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Abstract

The lot-sizing problem is a well-known optimization problem which aims to determine pro-

duction and inventory decisions. This thesis addresses the stochastic lot-sizing problem under

static-dynamic uncertainty and introduces a novel approach called the semi-static-dynamic

uncertainty strategy. We begin by replicating the results of a mixed-integer programming

(MIP) model proposed by Tunc, Kilic, Tarim and Rossi (2018) for the static-dynamic un-

certainty strategy with α service level constraints. Next, we present the semi-static-dynamic

uncertainty strategy, which combines elements of both the static-dynamic and fully dy-

namic uncertainty strategies. This innovative heuristic algorithm allows for adjustments to

the initial replenishment schedule based on real-time demand information, improving re-

sponsiveness to demand fluctuations and generating cost savings. The semi-static-dynamic

uncertainty strategy offers potential for enhancing the lot-sizing problem in real-world ap-

plications.

1 Introduction

The lot-sizing problem is a classic optimization problem that has been widely studied and ap-

plied in various industries, especially in manufacturing and supply chain management. The core

of the lot-sizing problem involves determining the optimal production and inventory decisions

to minimize the total cost over a discrete planning horizon, considering factors such as produc-

tion, holding, setup, and back-ordering costs. The stochastic lot-sizing problem has attracted

significant attention from both researchers and companies.

Previous studies have proposed several solution approaches for the stochastic lot-sizing prob-

lem, including stochastic programming, dynamic programming, and heuristic methods. How-

ever, many of these are hard to implement for large-scale, real-world problems. To tackle this

issue, mixed-integer programming (MIP) can be used as a powerful and flexible tool for model-

ing and solving the stochastic lot-sizing problem. Nevertheless, the complexity of the problem

and the large number of decision variables and constraints in the MIP formulations often lead

to computational challenges.

In this thesis, we extend the paper of Tunc et al. (2018) by modelling the static-dynamic

uncertainty lot-sizing problem with an extended mixed-integer programming formulation. We

will replicate the results of the model with a constraint that ensures the service level. The

static-dynamic uncertainty strategy determines the replenishment schedule at the beginning of

the time horizon, while the order quantity is determined dynamically based on the current level

of inventory. Furthermore, we present an innovative algorithm for the semi-static-dynamic un-

certainty problem. This is a heuristic which blends the static-dynamic and dynamic uncertainty

strategies. Benefits include superior adaption to demand fluctuations and cost savings. The

main contribution of this thesis lies in the verification of previous results and the exploration

and implementation of the semi-static-dynamic uncertainty strategy.

The remainder of this thesis is organized as follows: Section 2 provides a Literature Review

of the stochastic lot-sizing problem and its existing solution methods. Section 3 provides the

Problem Definition, whereupon Section 4 outlines the Methodology. The Results are presented

in Section 5, after which Section 6 presents the Conclusion.
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2 Literature review

In this Section we will present a literary review about the stochastic lot-sizing problem, policy’s

and solution methods.

2.1 Stochastic lot-sizing problem

In the stochastic lot-sizing problem, the aim is to determine the optimal production and invent-

ory decisions such that the total expected costs are minimized. We will consider ordering costs,

holding costs, penalties for back-orders, and the required service level. Further explanation of

the problem can be found in Section 3.

Bookbinder and Tan (1988) discuss three policies on lot-sizing policy. Firstly, they discuss

the static uncertainty model, where all decisions are made at the beginning of the time

horizon. This approach is the most conservative but noticeably straightforward. Secondly, they

discuss the dynamic uncertainty model where the decision whether to order (and how much)

is decided at every point in time. Even though this approach is cost optimal, Bookbinder and

Tan (1988) do not recommend this model in practice, since it is complex to solve and requires

great flexibility in real life application. On the intersection of these strategies lies the static-

dynamic uncertainty strategy, where a replenishment schedule is created at the beginning

of the time horizon. The order quantity will be determined dynamically based on the current

level of inventory. The static determination of the replenishment schedule ensures convenient

scheduling of resources such as transport and human resources. The dynamic determination of

the order quantity accounts for variable demand, since the order quantity is determined based

on the current stock level instead of the expected stock level.

2.2 Order up-to policy

With a given replenishment schedule, we must set a policy to determine the amount that is

ordered. Özen, Doğru and Tarim (2012) have reviewed the order policy for the static-dynamic

uncertainty strategy problem. They found that in a problem with holding costs and penalty

costs for service level, a base-stock policy is optimal. First, the base-stock level is determined

by balancing the holding costs and penalty costs while maintaining a certain service level. At

the scheduled order time, the difference between the base-stock level and the current stock will

determine the amount ordered. The base-stock level can thus be considered an order-up-to

level. By maintaining an optimal base-stock level, the policy balances the trade-offs between

holding costs and penalty costs, while meeting the desired service level targets. The joint search

for the optimal ordering schedule and order-up to level is computationally exhaustive and only

applicable for small planning horizons, therefore it is advisable to use heuristics. (Özen et al.,

2012)

2.3 Solution methods

Especially for larger planning horizons, computational complexity is a limiting factor in de-

termining the optimal ordering schedule and order-up-to level. The heuristics used for this

problem often fall into two categories: tailor-made algorithms and mathematical programming
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solvers. Tailor-made algorithms are designed specifically for a particular problem. They use

problem-specific information to decrease the domains of decision variables. There is an abund-

ance of literature on this topic, examples include state space augmentation (Rossi, Tarim, Hnich

& Prestwich, 2011), branch-and-bound procedures (Tarim, Dogru, Ozen & Rossi, 2011), and

dynamic programming (Özen et al., 2012).

