84 -0.06 -0.50 -0.10 -0.15 -0.18 0.00 -0.65
CHE 0.88∗ -1.61 0.06 -0.27 -0.40 -0.09 -0.21 -0.13 -1.54
DEU -0.54 -1.20 -0.29 -1.25 -0.63 -0.81 -0.71 -0.21 1.21∗

DNK 0.13 -0.33 0.10 0.10 0.48 0.69∗ 0.82∗ 1.67∗∗ -0.57
ESP 0.22 -1.98 0.06 -0.21 -0.35 0.29 0.30 0.27 0.28
FIN 1.01 -2.48 0.37 -0.08 -0.51 -0.36 -0.39 0.65 0.13
FRA 0.51 -1.20 0.13 -0.01 -0.04 -1.20 -0.48 0.13 0.12
GBR 0.43 -0.77 0.59∗ 0.47 0.37 -1.42 0.35 0.35 0.44
IRL 0.32 -1.61 0.00 -0.43 -0.39 0.03 0.02 0.03 0.23
ITA -0.48 -1.10 -0.02 -0.90 0.05 -5.83 -0.16 -3.01 -0.54
JPN -2.32 -0.86 0.14 -0.20 -0.00 0.14 0.01 -0.92 -0.67
SWE -0.13 -1.13 0.17 -0.05 -0.09 -0.34 0.10 0.32 -1.02
USA -0.24 3.55∗ 2.55 -2.04 3.53 -67.96 -24.75 -19.14 1.21
ZAF -0.89 -1.18 0.92∗ -0.83 0.07 -0.01 -0.06 0.40 0.77
Avg -0.22 -0.43 0.64 -0.12 0.56 -5.18 -1.58 -1.24 -0.12

Note: This table shows the average difference of Log-Scores of the housing prices with respect to
an unrestricted PVAR model estimated with OLS. A * means that the model has a better forecast
compared to the benchmark with a 10% significance. A ** stands for a 5% significance and a ***
for a 1% significance. The values in bold show the highest average difference for a country. The last
row shows the average per model of all the countries. Significance levels are not reported for the
average.

Table 18: Four step ahead average difference of Log-Scores of the housing prices
GVAR SSSS1 SSSS2 BFCS BMS LASSO1 LASSO2 LASSO3 RW

AUS -0.07 8.58∗ 7.16∗ 3.97∗ 8.10∗ -0.39 -0.18 -0.11 -0.56
NLD -0.18 -0.09 -0.38 -0.05 0.81 -0.69 -0.83 -3.58 0.56
CAN -0.47 -0.61 0.21 -0.26 0.10 -1.17 -1.26 -0.05 0.55∗

CHE 0.12 -1.57 -0.42 -0.32 -0.24 0.03 -0.06 0.02 0.29
DEU -0.52 -1.16 -0.67 -0.72 -0.56 -0.88 -0.82 -0.88 -0.20
DNK 0.23 -0.26 0.55 0.25 0.54 -0.04 -0.91 0.43 -0.87
ESP 0.44 -1.58 0.39 -0.63 0.08 0.33 0.42 0.49 0.47
FIN 0.38 -2.30 0.41 -0.31 -0.23 -0.18 -0.17 0.50 0.48
FRA 0.41 -1.18 0.24 -0.99 0.12 -0.69 -0.10 0.23 0.19
GBR 0.22 -0.97 0.51∗ 0.09 0.31 0.01 0.53∗ 0.62∗ 0.57∗

IRL -0.35 -1.26 0.35∗ -0.26 0.01 0.29∗ 0.30∗ 0.34∗ -0.21
ITA -0.11 -1.11 0.18 0.10 0.09 -5.54 0.05 -4.31 -0.87
JPN -0.25 -0.67 -0.23 -0.45 0.06 0.50∗ 0.13 -0.62 -0.25
SWE 0.16 -1.07 0.27 -0.25 0.15 -0.43 -0.11 0.57∗ -0.14
USA 0.11 1.08 0.01 -2.43 -2.91 -1.57 -8.93 -1.52 -0.03
ZAF 0.09 -0.95 1.17 -0.74 0.35 -0.05 0.07 0.72∗ 1.56∗

