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Abstract

The synthetic control method (SCM) is a widely used counterfactual estimation tool

for studying the effects of policies or interventions. However, there are growing concerns

regarding the lack of guidance on the selection of predictors in SCM. This paper aims to

contribute to the ongoing discussion by investigating the use of different covariates across

various simulation settings and an empirical setting.

The simulation study complements previous results shown by Ferman et al. (2020) and

provides additional insights. One key finding is the preference for using time-invariant cov-

ariates as predictors, as opposed to the commonly employed practice of using the averaged

value of outcomes in empirical studies. In the empirical analysis, an anti-tobacco program

implemented in California is examined. By thoroughly examining the results obtained from

different SCMs using different predictor sets, this study discovers that achieving approximate

balance in certain covariates proves to be beneficial, and the relevance of these covariates in

improving estimation is further verified by using an SCM that incorporates machine learning

techniques. Furthermore, the study provides discussions on the linearity of covariate effects,

supported by recent theoretical results.
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1 Introduction

The Synthetic Control Method (SCM) has made remarkable advancements in the field of

comparative case studies since its development by Abadie and Gardeazabal (2003), Abadie,

Diamond and Hainmueller (2010), and Abadie, Diamond and Hainmueller (2015). This innov-

ative technique for counterfactual estimation has garnered widespread adoption in estimating

the effects of interventions or policies, primarily due to its transparent and interpretable nature.

Precisely, it involves constructing a counterfactual scenario that enables researchers to estimate

what would have been observed in the absence of the intervention.

The estimation procedure begins by constructing a pre-treatment trend that closely resembles

the variable of interest, using data from untreated control units. This trend is then projected

forward in the post-treatment period to estimate its potential trajectory. Then, by comparing

the actual post-treatment outcome of the treated unit with the outcome estimated by this

synthetic control (SC) unit, the effect of the intervention could be identified. Existing empirical

studies of SCM cover a wide range of topics, including the impact of terrorist attacks on elections

(Montalvo, 2011), the influence of the European monetary union on economic growth (Fernández

& Garcia-Perea, 2015), the effects of right-to-carry laws on violent crime (Donohue et al., 2019),

and the impact of lockdowns on air quality during the pandemic (Cole et al., 2020).

Despite that SCM being widely used in comparative analyses, there is an increasing number

of critics regarding the lack of transparency surrounding the selection of outcome variables and

other covariates used as predictors. This lack of transparency can tempt researchers to engage in

specification searching, which ultimately leads to subjective statistical inferences and undermines

the reliability of the method. Ferman et al. (2020) have extensively researched this issue within

the context of the canonical SCM. Their theoretical and simulation findings suggest that using

all pre-treatment outcome lags as matching variables is preferable, as this specification satisfies

certain conditions that ensure convergence to some SC unit.

In contrast to the study conducted by Ferman et al. (2020) that primarily focuses on the

number of pre-treatment outcomes, Kaul et al. (2022) investigate the influence of covariates on

estimation. Their research demonstrates the existence of a trade-off between bias and variance

when deciding whether to include covariates. In their simulation experiment, it is observed

that using all pre-treatment outcome lags leads to the smallest variance, but also results in the

largest bias compared to the scenario where covariates are included. They further confirm that

the exclusion of covariates is the primary driver of this bias.

Given the ongoing debate regarding the selection of predictors and covariates in the SCM,

this study aims to contribute by examining the effects of utilising different sets of predictors on

various data structures and empirical data. The simulation study in this research makes a two-

fold contribution. First, it identifies certain ambiguities in the study conducted by Ferman et

al. (2020), offering a critical examination of their findings. Secondly, the study presents a series

of analyses that successfully address and clarify these concerns, while also provides additional

insights into the effectiveness of using different predictors.

Specifically, when the pre-treatment period is short, the specifications recommended by

Ferman et al. (2020) are susceptible to over-fitting issues. In cases where the pre-treatment

period is long, all the considered specifications generally perform well if the outcome variable is
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stationary, whereas their effectiveness becomes more diverse when the outcome variable exhibits

a trend. In such cases, the use of a time-invariant covariate results in smaller errors compared to

using the averaged values of outcome variables, which is a common practice in empirical studies.

Lastly, a newly developed SCM also provides additional insights into the impact of precisely

balancing certain covariates with varying characteristics.

The empirical part of this study makes contributions to the existing literature by presenting

an overview of results obtained from using different SCMs and diverse sets of predictors. By

thoroughly examining the results, this research provides detailed discussions that are grounded in

recent research on the role of covariates. These discussions encompass the relevance of covariates

in estimation bias and the properties of their effects, particularly in terms of linearity.

The paper is structured as follows. Section 2 provides literature overview on the studies

discussing covariates and the recent development in SCM. In Section 3, the standard SCM

estimation procedure is introduced, followed by the two extended versions. Next, Section 4

demonstrates the simulation study, including discussions about the study design and the results.

In Section 5, an empirical study is conducted. Finally, Section 6 concludes.

2 Literature

The growing number of promising applications of SCM has resulted in a surge of research

in this field. An area of research examines the subjective nature of predictor and control unit

selection, which can undermine the transparency of SCM. The lack of guidance in this area

was first identified by Dube and Zipperer (2015a), although the study does not explore its

implications about searching opportunities. Nevertheless, the authors propose a procedure based

on cross-validation to identify the optimal set of predictors, using mean squared prediction

error (MSPE) criteria. The issue of specification searching is explicitly expressed by Ferman et

al. (2020), who conclude that using all pre-treatment outcomes as predictors is preferred over

alternative options. The conclusion of this study is primarily grounded in the theoretical result

that estimators are asymptotically equivalent across different specifications when the number

of pre-treatment outcome lags used as predictors approaches infinity, given that the number of

pre-treatment periods also tends to infinity. This theoretical finding is further supported by the

results of their simulation study.

Regarding the role of predictors, several studies have provided insights into their importance

and the implications for estimation. Kaul et al. (2015) delve into the inner workings of SCM

under various specifications. Their key finding is that when all pre-treatment outcomes are used

as predictors, the optimisation procedure does not take into account any covariates input as a

predictor. This is because the algorithm essentially includes the same variables as both outcome

and regressor. Furthermore, Botosaru and Ferman (2019) demonstrate that it is possible to

derive a looser bound on the bias when only balance in pre-treatment outcomes is achieved.

However, achieving balance in both covariates and pre-treatment outcomes can result in tighter

bounds on the bias of the SC estimator compared to achieving balance in pre-treatment out-

comes alone. The authors also show that when covariates have nonlinear effects on the potential

outcomes or when their effects are multicollinear with the effects of other observed and unob-

served covariates, achieving perfect balance on lagged outcomes does not imply approximate
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balance for those covariates. This finding reinforces the idea of effectively utilising covariates as

they may provide tighter bounds. Another study supporting the use of covariates with averaged

outcomes is presented by Abadie (2021). The authors provide two additional reasons beyond

the issue of biasedness. First, they argue that the co-movement of outcome variables across

different units is still absorbed by the SC unit, as this variable across all units shares a similar

movement over time. Additionally, using fewer predictors can enhance the interpretability of

the results, as fewer control units receive positive weights.

Another area of research contributes towards the development of the techniques themselves.

These advancements have greatly expanded the applicability and versatility of SCM. For in-

stance, there are SCMs that can handle multiple pre-treatments across multiple units (Xu,

2017), or address the challenges posed by missing data to ensure reliable estimation and infer-

ence (Amjad et al., 2018). A recent innovation in SCM is the augmented SCM (ASCM) proposed

by Ben-Michael et al. (2021). The ASCM is specifically designed to address situations where

the estimated SC unit does not align well with the true values in the period prior to treatment.

By correcting the estimation due to imbalance in outcomes and incorporating additional inform-

ation about covariates, the ASCM improves the accuracy of SCM estimates. In addition, the

sparse SCM (Sp-SCM) developed by Quistorff et al. (2021) automates the predictor selection

procedure through regularisation, and reduces over-fitting by minimising the post-treatment

errors to instead of the pre-treatment errors.