Although tailor-made algorithms can provide a quick solution to a specific problem, they

are not easily generalized and the solutions may be sub-optimal. For that reason, we prefer to

use a mathematical programming model. A mathematical program is a more general tool to

solve an optimization problem, formatted as a mixed-integer programming (MIP) model. They

are applicable to a wider range of problems due to the adaptability of the model. Additionally,

the solution quality is easily satisfied by being able to provide solutions within a specific optim-

ality gap. Considering that MIP models are primarily designed to handle linear relationships,

challenges emerge when encountering a non linear objective. In the lot-sizing problem the loss

function is considered to be non-linear due to the combination of fixed and variable costs. Tarim

and Kingsman (2004) have solved this problem by simply approximating the cost function as

a linear function. However, this is only useful for high values of the required service level (de-

noted by α), since the model relies on omitting the back-orders and shortage costs. Another

approach is using a piecewise linear relaxation of the cost function as suggested by Tarim and

Kingsman (2006). By using four breakpoints, they were able to approximate the cost function

with a worst-case error of 3.92%. This result can be further improved by increasing the number

of breakpoints. The model of Tarim and Kingsman (2006) also incorporates the shortage costs,

which were not considered in Tarim and Kingsman (2004) and Bookbinder and Tan (1988).

This ensures the model will be valid for all required service levels. The model of Tarim and

Kingsman (2006) is well-acknowledged as a benchmark model for this problem. Continuing on

the piecewise linear approximation of the costs function, Rossi, Kilic and Tarim (2015) provide

an extension where unmet demand is back-ordered or lost. They establish a framework that can

solve different variants of the lot-sizing problem.

Tunc, Kilic, Tarim and Eksioglu (2014) present a MIP formulation with a network flow

structure. They have accomplished to obtain a stronger linear relaxation compared to the

benchmark model while also improving the computational performance. However, they have

only applied this formulation to the α service level variant and do not explore other variants

of the problem in this paper. Fortunately, an extended formulation has been developed that

combines the research Tunc et al. (2014) and Rossi et al. (2015). The extended formulation

of Tunc et al. (2018) inherits the flexibility of the Rossi et al. (2015) formulation, while also

preserving the computational efficiency of the Tunc et al. (2014) flow formulation.

Besides presenting an extended formulation, Tunc et al. (2018) also presents a dynamic cut

procedure to bypass the need for a pre-defined linear approximation of the cost function. With

the dynamic cut procedure, we use a relaxed version of the problem to which we add cuts until

the approximated loss function becomes sufficiently close to the actual loss function.
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3 Problem definition

The stochastic lot-sizing problem for the static-dynamic uncertainty strategy aims to determine

the optimal replenishment schedule and order quantities under uncertain demand. Demand is

assumed to be variable over time, while other problem parameters such as costs and lead times

are assumed to be constant. The objective of the problem is to minimize the total expected

costs.

There are many variants of this problem with varying complexity. Some of these variants

include penalty costs, which are incurred when customer demand is not met. The unmet demand

can be either back-ordered, when customers will wait until their order is fulfilled, or lost, when

customers will not wait for their order. An additional way to deal with customer satisfaction

is to include service level constraints. The service level ensures that a certain percentage of

customers is served without running out of stock.

The costs in this problem consist of fixed costs and variable costs. The ordering costs are

considered to be fixed and are incurred every time an order is placed. The holding and penalty

costs are considered variable and depend on the amount of inventory and the holding period of

that inventory. As discussed in Section 2, the non-linearity of the costs function complicates the

optimisation of the lot-sizing problem.

In this thesis, we will replicate the results of the extended model of Tunc et al. (2018), which

entails a back-ordering inventory policy with penalty cost. We will include the α service level

constraint to limit the occurrence of stock-outs. We will compare the performance statistics of

our replication to the results of Tunc et al. (2018). Further explanation of the methods to be

used can be found in Subsection 4.1.

Next to replicating and verifying the results of Tunc et al. (2018), we will introduce the

semi-static-dynamic uncertainty strategy. The semi-static dynamic uncertainty strategy offers a

novel approach to address the challenges of the stochastic lot-sizing problem within the context

of static-dynamic uncertainty. Traditionally, the static-dynamic uncertainty strategy fixes the

replenishment cycles at the beginning of the planning horizon, without considering the fluctu-

ations in demand. However, this approach can lead to sub-optimal decisions when the demand

significantly differs from the expected values. By re-evaluating the initial solution and making

necessary adjustments, the semi-static-dynamic uncertainty strategy offers increased respons-

iveness to changing demand patterns while minimizing the computational complexity associated

with a fully dynamic approach. With the heuristic presented in Subsection 4.2, we aim to fur-

ther enhance the adaptability and efficiency of the lot-sizing problem by incorporating real-time

demand information and optimizing the replenishment cycles iteratively.

4 Methodology

This Section explains the research methodology, which consists of two parts. First, we introduce

the extended Mixed-Integer programming formulation of Tunc et al. (2018) with the α service

level constraint in Subsection 4.1. We refer to this model as the PM model. Secondly, we will

discuss the semi-static-dynamic uncertainty strategy in Subsection 4.2.
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4.1 PM model

In the PM model, we desire a solution for the lot-sizing problem with static-dynamic uncertainty

strategy. This consists of two components: the replenishment schedule and a base-stock level.

The objective is to minimize the expected total costs over the entire planning horizon of N

periods. In addition to the basic PM model of Tunc et al. (2018), we also include the α service

level constraint. We assume unmet demand is back-ordered.

