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Abstract

The last decades, data usage has grown rapidly, resulting in complex and big datasets.

This research tries to find the optimal combination of clustering algorithms and dimensional-

ity reduction techniques for effectively clustering complex datasets. The study uses a subset

of the Jester dataset, which contains 4.1 million anonymous ratings of 100 jokes, ranging

from -10 to 10, provided by 73,421 readers between April 1999 and May 2003. Four dimen-

sionality reduction techniques (PCA, ICA, t-SNE, and LLE) and three clustering algorithms

(K-means, AGNES, and DBSCAN) are performed. The research question is, ”What com-

bination of clustering algorithms and dimensionality reduction techniques yields the most

accurate results in clustering complex datasets and does DBSCAN outperform K-means and

AGNES in clustering data?”. The results suggest that the combination of t-SNE with K-

means clustering provides the best performance for the specific dataset. This combination

outperforms the other combinations of clustering methods (AGNES and DBSCAN) and di-

mensionality reduction techniques (PCA, ICA, and LLE). Moreover, DBSCAN performs the

weakest among the clustering algorithms, but ICA, examined.

1 Introduction

In the modern world, the usage of big data has grown exponentially. According to McAfee,

Brynjolfsson, Davenport, Patil and Barton (2012), in 2012, each day 2.5 Exabytes were gener-

ated from multiple sources, such as smartphones or product codes. Kune, Konugurthi, Agarwal,

Chillarige and Buyya (2016) stated that this amount would grow to 40 Zettabytes by 2020,

which is a tremendous growth. To express this growth in numbers, one Exabyte is equivalent

to one billion Gigabytes and one Zettabyte is equivalent to 1000 Exabytes. As a result of this

growth, analyzing and understanding large and complex datasets has become a big challenge.

Companies and individuals get enormous amounts of data from various sources such as cus-

tomer data, social media, and scientific measurements. Extracting value and gaining insights

from these datasets has become essential for making wise decisions (Ji, 2017).

The combination of dimensionality reduction and clustering offers a lot of advantages for dif-

ferent domains in the modern world. Data reduction makes it possible to reduce the data size

and, therefore, can significantly reduce the processing time and storage needs. In R. Sembiring

(2011) for example, the results show that dimension reduction significantly shorten processing

time and also increased performance of clustering in several health datasets. This is very useful

in situations where the storage capacity is limited or when there is little time. Clustering helps to

identify groups and patterns within the data. Companies in different industries and individuals

could gain a better understanding of the structure and characteristics of the data. This could

lead to improved decision-making for companies, for example, targeted marketing campaigns

based on customer segmentation or understanding health patterns for medical diagnosis. In

(Noviantoro & Huang, 2022), for example, they examine which features are most important for

different groups of airline passengers in obtaining the highest passenger satisfaction. The airline

could use these results for performing targeted marketing and improving passenger satisfaction.

So, the combination of data reduction and clustering can help companies and individuals to

extract valuable information from big datasets and enable them to improve decision-making.
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In this research, the focus lies on investigating and evaluating different methods and techniques

for data reduction in combination with clustering. By investigating these different approaches,

the goal is to improve the understanding of the capabilities and limitations of these techniques

and how they perform on various datasets. The research question is: ”What combination

of clustering algorithms and dimensionality reduction techniques yields the most

accurate results in clustering complex datasets, and does DBSCAN outperform K-

means and AGNES in clustering data?”.

The data used in this paper is a subset of the Jester dataset, which contains around 4.1 million

anonymous ratings of 100 jokes. The ratings vary in the range of -10 to 10 and are rated by

around 73,421 readers in the time window from April 1999 to May 2003. In the original paper,

Renjith, Sreekumar and Jathavedan (2019), four dimensionality reduction techniques are used,

two linear and two non-linear. For the linear techniques, Principal Component Analysis (PCA)

and Independent Component Analysis (ICA) are performed, while for the non-linear techniques,

t-Distributed Stochastic Neighbor Embedding (t-SNE) and Locally Linear Embedding (LLE) are

applied. The clustering algorithms used in the original paper are K-means and Agglomerative

Hierarchical Clustering (AGNES). In this research, the paper of Renjith et al. (2019) is replic-

ated, and the Density-based spatial clustering of applications with noise (DBSCAN) is added

to extend the original paper and investigate if this clustering method performs better than the

methods used in the original paper. After applying both the different dimensionality reduction

techniques and clustering methods, the combination of t-SNE with K-means performs the best

for the dataset used in this research. The contribution of this research is that it provides insights

into the optimal combination of clustering algorithms and dimensionality reduction techniques

for complex datasets. The paper is structured into six sections. In Section 2, important context

and knowledge about the problem at hand are provided, along with its corresponding literat-

ure. Section 3 describes the data and the appropriate data preparation for the analysis. In

Section 4, the Methodology discusses the methods used for clustering, dimensional reduction

techniques, and internal clustering validation. Section 5 discusses the results of the used com-

binations of methods and compares the performance of these methods. Finally, the main results

and conclusions of this study are highlighted in Section 6.

2 Literature Review

In the field of comparing clustering methods and dimension reduction techniques, a lot of work

has been done, as well as in analyzing social media data. This literature review aims to provide

an overview of existing research on data reduction and clustering methods, specifically focusing

on PCA, ICA, t-SNE, LLE, K-means, and AGNES. Moreover, this review explores the potential

extension of incorporating DBSCAN as an alternative clustering method.

In Tang, Shepherd, Heywood and Luo (2005), they compare four dimension reduction tech-

niques, including ICA, in the context of document clustering. The techniques evaluated are

ICA, Latent Semantic Indexing (LSI), Document Frequency (DF), and Random Projection

(RP). The research tries to measure the relative effectiveness and robustness of these techniques
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when combined with the k-means clustering algorithm on five benchmark datasets. The paper

concludes that ICA is the most effective technique used in the research, followed by LSI, DF,

and RP.

Renjith, Sreekumar and Jathavedan (2020) focuses on evaluating the performance of cluster-

ing algorithms when applied to datasets with different sizes and dimensions. The study spe-

cifically analyzes dimensionally reduced social media data and compares the clustering quality

using internal validation indices. The paper evaluates nine key algorithms among partitioning,

hierarchical, density-based, and model-based clustering approaches using different social media

datasets. By varying the cardinality and dimensionality parameters of the datasets, the per-

formance trends of these algorithms in terms of turnaround time are captured. Based on their

experiments, CLARA, CLARANS, and k-means algorithms are the best performing algorithms

with varying cardinality. Another result in the paper is that changes in dimensionality do not

impact hierarchical clustering approaches, whereas there is a positive influence on the execution

time for partitioning, density-based, and model-based clustering approaches.

In the paper Liu et al. (2020), the authors investigate the use of the K-means++ algorithm

in combination with t-SNE dimension reduction technique for clustering transformer districts.

The objective of this research is to effectively group transformer districts based on their sim-

ilarities and patterns. The K-means++ algorithm is used to divide the transformer districts

into clusters by minimizing the distance between data points and cluster centroids. To make

the algorithm work even better, the authors used the t-SNE dimension reduction technique. By

reducing the dimensionality of the data, t-SNE improves the clustering results. The results of

the research demonstrate that the application of the K-means++ algorithm with t-SNE dimen-

sion reduction successfully clusters transformer districts, revealing important insights into their

similarities and patterns.