While there is an increasing amount of theoretical results available in the literature, each

study tends to focus on different data assumptions. This study does not aim to generalize

all of the assumptions or conduct extensive simulations encompassing all previously considered

settings. However, by employing three distinct data generating processes and considering vari-

ous predictor sets, this study establishes connections between theoretical findings and diverse

assumptions presented in the literature.

3 Methodology - Synthetic Control Method

Assume that J+1 units indexed by j are arranged such that the treated unit is positioned first

(j = 1), and that there are T time periods indexed by t. Besides, this treated unit is affected

by the intervention from period T0 + 1 to T .

The ultimate goal of SCM is to estimate the treatment effect Y I
1t−Y N

1t for t > T0, where Y
N
1t

denotes the potential outcome that would be observed for unit 1 in period t in the absence of

treatment and Y I
1t is the observed outcome under treatment. Since Y I

1t is observable, the goal of

the algorithm is to estimate the counterfactual outcome resembling unit 1. This counterfactual

outcome is constructed by taking a linear combination of the outcomes from the remaining J

control units. Mathematically, it can be expressed as Ŷ N
1t =

∑J+1
j=2 ŵjYjt, where ŵj represents

the weights assigned to the control units.

To estimate the unit weights, SCM utilises the predictors of the pre-treatment observed

outcomes, which can be linear combinations of Y1t in the pre-treatment periods, or covariates

that have explanatory power for Y1t. Let a (k×1) vector X1 and a (k×J) matrix X0 contain the

predictors for the treated unit and for all control units, respectively, the optimisation process

then searches for the linear combination of the columns of X0 that represents X1 as close as
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possible. The estimation is sometimes referred to the inner optimisation in the literature, where

the weights are chosen such that the distance metric is minimised:

ŵ = argmin
w∈W

√
(X1 −X0w)′V (X1 −X0w) (1)

= argmin
w∈W

( K∑
k=1

vk(X1k −
N∑
i=2

Xikwi)
2

)1/2

, (2)

where vector w contains the weights for each control unit to construct the synthetic control,

while the relative importance of the predictors v are stored in a diagonal positive semi-definite

matrix V . Besides, the typical SCM imposes a simplex constraint W = {ŵ ∈ RJ |wj ≥
0 and

∑
j ̸=1wj = 1} on unit weights, requiring them to sum up to one while ensuring that

each has a non-negative values. It is argued that this constraint prevents the method from

extrapolating and reserve the interpretability (Abadie, 2021).

In the outer optimisation that concerns about the selection of V , one chooses from a set of

positive semi-definite matrices to minimising the in-sample error:

V = argmin
V

(Y ∗
1 − Y ∗

0 w(V ))′(Y ∗
1 − Y ∗

0 w(V )), (3)

where Y ∗
1 and Y ∗

0 denote the subset of their corresponding outcome variables Y over the chosen

pre-intervention periods.

3.1 Augmented synthetic control (ASCM)

When achieving a perfect pre-treatment fit in outcome variables is not feasible, particularly

when the treated unit is outside the convex hull, the ASCM proposed by Ben-Michael et al.

(2021) offers a solution to improve the estimates through extrapolation. Besides, with the

proposed two-step approach, ASCM can even achieve perfect balance in covariates. In short,

this procedure involves the following main steps: First, the pre- and post-treatment outcomes

are residualised based on the covariates. Then, the ASCM weights are estimated using the

residualised outcomes. The detailed estimation procedure are provided in Appendix C.

While Ferman et al. (2020) has demonstrated the existence of search opportunities regardless

of whether a time-invariant covariate is included in the analysis, this study aims to delve deeper

into the impact of balancing different covariates using ASCM. As discussed by Botosaru and

Ferman (2019), obtaining good balance in both outcomes and covariates is beneficial as it can

result in tighter bounds on estimation errors compared to solely focusing on the outcome variable.

Therefore, the present study seeks to explore the importance of different covariates with distinct

characteristics. To achieve this, several covariates are included in the data generating process, as

introduced in Section 4. Additionally, in addition to investigating the covariates, the approach

that focuses solely on de-biasing the original SCM estimates due to imbalance in pre-treatment

outcomes is also conducted.
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3.2 Sparse synthetic control (Sp-SCM)

Another extended version of SCM is the Sp-SCM proposed by Quistorff et al. (2021). The

development of Sp-SCM is primarily motivated by two factors: the lack of guidance on selecting

pre-treatment predictors and the issue of over-fitting that arises when the number of model

parameters increases. Besides, it addresses the concern raised by Abadie (2021) regarding the

non-uniqueness of unit weights, which can lead to arbitrary results and reduce reproducibility.

Sp-SCM tackles these issues by automating predictor selection through regularisation on

both the unit and variable weights, resulting in a sparse set of predictors that capture the

most informative characteristics. There are two important features of Sp-SCM. Firstly, Sp-SCM

differs from other SCMs in that it optimises the variable weights using the outcome variables

in the post-treatment period. This approach brings several advantages, the primary one being

the elimination of over-fitting problems that can arise when pre-period outcomes are used as

both targets and predictors. Furthermore, this adjustment in Sp-SCM helps mitigate the issue

of degeneracy in covariates discussed by Kaul et al. (2015). The second feature is the relaxation

of the simplex constraint on unit weights, similar to ASCM. The authors further demonstrate

the advantage of this feature by arguing that it enables the SC to learn from donor units that

exhibit counter-cyclical patterns.

Since the automated predictor selection is a unique feature of Sp-SCM that sets it apart from

other existing SCMs, it is of interest to compare its results with those of other methods and

explore the covariates selected by Sp-SCM. However, due to the limited compatibility with cer-

tain programming languages, this technique is only applied to the empirical study. Appendix D

provides a review of this method, including two versions of Sp-SCM: the “Fast” version and the

“Full-joint” version.

4 Simulation Study

To examine the presence of searching opportunities in the implementation of SCM, this study

employs the Monte Carlo Simulations framework and builds upon the data generating process

(DGP) utilised by Ferman et al. (2020). Moreover, it extends the framework by incorporating

an additional DGP that places emphasis on covariates which exhibits a trending characteristic.

The DGP employed in the work by Ferman et al. is formulated as follows:

Y 0
jt = δt + λk

t + εjt, k = 1, ..., 10 (4)

where a time-varying effect δt shared among units follows a standard normal distribution, a sta-

tionary trend denoted by λk
t follows an autoregressive process of order 1 with a serial correlation

parameter of 0.5, and the transitory shock εjt is normally distributed with a standard deviation

of 0.1. Moreover, the first two units adhere to the stationary trend λ1
t , followed by the next

two units adhering to the trend λ2
t , and so forth. For simulations that involve a time-invariant

covariate, the design also follows Ferman et al. (2020). In such DGP, an additional term θtZi is

introduced in the equation, where θt is the parameter following a standard normal distribution,

and binary variable Zi takes the value of 1 for the first ten units while 0 for the last ten.
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To evaluate the presence of trend in covariates as well as covariates with different levels

of impact, this study utilises a DGP modified from the non-stationary model in the study of

Ferman et al. (2020). While this previous study does not consider any covariate used as a

matching variable, this study is particularly interested in the usage of covariates. Furthermore,

this modification is also motivated by the need to capture real-world scenarios where covariates

exhibit trends, and is common to see in empirical research. To allow investigation on covariates

with different characteristics, three stationary covariates are introduced into the DGP, each with

varying degrees of impact. The equation for this DGP is as follows:

Y 0
jt = δt + λk

t + θ1Zi1 + θ2Zi2 + θ3Zi3 + ϕtZi4 + εjt, k = 1, ..., 10 (5)

where Zi is a binary variable, similar to before, and the first ten units receive strong, inter-

mediate, and negligible effects denoted by θ1 ∼ N(2, 1), θ2 ∼ N(0, 1), and θ3 ∼ N(0, 0.1),

respectively. Additionally, a non-stationary trend term ϕt follows a random walk process with a

shock term drawn from a standard normal distribution. To imitate real-world situations where

measurement error often occurs during data collection process, each value for the covariate term

is subjected to a random error when being used as a matching variable in the SCM algorithm.

More details related to this random error formulation are provided in Appendix B.