Let Dij denote the random demand over a given time interval [i, j) with cumulative distribu-

tion function Fij(·), and first-order loss function Lij(·). We consider three types of costs: holding

costs h (costs of each unit of inventory that is carried from a period to the next), back-order

costs p (back-order costs per unit of back-ordered demand per period), and a fixed setup cost

K (incurred for each order).

The periods T1, ..., Tm represent the replenishment periods over the planning horizon. Tn

refers to the period in which the nth order is scheduled. The number of replenishment periods

is thus given by m. A replenishment cycle is defined as any interval between successive replen-

ishment periods, [Tn, Tn+1). For notational brevity, we assume T1 = 1 and Tn+1 = N + 1. We

can now view the planning horizon as the set of m planning periods. The postreplenishment

inventory level is denoted by y, which gives the inventory level at the beginning of a cycle after

the order is received.

Similar to Tunc et al. (2018), we approximate the loss function Lij(·) with a piecewise linear

approximation denoted by L(y). The approximation of the piecewise linear approximation is

constructed according to the paper of Rossi, Tarim, Prestwich and Hnich (2014). The approx-

imation is given by L(y) ≈ max(a,b)∈Wit
{a + by} for a finite set of intercept and slope pairs

W = {(a1, b1), (a2, b2), ...}. The lower bound for the piecewise linear function with 11 segments

is given by L̂lb(x;ω) =
∑N

i=1 pimax (x− E[x|Ωi], 0), where the parameter values of pi and E[x|Ωi]

can be found in the paper of Rossi et al. (2014). pi refers to the weight associated with each

segment of the piecewise linear approximation, reflecting the probability of the inventory level

falling within a certain range. E[x|Ωi] represents the expected value of x given the state Ωi, i.e.,

the expected inventory level within a specific range. The following function is equivalent to the

lower bound of the first order loss function and is used to compute the values of W = {a, b}:

L̂lb(x;ω) =



0, if 1 ≤ x ≤ E[ω|Ω1]

p1x− p1E[x|Ω1], if E[ω|Ω1] ≤ x ≤ E[ω|Ω2]

(p1 + p2)x− (p1E[ω|Ω1] + p2E[ω|Ω2]), if E[ω|Ω2] ≤ x ≤ E[ω|Ω3]

...

(p1 + p2 + . . .+ pN )x− (p1E[ω|Ω1] + p2E[ω|Ω2] + . . .+ pNE[ω|ΩN ]), if E[ω|ΩN−1] ≤ x ≤ E[ω|ΩN ]

This approximation is based on a normal distribution. The standardization of the non-

standard loss function is performed according to Lemma 7 of Rossi et al. (2014). The first order

loss function of the normally distributed variable ξ can be expressed in terms of the standard
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normal function as: L̂(x; ξ) = σL̂
(x−µ

σ ;Z
)
, where µ and σ are the mean and standard deviation

of ξ, and Z is a standard normal random variable. Using this property, the standardized values

for W = {a, b} are found.

We continue with the PM model and introduce the following decision variables:

• xij is 1 if [i, j) is a replenishment cycle, and 0 otherwise;

• qij is the expected cumulative order quantity up-to and including period i if [i, j) is a

replenishment cycle, and 0 otherwise;

• Hijt is the approximate loss function value at period t of replenishment cycle [i, j).

The replenishment schedule can be derived from the values of xij . The base-stock level of

the first period of replenishment cycle [i, j) is qij − ED1i−1. We also introduce constraints that

ensure that if xij = 0, both qij and Hijt will be zero as well.

The objective function to minimize costs is formulated as follows:

min
N∑
i=1

N+1∑
j=i+1

(Kxij +

j−1∑
t=i

(h(qij − ED1txij) + (h+ p)Hijt)) (1)

The expression inside the outer summations gives the expected costs over the interval [i, j),

which is composed of the setup costs K, holding costs h, and back-order cost p. If the interval

[i, j) is not a replenishment cycle, this expression will be zero. The total costs are determined

by the summation over all disjoint replenishment cycles.

s.t

t−1∑
i=1

xit =

N+1∑
j=t+1

xtj , t ∈ [2, N ] (2)

N+1∑
j=2

x1j = 1 (3)

N∑
i=1

xi(N+1) = 1 (4)

The establishment of the planning horizon as a disjoint union of replenishment cycles is se-

cured by constraints (2), (3), and (4). The constraints are formulated as common flow equations,

where the periods represent nodes and the replenishment cycles represent arcs. Constraint (2)

ensures that if a replenishment cycle starts in period t, another replenishment cycle must end

at period t as well, for all t ∈ [2, N ]. Constraint (3) ensures that a replenishment cycle starting

at the first period will end in some other period. Constraint (4) ensures the last replenishment

cycle ends at the last period.

qij ≤ Mxij , i ∈ [1, N ], j ∈ [i+ 1, N + 1] (5)
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To manage the relationship between xij = 0 and qij , constraint (5) is employed. It ensures

that if xij = 0, qij is zero as well. The value of M is chosen to be sufficiently large. We use the

bound of the inverse distribution function at the end of the planning horizon, evaluated at the

critical percentile p/(h+ p)

t−1∑
i=1

qit ≤
N+1∑
j=t+1

qtj , t ∈ [2, N ] (6)

Next, constraint (6) ensures that the cumulative order quantities are non-decreasing.