The paper Hai, Nhung and Jasek (2022) investigates how AGNES can be used to improve the

estimation of software development effort. The authors propose a method that includes AGNES

in the estimation process by analyzing past project data and grouping similar projects together.

The research shows that by incorporating AGNES, estimations become more accurate, leading

to better planning of resources and project management. The utilization of AGNES improves

the clustering process, resulting in overall enhanced accuracy in effort estimation. Another pa-

per, by Nath and Nema (n.d.), conducted a comparative and predictive analysis utilizing three

different datasets, namely IRIS, Wine, and Seed from the UCI benchmark in Machine learning

on four distinctive techniques. The goal of the study was to form a good clustering pattern for

each dataset for given techniques, and it showed that the performance of clustering algorithms

depends on the dataset and the dimensionality reduction technique used.

While PCA, ICA, t-SNE, LLE, K-means, and AGNES have been widely used in big data analysis,

there is an opportunity to further enhance the clustering capabilities by incorporating DBSCAN.

DBSCAN is a density-based clustering algorithm that identifies clusters based on density, allow-
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ing for clusters of arbitrary shapes. This extension could be helpful to address some limitations

of the other clustering methods, such as the requirement of specifying the number of clusters.

The paper R. W. Sembiring, Zain and Embong (2011) presents an alternative model to extract

multidimensional data through dimension reduction. When dealing with datasets that have a

lot of dimensions, it can be challenging to process them efficiently. This paper suggests a new

method that reduces the number of dimensions while still capturing important information. Five

dimension reduction techniques are evaluated, such as ISOMAP (Isometric Feature Mapping),

KernelPCA, LLE (Local Linear Embedded), Maximum Variance Unfolded (MVU), and Prin-

cipal Component Analysis (PCA). They found that by using these techniques, the processing

time became shorter and the quality of the results improved. The best performance was seen

when using DBSCAN with KernelPCA and Super Vector with KernelPCA. As in the previous

paper, DBSCAN could probably outperform the other techniques in this research as well. By

introducing DBSCAN to the analysis of joke datasets, the effectiveness in identifying clusters of

jokes with similar characteristics or humor styles is investigated.

3 Data

In this section, the data used in the paper and the processing process will be discussed. The

dataset used is a subset of the Jester dataset, which contains around 4.1 million anonymous

ratings of 100 jokes. The ratings vary in the range of -10 to 10 and are rated by around 73,421

readers in the time window from April 1999 to May 2003. The first column contains the user’s

ID and the rest of the columns contains the ratings of the users for each joke. If a user did

not rate a joke, the value for this joke is set to 99. Due to computer performance limitations, a

sample with a cardinality of 3500 is used. Since the specific subsample is not mentioned in the

original paper, it is difficult to find the exact same subsample. The Jester set is divided into

different zip files, where the subsample for this research is taken from the first zip file called

”jester-data-1.zip”, which contains 24,983 users and the ratings of 100 jokes. For this research

the users need to have rated all the 100 jokes, so the file chosen for this research contains can-

didates that are suitable, since the users in this file have rated 36 or more jokes.

Pre-processing: In order to make the dataset applicable, a couple of pre-processing steps

need to be done. First, it is important to create a subsample from the ”jester-data-1.zip” file

where the users have rated all the jokes, and thus the rows do not contain any value of 99, as

these values would influence the clustering process due to their high value in comparison with

the other data (values ranging from -10 to 10). If a user has rated all the 100 jokes, the user’s ID

is set to 100 (i.e., the value in the first column of the dataset is set to 100). Now, from the users

that rated all the 100 jokes, a random subsample of 3500 rows is selected. After creating the

subsample, the first column is deleted since the user ID should not be involved in the clustering

process or dimension reduction of the rating of jokes.
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4 Methodology

In this section all the different types of clustering, dimension reduction techniques and internal

clustering validation measurement which are used in the original paper and which will be used

in my extension will be explained.

4.1 Clustering methods

K-means: The K-means clustering algorithm is a centroid-based method. This method uses

centroids (i.e. the center of each cluster) to minimize the sum of the distances between the

data-points and their corresponding cluster centroids. K-means clustering divides the data-set

into k distinct clusters with the help of the iteration process explained above. The iterations

have the goal of minimizing the total within cluster variation (TWCV) for the clusters being

generated. The TWCV formula is as follows:

TWCV =

K∑
k=1

∑
Ei∈Ck

(Ei − µk)
2 (1)

where K is the cluster count and Ei is an entity in cluster Ck with centroid µk.

AGNES: AGNES is a hierarchical clustering method, which means that clusters are repres-

ented in a hierarchical tree called a dendogram. The algorithm merges in each iteration the

nearest clusters in subsequent steps to result in a single cluster with all the entities of the data-

set. The merging of clusters can be done by several linkage criterion. In the research, Ward’s

method, which can be found in the paper of Tibshirani (2012), is used for AGNES which aims

to minimize the variance within each cluster as clusters are merged together. Ward’s method

is often used as a linkage method since the clustering results in clusters with similar size and a

good balance between compactness and separation. The procedure is as follows:

1. Start from n clusters, with each cluster containing only one data-point.

2. Suppose Dnxn = [drs] is a proximity matrix (i.e. a square matrix containing the distances,

taken pairwise between the data-points of a matrix). Find an inequality matrix D for the

most similar pair rs, with r and s the objects.

3. Merge r and s into one new cluster (rs) ans decrease the number of clusters by one through

deleting row and column of object r and s. Then calculate the inequality between cluster

rs and all the other remaining objects and add row and column to the new inequality

matrix.

4. Repeat steps 2 and 3 n − 1 times in order to merge all object into one cluster. In each

step, identify the cluster union and value of inequality where the clusters are united.

(Wijuniamurti, Nugroho & Rachmawati, 2022)

The steps to form clusters in each iteration are irreversible, though it lacks global distribution

details of the data.
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DBSCAN: The DBSCAN algorithm is a density-based clustering method, which groups data

points based on their density. The algorithm requires two parameters, namely eps and MinPts.

The key idea of DBSCAN is that for each object of a cluster the neighborhood of a given radius

(Eps) has to contain at least a minimum number of objects (MinPts), which means that the

cardinality of the neighborhood has to exceed some threshold (Khan, Rehman, Aziz, Fong &

Sarasvady, 2014). The ϵ-neighborhood of an arbitrary point ’p’ is formulated as follows:

NEps = qϵD/dist(p, q) < EPS (2)

Where D is the set of data-points. If the ϵ-neighborhood of a point ’p’ contains more data-points

than the required MinPts, this point is called a core point.

NEps(P ) > MinPts (3)

If equation 3 is not specified, this data-point is not a core point (Khan et al., 2014). In order

to find the optimal eps, the K-Nearest Neighbors (KNN) plot , which sorts all data points by

their k-nearest neighbor distance is used. The Euclidean distance (Liberti, Lavor, Maculan &

Mucherino, 2014) is used by the KNN distance plot for DBSCAN and the optimal value for eps

is where the ”elbow” appears in the plot, i.e. where the k-th nearest distance suddenly increases

steeply. KNN-distance plot is used because of its ease of implementation and because it can be

effective with a complex data structure.