The simulation involves generating 100 rounds of datasets for each specified time period T0

based on each equation discussed above, and no treatment is imposed on any unit. In each

dataset, the twenty units are considered as a placebo treated unit iteratively, resulting in a total

of 2000 SC units estimated for each T0. It is worth noting that the original study generates

10000 SC units using 500 datasets, while this study conducts a smaller set of experiments.

The objective of this simulation is to examine the null hypothesis of no substantial treatment

effect when employing various specifications. Specifically, Ferman et al. (2020) are interested in

determining the probability of rejecting the null hypothesis for at least one specification. When

searching opportunities are present, the probability of finding one specification that rejects the

null can be significantly higher than an intended significance level, due to the widely different

estimated SC units from different specifications. Their analysis method and the comments

regarding their approach are provided in the subsequent subsections.

4.1 Specifications

Following Ferman et al. (2020), this study utilise seven specifications in the simulation study.

The first specification includes all pre-treatment outcome values, the second one contains the

first three-fourths, and the third one uses the first half of the pre-treatment outcome values.

The fourth and fifth specifications consider the odd pre-treatment outcomes and their even

counterparts, respectively. Lastly, specifications 6 and 7 use the mean value of pre-outcomes

and three specific outcome values (the first one, the middle one, and the last one), respectively.

4.2 Rejection rate

Following Ferman et al. (2020), the ratio of the MSPE (RMSPE) is used to infer the implications

of the resulting SC units regarding specification searching. This metric is specified as:
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RMSPEj :=

ΣT
t=T0+1

(
Yjt−Ŷ N

jt

)2
T−T0

Σ
T0
t=1

(
Yjt−Ŷ N

jt

)2
T0

. (6)

Based on the concept of a placebo test, the authors reject the null hypothesis at a 5 percent

significance level if the treated unit exhibits the highest RMSPE among the twenty units. This

procedure is commonly used in SC empirical studies to assess significance. Additionally, it is

typically accompanied by the calculation of a p-value, as proposed by Abadie et al. (2010):

p :=
∑J+1

j=1 1[RMSPEj≥RMSPE1]

J+1 , where the treated unit is assumed to be indexed as 1. In this

simulation design comprising twenty units, this approach suggests that the placebo test would

have a rejection rate of 5 percent by design, when solely considering a single specification.

In the context of specification searching, the objective is to determine the probability of

rejecting the null hypothesis at the 5 percent significance level in at least one specification. To

achieve this, the RMSPE rankings for all twenty units are recorded in each simulation round for

every specification. In an ideal scenario, it would be expected that the probability of rejecting the

null hypothesis in at least one specification closely aligns with the 5 percent threshold. However,

this ideal outcome is only realised when all specifications consistently identify the same highest-

ranking RMSPE among the twenty units. If different specifications produce conflicting results,

the probability of rejecting the null hypothesis in at least one specification will be higher. This

demonstrates the potential chances of specification searching when applying SCM.

Nevertheless, potential concerns arise in this procedure. Firstly, the use of a ratio metric to

indicate searching opportunities presents challenges in accurately determining whether certain

specifications truly result in worse outcomes. This is because a ratio alone does not provide

sufficient information to ascertain whether a higher RMSPE is due to small errors in the pre-

period or if the post-period error is truly relatively large. This limitation can introduce ambiguity

and uncertainty in the interpretation of the results. Moreover, the authors focus on the ranking

of RMSPEs across units for each specification rather than using the true numeric values. While

this approach may provide insights into the relative performance of each specification on the

twenty placebo units, it can lead to ambiguity and misunderstandings when comparing between

the specifications. For example, it is possible that a particular specification has smaller errors

overall but exhibits a different ranking of RMSPEs for each placebo unit compared to other

specifications with higher errors. Lastly, it would be more appropriate to acknowledge that the

variations in the ranking of RMSPE across all specifications contribute to the final probability

found. The theoretical evidence derived by Ferman et al. (2020) suggests that the unit weights

calculated based on specifications under a certain condition will converge to the same values as

the number of pre-treatment periods increases. Consequently, the resulting synthetic unit and

RMSPE rankings tend to be similar among these specifications. However, it is important not to

immediately interpret this as evidence that alternative specifications specifically contribute to

the issues of specification searching, as the variations in RMSPE rankings are a collective result

of all specifications. These concerns still exists even under the condition of good pre-period fit.

To address these concerns, it is crucial to investigate the actual errors and differences between

specifications rather than relying solely on a derived ratio metric. This study aims to add
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more context on the simulation analysis, providing a more comprehensive understanding of the

strengths and weaknesses of each specification.

4.3 Methods for analyses

This section introduces the measure to analyse the simulation results, with a specific focus on

the pre-treatment periods T0 = 12 and 100.

The primary objective is to assess the performance of various specifications under differ-

ent DGPs via post-treatment errors. The section first introduces a measure to determine the

quality of pre-treatment fit, and conducts a supplementary analysis on unit weights to further

investigates the results shown by Ferman et al. (2020). Lastly, the errors are analysed.

Normalised mean squared error for outcome variables assessment

As emphasised by Abadie et al. (2010) and Abadie et al. (2015), achieving a strong pre-treatment

fit for both outcome variables and covariates is crucial when employing SCM. To assess the fit of

pre-treatment outcome variables, the normalised mean squared error (R̃2) is utilised, following

the approach adopted by Ferman et al. (2020). It is defined as follows:

R̃2 = 1− ΣT0
t=1(Y1t − Ŷ N

1t )
2

ΣT0
t=1(Y1t − Y

N
1t)

2
, with Ȳ1 =

ΣT0
t=1Y1t
T0

. (7)

A value of one indicates a perfect fit. This study follows Ferman et al. (2020) in adopting a more

lenient restriction, where the the analysis is restricted to condition of “at least one specification

has good fit.” As noted by the authors, using a more stringent restriction would result in a

substantially higher probability of rejecting the null in at least one specification. This is because

the test statistics RMSPE for placebo units are not conditional on a good pre-treatment fit.

Therefore, the use of a more stringent would result in over-rejection Ferman and Pinto (2017).

Convergence in unit weights

In addition to the rejection rate discussed in Section 4.2, which calculates the probability of at

least one specification indicating significance, this study delves deeper into the scenario where

a subset of specifications concur on significance.

By examining the ratio of the counts of significant effects based on at least one of the first

five specifications to the counts based on a subset of specifications, this analysis offers additional

insights into the convergence of unit weights across those specifications. Specifically, this analysis

focuses solely on the treatment units where the associated five synthetic units all exhibit good

fit. This definition of good-fit is stricter compared to the one used when calculating the rejection

rate, where the treatment unit is included in the analysis if any of the five specifications indicates

a significant effect. This restriction provides a good chance for those specifications to converge

in the same weights, and allows for a more intuitive understanding.
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Post MSPE

Finally, the quality of the estimate is evaluated using the associated post-treatment errors. This

evaluation follows a similar approach employed by Dube and Zipperer (2015b).

The authors of the study acknowledge the lack of guidance regarding the selection of pre-

dictors, and aim to determine the optimal choice of predictors using a placebo framework to

assess the prediction error associated with a given set of predictors. In their empirical analysis,

they treat each donor unit as a placebo since no treatment is assigned to any of them. Then,

the square root of the average of post-treatment MSPE is calculated over all placebo units. The

optimal specification is determined based on the smallest average MSPE in the post-period.

In contrast to Dube and Zipperer (2015b), this study calculates the MSPE without taking

the square root. This decision is made to provide a clearer understanding and interpretation of

the results, as it aligns with the formulation of the RMSPE in Equation 6. The post-MSPE for

a certain set of predictors and specification is calculated as:

MSPEj =
ΣT
t=T0+1

(
Yjt − Ŷ N

jt

)2
T − T0

. (8)

Furthermore, as the focus in this analysis is the performance of each specification individually,

only the SC units that exhibit a good pre-treatment outcome fit for the specific specification

being analysed are considered. As different specifications may result in different amount of SC

units with good-fit, the MSPE values over all those SC units are averaged separately for each

specification and compared between them.

