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Abstract

This paper investigates the effectiveness of the Shapley value weighted forecast com-

bination method to predict volatility. We compare the Shapley method to the 1/N equal

weight method and the OLS weighted method. The 1/N method is generally regarded as a

benchmark method for combining forecasts. Outperforming this method indicates the pos-

sibility of realizing a higher quality of forecasts, investors could increase the quality of their

risk management, investment and option pricing. To test the accuracy of our combination

methods we split our data in three parts. One part for parameter estimation, the second

part involves allocation of weights to each forecast model and the final part is to compare

the combined forecasts with each other. The performance of the methods is compared by

looking at the R2 and the mean average error before performing a Diebold Mariano test.

We use four different GARCH models in the combination process. First we perform four

runs of a thousand simulations based on GARCH(3,3) models as data generating process

to get a correct image of the accuracy of the three combination methods. Secondly, we use

actual data from the Dow Jones Industrial Average to test whether the Shapley method

works better for actual stock market data. We use data from the Federal Reserve Bank of

St. Louis from July 2013 until June 2018. We find out the Shapley method significantly

outperforms the other methods in most of the simulations, while the Shapley forecasts and

the equal forecasts are much alike due to the fact the models do not differ much. For our

stock market data we partly get the surprising result of the OLS method outperforming the

other methods. The Shapley method however still outperforms the equal weight method for

this data set.

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

Volatility forecasting plays a very important role in risk management, investment and option

pricing. Accurate volatility predictions help investors determine when to buy, sell or hold assets.

There are a great number of different ways to forecast volatility. For instance the standard

GARCH models (Bollerslev, 1986), the Threshold GARCH models (Wu, 2010) and the real-

time GARCH model (Smetanina, 2017). Bates and Granger (1969) is the first paper in which it

is proven that a combination of forecasts could give a lower mean-squared error than either of

the original forecasts. Since then, a lot of possible ways to combine different forecasts have been

suggested. This paper builds upon Franses (2023), which introduces a new method to combine

forecasts. This method bases the weights of the combined forecasts on their Shapley value, which

is especially useful when the forecasts are strongly correlated. The main research question of the

thesis is: Is the Shapley-values-based forecast combination a good way to forecast the volatility

of the Dow Jones Industrial Average? To the best of our knowledge there has not been done

a Shapley-value-based forecast combination on the Dow Jones Industrial Average (DJIA). The

DJIA is one of the most widely recognized stock market indices in the world, making it a reliable

indicator of market sentiment and trading behavior during significant economic events.

We build upon Franses (2023) by performing a simulation experiment and an empirical

experiment to test whether this specific way of combining forecasts is useful. To test whether

the Shapley method is a reliable method we compare this method with the commonly used 1/N

’equal’ method and with the OLS method. We first perform a simulation experiment with a

data generating process. We choose four models which are used in forecasting, the models we

use are GARCH(1,1), GARCH(2,1), TGARCH(1,1) and TGARCH(2,1). We divide the data in

three seperate parts. The first part of the data is used to estimate the parameters from each

model separately. In the second sample we make one-step ahead forecasts with a rolling window,

after which we adjust the parameters based on the new data point. Based on the Shapley-values

from this part of the data we give each of the forecasting models a weight as explained in section

4.3.1. In the third and last part of the sample we also make the one-step ahead forecasts. We

do not change the weights given to each model. Based on the results of the forecasts in the

final quarter we compare the Shapley values-based forecast combination with the 1/N forecast

combination and the OLS based forecast combination. We do this based on their R2, MAE and

with a Diebold Mariano test. Secondly, we look at the volatility of the DJIA Industrial Average.

We look at data from July 2013 until June 2018. We use the same models as in the simulation

experiment which can be used to forecast the DJIA. We divide the data in two different ways

for robustness and repeat the steps taken in the simulation experiment.

In our paper we find that for the simulation experiment the Shapley value based forecast

significantly outperforms the equal weight method and the OLS method. The difference in

accuracy of the Shapley method and the equal weight method is relatively small. The equal

weight method produces a significantly better forecast for a part of the simulations, but the

Shapley method produces the better forecast in the majority of the simulations. Furthermore,

due to the similarity of the GARCH models, the Shapley method weights do not differ very much

from the equal weights. The DJIA data gives us some more surprising results. For this data

set the OLS weighted method surprisingly produces the most accurate forecast when dividing
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the data according to the first division method. The reason for this is a peak in variance in

February 2018, where the Shapley method and the equal weight method produce excessively

high forecasts. In the other data division method the Shapley method significantly produces

the most accurate forecasts. For both methods the Shapley method does outperform the equal

weight method significantly for this data. To conclude, we see that most of the time the Shapley

method produces more reliable forecasts than the 1/N equal weight method. Generally both of

these methods are more accurate than the OLS method, however it also is possible that the OLS

method coincidentally produces better forecasts. With this finding we contribute to the current

literature by showing that a Shapley value based forecast is a good alternative for predicting

volatility. The 1/N combination method, often seen as a benchmark, is outperformed by the

Shapley method in most of the cases of the simulation experiment and for actual stock market

data.