Hijt ≥ axij + b(qij − ED1(i−1)xij),
i ∈ [1, N ], j ∈ [i+ 1, N + 1],

t ∈ [i, j − 1], (a, b) ∈ Wit.
(7)

Constraint (7) ensure that for every replenishment cycle [i, j), Hijt is larger then the value

of the loss function evaluated at the base-stock level, given by Lit(qij − ED1(i−1)xij). Since we

approximate L(·) via piecewise linear approximation, L(y) ≈ max(a,b)∈Wit
{a + by} for a given

finite set of intercept and slope pairs W = {(a1, b1), (a2, b2), ...}. We then obtain Lit(qij −
ED1(i−1)) ≈ max(a,b)∈Wit

{a+ b(qij − ED1(i−1)}.
In addition to the preceding constraints, we incorporate a specific measure of service level

into the formulation. This service level is of importance when not only the cost efficiency, but

also the customer satisfaction is considered. Specifically, we impose an α service level constraint,

setting a lower bound α on the non-stockout probability for every period across the planning

horizon. The α service level constraint is formulated in constraint (8),

qij ≥ (ED1(i−1) + F−1
i(j−1)(α))xij , i ∈ [1, N ], j ∈ [i+ 1, N + 1] (8)

This constraint should hold in every period on the planning horizon, but since in every

replenishment cycle [i, j) the non-stockout probability increases, it is sufficient to apply this

constraint to the last period of every replenishment cycle (period j − 1 of cycle [i, j)). The

inventory level at period j−1 is given by (qij−ED1(i−1))−Di(j−1). The non-stockout probability

is then Pr
(
(qij − ED1(i−1))−Di(j−1) ≥ 0

)
≥ α, equivalently given by Fi(j−1)(qij − ED1(i−1)) ≥

α. Rewriting gives us the equation qij ≥ (ED1(i−1) + F−1
i(j−1)(α))xij . The constraint is only

enforced when [i, j) is a replenishment cycle by the term xij in constraint (8).

Hijt ≥ 0 i ∈ [1, N ], j ∈ [i+ 1, N + 1], t ∈ [i, j − 1], (9)

qij ≥ 0, xij ∈ {0, 1} ∀i ∈ [1, N ], j ∈ [i+ 1, N + 1], (10)

Lastly, the bounds of the decision variables are given in constraints (9) - (10). The PM

model with service level constraint is then given by objective (1) subject to (2) - (10).

4.2 Semi-static-dynamic uncertainty strategy

In this subsection, we delve into the semi-static-dynamic uncertainty strategy. First, we intro-

duce the concept and operational structure of this strategy. Secondly, we elaborate on different
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adjustment conditions, after which a small-scale numerical example shows a practical demon-

stration of the potential benefits of this strategy.

4.2.1 Introduction semi-static-dynamic algorithm

In the static-dynamic uncertainty strategy, scheduled order times are fixed and do not respond

to demand fluctuation. Consider a scenario where an order is scheduled but the demand has

dropped significantly. It could be inefficient to place an order, since the order quantity is small

and not worth the fixed order costs. Also, an environmental argument can be made, since

deliveries made by near-empty vehicles lead to inefficient fuel usage and unnecessary carbon

emissions. To address this inefficiency, we present an algorithm that proposes a cross-over

between the static-dynamic uncertainty strategy and dynamic uncertainty strategy. It aims to

better adapt to real world demand fluctuations, while not being as computationally exhaustive

as the full dynamic strategy.

In the static dynamic uncertainty strategy, the replenishment schedule is determined at the

beginning of the time horizon. The amount that is ordered is decided at start of a replenishment

cycle. There is thus one decision moment that fixes the replenishment cycles. In the fully

dynamic uncertainty strategy, the decision whether to order and the amount that is ordered,

is made in every time period. We propose a heuristic which re-evaluates the solution found

at the beginning of the planning horizon. The algorithm solves the static-dynamic problem

initially and allows for adjustments during the order periods, transforming the problem from

static-dynamic to semi-static-dynamic.

An essential feature of this algorithm is its inherent flexibility both in terms of adjustment

conditions and the adjustment process itself. The adjustment condition triggers a re-evaluation

and possible modification of the initial solution under certain circumstances. While our paper

focuses on the adjustment condition of lower-than-expected demand, the algorithm can accom-

modate a variety of adjustment conditions, tailored to the specific needs or uncertainties of any

given scenario. Furthermore, the adjustment can be interchanged and modified according to

different operational needs. The structure of the algorithm allows for the implementation of

various adjustment methodologies, thus making it versatile and adaptable to a broad range of

situations.

The algorithm works as follows:

1. Initialization: Solve the PM model to obtain the original replenishment cycles.

2. Adjustment evaluation: For each order period after the first, evaluate whether an

adjustment might be beneficial according to the adjustment condition.

3. Adjustment: When an order period fulfills the adjustment condition, exclude this period

from being an order period. Solve the PM model again from the next period onward. Start

the adjustment evaluation from the next order period.

4. Evaluation: Once all order periods have been evaluated and the possible adjustments

have been performed, the realized objective value is computed using the realized demands.
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The realized objective values is compared for the original replenishment cycles and the

adjusted replenishment cycles to find the effect of adjustment.

4.2.2 Adjustment condition

In order to determine when a re-evaluation of the replenishment schedule should be made, an

adjustment condition is imposed based on the realized demand, denoted by D̂ij . The focus

in this thesis is on cases where the realized demand is lower than expected. The goal is to

establish a criterion that evaluates the adequacy of the order schedule that was determined

using information available at the beginning of the planning horizon.

The parameter γ determines the sensitivity of the adjustment conditions. A larger γ factor

will result in more frequent adjustments, potentially leading to improved responsiveness to

demand fluctuations. However, it is important to strike a balance, as too many adjustments

may not be practical in real-life situations due to associated costs or operational constraints.