Even though Ferman et al. (2020) analyse the quality of specification by calculating the

proportion of unit weights that are misallocated for each specification, one should note that the

analysis is conducted without any condition on the pre-treatment fit, which is an essential part

in empirical applications. The results of specifications 6 and 7 failing to provide accurate weights

may be attributed to their higher occurrence of poor-fit, while results may be differ when the SC

units being analysed are constrained to those with good-fit condition. The quality examination

in this study, although using a different approach that is based on errors, it aims to compensate

the evaluation analysis in the previous study by conditioning on good pre-treatment fit for each

specification separately.

4.4 Simulation Result

Rejection Probability

Table 1 provides the probabilities of rejecting the null hypothesis at the 5% significance level

for at least one specification, which partially replicates the findings of Ferman et al. (2020).

However, it is important to note that the analysis under the good-fit condition sets the criteria

for R̃2 at 0.9, which is around the middle of the range used by Ferman et al. (2020) (0.8 to

0.95). This adjustment is made because this study constructs 2000 SC placebo units for each

T0, which is smaller than the 10,000 units used in their analysis. Consequently, using a higher

constraint such as 0.95 would result in too few observations, while using a lower constraint such

as 0.8 would yield too many observations.
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Table 1: The rejection rate

noCOV inCOV trCOV
invar no both invar no trMean

No Restriction

Panel A: 1-7
T0 = 12 0.149 0.134 0.134 0.134 0.141 0148 0.139
T0 = 32 0.150 0.140 0.138 0.141 0.147 0.151 0.149
T0 = 100 0.147 0.156 0.148 0.136 0.149 0.150 0.143
T0 = 400 0.139 0.132

Panel B: 1-5
T0 = 12 0.108 0.101 0.101 0.105 0.111 0.110 0.104
T0 = 32 0.101 0.098 0.094 0.103 0.101 0.110 0.104
T0 = 100 0.091 0.108 0.091 0.095 0.097 0.090 0.093
T0 = 400 0.079 0.079

R̃2 ≥ 0.9

Panel A: 1-7
T0 = 12 0.191 0.154 0.154 0.154 0.161 0.161 0.156
T0 = 32 0.168 0.149 0.151 0.149 0.146 0.155 0.156
T0 = 100 0.155 0.161 0.154 0.137 0.158 0.155 0.147
T0 = 400 0.140 0.137

Panel B: 1-5
T0 = 12 0.143 0.119 0.120 0.123 0.123 0.121 0.119
T0 = 32 0.122 0.107 0.102 0.111 0.110 0.114 0.114
T0 = 100 0.102 0.103 0.096 0.099 0.104 0.100 0.098
T0 = 400 0.080 0.082

Note: Panel A provides the results with all seven specifications being considered,
while Panel B presents the results when specifications 6 and 7 are excluded.

The second column in Table 1 displays the results for the stationary data generating DGP

without additional covariate (noCOV), while the next three columns represent the stationary

DGP with an additional stationary covariate (inCOV). These DGPs are consistent with the ones

used by Ferman et al. (2020). Subsequently, the remaining columns are associated with a DGP

that incorporates a trend component (trCOV).

For the inCOV case, there are three scenarios considered. The first scenario involves matching

one time-invariant covariate, which aligns with the approach used by Ferman et al. (2020). The

second scenario assumes there is no covariate, meaning the SCM does not consider any covariate

to be balanced. The third scenario involves including all the covariates in parallel to the pre-

treatment outcomes as separate predictors, rather than using a value from linear combination.

For the trCOV case, the analysis is conducted in two ways. First, the time-invariant covariate is

included, similar to the approach used in the inCOV case. The alternative approach is to match

the averaged values of the trend variables. Besides, for the extension scenarios, only three cases

of T0 are simulated. Panel A provides the results when all seven specifications are taken into

account, while Panel B presents the results when specifications 6 and 7 are excluded.

In the inCOV DGP with a pre-treatment period T0 = 12, the analysis reveals a 14.9 per-

cent probability of obtaining a significant result in at least one specification out of the seven

considered. This finding underscores the issue of specification searching when applying SCM.

Moreover, this issue persists even when a larger amount of pre-treatment data is available, al-

though the probability of reporting a significant specification generally slightly decreases with a
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longer pre-treatment period. Furthermore, restricting the analysis to samples that meet good-fit

criteria does not eliminate the chance for specification searching. However, by excluding spe-

cifications 6 and 7 from the analysis, the probability of rejecting the null hypothesis aligns more

closely with the desired 5 percent significance level, particularly when the pre-treatment period

T0 is large. In general, these findings hold true across different DGPs with different sets of pre-

dictors used in the SCM. Therefore, with a smaller number of simulations, this study arrives at

a conclusion that is generally consistent with the findings of Ferman et al. (2020), even though

the probability values differ to some degree.

Despite the discussions above, it is noted that all the probabilities reported in Table 1 are

higher than the expected test size of 5% in the context of specification searching. According

to the conclusions drawn by Ferman et al. (2020), this phenomena may suggest the asymptotic

results might not provide reliable approximations in most SC applications, as theoretical results

indicate that the possibility of specification searching within a certain class of predictor sets

should asymptotically become very small.

Except for this inference, these rejection rates with values higher than 5% may also be linked

to the discussions by Abadie (2021) and Quistorff et al. (2021), which suggest that there may

exist multiple ways to select unit weights to precisely match a given set of matching variables.

The estimation procedure of SCM relies on optimisation methods and their implementations.

Consequently, the wide range of potential solutions in the estimation process can contribute to

variations in the final estimated results. The similar issue is also discussed by Kaul et al. (2022)

that the optimisation process also depends on the software used. Lastly, the good-fit condition

specifying “at least one specification provides good fit” may lead to a large amount of placebo

treatment samples being included to calculate the rejection rates, which can be potentially

increase the rejection rate.

Convergence in unit weights

To assess the convergence behavior in unit weights across the five specifications, Table 2 presents

the percentage of the count of significant results when considering all five specifications compared

to the count of significant results when considering any of the five specifications. Additionally,

the table also displays the results corresponding to considering any one to any four of the

specifications. In an expected scenario where the unit weights converge across the considered

specifications, the resulting percentage associated with all five specifications would be close

to one. This implies a high level of agreement among the specifications in terms of indicating

significance. Conversely, the percentage associated with considering only one specification would

be close to zero, indicating minimal variation or disagreement among the specifications.

Note that, as discussed in Section 4.3, this analysis are restricted to those placebo samples

for which all five specifications produce good-fit SC units, which is different from the previous

table that considers all the samples associated with at least one good-fit SC unit.

Table 2 presents evidence that the expected outcome of convergence in unit weights across

various time periods, DGPs, and sets of predictors is not consistently met. The percentages

shown in the table indicate that there is limited convergence among the different specifications,

even when considering the fit for each specification individually. Notably, the results corres-
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Table 2: The percentage of the counts of significance indicated by a subset of specifications

T0=12 T0=100
DGP

Either 5 (%) 4 (%) 3 (%) 2 (%) 1 (%) Either 5 (%) 4 (%) 3 (%) 2 (%) 1 (%)

noCOV 99 0.23 0.09 0.15 0.19 0.33 122 0.24 0.17 0.10 0.14 0.35

invar 106 0.20 0.21 0.19 0.20 0.63 145 0.17 0.18 0.17 0.20 0.37
no 106 0.20 0.18 0.18 0.16 0.28 152 0.22 0.18 0.11 0.13 0.38inCOV
both 123 0.16 0.14 0.17 0.21 0.32 156 0.21 0.17 0.12 0.17 0.33

invar 155 0.16 0.14 0.13 0.14 0.43 163 0.20 0.16 0.15 0.18 0.33
no 147 0.18 0.14 0.13 0.17 0.39 153 0.21 0.13 0.16 0.17 0.33trendCOV
trMean 142 0.17 0.12 0.15 0.18 0.39 147 0.21 0.15 0.16 0.18 0.29

Note. The columns named “Either” present the count of the significance results for either of the five specifications. The subsequent
columns, labelled with numbers, represent the percentage of that count attributed to a specific number of specifications being met
simultaneously. For example, number 4 represents that any of the four specifications agree on the significanct results.

ponding to only one specification range from 30% to 60%, which is significantly higher than

expected. These findings raise concerns about the reliability and consistency of the estimated

unit weights across specifications 1 to 5, irrespective of the asymptotic scenario with a large

amount of data or the small data setting. This lack of convergence observed highlights the po-

tential uncertainties regarding the estimated unit weights, even under the certain specification

condition proposed by Ferman et al. (2020).