In Section 2 we discuss some of the papers written on the subject of combining forecasts

and using GARCH models for forecasting volatility. The data used in this paper is discussed in

Section 3. Section 4 is about the methods used to answer our research question. The empirical

results from our simulations and our DJIA data are presented in Section 5. In Section 6 we talk

about the implications of our research paper, what we could have done differently and what

possible future research might be interesting on this subject.

2 Literature

Since Bates and Granger (1969) propose combining forecasts there have been an incredibly great

deal in optimising the combining of forecasts. Wang, Hyndman, Li and Kang (2022) present an

extensive review on these forecast combinations. This paper mentions that the first idea of com-

bining multiple forecasts was when Francis Galton attended an ox-weight-judging competition.

He observed that the average of 787 estimates of the weight came very close to the actual weight,

which gave him a realization that this might be extended to different kind of predictions. Wang

et al. (2022) states that there are three sources of uncertainty which are reasons to not rely on

one single ”best model”; data uncertainty, parameter uncertainty and model uncertainty. When

combining different models deviations or errors in each individual model will balance each other

out, this way the forecast becomes more robust against misspecification biases. Timmermann

(2006) states there are two levels of aggregation in the combination problem. The first step is

to summarize information from the individual forecasters to make point forecasts. The second

step aggregates the vectors of the point forecasts to the consensus measure. Because of the

information aggregation generally it is expected that the bias is increased but the variance of

the forecast error is reduced. Optimally the combination should trade off these components.

There are multiple ways to look for the optimal combination. Clemen (1989, p.559) writes:

“The results have been virtually unanimous: combining multiple forecasts leads to increased

forecast accuracy . . . in many cases one can make dramatic performance improvements by

simply averaging the forecasts.” Averaging the forecasts is the most obvious way, which is also a

relatively easy method to compute. Stock and Watson (1998) look at 49 univariate forecasting

methods and their optimal combinations. One of their subquestions is to find out whether

combination forecasts outperform forecasts based on a single method across a range of time
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series and if this is the case how heavily these combination forecasts should weight the currently-

best performing forecasting methods. They find that pooled forecasts are found to outperform

forecasts from any single method, especially the linear combination and median forecasts. The

most reliable pooling method are the procedures that place weight on all forecasting models.

This can be based on inverse MSE weighting, median or equal weighted. Median combination

forecasts is a method where the median from a group of methods is used, this is better than linear

combinations in the case of non Gaussian forecast errors. Stock and Watson (1998) also find

there is not much effect from using a reduced or rolling sample for computing the weights. In the

majority of the literature the weights of individual forecasts should add up to unity. Granger and

Ramanathan (1984) test three alternative approaches and show that the best method is to add

a constant term, instead of constraining the weights. They show through matrix computations

that this method results in the smallest mean squared error and an unbiased combined forecast.

Combining forecasts helps in forecasting when there is a structural break. Bates and Granger

(1969) conclude that methods combining forecasts allowing for the weight to change lead to

better forecasts. Rolling weighted least squares and time-varying parameter techniques are

shown to be useful.

In this paper we predict the volatility of the American stock market, through the DJIA. Poon

and Granger (2003) summarizes and compares 93 papers studying forecasting performance of

various volatility models. They state that financial market volatility is clearly forecastable.

Something else they conclude is that simple ARCH models do not result in accurate forecasts,

in contrast to more comprehensive GARCH models. GARCH models are popular models for

predicting volatility. Gokcan (2000) and Sharma, Aggarwal and Yadav (2021) both compare dif-

ferent (non-)linear GARCH models. The non-linear GARCH models were developed to examine

leverage effect and volatility clustering. The leverage effect is the difference in effect between

negative news and positive news. Usually stock markets react more extreme to negative news

than to positive news. Both papers conclude that the GARCH(1,1) model outperforms the

non-linear models. Charles and Darné (2014) look back to the volatility of the DIJA over the

period 1928-2013. They determine the events that cause large shocks using models from the

ARCH-family. They found large volatility shocks are principally due to the major financial

crashes, US elections, wars, monetary policies, macroeconomic news and declarations on the

economic situation, terrorist attacks, bankruptcy and regulation. This means that these kind of

shocks should be taken into account in modeling volatility of returns.

3 Data

The data we use consists of the daily closing stock market position from the Dow Jones Industrial

Average from the period 01-07-2013 until 29-06-2018. We get this data from the Federal Reserve

Economic Data (FRED), the database from the Research division of the Federal Reserve Bank

of St. Louis. We choose to exclude the COVID period from our data because this would not

give accurate representations of the quality of forecasts. The reason for this is that COVID is

such an unusual and excessive shock that we do not think this is representative. There are 1262

trading days of which we look at the simple returns. We multiply the returns by 102 for optimal

functioning of the code in Python. In our research we use realized variance as a measure for the
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actual volatility. We use the realized variance from the following formula:

RVi =
1

T

T∑
i=1

[
ln

(
Si

Si−1

)]2
(1)

Where Si is the stock price on day i. We choose T to be 21, because on average there are

twenty one trading days in a month. This means the value of the realized variance on a certain

trading day is based on the returns for the past month.