4.2 Linear dimension reduction techniques

Principal Component Analysis (PCA): PCA is a feature projection approach and ex-

tract a new set of features, called principal components, as linear combination of the original

features. Orthogonal transformation is used to convert a set of correlated features into a set

of linearly uncorrelated variables, called principal components. Suppose the random vector

X = [X1, X2, ..., XN ] has covariance matrix V with eigenvalues β1 ≥ β2 ≥ ...βn ≥ 0 and normal-

ized eigenvectors l1, l2, ..ln (Assi, 2020). Then the following linear combination of the principal

components is as follows:

XPCt = l′iX = l1iX1 + l2iX2 + ...lniXn (4)

V ar(XPCT
) = l′iV li, i = 1, 2, ..., n (5)

Cov(XPCT
, XPCT

) = l′iV lk (6)

The uncorrelated linear combinations XPC1 , XPC2 , ..., XPCn ere the principal components

ranked in descending order based on their variances (Assi, 2020).

Independent Component Analysis (ICA): ICA is another linear dimensionality reduc-

tion technique and quite similar to PCA, but is different in some ways. The goal of ICA is to

find a linear combination based on independent features, whereas PCA focuses on uncorrelated

features. In the context of ICA, we assume that the observed data is a linear mixture of inde-
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pendent components. The procedure is as follows, based on the paper of Hyvärinen and Oja

(2000): Assume there are n linear mixtures denoted by x1, x2, ..., xn. These mixtures xj are

composed of n independent components denoted by s1, s2, ..., sn. The linear mixture model can

be expressed as follows:

xj = aj1s1 + aj2s2 + . . .+ ajnsn for all j

Where xj represents the jth mixture signal, and si represents the ith independent component.

The coefficients aji represent the mixing weights. By using vector-matrix notation, the entire

set of mixtures x can be expressed as a random vector, and the set of independent components

s can also be expressed as a vector. The mixing weights aji can be expressed as elements of a

mixing matrix A. The random vector of mixtures x is given by:

x =


x1

x2
...

xn


The random vector of independent components s is given by:

s =


s1

s2
...

sn


The mixing matrix A is given by:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann


The mixing model in vector-matrix notation is represented as:

x = As

The ICA model describes how the observed data (mixtures) are generated by mixing the

independent components. The goal of ICA is to estimate both the mixing matrix A and the

independent components s from the observed data x. This must be done under the assump-

tions that the components are statistically independent and that the mixing matrix is unknown

(Hyvärinen & Oja, 2000).Once the mixing matrix A is estimated, we can compute its inverse W

and we can obtain the independent components s using the following equation:

s = Wx
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4.3 Non-linear dimension reduction techniques

t-Distributed stochastic Neighbor Embedding (t-SNE): For a given (high) d-dimensional

data set X = {x1, x2, ..., xN} ⊂ Rd, the goal of t-SNE is to compute the low dimensional

embedding Y = {y1, y2, ..., yN} ⊂ Rs with s << d (s usually 2 or 3). This means that if two

points xi and xj are close in the input space, then yi and yj are also close (Linderman, Rachh,

Hoskins, Steinerberger & Kluger, 2017). The similarity between xi and xj in the input space

(i.e. pij) are defined as:

pi|j =
exp

(
−∥xi−xj∥2

2σ2
i

)
∑

k ̸=i exp
(
−∥xi−xk∥2

2σ2
i

) (7)

pij =
pj|i + pi|j

2N
(8)

In the above equation, the bandwidth of the Gaussian kernels, σi, is chosen so the perplexity

of the conditional distribution Pi equals a certain value, where Pi is the conditional distribution

of all the other points given xi (Linderman et al., 2017). For the low-dimensional embedding,

the similarity between points yi and yj is measured according to the Cauchy kernel:

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1

(9)

The t-SNE approach finds the points {y1, ..., yn} that minimize the divergence between the

points in the input space P and the embedding space Q, called the Kullback-Leiber divergence.

The formula of Kullback-Leiber is as follows:

C(γ) =
∑
i ̸=j

pijlog
pij
qij

(10)

(Linderman et al., 2017)

The t-SNE approach can keep the local structure of the data even after performing dimen-

sionality reduction, which causes that the overall geometry of the data-set is preserved.

Locally Linear Embedding (LLE): LLE is a non-linear approach with the following pro-

cedure: First, LLE finds the k-nearest neighbors of the points using the Euclidean distance. Let

xij ∈ Rd denote the j-th neighbor of xi and Xi := [xi1, xi2, ..., xik] ∈ Rdxk are the k neighbors of

xi. Secondly, it approximates each data vector as a weighted linear combination of its k-nearest

neighbors. The optimization of the linear combination is as follows:

min
W̃

ϵ(W̃ ) :=
n∑

i=1

∥xi −
k∑

j=1

w̃ijxij∥22,

subjectto
k∑

j=1

w̃ij = 1, ∀i ∈ {1, ..., n}

(11)

8



Where the weights are included in W̃ := [w̃1, . . . , w̃n]
′ ∈ Rn×k, w̃i := [w̃i1, . . . , w̃ik]

′ ∈ Rk in-

cludes the weights of the i-th data-point using the k neighbors of this point, and xij ∈ Rd is the

j-th neighbor of the i-th data-point (Ghojogh, Ghodsi, Karray & Crowley, 2020). The constraint

ensures that the weights of the linear construction sum up to one.

Finally, it computes the weights that best reconstruct the vectors from its neighbors, then pro-

duce the low-dimensional vectors best reconstructed by these weights. This linear embedding is

formulated as follows:

min
Y

n∑
i=1

∥yi −
n∑

j=1

wijyj∥22,

subject to
1

n

n∑
i=1

yiy
′
i = I,

n∑
i=1

yi = 0

(12)

Where the embedded data-points are the rows of Rnxp, i.e., Y := [y1, . . . , yn]
′, yi ∈ Rp is the i-th

embedded data-point, I is the identity matrix, and wij is w̃ij if xj is in the k-nearest neighbors

of xi and zero otherwise. LLE expects the data-set to be non-linear, smooth and it is sensitive to

outliers and noise. The LLE approach ensures that the neighborhood structure will be preserved

in the low-dimensional space.

4.4 Internal clustering validation

In the internal clustering validation, the cluster quality is measured in terms of a set indices. In

this paper, the following indices are used: The Silhouette Index, Dunn Index, Calinski-Harabasz

Index and Davies-Bouldin Index.

The Silhouette index measures the difference between average distance within the cluster and

the minimum distance between the clusters, where a high value means a better cluster quality

(Wang & Xu, 2019). It measure the cohesion of data-points in each cluster and the dissimilarity

between clusters. The formula is as follows:

s(i) =
max(a(i), b(i))

b(i)− a(i)
(13)

Where a(i) represents the average distance of data point i to all other data points within the

same cluster (intra-cluster distance) and b(i) represents the average distance of data point i to

all the data points in the nearest neighboring cluster (inter-cluster distance). The value of the

Silhouette index ranges from -1 to 1, where 1 means a good fit and -1 a bad fit (Rousseeuw, 1987).