One straightforward adjustment condition is to measure the difference between the realized

and expected demand in the time period since the last order period. We denote the current

period, in which the adjustment condition is evaluated, by v and the previous order period by u.

Comparing the values of the expected demand in the last order period EDuv−1 with the realized

demand D̂uv−1 gives us the following condition:

If (D̂uv−1 ≤ γ · EDuv−1 ), perform adjustment. (11)

This condition, expressed in Equation (11), compares the expected demand in the last order

period EDuv−1 with the realized demand D̂uv−1. If the realized demand falls bellow the threshold

set by γ, an adjustment is made. This condition evaluates the adequacy of the order schedule

based on the demand realizations within the previous replenishment cycle.

If (D̂1v−1 ≤ γ · ED1v−1 ), perform adjustment. (12)

Given that the order schedule is determined at the beginning of the planning horizon, we can

also consider the demand since the beginning of the planning horizon. This condition expressed

in 12 compares the expected demand from period 1 through v − 1, ED1v−1, with the realized

demand D̂1v−1. This evaluates the adequacy of the order schedule based on the demand up to

the current period.

In addition to assessing the accuracy of our demand expectations based on absolute quant-

ity, it can be informative to consider the fluctuations in the realized demand. A significant

difference between the expected and realized variance can be indicative of changes in demand

behavior that were not initially anticipated, and thus serve as an indicator for beneficial schedule

adjustments. We therefore introduce adjustment condition (13) which is based on the variance

of realized demand. This condition monitors whether the realized variance of demand within a

replenishment cycle significantly exceeds the variance of the expected demand in the time since

the last order period. To ensure the adjustment is only performed in the case where the demand

is lower than expected, the realized demand in that time-frame must also be lower then the

expected demand.

9



If (σ̂2
uv−1 ≥ γ · σ2

uv−1 and D̂uv−1 ≤ EDuv−1), perform adjustment. (13)

In this equation, σ̂2
uv−1 represents the variance of the realized demand within the previous

replenishment cycle, while σ2
uv−1 represents the variance of the demand expected at the start

of the planning horizon. This condition provides another dimension to our approach, enabling

the algorithm to not only respond to changes in demand magnitude but also adapt to changes

in demand variability. In doing so, this can offer more refined control over the ordering process,

thereby potentially enhancing the efficiency of the entire supply chain.

For future research, this heuristic can be expanded to include more conditions and possible

adjustments. It could be interesting to also impose a condition for when demand is a lot larger

then expected. More research could provide another adjustment action, which may be less

computationally exhaustive then solving the entire PM model. Another intriguing extension is

the incorporation of trend analysis into the adjustment process. The adjustment criteria could be

informed by external data sources that predict demand changes, such as media reports or trends

in social media or search engine activity. Despite these promising possibilities for expanding the

heuristic, the computational experiments in this thesis will be limited to adjustments based on

condition (11) due to time and practical constraints.

4.2.3 Numerical example

To illustrate the working of the proposed algorithm, we consider a numerical instance charac-

terized by a lumpy demand pattern with parameters N = 10, h = 1, p = 5, α = 0.9, and

ρ = 0.1. The expected demand in this instance is represented by [7, 17, 16, 5, 2, 297, 8, 19, 4, 5].

The PM model is initially solved, yielding the replenishment cycles (0, 5), (5, 6), and (6, 10).

To evaluate this original solution, we will simulate new demands according to the same distri-

bution. These realized demand is given by [1, 11, 11, 5, 0, 40, 60, 61, 0, 9]. In order to explore

possible improvements, every order period beyond the first (in this case, periods 5 and 6) will be

evaluated according to adjustment condition (11). According to this condition, an adjustment

is performed if the realized demand in the time-frame since the last order period is at least a

factor γ smaller than the expected demand in that period. In this particular instance, we set

γ = 0.3.

The first evaluation is made on order period 5. Comparing expected and realized demands

since the last order period (periods 0 through 4) reveals that the realized demand is lower than

the expected demand up to period 5. The realized demand in this time-frame is 28, while the

expected demand is 47. With γ = 0.3, the condition for adjustment does not hold and we

proceed to evaluate the next order period.

For order period 6 we evaluate the demand since the last evaluated period (period 5). The

realized demand is 40, while the expected demand is 297, which is more than a factor 0.3 larger,

thus triggering an adjustment. Period 6 is excluded from being an order period, and the PM

model is solved again for all periods after period 6. Solving the PM model from period 6 onward

yields replenishment cycles (0, 5), (5, 7) and (7, 10).

Again, we asses the adjustment condition for the next order period (period 7), which evalu-

ates the demand since the last evaluated period. In period 6 the realized demand is 60, and the

10



expected demands is 8. The condition for adjustment does not hold, thus we keep order period

7 in the solution. After all order periods are checked, we evaluate the effects of the adjustment

via the realized costs and number of adjustments. If we compute the costs according to the

realized demands, the adjustment of excluding period 6 has led to a 1.48% cost decrease. This

clearly illustrates the benefit of re-evaluating the order-periods and shows that even though an

order period is added, the cost can decrease via this adjustment.

5 Results

In this Section, the results are discussed. We first discuss the computational experiment and

results results of the PM model. After which the results of the proposed algorithm using semi-

static-dynamic uncertainty strategy are presented. All computational experiments are conducted

utilizing Java CPLEX on a computing system equipped with a 1.80 GHz Intel Core i7-8565U

processor and 16GB of RAM. The code used is shortly described in section A of the Appendix.