Figure 1 shows the daily returns (multiplied by 102) from 01-07-2013 until 29-06-2018. As

can be seen the returns vary much, with periods of extreme values in August and September

2015 and in February and March 2018. The first period falls in the 2015-2016 stock market

selloff, which is a period in which stock prices declined globally. The volatility began in China

due to uncertainty. On Monday, August 21 2015, the DJIA fell 3.17%, while in the next week

the DJIA quickly recovered with record point gains. In February 2018 the DJIA fumbled 12%

in two weeks, but after this the stocks recovered three-quarters of these losses within a couple

of weeks. The reason for the big losses was the threat of inflation. The rise in volatility in these

periods can also be seen in Figure 2, which shows the volatility of the DJIA in our five year

period, this is calculated by taking the square root of the realized variance. The black line shows

the mean volatility which is 6.133 (multiplied by 10−3). As can be seen the value for volatility

remains high a little bit longer than can be seen in the graph with the returns. The reason for

this is that the realized volatility is based on the results of the past month.

Figure 1: The daily returns of the DJIA multiplied by 102 for the period from 01-07-2013 until

29-06-2018
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Figure 2: The realized volatility of the DJIA multiplied by 103 for the period from 01-07-2013

until 29-06-2018

Table 1 shows descriptive statistics of the daily simple returns, the realized volatility and the

realized variance. The daily simple returns are calculated with the formula Rt =
St−St−1

St−1
. We

see some interesting results in this table. The mean return is positive, which means the stock

price of the DJIA has been rising on average. The skewness of the returns is negative, which

means there are more extreme negative values. This is what is generally expected by stock

markets, the market generally reacts stronger to bad news than to good news. The realized

volatility has excess kurtosis, this means the price changes are too peaked and have too thick

tails compared to a normal distribution. The results of the Jarque-Bera normality test point

to the fact that the returns, the realized volatility and the realized variance are not following a

standard distribution. There are 1262 data points, these are divided in three different samples.

For robustness we divide the samples in two different ways. Firstly, we divide the data in a half,

a quarter and another quarter and secondly we divide the data in three equal parts. Figure 3

shows the realized variances with lines for the dates where the data is split. The red lines show

the points for the first way and the black lines show the points for when the data is split in three

equal parts.

6



Table 1: Summary statistics of the daily returns, the realized volatility and the realized variance

Daily returns

(x102)

Realized volatility

(x103)

Realized variance

(x 105)

Mean 0.038 7.096 6.133

St. dev 0.780 3.315 6.414

Skewness -0.578 1.383 2.487

Kurtosis 6.667 4.910 9.941

Jarque-Bera
775.643

(0.000)

583.248

(0.000)

3765.073

(0.000)

Note: the notation (x10i) means that the data has been multiplied by this factor. The realized volatility is calculated by

taking the square root of the realized variance. The null hypothesis of the Jarque-Bera test is normality.

Figure 3: The realized variance of the DJIA multiplied by 104 for the period from 01-07-2013

until 29-06-2018 with lines showing the sampling of the data

4 Methodology

In the replication part and in the extension part we use four different models for forecasting.

In this section we first explain how we divide our data and how we use each part. Secondly,

we discuss the GARCH models we use for the forecast combination and for the data generating

process. The next subsection is about how the weights are determined in each of our three

methods. Lastly, we explain the way the combined forecasts are compared in their accuracy.

4.1 Data division

For both our simulation runs and for our actual data we divide our data in three parts. As

explained in Section 3, we will use two different ways of dividing our empirical stock market

data for more robustness in our results. Method I is done by first using the first half of the data,

then a quarter and as third part the last quarter. The second method is II, where we divide
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the data in three equal parts. The data from the DGP has 1000 data points for each simulation

and the data from the DJIA has 1262 data points. Because we need data from the past month

to calculate realized variance we have 1239 data points left.

The first part is used for parameter estimation for each of the four models. This means for

our DGP the first 500 values are used and for the DJIA the first 620 or 413 values are used for

parameter estimation, this is done by fitting the models to the data. Based on these parameters

a forecast is made for the second half of the data by using a rolling window of data. The rolling

window size is 500, 620 or 413 and we roll one observation ahead. This means each forecast is

based respectively on the past 500, 620 or 413 observations.

The second part of the data consists of a quarter or one third of the data and is used for

estimating the weights of each model. The forecasts for this part of the data are compared with

the actual values. The weight determination is done differently for each of the three methods.

Each of these ways are is explained in subsection 4.3.

The last quarter or last one-third of the data is used for comparing the different forecasts

from each combination method, the way the forecasts are compared are explained in subsection

4.4.

4.2 GARCH models

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model assumes that

the conditional variance is a function of the errors at earlier times. The GARCH(1,1) model

takes into account the lagged error from time t − 1 and the lagged value of the conditional

variance and is defined as follows:

σ2
t = ω + αϵ2t−1 + βσ2

t−1 (2)

Where σ2
t is the conditional variance at time t, the ω is a constant and the α is the parameter

for the lagged squared error term ϵt. β is the parameter for the lagged conditional variance σ2
t−1.

To guarantee that σ2
t ≥ 0 for all t: ω > 0, α > 0 and β ≥ 0.

In many GARCH models the return function looks as follows:

rt = µ+ ϵt (3)

In this function rt is the return on day t and µ is the expected return based on the information

set until t− 1. ϵt can be written as ϵt = ztσt, with zt ∼ iid N(0, 1).