The Dunn index measures which evaluates the degree of compactness of clusters and the separ-

ation between clusters, where a high value indicate more goodness. The formula is as follows:

Dunn Index =
min inter-cluster distance

max intra-cluster distance
(14)
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Where ”min inter-cluster” represents the minimum distance between any two clusters, i.e. it is

the smallest distance between data points belonging to different clusters. ”Max-intra-cluster”

represents the maximum distance between data points within the same cluster, i.e. it is the

largest distance between any two data points in the same cluster. The value of the Dunn index

ranges from 0 to infinity (Ncir, Hamza & Bouaguel, 2021).

The Calinski-Harabasz index measures the degree of dispersion between clusters and within

clusters, where a high value means better cluster quality (Wang & Xu, 2019). The formula of

the Calinski-Harabasz index is as follows:

Calinski-Harabasz Index =
B

W
× N − k

k − 1
(15)

Where B is the between-cluster variance, i.e. the variance between cluster centroids, W is the

within-cluster variance, N is the total number of data points and k is the number of clusters

(Wang & Xu, 2019).

The Davies-Bouldin Index measures the compactness of clusters and the separation between

clusters based on the cluster centroids, where a lower value means a better cluster quality

(Thomas, Santos & Cofre, 2014). The value ranges from 0 to 1 and the formula is as follows:

DBI =
1

n

n∑
i=1

max
j ̸=i

(
σi + σj
d(ci, cj)

)
(16)

Where n is the number of clusters, σi is the average distance of each point in cluster i to the

centroid ci of that cluster and d(ci, cj) is the distance between the centroids ci and cj of clusters

i and j (Tempola & Assagaf, 2018).

4.5 Flowchart

The procedure in analyzing the data is following the flowchart which is shown in the paper of

Renjith et al. (2019).

Figure 1: Flowchart of the analyzing proces.

The number of clusters is determined before performing the data reduction, except for DB-

SCAN as this method does not need an initialization for the number of clusters. Data reduction

can result in some loss of information as certain variations in the data are eliminated. This

can impact clustering performance and therefore we determine the number of clusters before

performing data reduction methods (Jolliffe, 2002).
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5 Results

In this section, the results from both the original clustering methods, K-means and AGNES,

and the extension (DBSCAN), will be presented. First, the clustering methods in combination

with linear dimension reduction techniques, PCA and ICA, will be presented, and the non-linear

techniques, t-SNE and LLE, will be presented afterwards. A general note that applies to all

results is that the original research is not reproducible because the exact subsample used in the

original research has not been mentioned.

Before performing data reduction or clustering with K-means and AGNES, the number of

clusters needs to be determined first. To do this, the R-package NbClust is used (Charrad,

Ghazzali, Boiteau & Niknafs, 2014). The function is as follows: NbClust(data, diss = NULL,

distance = ”euclidean”, min.nc = 2, max.nc = 10, method = ”kmeans”, index = ”all”), where

as the distance measure for the dissimilarity matrix the Euclidean distance is chosen, which

can be found in the paper of Liberti et al. (2014), the minimal number of clusters is 2 and the

maximal number of clusters is 10. For the method, kmeans is chosen for K-means and Ward

is chosen for AGNES. NbClust determines the number of clusters by the majority voting of 26

indices. In Table 1, an overview of all indices is given for K-means, combined with the number

of clusters each index advises. In Table 2, the same is done for AGNES. After majority voting,

the number of clusters in our subsample for both K-means and AGNES is 2.
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Table 1: The number of clusters for each index after performing NbClust for K-means.
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Nb of clusters -Inf 2 3 10 8 6 6 6 NA 6 3 5 3 3 3 2 3 2 2 2 2 2 2 1 0 0

Table 2: The number of clusters for each index after performing NbClust for AGNES.

5.1 Dimensionality reduction with K-means

The first method applied in this research is the K-means clustering in combination with PCA

dimension reduction. Before applying the K-means clustering, PCA is performed on the sub-

sample taken from the Jester dataset. For performing PCA, the function ”prcomp” of the

package ”Stats” is used (R Core Team, 2013). The dimensionality will be reduced from 100 to

2. The reduction from 100 to 2 is done because t-SNE only allows a dimension of 1, 2, or 3.

For dimension 2, we preserve information from the original components and can also plot the

clusters, so visual results are available. After applying both methods, the components are used
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to plot the 2D graph. The result of the clustering is shown in Figure 2a.

After applying PCA, ICA is performed in combination with K-means clustering. To do so, the

package ’caret’ is used (Kuhn & Max, 2008), and especially the functions preProcess() and pre-

dict(). First, the subsample consisting of 3500 rows and 100 features is pre-processed for ICA,

after which predictions are made and the independent components are extracted. The first two

independent components are used to perform K-means, and the result of the clustering can be

seen in Figure 2b. The first two independent components are extracted to be able to show a

two-dimensional graph.
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Figure 2: Linear dimension reduction with K-means

Now both the linear dimensional reduction techniques have been applied, and the non-linear

techniques will be used next. First, t-SNE is applied. The package ”Rtsne” is used to get the

low-dimensional embeddings of the subsample, and then K-means is performed to cluster the

t-SNE data (Krijthe, 2015). The function ”Rtsne” requires a few hyperparameters to be spe-

cified. The function is as follows: Rtsne(subsample, dims, perplexity, theta, max iteration). For

the dimension, at most 3 can be selected, but due to the dimension of the graphs, 2 is chosen.

The perplexity, with a default value of 30, typically ranges from 5 to 50, where a higher value is

assigned for more complex datasets. As the subsample used in this research is not that big, the

default value is used. Theta is set to 0.5 to create a balance between accuracy and running time.

The maximum iterations, which often range between 1000 and 5000, are set at 3000, so that the

method performs many iterations while keeping the running time acceptable. The result can be

found in Figure 3a.

The last dimensional reduction technique used in the paper is LLE. The ”lle” package is used to

get the embedded coordinates before applying K-means with two clusters (De Ridder & Duin,

2002). The formulation of the LLE function is as follows: lle(subsample, m, k, reg, ss, p, id,

nnk, eps, iLLE, v), where ”subsample” is the dataset used for LLE. ”m” is the dimension, which

in this research is 2, and ”k” is the number of nearest neighbors, which often ranges from 5 to

20, and in this research, it is set at 5 because the data in the subsample is only two-dimensional

due to the dimension reduction techniques. ”reg” is the regularization parameter that controls

the level of regularization in local linear reconstruction and ranges from 0 to 1. In this paper,

”reg” is set to 0.1, as this value is often used. ”ss” is for scaling, which is not important in our

12



case. ”p” is for the distance we use in our clustering methods, which is the Euclidean distance.