However, note that this analysis does not provide information on the number of cases that

satisfy the good-fit condition. Further investigation or derivation are necessary to gain a com-

prehensive understanding on this aspect.

MSPE

Based on the previous two tables, it is evident that specification searching occurs across the three

DGPs and across different data inputs. Moreover, given the relatively low level of agreement by

all the first five specifications, it might be premature to attribute the searching opportunity solely

to the alternative specifications. These analyses lead to the need of more details to thoroughly

assess the advantages and drawbacks associated with using different specifications.

Table 3 presents the results for the average MSPE for each specification with T0 = 12 and 100,

which serves as a metric to evaluate the quality of the SC units under each specification.

Moreover, since the objective of this analysis is to assess the performance of each specifica-

tion, it includes the cases where the specification being analysed produces a synthetic control

with good fit (R̃2 ≥ 0.9), rather than the more lenient condition that is used for Table 1. The

results without this restriction are also provided for comparative purposes in Table 4.

For a shorter pre-treatment period, there are some notable observations in Table 3. Firstly,

contrary to the conclusions drawn by Ferman et al. (2020), specifications 6 and 7 occasionally

yield good synthetic control units and sometimes even outperform the specifications that meet

the condition proposed in their study. This is particularly evident in the case of stationary

DGPs. These findings challenge the notion that specifications 6 and 7 perform worse than

the others and are responsible for the observed specification searching opportunities. Although

One potential concern is that the two specifications have lower probability to achieve good fit,

as shown by Ferman et al. (2020), this study still emphasises that more details are needed to

determine the performance of each specification accurately. Specifically, under the more lenient
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Table 3: MSPE results conditioning on good fit

Model 1 2 3 4 5 6 7 1 2 3 4 5 6 7

T0 = 12 T0 = 100

noCOV 0.26 0.27 0.28 0.27 0.27 0.21 0.24 0.20 0.20 0.20 0.20 0.20 0.20 0.20

inCOV
invar 0.26 0.28 0.29 0.27 0.26 0.23 0.26 0.20 0.20 0.21 0.20 0.21 0.20 0.21
no 0.26 0.28 0.29 0.27 0.26 0.23 0.26 0.20 0.20 0.20 0.20 0.20 0.20 0.22
both 0.26 0.27 0.27 0.26 0.26 0.26 0.25 0.20 0.20 0.21 0.20 0.20 0.21 0.21

trCOV
invar 0.29 0.32 0.31 0.29 0.29 0.39 0.30 0.20 0.21 0.21 0.21 0.21 0.61 0.29
no 0.29 0.33 0.34 0.32 0.31 0.38 0.35 0.20 0.20 0.21 0.20 0.20 1.28 0.42
mean 0.29 0.32 0.33 0.30 0.31 0.39 0.32 0.20 0.21 0.21 0.20 0.20 0.80 0.31

Note: The results are obtained by the average values of MSPE produced by those SC units with good fit (R̃ > 0.9).

Table 4: MSPE results without conditioning on good-fit

Model 1 2 3 4 5 6 7 1 2 3 4 5 6 7

T0 = 12 T0 = 100

noCOV 0.27 0.34 0.40 0.32 0.32 1.14 0.61 0.20 0.20 0.21 0.20 0.20 1.11 0.62

inCOV
invar 0.26 0.36 0.44 0.33 0.33 1.38 0.73 0.20 0.20 0.24 0.24 0.23 1.15 0.50
no 0.26 0.35 0.44 0.33 0.33 1.38 0.73 0.20 0.20 0.21 0.20 0.20 1.43 0.65
both 0.26 0.31 0.38 0.28 0.28 0.92 0.43 0.20 0.20 0.21 0.20 0.20 0.88 0.39

trCOV
invar 0.29 0.37 0.39 0.31 0.32 0.90 0.45 0.20 0.21 0.21 0.21 0.21 0.82 0.36
no 0.30 0.39 0.48 0.37 0.36 2.34 0.89 0.20 0.20 0.21 0.20 0.20 2.13 0.78
mean 0.29 0.38 0.45 0.34 0.36 1.38 0.58 0.20 0.20 0.21 0.20 0.20 1.18 0.39

Note: The results are obtained by the average values of MSPE produced by all SC units.

condition, the rejection rate analysis may not provide a fair assessment for specifications 6 and

7, as it includes cases where they have poorer fits.

Upon closer inspection of the performance, it is observed that specification 6, which utilises

the mean values of the outcome variables, tends to exhibits smaller errors when dealing with

stationary DGPs if the period is short. The reason that other specifications demonstrate larger

errors could be explained by the issue of over-fitting created by the small T0. As discussed by

Abadie and Vives-i Bastida (2022), good pre-treatment fit may be attained solely through the

variation in the individual transitory shocks, εjt, and eventually lead to large post-treatment

estimation errors.

Conversely, when confronted with the trCOV DGP, specifications 6 and 7 face greater chal-

lenges in delivering reliable SC units. These findings imply that the limited number of pre-

dictors utilised in these specifications may be especially inadequate for accurately capturing the

underlying trend in the DGP. Moreover, by comparing different covariate inputs used in each

specification, it is observed that incorporating a time-invariant covariate slightly enhances the

performance in the case of trCOV, in comparison to the commonly employed approach of using

mean values in empirical analyses. This consistently holds true for all specifications, except

specification 1, which uses all lagged outcomes. This exception is likely related to the study by

Kaul et al. (2015), which suggests that including all lagged outcomes renders the other covariates

meaningless in the estimation procedure.

When analysing a longer pre-treatment period, most specifications are generally considered
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effective, except for specifications 6 and 7. Specification 6, in particular, performs significantly

worse, as the limitation of using fewer match variables is amplified by the longer pre-treatment

period. On the other hand, specification 7 exhibits only slightly inferior results when handling

with trCOV, especially when it incorporates a covariate. Similar to the case of shorter period,

matching on a time-invariant covariate is found to produce fewer errors compared to matching

on a mean value. Nevertheless, this suggests that specification 7, when combined with a certain

covariate, may still be acceptable for estimating the treatment effect even when the variable of

interest is non-stationary.

When the analysis is not conducted under the good-fit condition, the magnitude errors for

specifications 6 and 7 are greatly affected, as illustrated in Table 4. These errors can be two to

three times larger compared to the errors obtained by the other specifications, when considering

the shorter period, and even larger when analysing the longer period. This indicates that a

significant portion of SC units constructed using specifications 6 and 7 likely have a bad fit.

Consequently, including these units in the analysis substantially raises errors. This finding also

implicitly supports the previous discussion that the lenient good-fit requirement used when

calculating the rejection rate may introduce bias in the results for these two specifications.

MSPE when considering covariates in ASCM

Based on the previous subsection, it can be concluded that for the trCOV DGP, the choice

of covariates has a substantial impact on the quality of SC units. Consequently, it becomes

important to further investigate the specific influence of balancing covariates in trCOV. To

accomplish this, the ASCM method is employed, as it possesses the capability to achieve perfect

balance on the specified covariates.

Besides, the results obtained from ASCM that focus on adjusting unit weights due to pre-

treatment outcome imbalance are also presented. This allows for a comprehensive analysis of

the effects of both covariate balancing and pre-treatment outcome adjustments on the results.

Table 5 provides the results for the MSPE with pre-treatment periods of 12 and 100. These

results can be directly compared to Table 3 and 4 since they utilise the same DGP.

Table 5: Post-period MSPE results when using ASCM

T0=12 T0=100
DGP

SCM x Z1 Z2 Z3 Z4 Z1-4 SCM x Z1 Z2 Z3 Z4 Z1-4

trCOV (R̃2) 0.29 0.33 0.58 0.47 0.51 0.50 0.87 0.20 0.20 0.47 0.41 0.53 0.25 0.58
trCOV (All) 0.29 0.32 0.81 0.62 0.69 0.58 1.08 0.20 0.20 0.59 0.55 0.81 0.27 0.62

Note: The light gray row describes the data input. The first element, “SCM,” denotes the original SCM method using all
lagged outcomes. The “x” element represents the ASCM method without using covariates as input, but purely adjusting
for the imbalance in outcomes. The subsequent elements indicate the specific covariates used in the ASCM.