Another model we use to combine different forecasting models is the GARCH(2,1) model,

this model accounts for a second lagged error term from time t−2. This model has the following

equation:

σ2
t = ω + α1ϵ

2
t−1 + α2ϵ

2
t−2 + βσ2

t−1 (4)

The threshold GARCH (TGARCH) model is an extension that accounts for asymmetric

reactions to positive and negative shocks. This is done by adding a parameter γ for the lagged

error term. The TGARCH(1,1) model has the following equation:
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σ2
t = ω + αϵ2t−1 + γϵt−1 + βσ2

t−1 (5)

The γ accounts for different reactions when the shocks are negative.

We also use the TGARCH(2,1) model which has the following equation:

σ2
t = ω + α1ϵ

2
t−1 + α2ϵ

2
t−2 + γϵt−1 + βσ2

t−1 (6)

The data we use for the simulation part is simulated by a data generating process (DGP).

The DGP we use is a GARCH(3,3) model. This means the data is generated from the following

equation:

σ2
t = ω + α1ϵ

2
t−1 + α2ϵ

2
t−2 + α3ϵ

2
t−3 + β1σ

2
t−1 + β2σ

2
t−2 + β3σ

2
t−3 (7)

To be sure of the robustness of our simulation we simulate with different parameters four

times. Each time we make sure the values of the α parameters add up to 0.1 and the β parameters

add up to 0.8. The parameters we use are in Table 2. We used varying parameters on purpose,

such that we investigate whether the Shapley method performs better than the equal weight

method with different data generating processes.

Table 2: The parameters used for the four simulation runs

ω α1 α2 α3 β1 β2 β3 µ

run 1 0.1 0.03 0.03 0.04 0.4 0.3 0.1 2

run 2 0.1 0.01 0.07 0.02 0.1 0.5 0.2 2

run 3 0.1 0.02 0.02 0.06 0.2 0.2 0.4 2

run 4 0.1 0.06 0.03 0.01 0.5 0.1 0.2 2

Note: this table shows the values of the parameters used for the DGP in Equation 7.

4.3 Forecast combination

4.3.1 Shapley values

When combining different forecasts each of the forecasts gets a weight, with all the weights

adding up to one. In case of K forecasts the Mincer Zarnowitz regression is used:

yt = α+ β1f1,t + β2f2,t...+ βKfK,t + ϵt (8)

In this regression yt is the actual value the models try to predict. The Shapley-values then are

computed as follows:

SHj =
∑
S⊆K
j∈S

(s− j)!(k − s)!

k!
[R2(S)−R2(Sj)] (9)

In this equation R2(S) is the R2 of the model with all forecasts in a set S ⊂ K. The R2 are

calculated by regressing the forecasts on the actual value as in equation 8. The Shapley weights
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are found as follows:

sj =
SHj

R2
12..K

(10)

The Shapley values weighted forecast is then computed as follows:

fSH,t = s1f1,t + s2fs,t + ...+ s3fS,t (11)

4.3.2 Equal

The name of the equal weight method already explains the size of the weights. All weights are

one divided by the amount of models combined. The combined forecast of the equal weight

method is composed as follows with S is the amount of combined models:

fEQUAL,t =
1

S
f1,t +

1

S
fs,t + ...+

1

S
fS,t (12)

4.3.3 OLS

The OLS method first performs a linear regression on the forecasts as in the following equation:

yt = α+ β1f1,t + β2f2,t + ...+ βSfS,t + ϵt (13)

The coefficients of this regression are then used as weights for the forecast combination,

which results in a combined forecast as follows:

fOLS,t = β1f1,t + β2f2,t + ...+ βSfS,t (14)

4.4 Forecast comparison

The forecast performances of the combination methods are evaluated in absolute and relative

terms.

We compare the different forecasts based on R2. This is a measure that represents the

proportion of the variance for a dependent variable that is explained by an independent variable

in a regression model. It is defined as follows:

R2 = 1− SumSquaredRegression

TotalSumofSquares
= 1−

∑
(yi − ŷi)

2∑
(yi − ȳi)2

(15)

Where ŷi is the forecast and ȳi is the average.

We also use the mean absolute error (MAE) to compare the forecast accuracy of the com-

bination methods. The MAE is calculated by the following:

MAE =
1

n

N∑
i=1

|λi − λ̂i| (16)

In this equation λi stands for the actual realized variance and λ̂i is the forecasted variance.

The MAE is an accuracy measure commonly used for financial data. This is the case because it

is easy interpretable and is relatively robust to outliers compared to squared error functions.
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We also compare the forecasts based on the one sided Diebold-Mariano test (Diebold &

Mariano, 2002). We call the k-step forecasts of model i and model j respectively λ̂i,tk|t and

λ̂j,tk|t, with corresponding errors ϵi,tk|t and ϵj,tk|t. The loss differential is the difference between

those errors: dt+k = ϵi,tk|t − ϵj,tk|t. The null hypothesis is that the two forecasting models have

the same accuracy: H0 : E(dt) = 0∀t with alternative hypothesis H1 : E(dt) > 0

The Diebold Mariano (DM) statistic is defined as follows:

DM =
d̄√

V (dt+k) \ T
∼asy N(0, 1) (17)

d̄ is the mean of the loss differentials, V (dt+k) is the variance of the loss differential, which is

defined as follows:

V (dt+k) =
1

T − 1

T∑
t=1

(dt+k − d̄)2 (18)

We take a significance level of 0.05. The one sided DM test is a one-tailed test, which means

the critical value is 1.645 (z-value)

5 Empirical results

In this section we discuss the results from the combined forecasts. First we compare the Shapley

weighted forecast with the forecasts based on equal weights and OLS weights for four runs of

1000 simulations with a data generating process. Based on these results we conclude whether the

Shapley combined forecast is not only theoretically better than the equally weighted forecast,

but also empirically. Secondly, we compare the three combination methods for our actual data

from the DJIA. To compute our results we made use of Python (2023) and the figures are made

with EViews 11.