The value for the Euclidean distance is 2. ”id” is set to FALSE to emphasize the local structure,

and ”nnk” is set to TRUE to preserve local characteristics. ”eps” and ”iLLE” do not need to

be specified, and ”v” is a variation value which ranges from 0.8 to 0.99. In this research, the

value is set to 0.99 to retain as much variation as possible. The cluster results are projected in

Figure 3b. This method acquires the most different clusters of the 4 methods applied. In the

section of internal cluster validation, we will see if this is reflected in the values of the indices

used to compare the different techniques.
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Figure 3: non-linear dimension reduction with K-means

5.2 Dimensionality Reduction with AGNES

The second clustering method applied in this research, is the AGNES clustering. This hier-

archical clustering method merges clusters with linkage criteria, in this research Ward’s linkage

method is used. This method is chosen because it results in clusters with similar size and a

good balance between compactness and separation. For all the dimension reduction techniques,

the same procedure is followed as by the K-means clustering, with the same parameters for the

functions used in R. To perform AGNES, the R package ’cluster’ is used, which contains the

agnes() function (Maechler, Rousseeuw, Struyf, Hubert & Hornik, 2022). After performing this

function, we extract the desired number of clusters, in this case 2, and plot the clusters. The

resulting clusters for both PCA and ICA can be found in respectively Figure 4a and Figure 4b.
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Figure 4: Linear dimension reduction with AGNES

For the non-linear dimensional reduction techniques, the results are shown in Figure 5a and

Figure 5b. For LLe, the clustering gives just like K-means a strange clustering.
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Figure 5: Non-linear dimension reduction with AGNES

5.3 Dimensionality Reduction with DBSCAN

The last clustering method used in this research is DBSCAN. DBSCAN is a density-based

method which, unlike K-means and AGNES, does not require a specific number of clusters as

input. The package ”DBSCAN” is used (Hahsler, Piekenbrock & Doran, 2019), and the function

”dbscan” contains two parameters that need to be specified: ”eps” and ”MinPts”. To determine

the optimal ”eps”, the K-nearest neighbors method is used. The function ”KNNdistplot()”

requires the number of the k-nearest neighbors as input, and in this paper, we use 5. The

optimal value for ”eps” is where the curve is the steepest. For ”MinPts”, we use the value 5,

which is the same value we used to determine the optimal ”eps”. The optimal ”eps” values for

each dimension reduction model are 1.60, 0.45, 1.20, and 0.15, as shown in Figure 6.
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(d) KNN for LLE

Figure 6: The KNN distant graphs for each dimension reduction technique. The red line gives
the point wheren the steepest curve appears.

Now the parameters are determined, the clustering can be performed. The results of the

clustering for each different dimension reduction technique is presented in the Figures 7 and 8.
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Figure 7: Linear dimension reduction with DBSCAN
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Figure 8: Non-linear dimension reduction with DBSCAN

In each of the Figures above, the black points are noise points (i.e. outliers). Where in

performing K-means and AGNES the clusters where determined before, DBSCANmakes clusters

during the clustering process. This results in 3 clusters instead of 2 for the non-linear dimension

reduction techniques.

5.4 Internal clustering validation

In this subsection, the performance of the clustering methods and dimensional reduction methods

will be analysed. Based on several different indices the different methods will be compared to

each other. In Figure 9, the indices for each cluster method are shown.
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Figure 9: The different indices for cluster validation
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Because for each clustering method in combination with a dimensionality reduction tech-

nique there is only one value per index, a statistical test is not available for comparing the

methods. Therefore the methods are compared via visual and procentual comparison in this

research. Assumed in this research is that two methods differ from each other when the values

differ at least 15.00%.

The procedure in evaluating which combination is most suitable for this specific subsample

from the specific dataset is as follows: Per dimensional reduction technique, the best combina-

tion will be sorted out. After that, the best combinations for each technique will be compared

to conclude which combination is the best for this research. All the procentual differences are

stated in Tables 3, 4, 5 and 6.

Dimension Clustering Comparison Than

Reduction Method

PCA

K-Means 1.21% smaller AGNES

K-means 17.16% larger DBSCAN

AGNES 18.56% larger DBSCAN

ICA

K-means 7.94% larger AGNES

K-means 36.64% smaller DBSCAN

AGNES 41.28% smaller DBSCAN

t-SNE

K-means 0.24% larger AGNES

K-means 42.03% larger DBSCAN

AGNES 41.62% larger DBSCAN

LLE

K-means 3.16% smaller AGNES

K-means 63.01% larger DBSCAN

AGNES 68.26% larger DBSCAN

Table 3: Comparison of Clustering Methods for Dimension Reduction Techniques for the Sil-
houette Index, where a higher value means better prediction.

Dimension Clustering Comparison Than

Reduction Method

PCA

K-Means 57.28% smaller AGNES

K-means 97.10% smaller DBSCAN

AGNES 90.73% smaller DBSCAN

ICA

K-means 68.44% smaller AGNES

K-means 96.93% smaller DBSCAN

AGNES 90.08% smaller DBSCAN

t-SNE

K-means 33.54% smaller AGNES

K-means 78.71% smaller DBSCAN

AGNES 67.93% smaller DBSCAN

LLE

K-means 22.40% smaller AGNES

K-means 64.71% smaller DBSCAN

AGNES 54.82% smaller DBSCAN

Table 4: Comparison of Clustering Methods for Dimension Reduction Techniques for the Dunn
Index, where a higher value means better prediction.
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Dimension Clustering Comparison Than

Reduction Method

PCA

K-means 3.35% larger AGNES

K-means 68.80% smaller DBSCAN

AGNES 69.77% smaller DBSCAN

ICA

K-means 5.16% smaller AGNES

K-means 6.66% larger DBSCAN

AGNES 12.50% larger DBSCAN

t-SNE

K-means 1.28% larger AGNES

K-means 88.02% smaller DBSCAN

AGNES 88.16% smaller DBSCAN

LLE

K-means 4.68% larger AGNES

K-means 57.00% smaller DBSCAN

AGNES 58.91% smaller DBSCAN

Table 5: Comparison of Clustering Methods for Dimension Reduction Techniques for the Davies-
Bouldin Index, where a lower value means better prediction

Dimension Clustering Comparison Than

Reduction Method

PCA K-means 46.51% larger AGNES

ICA K-means 13.12% larger AGNES

t-SNE K-means 18.59% larger AGNES

LLE K-means 1.06% larger AGNES

Table 6: Comparison of Clustering Methods for Dimension Reduction Techniques for the
Calinski-Harabasz Index, where a higher value means better prediction.

5.4.1 PCA

For the Silhouette Index, a higher value means a better clustering. If we look at Figure 3, the

AGNES outperforms the other clustering methods. Although the AGNES value is bigger than

the other values, it does not differ K-means enough, since K-means is 1.21% smaller. Both AG-

NES and K-means differ from DBSCAN for this index, where DBSCAN performs worst. Next

is the Dunn Index, where a higher value means a better clustering. Both AGNES and K-means

are way smaller for each dimensional reduction technique in comparison with DBSCAN, namely

at least 90% smaller. Besides that, the K-means value is 57.28% smaller than AGNES, meaning

that K-means performs worst for the Dunn Index. The Davies-Bouldin Index associates good

clustering with a lower value. As can be seen in Figure 5, the DBSCAN value is way higher

than the other values. K-means and AGNES are close to each other, where K-means is 3.35%

larger than AGNES. AGNES performs best, but not better than K-means.The last Index is the

Calinski-Harabasz, where a higher value means a better clustering. As can be seen in Figure

6, the DBSCAN bar is not even visible. The K-means value is 46.51% larger than the AGNES

value and therefore higher. The K-means performs best for the Calinski-Harabasz Index.