When T0 = 12, improving the fit for pre-treatment outcomes can hinder the estimation of

the counterfactual in the post-period. In contrast, the impact of correcting the outcome bias

becomes negligible when T0 is increased to 100. This observation may again be attributed to

the risk of over-fitting to noise, which is more pronounced under a shorter pre-treatment period.

More precisely, despite the proposed cross-validation procedure by (Ben-Michael et al., 2021) to

select a regularisation parameter and control the level of extrapolation, this procedure does not
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effectively alleviate the issue of over-fitting in a small finite sample.

When analysing on covariates, it is found that adjusting unit weights with the purpose of

achieving perfect fit in some covariates actually leads to increased estimation errors. These

findings are contrary to the results reported in the simulation study conducted by Ben-Michael

et al. (2021). However, this phenomenon can be attributed to the simulation design used in this

analysis. The simulation design incorporates additional error terms in the covariates to mimic

real-world scenarios, resulting in noisy characteristics. As a result, exact matching on these pre-

treatment covariates is more likely to introduce errors in the out-of-sample period. To address

this concern, the next table presents the results obtained using the same methodology but with

smaller variations assigned to each error term in the covariates. The specific parameters used

in the simulation can be found in Appendix B.

Table 6: Post-period MSPE results when using aSCM with smaller noise in covariates

T0=12 T0=100
DGP

SCM x Z1 Z2 Z3 Z4 Z1-4 SCM x Z1 Z2 Z3 Z4 Z1-4

trCOV (R̃2) 0.29 0.33 0.30 0.50 0.61 0.41 0.63 0.20 0.20 0.20 0.50 0.54 0.21 0.51
trCOV (All) 0.29 0.33 0.30 0.61 0.84 0.45 0.73 0.20 0.20 0.20 0.65 0.66 0.23 0.55

Note: The light gray row describes the data input. The first element, “SCM,” denotes the original SCM method using all
lagged outcomes. The “x” element represents the ASCM method without using covariates as input, but purely adjusting
for the imbalance in outcomes. The subsequent elements indicate the specific covariates used in the ASCM.

The errors generally decrease when covariates are assigned with smaller noises, indicating

that ASCM is sensitive to the level of noise present in the covariate inputs. This finding has a

direct implication for empirical applications, highlighting the need to carefully assess the stability

of covariates prior to their usage. This implication also extends to the standard SCM. While the

standard SCM allocates variable weights to predictors based on optimisation procedures and

does not specifically focus on exact balancing, if there are relatively large noises in the matching

covariates, the optimisation process can be significantly affected and distorted.

However, it is also evident that using the original SCM with all lagged outcomes still yields

the smallest errors in the shorter period. This suggests that even with smaller variations in the

covariates, the over-fitting issues and potentially excessive extrapolation involved in ASCM due

to the limited sample size persist. In contrast, for the longer period, where these concerns are

less prominent, the impact of matching different covariates with varying characteristics becomes

more apparent. Specifically, the covariates Z2 and Z3, by design, have smaller effects on the

outcomes compared to Z1 and Z4. Exact balancing on Z2 and Z3, as well as balancing on all

covariates, proves to be detrimental to the estimation. On the other hand, the cases of adjusting

weights due to imbalance in pre-outcomes and matching on Z1 and Z4 produce similar errors

as the considered SCM. While the specific differences may not be discernible when observing

errors with only two decimal places, it is theoretically demonstrated by Ben-Michael et al. (2021)

that adjusting weights due to pre-outcome imbalance and matching on relevant covariates are

expected to result in smaller errors. However, the simulation in this study shows slightly larger

errors when matching on the trend covariate Z4, contrary to the theoretical expectation. The

following discussions provide some explanations for this discrepancy.

According to Botosaru and Ferman (2019), when covariates have linearly independent effects

on outcomes, achieving a perfect balance on pre-treatment outcomes also results in approximate
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balance on those covariates. In the case of the original SCM using all lagged outcomes as

predictors, there is a high probability of achieving a perfect fit in the outcomes, which in turn

contributes to good balance in the covariates. This approximate balance across all observed

predictors then is expected to help minimise errors in the SC estimates. However, when using

ASCM to precisely balance a specific covariate through extrapolation, some distortions may be

unintentionally introduced and disrupt the approximate balance achieved by the SCM. This may

explain why the ASCM produces larger errors compared to the SCM with all lagged outcomes,

even when the relevant covariates are matched.

In addition to extrapolation properties of ASCM, the features of the standard SCM can

also explain its better performance in some cases. Kaul et al. (2022) shed light on the trade-

off between using covariates or excluding them in the standard SCM. They consider a model

where the outcome variable Yjt can be expressed as Yjt = Ỹjt + θtZj , where Ỹjt = δt + λk
t + εjt

represents the variable of interest if it was not affected by any covariate. Then, the estimation

error can be written as Y1t −
∑J+1

j=2 wjYjt = Ỹ1t −
∑J+1

j=2 wj Ỹjt + θt

(
Z1 −

∑J+1
j=2 wjZj

)
. The

latter term involving covariates could be arbitrarily large if one does not emphasise balance in

the covariates, which leads to small-sample bias. On the other hand, by ignoring covariates,

the SCM would capture their effects as if they were unobserved components (λjt). Kaul et al.

(2022) provide detailed discussions and a simulation study that further explore this context.

5 Empirical Application

To examine the relevance of covariates in the real-world setting, the discussed SCMs each with

different advantages are employed to estimate the effects of California’s tobacco control program.

This policy was first studied by Abadie et al. (2010) and had been extensively considered in the

filed of SC research. This study aims to present the comprehensive analysis over different SCMs

and particularly assess the impact of balancing certain covariates.

The main evaluation for model quality is based on the average errors in post-treatment

outcome variables under the placebo framework, as usually done in synthetic control literature.

The average fit in terms of r2 in this period are also provided. Based on the conclusion on model

quality, the relevance of covariates in constructing synthetic unit for California can be assessed

via pre-treatment fit in each covariates.

5.1 Background and data

Proposition 99 is an anti-tobacco legislation implemented by California’s government in January

1989. It was a significant step in the modern era as a large-scale anti-smoking law, which involved

increasing the cigarette excise tax by 25 cents per pack. The motivation behind this legislation

was the growing awareness of health issues associated with smoking. In addition to raising taxes,

the revenue generated from Proposition 99 was directed towards funding health programs and

anti-smoking education initiatives. The funds were also allocated for conducting anti-smoking

media campaigns to further promote awareness and discourage smoking.

The dataset compiled by Abadie et al. (2010) includes various variables related to tobacco

consumption and socio-economic factors. The primary focus is on per-capita cigarette consump-
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tion, which was recorded for both the pre-treatment period (1970-1988) and the post-treatment

period (1989-2000). In addition to cigarette consumption, other variables such as the average re-

tail price of cigarettes (1980-1988), the percentage of the population aged 15-24 (1980-1988), the

logarithm of per-capita personal income (1980-1988), and per-capita beer consumption (1984-

1988) were collected. Besides, the dataset consists of data from 38 American states that did not

implement large-scale tobacco control programs during the specified time period.

5.2 SCM & Data input

Several SC methods each with different conditions are employed to estimate the policy effect.

For the canonical SCM, this study follows the suggestion of Ferman et al. (2020) to utilise all

pre-treatment outcomes as predictors. The specification proposed by Abadie et al. (2010) is also

re-estimated, incorporating cigarette sales data from the years 1975, 1980, and 1988. In both

specifications, the averaged values of all four covariates are included. Two approaches are used

to determine predictor weights: an automatic procedure and directly assigning equal weights.

For ASCM, three sets of predictors are considered. The first set includes only the retail price of

cigarettes, which exhibits non-stationary patterns. The second set includes only the age-related

covariate, which has more stable patterns. The third set includes all four available covariates.

For the sparse SCM, both the fast version and the full-joint versions are implemented. The data

input for both methods consists of two cases. The first case involves estimating the policy effect

without any covariate, while the second case includes the averaged values of the four covariates.