5.1 Data Generating Process

Table 3 shows the results of the R2 of the four runs from 1000 simulations with the data

generating process. In the table the mean R2 is mentioned and the amount of times a method

came out on top. The OLS method has the highest value of R2 the most amount of times in

every run, so the OLS method explains the largest part of the variance most often. The mean

R2 however, is higher for the Shapley method in three of the four runs. When we look at the

average of all runs we conclude the OLS method has the highest R2 the majority of the time,

but the Shapley method is more constantly reliable when it comes to the R2 with a higher mean

R2. Comparing the Shapley method with the equal weight method we conclude the Shapley

method has a higher mean R2 and more often has the highest R2 of a simulation, this is the

case for all four runs.
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Table 3: The R2 of the combination models received in the simulations
Run 1 Run 2 Run 3 Run 4 Average

R2 Mean Wins Mean Wins Mean Wins Mean Wins Mean Wins

Shapley 0.630 298 0.521 256 0.434 332 0.796 246 0.595 283

Equal 0.604 108 0.486 97 0.412 118 0.775 138 0.569 115

OLS 0.598 594 0.539 647 0.402 550 0.768 616 0.577 602

Note: the notation (x10i) means that the data has been multiplied by this factor. The results from these accuracy

measures are from the last quarter of the data. The numbers in bold show which of the combination methods comes out

as the best in a category.

The mean MAE and the amount of times a method has the lowest MAE are in table 4. The

results from this table are unambiguous. The Shapley method has the lowest MAE in every run,

while also coming out on top in more than 62% of the simulations every run. It is clear that

the OLS method is outperformed by both the Shapley method and the equal weight method.

On average the MAE of the OLS method is around eight times higher than the MAE of the

other two methods. The difference in accuracy between the Shapley and equal weight method is

not very big. The difference between the mean MAE of the four runs is 0.000164. Despite this

small mean difference the Shapley method does gets the lowest MAE in on average 64.5% of the

simulations, while the equal weight method has the lowest MAE in 32.5% of the simulations.

Table 4: The MAE of the combination models received in the simulations
Run 1 Run 2 Run 3 Run 4 Average

MAE (102) Mean Wins Mean Wins Mean Wins Mean Wins Mean Wins

Shapley 0.845 648 0.905 627 0.939 647 0.801 656 0.873 645

Equal 0.862 312 0.918 350 0.957 321 0.817 315 0.889 325

OLS 6.451 40 8.944 23 7.302 32 5.581 29 7.070 31

Note: the notation (x10i) means that the data has been multiplied by this factor. The results from these accuracy

measures are from the last quarter of the data. The numbers in bold show which of the combination methods comes out

as the best in a category.

As mentioned the difference in accuracy between the Shapley method and the equal weight

method does not seem very big based on the MAE. To test whether the Shapley method is

performing significantly better than the equal weight method we perform one-sided Diebold

Mariano tests. The results of these tests are in Table 5. We see that for each run the Shapley

method performs significantly better than the equal weight method more often than the other

way around. Except for in run 2 the Shapley forecast performs better in the majority of the

1000 simulations, in run 2 it was around half of the time with 498 times out of 1000. When

we look at the average results from the Diebold Mariano test we conclude that in 53.5% of the

times the Shapley method has a significantly higher accuracy, while the equal weight method

only has a higher accuracy in 18.0% of the time.
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Table 5: The results of the one-sided Diebold Mariano tests of the simulations
DM Shapley Equal

Run 1 559 163

Run 2 498 188

Run 3 534 172

Run 4 548 198

Average 535 180

The average Shapley weights allocated to each model are in table 6. The Shapley method

gave weights between 0.156 and 0.360 to each of the four models. The biggest difference in

weights is in run 2, when the GARCH(2,1) model performs much better than the GARCH(1,1)

model. The reason for this, bigger than usual, difference in weights is that the α2 of the DGP

has the high value of 0.7, this means the GARCH(2,1) model fits better than the GARCH(1,1)

model. Looking at the average Shapley weights they can be seen as fairly equal. This is as

expected because the four models are a lot like each other. These fairly equal weights and

similarities between the models are the reasons for the small difference in performance accuracy.

When we look at the Diebold Mariano results we do see that this small difference in weight does

result in significantly better forecasts most of the times.

Table 6: The Shapley weights received by each individual GARCH model in the simulations

Mean Shapley Weight GARCH(1,1) GARCH(2,1) TGARCH(1,1) TGARCH(2,1)

Run 1 0.190 0.345 0.231 0.235

Run 2 0.156 0.360 0.213 0.271

Run 3 0.189 0.355 0.223 0.233

Run 4 0.230 0.310 0.233 0.227

Average 0.192 0.343 0.225 0.241

Note: the weights in this table are based on the R2 in the third quarter of the data.