5.1 PM model

5.1.1 Computational experiment: PM model

In the interest of performance analysis, we will perform a number of simulations with the PM

model with the following parameter settings:

• Holding costs h = 1

• Back-order costs p = 5

• Setup costs K = {225, 900, 2500}

• Service level α = {0.90, 0.95, 0.99}

• Planning horizon N = {20, 30, 40}

The demand is assumed to be normally distributed with coefficient of variation ρ. We

consider the cases of ρ = {0.1, 0.2, 0.3}. In addition, we consider two demand patterns, π =

{Erratic, Lumpy}. For the erratic pattern, the mean demand µ is drawn from a uniform

distribution on the interval [0, 100]. For the lumpy pattern, the mean demand µ is uniformly

drawn from different intervals. With a probability of 20%, the mean demand is drawn on [0, 420],

and with a probability of 80% the mean demand is drawn on [0, 20]. The lumpy generation has

a larger variability and is considered more unpredictable. Ten instances are generated for all

possible combinations of these parameters, resulting in 1620 problem instances. We compare

the objective value and computation time in seconds by averaging over all problem instances

characterized by the same parameter.

5.1.2 Results: PM model

In Table 1, the results of our implementation of the PM model (thesis results) are presented

next to the results of the PM model of Tunc et al. (2018). Both models solve the stochastic
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lot-sizing problem according to the extended formulation of Tunc et al. (2018) as described in

Section 4. We compare the results across various parameters, namely the demand pattern, the

planning horizon, the co-variance, the fixed costs, and the required service level.

Thesis results Tunc (2018)

Parameters Type Objective TIME Objective TIME

π Erratic 13453,65 0,13 13367,86 1,27
Lumpy 8584,38 0,18 8591,71 1,33

N 20 7233,06 0,08 7277,48 0,19
30 11122,55 0,14 11063,16 0,84
40 14701,42 0,25 14598,71 2,87

ρ 0,1 9856,06 0,13 9831,21 1,25
0,2 11022,90 0,15 10984,41 1,31
0,3 12178,07 0,19 12123,73 1,35

K 225 4936,79 0,21 4902,08 1,36
900 10298,48 0,13 10261,19 1,3
2.500 17821,76 0,13 17776,08 1,24

α 0,9 10474,94 0,18 10378,43 1,48
0,95 10909,31 0,17 10843,26 1,48
0,99 11672,78 0,11 11717,66 0,95

Average 11019,01 0,16 10979,78 1,3

Table 1: Comparison of the objective value and computation time in seconds of the replication
results versus the original results

The overall findings suggest that both models demonstrate considerable efficiency. On av-

erage, our implementation results in an objective that is 0.4% larger than the objective value

of Tunc et al. (2018). The running times of our implementation are smaller. These difference

could be attributed to varying efficiencies of the CPLEX and Gurobi solvers, differences in pro-

cessor speed, or inefficiencies in implementation. The relative integrality gap (SGAP), relative

optimality gap (EGAP), and the number of nodes are similar for both implementations and can

be found in Table 6 of the Appendix.

5.2 Semi-static-dynamic uncertainty strategy

5.2.1 Computational experiment: Semi-static-dynamic uncertainty strategy

In order to examine the effectiveness of the proposed heuristic for the semi-static-dynamic un-

certainty strategy, a series of computational experiments is conducted over six instances. For

these experiments, the fixed cost (K), the coefficient of variation (ρ), and the service level (α)

are held constant at the values of 225, 0.1, and 0.9, respectively. We use both the lumpy and

erratic demand distribution patterns to compare our findings across various demand conditions.

The planning horizons considered are of lengths N = {20, 30, 40}.
For each instance, we generate a set of 500 realized demand scenarios with the same distri-

bution. The heuristic is applied to each scenario, resulting in a pair of schedules - one before

and one after the adjustments. The adjustment condition used in these experiments is the one

described by Equation (11) as presented in Subsection4.2.2. By comparing the objective val-

ues obtained from these schedules, we are able to quantify the objective gain brought by the
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semi-static strategy. Additionally, we keep track of the number of adjustments made during the

process, as an excessive number of adjustments may not be practical in real-life scenarios. By

analyzing the objective gain and the number of adjustments, we can assess the performance and

practicality of the semi-static strategy in solving the stochastic lot-sizing problem under static-

dynamic uncertainty. We replicate this process over the range of γ values {0.1, 0.2, 0.3, 0.4, 0.5},
offering insights into how the choice of this parameter influences the overall outcomes of our

strategy.

To provide a more comprehensive perspective on the influence of the γ parameter, we sup-

plement our original set of experiments with an additional 250 realized demand scenarios for

the values of γ = 0.05, 0.15, 0.25, 0.35, 0.45. The results from these additional runs are combined

with the other experiments to present a graphical view of the effects of the γ parameter.

5.2.2 Results: semi-static-dynamic uncertainty strategy

Taking an overview of the results, on average, our semi-static-dynamic uncertainty strategy

prompts adjustments in 89% of the instances, leading to an average objective decrease of 0.066%.

The 95% confidence interval for the average objective decrease is given by [0.062, 0.070]. The

average number of adjustments made during the process is 1.79. Noting that the objective

decrease when no adjustments are made equals zero, the average objective decrease in case of

adjustments equal to 0.176%.