Avg 0.01 -0.32 0.61 -0.19 0.42 -0.65 -0.74 -0.45 -0.01
Note: This table shows the average difference of Log-Scores of the housing prices with respect to
an unrestricted PVAR model estimated with OLS. A * means that the model has a better forecast
compared to the benchmark with a 10% significance. A ** stands for a 5% significance and a ***
for a 1% significance. The values in bold show the highest average difference for a country. The last
row shows the average per model of all the countries. Significance levels are not reported for the
average.

Table 15 to 18 show the average difference of the Log-Scores of the models with lag length

3 and only including housing prices as variables compared to an unrestricted PVAR model.

We see that the significance levels of the density forecasts are lower than the significance
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levels of the point forecasts, which is a similar result to that of the models including

macroeconomic variables.

Furthermore, we see that the LASSO models have the highest Log-Score on average for the

density forecast, but most of the scores are not significantly different from the benchmark

model. This means that the density forecast for this set of variables performs worse than

the other forecasts.

Concluding remarks

This forecasting exercise shows that additional information about housing prices of other

countries and macroeconomic variables does lead to an increase in the forecast accuracy.

On average, the LASSO models perform the best. However, there is not a single model

that consistently and significantly outperforms the other models for all countries.

4.2 Variable importance

Bayesian

If we take a look at the γ draws from the SSSS algorithm, we see something remarkable

for both of the SSSS models we test in this research. The γk draws are almost exclusively

zero for the whole sample, implying there is no DI between almost any of the countries.

However, if we take a look at the coefficient matrix, we see directly what the forementioned

shortcoming is of the SSSS algorithm, as all of the entries in the coefficient matrix are

nonzero. So although almost all of the γ draws are equal to zero, implying that the

matrix entry would be zero, there are still no nonzero matrix entries. This is because the

restriction that elements are zero can only hold approximately.
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LASSO methods

Table 19: Amount of cross-country dependencies of the macroeconomic model

Incoming dependencies Outgoing dependencies
LASSO1 LASSO2 LASSO3 LASSO1 LASSO2 LASSO3

AUS 0 0 1 2 1 4
NLD 0 1 0 1 1 3
CAN 0 1 0 1 0 1
CHE 0 0 0 1 1 4
DEU 15 4 5 0 0 2
DNK 0 0 0 1 1 3
ESP 0 0 14 2 4 5
FIN 0 3 1 3 2 5
FRA 0 0 2 1 0 2
GBR 4 0 0 2 2 3
IRL 1 5 9 1 1 3
ITA 1 0 0 1 0 2
JPN 0 0 13 1 1 2
SWE 1 4 1 1 0 3
USA 0 0 0 3 2 2
ZAF 0 0 1 1 2 3
Note: This table shows the incoming and outgoing dependencies of
countries for the LASSO models including the macroeconomic variables.
We count a dependency, if at least one coefficient of a country was
nonzero for another country’s equation.

Table 20: Amount of cross-country dependencies of the model with multiple lags
Incoming dependencies Outgoing dependencies

LASSO1 LASSO2 LASSO3 LASSO1 LASSO2 LASSO3

AUS 15 15 15 11 9 4
NLD 11 14 0 14 12 2
CAN 15 14 0 15 11 5
CHE 12 10 0 15 13 5
DEU 11 9 0 15 11 5
DNK 12 12 0 14 11 3
ESP 12 11 2 13 12 3
FIN 15 12 4 14 12 3
FRA 15 11 6 11 10 2
GBR 14 11 6 10 11 3
IRL 14 11 4 13 10 2
ITA 13 7 0 13 11 2
JPN 14 12 13 14 13 2
SWE 13 8 0 14 12 2
USA 11 7 1 14 13 6
ZAF 15 15 0 12 8 2
Note: This table shows the incoming and outgoing dependencies of countries
for the LASSO models with multiple lags. We count a dependency, if at least
one coefficient of a country was nonzero for another country’s equation.
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Tables 19 and 20 show the amount of incoming and outgoing nonzero coefficients from and to