The weights allocated by the OLS method are in Table 7, something that directly stands

out is the presence of negative weights. The weights of the OLS method are, contradictory to

the Shapley weights, very different from the equal weights. As mentioned in Franses (2023)

a problem with OLS might occur in case the forecasts are strongly correlated. A result of

this correlation is by example negative weights. It is also visible that every GARCH model

sometimes has a positive mean weight, while in another run with different parameters the model

has a negative mean weight.
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Table 7: The OLS weights received by each individual GARCH model in the simulations

Mean OLS Weight GARCH(1,1) GARCH(2,1) TGARCH(1,1) TGARCH(2,1)

Run 1 -0.099 2.664 6.963 -8.737

Run 2 -0.167 0.307 1.436 -0.875

Run 3 -0.086 -0.302 -1.021 2.178

Run 4 0.001 0.037 1.869 -1.149

Average -0.878 0.677 2.312 -2.146

Note: the weights in this table are based on an OLS regression in the third quarter of the data.

The MAE of all individual GARCH models for every run are in Table 5.1. We see that

the GARCH(2,1) model outperforms the other models in every run. This was to be expected

based on the relatively high weights this model received from the Shapley method as can be

seen in Table 6. When we look further into the MAE of the GARCH(2,1) model we see that

the GARCH(2,1) model even has lower values for MAE than all the combination methods. This

means that combining models does not definitely lead to a higher accuracy for this DGP.

MAE (102) GARCH(1,1) GARCH(2,1) TGARCH(1,1) TGARCH(2,1)

Run 1 1.110 0.834 0.921 0.937

Run 2 1.177 0.904 0.980 0.998

Run 3 1.192 0.924 1.021 1.012

Run 4 1.048 0.798 0.908 0.890

Average 1.132 0.865 0.958 0.959

Note: the notation (x102) means that the data has been multiplied by this factor. The numbers in bold show which of the

models comes out as the best in a certain category. These accuracy measures are based on the actual values and the

forecast of the last quarter of the data

5.2 Dow Jones Industrial Average

Table 8 shows the R2 and the MAE from the Shapley method, the equal weight method and

the OLS method for our data from the DJIA. For our division method I we see that the OLS

method results in the highest R2, which means relatively the biggest part of the variance is

explained by the OLS based forecast. We also see that the MAE is the lowest for the forecast

based on OLS weights. This is a surprising result, as the OLS method came out as the worst

method in our simulations. The second division method gives results that might be expected

based on the simulations, the Shapley method and the equal weight method perform better

based on both R2 and MAE. The equal weight method has a bit higher R2, while the Shapley

method has a lower MAE. For both accuracy measures there is not much of a difference between

the Shapley method and the equal weight method. However, the Shapley method outperforms

the equal weight method both times for MAE. The difference in R2 is below 0.01 each time and

the difference in MAE is around 0.03 for both division methods.

To check whether there is a significant difference between the forecast accuracy of the three

methods we perform one sided Diebold Mariano tests. When performing Diebold Mariano tests

with method I between the OLS methods and the other methods we get respective p-values of
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0.009 and 0.010 when comparing with the Shapley and the equal weight method. This means

the OLS method significantly outperforms the other two methods for this sample choice. The

outcome of this DM test is not surprising looking at the values of the accuracy measures in

Table 8. For the data division with three equal parts the p-values of the Shapley method and

the equal weight method outperforming the OLS method are respectively 0.058 and 0.144 This

means that with our significance level of 0.05 the OLS method is not significantly outperformed

by the other methods.

We also test whether the Shapley method is significantly better than the equal weight

method. The p-value from method I is 0.021 and from method II 0.043. This means we

do reject the null hypothesis of equal accuracy between these tests and the Shapley method

works significantly better for the DJIA in this period.

Table 8: Forecast comparison DJIA

R2
I MAEI R2

II MAEII

Shapley 0.398 0.361 0.423 0.291

Equal 0.388 0.364 0.427 0.294

OLS 0.668 0.321 0.410 0.361

Note: the results from these accuracy measures are from the last quarter of the data.

Figure 4 shows the actual Realized Variance and the forecasts for all three methods of method

I for the last quarter of the data. A few things stand out. The first thing that stands out is

that it seems like the line for the Shapley method is missing. What is actually happening is

that the differences between the Shapley forecast and the equal forecast are so small the lines

are almost exactly ’on top of each other’. We also saw this in Table 8, where the values of the

accuracy measures were very close to each other. Secondly, we see a high peak in the period in

the end of February 2018. This is something we already discovered in the data section. However,

we also learn something new from this figure. We see that the Shapley forecast and the Equal

forecast are much higher than the actual variance, while the OLS forecast is much closer to the

actual value. It is probable that this period with much irregularities is the biggest cause of the

OLS forecast being significantly better than the others. This is confirmed by the fact that the

MAE of the Shapley and equal weight method is actually lower. It seems that for the rest of

the period the three forecasts are about as good as each other, this is something we investigate

further in the last part of this result Section.
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Figure 4: The actual Realized Variance and the three weighted forecasts with method I

Note: the results are from the last quarter of the data.