γ Adjusted Objective increase Confidence interval Adjustments

0.1 22% 0.001% [0.000, 0.002] 0.09
0.2 49% 0.011% [0.007, 0.014] 0.34
0.3 63% 0.028% [0.022, 0.034] 0.75
0.4 76% 0.067% [0.058, 0.076] 1.97
0.5 87% 0.223% [2.208, 2.238] 5.78

Average 89% 0.066% [0.062, 0.070] 1.79

Table 2: Solution statistics for different values of γ

Table 2 shows how the γ value impacts the performance of the semi-static-dynamic uncer-

tainty strategy. As γ increases, the number of instances that trigger the adjustment condition

also rises. Specifically, when γ = 0.1, only 22% of instances called for an adjustment. How-

ever, as γ increases to 0.5, 87% of instances were adjusted, showing a clear positive correlation

between γ and the frequency of adjustments.

Additionally, Table 2 shows the relationship between γ and the objective function decrease.

For larger γ values, more adjustments are made, leading to a higher objective decrease. The

lower and upper bounds of the objective decrease were also noted, providing a 95% confidence

interval for the performance of the strategy. With higher γ values, both the lower and upper

bounds increase, signifying a broader spread in potential outcomes. The number of average

adjustments made per run remains below one for γ = 0.1 to γ = 0.3 and it shows a considerable

jump to almost 2 and more than 5 for γ values of 0.4 and 0.5, respectively. Given that an

excessive number of adjustments may not be practical in real-world supply chain scenarios, this

finding accentuates the importance of an optimal choice for γ.
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N Adjusted Objective decrease Adjustments

20 31% 0.095% 0.90
30 34% 0.030% 1.21
40 47% 0.073% 3.26

Average 37% 0.066% 1.79

Table 3: Solution statistics for different planning horizons (N)

Table 3 shows the effects of the planning horizon. As expected, a longer planning hori-

zon, which encompassing more periods, increases the likelihood of adjustments. Specifically,

adjustments occurred in 31%, 34%, and 47% of instances for planning horizons of 20, 30, and

40 periods respectively. On examining the objective function decreases, it is noticeable that

the decrease is not linear with the increase in the planning horizon size. While the decrease is

0.095% for a planning horizon of 20 periods, it drops to 0.030% for 30 periods and then rises

slightly to 0.073% for 40 periods. These variations across differing planning horizons could be

due to the amount of uncertainties across a greater number of periods. With a longer horizon,

the model has more opportunities to encounter and react to unforeseen variations in demand,

which might not necessarily align with an objective decrease. With regard to the number of

adjustments, there’s a clear upward trend as we extend the planning horizon. For N = 20, the

average number of adjustments stands at 0.90, which then jumps to 1.21 for N = 30 and further

to 3.26 for N = 40. A longer horizon may invoke more adjustments, but not necessarily result

in a proportionate decrease in the objective function.

Demand pattern Adjusted Objective decrease Adjustments

Lumpy 45% 0.044% 1.05
Erratic 30% 0.088% 2.53

Average 37% 0.066% 1.79

Table 4: Solution statistics for different demand patterns

The comparison between the lumpy and erratic distribution is shown in Table 4. Despite

adjustments being performed in 45% of the instances, the lumpy distribution, on average, triggers

fewer adjustments. The erratic distribution initiates more adjustments, albeit only in 30% of

instances. Interestingly, the average objective decrease is larger for the erratic pattern, despite

fewer instances of adjustments. These differences can be attributed to the characteristics of

these demand patterns. The lumpy pattern, marked by a higher degree of variability, leads to

a larger number of adjustments, while the erratic pattern, with its relatively lower variability,

results in fewer instances where adjustments are triggered.

To see how the different distributions react to different values of γ, we compare them in

Table 5. It is clear that the different distributions react differently to the parameter settings of

γ. For the lumpy pattern, the number of adjusted periods incrementally increases with rising

γ. However, the erratic pattern exhibits a more dramatic reaction, with a sharp increase in the

amount of adjustments when γ shifts from 0.4 to 0.5. It is interesting to see that for γ = 0.4,

the objective decrease is nearly identical, while the number of adjustments is 1.48 for the lumpy

distribution and 2.47 for the erratic distribution. This suggests that our adjustment algorithm

may operate with greater efficiency in scenarios characterized by a lumpy distribution, achieving
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γ Demand pattern Objective decrease Adjustments

0.1
Lumpy 0.002% 0.17
Erratic 0.000% 0.02

0.2
Lumpy 0.021% 0.58
Erratic 0.000% 0.10

0.3
Lumpy 0.047% 1.00
Erratic 0.009% 0.50

0.4
Lumpy 0.067% 1.48
Erratic 0.068% 2.47

0.5
Lumpy 0.083% 1.99
Erratic 0.363% 9.58

Table 5: Solution statistics for the demand patterns across different values of γ

similar decreases in objective function with fewer adjustments. These findings underscore that

the selection of γ must be finely tuned to the specific demand pattern under consideration to

optimize the performance of the semi-static-dynamic uncertainty strategy.

The comparative analysis of different demand patterns under the influence of varied γ values

is visually represented in Figures 1 and 2. These figures show the average objective decrease

and number of adjustments for the lumpy and erratic distribution, respectively.

Figure 1: Average objective decrease and number of adjustments for the lumpy distribution

As shown in Figure 1, the response of the lumpy demand pattern to an increase in γ is

rather consistent. A steady increment in the number of adjusted periods and objective decrease

is observed with increasing γ values. This suggests an improved cost efficiency with a moderate

rise in operational adjustments. This implies that, with a lumpy demand pattern, the semi-

static-dynamic uncertainty strategy can yield consistent improvements in cost efficiency without

demanding a drastic increase in operational flexibility.

In contrast, the erratic demand pattern presents a different scenario, as shown in Figure 2.

The Figure shows a sharp incline in the number of adjustments and objective decrease as γ in-

creases beyond 0.35. Hence, for erratic demand patterns, while the semi-static-dynamic strategy

can produce significant cost savings, it comes with the trade-off of requiring a considerably higher

level of adaptability in operations.