countries. A few things stand out. First, we can see that the amount of interdependencies

between countries are a lot higher for the model with multiple lags. Especially the LASSO1

model and LASSO2 models have a lot of interdependencies. If we look closer why this difference

is there, we find that the setting of the penalty parameter λk differs a lot between the two

models. In the model with macroeconomic variables, we search for higher values of λk and

those higher values also get chosen by the model in the cross validation. This means that more

parameters will be set to zero and therefore leading to less interdependencies. This also explains

the underperformance of the LASSO models in the forecasting exercise for the model with

multiple lags, as there are not many nonzero coefficients which leads to an increased forecasting

variance.

Furthermore, we see in table 19 that Germany has high values for incoming dependencies.

This is not what we expect, as Germany is one of the bigger economies, meaning that we

expect Germany will have more outgoing dependencies than incoming. However, this result is

in line with the forecasting results, as we see that the Random Walk model outperforms the

LASSO models for Germany. This leads to the conclusion that the LASSO models are likely

misspecified for Germany for the model including macroeconomic variables. Also, there are

two countries that do not have any incoming dependencies, being Switzerland and the United

States. From the latter this is in line with what we expect as the United States is one of the

leading economies in the world, which means it is more likely that they influence other countries

than vice versa. The result for Switzerland can be explained by their history of neutrality and

thus not leaning on other countries. For example, they only joined the United Nations recently

on September 10, 2002. However, this fact does not explain that Switzerland does have some

outgoing dependencies, as we would expect this relationship also holds the other way around.
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4.3 Monetary policy shocks

(a) Australia (b) Canada

(c) Switzerland (d) Germany

(e) Denmark (f) Spain

Figure 5: Impulse response functions due to monetary policy shocks with one standard
deviation
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(a) Finland (b) France

(c) Great Britain (d) Ireland

(e) Italy (f) Japan

Figure 6: Impulse response functions due to monetary policy shocks with one standard
deviation
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(a) The Netherlands (b) Sweden

(c) United States of America (d) South Africa

Figure 7: Impulse response functions due to monetary policy shocks with one standard
deviation

Figures 5, 6 and 7 show the impulse response functions to monetary policy shocks by the

federal reserve for all the different countries. We modelled the impulse response function up

to 20 quarters. We can see that almost all the countries have an initial negative response to a

monetary policy shock. The only exceptions are Switzerland (5c), Germany (5d) and Ireland

(6d).

The initial negative shock means that a surprise tightening of monetary policy (which is a

positive shock), leads to a decline in the housing prices. This is in line with what we expect,

as a tightening of monetary policy occurs for example when the fed increases the interest rates.

This increase of interest rates means that the mortgage rate is likely to go up which means that

households cannot borrow as much as before. Therefore, households cannot pay as high of a

price as before.

The shape of the impulse response function differs between countries. For example, there are

countries with a relative steady upward sloping impulse response function (see for example Spain

(5f), Finland (6a), Italy (6e) and South Africa (7d)), meaning that the initial negative effect will

become less over time and sometimes even becomes a positive effect. Furthermore, there are

countries without a clear visible trend (for example Australia (5a), Switzerland 5c, Ireland (6d)
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and more). One of the more peculiar shaped impulse response function belongs to Germany

(5d) where the effect of the monetary policy keeps alternating between a positive effect and a

negative effect.

The graphs do suggest that monetary policy shocks by the federal reserve affect the housing

prices of the observed countries.

5 Conclusion

This research investigates the effect of foreign variables and monetary policy shocks by the

federal reserve on housing prices in specific countries. Furthermore, we investigate which type

of model will forecast the housing prices most accurately. This research finds that the reduced

form PVAR models do increase the forecast accuracy with respect to the benchmark unrestricted

model. This indicates that allowing for unrestricted interdependencies while modelling the hous-

ing prices leads to misspeficiation of the model. However, we do not find a single model that

clearly performs the best out of the models for all countries.