Figure 5 shows the last one-third of the Realized variance and the method II forecasts. The

biggest difference with Figure 6 is the OLS forecast, which looks to be much worse. In the first

quarter of 2018 there are even some negative values for the predicted variance, while this is not

even possible in reality. Further the same things apply for this figure, with the Shapley method

and the equal weight method showing almost no differences. Both of these forecasting methods

get a much higher peak around February 2018.

Figure 5: The actual Realized Variance and the three weighted forecasts with method II

Note: the results are from the last one-third of the data.

The reason the forecasts from the Shapley method and the equal weight method are so close

to each other is that the weights do not differ very much from another as can be seen in Table 9.
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The weights allocated to each GARCH model are between 0.147 and 0.372. These weights are

based on the R2 from the individual models and combinations of all models. The first two rows

of Table 9 show the R2 of the individual models in the second part of the data. We see that

the models with a higher R2 get allocated a higher weight, which is what might be expected

beforehand. The reason for this relatively equal weight allocation is that the models we use are

very much alike. All four models are GARCH models with at most two additional variables

compared to each other. The estimates from the parameters from the first half of the data are

in Table 10. Here it is confirmed how much alike the models we use are. The value of omega

is between 0.052 and 0.060 for all models and the estimates of β1 are all between 0.609 and

0.706. The most extreme finding is that with the value of α2 being zero the TGARCH(1,1) and

TGARCH(2,1) models are almost exactly the same. The difference between the values of the

parameters only come after three decimals. When the models are much alike the accuracy of

the models are also not far apart from each other. This can also be seen in the first two rows of

Table 9 where we see that the R2 from the GARCH models do not differ very much.

In the fifth and sixth row of Table 9 we see the weights allocated by the OLS method. As

we explained earlier this section the negative weights are due to correlation between the models.

Two very extreme cases can be seen here, with the TGARCH models being almost exactly the

same. To still profit from combining the forecasts the two models get allocated the extreme

weights of -525.889 for the TGARCH(1,1) model and 525.562 for the TGARCH(2,1) model for

method I. We see that in the case of our first division method it does work to have these

negative weights, while for method II it does deliver worse results.

Table 9: Allocated weights of each method

GARCH(1,1) GARCH(2,1) TGARCH(1,1) TGARCH(2,1)

R2I 0.551 0.571 0.396 0.396

R2
II 0.471 0.431 0.337 0.337

Shapley weightI 0.336 0.370 0.147 0.147

Shapley weightII 0.372 0.281 0.173 0.173

OLS weightI -10.002 11.495 -525.889 525.562

OLS weightII 1.637 -0.877 268.868 -268.838

Note: this table shows the R2 of the GARCH models from the second part of the data. The weights are also based on the

performance in this part of the data.

Table 10: Estimated parameters from first half of the data

GARCH(1,1) GARCH(2,1) TGARCH(1,1) TGARCH(2,1)

ω 0.060 0.056 0.052 0.052

α1 0.278 0.214 0.134 0.134

α2 0.030 0.000

β1 0.609 0.669 0.706 0.706

γ 0.166 0.166

µ 0.083 0.068 0.052 0.052

Note: the parameters are based on the estimation in the first half of the data.
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Table 11 shows the outcomes of the accuracy measures from each individual GARCH model.

A few things stand out from these outcomes. Firstly, we see that the TGARCH models have

(almost) the exact same outcomes. This was something that might be expected when looking at

the parameters in Table 10. The GARCH models have higher R2 and MAE than the TGARCH

models. This might be expected from the values of R2 in Table 9, where the GARCH models

also had higher values for R2. The GARCH(2,1) model outperforms all other models and even

has better values for all performance measures than the combined forecasts based on Shapley

values and on equal weights. The GARCH(1,1) model also has comparable values to the Shapley

and equal weight method. The reason is that the performance of the combined forecasts gets

dragged down by the TGARCH models.

We perform a DM test to check whether the GARCH(2,1) and the GARCH(1,1) model

forecasts are significantly better than the Shapley values based forecast. For the GARCH(2,1)

model we find p-values of 0.018 and 0.036 respectively for method I and II, which means this

forecast is significantly better than the Shapley value based forecast. The p-values for the test

with the GARCH(1,1) model respectively are 0.055 and 0.267, this is not significant as we work

with a significance level of 5%. The fact that the GARCH(2,1) model performs better than the

Shapley method, and thus the equal weight method, points to the fact that combining forecasts

does not always result in a higher accuracy. The reason for the deterioration of the forecast

when combining is the low accuracy from the TGARCH models.