Combining all the results of the different indices, K-means performs best when performing
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PCA. Although DBSCAN performs best for the Dunn index, it performs worst for all the other

indices. K-means performs better for the Calinski-Harabasz indices and does not differ from

AGNES for the other indices.

5.4.2 ICA

For the Silhouette Index, a higher value means a better clustering. If we look at Figure 3,

DBSCAN performs better than both AGNES and K-means as they are way smaller and so DB-

SCAN is the best method according to this index. K-means and AGNES do not differ for this

index. The Dunn Index, where a higher value means a better clustering, is for DBSCAN a lot

higher than for the other two methods which can be seen in Figure 4. On top of that, K-means

has a smaller index value than AGNES. K-means performs worst for this index and DBSCAN

best. The Davies-Bouldin Index associates good clustering with a lower value. As can be seen

in Figure 5, all values are close to each other for this index. Looking at table 9c, the DBSCAN

value is the smallest but no clustering method differs from another and performs best. The last

Index is the Calinski-Harabasz, where a higher value means a better clustering. As can be seen

in Figure 6, the DBSCAN bar is barely visible. The K-means value is 13.12% larger than the

AGNES value which means they don’t differ. No method performs best for this index.

Combining all the results of the different indices, DBSCAN performs best for ICA.

5.4.3 t-SNE

For the Silhouette Index, a higher value means a better clustering. In Figure 3, the DBSCAN is

outperformed by the other clustering methods. Both K-means and AGNES have higher values

for the Silhouette index. Although, the difference between those two values is not enough to

say they differ for eachother(0.24%). The Dunn index, where a higher value means a better

clustering, is for DBSCAN higher than for the other two methods. K-means is 33.54% smaller

than AGNES, which means that the DBSCAN method performs best for t-SNE and K-means

worst, according to the Dunn index. The Davies-Bouldin Index associates good clustering with

a lower value. The DBSCAN is a lot higher in value than both K-means and AGNES, which

is illustrated in Figure 5. K-means and AGNES are respectively 88.02% and 88.15% smaller.

Between K-means and AGNES, the difference is a lot smaller, namely K-means is 1.28% higher

than AGNES. So DBSCAN performs worst and there is no difference between K-means and

AGNES. Finally the Calinski-Harabasz, where a higher value means a better clustering. As can

be seen in Figure 6, the DBSCAN bar is, again, barely visible. The K-means value is 18.59%

larger than the AGNES value, making it higher. The K-means performs best for the Calinski-

Harabasz Index.

Combining all the results of the different indices, K-means performs best when performing

t-SNE. It performs better for the Calinski-Harabasz indices and outperforms DBSCAN for all

indices but the Dunn Index.
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5.4.4 LLE

The Silhouette Index, for which a higher value means a better clustering, has a higher value for

K-means and AGNES in comparison with DBSCAN. The value between themselves is although

not significant: K-means is 3.16% smaller than AGNES. For this index, DBSCAN performs the

worst. Next is the Dunn Index, where a higher value means a better clustering. K-means is

worse than both AGNES and DBSCAN, the value is respectively 22.40% and 64.71% smaller.

K-means performs worst for this index and DBSCAN best.The Davies-Bouldin Index associates

good clustering with a lower value. As can be seen in Figure 5, the DBSCAN value is way higher

than the other values and K-means and AGNES do not differ a lot. The value of K-means is

4.68% higher than AGNES, which means that AGNES performs best, but it is not enough to

assume they differ. The last Index is the Calinski-Harabasz, where a higher value means a better

clustering. As can be seen in Figure 6, the DBSCAN bar just a little bit visible. Moreover, the

K-means value is just 1.06% higher than AGNES, which means they do not differ. DBSCAN

performs worst for this index.

Combining all the results of the different indices, no method performs best. Since DBSCAN

performs best for the Dunn index and worst for the Calinski-Harabasz and K-means and AGNES

do not differ.

5.4.5 Compare best combinations

For each dimensional reduction technique the best clustering method is determined, if there was

a significant best combination. The next step is to compare these combinations to determine

the best combination of dimensionality reduction and clustering for the data set used in this

research.

Combination Silhouette Dunn Calinski-Harabasz Davies-Bouldin

t-SNE VS PCA 15.49% larger 355.64% larger 47.49% larger 13.04% smaller

t-SNE VS ICA 3.14% smaller 81.28% smaller 12100% larger 38.43% smaller

ICA VS PCA 11.97% larger 95.89% smaller 98.79% smaller 41.24% larger

Table 7: Comparison of the best combinations, where t-SNE and PCA are in combination with
K-means and ICA with DBSCAN.

In Table 7 the results of the comparison of the best performing combinations per dimension

reduction technique are showed. For the Silhouette index t-SNE with K-means performs better

in comparison with the other combinations. For the Dunn index, ICA with DBSCAN performs

best and PCA with K-means worst. Moreover, for the Calinski-Harabasz t-SNE with K-means

perfors way better than the other combinations. Finally, the Davies-Bouldin does not appear to

have a best combination. All together, t-SNE in combination with K-means performs best for

the dataset used in this research.
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6 Conclusion

In the paper of Renjith et al. (2019), four different data reduction methods are used to reduce

the dimension of a dataset, before clustering the reduced data with K-means and AGNES. The

goal of the research is to get the combination which generates the best results in clustering

complex datasets. In this paper, the paper of Renjith et al. (2019) is replicated and extended

by adding DBSCAN to the clustering methods options and analyze if DBSCAN outperforms

the other two clustering methods. The research question addressed is: ”What combination

of clustering algorithms and dimensionality reduction techniques yields the most

accurate results in clustering complex datasets and does DBSCAN outperform K-

means and AGNES in clustering data?”.

The results of this research show that the combination of t-SNE with K-means clustering per-

forms the best for the specific dataset used in this research, which consisted of jokes rated on a

scale from -10 to 10. This combination showed the best performance compared to other clustering

methods, including AGNES and DBSCAN, and dimensionality reduction techniques, including

PCA (Principal Component Analysis), ICA (Independent Component Analysis), and LLE (Loc-

ally Linear Embedding). To come to this conclusion, first the clustering method that performs

best for each dimension reduction technique is chosen, based on the graphs and percentual dif-

ferences between the clustering methods of four indices (Silhouette, Dunn, Calinski-Harabasz

and Davies-Bouldin). For PCA and t-SNE is K-means the best clustering method, for ICA this

is DBSCAN and LLE does not appear to have a clustering method that outperforms the other

methods. Then the best combinations for each dimension reduction technique are compared and

the t-SNE in combination with K-means appeared to perform the best.

The results of this research contradict the results found in the paper of R. W. Sembiring et

al. (2011), where five dimension reduction techniques in combination with different clustering

methods are evaluated, including DBSCAN. The best performance was seen when using DB-

SCAN as a clustering method in combination with KernelPCA. In this particular research,

DBSCAN does not perform that good, which is a interesting result compared to the research

of R. W. Sembiring et al. (2011). The results of this research do confirm the results of Liu

et al. (2020) that K-means in combination with t-SNE is a good combination. In Liu et al.