5.3 Empirical results

Table 7 depicts the average errors and coefficients of determination over the 37 placebo SC units

generated by each model. By regressing the true value of cigarette consumption on the estimated

value, the r2 value represents the proportion of the variance in the true values that is explained

by the estimated values.

Table 7: Evaluation on the average post-period outcome fit under the placebo framework

All Abadie ASCM Sp-SCM (Fast) Sp-SCM
eqV eqV Price Age all 4 all 4 all 4

r2 0.892 0.864 0.871 0.820 0.908 0.903 0.888 0.511 0.511 0.560 0.545
RMSE 8.251 9.190 8.625 11.523 6.427 6.374 6.989 9.038 9.389 9.083 9.766
MAE 6.063 7.232 6.600 9.709 4.355 4.347 4.937 7.759 8.259 8.012 8.701

Note: The rows shaded in a lighter gray specifies the conditions for each estimation method. “eqV”
indicates that the variable weights are equally weighted. “Price” and “Age” indicates using only the
retail price or age as a covariate, while “all 4” signifies the use of all four covariates.

The darker gray shading represents the type of SCM utilised. The first two entries correspond

to the standard SCM with all pre-treatment outcomes and the specification proposed by Abadie

et al. (2010), respectively. The following entries pertain to the ASCM and Sp-SCM.

The analysis reveals that the ASCM outperforms both the standard SCM and the Sp-SCM

across all evaluation metrics, indicating its overall better performance. This finding is in contrast

to the simulation results presented in Table 5 and 6, where the errors of ASCM with relevant

covariates approximate those of the standard SCM. This difference in ASCM performance could
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be attributed to the nature of covariate effects. While the simulation study constructs the

outcome values based on the covariates linearly and independently, empirical settings are more

likely to involve non-linear and multicollinear effects. In such cases, there is an specific advantage

of balancing the covariates as it can lead to tighter bounds on the bias of the SC unit, as derived

by Botosaru and Ferman (2019).

On the other hand, it remains unclear why the Sp-SCM performs worse than the standard

SCM with Albadie’s specification, considering that Quistorff et al. (2021) find the lower mean

square errors (MSE) is yielded by Sp-SCM Fast. One potential explanation for this disparity

could be that the authors of the study mention the occurrence of errors when estimating the SC

unit for some placebo units, which are subsequently eliminated from their analysis. Nevertheless,

the differences between the performance of the models are not particularly large.

Tuning back to ASCM, it is also found that the errors depend on the choice of covariates to

some extent. Achieving a perfect balance in all four covariates is not the most favorable option as

there is a larger error and smaller r2. This may lead us to carefully assess the impact of different

covariates being balanced. The following analysis aims to provide a detailed assessment on this

aspect, based on the results of MSPE as an indicator of estimator performance. While the

primary focus is on the covariate values during the pre-treatment period, Table 8 also includes

the corresponding content over the post-period, for completeness.

Table 8: Mean values of covariates

Pre-treatment Post-treatment
Price Age Income Beer Price Age Income Beer

California 66.637 0.179 10.032 24.280 204.292 0.152 10.135 21.144

66.029 0.181 9.817 23.506 187.780 0.149 9.978 23.045
All

eqV 65.965 0.180 9.945 22.968 186.328 0.144 10.146 21.681

65.126 0.181 9.832 24.124 186.294 0.147 9.988 23.721
Abadie

eqV 65.865 0.180 9.964 23.714 184.843 0.142 10.167 22.278

Price 66.637 0.178 9.861 25.352 189.255 0.143 10.003 24.586
Age 66.421 0.179 9.875 23.248 192.330 0.147 10.027 22.385ASCM
all 4 66.637 0.179 10.032 24.280 193.460 0.145 10.190 22.304

Sp-SCM 74.817 0.202 11.378 32.360 210.879 0.165 11.592 31.081
Fast all 4 75.007 0.202 11.407 32.458 211.424 0.165 11.621 31.180

64.511 0.179 9.850 23.998 177.252 0.149 10.039 23.638
Sp-SCM

all 4 69.999 0.194 10.801 29.026 196.576 0.160 11.008 28.093

Note: “eqV” indicates that the variable weights are equally weighted. “Price” and “Age” indicates using only
the retail price or age as a covariate, while “all 4” signifies the use of all four covariates. Since the periods in
which the data is available differ between covariates, the values are averaged over their corresponding pre-
and post-periods.

SCM

When combining the results from Table 7 and 8, it becomes evident that although attaining

precise balance on all four covariates during the pre-treatment period may not be the most

optimal approach, there are still benefits to approximately matching these covariates. This

inference is supported by the subpar fit results of the Sp-SCM and its higher errors, in comparison

to both the standard SCM and ASCM, which exhibit similarly good fit across all covariates.
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When analysing the results of standard SCM, it is observed that using all lagged outcomes

achieves approximate balance across covariates. Since covariates would be rendered meaningless

under this setting (Kaul et al., 2015), their good balance implies that some of them are relevant

and their effects on the potential outcome is linear, as the optimisation procedure does not

explicitly aim to achieve such balance. The theory behind it is discussed by Botosaru and

Ferman (2019) and a similar conclusion is drawn in their empirical study.

Comparing the SCM with all lagged outcomes to the SCM with Albadie’s specification, it

is noted that Albadie’s specification performs better in fitting the covariates Income and Beer.

This finding partially aligns with a simulation study conducted by Kaul et al. (2022), where they

find that when covariates have linear and independent effects, using all outcome lags can lead to

poorer fitting of covariates compared to estimators that effectively utilise some outcome-related

predictors. On the other hand, the weaker fit for Price can be attributed to the findings discussed

in the study by Botosaru and Ferman (2019). They explain that the data-driven procedure used

to determine variable weights tends to assign relatively small weights to covariates that should

not be matched on, irrespective of whether their effects are linear or non-linear. Overall, these

analyses suggest that the effect of Price on the outcome may be non-linear, while Income and

Beer have a suspected linear effect on cigarette consumption. Besides, achieving balance for

Price is deemed less important in the optimisation procedure compared to Income and Beer,

under Albadie’s specification.

However, this conclusion is based on limited theoretical considerations and may oversimplify

the complex dynamics among the variables. While there are justifications for achieving different

levels of balance in each covariate, they cannot directly explain the inferior performance of

Albadie’s specification compared to using all lagged outcomes. One plausible explanation for

this result could be the difference in the number of predictors utilised by the two specifications.

ASCM

In the context of achieving balance in covariates, the use of ASCM can offer additional insights, as

it allows for precise control to achieve perfect balance in covariates. Since ASCM is modified from

SCM with all lagged outcomes, the results of ASCM are compared to this specification. First, it

is found that ASCM generally produces a better fit for all covariates compared to SCM, except for

the Beer covariate, where the results are less clear. This suggests that achieving balance on the

three covariates considered in the study could be the reason for ASCM’s superior performance.

Besides, it is also found that exactly matching on Beer, in addition to the other three covariates,

leads to increased errors. This may be attributed to the limited representativeness of the Beer

covariate, as it only covers a short period of five years. As a result, aiming for balance specifically

on the Beer covariate is not recommended due to its inherent lack of reliability.

Sp-SCM

The last part of analysis focuses on Sp-SCM. Although Sp-SCM produces larger errors com-

pared to the other approaches, its automated selection of predictors and its different estimation

procedure focusing on post-period can offer insights into the importance of covariates. Since the

results from the Full-joint version of Sp-SCM does not give information on the match variables,
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Table 9 only depicts the results for the Fast version.

Table 9: The predictors selected by Sp-SCM (Fast)

1970 1974 1977 1982 1984 1986 1987 1988
Sp-SCM (Fast)

all 4 1985 1987 1988 Income Age Price

Note. The number denotes the year of which cigarette consumption is selected.