In conclusion, these findings highlight the nuanced relationship between the γ parameter
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Figure 2: Average objective decrease and number of adjustments for the erratic distribution

and demand patterns in optimizing the semi-static-dynamic uncertainty strategy. Understand-

ing these interactions can enable better tuning of the strategy to improve cost efficiency and

manage the degree of required operational adjustments. It shows the need to customize the γ

parameter based on the characteristics of the demand pattern, optimizing the balance between

cost efficiency and operational flexibility.

6 Conclusion

In this paper, we have addressed the stochastic lot-sizing problem under static-dynamic un-

certainty strategy and proposed the semi-static-dynamic uncertainty strategy as an innovative

approach. First, we replicated the results of the MIP model as proposed by Tunc et al. (2018).

Our implementation demonstrated comparable efficiency and provided objective values that were

on average 0.4% larger than the original results. This difference could be due to variations in

solver efficiencies, processor speeds, or implementation details.

Second, we introduced the semi-static-dynamic uncertainty strategy, which blends the static-

dynamic and dynamic uncertainty strategies to enhance adaptability and induce cost savings.

The proposed heuristic algorithm allows for adjustments to the initial replenishment schedule

based on realized demand information, improving the responsiveness to demand fluctuations.

By evaluating one adjustment condition, we demonstrated the potential benefits of the semi-

static-dynamic strategy. The algorithm follows a heuristic approach, which involves solving the

problem initially using the static-dynamic strategy. Then all order periods are evaluated based

on an adjustment condition. If the realized demand data calls for an adjustment, the order

period will be excluded from the solution and the PM model will be solved again for all future

periods. On average we found that when adjustments are made, the heuristic induces a small

cost saving of 0.176%.

The adjustment condition’s sensitivity is determined by the parameter γ. A larger value

imposes a stricter condition, thus inflicting more adjustments. The greater the amount of

adjustments, the greater flexibility that is expected of the operation. It is thus necessary to

strike a balance between cost-reduction and practical feasibility using the parameter value γ.

Our analysis was made on two distributions, where the distribution with higher volatility induced
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better cost savings while requiring fewer adjustments to the original schedule.

Our research primarily centers around the heuristic evaluation based on an adjustment con-

dition that compares the realized demand since the last order period. This simple adjustment

condition has proven to induce small yet consistent cost savings. However, the heuristic ad-

justment condition and its resulting impact on the stochastic lot-sizing problem presents many

opportunities for exploration. Future research could benefit from investigating and incorpor-

ating other factors as external predictors for fluctuating demand. These predictors could po-

tentially include factors such as market trends, seasonality, volatility, and economic indicators.

By expanding the range of adjustment conditions, the heuristic can become more adaptable

and responsive to real-world situations. In essence, further research into the development of

varied adjustment conditions not only enhances the flexibility and adaptability of our proposed

heuristic but also presents a pathway towards a more nuanced understanding of the practical

use of the stochastic lot-sizing problem.

In conclusion, the introduction of the semi-static-dynamic uncertainty strategy offers an

innovative approach that improves upon the traditional static-dynamic strategy by incorporating

adjustments during the planning horizon. The results highlight the potential of the semi-static-

dynamic strategy in achieving cost savings and better adaptation to demand fluctuations. Future

research can focus on testing additional adjustment conditions and evaluating the performance

of the semi-static-dynamic strategy under different parameter settings. The heuristic presented

in this thesis holds promise for advancing the field of stochastic lot-sizing solutions and its

practical applications.
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A Programming code

In this Section, we will provide a description of the code used to obtain the results found in

Section 5.

A.1 PM model

In order to solve the PM model, we import the parameter values from the file provided by

Tunc et al. (2018). We call the solvePM() method with the instance parameters and two lists

which are used for the semi-static-dynamic algorithm. To solve the static-dynamic uncertainty

strategy lot sizing problem, empty lists must be inputed here.

The solvePM method solves a cplex model with the objective and constraints as explained

in Section 4. The linearization of the loss function is done by the LinearApproximation class,

which provides the values of a and b for a standardized linearization with 11 segments. The

InverseCDF class computes the value of the inverse cumulative distribution function of the

random demand, which is used in the service level constraint.

After solving the MIP model, the results will be exported to an excel file using the Ex-

celReader class. All importing and exporting is done via the ExcelReader class. It is of import-

ance to change the location of your excel file when calling this method.

A.2 Semi-static-dynamic uncertainty strategy

For the semi-static dynamic algorithm, we will use the same solvePM method. To find the initial

solution, we use the same inputs as described above. The realized demand is generated by the

DemandGenerator class, which generates random demand according to the demand pattern,

coefficient of variation and the size of the planning horizon.

The class RealizedCostCalculator computes the realized costs of a solution using the realized

demand. We take note of the original realized costs, to compare it with the realized costs after

adjustments. After this, the algorithm is started by the agorithm method. The adjustment

condition will be checked for all order periods until the condition is found. If an order period

is found where the adjustment condition holds, we will go back to solving the solvePM method

with the adjusted lists for forbiddenList and setList. These lists contain the periods we have

excluded or have already verified. In the case that solvePM finds no optimal solution after

excluding a period, the period will be added back into the solution.

When all order periods are checked and all imperative adjustments are made, we compute

the adjusted realized costs. This program is solved for six instances, with multiple of γ for a
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certain number of runs. After all instances are ran and their results are saved, the results are

exported to excel. We save the objective gain, the number of forbidden periods, and variable

parameters (N , gamma, demandPattern).
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