Table 11: Forecast comparison of the GARCH models

R2
I MAEI R2

II MAEII

GARCH(1,1) 0.396 0.359 0.354 0.294

GARCH(2,1) 0.427 0.343 0.474 0.287

TGARCH(1,1) 0.367 0.395 0.422 0.312

TGARCH(2,1) 0.367 0.395 0.422 0.312

Note: these are the values of R2 and MAE from the last part of the data

As discussed and can be seen in Figure 4 and Figure 5 there is a specific period which has a

large influence on the accuracy measures of the forecasts. This period is the first part of February

2018. When using data division method I, the week from the fifth of February until the ninth of

February has an MAE of 4.246 from the Shapley method, this is an extremely big difference in

comparison with the MAE of 0.361 in Table 8. We remove the 105 data points from the beginning

of February 2018 until the end of our data from our forecasts and compare the smaller sample

of forecasts. The results from this comparison are in Figure 5.2. Because we removed a very

hard to predict volatile period the MAE becomes smaller for each combination method. The

Shapley, equal weight and OLS method have a respective MAE of 0.124, 0.120 and 0.181. In

contrast to when using the comparison sample from method I the OLS method has the highest

MAE and the Shapley method has the lowest MAE. We also see this in Figure 5.2 where the

OLS method often gives worse predictions than the other methods. When performing a DM test

between the Shapley method and the OLS method we get a p-value of 0.000. Which means the

Shapley method performs significantly better. We also test the null hypothesis of equal forecast

accuracy between the Shapley and equal weight method against an alternative hypothesis of a
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better equal weight method forecast. This results in a p-value of 0.334, which means there is

no significant difference in performance between these methods. From this difference in results

after removing the extremely volatile period we can conclude that these unstable periods in

stock markets have a big influence on the relative performance of different forecasting methods.

Figure 6:

6 Conclusion

In this paper we investigate whether the Shapley-values-based forecast combination is a good

way to forecast the volatility of the DJIA. We partly adopt the methodology from Franses (2023)

and extend this paper by performing a thousand simulations four times and testing the different

combination methods on actual stock market data. From our simulation experiment we find

the Shapley method outperforms both the equal weight method and the OLS method. The

accuracy of the Shapley and equal weight method does not differ much, because the Shapley

method weights are comparable with the equal weights. Still, the Shapley method has better

average values for R2, MAE and also is significantly better according to the Diebold Mariano

test.

For our DJIA data we find the surprising result that the OLS method significantly outper-

forms the Shapley and equal weight method when dividing our data according to method I.

With data division with three equal parts the OLS method performs worse than the other two

methods as expected. When comparing the Shapley method and equal weight method among

each other we do find that the Shapley method produces significantly more accurate predictions

for both ways of data division. When looking further into the accuracy of the models where the

combined forecasts were composed of we see that the TGARCH(1,1) and TGARCH(2,1) model

are almost identical for this data. More importantly, we see that the GARCH(2,1) makes sig-

nificantly better forecasts than the Shapley and equal weight method. For this data combining

forecasts does not lead to better results. Both the simulation results and the DJIA results lead

us to conclude that the benchmark 1/N method indeed can be improved by using the Shapley
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method.

The field of combining forecasts is a major field not yet fully explored. We believe there

are many methods of forecast combination still to be discovered and tested. In the future the

Shapley method could be compared to newly discovered combination methods. For comparison

between the Shapley method and the equal weight method there are also a few things that could

be done differently in the future. The first thing that could be done in another way is that it

would be advisable to use models that differ more. In our research the TGARCH models were

almost identical, this does not help in the reliability of our outcomes. Also on a bigger scale four

GARCH models are quite similar, some more variation might result in different results. Looking

back on our research this is something we could have done differently. Secondly, more models

could be included to test whether the Shapley method also works better with more forecasts to

combine. With different and with more models way the Shapley weights might be less equal to

the equal weights. The research could also be done with different data sets, such as the New

York Stock Exchange, the NASDAQ or the Japan Stock Exchange. Lastly, one could specifically

look for difference in accuracy in periods with much volatility or in periods with little volatility.

As seen in our results from the DJIA data the biggest difference between the accuracy of the

methods is in the peak in February 2018. Some methods could work better in highly volatile

markets, while other methods perform better in a quiet market.
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A Calculation of Shapley weights with four models

In our paper we combine four models with the Shapley value based method. In this Appendix

we show how the calculation of each of the Shapley weights in our paper. The regression is as

follows:

yt = α+ β1f1,t + β2f2,t...+ βKfK,t + ϵt (19)

To compute Shapley values we need all the R2 from each individual and each combined

forecast. The Shapley values are computed as follows:
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The weights allocated to each forecast are calculated with the following formula:

si =
SHi

r21234
(20)
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B Programming code explanation

The code is attached in the zip file. To make the code fully understandable we explain a few

things from the code in this Appendix. We run the code in two separate ways for the research

paper. First we do a thousand simulations. For this way we choose the main file to have “data

= makegdp()”, this way the actual data is a GARCH(3,3) model newly generated for each run.

For the DJIA data it should say “data = pd.read excel(’finaldatacorrect2.xlsx’)” and the actual

data should be in an excel file with this name in the same directory as the Python file. The

return should be under ‘Returns’ and the realized variance should be under ‘Variance’. In the

RSQUARES class and in the GARCH11 class there are variables called a, b and c. These

respectively represent the point of a quarter, the half and the third quarter of the data. For the

simulation these should be 250, 500 and 750. For the DJIA data it should be 310, 620 and 930

or 413, 826 and 413. Also f in the GARCH11 class should be 500 for the simulations and 620

or 413 for the DJIA data. and ”Length In the Comparison class the variables named ’a’ should

have a value of 250 for simulations and 309 or 413 for the actual data. One final remark is that

the value of ‘n’ in the main class determines how many times the loop should run. This should

be a thousand for the simulation and just one for the stock market data.

22