When employing Sp-SCM (Fast) with all lagged outcomes, it identifies eight years, with the

majority of them being close to the intervention year of 1988. This indicates that the lagged

outcomes from these years are deemed more influential in estimating the outcome of interest in

the post-period. On the other hand, when additional information on covariates is incorporated,

it selects three covariates as well as three years that are close to 1988. This finding highlights the

relevance of the covariates Price, Age, and Income, and reinforces the idea that achieving better

balance in these three covariates may be the reason that the ASCM performs better. Moreover,

this finding confirms predictor selection considered by Abadie et al. (2010), and the inclusion of

the Income covariate as a relevant predictor also aligns with the results obtained in the study

conducted by i Bastida (2022), where the analysis involves forty covariates.

6 Conclusion

The simulation design expands upon the framework employed by Ferman et al. (2020), incor-

porating diverse data-generating processes and covariate inputs. While the authors suggest the

use of certain specifications, this study raises potential concerns and conducts analyses to provide

clarification. The findings challenge previous research conclusions and introduce new insights.

Particularly, the results emphasise the characteristics of outcome variables. While most results

can be explained plausibly based on existing theories, further investigation is required to de-

termine the cause of improved performance when employing time-invariant covariates compared

to using the averaged value of outcome variables under certain conditions.

In the empirical study evaluating the impact of the anti-tobacco policy, better balance in

covariates related to retail price, age, and income corresponds to smaller estimation bias. Ad-

ditionally, the study includes discussions grounded in concrete theories to evaluate whether the

effects of these covariates on outcome variables are linear or non-linear. However, further ana-

lysis is necessary to accurately determine the specific properties of their effects and to quantify

the extent of improvement in estimation when achieving balance.

The analysis of covariate fit in empirical study is also limited as it simplifies to consider only

the case of California. It would be beneficial to follow the approach of Billmeier and Nannicini

(2013), who provide covariate fit analysis for each placebo country and discuss their economic

background. Moreover, this study lacks a discussion on the potential presence of multicollinearity

among covariates, which is likely to exist in real-world data and can have relevant implications

for estimation bias (Botosaru & Ferman, 2019). This aspect should be taken into consideration

in future studies. Additionally, the discussions on ASCM in empirical study is limited to the

three scenarios. Comparing results from exactly balancing different combinations of covariates

with ASCM may offer further understanding on their importance of fit.
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A Programming code

The standard SCM and the augmented SCM are implemented with packages Synth and augsynth

in R programming language, respectively. The sparse SCM are provided by Quistorff et al. (2021)

with Python code, while this study convert the environment to R interface, allowing for a direct

comparison between each type of SCM.

For the simulation study, the Monte Carlo results are summarised using the STATA file

provided by Ferman et al. (2020). The resulted files are then again imported into R interface,

in which the further analyses are performed. As for the empirical study regarding California’s

Proposition 99, all procedures are conducted in R programming.

B Appendix - The noise specification in covariates

Regarding the DGP with three stationary covaraites and a random walk covariate formulated

as equation 5 (trCOV), the random errors associated with Z1 to Z4 are drawn from normal

distributions N(1, 2), N(0, 2), N(0, 0.5) and N(0, 0.5). These choices are made to strengthen the

their corresponding strong, intermediate, weak, and trending properties. Besides, to alleviate

the impact of noises when analysing MSPE in Section 4.4, the distributions of their random

errors become N(0, 0.1), N(0, 0.1), N(0, 0.1) and N(0, 0.2).

C Appendix - Review of the augmented SCM

This section provides a review of the augmented SCM proposed by Ben-Michael et al. (2021).

Since their main proposal focuses on incorporating ridge regression technique in SCM and is

implemented in this study, this section only covers the parts related to Ridge ASCM.

When the Ridge ASCM only involves the outcome variables without any covariate, the estim-

ator for the post-treatment outcome is specified as η̂ridge0 +X′
iη̂

ridge, where the two coefficients

are obtained from ridge regression of the post-treatment outcome Y0t on the pre-treatment out-

come X0. The estimation of these coefficients, along with the estimated synthetic value, are

obtained through the following procedures:

{η̂ridge0 , η̂ridge} = argmin
η0,η

1

2

J+1∑
j=2

(Yi − (η0 +X ′
iη))

2 + λridge||η||22, (9)

Ŷ1t =
J+1∑
j=2

wSCM
i Yit +

(
X1 −

J+1∑
j=2

ŵSCM
i Xi

)
· η̂ridge, ∀t > T0. (10)
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where the penalty hyper-parameter λridge (level of extrapolation...) is determined through a

cross-validation approach. As can be seen from equation 10, this approach directly corrects the

SCM estimates by the imbalance in pre-treatment outcomes.

Furthermore, the authors introduce two ways to incorporate auxiliary covariates in ASCM,

aiming to achieve good balance not only in outcome variables but also in covariates. Since

ASCM uses lagged outcomes and covariates differently during the estimation, the notions are

separated as X and Z in the equations below, respectively. Similar to before, X0 and Z0 are

notations for donor units, while X1 and Z1 are for the treated unit. The approach used in this

study augments the SCM weights with an outcome model η̂0 + X′
iη̂x + Z′η̂z. Therefore, the

estimation of these coefficients are obtained by modifying equation 9:

argmin
η0,ηx,ηz

1

2

J+1∑
j=2

(Yi − (η0 +X ′
iηx + Z ′

iηz))
2 + λx||ηx||22 + λz||ηz||22. (11)

Moreover, since the number of covariates is relatively small relative to the number of units in

the simulation setting, this study follows the suggestion by Ben-Michael et al. (2021) to fit a

model that only regularises the lagged outcome coefficients ηx by setting λz to zero, resulting

in perfect balance in covariates. Subsequently, it implies the estimation comprising two folds:

First, residualise the pre- and post-treatment outcomes on the covariates. Then, estimate ASCM

weights on the residulised outcomes.

D Appendix - Review of the sparse SCM

This section provides a review of the sparse SCM developed by Quistorff et al. (2021). In Sp-

SCM, the unit weight and the variable weights are estimated by the following formulas, given

the regularisation parameters λv and λw:

w(v, λw) = argmin
w

∣∣∣∣X1 −X0w
∣∣∣∣2
V

+ λw

∣∣∣∣∣∣∣∣w − 1

J

∣∣∣∣∣∣∣∣2
2

, (12)

v(λv, λw) = argmin
v≥0

J+1∑
j=2

∣∣∣∣Y post
1 − Y post

0 w(v, λw)
∣∣∣∣2
2
, + λv||v||1, (13)

where λv and λw are determined by a cross-validation procedure. To enhance the prediction

performance on new data for the treated units and encourage a sparse set of matching variables

with non-zero weight, variable weights are applied with L1-regularization. This regularization

technique ensures a unique solution for the variable weights and facilitates automatic feature

selection from the full set of predictor inputs. In contrast, L2-regularization is applied to the

unit weights. This regularization method helps reduce computational complexity by providing

a closed-form solution for the unit weights. Quistorff et al. (2021) discuss detailed motivations

on these choices.

The authors provide two types of Sp-SCM, including a Fast version and a Full-joint version.

For the Full-joint version, the optimisation procedure perform a full nested estimation to find v

and w jointly, such that the resulting SC for controls have smallest squared prediction error on
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the post-treatment period. For another case, the Fast version, it constructs an approximate v by

estimating a linear model of pre-outcomes on predictors. This procedure significantly reduces

the amount of computation time.

D.1 California graph

The figures visually illustrate the time series of the outcome variable, the cigarette sales. The

true value of cigarette consumption in California is represented by a black line, while synthetic

control units are represented by coloured lines.

Figure 1 illustrates the four cases of standard SCMs. In Figure 2a, three cases of ASCMs

are plotted, and Figure 2b showcases four cases of Sp-SCMs.

Figure 1: The plot for standard SCMs

The red line depicts the scenario where all pre-treatment outcomes are utilised, while the

green line represents the counterpart based on equal variable weights. Similarly, the blue and

yellow lines display the results obtained using Albadie’s specifications.
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(a) ASCMs (b) SP-SCMs

Figure 2: The plot for ASCMs and SP-SCMs

In Figure 2a, the red line corresponds to the case where the covariate related to price is

precisely balanced, the green line corresponds to the covariate related to age being balanced,

and the blue line represents the results achieved when all four covariates are balanced.

In Figure 2b, the red and green lines represent the results obtained using the Fast version,

with the green line incorporating covariates. The blue and yellow lines depict the counterparts

for the Full-joint versions.
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