When looking into the dependencies on variables of other countries, we find that other coun-

tries do have some influence on the housing prices of specific countries, as the coefficients of the

LASSO PVAR models do have some nonzero entries. Lastly, we construct the impulse response

functions of the housing prices with federal reserve monetary policy shocks. The local projec-

tions show that the housing prices do react mostly negatively to a positive monetary policy

shock, which stands for tightening the monetary policy.

We also have some recommendations for future research. To start, we would like to assess

the hyperparameter search. We have not done any hyperparameter searches for the Bayesian

methods due to the high amount of computational time. We highly recommend to test some

hyperparameters for the Bayesian methods if the computational time is there. Furthermore, we

do a grid search for the penalty parameters of the LASSO PVAR method. While this can give

a good indication which penalty parameter is suited best, it comes with a few downsides. For

example, we do not consider every possible value the penalty parameter can have. For example,

Bergstra and Bengio (2012) show that a random search outperforms a grid search when search-

ing hyperparameters. Another method is the Bayesian optimization, pioneered by Snoek et al.

(2012). We would suggest to follow that method for better hyperparameter optimization.

Also, this research had to take some shortcuts because of the data constraint. Simply put, we

do not have enough data to implement every model we wanted into the research (for example a

model with a large amount of lags and variables). We would suggest to do this research again

in a few years again to see if there is more data available and therefore being able to test more

models.

Lastly, we suggest future research to do more robustness checks. This research had some ro-

bustness checks in place, because we test different kind of models with more lags or more

macroeconomic variables, but more can be done to elevate this research.
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6 Appendix

6.1 Data explanation

The data in this research is retrieved from the OECD. Here we explain the data labels more in

detail.

6.1.1 Nominal housing prices

The nominal housing prices are calculated as follows: The nominal house price index encom-

passes the sale of newly-constructed and pre-existing residential properties, in accordance with

the guidelines outlined in the Residential Property Prices Indices (RPPI) manual OECD (2022).

The values of the housing prices are standardized such that each country’s nominal house price

value is 100 in 2015. The other years are based around that value. The data can be accessed

at: https://data.oecd.org/price/housing-prices.htm.

6.1.2 Inflation

The inflation is measured by the consumer price index (CPI) as the annual growth rate in percent.

A consumer price index is computed as a sequence of concise measurements of the proportional

change in prices of a fixed collection of consumer goods and services that remain constant in

quantity and characteristics, which are bought, utilized, or paid for by the reference population.

Each brief measurement is created as a weighted average of many elementary aggregate indices.

The elementary aggregate indices are assessed using a sample of prices for a specific set of goods

and services that are obtained from a given set of outlets or other sources of consumption goods
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and services in a specific region, or by its residents (OECD, 2022). The data can be accessed

at: https://data.oecd.org/price/inflation-cpi.htmindicator-chart

6.1.3 GDP

The GDP data is reported quarterly. ”This indicator is based on real GDP (also called GDP

at constant prices or GDP in volume), i.e. the developments over time are adjusted for price

changes. The numbers are also adjusted for seasonal influences.” (OECD, 2022). We retrieve this

series as percentage change, previous period. The data can be accessed at: https://data.oecd.org/gdp/quarterly-

gdp.htm

6.1.4 Share price

Share price indices are determined by calculating the value of common shares of companies

traded on national or foreign stock exchanges. The stock exchange usually uses the closing daily

values for monthly data and expresses the indices as simple arithmetic averages of the daily data.

These indices measure the fluctuations in the value of stocks included in the index (OECD, 2022).

The data can be accessed at: https://data.oecd.org/price/share-prices.htmindicator-chart

6.2 Short explanation of the code

This research uses the code from the paper of Camehl (2022) for the LASSO methods and the

code from Korobilis (2016) for the Bayesian methods. There are some small tweaks to the code,

but the foundation of the original code still stands. For the GVAR method, we wrote the code

ourselves, but that code is pretty straightforward in itself.
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