(2020), the use of a K-means version in combination with t-SNE improves the clustering results.

The results of that research demonstrate that the application of the K-means++ algorithm

with t-SNE dimension reduction successfully clusters transformer districts, revealing important

insights into their similarities and patterns. The combination of K-means with t-SNE is also

the best combination of a dimensional reduction technique in combination with a clustering

method in this research, based on the different methods used in this research. By using t-SNE

and K-means clustering, valuable information can be extracted from this big dataset, which

results in an improved decision-making process. The dimensionality reduction offered by t-SNE

ensures effective processing of data and the clustering performed by K-means identifies different

groups and patterns within the dataset, based on different characteristics. For further research

investigating the performance of the same methods and techniques on different types of datasets
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should be done. By doing this, valuable insights into their generalizability and applicability

could be provided. On top of that, investigating more indices can boost the understanding of

the strengths and weaknesses of different clustering approaches.
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A Programming code

library(poLCA)

library(readr)

library(dplyr)

library(readxl)

library(NbClust)

library(stats)

library(cluster)

library(caret)

library(fastICA)

library(ggpubr)

library(factoextra)

library(Rtsne)

library(snowfall)

library(snow)

library(lle)

library(dbscan)

library(clValid)

library(fpc)

library(clusterCrit)

# select the cases where there are no missing values

id <- which(Jester [,1] == 100)

# make a subset of the complete cases and delete the first

column with user values

Jester_subset <- Jester[id , 2:101]

# Set seed for reproducibility

set.seed (123)

#create a subsample of 3500 rows and the 100 remaining variables

subsample <- Jester_subset[sample(nrow(Jester_subset), 3500) , ]
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#perform NbClust with all indices

result <- NbClust(subsample , diss = NULL , distance = "euclidean"

, min.nc = 2, max.nc = 10, method = "kmeans", index = "all")

#for the Hubert plot , change "All" with "Hubert"

#same for Dindex

#get the number of clusters for each index

best_nc <- result$Best.nc

print(best_nc)

#perform k-means and plot

clustering_result_kmeans <- kmeans(subsample ,

centers = 2, nstart = 15)

fviz_cluster(clustering_result_kmeans ,

data = subsample , geom = "point")

print(clustering_result_kmeans)

#-------------------------------------------------------------------------

# Perform agglomerative hierarchical clustering (AGNES)

clustering_result_agnes <- agnes(subsample , method = "ward")

# Extract the desired number of clusters

k <- 2

clusters_agnes <- cutree(clustering_result_agnes , k)

#plot the clusters

fviz_cluster(list(data = subsample , cluster = clusters_agnes)

, geom = "point")

print(clustering_result_agnes)

#-------------------------------------------------------------------------

#perform dbscan and plot

#choose optimal eps

kNNdistplot(subsample , k = 5)
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clustering_result_dbscan <- dbscan(subsample , eps = 55, MinPts = 5)

num_clusters <- length(unique(clustering_result_dbscan$cluster )) -1

fviz_cluster(clustering_result_dbscan , data = subsample , geom = "point")

distance_matrix <- dist(subsample)

#------------------------------------------------------------------

#PCA

pca_result <- prcomp(subsample , center= TRUE , scale = TRUE)

#access the principal components and take the first 50

reduced_data <- pca_result$x[, 1:2]

#KMEANS WITH PCA

clustering_result_kmeans_pca <- kmeans(reduced_data , centers = 2)

fviz_cluster(clustering_result_kmeans_pca ,

data = reduced_data , geom = "point")

print(reduced_data)

#AGNES WITH PCA

clustering_result_agnes_pca <- agnes(reduced_data ,

method = "ward")

# Extract the desired number of clusters

k <- 2

clusters_agnes_pca <- cutree(clustering_result_agnes_pca , k)

#plot the clusters

fviz_cluster(list(data = reduced_data ,

cluster = clusters_agnes_pca), geom = "point")
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#DBSCAN with PCA

kNNdistplot(reduced_data , k = 5)

abline(h = 1.60, col = "red", lty = 2)

clustering_result_dbscan_pca <- dbscan(reduced_data ,

eps = 1.60, MinPts = 5)

num_clusters <-

length(unique(clustering_result_dbscan_pca$cluster )) -1

fviz_cluster(clustering_result_dbscan_pca ,

data = reduced_data , geom = "point")

#----------------------------------------------------------------------------------------------------

#KMEANS WITH ICA

# Perform ICA on the data

ica_model <- preProcess(subsample , method = "ica", n.comp = 2)

ica_data <- predict(ica_model , subsample)

# Perform k-means clustering on the transformed data

clustering_result_kmeans_ica <- kmeans(ica_data ,

centers = 2, iter.max = 20, nstart = 5)

#plot the clusters

fviz_cluster(clustering_result_kmeans_ica ,

data = ica_data , geom = "point")

#AGNES with ICA

clustering_result_agnes_ica <- agnes(ica_data , method = "ward")

# Extract the desired number of clusters

k <- 2

clusters_agnes_ica <- cutree(clustering_result_agnes_ica , k)

fviz_cluster(list(data = ica_data , c

luster = clusters_agnes_ica), geom = "point")
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#DBSCAN with ICA

kNNdistplot(ica_data , k = 5)

abline(h = 0.45, col = "red", lty = 2)

clustering_result_dbscan_ica <- dbscan(ica_data , eps = 0.45, MinPts = 5)

num_clusters <- length(unique(clustering_result_dbscan_ica$cluster )) -1

fviz_cluster(clustering_result_dbscan_ica ,

data = ica_data , geom = "point")

#------------------------------------------------------------------------------

tsne_result <- Rtsne(subsample , dims = 2, perplexity = 50,

theta = 0.5, max_iter = 3000)

tsne_coordinates <- tsne_result$Y

#make a frame with column names so we can apply fviz_cluster

tsne_data <- data.frame(V1 = tsne_coordinates[, 1],

V2 = tsne_coordinates[, 2])

# Perform k-means clustering on the t-SNE coordinates

clustering_result_kmeans_tsne <- kmeans(tsne_data ,

centers = 2, iter.max = 15, nstart = 10)

#plot cluster

fviz_cluster(clustering_result_kmeans_tsne ,

data = tsne_data , geom = "point")

#t-SNE with AGNES

clustering_result_agnes_tsne <- agnes(tsne_data , method = "ward")

# Extract the desired number of clusters

k <- 2

clusters_agnes_tsne <- cutree(clustering_result_agnes_tsne , k)

fviz_cluster(list(data = tsne_data ,
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cluster = clusters_agnes_tsne), geom = "point")

#DBSCAN with tsne

kNNdistplot(tsne_data , k = 5)

abline(h = 1.20, col = "red", lty = 2)

clustering_result_dbscan_tsne <- dbscan(tsne_data ,

eps = 1.20, MinPts = 5)

num_clusters <- length(unique(clustering_result_dbscan_tsne$cluster )) -1

fviz_cluster(clustering_result_dbscan_tsne ,

data = tsne_data , geom = "point")

#LLE

lle_result <- lle(subsample , m = 2, k = 10, reg = 0.1,

ss = FALSE , p = 2, id = FALSE , nnk = TRUE , eps = 0.0001 ,

iLLE = FALSE , v = 0.99)

# Get the embedded coordinates

lle_coordinates <- lle_result$Y

lle_data <- data.frame(V1 = lle_coordinates[, 1],

V2 = lle_coordinates[, 2])

#LLE with KMEANs

clustering_result_kmeans_lle <- kmeans(lle_data , centers = 2)

# Plot the clusters

fviz_cluster(clustering_result_kmeans_lle ,

data = lle_data , geom = "point")

#LLE with AGNES

clustering_result_agnes_lle <- agnes(lle_data , method = "ward")

# Extract the desired number of clusters

k <- 2

clusters_agnes_lle <- cutree(clustering_result_agnes_lle , k)

fviz_cluster(list(data = lle_data , cluster = clusters_agnes_lle)
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, geom = "point")

#DBSCAN with lle

kNNdistplot(lle_data , k = 5)

abline(h = 0.15, col = "red", lty = 2)

clustering_result_dbscan_lle <- dbscan(lle_data ,

eps = 0.15, MinPts = 5)

num_clusters <-

length(unique(clustering_result_dbscan_lle$cluster )) -1

fviz_cluster(clustering_result_dbscan_lle ,

data = lle_data , geom = "point")

#CLUSTERING VALIDATION VOOR ELKE CLUSTERMETHODE

#clusterCrit KMEANs

subsample_matrix <- as.matrix(subsample)

indices_kmeans <- intCriteria(subsample_matrix ,

clustering_result_kmeans$cluster , crit = "all")

reduced_data_matrix <- as.matrix(reduced_data)

indices_kmeans_pca <- intCriteria(reduced_data_matrix ,

clustering_result_kmeans_pca$cluster , crit = "all")

ica_data_matrix <- as.matrix(ica_data)

indices_kmeans_ica <- intCriteria(ica_data_matrix ,

clustering_result_kmeans_ica$cluster , crit = "all")

tsne_data_matrix <- as.matrix(tsne_data)

indices_kmeans_tsne <- intCriteria(tsne_data_matrix ,

clustering_result_kmeans_tsne$cluster , crit = "all")

lle_data_matrix <- as.matrix(lle_data)

indices_kmeans_lle <- intCriteria(lle_data_matrix ,

clustering_result_kmeans_lle$cluster , crit = "all")

#clustercrit AGNES

indices_agnes_pca <- intCriteria(reduced_data_matrix ,
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clusters_agnes_pca , crit = "all")

indices_agnes_ica <- intCriteria(ica_data_matrix ,

clusters_agnes_ica , crit = "all")

indices_agnes_tsne <- intCriteria(tsne_data_matrix ,

clusters_agnes_tsne , crit = "all")

indices_agnes_lle <- intCriteria(lle_data_matrix ,

clusters_agnes_lle , crit = "all")

#clustercrit DBSCAN

#change to vectors

clustering_dbscan_pca <- as.integer(clustering_result_dbscan_pca$cluster)

clustering_dbscan_ica <- as.integer(clustering_result_dbscan_ica$cluster)

clustering_dbscan_tsne <- as.integer(clustering_result_dbscan_tsne$cluster)

clustering_dbscan_lle <- as.integer(clustering_result_dbscan_lle$cluster)

indices_dbscan_pca <- intCriteria(reduced_data_matrix ,

clustering_dbscan_pca , crit = "all")

indices_dbscan_ica <- intCriteria(ica_data_matrix ,

clustering_dbscan_ica , crit = "all")

indices_dbscan_tsne <- intCriteria(tsne_data_matrix ,

clustering_dbscan_tsne , crit = "all")

indices_dbscan_lle <- intCriteria(lle_data_matrix ,

clustering_dbscan_lle , crit = "all")

#maak grafieken om de indices te vergelijken

dunn_index <- data.frame(

Dimensionality_Reduction = rep(c("PCA", "ICA",

"t-SNE", "LLE"), each = 3),

Method = rep(c("K-means", "AGNES", "DBSCAN"), times = 4),

Dunn_Index = c(0.00133 , 0.00316 , 0.03413 , 0.00099 ,

0.00320 , 0.03237 , 0.00606 , 0.00913 , 0.02847 , 0.00149 , 0.00192 , 0.00425)

)
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# Maak het staafdiagram met horizontale staven

ggplot(dunn_index , aes(x = Dunn_Index ,

y = Dimensionality_Reduction , fill = Method )) +

geom_bar(stat = "identity", position = "dodge") +

labs(x = "Dunn␣Index", y = "Dimensionality␣Reduction",

fill = "Clustering␣Method") +

theme_bw()

silhouette_index <- data.frame(

Dimensionality_Reduction = rep(c("PCA", "ICA",

"t-SNE", "LLE"), each = 3),

Method = rep(c("K-means", "AGNES", "DBSCAN"),

times = 4),

Silhouette_Index = c(0.42997 , 0.43526 , 0.36705 ,

0.30505 , 0.28270 , 0.48144 , 0.49658 , 0.49536 , 0.34964 ,

0.50260 , 0.51896 , 0.30837)

)

# Maak het staafdiagram met horizontale staven

ggplot(silhouette_index , aes(x = Silhouette_Index ,

y = Dimensionality_Reduction , fill = Method )) +

geom_bar(stat = "identity", position = "dodge") +

labs(x = "Silhouette␣Index", y = "Dimensionality␣Reduction",

fill = "Clustering␣Method") +

theme_bw()

calinski_index <- data.frame(

Dimensionality_Reduction = rep(c("PCA", "ICA",

"t-SNE", "LLE"), each = 3),

Method = rep(c("K-means", "AGNES", "DBSCAN"),

times = 4),

Calinski_Index = c(3805 , 2597, 30, 1628, 1439, 46,

5612, 4732, 5, 2090, 2068, 192)

)

# Maak het staafdiagram met horizontale staven

ggplot(calinski_index , aes(x = Calinski_Index ,

y = Dimensionality_Reduction , fill = Method )) +

geom_bar(stat = "identity", position = "dodge") +

labs(x = "Calinski -Harabasz␣Index", y = "Dimensionality␣Reduction",

fill = "Clustering␣Method") +
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theme_bw()

davies_index <- data.frame(

Dimensionality_Reduction = rep(c("PCA", "ICA",

"t-SNE", "LLE"), each = 3),

Method = rep(c("K-means", "AGNES", "DBSCAN"), times = 4),

Davies_Index = c(0.83211 ,0.80516 , 2.66480 , 1.25371 , 1.32186

, 1.17535 , 0.72362 , 0.71444 , 6.02692 , 0.83190 , 0.79463 , 1.93398)

)

# Maak het staafdiagram met horizontale staven

ggplot(davies_index , aes(x = Davies_Index ,

y = Dimensionality_Reduction , fill = Method )) +

geom_bar(stat = "identity", position = "dodge") +

labs(x = "Davies -Bouldin␣Index", y = "Dimensionality␣Reduction",

fill = "Clustering␣Method") +

theme_bw()

34


